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Abstract Starting with a brief review of the original Haken-Kelso-Bunz model and

its generalizations from the 1980s, we discuss three examples from more than three

decades of our research on coordination dynamics. From the 1990s, we show how

movement coordination can be used to probe the brain of individual subjects and

how coordination patterns in behavior are also manifested in brain signals. From

the 2000s, we present an experiment on social coordination in brain and behavior

and introduce an analysis technique for EEG signals recorded in such settings. Most

recently, we recorded the performance of a professional ballet dancer, where we

found the coordination patterns of in-phase and anti-phase as elementary building

blocks in complex movements.

1 Introduction

Coordination dynamics, as a quantitative field established in the mid 1980s, opened

a new level of applications to synergetics outside the hard core sciences. Hermann

Haken’s proposition that phase transitions far from thermal equilibrium play a much

bigger role than widely thought was open for a new test. The concepts of synerget-

ics had been applied with great success to the laser and hydrodynamic instabilities,

systems where the mesoscopic or even microscopic dynamics of the subsystems are
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well known and from which the order parameters guiding the macroscopic dynam-

ics can be derived—a so-called bottom-up approach. In coordination dynamics this

situation is reversed: There are transition phenomena in movements that have been

found experimentally and the goal is to establish a dynamics of order parameters at

the macroscopic level and then find a description on a lower level from which the

macroscopic dynamics can be derived. Such an approach is a top-down example of

synergetics. The two approaches, top-down and bottom-up, are of course comple-

mentary [1].

Here we start with a brief review of the original Haken-Kelso-Bunz (HKB) model

[2] and its generalizations and then focus on three applications of coordination

dynamics, namely to probe the human brain of individual subjects, to relate brain

and behavior in social coordination, and to establish the building blocks of complex

movements in professional ballet dancing.

2 The Origin of Coordination Dynamics

In what ways can you move your two index fingers rhythmically? According to the

lore of coordination dynamics, most people without special training are able to pro-

duce two stable movement patterns at low rates, i.e. flexion of one finger while the

other extends (anti-phase) and simultaneous flexion and extension of both fingers

(in-phase). Surprisingly, only the in-phase movement can be performed beyond a

certain frequency of the movement that may vary across individuals. When a move-

ment starts in anti-phase and the movement rate is increased, the coordination pat-

tern switches spontaneously and involuntarily to in-phase; if the movement starts

in in-phase no switch is observed. These observations by one of us [3, 4] led to

a fruitful collaboration with Hermann Haken in Stuttgart and to publications (e.g.,

[2, 5]) that are the pillars of coordination dynamics as a quantitative science. The

importance of these publications is at least twofold: First, they take the phenomenon

described above from the real world of two fingers doing some seemingly trivial

wagging movements to an abstract level of identifying order parameters, and deriv-

ing them using the theory of coupled nonlinear oscillators and stochastic dynam-

ics. The movement rate becomes a control parameter (that leads to destabilizing the

coordination between the limbs), and the relative phase 𝜙 is established as the order

parameter, i.e. the relevant variable for the description of the two rhythmically mov-

ing fingers at a macroscopic level. The switching that occurs when the movement

speeds up is seen as a ball moving in a potential landscape in an overdamped fashion

that changes its shape as a function of rate expressed in the famous equations

�̇� = − dV(𝜙)
d𝜙

+
√
Q𝜉t = −a sin𝜙 − 2b sin 2𝜙 +

√
Q𝜉t

< 𝜉t >= 0; < 𝜉t𝜉t′ >= 𝛿(t − t′);V(𝜙) = −a cos𝜙 − b cos 2𝜙
(1)
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Fig. 1 Potential landscape from (1) for slow movement rates (b∕a = 0.7, left) with minima for

anti-phase and in-phase. For high rates (b∕a = 0.15, right), where only one minimum exists, the

only stable movement pattern is in-phase

where

√
Q𝜉t is Gaussian white noise of strength Q and b/a represents the movement

rate. A decrease in b/a corresponds to an increase in rate with a critical value of

b∕a = 0.25. The shape of the potential function below and above the critical rate is

shown in Fig. 1. Second, and maybe even more important, the theory that was formu-

lated in these initial papers more than 30 years ago modeled the switch in the move-

ment patterns from the viewpoint of synergetics as a second order phase transition

and made predictions that could be tested experimentally (see [6, 7], for reviews).

