
Spatio-Temporal Functional Dependencies
for Sensor Data Streams

Manel Charfi(B), Yann Gripay, and Jean-Marc Petit

Université de Lyon, CNRS, INSA-LYON, LIRIS,
UMR5205, 69621 Villeurbanne, France

{manel.charfi,yann.gripay,jean-marc.petit}@insa-lyon.fr

Abstract. Nowadays, sensors are cheap, easy to deploy and immedi-
ate to integrate into applications. Since huge amounts of sensor data
can be generated, selecting only relevant data to be saved for further
usage, e.g. long-term query facilities, is still an issue. In this paper, we
adapt the declarative approach developed in the seventies for database
design and we apply it to sensor data streams. Given sensor data streams,
the key idea is to consider both spatio-temporal dimensions and Spatio-
Temporal Functional Dependencies as first class-citizens for designing
sensor databases on top of any relational database management system.
We propose an axiomatisation of these dependencies and the associated
attribute closure algorithm, leading to a new normalization algorithm.

1 Introduction

Thousands and even millions of sensors can be deployed easily, generating data
streams that produce cumulatively huge volumes of data. Whenever a sensor
produces a data (temperature, humidity. . .), two dimensions are of particular
interest: the temporal dimension to stamp the value produced at a particular time
and the spatial dimension to identify the location of the sensor. Both dimensions
have different granularities organized into hierarchies that may vary according
to special needs of applications (see an example in Fig. 1).

Example 1. We consider a running example of sensor data streams from intel-
ligent buildings. In each building different sensors (temperature, luminosity,
humidity. . .) are deployed. At the scale of several buildings, a huge number of
sensors exist, each one sending values at its own rate. Let us consider a temper-
ature sensor data stream as given in Table 1, where location and time follow the
granularity hierarchies presented in Fig. 1. Without loss of generality, we shall
assume throughout the paper that the location attribute contains a string value
containing the concatenation of all its “granules”.

The stream given in Table 1 is representative of a wide variety of sensor data
streams. We consider static sensors in this paper, i.e. sensors set to a particular
place to sense the environment. We focus on applications requiring long term stor-
age of data streams, in opposition to monitoring applications which have to react
c© Springer International Publishing AG 2017
M. Gertz et al. (Eds.): SSTD 2017, LNCS 10411, pp. 182–199, 2017.
DOI: 10.1007/978-3-319-64367-0 10

Spatio-Temporal Functional Dependencies for Sensor Data Streams 183

Fig. 1. Temporal and spatial dimensions

Table 1. An instance of temperatureSensors

Temperature Location Time

21 oxygen:f1:h1:livingRoom:s11 2016/03/02 11:59:00

20 oxygen:f1:h1:kitchen:s21 2016/03/02 11:59:30

20 oxygen:f1:h1:livingRoom:s12 2016/03/02 12:01:00

23 oxygen:f1:h1:kitchen:s22 2016/03/02 12:01:00

20 oxygen:f1:h1:livingRoom:s11 2016/03/02 12:01:30

24 oxygen:f1:h1:bathroom:s31 2016/03/02 12:02:00

20 oxygen:f1:h1:livingRoom:s12 2016/03/02 12:02:30

23 oxygen:f1:h1:kitchen:s21 2016/03/02 12:15:00

in quasi real-time using for example continuous query [1,2]. Many types of systems
can be used for long term storage, from classical file systems (in json, flat text. . .)
to Relational Database Management Systems (RDBMS). In the former, a file is
created for a given period of time (e.g. week, month). In the latter, data streams
are stored as classical tables with specific attributes to cope with spatio-temporal
aspects of the stream. In both cases, the burden is let to application designers who
have to pose complex queries (e.g. full-text search or SQL-like queries) to deal with
temporal and spatial dimensions. Whenever the data volume is high, the query
processing time can be also prohibitive. Selecting only relevant data from sensor
data streams to be saved for further usage, e.g. long-term query facilities, is still
an issue since huge amounts of sensors can be deployed for a specific application.
The challenges of applying traditional database management systems to extract
business value from such data are still there. In this setting, the problem we are
interested in is the following: Given a set of sensor data streams, how to build a
relevant sensor database for long-term reporting applications?

In our work, we focus on the implementation of a declarative approach that
aims to guarantee the storage of the “relevant” sensor data at application-specific
granularities. Instead of relaying on query workload or data storage budget to
define an optimized database [20], we borrow the declarative approach developed
in the seventies for database design using functional dependencies as constraints.

184 M. Charfi et al.

Our aim is to apply this approach in order to transform real-time sensor data
streams into a sensor database. We argue that such constraints augmented with
the spatial and the temporal dimensions are required to keep only the “relevant
data” from incoming sensor streams. The sensor database satisfies the specified
constraints while approximating data stream values. Thus, the data approxima-
tion and data reduction are “controlled” by the set of constraints. As the required
results concern data over long periods of times (e.g. couple of months to several
years), approximating sensor data streams should decrease storage space while
allowing to express “relevant queries” more easily. We introduce Spatio-Temporal
Functional Dependencies (STFDs) which extend Functional Dependencies (FDs)
with the temporal and the spatial dimensions.

Example 2. Let us take back our running example. The building manager con-
siders that the “temperature of each room remains the same over each hour”,
leading to the following STFD: locationroom, timehour → temperature whose
syntax captures the intended meaning, i.e. it does not exist two different tem-
perature values on the same room during a given hour.

