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Preface

The two notions of Complexity and Synergetics appear equally weighted in the title
of this book. The word “complexity” has been used in a quite general way for a
long time before it appeared more and more often in a scientific context. The
initiator of deciphering the hieroglyphes, Jean-Francois Champillon, wrote already
in the year 1824: The hieroglyphic scripture is a complex system, it is pictorial,
symbolic and phonetic at the same time. In biology, the evolution of insect com-
munities can be described by relatively simple mathematical equations, about which
the biologist Robert May stated in 1976 that we are dealing here with simple
mathematical models with very complicated dynamics. Two seemingly far sepa-
rated disciplines come to a similar statement about complex behavior, which is, in
fact, determining the temporal and spatial evolution of many systems in a very large
number of dynamical situations.

An explanation of such system behavior calls for intensive experimentation as
well as intelligent modelling, based on physical principles and closely supported by
mathematical methods, to solve the nonlinear equations that govern complexity.
Thus, the field of nonlinear dynamics comes into play, which comprises a number
of mechanistic approaches, among which the concept of “synergetics” has played a
major role since its introduction by Hermann Haken in the 1970s. (A description
of the history is given in the book “Beiträge zur Geschichte der Synergetik” by
H. Haken, P.J. Plath, W. Ebeling, and Y. Romanovsky, Springer Spektrum,
Wiesbaden, 2016.)

Going further, we notice that complexity and synergetics are intimately con-
nected with the unfolding of ordered and irregular structures and their temporal
evolution, which is an omnipresent phenomenon in our natural world. One may
think of the shape of galaxies, various cloud formations, vortices that form in
mountain creeks, or the wonderful patterns on snail shells and tropical fish. In
addition to spatio-temporal self-organization acting here on the basis of system
immanent mechanisms, there are other aspects to be considered: For instance, the
far reaching coordination of a multitude of small individuals (subsystems) within a
much larger entity, typically found in the surprisingly coherent motion of large
swarms of birds or fish. Equally impressive is the interaction among individuals that
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form large systems and can accomplish global synchronization, as manifested in the
periodic blinking of many hundreds of fireflies. If we consider the most complex
biological system, the human brain, we can state that from measurements of
electroencephalograms (EEG) quite different dynamical states can be deduced.
One of the most pronounced transitions between such states is observed when an
epileptic seizure occurs: distinct periodicities with large amplitude develop in the
normally quite irregular EEG, an indication for a large scale coordinated activity of
many thousands of neurons. Moreover, another “dynamical disease”, migraine, is
frequently connected with the appearance of a visual aura, which moves in a
scintillating and patterned way through the visual field and hints at a strong
reduction of excitability of the affected brain tissue.

In view of such a diversity of natural phenomena, for which an “invisible”
ordering hand must be involved, the scientist will ask the question, whether a basic
principle stands behind all these patterning phenomena to form a common basis for
this diversity. Among other approaches, the introduction of the slaving principle by
Hermann Haken, originating from laser physics, has achieved this goal to a large
extent. For a laser to function, an appropriate optical material has to be “pumped”
with light. Then, above a certain threshold of light intensity, i.e., in a state far from
thermal equilibrium, a sharp change (a non-equilibrium phase transition) occurs,
beyond which intensive and phase coherent light is emitted from the optically active
material. A bifurcation has taken place from irregular fluctuations with incoherent
phase relations to a highly organized state characterized by coherent light radiating
with a well-defined phase. The numerous fluctuating modes of light emission have
disappeared (the suppressed slaves) and a master dominates the event, namely a
light beam generated by stimulated emission. If the initial pump intensity is
restored, the laser light disappears and the system returns to an equilibrium state
with no phase coherence.

This picture of enslaving of modes by a dominant master mode (the coherently
emitted laser light) has shaped the idea of synergetics since its “inauguration” by
Hermann Haken.

There are many other well-known examples of spontaneous structure formation
that can be explained by this approach, e.g., the pioneering experiments performed
by Henri Bérnard around 1900, shortly later analyzed theoretically by Lord
Rayleigh (1916). A liquid layer is heated from below. While for a small temperature
difference between the layer’s bottom and surface heat conduction determines the
upward energy flux, there is a sharp threshold (a bifurcation) at a critical value
of the temperature gradient. Beyond this point the heat transfer in the liquid is
mostly facilitated by convection and characteristic convective rolls or hexagonal
cells are formed—in a spontaneous process the formation of patterns with a
well-defined spatial wavelength has emerged. As in the laser, a dominant spatial
mode gains the upper hand and enslaves all the others.

A great variety of theoretical treatments based on the synergistic concept and
other approaches of complex systems theory can be found in the literature and will
not be discussed here. Generally, the book focusses on the complex behavior of
macroscopic and mesoscopic systems, composed of numerous interacting
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subsystems existing under non-equilibrium conditions. One goal is to find
low-dimensional systems of differential equation with appropriate initial and
boundary conditions to describe the dynamical properties satisfactorily. This is a
challenging and difficult endeavor of many research groups all over the world. By
virtue of the interdisciplinary character of their common goals, fruitful contacts
between various study groups have been established and are constantly growing.

To strengthen international and interdisciplinary connections, a Symposium with
the title of this book was held in Summer 2015 in Hannover-Herrenhausen under
the roof of the Volkswagen Stiftung, organized by S.C. Müller, P.J. Plath and G.
Radons. The scientific program of the Symposium forms the basis of this volume,
and a few more contributions have been added.

Totally 30 articles have been assembled in eight chapters representing modern
research in various fields around the keywords “complexity” and “synergetics”.
Contributions by international experts are complemented by articles from young
investigators who appreciated the opportunity to contribute to a book of this kind.
The authors made efforts to write a generally comprehensible introduction and to
present their actual findings in an understandable way. Therefore, we believe that
this volume offers stimulating and appropriate readings for a rather general scien-
tific audience, including students and the interested community.

Symposium “Complexity and Synergetics” Schloß Herrenhausen, Hannover, July 2015
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This book starts with an introductory article by Werner Ebeling and Rainer
Feistel on information, the evolution of life and its relation to synergetics. There
follows a wonderful overview written by Hermann Haken showing how the syn-
ergetic approach can be successfully applied to a multitude of phenomena, covering
systems “From Laser Light to Cognition”.

Many of the following chapters can be assigned to specific disciplines, where for
each case an effort is made to build interdisciplinary bridges. There are chapters on
physics, chemistry, biology, economy, brain science, coordination dynamics, and
more. This enumeration underlines the wide range of disciplines dealing with topics
that are related to the theme of this book. As an example we take a closer look at the
field of chemistry.

Chemistry and Physical Chemistry have their own prototypes of
self-organization. The famous “Liesegang rings”, already discovered in 1896, with
patterned precipitation of insoluble salts, have been investigated until today,
especially with a view to various comparable processes in geology. Another pattern
forming prototype in chemistry is the generation of rotating spirals. At the basis
of these phenomena are the purely temporal dynamics of some chemical reactions
which, due to the interplay between activation (often by autocatalysis) and inhi-
bition, exhibit sustained oscillations, as long as they remain in a state far from
thermodynamic equilibrium. Such pattern formation does not only occur in “liquid”
chemistry, but also in electrochemical systems. Whereas in liquid systems the
coupling of reaction and diffusion (a local activation mechanism) plays a major role
to generate propagating chemical waves, in heterogeneous systems, as in catalysis
or in electrochemistry, a global coupling mechanism acting through the gas phase
or through electrical effects has to be taken into account which leads to a significant
increase in the variability of the observed patterns. Especially renowned in this field
is the “Belousov-Zhabotinsky reaction” (known since the 1950s), because it is
excellently suited for experiments with a large significance beyond pure chemistry,
for instance to biology.

On the heart muscle rotating activity may lead to life-threatening fibrillations; by
controlling spiral dynamics using external forcing (electric fields or light), impor-
tant knowledge for cardiology can be obtained. Revealing the excitability concept is
of similar importance for a treatment of dynamical diseases such as migraine,
epilepsy and an understanding of cerebral cortical dynamics.

Complex system theories and synergetics provide comprehensive approaches for
many other domains of science, some of which have found their place in chapters of
this volume. An important application lies in various studies about the finance
sector. The article on “Financial Market Models” is an attractive introduction to this
field, explaining perhaps, why it is so difficult to interpret stock prices. An
appropriate counterpart is found in the article on structural changes in dynamic
econometric models.

Finally, we venture a big jump to brain research. Chapter “Brain and
Coordination Dynamics” shows in several articles how important the concepts
discussed above are for the most complex organ known to man. We see the
description of specifics about brain diseases and collect the experience of
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researchers on coordination dynamics (with the example of a ballet dancer). We
learn how movement coordination can be used to probe the brain of individual
subjects and how coordination modes are reflected in brain signals. Furthermore,
how humans with their brains and bodies probe for neural, behavioral and social
scales, is investigated using human-human and human-machine interactions.

A short chapter is added to present additional topics. Here we find thoughts on
the interplay between art and science; the usefulness of ultra high-speed cameras for
observations of fast phenomena (e.g., crack dynamics, microbubbles) is
demonstrated.

The last chapter is devoted to a special contribution by Otto Rössler. We read here
about a most interesting approach between deterministic thermodynamics and cry-
odynamics, which is promoted as new fundamental discipline based on long-range
attraction. We think that this article will lead to many exciting discussions.

In summary, this book aims to reflect some of the progress made in today’s
research in the fields of complexity and synergetics, as well as to initiate discussions
on the current state and future directions of this research domain.
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Part I
Introduction



About Self-organization of Information
and Synergetics

Werner Ebeling and Rainer Feistel

Abstract The self-organization of information belongs to the basic topics of
Haken’s synergetics. The basic statement of this paper is following Eigen and
Haken-Krell that information is a product of evolution and: there is no information
processing without life, and there is no life without information processing. The
origin of information processing is based on the self-organization of life. In our
view, information is not a physical quantity but its transfer is always related to
transfer of a universal physical quantity, the entropy. Information cannot be reduced
to physics alone, it is basically a non-physical term and bound to the evolution of
life. Information-processing systems exist only in the context of life and its
descendants: animal behaviour, human sociology, science, technology etc.

1 Introduction: The Role of Information in Synergetics

The science of synergetics was founded by Hermann Haken and the fundaments
were given in the book “Synergetics—An Introduction”. We refer here to the
second enlarged edition [1]. This book, which has just appeared in a new revised
Russian translation, starts with the three chapters: Aims, Probability, Information.
This shows us already how basic the role is that information plays in synergetics.
All the basic ideas about the role of information we find already here; in later books,
these ideas were worked out and refined in several respects [2], in particular
regarding the relation between information and life [3]. We all know that the term
information is basic for our everyday life and that it is used in articles and books
published in so different disciplines such as physics, biology, computer technology
or philosophy. On the other hand, a generally accepted and universally valid
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definition of information is still subject to ongoing fundamental discussion [4, 5].
Following the views of Haken and Krell [6], we do not associate information
processing with simple physical systems such as a gas or a pendulum, but consider
complex systems like humans, animals and computers being able to store, exchange
and accumulate information. What we have to discuss in this context is where the
separation line lies between those two classes of systems, and what the physical
nature of the transition between them is.

Our plain and basic statement is: there is no information processing without life,
and there is no life without information processing. In this context, we understand
technology as a part of the human culture that belongs to the realm of life. We share
the view of Haken and Haken-Krell: “Die Frage nach der Entstehung der biolo-
gischen Information ist mit dem Konzept der Evolution untrennbar verbunden” [6].
Similarly, Manfred Eigen [7] formulated that “a living entity can be described as a
complex adaptive system which differs from any, however complex, chemical
structure by its capability of functional self-organization based on processing of
information. If one asks where does this information come from and what is its
primary semantics, the answer is: information generates itself in feedback loops via
replication and selection, the objective being ‘to be or not to be’.” Information
processing, we may conclude, is a key process in the struggle for the existence of
living beings. The search for the origin and the physics of information takes us to
the self-organization and evolution of life.

We emphasize that there are still many unresolved questions. A particularly
difficult problem is the definition of the value of information [8, 9, 2, 10, 11].
However, values are a different concept which is to be considered separately and,
although closely related, is not our topic here (see Ebeling et al. [12, 13].

2 Relation of Information to Physics and Entropy

The question to be discussed in this section is: Can information be reduced to
physical terms like entropy? Our answer is a clear NO [13]. Information is not a
physical term, this concept does not belong to the axiomatics of physics, but on the
other hand the statement is: The transfer of information is necessarily accompanied
by a transfer of energy and entropy.

Entropy is an emergent physical quantity with respect to the microscopic
dynamics. Thermodynamic energy can be expressed as a function of the coordi-
nates and momenta of the particles involved, while entropy cannot [14]. The
irreversible growth of entropy represents a different symmetry, namely that of a
semigroup, compared to that of the reversible microscopic motion, mathematically
described by a group. Entropy has become a key concept to so many disciplines of
science [15] that it may be worth to quote here the original arguments of Clausius
[16] for his invention of the word: “If one looks for a term to denote S, one could,
similar to what is said about the quantity U that it is the heat and work content of the
body, say about the quantity S that it is the transformation content of the body.
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Since I prefer to borrow the name for quantities so important for science from the
old languages to permit their unaltered use in all languages, I suggest to name the
quantity S the entropy of the body, after the Greek word η τρoπή, the transfor-
mation. Intentionally I have formed the word entropy as similar as possible to the
word energy because the two quantities denoted by those words are so closely
related with respect to their physical meaning that a certain similarity in their
nomenclature appears appropriate to me” (English translation from [17]). In the
sense of this reasoning, entropy has been regarded by Clausius as the value of
energy [18].

The close relation between thermodynamic entropy and information was first
revealed in the investigations of Maxwell [19], Szilard [20] and Brillouin [21]. Only
recently, Eigen [22] returned to the question of whether an equation “informa-
tion = entropy” may be justified, and came to an affirmative conclusion, at least as
far as the amount of information is concerned. The consequential question for the
information value is subject to ongoing scientific discussions [11, 10, 18] and aims
at a suitable quantitative measure of the impact of information on dynamical pro-
cesses. Already Brillouin [22] had stated that (quotation from Eigen [22]): “The
present theory of information completely ignores the value of the information
handled, transmitted or processed… At any rate, one point is immediately obvious:
any criterion for value will result in an evaluation of the information received. This
is equivalent to selecting the information according to a certain figure of merit”.
Here, mainly the evolutionary aspects of the problem are considered, where the
“merit” consists in winning the struggle for survival. Thus, from our perspective,
the origin of information processes is intimately connected with the evolution of life
[18, 23, 24, 25, 26, 27, 28].

We have to notice at this place that there are alternative views of information.
Mathematicians speak about a mathematical Universe, imbedding the physical
world, which is just a realization of mathematical patterns. Konrad Zuse developed
the concept “Rechnender Raum”. Stephen Wolfram and Nobel Laureat Gerard t’
Hooft consider the real Universe as a digital computer. Similar views were
developed by Bekenstein [29] and in books by Stonier [30], as well as in the
Internet forum FIS [31]. Our view is different and more related to the pivotal
approaches of scientific pioneers such as Chernavsky, Eigen, Haken, Klix, Nicolis,
Stratonovich, Tembrock, or Volkenstein.

3 The Origin of Information

We know that the existence of all living beings is intimately connected with
information processing and valuation. These concepts are considered here as the
central aspect of life. On the other hand, considering Shannon’s work, the concept
of information is a product of technical sciences and was devised as a technical
“signal theory” [32] or a “communication theory” [33]. However, this does not
mean that information is a merely technical concept. Information appeared on our
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planet first in the context of life at a time when no technicians were available yet
who may have designed it. We define a living system as a natural, ordered and
information-processing macroscopic system with an evolutionary history. In our
view, this criterion may even be used as a basis for decisions. Imagine the staff on a
space ship far from our home planet which observes unknown objects moving in
space, sending signals and doing maneuvers; should the crew meet them with the
respect for living objects? We consider information processing as a special high
form of self-organization. Symbolic information is an emergent property, but we
see several open problems here. How did information emerge by self-organization?
Genuine information is symbolic information, needing a source that creates signals
or symbols, a carrier to store or transport it, and finally a receiver that knows about
the meaning of the message and transforms it into the structure or function the text
is a blueprint for. This way symbolic information is always related to an ultimate
purpose connected with valuation [17].