On the deterministic side, an oscillator, known as the hybrid, was established that

follows the amplitude-frequency relation found in human finger movements [8]; the

model was extended to situations where the individual components are not symmet-

ric (see below) and to gaits and gait changes in quadrupeds [9]. On the stochastic

side it was shown that the switch exhibits the features of a phase transition in non-

equilibrium systems: The system has to become unstable before the switch actually

occurs. Such an instability leaves footprints like an increase in the variance of the

movement (enhanced fluctuations) and a longer time to recover from a perturba-

tion (critical slowing down) when the critical point is approached but before the

actual transition takes place. The experimental discovery of these hallmarks showed

that the spontaneous change from anti-phase to in-phase is not simply a replacement

of one motor program by another but a self-organized pattern forming process that

occurs in systems far from thermal equilibrium. Moreover, the dynamic principle

seems to be universal: Whether it is two fingers, two hands, an arm and a leg [10,

11] or even the legs of two different people watching each other [12], it is always the

anti-phase movement that becomes unstable at increasing rate and the coordination

pattern switches to in-phase.

In the original work, where the interacting limbs were two fingers with the same

eigenfrequencies, the system in terms of the oscillating limbs has a symmetry with

respect to an exchange of the components. When we look at the coordination between

an arm and a leg or the syncopation of one finger with an external stimulus, this

symmetry is no longer present, i.e. we are now dealing with a system of oscillators

with different eigenfrequencies. If the equation for the relative phase (1) is derived
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Fig. 2 When the interacting components are not symmetric, the potential landscape is tilted due

to a linear term 𝛿𝜔𝜙. The fixed points are shifted away from 0 and 𝜋, the system becomes unstable

at slower rates (here b∕a = 0.4), and the transition has a preferred direction

for such a system, an additional term, usually termed 𝛿𝜔, appears in the equation of

motion and becomes a term 𝛿𝜔𝜙 in the potential function [13]. The two main effects

of this term for the dynamics of the system are: First, the coordination patterns are no

longer strictly in-phase or anti-phase, i.e. at a relative phase of 0 or 𝜋, respectively,

but the stable states are shifted with respect to these values. As shown in Fig. 2 the

potential function is now tilted. As a consequence, the states 𝜙 = 0 and 𝜙 = 2𝜋 are

no longer the same. For a system that is initially in an anti-phase pattern at 𝜙 ≈ 𝜋

it is more likely to switch to 𝜙 ≈ 2𝜋 than 𝜙 ≈ 0. Even though after the switch it is

not possible to tell whether a system is close to 0 or 2𝜋, by following the continuous

relative phase it can be detected whether the direction was to the left or right. The

coordination patterns with broken symmetry between arms and legs were studied

intensively using the device shown in Fig. 3 with one of the authors
1

as the animal

under investigation. This device, known as MAC (multi-articulation coordination),

allows for perturbing the movements by applying a brake for a short moment and

for manipulating the degree of symmetry breaking. The latter is achieved by using

weights that are either attached to the wrist, which decreases the amount of symmetry

breaking or on the ankle, which actually increases it. The predictions derived from

the theoretical model have been found in good agreement with the experimental

results [10, 11].

3 Coordination Patterns in Brain Signals

In the early 1990s coordination dynamics was used for probing the human brain,

where the syncopation-synchronization paradigm became the vehicle of choice in

many experiments. In contrast to the bimanual setup used in many of the behav-

ioral studies, here the subjects are instructed to flex (or extend) their index finger in

between two beats of a metronome, i.e. to syncopate with the stimulus. As the rate of

the metronome increases, this behavior becomes unstable and the subjects switch to

a pattern synchronized with the beats [13]. During the trials the magnetic fields orig-

1
It should be pointed out that this is not a recent picture.
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Fig. 3 A subject in the