Such constraints are straightforward to understand and convey the semantics
allowing to decide what are the relevant data to keep in the database. Classical
database normalization techniques can be revisited in this setting to obtain so-
called granularity-aware sensor databases.

At given spatio-temporal granules (e.g. for a given hour and a given house),
we have different alternatives to choose data, each one could be seen as an
aggregation of values, from simple ones like first, minimum, average within each
spatio-temporal granule to more elaborated ones. Thus, depending on the appli-
cation context, we can imagine more complex aggregations that allow to define
complex functions (e.g. average of the 3 first values corresponding to a given
valid domain) and even to avoid noisy and incomplete data issues. We call these
annotations Semantic Value Assumptions (SVA) which are based on semantic
assumptions of temporal databases [3]. So, if we consider temperature values
of each room at the scale of an hour, we have to precise which value will be
associated to each couple (room,hour): it may be the average of all values from
all sensors in this room at all the minutes of this hour. Once a sensor database
has been built, we have a data exchange problem [7]: how to load data from the
stream to the database? To do that, the main problem is to decide which values
to pick up from the stream. This decision is easily made thanks to SVAs.

Contribution
We aim to establish a sensor data storage system that eases the storage of
spatio-temporal data streams. To the best of our knowledge, this is the first con-
tribution talking advantage of spatio-temporal constraints defined at database
design time to automatically produce an approximated database saving “rele-
vant” data with respect to users’ constraints. Our main objective is at the end
to have a reduced database that contains a summary of sensor data streams in
accordance to application-predefined requirements. Thus, given a set of sensor

Spatio-Temporal Functional Dependencies for Sensor Data Streams 185

data streams, we propose a declarative approach to build a representative sensor
database on top of any RDBMS with the following key features:

– Both spatio-temporal granularity hierarchies and STFD are considered as
first class-citizens.

– A specific axiomatisation of STFD and an associated attribute closure algo-
rithm, leading to an efficient normalization algorithm are introduced.

– A middleware to load on-the-fly relevant data from sensor streams into the
granularity-aware sensor database is proposed.

We have implemented a prototype to deal with both database design and data
loading. We have conducted experiments with synthetic and real-life sensor data
streams coming from Intelligent Building.

Paper organization
Section 2 gathers preliminaries. In Sect. 3, we define the formalism of STFDs
leading to the design of the granularity-aware sensor database. In Sect. 4, we
sketch the architecture of our declarative system and the experiments conducted
on intelligent building data streams. The related work is presented in Sect. 5.
Finally, in Sect. 6 we conclude and expose some perspectives.

2 Preliminaries

To define spatio-temporal granularity hierarchies, we first define a general notion
of granularity, borrowed from time granularity definition [3], then a partial order
on a set of granularities for which we require a lattice structure.

Let T be a countably infinite set and ≤ a total order on T . A granularity
is a mapping G from N to P(T) where P(T) is the powerset of T . A non-
empty subset G(i), i ∈ N, of a granularity G is called granule. The granules in
a granularity do not overlap. A granularity G is finer than a granularity H (H
is coarser than G), denoted G � H, if for each integer i, there exists an integer
j such that G(i) ⊆ H(j). Intuitively this means that each granule of H holds
a set of granules of G. Let G be a set of granularities and � a partial order on
G. We assume the set (G,�) is a lattice, meaning that each two-element subset
{G1, G2} ⊆ G has a join (i.e. least upper bound) and a meet (i.e. greatest lower
bound). For X ⊆ G, glb(X) denotes the greatest lower bound of X in G. The
greatest and least elements of G, or the top and bottom elements, are denoted
by Top and Bottom, respectively. G is collectively finer than {G1, . . . , Gm},
denoted by G �c {G1, . . . , Gm}, if for each positive integer i, there exist k, j
such that G(i) ⊆ Gk(j), 1 ≤ k ≤ m and j a positive integer. Intuitively this
means that there exists in the set of granularities {G1, . . . , Gm} at least one
granularity that, for each granule G(i) taken independently, is coarser than G.
As a particular case, G � G′ implies G �c {G′}.

Application to spatio-temporal dimensions
For each considered dimension, a lattice of granularities is defined accordingly.
For the sake of clearness, we assume without loss of generality that a total

186 M. Charfi et al.

order exists for time instants and sensors, meaning that two time instants (resp.
two sensors) can always be compared. In this setting, we define two lattices,
(T ,�t) and (S,�s) leading to two granularity hierarchies. T is a set of temporal
granularities and S a set of sensor location granularities. An example is given in
Fig. 1 where the arrows connect the coarser to the finer granularities.

3 Database Modeling for Sensor Data

3.1 Granularity Aware Sensor Database

We assume the reader is familiar with database notations, see for example [11]
for details. Hereinafter we use G as a spatial granularity and H as a temporal
granularity. We extend the temporal database definitions given in [3] to take into
account the spatial dimension. Let U be a universe (set of attributes) and D be a
countably infinite set of constant values. A spatio-temporal module schema over
U is a triplet M = (R,G, H), where R ⊆ U is a relation schema, G ∈ (S,�s) is
a spatial granularity and H ∈ (T ,�t) is a temporal granularity. For a relation
schema R, Tup(R) is the set of all possible tuples defined over D. A spatio-
temporal module is a quadruple M = (R,G,H,ϕ), where (R,G,H) is a spatio-
temporal module schema and ϕ is a mapping from N×N to P(Tup(R)). Actually,
the mapping function ϕ(i, j) gives the tuples over attributes of R that hold at
each couple of granules (G(i),H(j)). When clear from context, we shall use the
time instants and sensor locations instead of integers to describe a particular
mapping function, e.g. ϕ(buildingx:housey:roomz:sensori, 2016/03/02 11:59:00)
instead of ϕ(i, j) for some integer values i and j.