Information-processing systems exist only in the context of life and its descen-
dants, such as animal behavior, human sociology, science, technology. Historically,
the very first such system was the genetic expression machinery of early life [7, 11,
25, 34]. However, the details how life appeared, which way symbolic information
developed out of non-symbolic, native one, are hidden behind the veils of an ancient
history. Other, later examples for the self-organization of information are much
easier to study, and this was done first by Julian Huxley in the beginning of the last
century in behavioral biology. The evolutionary process of the transition from use
activities of animals to signal activities he called “ritualization”. In our approach to
the problem, the qualitative transition associated with “ritualization” or “symbol-
ization” is a central point. A more detailed view onto this transition process reveals
rather general features which we consider as a universal way to information pro-
cessing in the course of evolution [17, 35]. When a process or a structure becomes
symbolized, its original full form of appearance is successively reduced to a rep-
resentation by symbols, together with a building-up of its processing machinery,
which is able to react on the symbol as if its complete original was still there. At the
end of the transition, the physical properties of the symbolic representation are no
longer dependent on the physical properties of its origin, and this new symmetry
(termed “coding invariance” or “code symmetry” by [13, 35] makes drift and
diversification of symbols possible because of their neutral stability. Ritualization is
the transition by which emergent symbolic information gradually separates from the
original structural information in the course of evolution. In the form of their
structural information, the symbols preserve traces of their evolution history.

In all processes of transferring and processing information, necessarily some
amount of entropy is flowing. While the quantity of the related entropy flux may be
extremely small compared to the thermal background entropy [36], it is far from
being irrelevant. As an example in a similar context, Max Planck [14] had
emphasized that relative to the vast amount of Einstein’s relativistic rest energy of a
macroscopic body, merely the tiny changes related to heat or work are of any
practical importance in thermodynamics. Who likes to claim that the waves on an
ocean or the surface structures of the terrestrial crust are “without relevance”
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because of their smallness compared to the planet’s dimension, may endeavour to
cross the sea or a mountain range without modern technology. Not quantity matters
here, but quality! Also, while the entropy related to the ink distribution of a printed
letter may be small compared to the thermal entropy of the paper sheet, the change
of Shannon’s information entropy is a relevant quantity.

There must have been a point in history at which pre-informational processes and
structures smoothly transformed into rudimentary genuine information processing
for the very first time. That transition had a number of properties in common with
later, similar events in the course of biological, social and technical evolution. The
historically very first such system was the genetic expression machinery of early life.
The process how life appeared on Earth, which way symbolic information developed
out of non-symbolic, native one, was extremely complicated and is connected with
ritualization. Note that behavior biologists and ethologists were apparently the first
who observed and analyzed the general character of that phenomenon. Sir Julian
Huxley [37] described it as “the gradual change of a useful action into a symbol and
then into a ritual; or in other words, the change by which the same act which first
subserved a definite purpose directly comes later to subserve it only indirectly
(symbolically) and then not at all.” Later, the transition process was termed ritual-
ization [38, 39, 40]. In the more general approach taken here, the origin of life is
understood as the first ritualization transition that converted an abiotic complex
physico-chemical structure into a primitive living organism. From then on, that kind
of transition process repeated over and over again, at very different levels of
organisation, under very different circumstances [3, 17, 26, 40], recently culminating
in the digitalization of the human society on a global scale [41].

References

1. H. Haken, Synergetics—An Introduction, 2nd enlarged edn. (Springer, Berlin, Heidelberg,
New York, 1978) [Russian Edition, URSS Moskva 2014]

2. H. Haken, Information and Selforganization (Springer, Berlin, 1988/2000/2006)
3. I. Jahn, A. Wessel (eds.), For a Philosophy of Biology (Kleine, München, 2010)
4. M. Burgin, Theory of Information: Fundamentality, Diversity and Unification (World

Scientific, New York, NY, USA; London, UK; Singapore, 2010)
5. M. Burgin, R. Feistel, Structures and Structural Information. Proceedings 1, 217 (2017).

https://doi.org/10.3390/IS4SI-2017-04036
6. H. Haken, M. Haken-Krell, Entstehung biologischer Information und Ordnung (Wiss.

Buchgesellschaft, Darmstadt, 1989/1995)
7. M. Eigen, The origin of genetic information. Origins. Life. Evol. B. 24, 241–262 (1994).

https://doi.org/10.1007/BF02627944
8. R.L. Stratonovich, On information value (in Russian). Izv AN SSSR, Ser Tekhn Kibern 5, 3–

12 (1965)
9. R.L. Stratonovich, Teoriya Informatsii (Information Theory) (Sovietskoye Radio, Moskva,

1975)
10. R.L. Stratonovich, On the problem of the valuability of information, in Thermodynamics and

Regulation of Biological Processes, ed. by L. Lamprecht, A.I. Zotin (De Gruyter, Berlin, New
York, 1984)

About Self-organization of Information and Synergetics 7

https://doi.org/10.3390/IS4SI-2017-04036
https://doi.org/10.1007/BF02627944


11. M.V. Volkenstein, Entropy and Information (Birkhäuser, Basel, 2009)
12. W. Ebeling, J. Freund, F. Schweitzer, Komplexe Strukturen: Entropie und Information (B.G,

Teubner, Berlin, Stuttgart, Leipzig, 1998)
13. R. Feistel, W. Ebeling, Entropy and the selforganization of information and value. Entropy 18

(2016). https://doi.org/10.3390/e170x000x
14. M. Planck, Über Neuere Thermodynamische Theorien. (Nernstsches Wärmetheorem und

Quanten-Hypothese). Berichte der Deutschen Chemischen Gesellschaft 45, 5–23 (1912)
15. E. Schrödinger, What is Life? (Cambridge University Press, Cambridge, 1944)
16. R. Clausius, Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen

der mechanischen Wärmetheorie. Annalen. der. Physik. 201, 353–400 (1865)
17. R. Feistel, W. Ebeling, Physics of Self-Organization and Evolution, 1st edn. (Wiley,

Weinheim, Germany, 2011)
18. W. Ebeling, R. Feistel, Theory of selforganization: The role of entropy, information and

value. J. Non-Equil. Thermodyn. 17, 303–332 (1992)
19. J.C. Maxwell, Theory of Heat (Longmans, Green and Co., London, UK; New York, NY,

USA, 1888)
20. L. Szilard, Über die Entropievermehrung in einem thermodynamischen System bei Eingriffen

intelligenter Wesen. Z. Physik 53, 840–856 (1929)
21. L. Brillouin, Negentropy principle of information. J. Appl. Phys. 24, 1152–1163 (1953)
22. M. Eigen, From Strange Simplicity to Complex Familiarity (Oxford University Press, Oxford,

UK, 2013)
23. J. Avery, Information Theory and Evolution (World Scientific, Singapore, 2003)
24. R.U. Ayres, Information, Entropy, and Progress—A New Evolutionary Paradigm (AIP Press,

Woodbury, 1994)
25. W. Ebeling, R. Feistel, Physik der Selbstorganisation und Evolution (Akademie-Verlag,

Berlin, 1982)
26. W. Ebeling, R. Feistel, Chaos und Kosmos: Prinzipien der Evolution (Spektrum-Verlag,

Heidelberg, 1994)
27. R. Feistel, Ritualisation und die Selbstorganisation der Information, in Jahrbuch für

Komplexität Selbstorganisation und Determination, ed. by U. Niedersen, L. Pohlmann
(Duncker & Humboldt, Berlin, 1990), pp. 83–98

28. H.P. Yockey, Information Theory, Evolution and the Origin of Life (Cambridge University
Press, Cambridge, 2005)

29. J.D. Bekenstein, Black holes and information theory. Contemp. Phys. 45, 31-43 (2003)
30. T. Stonier, Information und die innere Struktur des Universums (Springer, Berlin, 1991)
31. P.C. Marijuan et al., Foundations of Information Science (FIS) (2016), fis@listas.unizar.es
32. H. Haken, J. Portugali, Information Adaptation: The Interplay Between Shannon Information

and Semantic Information in Cognition (Springer, Heidelberg, 2015)
33. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423),

623–656 (1948)
34. M. Eigen, The selforganization of matter and the evolution of biological macromolecules.

Naturwissenschaften 58, 465 (1971)
35. R. Feistel, Self-organisation of symbolic information. Eur. Phys. J. Special. Topics. 226, 207–

228 (2017). https://doi.org/10.1140/epjst/e2016-60170-9
36. W. Ebeling, On the relation between various entropy concepts and the valoric interpretation.

Physica. A. 182, 108–120 (1992)
37. J. Huxley, The courtship-habits of the great crested grebe (Podiceps cristatus); with an

addition to the theory of sexual selection. J. Zool. 84, 491–562 (1914)
38. K. Lorenz, Das sogenannte Böse (Borotha-Schoeler, Wien, 1963)
39. G. Tembrock, Grundlagen des Tierverhaltens (Akademie-Verlag, Berlin, 1977)
40. F. Klix, Erwachendes Denken (Deutscher Verlag der Wissenschaften, Berlin, 1989)
41. J. Rifkin, The Zero Marginal Cost Society: The Internet of Things, the Collaborative

Commons, and the Eclipse of Capitalism (Palgrave Macmillan, New York, 2014)

8 W. Ebeling and R. Feistel

https://doi.org/10.3390/e170x000x
https://doi.org/10.1140/epjst/e2016-60170-9


Some Aspects of Synergetics.
From Laser Light to Cognition

Hermann Haken

Abstract While the study of the selforganized formation of spatial, temporal or
even functional structures has a long history in individual scientific disciplines,
ranging from physics over medicine till economy, the goal of synergetics is to
unearth the underlying principles of selforganization. The explicit example of a
physical device, the laser, allows the development and illustration of general con-
cepts such as order parameters, the slaving principle and circular causality. I show
how these concepts and the related mathematical approach can be applied to brain
processes connected with visual perception. At the level of order parameters,
hysteresis in perception and ambivalent figures are dealt with. A bridge between
this phenomenological level and that of real neurons is provided by the Synergetic
Computer based on the analogy between pattern formation and pattern recognition.
A more recently established link with information theory is outlined,—including a
brief discussion of Shannon-, pragmatic and semantic information.

1 Introduction. The Aim of Synergetics

In my contribution, I want to elucidate the scope of Synergetics, an interdisciplinary
endeavor that I initiated in 1969 (for some historical aspects (Kröger [1] and Haken
[2])). Synergetics is a search for unifying principles for the selforganized formation
of spatial, temporal or functional structures in complex systems. The exploration of
such structures has a long history. A few hints may suffice:

Chemistry (cf. the nice contribution by P. Plath in this issue)
Fluid dynamics (Bénard [3])
Psychology/Gestalt theory (Köhler [4])
Medicine, Synergy of muscles (Sherrington [5])
Economy (Nash [6]).
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So why Synergetics? My late Russian friend Yuri Klimontovich (who was also
the thesis advisor of Werner Ebeling, a pioneer of complexity research) brought it to
the point: He said, present days’science resembles a situation where miners working
in different mines are digging deeper and deeper, while they are not aware of what
is found in other mines. So Klimontovich considered Synergetics as an enterprise to
foster interdisciplinary cooperation. I stress right at the beginning that Synergetics is
a system science that not only refers to the “hard sciences” such as physics and
chemistry, but also to the “soft sciences” such as sociology or even epistemology.
Synergetics focusses its attention on a widespread phenomenon that has marvelled
scientists since the antique: the formation of structures by selforganization, i.e.
without interference by means of any kind of “sculptor” [7]. By fortunate cir-
cumstances I came across such a phenomenon not in biology, where selforgani-
zation happens all the time, but in physics, i.e. the inanimated world.

Because a detailed study of the concrete physical system, the then novel light
source has revealed so many basic insights into the “mechanism” of selforganiza-
tion, you surely will forgive me, when I briefly recapitulate basic aspects.

2 The Laser Paradigm

The ruby laser is a nice example of a laser device (Maiman [8]). Ions embedded in a
crystal of the shape of a rod may emit light. At the end faces of the rod mirrors are
mounted, one of them semitransparent. Thus light emitted in axial direction is
reflected several times and can interact with the ions more strongly than light
emitted in other directions (Fig. 1).

The electrons of the ions are excited from the outside by pumplight so strongly
that more electrons are in the upper, excited state than in the lower state (ground
state). Denoting the occupation numbers by N2, N1, respectively, a positive in-
version D = N2 – N1 results. The predominant reason for the construction of a laser
was to produce a light source with high spectral purity (Prochorov [9], Schawlow
and Townes [10]). They based their suggestion on the process of stimulated
emission that had been invoked by Einstein 1915 to derive Planck’s formula for
black body radiation. This process had been used in masers (“Microwave Ampli-
fication by Stimulated Emission of Radiation”). There were, however, two essential

Fig. 1 Scheme of a laser
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obstacles for the extension into the optical region with its much shorter wave-
lengths: In the laser rod, many axial waves (called “modes”) can coexist, and the
emission line is very broad so that many modes can be excited. We (Haken and
Sauermann [11], as well as Tang et al. [12]) could show that in a ring laser a
competition between modes leads to the amplification of only a single mode
according to the principle: “winner takes all” or, using an expression of the evo-
lution theory of biological species “survival of the fittest”. Actually, later we found
a close analogy between our equations and those of Eigen [13]. So my story could
have ended here, weren’t there a real suprise. As I could show in 1964 [14], laser
light has a further fundamental property besides spectral purity (which had been
considered by the experts as the only typical feature of laser light). To explain this
and to show why all this has to do with selforgnization, I have to consider the laser
process in more detail, but invoking a simple model for visualization (Fig. 2).

In an atom (or impurity ion in a crystal), a negatively charged electron is bound
to a positively charged nucleus so that at atom j a dipole moment pj results. When
an atom is excited so that dj > 0, pj begins to oscillate spontaneously and emits a
light wave (for a survey, cf. Table 1 and following text)

1. When the pjs oscillate independently, the fields Ej are uncorrelated. This hap-
pens in all conventional lamps. But in the laser, something new happens:

stimulated emission. ð1Þ

Fig. 2 Upper part, l.h.s.: dipole moment of atom j, upper part, r.h.s.: standing wave between two
mirrors. ω: frequency, k: wave number. E0(t) envelope, lower part energy levels and inversion
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2. The resulting field E= ∑Ej acts on the individual dipoles by a driving force
Edj.

E→ pj ð2Þ

3. E jointly with pj causes also a change of the inversion dj of each atom.

E→ dj ð3Þ

Putting (1), (2), and (3) together, we obtain a loop

↙
E

ðpj, djÞ↖ ð4Þ

that I have called circular causality. At this stage of our approach (4) results in a
complete mess concerning the temporal behavior of E. However, our laser device is
coupled to its surround: the atoms (ions) are embedded in a matrix that perturbs the

Table 1 Basic elementary processes
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dipole oscillations leading to their damping and fluctuations. In addition, the pump
light tries to restore the inversion within a typical relaxation time, or, equivalently,
with a specific damping. In analogy to the notation of spin resonance two types of
damping constants come into play, inversion: γ1, dipole: γ2. Furthermore, the
lightfield is damped also, because it can escape through the semitransparent mirror.
I denote the corresponding damping constant by κ. In typical lasers we have a time
scale separation.

κ≪ γ1 < γ2 ð5Þ

This means that the atoms react quickly to the rather slowly decaying field E0

after splitting off the rapidly oscillating factor exp(iωt), ω light frequency.