MAC (Multi-Articulation

Coordination). This device

allows for perturbations of

the movements by applying a

brake for a short moment and

for varying the degree of

symmetry breaking by

attaching weights to either

the wrist or ankle. As the

legs naturally have a smaller

eigenfrequency than the

arms, the degree of

symmetry breaking can

either be further increased or

reduced with loads at the

ankles or wrists, respectively

inating from electrical activity in the brain were recorded using magnetoencephalog-

raphy (MEG), a technology in its infancy at the time. In the first experiment a magne-

tometer with 37 SQuIDs (Superconducting Quantum Interference Devices) was posi-

tioned over left auditory and motor cortex covering roughly 2/3 of a hemisphere. The

hallmarks of non-equilibrium phase transitions previously found in behavioral data

were now detected in the brain signals [14–16]. The experiment was later repeated

with a 143-channel device with full-head coverage that allowed for a better compari-

son of brain activity during the coordination task and signals from control condition

of auditory and motor only [17]. One of the main findings from these experiments

remains the switch in the phase of the first Fourier component of the brain signal,

shown in Fig. 4, accompanying the switch from syncopation to synchronization in

the behavior.

During the last decade, social coordination, i.e. the interaction between two or

more people has become an expanding field where not only behavioral measures are

recorded from interacting individuals but also brain signals using a dual-EEG for

instance as shown in Fig. 5. In this experimental setting two subjects (we call them

Red and Blue) are facing each other and are instructed to perform a certain coordina-

tion pattern say in-phase with their right index finger when possible. For the first 20
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Fig. 4 Phase shift by 𝜋 in the relative phase between the Fourier component of the MEG signal

at the coordination frequency and the stimulus in sensors over the left hemisphere that coincides

with the behavioral switch from syncopation to synchronization. The underlying color represents

the signal power

seconds of each trial an opaque screen prevents them from seeing the other’s finger

and they move at a comfortable rate. Then the screen turns transparent allowing the

subjects to synchronize their movements. During the trials EEG is recorded from

both subjects using caps with 60 electrodes each. In earlier work [18–20] certain

wave patterns were identified in the 𝛼-range around 10 Hz that are tied to coordi-

nated action. Here we introduce a procedure for the segmentation of multi-channel

EEG recordings that are band-pass filtered, in our case 7–13 Hz, and apply it to the

data recorded in this experiment.

A short sequence of one second from a 60-channel EEG recording is shown as

a butterfly plot in Fig. 6 together with the spatial patterns of the electric potential at

Fig. 5 Setup for a dual-EEG social coordination experiment: Two subjects are instructed to per-

form a certain coordination pattern with their index fingers. For the first 20 seconds they cannot

see the other’s movement and therefore cannot coordinate. Then the screen turns transparent and

a coordination pattern is established. During the trials the movements and EEG signals from both

subjects are recorded
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Fig. 6 Butterfly plot of 60 EEG channels for one second from the recording of one subject together

with the spatial patterns of the electric potential on the scalp at the maxima and minima. There are

segments where the signals only reverse polarity while the spatial shape remains unchanged and

other time intervals where the pattern goes from dipolar to a single maximum or minimum and on

to a quadrupole. Insert Color coding for the electrode locations

the maxima and minima and an insert on the right, which shows the color coding

of the electrode locations on the scalp. Aside from the oscillation there is also a

change in the shape of the pattern from a dipole to a pattern with a single maximum

or minimum changing to a quadrupolar shape at the end of the time series. Such

changes in the electric potential at the scalp originate from a change in the underlying

electrical activity in the cortex, primarily in the macrocolumns of the gray matter.

It is our goal to identify segments of the EEG signal where the shape of the spatial

pattern is essentially constant while only reversing polarity and relate them to the

coordination behavior.

In a first step we reduce the dimensionality of the system by applying a principal

component analysis (PCA). In PCA a set of patterns is calculated that are best suited

to represent the variance in the recordings whilst drastically reducing the number of

time series that are needed. PCA is performed by calculating the eigenvalues and

eigenvectors of the covariance matrix given by

Cij =
1
T ∫

T

0
dt {ei(t) − ēi}{ej(t) − ēj} (2)
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Fig. 7 Principal component analysis (PCA) applied to the EEG data shown in Fig. 6. The spatial

patterns corresponding to the four largest eigenvalues (left column) carry almost 96% of the variance

in the signal. Time series of the corresponding amplitudes (cyan) show oscillations around 10 Hz

like the data from the single electrodes. This fast oscillation is removed by calculating complex

slowly varying amplitudes shown in red and green for their real- and imaginary part, respectively.