Example 3. Consider the “raw” data stream given in Table 1. It can be repre-
sented at different granularities: e.g. with the module M1=(R,G1,H1, ϕ1) where
R={temperature}, G1=room,H1=hour and the windowing function ϕ1 is:

ϕ1(oxygen:f1:h1:livingRoom,2016/03/02 11) = {<21>}
ϕ1(oxygen:f1:h1:kitchen,2016/03/02 11) = {<20>}
ϕ1(oxygen:f1:h1:livingRoom,2016/03/02 12) = {<20>}
ϕ1(oxygen:f1:h1:kitchen,2016/03/02 12) = {<23>}
ϕ1(oxygen:f1:h1:bathroom,2016/03/02 12) = {<24>}

A granularity-aware sensor database schema R over U is a fixed set of spatio-
temporal module schemas over U . A granularity-aware sensor database d is a
finite set of spatio-temporal modules defined over R.

3.2 Spatio-Temporal Functional Dependency (STFD)

Dedicated FDs for sensor data streams have to take into account the temporal
and spatial dimensions. Many extensions of FDs to temporal DB have been
proposed but none of them extends FDs to both temporal and spatial dimensions.
In the sequel, we extend temporal functional dependencies introduced in [3].

Spatio-Temporal Functional Dependencies for Sensor Data Streams 187

Intuitively, a STFD means that the X-values determine the Y -values within
each granule of the spatio-temporal granularities.

Let X, Y ⊆ U and (T ,�t), (S,�s) two granularity hierarchies. To express
STFDs, we need to consider two special attributes, disjoint from U , to take into
consideration granularities. Let location and time be the special spatial and
temporal attributes respectively. When clear from context, location and time
will be abbreviated by L and T respectively.

Definition 1. A spatio-temporal FD over U is an expression of the form:
X, locationG, timeH → Y where G ∈ (S,�s) is a spatial granularity and
H ∈ (T ,�t) is a temporal granularity.

We shall see that the case X = ∅ is meaningful for STFDs whereas the
classical FD counterpart is almost useless (i.e. ∅ → A means that in every
possible relation, only one value for A is allowed).

Example 4. Regarding the temperature approximations, one may consider that
the temperature of the same room does not change all along the same hour. This
approximation can be represented as: ∅, locationroom, timehour → temperature
(or simply: locationroom, timehour → temperature).

The satisfaction of a STFD with respect to a module is defined as follows:

Definition 2. Let M = (R,G,H,ϕ) be a spatio-temporal module, X,Y ⊆ R
and f : X, locationG′

, timeH′ → Y an STFD. f is satisfied by M, denoted by
M |= f , if for all tuples t1 and t2 and positive integers i1, i2, j1 and j2, the
following three conditions imply t1[Y] = t2[Y]: (1) t1[X] = t2[X], (2) t1 ∈
ϕ(i1, j1) and t2 ∈ ϕ(i2, j2), and (3) ∃ i′ such that G(i1) ∪ G(i2) ⊆ G′(i′) and
∃ j′ such that H(j1) ∪ H(j2) ⊆ H ′(j′).

This definition extends classical FDs (r |= X → Y) as follows:

(1) is the classical condition for FDs, i.e. the left-hand sides have to be equal on
X for the two considered tuples.

(2) bounds tuples t1, t2 to be part of two spatio-temporal granules of M (equiv-
alent to t1, t2 ∈ r).

(3) restricts eligible tuples t1 and t2 in such a way that the union of their spatial
(resp. temporal) granules with respect to G (resp. H) has to be included in
some granule of G′ (resp. H ′).

Example 5. Let us consider the module M2=(R,G2,H2, ϕ2) where R={tempe-
rature}, G2=sensor,H2=second. We have: M2 |= locationroom, timehour →
temperature and M2
|= locationhouse, timehour → temperature. As for FDs,
the non-satisfaction is easier to explain since we just need to exhibit a counter
example. The two first tuples given in Table 1 form a counter-example since both
sensors belong to the house h1 and have been produced at the hour 11 whereas
20
= 21.

From these examples, we argue that STFDs are quite natural to express
declarative constraints over sensor data streams and provide a powerful abstrac-
tion mechanism towards granularity-aware sensor database design.

188 M. Charfi et al.

3.3 Reasoning on STFDs

Inference Axioms for STFDs. In order to derive all the possible STFDs
logically implied by a set of STFDs, we need to define the inference axioms
corresponding to STFDs. We propose the three following finite axioms:

(A1) Restricted reflexivity:
if Y ⊆ X then F � X,LTop, TTop → Y

(A2) Augmentation:
if F � X,LG, TH → Y then F � X,Z,LG, TH → Y,Z

(A3) Extended transitivity:

if

{
F � X,LG1 , TH1 → Y

F � Y,LG2 , TH2 → Z
then F � X,LG3 , TH3 → Z

where G3 = glb({G1, G2}) and H3 = glb({H1,H2}).

These three inference axioms for STFDs are a generalization of axioms of
temporal FDs, shown to be sound and complete in [3]. The proof for STFDs is
similar and is omitted in this paper.