E=E0 sinωt sin kx

This allowed me to express the dipole moments pj and in the quantum
mechanical approach the inversion dj by the amplitude of the field strength E0.
Thus, I found a simple equation for E0

dE0 tð Þ
dt

= g− κð ÞE0 tð Þ− sE0ðtÞ3 +F tð Þ ð6Þ

Actually, for my presentation, (6) is somewhat simplified but captures the most
essential features of laser light. In (6) g is the “gain” that results from the continuous
excitation of the atoms by means of pumplight. K is the just introduced damping
constant. The next nonlinear term sE0

3 ismost important and serves for the stabilization
of the laser light amplitude. The last termF(t) describes the impact offluctuations. This
effect becomes very small if g− κ > 0. The meaning of (6) can be easily explained
when we realize that it can be expressed by means of a potential V(E0):

dE0

dt
= −

∂V
∂E0

+F tð Þ ð7Þ

V(E0) is plotted in Fig. 3. For g< κ, i.e. weak excitations, the parabola with only
one minimum of V applies: The field amplitude is mainly zero and fluctuates due to
the random “kicks” of F(t).

Fig. 3 cf. text, q≡E0
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For g> κ evidently stable minima result indicating a stable field amplitude. Fig-
ure 3 is, of course, familiar to all those scientists who have been concernedwith phase
transitions of systems in thermal equilibrium such as freezing of water, ferromag-
netism, superconducting a.s.o. Thus, the highly ordered laser light emerges from the
(chaotic) light of conventional lamps by a phase transition! But here we are dealing
with a driven system far from thermal equilibrium. Furthermore, we are dealing with a
macroscopic quantum system subject to quantum noise F(t) (actually in my original
paper (6) is an operator equation). Laser light is brought about by the selforganization
of the dipoles that must oscillate in phase. The many individual wave tracks of the
light of lamps are replaced by a single, practically infinitely long laser wave (Fig. 4).

3 The Road to Selforganization

My laser example allows us to gain insight into basic features of selforganization
that can be generalized to far more complicated systems. First of all, we deal with a
system composed of many elements that interact with each other (the laser atoms
interacting via the light field) and the system is coupled to its surround (Fig. 5).

The system receives inputs of energy, matter and/or information (e.g., pump
light) and may dispose of “waste”, e.g., heat (entropy). The coupling(s) of the
system is (are) described by control parameter(s), e.g., pump strength.

Fig. 4 L.h.s.: light of a lamp; r.h.s.: laser light

Fig. 5 Scheme of an open system
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At a critical value of a control parameter, the system changes its state qualita-
tively. Its state becomes unstable.

In such a situation, one (or several) new collective variables appear, e.g. in the
laser: the coherent field E. Generalizing Landau’s notion we call these variables
order parameters. These order parameters enslave the individual parts (the field
E fixes the behavior of pj, dj). (The slaving principle is more general than the center
manifold or inertial manifold theorem by the inclusion of fluctuations). Order
parameters and enslaved parts condition each other by

′′circular causality′′ cf.4ð ÞÞ.

The concept of order parameters and the slaving principle lead to a remarkable

complexity reduction.

Instead of dealing with the numerous variables of the parts (e.g. pj, dj), their
behavior is determined and described by only few order parameters (in the single
mode laser described above by only one). By use of dynamic systems theory, a
number of order parameter equations can be classified leading to fixed points, limit
cycles, tori and deterministic chaos.

How far can we go when we try to apply these concepts (and the underlying
mathematical tools that I haven’t presented here) to really complex systems?
Probably the most complex system we know is the human brain. So let’s try!

4 The Brain as a Synergetic System

Figure 6 shows the human brain as seen from above. Its white-gray matter of about
1.5 kg has the shape of a walnut. When studying it under a microscope, we observe
small, complicated structures, the neurons of which Fig. 7 shows two examples.
There are about 1011 neurons in the brain, and a neuron can receive inputs from up
to 104 other neurons. Figure 8 shows a typical structure of a neuron. Its center is the
cell body. Synapses receive (usually) voltage “spikes” from other neurons, convert
them into electric currents in dendrites. The cell body sums them up and “fires” if
the sum is beyond a threshold (This model picture forms the basis of many neural
network approaches since McCulloch and Pitts [15]). The cell body then sends out a
sequence of short pulses using pulse code modulation. The great challenge to
neuroscience is the question: Who or what steers the neurons so that the brain may
recognize objects, steer our movements, and may produce so many of its other
complex activities. The answer I have proposed in 1983 (Haken [16]) is: The brain
is a synergetic system, i.e. in particular, that it is selforganizing. To be concrete, I
suggest an analogy:
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Fig. 6 The brain seen from above

Fig. 7 a Pyramidal cells, b Purkinje cells

Fig. 8 Scheme of a neuron
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laser brain
macro: laser light order parameters percepts

↕ ↕ ↕
micro: atoms parts neurons

Over the past decades, I have devoted one line of my activities to the relation
between neurons and percepts, or in other words, to pattern recognition. To this
end, I proceeded in three steps which I can discuss here only briefly.

(4:1) phenomenological approach based on order parameters
(4:2) mesocopic approach based on the synergetic computer in which model

neurons produce order parameters
(4:3) microscopic approach that treats the dynamics of neurons

4.1 Phenomenological Approach

If there is only 1 order parameter, ξ, the dynamics is prescribed by a potential V(ξ),
where V depends on a control parameter that causes deformations of V such as in
Fig. 9. We ascribe to the minima of V specific percepts. We start with the upper row
from the left. When the control parameter is increased (middle part), the system is
still in its original state. But finally, a new minimum will be occupied. Now follow
the lower part in the reverse direction. In the middle part the system is still kept in
the right minimum. Though the control parameter is the same as before in the
middle part of Fig. 9, the states occupying the minima are different. Clearly, here I
have

visualized the hysteresis effect. But the reader may verify this effect in visual
perception, when in Fig. 10 s/he first looks at the upper row from the left to the
right and then at the lower row from the right to the left. Did you notice that your
perception switches at different positions depending on what you have seen before?

Fig. 9 cf. text
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I have “invented” a further example shown in Fig. 11. First look at the upper
line, hiding the other lines. Then proceed step by step to the lower lines. Then do
the same in the opposite direction. Could you notice the hysteresis?

The effect of ambivalent figures (in German: Kippfiguren) on perception has
been modelled by means of the oscillatory dynamics of two order parameters (cf.
Figures 12 and 13) (Ditzinger and Haken [17]).

Fig. 10 Hysteresis in visual
perception

Fig. 11 Hysteresis in
understanding (cf. text)

Fig. 12 Vase or faces?

Fig. 13 Plot of the order
parameters ξ1, ξ2
corresponding to two
interpretations, for instance
vase/faces, versus time [17]
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4.2 Mesoscopic Approach

Here I modelled perception by means of the Synergetic Computer. (My algorithm
was implemented on a computer by my Ph.D. student Armin Fuchs). The basic
concept is based on the analogy between pattern formation (e.g. in fluids) and
pattern recognition by humans or computers. A main ingredient of pattern is
associative memory. A telephone book is an example: a person’s name is supple-
mented by his/her telephone number. Thus, based on memory, incomplete data are
complemented. This is achieved in the Synergetic Computer by a specific dynamics
using order parameters (Fig. 14).

In pattern formation an initially only partly ordered pattern calls up several order
parameters which compete with each other. Eventually one order parameter wins
and enslaves the total system so that it is now in its fully ordered state. A similar
process happens in pattern recognition. An only partly offered picture is calling up
several order parameters that compete with each other. Again, the winning order
parameter restores the complete picture Fig. 15 (face recognition).

More recently, we (Haken and Portugali, to be published) found a nice new
application of the Synergetic Computer. Some time ago, so-called hybrid images
were “constructed” by Oliva and Schyns [18]. A typical example is shown in
Fig. 16.

When you look at it from a short distance, you will recognize Einstein, but when
looking from a larger distance, or with half-closed eyes, you will recognize Marílyn
Monroe. The “secret” of the construction principle is as follows: the total picture
consists of a superposition of two pictures, Einstein and Monroe. While Einstein’s
face is composed of fine lines (i.e. high band pass filtered) that of Monroe is based
on smooth shades. To see, how the Synergetic Computer can deal with hybrid
images, we first stored the corresponding unfiltered images in the computer. Then

Fig. 14 Analogy between
pattern formation and pattern
recognition

Fig. 15 Example of a recognition process where part of a face is prescribed as initial state
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the hybrid image was offered to the computer which “recognized” Einstein. Then
we studied the effect of blurring the hybrid image by forming its convolution with a
Gaussian. We found that the fine lines were more affected (“smeared out”) than the
soft shades. So when the blurred hybrid image is offered to the Synergetic Com-
puter, the “Monroe” interpretation wins. We expect that for a well-tuned blurring, a
hybrid image may cause oscillations in perception as in the case of the “traditional”
ambivalent figures.

4.3 Microscopic Approach—Spiking Neurons.
Light House Model [19]

A survey is provided by Table 2 and an explanation on the next page.
As we know, the cell body of a neuron emits voltage spike trains along its axon.

To model this effect, we consider a light house that emits a rotating light beam
(upper part of Table 2, l.h.s.). Seen from above, (middle part): the light beams form
an angle ϕ with respect to a fixed axis. Whenever ϕ = 0, 2π, l2π, l: integer, an
observer sees a flash. To apply this model to the action of a real neuron, we recall
(cf. Fig. 8) that a neuron with label n receives its input from another neuron k in the
form of pulses, where ϕk corresponds to ϕ in the upper middle part of Table 2, δ is
Dirac’s δ-function. These pulses pk generate an electric current jm in a dendrite m of
neuron n. Note that according to measurements, the exponent α is a fraction in
between 1 and 2. γ is a damping constant, and a a conversion factor. Finally, the
cell body sums the incoming currents in a nonlinear fashion up (cf. F). The
resulting F together with an incoming external signal sn act as “driving force” for
the overdamped rotation of the angle ϕ(t). κ is a damping constant, and the oper-
ation “mod 2π” serves the purpose that ϕn mod 2π remains restricted to 0 ≤
n < 2π. It can be shown that ϕn mod 2π mod is just the action potential in suitable
units. In my book [19], I have treated a network of such “light house” neurons and
shown that it covers interesting special cases. On the one hand, it allows the

Fig. 16 The same picture is
interpreted in two different
ways
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derivation of the equations of the synergetic computer for pattern recognition; on
the other hand it captures synchronization between neurons, in particular phase
locking between groups of neurons as observed by Gray and Singer [20], who
invoke this effect to explain feature binding. Other synchronization effects play a
fundamental role in Parkinson tremor, where Tass [21] has developed efficient
methods of treatment by “coordinated reset”.

Table 2 Scheme of the light house model. For details cf. text
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5 Concluding Remarks

I am very glad to see that the “Synergetics Endeavor” is still flourishing as is
witnessed by this meeting at Herrenhausen Castle, by the proceedings of a meeting
at Delmenhorst [22] (both meetings sponsered by the Volkswagen Foundation) as
well as by numerous other publications. In a way, Synergetics rests on three
columns:

dynamic systems theory dealing with deterministic processes

the theory of stochastic processes dealing with chance events

phase transition concepts of physics.

Needless to say, that Synergetics strongly profits from the Synergy between
these columns as well as from the traditionally tight ties between experiment and
theory. There is, however, a fourth colomn, that relates the topic selforganization
with information (Haken [23]). More recently, jointly with Juval Portugali, I
elaborated this relationship more closely [24]. Our starting point is Shannon’s
definition of information, S= − ∑j pjlog2pj, where pj is the probability (or relative
frequency in a different interpretation) of an event labeled by j. A well known
“drawback” of this definition is that “meaning is exorcized”. So there have been
attempts to introduce concepts on “meaningful information”. In my book [23] I
defined it as such signals that have an effect on their receiver. For a historical
account of the corresponding concepts of “pragmatic” and “semantic information”
cf. [25]. Portugali and I have been intrigued by the question whether there is any
relation between Shannonian information (SHI) on the one hand and
pragmatic/semantic information (PI/SI) on the other. We found by the concrete
example of visual perception based on the model of the Synergetic Computer,
jointly with Jaynes’ maximum (information) entropy principle, that SHI and PI/SI
condition each other. Furthermore, we found that in cognition the human brain
“deflates” or “inflates” SHI depending on the situation. While usually in pattern
recognition the brain must select one specific percept out of many other interpre-
tations (“deflation”), in other cases our brain “produces” several interpretations. An
example is provided by Fig. 17 (from [24]). Its middle part shows a drawing by
Picasso.

Lack of space does not allow me to present our results in more detail, but I can
refer readers who are interested in this rather entertaining story to our book as well
as to a forthcoming issue on Information and Selforganization in the journal
“Entropy”.
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Dynamical Systems with Time-Varying
Delay: Dissipative and More Dissipative
Systems

David Müller, Andreas Otto and Günter Radons

Abstract We investigate the dynamical properties of time-delay systems with time-

varying delay, where we focus on the influence of the functional structure of the

delay. Two universality classes of systems with time-varying delays are presented

which lead to fundamental differences in the dynamics of the related systems, as

for example the scaling behavior of the Lyapunov spectrum. The classification is

connected to the well-known existence or non-existence of topological conjugacies

of circle maps to constant rotations. It is independent of the specific delay system.

1 Introduction

Dynamical systems with time-delay arise in various fields [1] such as control theory

[2, 3], climate dynamics [4, 5], life sciences [6–9], synchronization of networks [10,

11] and engineering [12, 13]. Time-varying delays are introduced for example for

better controlling systems in time-delayed feedback-control [14, 15] and for taking

into account environmental fluctuations or the age structure in population models

[6–8, 16]. They lead to interesting phenomena in synchronization [17, 18] and are

induced into engineering processes like turning and milling [19, 20] for stabilization

purposes.

For our present work we consider general systems of delay differential equations

(DDE) with one time-varying delay 𝜏(t), which can be defined by

D. Müller ⋅ A. Otto ⋅ G. Radons (✉)

Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany

e-mail: guenter.radons@physik.tu-chemnitz.de

D. Müller

e-mail: david.mueller@physik.tu-chemnitz.de

A. Otto

e-mail: andreas.otto@physik.tu-chemnitz.de

© Springer International Publishing AG 2018

S.C. Müller et al. (eds.), Complexity and Synergetics,

https://doi.org/10.1007/978-3-319-64334-2_3

27



28 D. Müller et al.

ż(t) = f(z(t), z(R(t)), t), where R(t) ∶= t − 𝜏(t) (1)

is called retarded argument. Especially, we are interested in the influence of the func-

tional structure of the delay on the dynamics of the delay system. We identify two

universality classes of time-varying delays, which we call conservative and dissipa-
tive delays. Some systems implicitly require the delay to be conservative. Examples

are threshold delays in biological models [7, 8] and variable transport delays [21],

where the time-varying delay is implicitly defined by the time to reach adulthood by

a time-varying speed of development or the time needed to cover a fixed distance

by a time-varying velocity, respectively. As we will see in the following, one should

be aware of the fact that the modeling of such a system with a general time-varying

delay may cause unphysical situations.

2 Time-Varying Delays in Applications

At first, we present typical applications of DDEs with time-varying delay, where

the delay has to be conservative by definition. We start with an abstract model for a

process inducing a time-varying delay which can be found in more complex and var-

ied forms in biological models, especially population models, and in systems involv-

ing the transport over a finite distance. The model is schematically illustrated by a

conveyor belt in Fig. 1a, which describes the transport of the output of a dynamical

system over the finite distance c by the time-varying velocity v(t). After the length c
of the transport line is covered, the output of the dynamical system is fed back into

the dynamical system. Hence, if the process is modeled by a differential equation

and 𝜏(t) is defined to be the time to cover the distance c, the derivative of the cur-

rent state ż(t) depends not only on the current state z(t) as one expects for a model

given by an ordinary differential equation, but also on the state in the past z(t − 𝜏(t))
where 𝜏(t) is time-varying due to the time-varying velocity v(t). So the system can

be described by a DDE with time-varying delay 𝜏(t) as in Eq. (1). Systems with such

a type of transport can be found for example in automotive engineering applications,

especially in the control of the fuel-air ratio in combustion engines [22, 23], where

the delay is caused by the transport of the exhaust gas from the combustion chamber

to the FAR-sensor and the velocity v(t) is time-varying due to the variation of the

exhaust pressure.