The magnitude of these functions represents the envelope plotted in magenta

where ek(t) represents the time series recorded from electrode k and ēk is its temporal

mean. As the recordings were done with 60 electrodes for each subject, C is a 60 ×
60 matrix. The eigenvectors corresponding to the largest eigenvalues of this matrix

represent the spatial patterns that carry most of the variance in the EEG signal. The

patterns calculated from the time series in Fig. 6 are shown on the left of Fig. 7.

The corresponding eigenvalues 𝜆 (if properly normalized) quantify how much of

the variance is carried by a given pattern. The four eigenvalues for the patterns in

Fig. 7 sum up to 0.956, which means the four patterns represent almost 96% of the

variance. Because C is a real symmetric matrix its eigenvectors are orthogonal and

the amplitude for a pattern k at a time t, pk(t), can be computed by projecting the

EEG signal vector e(t) onto the eigenvector v(k)

pk(t) = e(t) ⋅ v(k) (3)

The amplitudes for the first four modes are plotted in cyan in Fig. 7 next to the

patterns. Like the time series from the electrodes they show oscillations around a fre-

quency of 10 Hz. The second step of the procedure is intended to eliminate these fast

oscillations and replace them by slowly varying time series like the envelope plot-

ted in magenta in Fig. 7. To this end we perform a Fourier transform on the ampli-

tudes pk(t) leading to complex valued functions p̃k(𝜔). As the pk(t) are real, their



Coordination Dynamics and Synergetics: From Finger Movements . . . 309

0 200 400 600 800 t

Fig. 8 Segmentation of the EEG data shown in a butterfly plot and patterns at the minima and

maxima of the signal. The speed along the trajectory in the 8-dimensional space is plotted in cyan
and its derivative in white. The time points where the derivative intersects the horizontal axis with

a negative slope mark the boundaries of segments (vertical white dashed lines) within which the

shape of the pattern is relatively constant

Fourier coefficients for 𝜔 and −𝜔 are complex conjugates p̃k(−𝜔) = p̃∗k (𝜔). Next we

set the coefficients for all negative frequencies to zero, shift the remaining functions

by 10 Hz to the left and apply an inverse Fourier transform. This process eliminates

the 10 Hz component from the signal and leads to complex valued amplitudes ak(t)
whose real- and imaginary part are plotted in red and green, respectively, in Fig. 7.

The envelope of the amplitudes pk(t) is given by the magnitudes |ak(t)|.
The dynamics recorded by EEG is now described by the four complex amplitudes

ak(t), which represent the journey of a trajectory in an 8-dimensional space. If this

trajectory stays within a small region of that space for a certain time the pattern is

stationary. If the trajectory moves around the pattern changes. In analogy to lower

dimensions we can define a velocity for the trajectory as the derivatives of the real-

and imaginary parts of ak(t) and a scalar speed, s(t), as the square root of the sum of

these derivatives squared

s(t) =

√
∑

k

{[ d
dt
ℜ{ak(t)}

]2
+
[ d
dt
ℑ{ak(t)}

]2}
(4)

This speed is plotted in cyan in Fig. 8 together with the original data in a butterfly

plot and spatial pattern at the maxima and minima. Changes in the spatial shape

occur where s(t) has maxima (dashed vertical white lines), which are found as the

time points where the temporal derivative of s(t) (plotted in white) intersects the

horizontal axis with a negative slope. The segments in-between the vertical lines

are time intervals where the shape of the pattern does not change or changes only

slightly.

Now we apply this segmentation to the dual-EEG recordings described above and

relate it to the coordination behavior of the subjects. As mentioned, for the first 20
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Fig. 9 Angular frequencies for the red and blue subject, 𝜔R and 𝜔B for a time span from t = 15 s
to t = 26 s. The screen turns transparent at t = 20 s indicated by the dashed black vertical line. As

in most of the trials Red starts at a lower rate and speeds up to Blue

Fig. 10 Histograms of the locations measured by the phases where the segment boundaries fall

within the movement cycles for all four brain-finger combinations. Only the boundaries from the

red brain show a relation to the movement of the blue finger

seconds of each trial the view of the partner’s finger was blocked by an opaque screen

and each individual moved at her own rate. In order to synchronize the movement

after the screen has turned transparent these rates have to become the same and there

are various ways how this can happen: The faster one may slow down, the slower one

speed up or they both change and meet in the middle or elsewhere. Here, we look

at the data from 20 trials of a pair, where the red subject, in almost all trials, started

at a slower movement rate and sped up to the blue subject, whose frequency stayed

pretty much the same. The angular frequencies from a typical trial around the time

when the screen turns transparent (from 15 to 26 s) are shown in Fig. 9.