Closure of Attributes. The closure of attributes plays a crucial role for rea-
soning on classical FDs and are generalized to STFDs as follows. Let R be a
sensor database schema over U , F a set of STFDs over U and X ⊆ U . The
closure of X with respect to F is denoted by X+

F . X+
F contains elements of the

form (B,G,H) over U × S × T . X+
F is defined as follows:

X+
F = {(B,G,H) | F � X,LG, TH → B such that there is no F �

X,LG′
, TH′ → B with G′ �s G′,H �t H ′ and (G
= G′ or H
= H ′)}.

Algorithm 1 computes the finite closure of a set of attributes X with respect
to F . This algorithm is a generalization of the classical closure algorithm for FDs
[11] taking into account the granularities. Its basic idea is to compute progres-
sively the set X+

F . Line 1 encodes the first axiom (A1). The following procedure
is repeated over all STFDs until a fix point is reached (line 13). For each STFD
of line 4, if A1, .., Ak appears in the current closure Xprev, then B1, .., Bm are
added to X+

F with the corresponding spatial and temporal granularities. Line 14
ensures that the closure is composed of elements with incomparable granularities
for the same attribute.

Example 6. Let us consider U = {temperature, humidity, luminosity, CO2},
four sensor types sending the temperature, humidity, luminosity and CO2 values,
the granularity hierarchies given in Fig. 1 and the set F of STFDs:

F = {locationroom, timehour → temperature; locationhouse, timeday →
humidity;
locationroom, timeday → luminosity; locationroom, timeminute → CO2;
locationroom, timehour → humidity; locationroom, timeminute → temperature;
locationhouse, timehour → humidity; locationsensor, timehour → luminosity;
locationroom, timehour → CO2 }
The closure of temperature w.r.t. F is: temperature+F = {(temperature, Top,
Top), (humidity, house, day), (luminosity, room, day), (CO2, room, hour)}.

Spatio-Temporal Functional Dependencies for Sensor Data Streams 189

Algorithm 1. ClosureAttribute
Require:

F : a set of STFDs over U
X ⊆ U

Ensure:
X+

F : the finite closure of X with respect to F

1: X+
F := {(A, Top, Top) | a ∈ X} ∪ {(∅, Top, Top)}

2: repeat
3: Xprev := X+

F

4: for each A1, .., Ak, LG, TH → B1, .., Bm ∈ F do
5: for each {(A1, G1, H1), .., (Ak, Gk, Hk)} ⊆ Xprev do
6: G′ := glb(G1, .., Gk, G)
7: H′ := glb(H1, .., Hk, H)
8: for each B ∈ {B1, .., Bm} do

9: X+
F := X+

F ∪ {(B, G′, H′)}
10: end for
11: end for
12: end for
13: until X+

F = Xprev

14: Minimize X+
F such that there is no two elements (A, G, H) and (A, G′, H′) with G 	s G′, H 	t

H′ and (G
= G′ or H
= H′)

The closure of attributes with respect to a set F of STFDs is polynomial and
allows to decide whether or not a given STFD is implied by F , as shown in the
following property.

Property 1. F � X,LG, TH → B iff ∃ Y ⊆ X+
F such that Y = {(B,Gik ,Hjl) |

ik ∈ i1..in, jl ∈ j1..jm}, G �c {Gi1 , . . . , Gin} and H �c {Hj1 , . . . , Hjm}.

Example 7. Let us consider the set F of STFDs given in Example 6. We consider
the following STFDs:
f1 : temperature, locationroom, timehour → luminosity; and
f2 : temperature, locationopenspace, timeday → humidity;
As (luminosity, room, day) ∈ temperature+F and hour �t day we have F �
f1. But F
� f2 since temperature+F only contains (humidity, house, day) and
openspace
�s house.

Attribute closure is one of the technical contributions of the paper and is, to
the best of our knowledge, a new result never addressed in related works.

3.4 Normalization

Our aim is to extend the well known synthesis algorithm for database design
[11] from a set of classical FDs in our setting. With STFDs, we propose a nor-
malization technique based on two main steps: first, computing a minimal cover
of a set of STFDs and then producing spatio-temporal modules. Let F+ be the
closure of F . F+ is defined by: F+ = {X,LG, TH → Y | F � X,LG, TH → Y }.

Definition 3. A set F ′ of STFDs is a cover of a set F of STFDs if F+ = F ′+.
A cover F ′ of F is minimal if
 ∃ a cover G of F such that |G| < |F ′|.

190 M. Charfi et al.

Algorithm 2. MinimalCover
Require:

F : a set of STFDs over U
Ensure:

F ′: a minimal cover of F

1: F ′ := ∅
2: for each X, LG, TH → Y ∈ F do
3: for each (A, G′, H′) ∈ X+

F do

4: F ′ := F ′ ∪ {X, LG′
, TH′ → A}

5: end for
6: end for
7: for each X, LG′

, TH′ → A ∈ F ′ do

8: F ′′ := F ′ \ {X, LG′
, TH′ → A}

9: if F ′′ � {X, LG′
, TH′ → A} then

10: F ′ := F ′ \ {X, LG′
, TH′ → A}

11: end if
12: end for
13: while there exists f, f ′ ∈ F ′ with the same left-hand-side do
14: Merge f and f ′

15: end while

Algorithm 2 generalizes the classical procedure to get a minimal cover of FD.
We sketch the main steps to compute a minimal cover. First, we saturate the
initial set of STFDs with STFDs induced by the closure of each set of attributes
(line 2–6). Then, we apply classical minimization procedure (line 7–12) and
finally, we merge STFDs whose left-hand sides are the same by taking the union
of their right-hand sides (line 13–15) (not detailed in the Algorithm).