A further example is given by FIFO buffers in electrical engineering [14], where

FIFO stands for “first in first out”. The delay 𝜏(t) is determined by the time needed

for the transport of the saved information from the first to the last memory area,

the “distance” is given by the total amount of memory and the time-variation of the

transport velocity can be induced by the modulation of the clock frequency. The

mentioned transport mechanism is also applicable to biological systems in a slightly

modified way. For these systems the transport line represents the grade of maturity

and the delay is given by the time needed to reach a threshold of maturity which must

be exceeded for reaching the adults population, i.e. the point of maturity at which a



Dynamical Systems with Time-Varying Delay . . . 29

(a)

v(t)
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Dynamical system

threshold delay
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variable transport delay

(b)
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z(t)
z(t− τ(t))

F

workpiece

tool vf

ω(t)

Fig. 1 a Threshold delay in biological models and variable transport delay. b Simple model for

regenerative chattering in turning processes

cell is able to proliferate etc. Such type of systems can be also modeled by DDEs as

Eq. (1), whereby the delay is time-varying since the rate of evolution is in general

time-dependent. Environmental fluctuations or the age-structure of the population

[7, 8, 16] cause the rate of evolution, represented by the transport velocity v(t), to

be time-varying.

Now let us consider a simple model from the field of engineering, in detail a

model for regenerative chatter in turning. Stability in turning and milling processes

is a problem of great interest since suppressing chatter enables the improvement of

the efficiency of industrial processes due to lower degradation of the involved cutting

tools and lower strain of the machines. A reduced noise exposure is also a positive

side-effect. The process is schematically illustrated in Fig. 1b. The workpiece rotates

with a time-varying angular velocity𝜔(t), whereby it is penetrated by the tool moving

with feed velocity vf . The force acting on the tool depends on the thickness h(t) of

the uncut chip which is determined by the difference of the current position of the

tool z(t) and the position z(t − 𝜏(t)), where 𝜏(t) is the time needed to perform one

rotation. Typically, the force is defined as

F(t) = K b h(t) = K b (z(t − 𝜏(t)) − z(t)), (2)

where K denotes the cutting force coefficient and b denotes the chip width. A simple

model for regenerative chatter, which is analyzed for example in [19, 24], is obtained

if one assumes that the tool has only one vibrational mode and is given by a harmonic

oscillator driven by the force F(t). By introducing dimensionless parameters and

defining z(t) = (z(t), ż(t))T we obtain the first order DDE

ż(t) = Az(t) + B z(t − 𝜏(t)). (3)

The matrices A and B are given by

A =
(

0 1
−(1 + w) −2𝜉

)
, B =

(
0 0
w 0

)
, (4)
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where the damping of the tool is represented by 𝜉 and the cutting force coefficient

K, the chip width b as well as the frequency of the dominant mode of the system are

taken into account by w [24]. All in all, the cause of the time-varying delay 𝜏(t) of

this system is analogous to the examples above and is given by the modulation of the

angular velocity 𝜔(t) of the workpiece.

Now let 𝛷(t) be the integral of the velocity v(t) for the transport models or 𝜔(t) for

the turning model, in other words let 𝛷(t) be the covered distance or angle, respec-

tively. The delay 𝜏(t) is implicitly defined by the connection between the length of

the transport line c and 𝛷(t)

c =

t

∫
t−𝜏(t)

dt′ v(t′) = 𝛷(t) −𝛷(t − 𝜏(t)), where ̇
𝛷(t) = v(t), (5)

where for the turning model the distance c represents the angle between one turn of

the workpiece, i.e. c = 2𝜋, and the velocity v(t) is replaced by the angular velocity

𝜔(t). The specific structure of the physical process contains an inherent constant

delay, which is related to an intrinsic “timescale” depending on the specific problem

and equals the length of the transport line c. So even if the evolution of a dynamical

system in the physical time is a more natural representation, it has the disadvantage of

dealing with a time-varying delay. Since systems with constant delay are extensively

studied in the literature it is advantageous to find a representation where the delay

becomes constant. The existence of such a representation was already recognized and

applied [25–28] and it can be easily derived from Eq. (5). If we assume the velocity

v(t) to be strictly positive for all times, the covered distance 𝛷(t) is invertible and

defines a bijective nonlinear transformation between the physical timescale and an

“internal” timescale which represents for the specific problem the covered distance,

the grade of maturity or the covered angle, respectively, at time t. Let 𝜑 be the new

timescale, which is connected to the physical time t by𝜑 = 𝛷(t). Using the definition

of the retarded argument with constant delay in the new timescale

Rc = 𝜑 − c (6)

and by inserting t = 𝛷
−1(𝜑) into Eq. (5), one obtains

Rc = 𝛷◦R◦𝛷−1
, (7)

where ◦ denotes function composition. This shows that the definition of a transport

delay, as in Eq. (5), is nothing but the time domain formulation of a topological

conjugacy, defined by Eq. (7). To transform the representation related to the physical

time, given by Eq. (1), of the system to the representation related to the timescale 𝜑

we introduce the state y(𝜑), which is connected to the state in the physical time z(t)
by

y = z◦𝛷−1
. (8)
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The substitution of Eq. (8) into Eq. (1) leads, after some rearrangements and the

utilization of Eq. (7), to the following system with constant delay

y′(𝜑) = 1
̇
𝛷(𝛷−1(𝜑))

⋅ f(y(𝜑), y(Rc(𝜑)), 𝛷−1(𝜑)). (9)

As an example, the simple model of regenerative chatter in turning in angular

domain, where the constant delay is given by the angle 2𝜋 and the modulation of

the angular velocity is taken into account by a time-varying prefactor [27, 29], reads

y′(𝜑) = 1
̇
𝛷(𝛷−1(𝜑))

(Ay(𝜑) + By(𝜑 − 2𝜋)). (10)

So we have seen that systems with time-varying delay, where the delay is caused

by the transport over a finite and constant distance, are characterized by an inherent

constant delay. In other words these systems are equivalent to systems with constant

delay in the sense that they show the same dynamics, since they are connected by a

well-behaved nonlinear timescale transformation which maps the trajectories of the

system with time-varying delay one-to-one to the trajectories of a system with con-

stant delay. Immediately the question raises, whether all systems with time-varying

delay can be transformed to systems with constant delay, or not. In general this is

not true and based on this criterion, DDEs with time-varying delay can be separated

into two universality classes. The systems considered in this section are examples

for the class of systems which we call systems with conservative delay. The reason

is explained in the next section.

3 Conservative and Dissipative Delays

At this point we derive the two classes of systems with time-varying delay from

the equivalence or non-equivalence to systems with constant delay as done in [30,

31]. We consider only periodic delays which define an invertible retarded argument

and without any loss of generality we set the delay period to one. The question,

whether a system is equivalent to a system with constant delay can be reduced to

the question, whether there exists a somehow well-behaved transformation function

𝛷(t) which solves Eq. (7) for a given retarded argument R(t). Here “well-behaved”

means that the timescale transformation maps all solutions of the original DDE one-

to-one to solutions of the resulting DDE, such that dynamical quantities like the

Lyapunov exponents are well defined and are preserved under the transformation.

Equation (7) takes the structure of a conjugacy equation, which is known from the

theory of iterated maps, especially circle maps [32]. In our case it defines the well-

understood topological conjugacy between a general circle map R(t) and the pure,

constant rotation Rc(𝜑). The maps are defined by the retarded arguments and are

given by
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tk = R(tk−1) = Rk(t0) and 𝜑k = Rc(𝜑k−1) = Rk
c(𝜑0) = 𝜑0 − k c, (11)

where Rk(t) denotes the composition of R(t) with itself k-times, where R0(t) = t and

R0
c(𝜑) = 𝜑, and the orbits of the maps are connected by 𝜑k = 𝛷(tk). Topological

conjugate maps exhibit the same dynamics and dynamical quantities are invariant

under the conjugacy. One invariant quantity is given by the rotation number [32]

𝜌 = lim
k→∞

Rk(t) − R0(t)
k

!
= −c, (12)

which can be understood as the mean drift per iteration of the map R(t). Trivially, the

rotation number of the pure rotation Rc is 𝜌 = −c < 0 and consequently, the rotation

number of a topological conjugate map R(t) is also equal to −c.

Another invariant quantity is given by the Lyapunov exponent 𝜇 of the map R(t),
which describes the rate of the evolution of small perturbations at a reference orbit of

the map [33]. Since the pure rotation Rc preserves initial perturbations, the Lyapunov

exponent equals zero. Hence the Lyapunov exponent of a topological conjugate map

R(t), where the first derivatives of 𝛷(t) and 𝛷
−1(𝜑) exist and are bounded, is also

equal to zero. These properties of a map which is topological conjugate to the pure

rotation are automatically fulfilled if the criterion

lim
n→∞

Rqn (t) + pn = t (13)

holds, where
pn

qn
are the convergents of the continued fraction expansion of the con-

stant delay c [34]. It can be shown that a transformation function 𝛷(t) exists and can

be computed by

𝛷(t) = lim
n→∞

1
n

n−1∑
k=0

Rk(t) =∶ ⟨Rk(t)⟩, (14)

if the map defined by the retarded argument R(t) fulfills Eq. (13) [35]. Another quan-

tity which is invariant under this conjugacy is the mean distance between two orbits

tk and t̃k or 𝜑k and �̃�k, respectively. With Eq. (14) and the connection between the

orbits of Rc(𝜑) and R(t), it is easy to derive that the mean distance between orbits of

the pure rotation ⟨𝛥𝜑k⟩ = ⟨�̃�k − 𝜑k⟩ is equal to the mean distance ⟨𝛥tk⟩ = ⟨t̃k − tk⟩
between two orbits of R(t), i.e.

⟨𝛥𝜑k⟩ = 𝛥𝜑0 = 𝛷(t̃0) −𝛷(t0) = ⟨Rk(t0 + 𝛥t0) − Rk(t0)⟩ = ⟨𝛥tk⟩. (15)

Hence, the maps defined by this type of delays are conservative systems and we call

this class of delays conservative delays. The reduced version of maps, obtained by

taking Eq. (11) modulo one, which are not topological to a pure rotation, possess

attractive fixpoints or periodic orbits due to Poincaré’s classification [32]. Conse-

quently, the mean distance between close orbits vanishes and except for some patho-

logical cases the related Lyapunov exponent is negative, 𝜇 < 0. DDEs which are
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Fig. 2 Parameter regions of the delay classes for a sine-shaped delay with amplitude A and mean

delay 𝜏0. The set of parameters corresponding to dissipative delays (black) take the structure of

Arnold tongues and the parameter set corresponding to conservative delays (white) is a Cantor set.

The Arnold tongues related to circle maps possessing periodic orbits with a period of 1–20 are

shown

characterized by a delay defining a map of this type are not equivalent to a system

with constant delay. Since the corresponding circle maps are dissipative dynamical

systems, we call the related delays dissipative delays.

As mentioned in the last section, systems with variable transport delays or thresh-

old delays are equivalent to systems with constant delay by definition. With our pre-

ceding derivation of the delay classification it is clear that this is the case, because

the implicit definition of the time-varying delay by Eq. (5), which is equivalent to

Eq. (7), implies a topological conjugacy between a pure rotation defined by the intrin-

sic constant delay and the circle map defined by the time-varying delay. Hence vari-

able transport delays and threshold delays are conservative delays by definition. So

let us consider a DDE equipped with a common parameter family of time-varying

delays

𝜏(t) = 𝜏0 +
A
2𝜋

sin(2𝜋 t), (16)

with the mean delay 𝜏0 and the amplitude A, and let us check which set of parameters

defines which type of delay. In Fig. 2 the sets corresponding to conservative and dissi-

pative delays are represented by the white regions and the black regions, respectively.

The parameters related to conservative delays form a Cantor set and the related circle

maps are characterized by quasiperiodic and marginally stable dynamics, 𝜇 = 0. The

parameters related to dissipative delays are characterized by Arnold tongues and the

related circle maps are characterized by mode-locking with 𝜇 < 0 [33, 36]. An inter-

esting fact is that circle maps which are topological conjugate to the pure rotation are

structurally unstable, whereas circle maps which are characterized by mode-locking

are structurally stable [32]. This means that a small parameter change or a small per-

turbation of a conservative delay likely leads to a dissipative delay. Moreover, if a
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system is modeled by a DDE with time-varying delay, where the delay is given by a

parameter family as defined above and one parameter is continuously varied starting

with a conservative delay, the system crosses infinitely many regions of dissipative

and conservative delays due to the fractal structure of the parameter space. Thus,

modeling a system, which is characterized by a threshold or variable transport delay,

with a DDE with a general delay parameter family may leads to unphysical situations

even for small parameter changes, since having a conservative delay is an implicit

requirement for these systems.

The influence of the delay class on the dynamics of time-delay systems can be

exposed by the analysis of the Lyapunov spectrum. Hence, we consider the evolution

of small perturbations of a reference trajectory. For a given solution z̃(t) of Eq. (1), the

linearized system describing the dynamics of small perturbations x(t) = z(t) − z̃(t)
can be given by

ẋ(t) = A(t) x(t) + B(t) x(R(t)), (17)

where A(t) = 𝜕z(t)f and B(t) = 𝜕z(R(t))f denote the Jacobians of f with respect to the

state z(t) and the delayed state z(R(t)) taken at the unperturbed solution z̃(t). The

Lyapunov spectrum {𝜆n ∶ n ∈ ℕ} is given by the relaxation rates, called Lyapunov

exponents, of perturbations related to a specific direction of the initial perturbation.

Since DDEs are infinite dimensional systems, the Lyapunov spectrum consists of

infinitely many Lyapunov exponents, which are typically ordered from the largest

to the smallest [37]. Delay systems are strongly dissipative since for large index the

Lyapunov exponents tend to −∞. In Fig. 3 the Lyapunov spectra of the three systems

n

—

—

—

—

n

Fig. 3 Comparison of the Lyapunov spectra between systems with conservative delay (dots) and

dissipative delay (circles) for the systems, from top to bottom, Eqs. (18a), (18b) and (18c). We

have chosen the delay 𝜏(t) = 𝜏0 + (0.9∕2∕𝜋) sin(2𝜋 t) with the mean delay 𝜏0 = 1.51 and 𝜏0 = 1.54
for dissipative and conservative delay, respectively. The spectra where computed by the semi-
discretization method [12, 38]
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ż(t) = 2z(t) (1 − z(R(t))) , (18a)

ż(t) = 10z(R(t))
1 + z(R(t))10

− 5z(t), (18b)

z̈(t) + ż(t) + 4𝜋2z(t) = 8z(R(t)), (18c)

related to an exemplary dissipative and an exemplary conservative delay are shown,

where Eq. (18a) is the Hutchinson equation, modeling population dynamics [6],

Eq. (18b) is the Mackey-Glass equation, a model for blood production [39] and

Eq. (18c) is the simple turning model from the last section. DDEs with conservative

delays are equivalent to systems with constant delays. Hence characteristic proper-

ties of the Lyapunov spectrum for DDEs with constant delay are characteristic for

DDEs with conservative delay as well. The asymptotic scaling for exponents with

large index is logarithmic for systems with constant delay [37].