We aim to determine whether there is any relation between the segment bound-

aries extracted from the two EEG data sets and the coordination behavior by deter-

mining where these boundaries fall into the movement cycle. This was done by calcu-

lating the phase of the movements at each boundary. There are four cases: The phase

of the blue (red) finger at the boundaries from the blue (red) brain, and the phase of

the blue (red) finger at the boundaries from the red (blue) brain. As expected, no rela-
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tion was found for the first 20 seconds when the subjects moved individually without

vision of the other’s finger movements. But also after movement synchrony had been

established for times greater than about 2 seconds after the screen had turned trans-

parent, no relation could be seen. Only during the transition interval from t = 20 s to

t = 21.5 s the histograms exhibited in Fig. 10 were found, showing that the segment

boundaries from the red brain are more than twice as likely to fall around a phase

of 𝜋 of the blue finger than a phase of 0 or 2𝜋 (right upper diagram). This finding is

an interesting reflection of the behavioral pattern where Red adjusts her movement

rate to the blue partner, whereas Blue seems to simply move at her own rate largely

independent of what the Red is doing, hinting at a master-slave or leader-follower

relation in both brain and behavior.

4 Coordination Patterns in Complex Movements: Ballet
Dancing

In the Fall of 2014 we invited the God daughter of one of us (JASK), the professional

ballet dancer (Makaila Wallace from Ballet B.C.) and asked her to perform a chore-

ography of her choosing lasting about 20 seconds in a number of different experi-

mental conditions, e.g. with and without music, fast versus slow, expressing different

emotions, etc. The performances were recorded using a Vicon motion capture system

with eight infrared cameras and 32 infrared markers attached to the dancer’s body

that allowed for a reconstruction of the trajectories of the markers in 3-dimensional

space. Snapshots of such trajectories together with stick figure representations of the

dancer during two short time intervals of the performance
2

are shown in Fig. 11.

Fig. 11 Snapshots of the stick figure representing the dancer together with trajectories of the 32

infrared markers attached to different parts of her body. Each of the traces corresponds to a duration

of one second. The colored spheres represent the six degrees of freedom for the locations and

orientations of the dancer’s body center in space

2
An animated version of this figure as well as other movies from the analysis of dancing can be

found at http://clifford.ccs.fau.edu/~coordinationofdancing.

http://clifford.ccs.fau.edu/~coordinationofdancing
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Fig. 12 Snapshot of the

stick figure together with

marker trajectories after the

translations and rotations of

the body center have been

removed. Such transformed

time series are much better

suited for an extraction of the

relevant features of the other

body parts, e.g. arms and

legs, than the original data

When the dancer performs the choreography, the movement can be split into a

movement of her body center and movements of her body and limbs internal degrees

of freedom relative to the center movement. We define the dancer’s center as the

center of gravity of a triangle given by the markers at her left and right hip, and a

marker at her back close to the lowest lumbar vertebra (L5). The location of these

points in the 3-dimensional space of the laboratory are given by three vectors we call

hl, hr and l𝟓, respectively, and determine the vector for the body center

c = 1
3
{hl + hr + l𝟓} (5)

Next, we define a coordinate system for the dancer’s body with the x-, y- and z-axis

given by

x =
(hr − l𝟓) + (hl − l𝟓)
|hr + hr − 2l𝟓|

y =
(hr − l𝟓) × (hl − l𝟓)
|(hr − l𝟓) × (hl − l𝟓)|

z = x × y (6)

After subtracting the translation of the center c from all marker coordinates and

applying a rotation that transforms the laboratory coordinate system into the body

frame (6), all movements are relative to the body center location and orientation in

space. A snapshot of the trajectories for such a coordinated movement is shown in

Fig. 12.

The time series after the center translations and rotations have been removed are

much better suited for extracting the relevant features of the movement of other body

parts. For instance the movement of the torso and the head can now be described in

terms of two additional rigid bodies as translations and rotations relative to the center.