Example 8. We consider the set F of STFDs in example 6. Using Algorithm 2
we get the following minimal cover F ′ (details are omitted):

F ′ = {locationroom, timehour → temperature, CO2;

locationhouse, timeday → humidity; locationroom, timeday → luminosity}

The sensor database schema can be deduced from the obtained minimal cover:
for each STFD, a module is generated. Algorithm 3 presents the main steps
allowing to get a granularity-aware sensor database schema from a set of STFDs.
Studying the properties of this decomposition is left for future work.

Algorithm 3. Normalization
Require:

F : a set of STFDs over U
Ensure:

R: a granularity-aware sensor database schema

1: R := ∅
2: F ′ := MinimalCover(F)

3: for each A1, .., Ak, LG, TH → B1, .., Bm ∈ F ′ do
4: R := {A1, .., Ak, B1, .., Bm}
5: M := (R, G, H)
6: R := R ∪ M
7: end for

Spatio-Temporal Functional Dependencies for Sensor Data Streams 191

Example 9. Continuing the previous example, we obtain a granularity-aware sen-
sor database schema R = {M1,M2,M3} with:
M1 = (< temperature, CO2 >, room, hour), M2 = (< humidity >, house, day),
and M3 = (< luminosity >, room, day).

It is worth noting that every module of such a database schema is easily imple-
mentable on top of any RDBMS. In the sequel, we denote the database schema
obtained through the normalization process by the abstract schema because in
our context we need to add more semantic information to this schema.

3.5 Semantic Value Assumption

Given a set of sensor data streams, constraints for long-term storage can be defined
as a set of STFDs. We have seen that a granularity-aware sensor database schema
can be obtained from them thanks to the proposed normalization algorithms
which allow producing a database schema, i.e. abstract schema, from the user-
defined inputs (dimensions, sensor stream schemas and STFDs). After that, the
user annotates the abstract schema with the semantic information allowing to
specify the “relevant” data at the right granularities. In fact, at given spatio-
temporal granules, we have different alternatives to choose data, each one could
be seen as an aggregation of values with some aggregate functions. These func-
tions can be simple aggregations (e.g. first, max . . .) or more elaborated ones (e.g.
average of the 3 first values corresponding to a given valid domain) depending
on the application context. To do so, we introduce the so-called “Semantic Value
Assumptions” (SVA) allowing to declaratively define the values to be selected.
Annotating an abstract schema, obtained by normalization techniques based on
STFDs, with user-defined SVAs leads to a concrete schema, which can be imple-
mented on top of classical RDBMS. The definition of SVA is:

Definition 4. Let M = (R,G,H) be a spatio-temporal module schema and A ∈
R. A SVA is a triplet (A, agg fct,M) where agg fct is an aggregation function
(first,avg. . .) over the spatio-temporal granularities G and H.

Example 10. Let us consider M2 in Example 9. The SVA (humidity, first, M2)
means that the first humidity value per house per day has to be kept in M2 and
the SVA (humidity, avg,M2) means that the average of the humidity values per
house per day has to be kept in M2.

Whenever multiple SVAs exist for a given couple (attribute,module schema),
new attributes could be created in the target schema of the underlying RDBMS.
These specific annotations allow, in a declarative manner, to annotate the data-
base schema with the semantic information required to indicate which value
is representative in each granule. SVAs can be very complex aggregations that
allow to define complex functions and even to avoid noisy and incomplete data
issues. This semantic information is important in database design level as well
as in the data stream loading procedure. In fact, as the relevant tuples definition
is ensured thanks to SVAs, for each SVA the system instantiates a specific data

192 M. Charfi et al.

wrapper. It is possible to implement SVA in different manners namely using
triggers or a dedicated middleware. As triggers do not scale to important data
stream loads [1,8], we chose to implement SVA data wrappers in a middleware.

4 Prototype for Sensor Database

We propose a declarative system for both database design and data stream
loading containing the following two levels:

Fig. 2. An overview of our architecture Fig. 3. STFD definition in our prototype

1. Sensor database design: Given a spatial and a temporal dimensions, the
aim of this module is to determine a granularity-aware sensor database schema
from a set of data streams, a set of STFDs and a set of SVAs.
Once the granularity-aware sensor database schema is defined, this module
allows to create the corresponding database relations in SQL, data description
language implemented on top of any RDBMS.

2. On-the-fly data loading: Once the database is created, this level ensures
the selection of the relevant data from the received sensor data streams.
Thanks to STFDs and SVAs this middleware observes sensor data, chooses
data to be stored and prunes the rest.

4.1 Implementation

We implemented in Java and Prolog a prototype containing the two levels pre-
sented previously. An overview of the proposed architecture is presented in Fig. 2
where we found the following main modules:

1. Normalization module: This module takes the user inputs (i.e. spatio-
temporal dimensions, stream schemas and STFDs) and generates database
schema using the algorithms presented in Sect. 3. This process leads to the
database abstract schema. The reasoning about the spatio-temporal dimen-
sions is proceeded through a Prolog environment. A .pl file, containing the
finer than relationships between the different granularities, is generated from
the input spatio-temporal dimensions. This file is checked whenever an algo-
rithm needs to compare two granularities.

Spatio-Temporal Functional Dependencies for Sensor Data Streams 193

2. Data management module: At this stage, the user defines the SVAs corre-
sponding to the proposed abstract database schema. This module updates the
abstract schema with the corresponding semantic annotations which leads to
the concrete schema. This module also ensures the selection of the “relevant”
data (i.e. corresponding to the specification of the set of SVAs) from sensor
data streams. Thus, for each SVA the system instantiates a specific SVA data
wrapper which observes the sensor data stream concerning its attribute and
identifies the accurate values. Once the user validates the obtained sensor
database schema, the database relations are created. We used Oracle 11G for
the implementation and the experiments.