In Fig. 3 the spectra for systems with conservative and dissipative delay are rep-

resented by dots and empty circles, respectively. We notice that the Lyapunov expo-

nents related to dissipative delay decay much faster with the index than the exponents

of systems with conservative delay. Moreover, it can be shown that the asymptotic

scaling for systems with dissipative delay is linear [30, 31]. Hence the dissipative

dynamics of the circle map related to dissipative delay leads to an additional dissi-

pation in the dynamics of the delay system in contrast to conservative delays, where

the related circle map is a conservative system and preserves the logarithmic scal-

ing behavior known from systems with constant delay. All in all, we have shown

that the dynamical properties of the access to the past by the delay itself influences

the dynamics of the delay system, whereby systems with dissipative delay are more

dissipative than systems with conservative delay which are dissipative as well.

4 Conclusion

We have presented two universality classes of delay systems with time-varying delay.

The classification is independent of the specific form of the delay system and depends

only on the functional structure of the delay. Systems with conservative delay are

equivalent to systems with constant delay and are characterized by a logarithmic

scaling behavior of the Lyapunov spectrum. In contrast, systems with dissipative

delay are not equivalent to systems with constant delay and the dissipative dynamics

related to the delay access induces an additional dissipation into the dynamics of the

delay system, which leads to a linear scaling behavior of the Lyapunov spectrum.

As an exemplary application we have shown that the delay type becomes relevant

in the case of systems involving transport, where a conservative delay is an implicit

requirement of the physical system, due to the implicit definition of the time-varying

delay.
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Markov Property of Velocity Increments
in Burgers Turbulence

Jan Friedrich and Rainer Grauer

Abstract We investigate the intermittency properties of a turbulent flow without

pressure described by the Burgers equation. To this end, we make use of a phenom-

enogical description devised by R. Friedrich and J. Peinke [Phys. Rev. Lett. 78, 863

(1997)] that interprets the turbulent energy cascade as a Markov process in scale.

The impact of Burgers-shocks on the Markov property of the velocity increments is

discussed and compared to numerical simulations. Furthermore, we give a brief out-

look on the use of the Markov property as a possible closure of a hierarchy of multi-

increment probability density functions derived directly from the Burgers equation.

1 Introduction

Despite tremendous efforts to establish a statistical description of turbulence over

the past century, the problem is still far from being solved and we yet have to iden-

tify the basic physical mechanisms underlying the phenomenon [1]. The presence

of a variety of interlacing vortical structures of different sizes and the complex non-

linear transfer of energy through the corresponding scales forms a system, which

is far from equilibrium and therefore not amenable to any of our current perturba-

tive methods [2]. Especially the phenomenon of intermittency manifesting itself by

the occurrence of very large velocity fluctuations at smaller scales and the resulting

anomalous statistics is ambitious. Accordingly, descriptions of intermittency effects

are of rather phenomenological nature [3, 4].
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Nevertheless, the last decades of turbulence research have seen several promising

methods that were mainly borrowed from field theory such as the so-called operator

product expansion [5, 6] or the instanton method [7, 8]. Another interesting approach

via the theory of stochastic processes was provided by Friedrich and Peinke [9].

Here, the concept of the energy cascade, i.e., the transfer of energy from large to

small scales boils down to a Markov process of the velocity increments in scale. It

could be shown experimentally that the Markov property is fulfilled over a broad

range of scales and is broken only at smaller scale separations [10]. This signifies

a considerable reduction of the complexity of the problem, since the n-increment

probability density function (PDF) can be factorized into a product containing only

transition probabilities. Furthermore, it follows that the evolution in scale of the one-

increment PDF as well as the transition PDF are described by the same so-called

Kramers-Moyal expansion, which allows for a quite intuitive description of inter-

mittency effects.

However, since this is a purely phenomenological theory, no contact to the

basic fluid dynamical equation, the Navier-Stokes equation, has been made up to

this point. In this context, a quite promising approach seems to be the Lundgren-

Monin-Novikov (LMN) hierarchy that derives PDF equations directly from the

basic fluid dynamical equations [11–13]. Its inherent difficulty lies in the occur-

rence of unclosed terms that couple to statistical quantities of higher order [14]. The

n-increment PDF equation, for instance, involves terms containing the

n + 1-increment PDF and we are left with an infinite hierarchy of PDF equations that

is formally similar to the BBGKY-hierarchy from statistical physics. The aim of this

contribution is to give a brief outlook on a possible reconciliation of the Markov phe-

nomenology and the LMN hierarchy at the example of the Burgers equation, a sim-

plified version of the Navier-Stokes equation. Here, intermittency effects are caused

by shocks that eventually form due to the nonlinear and compressible character of

the Burgers equation [15]. In Sect. 2, we describe those effects via the Markov phe-

nomenology and investigate its validation. Section 3 mentions work in progress that

addresses a possible closure of the Burgers-LMN hierarchy via the Markov property

of the increment statistics.

2 Description of the Intermittency of Burgers Velocity
Increments by a Markov Process in Scale

The Burgers equation applies for a turbulent flow with neglected pressure and reads

𝜕

𝜕t
u(x, t) + u(x, t) 𝜕

𝜕x
u(x, t) = 𝜈

𝜕
2

𝜕x2
u(x, t) + F(x, t), (1)

where the forcing is assumed to be white noise in time ⟨F(x, t)F(x′, t)⟩ = 𝜒(x −
x′)𝛿(t − t′). A typical realization of the velocity field obtained from numerical

simulations is depicted in Fig. 1a: Smooth ramps of positive velocity increments
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(a)

(b)

Fig. 1 a Typical realization of the velocity field obtained from numerical simulations of forced

Burgers turbulence. Large negative velocity field gradients such as the dominant shock in the cen-

ter are build up by the nonlinearity in Eq. (1) and are then subject to an increased rate of energy

dissipation. The characteristic parameters of the simulation are assembled in Table 1. The spatial

correlation of the forcing is ∼k−1 in Fourier space [16]. b Evolution of the one-increment PDF

f1(v, r) in scale obtained from the same numerical simulations. The PDFs are shifted vertically for a

better view. The scale is given in units of the Taylor length 𝜆 (see Table 1 for definitions). On large

scales, the PDF is close to Gaussian whereas it develops a pronounced asymmetry as it tends to

smaller scales due to the presence of shocks in the left tail. Finally, it approaches the gradient PDF

are interrupted by violent shocks of negative velocity increments that are eventu-

ally smeared out by viscosity. The latter manifest themselves by the extreme scaling

of the velocity structure functions [15]:

⟨v(R, r)n⟩ = ⟨(u(R + r) − u(R))n⟩ ∼ r𝜁n with 𝜁n =
{

n for n < 1,
1 for n ≥ 1. (2)
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Here, the first scaling exponent is due to regions where the velocity field is smooth

whereas the latter exponent corresponds to shock events similar to Fig. 1a. A full

statistical description of the fluctuating velocity field in Eq. (1) is tantamount to the

knowledge of the n-increment PDF

fn(vn, rn; vn−1, rn−1; ...; v1, r1) =
n∏

i=1
⟨𝛿(vi − v(R, ri))⟩. (3)

where the increments are taken at the same reference point R whose dependence

along with t has been dropped under the assumption of homogeneity and stationarity.

The n-increment PDF can be simplified significantly under the assumption that

the increments possess a Markov property in scale for the ordering rn ≪ rn−1 ≪ r1

p(vn, rn|vn−1, rn−1; ...; v1, r1) =
fn(vn, rn; ...; v1, r1)

fn−1(vn−1, rn−1; ...; v1, r1)
Markov
= p(vn, rn|vn−1, rn−1)

(4)

which means that the n-increment PDF can be factorized according to

fn(vn, rn; vn−1, rn−1; ...; v1, r1) = p(vn, rn|vn−1, rn−1)...p(v2, r2|v1, r1)f1(v1, r1). (5)

For a given distribution f1(v1, r1) on large scales, typically a Gaussian, the knowl-

edge of the transition PDF p(vn, rn|vn−1, rn−1) is thus sufficient for an entire sta-

tistical description. Furthermore, a central notion of a Markov process is that the

one-increment PDF as well as the transition PDF follow the same Kramers-Moyal

expansion

− 𝜕

𝜕r
f1(v, r) =

∞∑

n=1
(−1)n 𝜕

n

𝜕vn
D(n)(v, r)f1(v, r) = L̂KMf (v, r) (6)

− 𝜕

𝜕r
p(v, r|v′, r′) =

∞∑

n=1
(−1)n 𝜕

n

𝜕vn
D(n)(v, r)p(v, r|v′, r′) = L̂KMp(v, r|v′, r′) (7)

where the minus sign indicates that the process occurs from large to small scales and

the Kramers-Moyal coefficients are defined as

Table 1 Characteristic parameters of the numerical simulations: root mean square velocity urms =
√
⟨u2⟩, viscosity 𝜈, averaged rate of local energy dissipation ⟨𝜀⟩ = 𝜈

⟨(
𝜕u
𝜕x

)2
⟩

, grid spacing

dx, dissipation length 𝜂 =
(

𝜈
3

⟨𝜀⟩

)1∕4
, Taylor length 𝜆 = urms

√
𝜈

⟨𝜀⟩
, Taylor-Reynolds number Re

𝜆
=

urms𝜆
𝜈

, integral length scale L = u3rms
⟨𝜀⟩

, large-eddy turn-over time TL = L
urms

and number of grid pointsN

urms 𝜈 ⟨𝜀⟩ dx 𝜂 𝜆 Re
𝜆

L T in TL N
0.01 0.0001 1.02 × 10−6 0.003 0.0315 0.099 9.96 0.989 25,815 2048
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Table 2 Phenomenological models of turbulence (we refer the reader to [17] for further discus-

sions) with scaling exponents 𝜁n and the corresponding reduced Kramers-Moyal coefficients from

Eq. (8): Kolmogorov’s mean field theory from 1941 (K41), Kolmogorov-Oboukhov theory from

1962 (K62), Burgers phenomenology, She-Leveque phenomenology, Yakhot’s model and anti-de

Sitter/conformal field theory random geometry model [18]. Note that the K41 as well as the Burgers-

ramps do not exhibit intermittency corrections due to the absence of multiplicative noise represented

by D(2)(v, r). The K62 phenomenology is the only intermittency model that can be reproduced with

just two Kramers-Moyal coefficients

Model 𝜁n Reduced Kramers-Moyal coefficients

K41 n∕3 C1 = 1∕3, no higher orders

K62
a n∕3 − 𝜇n(n − 3)∕18 C1 = (3 + 𝜇)∕9, C2 = 𝜇∕9, no higher orders

Burgers-ramps n C1 = 1, no higher orders

Burgers-shocks 1 Cn = 1

She-Leveque
d n

9
+ 2

(

1 −
(

2
3

)n∕3
)

Cn =
1
9

(

n 1F0(1 − n; ; 1) + 18
(

1 − 3
√

2
3

)n)

Yakhot
b

𝜁2n =
2(1+3𝛽)n
3(1+2𝛽n)

Cn =
Γ[n+1]

Γ[n+1+ 1
𝛽
]

(
Γ[1 + 1

𝛽
] + 1

3𝛽2
Γ[ 1

𝛽
]
)

ADS/CFT
c

(
(1+𝛾2)2+4𝛾2( n3 −1)

) 1
2 +𝛾2−1

2𝛾2
no analytic expression

Experimental values for intermittency parameters:
a
𝜇 ≈ 0.227,

b
𝛽 = 0.05 and

c
𝛾
2 = 0.161.

d
Here,

𝜈
Fq(a; b; z) is the generalized hypergeometric function

D(n)(v′, r′) = 1
n!

lim
r→r′

1
r − r′ ∫

dv(v − v′)np(v, r|v′, r′). (8)

In comparison, Fig. 1b shows a typical evolution in scale of the one-increment

PDF obtained directly from the numerical simulation. The right part corresponds to

smooth ramps, whereas the shocks enter in the left revealing a pronounced left tail

of the PDF at small scales. The correct choice of the Kramers-Moyal coefficients in

Eq. (6) should thus enable us to reproduce this behaviour. To this end, we take the

moments ⟨vn⟩ from Eq. (6). The scaling of the structure functions (2) can now be

guaranteed by the choice

D(1)(v, r) = −v
r

, D(n)(v, r) = 0 for n > 1 , for positive increments, (9)

D(n)(v, r) = (−1)n

n!
vn
r

, for negative increments. (10)

In order to compare this result with other existing phenomenological models (K41,

K62, She-Leveque etc.), we have assembled the corresponding Kramers-Moyal coef-

ficients in Table 2.

Remarkably, any of our current phenomenological models can be reproduced by

the Kramers-Moyal expansion (6) and the proper choice of the Kramers-Moyal coef-

ficients
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D(n)(v, r) = Cn
(−1)n

n!
vn
r
, (11)

which corresponds to scaling solutions for the moments ⟨vn⟩. As it can be seen from

Table 2 as well as from the plots of the reduced Kramers-Moyal coefficients Cn in

Fig. 2, the Burgers phenomenology exhibits the most extreme intermittency effects of

all the considered models. This sheds also some new light on the use of the so-called

Pawula theorem [19] for the Kramers-Moyal expansion (6). The theorem states that

if D(4)(v, r) = 0, then all higher order coefficients are zero and the expansion can be

terminated at n = 2, leaving us with an ordinary Fokker-Planck equation. In [9], the

use of Pawula’s theorem was justified from the free jet experiment, since D(4)(v, r) ≈
0 in this case. We have plotted the reduced Kramers-Moyal coefficients in Fig. 2.

From the ordinary plot in Fig. 2a, it seems that C4 ≈ 0 for all models except for the

Burgers model. However, the same logarithmic plo reveals the correct asymptotics

of the reduced coefficients.

We are now in the position to calculate the transition PDFs for positive and neg-

ative increments from the Kramers-Moyal expansion (7) with the corresponding

Kramers-Moyal coefficients from Eqs. (9) or (10). For the ramps, we only have to

deal with a drift coefficient and the solution can be determined by the method of

characteristics [20] according to

p(v, r|v′, r′) = 𝛿

(
v − r

r′
v′
)
. (12)

Here, we used the initial condition p(v, r′|v′, r′) = 𝛿(v − v′) as a consequence of the

coincidence property of the n-increment PDF (3). Note that although this initial con-

dition seems to be the proper choice with regard to the coincidence property, it is

also known [10] that the Markov property (4) breaks down at the so-called Markov-

Einstein coherence length, i.e., if |r − r′| ≪ 𝜆ME. Therefore, one might also seek for

other initial conditions that explicitly take into account finite 𝜆ME. Turning to the

Kramers-Moyal expansion of the shocks (10), a solution can be obtained from its

Dyson series representation [19] according to

p(v, r|v′, r′) = 𝛿(v − v′) +
∫

r

r′
dr1L̂KM(v, r1)𝛿(v − v′)

+
∫

r

r′
dr1

∫

r1

r′
dr2L̂KM(v, r1)L̂KM(v, r2)𝛿(v − v′) + ...

= 𝛿(v − v′) +
∫

r

r′
dr1

L̂
r1
𝛿(v − v′) +

∫

r

r′
dr1

∫

r1

r′
dr2

L̂2
r1r2

𝛿(v − v′) + ...

= 𝛿(v − v′) + ln r
r′
L̂𝛿(v − v′) + 1

2!

(
ln r

r′
)2

L̂2𝛿(v − v′) + ...

= exp
[
ln r

r′
L̂
]
𝛿(v − v′) (13)
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(a)

(b)

Fig. 2 a Reduced Kramers-Moyal coefficients Cn for different phenomenological models accord-

ing to Table 2. Note that the K41 and the K62 coefficients end after n = 1 and n = 2, respectively.

Only the Burgers phenomenology seems to depend on an infinite number of coefficients whereas

the use of Pawula’s theorem seems to be adequate for all other models, since the reduced Kramers-

Moyal coefficient of order four appears to vanish, C4 ≈ 0. However, this can be misleading as it is

shown in the logarithmic plot b that reveals the correct asymptotics. Clearly, coefficients of higher

order are needed to reproduce the correct intermittency effects. This also guarantees that the scaling

exponents 𝜁n are monotonically increasing functions of n, which is not the case for intermittency

of the K62 type

where we introduced the operator L̂ = −
∑∞

n=1
1
n!