Here we will restrict ourselves to the dynamics of the arms and legs, which have 14

and 8 markers attached, and therefore their trajectories in 3-dimensional space are

given by 42 and 24 time series (an(t), n = 1…42 and lm(t), m = 1…24), respec-

tively. To extract the basic movement patterns from these time series we perform a

principal component analysis (PCA) separately for the markers on the arms and the
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Fig. 13 Three examples from the first six modes for arm movement. The dominating pattern is

an in-phase up and down movement (left); the corresponding anti-phase pattern is the forth mode

(middle); the movement corresponding to the second largest eigenvalue is in-phase back and forth

(right)

markers on the legs. To this end we build the covariance matrix C(a)

C(a)
ij = 1

T ∫
T

0
{ai(t) − āi}{aj(t) − āj} dt (7)

for the arms, where āi,j represents the mean of the corresponding time series. In

the same way C(l)
for the legs is found; both are symmetric matrices that have real

non-negative eigenvalues and orthogonal eigenvectors. The eigenvectors represent

basic movement patterns, whereas the corresponding eigenvalues are a measure of

how much a given pattern contributes to the variance in the original time series.

Specifically, the eigenvectors describe the deviation from a given state, i.e., each

triple of components represents the magnitude and direction of the movement for a

certain marker. Therefore, each of the eigenvectors represents a movement pattern of

all markers for either the arms or the legs. Interestingly, for both the arms and legs, the

vectors corresponding to the six largest eigenvalues show coordination patterns that

are either in-phase or anti-phase movements. Three examples from the first six modes

for the arms and legs are shown in Figs. 13 and 14, respectively. The dominating

arm pattern, accounting for almost 35% of the variance is an in-phase up and down

movement (Fig. 13 left). The corresponding anti-phase pattern covering about 12%

corresponds to the fourth largest eigenvalue (middle). On the right is the second

mode, an in-phase back and forth movement covering about 26% of the variance. In

total the six dominating eigenvectors cover more than 97% of the arm movements.

For the legs, shown in Fig. 14, the two dominant coordination patterns are an

anti-phase (56%) and in-phase movement (18%) in the yz-plane (left and middle).

The sixth mode is an anti-phase walking pattern in the x-direction and the fifth mode

(not shown) is the corresponding in-phase movement. The total variance captured

by the first six modes for the legs sums up to more than 98%.

It is most intriguing that the complex arm and leg movement by a professional

ballet dancer can be captured almost completely by only six basic coordination pat-

tern for both the arms and the legs. Moreover, these patterns fall into groups and can
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Fig. 14 Three examples from the first six modes for leg movement. Modes one and two (left and

middle) are an anti-phase and an in-phase pattern in the yz-plane. The sixth mode (right) is an anti-

phase walking movement in the x-direction; the corresponding in-phase pattern is the fifth mode

(not shown)

be classified as anti-phase or in-phase movements along three different directions in

3-dimensional space.

5 Summary and Conclusion

We have tried to point to some of the highlights from more than 30 years of our

research in coordination dynamics and its relation to synergetics, where the sys-

tems’ components form entities and the interaction of such entities, modes or pat-

terns gives rise to self-organization and macroscopic structures. On the macroscopic

level, the coordination pattern is not described by the dynamics of the individual

finger movements but by their relative phase. The transition in the behavior of this

order parameter is also found in the brain signal of the dominating pattern. The way

coordination patterns are established (or lost) in social settings leaves footprints in

EEG recordings and may allow conclusions regarding the relationship between indi-

viduals. The results from the analysis of the ballet dancer in a certain sense take

us back to the question we raised at the beginning of Sect. 2, which we can now

rephrase as: In what ways do you have to be able to move your limbs in order to

perform movements as complex as the choreography of a classical ballet dance? The

answer, as we have seen here, is: In-phase and anti-phase in three different direc-

tions. Our results attest to a quite remarkable aspect of complex biological systems:

They compress their high-dimensionality into lower-dimensional, fundamental pat-

terns that are context-specific. These functional synergies or coordinative structures

[21] constitute the building blocks of coordinated behavior in living things. There

are good reasons why all healthy humans have these coordination patterns in their

repertoire.
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