3. Sensor module: This module is the interface between the sensors and the
system. It gathers sensor data and links it to the user-defined dimensions.

4. Web GUI: This module allows the application manager to: (a) design the
temporal and spatial dimensions, (b) from data streams at hand, define the
stream schemas, (c) declare relevant STFDs from (a) and (b), (d) once an
abstract schema exists, define a set of SVAs.

We believe that STFDs are natural and easy to express. Indeed, Fig. 3, con-
tains a screen-shot from our prototype containing the user interface for STFD
definition. As we can see the user just has to check the concerned attributes and
select each granularity without caring about any syntax.

4.2 Ongoing Experiments

Data accuracy w.r.t. data reduction

In this section, we are mainly interested in studying the trade-off between data
reduction and data accuracy with respect to some STFDs. To do so, we con-
sider real-life sensor data. We have conducted real-life experiments in two build-
ings in our university. A total of around 400 heterogeneous physical sensors are
deployed to measure temperature, humidity, CO2/VOC, presence, contact (for
doors/windows), electricity consumption, weather conditions. . .

In these experiments, we consider 19 temperature sensors belonging to 7
different rooms. Each sensor sends a new value per minute. We are interested on
data coming from these sensors all along one day (June, 1 2016). The idea is to
compare the data reduction with respect to the considered set of STFDs. Then,
to compare the considered data (“relevant data”), we observe the impact of this
reduction upon the accuracy of the results. In our case, the initial sensor data
stream spatio-temporal granularities are sensor and minute. All received sensor
data is stored in a table called d0 (i.e. raw data). We consider the following three
sensor database tables and their corresponding STFDs:

1. sensor DB table d1: contains the first temperature value per sensor per hour
with respect to the STFD locationsensor, timehour → temperature,

2. sensor DB table d2: contains the first temperature value per room per hour
with respect to the STFD locationroom, timehour → temperature, and

194 M. Charfi et al.

Table 2. Data reduction w.r.t. STFDs

Database table Number of tuples ratio: | d′ | / | d |
d0 27379 =| d | 100%

d1 456 1, 67%

d2 162 0, 59%

d3 7 0, 03%

Fig. 4. Data accuracy w.r.t. data
reduction

Fig. 5. Difference between the results of Q1

and Q2

3. sensor DB table d3: contains the first temperature value per room per day
with respect to the STFD locationroom, timeday → temperature.

Table 2 shows the important data reduction that may be done thanks to
STFDs. As we can see, considering coarser granularities increases the data reduc-
tion. Next we are interested in data accuracy. Thus we aim to check how STFDs
data approximation impacts data. To do so, we ask the different obtained data-
base tables for the average of temperature per each room during the day. These
averages are given in Fig. 4. According to this figure, approximating data with
coarser granularities increases the error rate and decreases data accuracy. In
order to evaluate the error rate and to check if the approximation deteriorates
the evaluation of the temperature averages we are now interested in the differ-
ence between the results over raw data and a sensor database. Therefore, we
executed the following queries:

1. query Q1: computes on a raw database table the average of the temperature
during each day of a given month for a given sensor, and

2. query Q2: computes on a sensor database table (i.e. this table contains only
one value per sensor per hour) the same average value.

The obtained difference values are given in Fig. 5. We can see that the difference is
maintained under an error rate of 5% (most values being randomly disseminated

Spatio-Temporal Functional Dependencies for Sensor Data Streams 195

on the ±2% rate stripe) which could be considered acceptable in a real life
settings. It also evidences the fact that even though query Q2 considers only
one value per hour for the assessment of the average temperature per day, the
output of the calculation sticks to the value obtained with a finer granularity.
Actually, considering coarser granularities may not have a major effect on the
final results, due to the fact that sensor values may be unchangeable over some
spatio-temporal granules.

Data storage
We simulate now the sensors of an intelligent building containing 10 houses,
each house contains 5 rooms. In each room we consider at least 2 sensors of
each type (e.g. temperature, humidity. . .). Thus we simulate the operation of
several hundreds of sensors, each sending data at a frequency of one value per
minute. We took a sensor data stream, e.g. temperature, and we stored it in dif-
ferent relations with different temporal and spatial granularities. For instance, if
we consider the temporal granularity hour the concerned relation contains one
temperature value per hour per sensor. And, if we consider the spatial granu-
larity room the concerned relation contains one temperature value per minute
per room. The experiments of this section count the number of tuples in each
relation. As expected, it is clear from Fig. 6 that with finer granularities we have
more tuples. However, we can note that the temporal granularities are more dis-
criminating than the spatial granularities. So as we have seen the use of STFDs
with coarser granularities may reduce the number of tuples. This leads to more
efficient queries as they have less tuples to scan. We also mention that, storing
relevant data according to application requirements at specific spatio-temporal
granularities enables the use of simpler queries (simple SELECT queries with
simple WHERE clauses instead of queries with nested SELECT and JOINS).
The stored relevant data can be considered as prior-computed query results.

Sensor data loading efficiency
In this section we are interested in the total execution time over predefined
duration of our prototype while storing data in the appropriate database rela-
tions. Thus, we compare some implemented SVAs with the baseline solution,
i.e. storing all received sensor data. Each sensor sends one value per minute.