𝜕
n

𝜕vn
vn. Letting this operator act on

the delta function yields

L̂𝛿(v − v′) = −
∞∑

n=1

1
n!

𝜕
n

𝜕vn
vn𝛿(v − v′) = −

∞∑

n=1

1
n!

𝜕
n

𝜕vn
(v′)n𝛿(v − v′) (14)

where we made use of the sifting property of the delta function. We can now write

the delta function in its Fourier representation and obtain
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L̂𝛿(v − v′) = −
∞∑

n=1

1
n!

𝜕
n

𝜕vn
v′n

∫

du
2𝜋

eiu(v−v′) = −
∞∑

n=1
∫

du
2𝜋

(iuv′)n

n!
eiu(v−v′)

=
∫

du
2𝜋

eiu(v−v′) −
∫

du
2𝜋

eiuv′eiu(v−v′) = 𝛿(v − v′) − 𝛿(v). (15)

Another application of this operator yields

L̂2𝛿(v − v′) = L̂𝛿(v − v′) − L̂𝛿(v) = 𝛿(v − v′) − 𝛿(v). (16)

By inserting these relations into Eq. (13), we obtain

p(v, r|v′, r′) = 𝛿(v − v′) +
[

ln r
r′

+ 1
2!

(
ln r

r′
)2

+ ...

]

(𝛿(v − v′) − 𝛿(v)) (17)

= eln
r
r′ 𝛿(v − v′) + (1 − eln

r
r′ )𝛿(v) = r

r′
𝛿(v − v′) +

(
1 − r

r′
)
𝛿(v).

The transition probability for positive (12) and negative increments (18) thus reads

p(v, r|v′, r′) =
⎧
⎪
⎨
⎪
⎩

𝛿

(
v − r

r′
v′
)

for v′ ≥ 0,

r
r′
𝛿(v − v′) +

(
1 − r

r′

)
𝛿(v) for v′ ≤ 0.

(18)

By inserting Eq. (18) into the definition of the Kramers-Moyal coefficients (8) it can

be verified that the corresponding coefficients in Eqs. (9) and (10) are recovered.

Figure 3 shows the validity of the Markov property for two different scale separa-

tions.

3 Multi-increment PDF Hierarchy and a Possible Closure
Scenario

The aim of this section is to derive a of multi-increment PDFs directly from the

Burgers equation (1) and to outline a possible closure on the basis of the Markov

property (3) insinuated in [21]. To this end, we derive the one-increment PDF with

respect to time t according to

𝜕

𝜕t
f (v1, r1,R1, t) =

𝜕

𝜕t
⟨𝛿(v1 − v(R1, r1, t))⟩ = − 𝜕

𝜕v1
⟨𝛿(v1 − v(R1, r1, t))

◦
v (R1, r1, t)⟩

(19)

By the use of the chain rule in the last step, we are able to make contact to the tem-

poral derivative of the velocity increment indicated by the dot. The latter, however,

is determined by Eq. (1) and we are able to derive an evolution equation ‘from first

principles’ [21], namely
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(a)

(b)

Fig. 3 a Contour plot of the Markov property p(v3,L∕2 − r|v2,L∕2; v1,L∕2 + r) =
p(v3,L∕2 − r|v2,L∕2) for r = 1.48𝜆, where v1 = −𝜎∞ and 𝜎∞ =

√
2urms has been introduced in

order to obtain a uniform increment-representation. The Markov property is found to be valid. Only

the boundaries of the two-times conditional PDF (straight lines) deviate from the transition PDF.

Furthermore, it can be seen that the analytic result (18) captures the main features of the transition

PDF (dashed lines). More precisely the (broadened) part due to 𝛿(v3) as well as the transition at

v2 = 0 can be observed in the contour plot. b Validation of the Markov property for r = 0.88𝜆.

The Markov property is starting to get violated in the upper part. This tendency becomes even

more pronounced for smaller r. At this point it is not clear whether the Taylor length 𝜆 is the right

quantity for the determination of the Markov-Einstein length 𝜆ME, where the Markov property is

starting to deteriorate significantly

𝜕

𝜕t
f1(v1, r1, t) + v1

𝜕

𝜕r1
f1(v1, r1, t) = −2

∫

v1

−∞
dv 𝜕

𝜕r1
f1(v, r1, t)

− 𝜈
𝜕

𝜕v1 ∫

∞

0
dr2

[
𝛿(r2 − r1) − 2𝛿(r2)

] 𝜕
2

𝜕r22 ∫
dv2v2f2(v2, r2; v1, r1, t)

+ [𝜒(0) − 𝜒(r1)]
𝜕
2

𝜕v21
f1(v1, r1, t). (20)
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Interestingly, the terms that stem from the nonlinearity in Eq. (1) are closed and

only the viscous term involves the two-increment PDF confronting us with an infi-

nite chain of evolution equations [14]. Note that the cumulative one-increment PDF

enters in Eq. (20) as a consequence of the compressibility of the velocity field. For the

case of the incompressible Navier-Stokes equation, this term is replaced by pressure

contributions involving the two-increment PDF [22]. Furthermore, letting 𝜈 → 0 in

Eq. (20) will also not resolve the closure problem, since the rate of energy dissipation

⟨𝜀⟩ remains finite, a phenomenon termed as dissipation anomaly [5]. So far possible

closures of the hierarchy (20) have been restricted to Gaussian approximations [23]

of the unclosed terms or to methods borrowed from field theory [5, 6]. Their inherent

difficulty lies in the fact that the nonlinear contributions in Eq. (1) are too strong to

be accurately described by close-to-equilibrium distributions. Furthermore, they are

based on parameterized families of PDFs, i.e., certain quantities have to be specified

in advance (e.g., the structure function of second order for a Gaussian approxima-

tion). It is therefore of great importance to seek for ways to truncate the hierarchy

that preserve the intermittent character of the velocity field. Our approach consists

in truncating the hierarchy at the level of the two-increment PDF via the Markov

property, which corresponds to a three-point closure. We approximate the unclosed

terms in the evolution equation of the two-increment PDF in scale according to

f3(v3, r3; v2, r2; v1, r1) = p(v3, r3|v2, r2)f2(v2, r2; v1, r1) for r3 ≤ r2 ≤ r1 (21)

which leads to a a quite complex but closed nonlinear partial integro-differential

equation for f2 whose properties are examined carefully at present. Obviously, this

can only be a first approximation, since in the limit procedures in (20), we inevitably

approach the Markov-Einstein length 𝜆ME, where Eq. (4) is violated. However, since

the closure allows for a description of intermittency effects and contains no addi-

tional parametric function, we are quite hopeful that a deeper insight in the intermit-

tency properties of turbulent flows can be revealed.

4 Conclusion

We have presented a phenomenological description of Burgers turbulence by a

Markov process and its corresponding Kramers-Moyal expansion in scale. The tran-

sition probabilities have been explicitly calculated and compared to numerical sim-

ulations. The influence of the shock structures on the transition PDFs and the break-

down of the Markov property has been analyzed. Furthermore, we briefly mentioned

a possible closure scenario of the LMN hierarchy of velocity increments in Burgers

turbulence. It remains a task for the near future to further quantify the proposed clo-

sure and to examine whether it is an appropriate approximation of the hierarchy. If

the latter is true this also opens up a possible way to a pseudo-perturbative treatment

of the Navier-Stokes equation beyond the Markov-Einstein length in successively

taking into account a larger ‘scale history’ of the system.
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Beads in a Rotating Box

Frank Rietz and Ralf Stannarius

Abstract Granular materials contain, even though they have been an integral part

of human technology since ancient times, numerous mysteries even today. Dynamic

phenomena observed in such materials depend on a multitude of parameters, and

a general description is still missing. Here, a simple experiment is presented that

extends the diversity of these pattern forming phenomena. A flat container (Hele-

Shaw cell) is filled with a mixture of granular material and slowly horizontally

rotated. Depending on the height of the filling the beads either stripe-wise demix

or circulate in convection rolls that are known from hydrodynamic instabilities. Irre-

spective of some superficial similarity to convection in other granular systems, the

driving mechanism is completely different, and only partially understood. Particu-

larly interesting are traveling wave structures where demixed stripes move periodi-

cally along the axial direction.

1 Introduction

Rotating containers of different geometries filled with grain mixtures are among

the standard systems in the investigation of granular matter physics. Since the first

description of pattern formation in the horizontally rotating cylindrical mixer [1]

the experiment has kept its attractiveness for researchers. A list of references can

be found in a resource paper by Kakalios [2], in reviews and books (e.g. [3, 4]).

Different scenarios of spontaneous pattern formation have been detected in thin rec-
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tangular cells that rotate about their horizontal axis [5–8]. Only on first glance, the

reduction of the system to a quasi-2D geometry seems to simplify the dynamics and

greatly reduce the variety of observed patterns. It turns out that this cell still pro-

duces several types of spontaneous pattern. The elucidation of the pattern forming

mechanisms remains to be a challenge for theoreticians. In this paper, we restrict to

experiments with bidisperse mixtures of spherical grains.

Two regimes have to be treated separately in dependence of the fill level C (vol-

ume of grains divided by whole cell volume). The first regime is found when the

cell is filled with a subcritical amount of granulate, the critical value is Ccrit ≈ 0.6.

Then, chute flow is dominant. One observes segregation stripes analogous to the

well-known bands in cylindrical containers. These patterns can coarsen when neigh-

boring stripes of the same grain species merge. Peculiarities of the flat cell geometry

are discussed below. In particular, we focus on quasi-periodic dynamic solutions.

Even more interesting are the dynamics at fill levels above Ccrit . The segregation

stripe patterns are completely absent there, the limited free volume above the grains

largely inhibits individual grain dynamics. The granulate starts to move collectively

in slow convection rolls. Segregation and transport patterns are coupled in these

structures [5, 6], which will be described in the second part of the Results section.

Convection in cells with aspect ratios close to one exhibits some unique features that

will be discussed separately.

2 Experimental

The basic geometry is sketched in Fig. 1. If not indicated otherwise, the flat cell has

dimensions of 500 mm in width and 5 mm in thickness, the height can be varied,

it is usually between 50 and 110 mm. The cell is rotated about a horizontal axis

with an angular velocity of the order of 2 s
−1

. In the standard experiment, the cell

rotates with the upper edge towards the camera. The side of the cell seen by the

camera will be called front view in the following. Of course, both sides of the cell are

experimentally equivalent after 180
◦

revolution. If not specified otherwise, we used

a mixture of (0.3 ± 0.05) mm and (0.9 ± 0.1) mm diameter soda-lime glass beads of

density 2.49 g/cm
3

in 1:1 volume ratio.

3 Results

3.1 Chute Flow Regime

In the subcritical filling regime, at C < Ccrit , the initial instability is usually towards

vertical segregation stripes, in which the grains follow a slow circulation in the same

sense as the container rotates (Fig. 2, right), i.e. when the material slides down the

tilted cell it is slightly faster on the top side. The segregation stripes can be subject
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Fig. 1 Experimental geometry. The sketch has been decorated with a convection roll pattern typical

for high filling fractions. Images of one side are taken in regular intervals by a CCD camera. Arrows
indicate the sense of convective flow. The cell is illuminated uniformly from the back. Reproduced

from AIP Conf. Proc. 1542, 763 (2013), with the permission of AIP Publishing

Fig. 2 Rotating cell filled with C = 0.581 < Ccrit , after 1.5 K rotations (top) and 15 K rotations

(middle) at 20 rpm. The bottom image shows a state reached at C = 0.4 after 50 K rotations. Darker

bands are composed mainly of small beads, brighter bands contain larger beads. The drawing at

the right is the side view of the rotating cell and a sketch of the effective granulate circulation.

Reproduced from AIP Conf. Proc. 1542, 763 (2013), with the permission of AIP Publishing

to coarsening, so that finally a single region with small beads is enclosed by two

regions of segregated large beads.

More interesting is the situation shown in Fig. 3, with quasi-periodic structures.

In the bottom-left inset of the image, snapshots of the cell show that segregation

stripes travel to both sides of the cell, but after approximately 2200 rotations, the

initial state is almost re-established. The profiles of the cell view along the central

axis were stacked to a space-time plot of the complete experiment, shown at the top

of Fig. 3. Dark areas indicate an excess of the smaller spheres, brighter areas contain

more large spheres.

Interestingly, the quasi-periodic patterns survive for a certain number of periods,

but finally the cell locks into another quasi-periodicity with different temporal and

spatial pattern. Both the number of stripes, their width and the traveling velocities

can vary non-systematically between the quasi-periodic phases. We exclude that the

transitions are related to some potential ageing effects of the material, since some of

the observed traveling wave patters were found to reappear after several ten thousand
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Fig. 3 Inset bottom left snapshots of a quasi-periodic structure in the cell. The top is a space-time

plot of the evolution during about 230 K cell rotations, two sections are magnified in the bottom
images. Each vertical line is a complete cross-section of the cell’s middle axis. Reproduced from

AIP Conf. Proc. 1542, 763 (2013), with the permission of AIP Publishing

revolutions of the container [7]. Obviously this system has several attractors between

which the solutions are chosen. This could be a hint that in such experiments, one

has to be very careful to derive general statements from only few experiments or

limited observation periods. A periodic pattern observed for short time periods (sev-

eral thousand rotations) does not necessarily prove that a final asymptotic cycle is

reached.

3.2 Convection Roll Arrays

When the cell is filled above a critical level, it develops a qualitatively different type

of patterns, viz convection rolls. The flow field is quasi-2D, i.e., identical on front

and back sides of the cell. These structures were found for all tested combinations of

granulates, even in one-component samples with relatively narrow size distributions

(in real monodisperse granulate crystallization suppresses such structures). Figure 4

shows examples of the convection and segregation patterns in different types of gran-

ular mixtures. A peculiarity of the system (c), which is a mixture of materials of a

large density mismatch, is the appearance of oblique stripes. Segregation occurs not

primarily within individual rolls, but between neighboring rolls.



Beads in a Rotating Box 55

(a)

(b)

(c)

Fig. 4 Convection in a decoration sand, dark red, Ø ≈ 50…250µm and bright blue, 1.0 . . .

1.4 mm, b mustard seeds (yellow, 𝜌 ≈ 0.75 g/cm
3
, Ø ≈ 2 . . . 2.5 mm) and poppy seeds (dark,

𝜌 ≈ 0.6 g/cm
3
, ≈ 1.0 × 0.7 × 0.5mm, c glass spheres (bright, 𝜌 = 2.50 g/cm

3
, (650 ± 100)µm) and

poppy seeds. Reproduced from AIP Conf. Proc. 1542, 763 (2013), with the permission of AIP Pub-

lishing

Fig. 5 Influence of the rotation rate: at 20 rpm (top, Froude number Fr ≈ 0.01) the convection

pattern is formed, whereas after continuation at 250 rpm (bottom, Fr ≈ 1.75), banding in radial

direction sets in. Cell height 50 mm. Reproduced from AIP Conf. Proc. 1542, 763 (2013), with the

permission of AIP Publishing

The onset of convection is relatively insensitive to the rotation rate, as long as the

Froude number remains small, Fr ≪ 1. Figure 5 shows that at larger Froude num-

bers, the pattern topology changes. Small beads are partially sieved into two mixed

bands at the outer edges, convection ceases.

The influence of the interstitial fluid was tested in experiments in vacuum and in

water. The reduction of ambient air pressure down to a few Pascal did not change

the convection scenario noticeably. Similarly, the preparation of the experiment with

water as embedding fluid did not reveal qualitative influences on convection [6].

A detailed analysis of the granulate structure reveals the existence of three zones.

In the central part of the cells (cf. Fig. 4 and top of Fig. 5), a zone is formed where

particles move collectively in slowly convecting structures, while on top and bottom

two layers of rapidly moving grains are located. Their width scales with the cell

depth. In these two regions, it is difficult to track the individual particles and to

determine velocities.

In Fig. 6a, b the composition and the assumed profile of the granular top surface

after two subsequent half rotations is sketched. There is a clear correlation with the

roll positions. The edge zones are enriched with small beads in sections where flow
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(a)

(c)

(b)

Fig. 6 Profile of the upper granular surface and vertical flow component a and the same after

a 180
◦

rotation, b the undulations are considerably exaggerated. Artificial modulation of the cell

profile c and imprinted convection roll array. Reproduced from AIP Conf. Proc. 1542, 763 (2013),

with the permission of AIP Publishing

(a) (b) (c) (d)

Fig. 7 Circulation of grains in the fluidized edge zones, side view. a Definition of cell rotation

sense, b–d different excitation schemes (see text). Reproduced from AIP Conf. Proc. 1542, 763

(2013), with the permission of AIP Publishing

enters the zones and with large beads where the flow leaves them. The upper edge of

the granular layer is not uniformly flat, it also correlates with the convection struc-

ture. One can make use of this relation by modification of the cell edges. Figure 6c

shows that the pattern wavelength can be controlled with a step-modulated edge [6].

Notches correlate with flow from the edge towards the cell axis, similar to Fig. 6a,

b, where the depressions correlate with inward flow.

A further detail is the dynamics within the fluidized edge zones. Primarily, there

is some axial transport with the convection rolls. But in addition, the grains perform

cyclic motions, as sketched in Fig. 7. When different rotation schemes of the cell are

applied, this has almost no influence on the convection patterns but it changes the

dynamics in the fluidized zones. The figure shows three situations, (b) is the standard

experiment, (c) is a cradle-like ±360◦ swinging and (d) a ±180◦ swinging [6]. In the

latter, the symmetry of front and back sides is broken. This is seen in the circulation

pattern in the fluidized edges. In each subfigure, the sketches correspond to regions

with upward and downward convection, respectively.
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Fig. 8 Single roll in a cell with aspect ratio one (w = d = 8 cm, C = 0.650). The convection veloc-

ity is not constant as in multi-roll patterns. The flow oscillates with a period of half an orbit of the

roll and a superimposed four-fold periodicity (peaks A to D). The top graph shows the time depen-

dent flow amplitude, and the space-time plot below, obtained from the transmission profiles along

the central cell axis (dashed line) evidences the correlation between segregation pattern and orbit

velocity. Snapshots A and B of the cell were taken in the corresponding extrema of the velocity

curve. Reproduced from AIP Conf. Proc. 1542, 763 (2013), with the permission of AIP Publishing

3.3 Single Convection Rolls

A special case are cells with aspect ratios close to unity. The square cell develops

a single roll as seen in Fig. 8, left. In contrast to the multi-rolls which are charac-

terized by a relatively uniform rotation velocity when the pattern is fully developed,

the single-roll pattern can oscillate, stop, and even reverse the rotation direction.

Figure 8 shows one of the scenarios observed in the single roll cell. The periodicity

of the dynamics arises from a coupling of the segregation pattern and the revolution

velocity [8], as seen in the velocity characteristics and the space-time plot in Fig. 8.

The snapshots show typical distributions of small beads along the orbit in the phases

A and B of velocity extrema. On longer observation periods, the behavior can be

much more complex. The orbits can cease, the revolution direction can change, and

an irregular dynamics can be observed, as seen in Fig. 9.
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Fig. 9 Angular velocity of the single roll pattern in a cell of aspect ratio ≈1, observed over ≈210K

rotations. Arrows indicate the sense of rotation for positive and negative angular velocities, resp.

Reproduced from AIP Conf. Proc. 1542, 763 (2013), with the permission of AIP Publishing

4 Discussion and Summary

4.1 Traveling Stripe Patterns

The traveling wave patterns observed in cells filled with a low, subcritical amount of

granulate are not yet understood. There is no clear dispersion relation between the

velocities and wavelengths of the patterns nor any other evident relation between the

dynamics of the stripes and their geometry. Stripes can move in both directions in

the cell, they can pass each other. They can be reflected at the container ends, but not

necessarily. Often, they are absorbed at the walls. Generators can appear somewhere

in the cell. In most cases, the traveling wave patterns obey a quasi-periodicity in time,

up to several dozen periods. The characteristics of the traveling wave patterns is that

they are not long-term stable but the cell undergoes transitions between different

oscillating patterns. The reason for this behavior is not clear. We took particular care

to keep experimental conditions constant over the full lifetime of each experiment.

Ageing of the glass beads can be excluded as source of the effect.

Traveling wave patterns in cylindrical mixers have been observed earlier [9, 10],

but in these cases, the dynamic patterns appeared only as transients or were recorded

for time periods much shorter than in our experiments, with exception of traveling

wave patterns in a nearly completely filled mixer [11]. The latter develops traveling

stripes that can show a clear periodicity.

4.2 Multi-roll Convection Patterns

Even though some basic understanding of the prerequisites for convection in the

almost filled flat cells has been reached, the mechanism is far from being explained

satisfactorily. The effect is robust, it is found in various material combinations,

in water, atmospheric air and vacuum. The pattern can be controlled to a certain

extend by modifications of the container edges. Multi-roll patterns reach a station-
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ary convection state, in which they are fundamentally different from the single rolls

described below.

4.3 Oscillations, Cessations and Flow Reversal
in Single-Roll Convection

The single roll dynamics in cells of aspect ratio close to unity is more complex that of

the multi-roll patterns. Even cessations and the reversal of flow are observed. Obvi-

ously, the synchronization of multiple rolls tends to suppress these temporal vari-

ations of the convection efficiency. Interestingly, the behavior is qualitatively quite

similar to Rayleigh-Bénard convection rolls at high Rayleigh numbers [12], where

similar phenomena have been reported. In particular, the flat cuboid cell geometry

[13, 14] exhibits very similar time series of the convection roll dynamics. Irrespec-

tive of the completely different mechanisms for both types of instabilities and the

different characteristics of the materials, this may indicate a closer relation between

both systems. The prominent feature of the granulate is the grainy microscopic struc-

ture. In the Rayleigh-Bénard experiment, a continuous fluid has been used, but it is

not unrealistic to assume that the highly turbulent nature of flow at high Rayleigh

numbers mimics a granular structure.
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Power Grids as Synergetic Systems

Oliver Kamps and Katrin Schmietendorf

Abstract In this article we study power grids from the viewpoint of Synergetics.

We show that the typical behavior of self-organizing systems like phase transitions

and critical fluctuations can be observed in models for the dynamics of power grids.

Therefore we numerically investigate a model, where the phase and voltage dynamics

are represented by Kuramoto-like equations. For the topology of the grid we use real

world data from the northern Europe high voltage transmission grid.

1 Introduction

Self-organization of complex systems composed of many interacting parts is an

ubiquitous phenomenon in nature and can be understood within the framework of

Synergetics [1]. The self-organized formation of spatial, temporal or spatiotempo-

ral patterns is often the base for the functioning of a system. An example are the

spatial patterns of chemical concentrations needed in the process of morphogenesis

[1]. Also in technical systems, self-organization can play a key role for the resilient

operation of the system. The power grid composed of producing and consuming

units connected by a network of power lines is a complex system. On time scales

up to several seconds the frequency stability, which is the prerequisite for the utility

of the system, is guaranteed by self-organized synchronization. Regarding the con-

sumers (motors) and producers (generators) as synchronous machines the dynamics

of the power grid can be described by a model that is close to Kuramoto’s model for

synchronization. This is the point where Synergetics meets an important application
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from engineering. In this article we use a model that describes the coupled dynam-

ics of the phase and the voltage of synchronous machines in a realistic way together

with a real world grid topology to show that in such models the typical signatures of

self-organization can be found.

2 Kuramoto-Like Power Grid Modeling

Kuramoto-like power grid modeling was initiated in 2008, when Filatrella et al.

uncovered the relationship between Kuramoto’s well-known model for coupled

oscillators and a simple power grid consisting of synchronous machines [2]. The

original Kuramoto model (KM) [3] describes the phase dynamics of a population of

N coupled oscillators with phases 𝜃i(t), natural frequencies 𝜔i (usually drawn from

a unimodal distribution) and coupling matrix K = {Kij}:

�̇�i = 𝜔i +
N∑

j=1
Kij sin(𝜃j − 𝜃i). (1)

One commonly introduces the complex order parameter

rei𝛷 = 1
N

N∑

j=1
ei𝜃j , (2)

whose absolute r ∈ [0, 1] can be interpreted as a coherence measure. Complete inco-

herence is indicated by r = 0, whereas r = 1 corresponds to a fully synchronized

state with zero phase shifts. In between there are partially synchronized states [4].

Kuramoto’s pioneering work refers to an infinite population with global all-to-all

coupling. Equation (1) can, of course, also be applied to finite populations, for vari-

ous types of topologies and distributions of natural frequencies. The order parameter

maintains its function as a measure for the degree of synchronization. Systems with

finite population size feature finite size fluctuations [5].

The Kuramoto model has become a canonical model for the investigation of syn-

chronization phenomena in a variety of contexts. Synchronization also plays a crucial

role in power system dynamics. Here, a synchronized state with constant system fre-

quency, voltages and steady power transfer is the desired mode of operation. Within

the KM-like approach, reduced power grid models are considered. They consist of

synchronous generators as prototypal power injecting units, and synchronous motors

as power consumers respectively, which together with the set of transmission lines

form a network. The system dynamics depends on the interplay between the node

dynamics and the underlying network structure. Most research on KM-like power

grids focusses on the interplay of stability and topology [6–9]. Furthermore, sta-

bility assessment [10] and extension and diversification of the modeling framework

[11] were studied.
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2.1 Network Topology

Each transmission line of a power network is weighted by a complex admittance 𝐘.

Its topological information is provided by the nodal admittance matrix𝐘 correspond-

ing to the network’s Laplacian matrix. 𝐘 connects the vectors of nodal currents and

voltages in the nodal network equations [12]:

𝐈 = 𝐘𝐈. (3)

Equation (3) is a compact formulation of Kirchhoff’s law. By means of Kron reduc-
tion only the N active nodes, i.e. the power-injecting or consuming nodes (here:

generators and motors), remain [13]. This yields a N × N matrix 𝐘 = {Yij} with

Yij = Gij + iBij (Gij being the conductance, which accounts for transfer losses, and

Bij the susceptance).

The KM-like approach is intended for large networks with size N ∼ 100. On the

one hand, standard reference topologies can be used like the Northern grid [7], the

British power grid [6] or an IEEE topology. On the other hand, investigations often

aim at relating specific dynamical features or stability properties to the characteristics

of the underlying network structure. Therefore, algorithms for synthetic networks are

needed in order to provide sets of network realizations with specific features. The

standard network algorithms for random, smart-world and scale-free networks have

proven to be insufficient, since they do not display the characteristics of real networks

adequately [14] and in particular neglect spatial embedding. On this account, the

random growth model was proposed in [15]. Designed to meet the needs of power

grid modeling, it features real transmission grid properties taking into account cost

and redundancy.

2.2 The Dynamical Models

The dynamical equations presented in the following all base upon established models

from engineering literature. Assume a network of N synchronous machines. Each

machine i ∈ {1,… ,N} is associated with a complex nodal voltage Ei = Eiei𝛿i with

magnitudeEi and phase angle 𝛿i. The system is standardly transferred into a reference

frame rotating with nominal frequency (corresponding to 50 Hz or 60 Hz). The most

reduced model ansatz is the classical model, which primarily takes into account the

mechanical dynamics of the machine (given by Newton’s law for rotating masses)

plus real power transmission among the nodes [12, 16]:

mi𝛿i = −𝛾i�̇�i + Pm,i +
N∑

j=1
BijEiEj sin(𝛿j − 𝛿i). (4)
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Here 𝛾i comprises all sources of mechanical damping andPm,i is the mechanical input

(Pm,i > 0 for generators) or output power (Pm,i < 0 for motors). Under the assump-

tion of a loss less grid (Gij = 0∀ i, j), the electrical power transferred between two

nodes i and j depends on the phase angle difference: Pij = BijEiEj sin(𝛿j − 𝛿i). The

nodal voltagesEi andEj are assumed to be constant parameters in the classical model,

so one can replace BijEiEj by the constant Kij. Equations (4) correspond to the KM

modified by additional inertia terms. The classical model’s degree of reduction, espe-

cially the assumption of constant voltages, limits its range of unconfined validity to

time scales of ∼1 s.

The extended model [11, 16] complements the classical model with dynamical

equations for the nodal voltages:

�̇�i = −𝛾i�̇�i + Pm,i +
N∑
j=1

BijEiEj sin(𝛿j − 𝛿i) (5)

𝛼iĖi = Ef ,i − Ei + Xi

N∑
j=1

BijEj cos(𝛿j − 𝛿i) (6)

Ef ,i is proportional to the synchronous machine’s rotor field voltage, Xi and the time

constant 𝛼i inclose specific synchronous machine parameters. The interaction term in

Eq. (6) refers to reactive power. BijEi(t)Ej(t) can be interpreted as a time-dependent

coupling matrix Kij(t). According to Eqs. (5) and (6), the voltage and angle dynamics

are coupled—a known feature of real power grids! The extended model is a non-

trivial extension of Kuramoto’s model causing a richer dynamical behavior. Its range

of validity is in the order of 10 s. In [11] it was shown, that the extended model

can lead to dynamical behavior and hence stability predictions different from the

classical model.

2.3 Current Agenda

Up to now, the dynamical models and the common network topologies as described

above only apply for high-voltage transmission networks. The stability investigations

so far involved disturbances like transmission line failures or local load changes.

Recent attempts will also take into account the distribution grid and implement fluc-

tuating feed-in units mimicking renewable power plants. Therefore, the dynamic

models have to be supplemented by transfer losses and inverter-like units. Further-

more, algorithms for the low and medium voltage levels are being prepared. KM-like

power grid modeling may contribute to meet the challenges of the transition from

fossil-fuel to renewable supply.
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Fig. 1 Visualization of the

topology of the northern

European high voltage

transmission grid

3 Numerical Simulations

To investigate the model we numerical integrate Eqs. (5) and (6) using the topology

of the northern grid [7] (see Fig. 1). The numerical integration is done with a Runge-

Kutta method of 4th order with a time step dt = 0.01. The number of time steps for

the different runs varies between 25,000 and 60,000. The Bij are given by Bij = Baij
where the aij are the entries of the adjacency matrix (aij = 1 if connected, aij = 0
otherwise) of the northern European high voltage transmission grid with 236 nodes

and 320 links. B plays the role of the control parameter. The other parameters are

chosen as 𝛼 = 2.0, 𝛾 = 0.2, C = 0.993 and 𝜒 = 0.1. The Pm,i except for Pm,N are

drawn from a Gaussian distribution with 𝜎 = 0.5. The term Pm,N balances the power

consumption and production so that
∑N

i Pm,i = 0.

3.1 Phase Transition and Hysteresis

To investigate the phase transition of the system we performed simulations with dif-

ferent B for the case of increasing and decreasing coupling values. Since the order

parameter displays finite size fluctuations, we use the time average ⟨r⟩ for fixed B.

In Fig. 2 one can see the typical pattern of a transition from an incoherent state with

small ⟨r⟩ to an synchronized state. Also the hysteretic behavior, which is found in

Kuramoto models with inertia, can be seen.