Fig. 6. Number of tuples when varying temporal and spatial granularities

196 M. Charfi et al.

Fig. 7. Total execution time w.r.t. the
number of sensors

Fig. 8. Total execution time w.r.t. the
duration

The stored data in the following sets of experiments is approximated upto the
spatio-temporal granularities room and hour. We compare the total execution
time of the baseline solution with four SVAs (first, last, maximum and average).
In this section we focus on the temperature stream. First, we focus on the varia-
tion of the total execution time with respect to the sensor number. We limit the
scope of these experiments on a duration of 1 h. The obtained results are given
in Fig. 7. Then, we vary the duration of our experiments for a fixed number of
sensors (100 sensors). Using SVAs in order to select on-the-fly the relevant data
is more efficient than the baseline solution: the total time in the case of SVAs is
lower by a 103 order of magnitude in Fig. 7 and by a 102 order of magnitude in
Fig. 8 (in a log scale).

5 Related Work

As far as we know there is no many contributions aiming at using the spatial
and the temporal dimension in order to retrieve the relevant data from sensor
data streams. Nowadays sensor data management can be seen from two points
of view: real-time, i.e. continuous queries [1,2] versus historical [6,12,13] data
management. In this paper, we were interested in long-term storage of sensor
data. Our aim is to decrease the storage space and increase query efficiency of
long-term reporting applications. Some approaches were interested in resolving
storage problems that can result from the important amount of data generated
by sensors. As far as we know, there is no formal approach for dealing with
spatio-temporal stream querying considering different granularities.

TFDs have been mainly introduced in order to constraint the temporal data
in temporal databases. There have been an important number of articles aiming
at defining and characterizing TFDs namely [9,15–18]. The three first approaches
[9,15,17] handle TFD without time granularity. In [15], the author defined a tem-
poral relation as a temporal sequence of database states and extended each tuple

Spatio-Temporal Functional Dependencies for Sensor Data Streams 197

with its updated version. The data model in [17] was extended with a valid time
which represents a set of time points. The author presented the suitable defi-
nition of FD in the presence of valid time and defines two classes of temporal
dependencies: Temporal Functional Dependencies (TFDs) and Dynamic Func-
tional Dependencies (DFDs). In [9], data contains two time dimensions: valid
time and transaction time. The authors handle the problem of expressing the
functional dependencies with such data. These works do not consider granular-
ity as a central notion as we do in this paper. Both [16,18] handled multiple
time granularities. The authors in [16] and in [3] defined the time granularities
and the different relationships between them. They defined the temporal module
schema and the temporal schema as well as TFD. In [18], the author extended
the dependencies presented in [17] using time granularity and object identity
which is a time-invariant identity that relates the different versions of the same
object.

Roll-up Dependencies (RUDs) [19] define dependencies with a higher abstrac-
tion level for OLAP DB. They extend TFDs to non temporal dimensions allowing
each attribute to roll up through the different levels of its associated hierarchy.
Algorithmic aspects such as attribute closure is not studied for RUD, as we do
in this paper. We just need two dimensions, i.e. temporal and spatial. In fact, we
distinct two particular attributes, for spatial and temporal dimensions, and we
combine them with classical attributes (i.e. attributes without associated hierar-
chies). Moreover, unlike [19] which deals with schemas, we deal with attributes
and we propose a normalization algorithm and a new closure algorithm of a set
of attributes from a set of STFDs. Our approach is not comparable to OLAP
since our main goal is to retrieve and organize sensor data and not to analyze
multidimensional data from multiple perspectives.

We also defined a declarative structure, i.e. SVA, which annotates the gen-
erated database design in order to enrich it with semantic information about
relevant data selection. SVAs are also useful to select on-the-fly relevant data.
In fact, SVAs represent a sort of data exchange [7] mechanism inspired from
interval-based semantic assumptions designed for temporal databases [3]. The
point-based and interval-based semantic assumptions in [3] can be used to derive
or compress temporal data.

The use of SVAs in order to choose the relevant tuples reminds us load shed-
ding techniques. The load shedding process [14] intends to reduce the workload
of the data stream management system by dropping tuples from the system. Sev-
eral approaches proposed different tuples dropping strategies, e.g. random [10],
with a priority order [4] or a semantic strategy [5]. The load shedding usually
interferes in the physical plan of the query while our approach aims to interfere
from the database design and to take into account predefined approximations.
Our contribution can be thought as a “declarative load shedding process” since
we allow to prune data stream from declarative constraints, instead of sampling
techniques.

198 M. Charfi et al.

6 Conclusion

In this paper, we have considered the long-term storage problem of sensor data
streams. We have presented a declarative approach to build a granularity-aware
sensor database from sensor data streams on top of any RDBMS. Our core idea
is to take into account the spatial and temporal aspects of sensor data streams
thanks to Spatio-Temporal Functional Dependencies (STFDs) and to adapt the
classical normalization techniques developed for relational databases to sensor
databases. We have defined a dedicated normalization algorithm based on a
novel closure algorithm for STFDs. The closure of attributes plays a crucial role
in the generation of a minimal cover of a set of STFDs and thus in the pro-
duction of normalized sensor database schemas. We have also defined Semantic
Value Assumption (SVA), a declarative database schema annotation, allowing
to specify the mechanism to load, on-the-fly and automatically, the relevant
data into the sensor database. A prototype has been implemented in order to
test both sensor database design from STFDs and data loading techniques. We
have conducted experiments on real and synthetic data streams from intelligent
buildings. We discussed the trade-off between the data accuracy and the data
reduction.

We have highlighted our proposition in the context of intelligent buildings for
domestic sensors. Nevertheless, our proposition relies upon clear theoretical foun-
dations that enable to take both spatial and temporal dimensions into account
for sensor data streams. The approach is quite versatile and could be adopted in
a wide range of application contexts. Many extensions could be done, for instance
to consider mobile sensors or to study specific properties of the decomposition
algorithm for STFDs.

Acknowledgments. This work is supported by the ARC6 program of the Rhône-
Alpes region, France.

References

1. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stone-
braker, M., Tatbul, N., Zdonik, S.: Aurora: a new model and architecture for data
stream management. VLDB J. Int. J. Very Large Data Bases 12(2), 120–139 (2003)

2. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. VLDB J. Int. J. Very Large Data Bases 15(2),
121–142 (2006)

3. Bettini, C., Jajodia, S., Wang, S.: Time Granularities in Databases, Data Mining,
and Temporal Reasoning. Springer, Heidelberg (2000)

4. Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stone-
braker, M., Tatbul, N., Zdonik, S.: Monitoring streams: a new class of data man-
agement applications. In: Proceedings of the 28th International Conference on Very
Large Data Bases, VLDB 2002, pp. 215–226. VLDB Endowment (2002)

5. Das, A., Gehrke, J., Riedewald, M.: Approximate join processing over data streams.
In: Proceedings of the 2003 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2003, pp. 40–51. ACM, New York (2003)

Spatio-Temporal Functional Dependencies for Sensor Data Streams 199

6. Diao, Y., Ganesan, D., Mathur, G., Shenoy, P.J.: Rethinking data management for
storage-centric sensor networks. In: CIDR, vol. 7, pp. 22–31 (2007)

7. Fagin, R., Kolaitis, P.G., Popa, L.: Data exchange: getting to the core. ACM Trans.
Database Syst. (TODS) 30(1), 174–210 (2005)

8. Golab, L., Özsu, M.T.: Data stream management. Synth. Lect. Data Manage. 2(1),
1–73 (2010)

9. Jensen, C.S., Snodgrass, R.T., Soo, M.D.: Extending existing dependency theory
to temporal databases. IEEE Trans. Knowl. Data Eng. 8(4), 563–582 (1996)

10. Kang, J., Naughton, J.F., Viglas, S.D.: Evaluating window joins over unbounded
streams. In: Proceedings of 19th International Conference on Data Engineering,
pp. 341–352. IEEE (2003)

11. Levene, M., Loizou, G.: A Guided Tour of Relational Databases and Beyond.
Springer, London (2012)

12. Lewis, M., Cameron, D., Xie, S., Arpinar, B.: ES3N: a semantic approach to data
management in sensor networks. In: Semantic Sensor Networks Workshop (2006)

13. Petit, L., Nafaa, A., Jurdak, R.: Historical data storage for large scale sensor net-
works. In: Proceedings of the 5th French-Speaking Conference on Mobility and
Ubiquity Computing, pp. 45–52. ACM (2009)

14. Tatbul, N., Çetintemel, U., Zdonik, S., Cherniack, M., Stonebraker, M.: Load shed-
ding in a data stream manager. In: Proceedings of the 29th International Confer-
ence on Very Large Data Bases, vol. 29, pp. 309–320. VLDB Endowment (2003)

15. Vianu, V.: Dynamic functional dependencies and database aging. J. ACM (JACM)
34(1), 28–59 (1987)

16. Wang, X.S., Bettini, C., Brodsky, A., Jajodia, S.: Logical design for temporal
databases with multiple granularities. ACM Trans. Database Syst. (TODS) 22(2),
115–170 (1997)

17. Wijsen, J.: Design of temporal relational databases based on dynamic and tempo-
ral functional dependencies. In: Clifford, J., Tuzhilin, A. (eds.) Recent Advances
in Temporal Databases. Workshops in Computing, pp. 61–76. Springer, London
(1995). doi:10.1007/978-1-4471-3033-8 4

18. Wijsen, J.: Temporal FDS on complex objects. ACM Trans. Database Syst.
(TODS) 24(1), 127–176 (1999)

19. Wijsen, J., Ng, R.T.: Temporal dependencies generalized for spatial and other
dimensions. In: Böhlen, M.H., Jensen, C.S., Scholl, M.O. (eds.) STDBM
1999. LNCS, vol. 1678, pp. 189–203. Springer, Heidelberg (1999). doi:10.1007/
3-540-48344-6 11

20. Zilio, D.C., Rao, J., Lightstone, S., Lohman, G., Storm, A., Garcia-Arellano, C.,
Fadden, S.: DB2 design advisor: integrated automatic physical database design. In:
Proceedings of the Thirtieth International Conference on Very Large Data Bases,
vol. 30, pp. 1087–1097. VLDB Endowment (2004)

http://dx.doi.org/10.1007/978-1-4471-3033-8_4
http://dx.doi.org/10.1007/3-540-48344-6_11
http://dx.doi.org/10.1007/3-540-48344-6_11

	Spatio-Temporal Functional Dependencies for Sensor Data Streams
	1 Introduction
	2 Preliminaries
	3 Database Modeling for Sensor Data
	3.1 Granularity Aware Sensor Database
	3.2 Spatio-Temporal Functional Dependency (STFD)
	3.3 Reasoning on STFDs
	3.4 Normalization
	3.5 Semantic Value Assumption

	4 Prototype for Sensor Database
	4.1 Implementation
	4.2 Ongoing Experiments

	5 Related Work
	6 Conclusion
	References