For increasing coupling strength the system follows aweakly synchronized branch,

for decreasing coupling a strongly synchronized branch [17]. It is apparent, that the

phase transition is not as pronounced as in larger systems, and the r(B) behavior dif-
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Fig. 2 Blue dots denote the

branch for increasing B
while green dots denote the

branch with decreasing

control parameter
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fers from [17]. The reason is that the size of N = 236 is rather small for Kuramoto

oscillator populations. The system displays quite large finite N fluctuations, which

makes the phase transition become blurred. Furthermore, we simulate one specific

system, with a specific topology and distribution of Pm,i. If we modify one of this

features, r(B) will also change. In addition, taking the voltage dynamics Eq. (6) into

account, makes the system dynamics more complex. We observe multi-stability with

several coexisting fixed points and limit cycles. We ensured that the system did not

jump onto one of these limit cycles while varying B. This explains the irregular step

size in B.

3.2 Critical Fluctuations

One very important signature of self-organization is the occurrence of critical fluc-

tuations close to the phase transition in the system. A very prominent example where



Power Grids as Synergetic Systems 67

Fig. 4 Plot of 𝜎r(B)
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the observation of critical fluctuations led to the conclusion that the process is driven

by self-organization rather than by a kind of program is the Haken-Kelso-Bunz

model [18, 19]. Figure 3 shows the probability density function (PDF) of the order

parameter r for three fixed B values: below, around and above the phase transition.

In each case the PDF has a finite width but close to the phase transition the PDF

broadens significantly. To quantify this effect we also plotted the standard deviation

𝜎r(B) (see Fig. 4). This plot shows a clear maximum around at the critical coupling

value B ≈ 1.5.

4 Conclusion and Outlook

In this article we have shown that reduced (KM-like) power grid models show

typical features of self-organizing systems. It is important to emphasize that self-

organization is in this case not only a nice artifact but the central mechanism that

keeps the system in a stable operational mode within a time scale of several sec-

onds. After this time automatic control mechanisms and human control stabilize the

system e.g. by matching demand and production. Further decentralization and fluc-

tuating feed-in from wind and solar power production pose a big challenge for power

grid stability. A future question is whether ideas from Synergetics can help redesign

the power grid in a way that also under this influences the synchronized state is sta-

ble. A nice example where Synergetics gave the answer to stabilize or to return to the

desired state is the destruction of, in this case unwanted, synchronization of neurons

causing Parkinson’s disease or essential tremor [20].
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Nonlinear Phenomena in Heterogeneous
Catalysis

Marina M. Slinko, Alexei G. Makeev and Nikolai V. Peskov

Abstract The manuscript demonstrates with a few selected examples how the
nonlinear phenomena can change the way in which heterogeneous reactions pro-
ceed. Firstly it is shown that the kinetic oscillations and synergetic effect can
originate due to the diffusion coupling of two different catalysts. Secondly it is
demonstrated that due to the nonlinearity of the system and the ability to form
spatial structures two catalysts can produce the same catalytic activity as one
catalyst.

1 Introduction

Heterogeneous catalytic reactions are highly nonlinear systems, which can operate
under conditions far from thermodynamic equilibrium, where temporal and spa-
tiotemporal organization becomes possible. The difficulties in the study of the
nonlinear phenomena in heterogeneous catalytic systems are connected with their
multilevel structure shown in Fig. 1. The first level would be an element on a single
crystal surface which can be described by a microscopic kinetic model considering
the interaction of individual atoms and molecules. The second level is represented
by an element of a polycrystalline metallic surface or a single metal cluster bounded
by differently indexed planes. The next level for supported catalysts may be con-
sidered as a pellet. The fourth level for massive catalysts is represented by an
extended polycrystalline surface and for supported catalysts by a catalyst bed.
Finally the last level is a reactor, where the global reaction rate can be estimated.
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The nonlinearity of the system originates at the first microscopic level, where the
processes of adsorption, surface diffusion, chemical transformation of adsorbed
species and desorption proceed on the element of a single crystal surface. The causes
of the nonlinearity at the microscopic level are the lateral interactions between the
adsorbed particles, adsorbate-induced surface restructuring, faceting of the metallic
surface and phase transitions in the subsurface layer [1, 2]. Knowledge of the
kinetics of the elementary processes of surface reactions on the atomic scale has to be
the basis for modeling of the macroscopic kinetics. However understanding of the
role of microscopic nonlinearity in the macroscopic dynamics and the nature of the
transition from the micro to the macro level remain basically unsolved problems.

From the second level up, each level can be represented by an array of local
oscillators. The nature of the local oscillator depends on the level of the system. It
may be different single crystal planes on the polycrystalline surface, various par-
ticles in a pellet or different pellets in a catalyst bed. Coupling between the local
oscillators may occur through surface diffusion, by heat transfer and/or through the
gas phase diffusion. The mode of coupling depends upon the level under study and
experimental conditions. In UHV studies using single crystal planes, thermal
coupling is not efficient while surface diffusion operates over relatively short dis-
tances. At atmospheric pressure in the case of supported catalysts and highly
exothermic reactions, heat transfer may be important for the coupling of various
particles in the pellet and pellets in a catalyst bed. However at all levels, in both
high and low pressure experiments the local oscillators are coupled via gas-phase
diffusion, where local reaction rate variations are communicated via variations in
the partial pressure of reactants in the gas-phase above the surface.

Fig. 1 The multilevel structure of a heterogeneous catalytic system
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Different types of the global nonlinear behaviour may occur, including periodic,
aperiodic and chaotic oscillations depending upon the nature and the strength of
coupling between local oscillators. The purpose of this article is not to give an
overview of various types of nonlinear phenomena of the global reaction rate in
heterogeneous catalytic systems—this topic is well reflected inmany reviews [1–4]—
but to demonstrate with a few selected examples how the nonlinear phenomena can
change the way in which heterogeneous reactions proceed.

2 The Coupling of Two Polycrystalline Surfaces
via Surface Diffusion. Can Two Steady State Surfaces
Produce Reaction Rate Oscillations Due
to the Coupling?

At each level of a heterogeneous catalytic system an array of local elements may
behave differently from a single separated unit due to the coupling. Zhdanov and
Kasemo [5] showed theoretically that the dynamic behaviour of catalytic reactions
occurring on nm-sized metal particles, exposing different crystalline facets, can be
dramatically different from the superposition of the dynamics of the individual
facets. These differences can be connected with the coupling effects between dif-
ferent orientations present on the metallic particle. The application of Field Ion
Microscopy demonstrated that dynamic coupling effects between the individual
nm-sized planes may lead to different dynamic behaviour than that observed in
single crystal experiments. Thus it was found out that the oscillatory behaviour
during H2 oxidation could be observed only on a monocrystalline Pt field emitter tip
with many different planes on its surface, while no oscillations have been found on
separated Pt single crystal planes [6]. Below it will be demonstrated how the
coupling of two non-oscillating surfaces of Pt and Rh may lead to the appearance of
kinetic oscillations during CO oxidation.

Carbon monoxide oxidation on noble metal catalysts is a seemingly simple
reaction, but it can have strongly non-linear kinetics leading to the intriguingly rich
dynamic behavior observed during the last 25 years [1, 7, 8]. The nonlinearity of
CO oxidation causes the appearance of self-sustained oscillations of the reaction
rate, spatial structures and chaotic regimes (chemical turbulence) at various scale
levels of the catalytic system [2]. An important result of the nonlinearity is bistable
kinetics of CO oxidation occurring over Pt and Rh metallic surfaces. The
well-known Langmuir-Hinshelwood mechanism of CO oxidation on Pt and Rh
surfaces contains the following stages:

1. CO + M½ �↔ M−CO½ �
2: O2 + M½ �→ 2 M−O½ � ð1Þ
3. M−CO½ � + M−O½ �→CO2 + 2 M½ �
where [M] is an active site of a Pt and Rh surface.
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The bistability of the reaction rate originates essentially from the inequivalence
of the adsorption of carbon monoxide and oxygen. Oxygen adsorbs dissociatively
(requiring 2 free sites) and CO molecularly (requiring only one active site), with CO
having a strongly inhibiting effect on oxygen adsorption [9].

Bimetallic Pt/Rh catalysts have been studied experimentally in details by
Kalinkin et al. [10]. They demonstrated that a synergistic effect between Pt and Rh
in the CO2 production reaction was observed only for the Pt/Rh composite catalyst,
while the activity of the alloy was intermediate between the activities of the indi-
vidual metals. The bimetallic composite surface represented the array of platinum
particles of size 10–20 nm, which were supported onto the flat surface of poly-
crystalline Rh. The surface fraction occupied by Pt patches was about 50%.

The dynamic behavior of surface coverages over Pt (i = 1) and Rh (i = 2)
surfaces can be described by the following equations:

dθCO, i
dt

=PCOSCO, ikadsCO, iθ*, i − kdesCO, iθCO, i − kri θCO, iθO, i = fCO, i;

dθO, i
dt

=2PO2SO2, ik
ads
O2, iðθ*, iÞ

2 − 2kdesO2, iðθO, iÞ2 − kri θCO, iθO, i = fO, i;
ð2Þ

where PCO and PO2 are the partial pressures of CO and O2; θCO, 1, θO, 1, θCO, 2, θO, 2
are CO and O coverages over Rh and Pt respectively; SCO, i and SO2, i—the initial
sticking coefficients of CO and O2; kadsCO, i and kadsO2, i—the adsorption rate constants of
CO and O2; kdesCO, i and kdesO2, i—the desorption rate constants of CO and O2:

kdesCO, i = k
d̃es
CO, i expð−Edes

CO, i ̸ðRTÞÞ, kdesO2, i = k
d̃es
O2, i expð−Edes

O, i ̸ðRTÞÞ; kri—the reaction

rate constant, kri = k
r̃
i expð−Er

i ̸ðRTÞÞ. The coverages of free active sites for Rh and
Pt are defined as: θ*, 1 = 1− θCO, 1 − θO, 1, θ*, 2 = 1− θCO, 2 − θO, 2. The mathematical
model, describing the dynamic behavior over the Pt-Rh composite surface is rep-
resented by the following system of differential-algebraic equations:

α
dθCO, 1
dt

+ ð1− αÞ dθCO, 2
dt

= αfCO, 1 + ð1− αÞfCO, 2;

α
dθO, 1
dt

+ ð1− αÞ dθO, 2
dt

= αfO, 1 + ð1− αÞfO, 2;

0 = expðΔECO

RT
ÞθCO, 1θ*, 2 − θCO, 2θ*, 1

0 = expðΔEO

RT
ÞθO, 1θ*, 2 − θO, 2θ*, 1

ð3Þ

where α is the surface area fraction of Rh and ð1− αÞ is the part of Pt.
The model (3) supposes the quasi-equilibrium conditions due to the equality of

chemical potentials of adsorbed CO and O atoms on two parts of the composite
catalyst. Fast equilibration of the CO and O coverages is assumed due to rapid
surface diffusion of both species. The algebraic equations contain the important
parameters ΔECO and ΔEO, denoting the difference in the binding energies of COads
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and Oads, respectively, on two parts of the composite catalyst. They can be defined
as: ΔECO =Edes

CO, 2 −Edes
CO, 1, ΔEO = ðEdes

O, 2 −Edes
O, 1Þ ̸2.

Simulations were carried out using the mathematical models (2) and (3) with the
values of the parameters for Rh and Pt, taken from the literature and shown in
Table 1. Oxygen desorption from both metals is neglected, since experiments have
shown that this process does not occur at temperatures lower than 600 K. The
kinetic parameters for desorption of CO were chosen to be equal for Rh and Pt. The
equal activation energies for desorption of CO from Rh and Pt indicate the equal
binding energy of CO on both metals and ΔECO =0. On the contrary the large
difference in the binding energy of atomic oxygen on Rh and Pt equal to
ΔEO = − 35 kJ/mol can be estimated by combining the initial heat of adsorption of
O2 on Pt(111), 300 kJ/mole [11], with the activation energy of O2 desorption from
Rh(111) in the limit of zero coverage, 370 kJ/mole [12]. The external parameters,
including CO and O2 partial pressures correspond to the experimental data [10].
The details of the choice of parameters can be found in Ref. [13].

Figure 2 demonstrates bifurcation diagrams and the corresponding dependence of
the reaction rate upon PCO on Rh ðα=1Þ and Pt ðα=0Þ catalysts. It can be seen that at
low PCO the surface is predominantly oxygen-covered with the CO2 production rate
increasing with the increase of PCO. At a certain CO partial pressure CO adsorption
becomes higher than oxygen adsorption, the surface becomes covered by CO
molecules leading to the low activity steady state. As shown in bifurcation diagrams
there is a region of bistability between two saddle-node bifurcations. This region is
larger for the Rh catalyst. Here during the variation of PCO in the “up” and “down”
directions at a fixed oxygen pressure and temperature the CO2 production rate follows
the hysteresis loop with an upper branch of high reactivity and a lower branch of low
reactivity (Fig. 2b). The oscillatory region is not detected for both catalysts.

Figure 3a, b demonstrate the analogous calculations for the composite Rh/Pt
catalyst. The bifurcation diagram and the dependence of the reaction rate upon CO
partial pressure reveal more complicated character. There are two points of
Andronov-Hopf bifurcation, h1 and h2, and also four points of a saddle-node

Table 1 The kinetic parameters of the models (2) and (3)

Definition Parameter i=1 (Rh) i=2 (Pt)

CO adsorption rate constant kadsCO, i [s
−1mbar−1] 2 × 105 2 × 105

CO sticking coefficient SCO, i [–] 0.5 1
O2 adsorption rate constant kadsO2, i [s

−1mbar−1] 2 × 105 2 × 105

O2 sticking coefficient SO2, i [–] 0.25 0.2

CO desorption rate constant k
d̃es
CO, i [s

−1] 1015 2 × 1015

CO desorption activation energy Edes
CO, i [kJ/mol] 140 140

O2 desorption rate constant k
d̃es
O2, i [s

−1] 0 0

Reaction rate constant k
r̃
i [s

−1] 1013 1012

Reaction activation energy Er
i [kJ/mol] 100 100
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Fig. 2 Bifurcation diagrams and corresponding dependences of the reaction rate of CO oxidation
upon CO partial pressure for Rh (a, b) and Pt (c, d) at PO2 = 10− 5 mbar and T = 440 K. Solid
(dashed) lines denote stable (unstable) branches. θCO is shown in blue and θO is shown in red; sn1
and sn2 denote saddle-node bifurcations

Fig. 3 a Bifurcation diagram
and b corresponding
dependence of the reaction
rate upon CO partial pressure
for Pt-Rh catalyst at
PO2 = 10− 5 mbar and
T = 440 K. Solid (dashed)
lines denote stable (unstable)
branches. Two points of
Andronov-Hopf bifurcation,
h1 and h2 are marked by filled
squares and four points of
saddle-node bifurcation, sn1,
sn2, sn3 and sn4 are marked
by filled circles
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bifurcation, sn1, sn2, sn3 and sn4. For PCO values from 1.7861× 10− 6 (point sn2) to
2.8635 × 10− 6 mbar, the system exhibits oscillations in the reaction rate. Near the
right boundary of the oscillatory region, a hard loss of stability occurs as PCO is
decreased, and a limit cycle with a large amplitude emerges from the subcritical
Andronov-Hopf bifurcation h2. At the left boundary, a limit cycle collides with a
saddle-node point sn2 leading to an oscillation with the “infinite” period via a
“saddle-node infinite period” or a “SNIPER” bifurcation. The point h1 represents a
supercritical Andronov-Hopf bifurcation, where oscillations are born with a small
amplitude. However, near the point h1 the stable limit cycle exists only in a very
narrow range of PCO values (the range width is ≈2× 10− 10 mbar).

In order to understand the mechanism of oscillations one period has been divided
in 3 stages and variation of surface coverages, different reaction rates and diffusion
fluxes were shown in Fig. 4. The diffusion fluxes were calculated as:

WPt→Rh
CO = α

dθCO, 1
dt

− αfCO, 1

WPt→Rh
O = α

dθO, 1
dt

− αfO, 1

ð4Þ

Fig. 4 One cycle of kinetic
oscillations on the composite
Rh/Pt catalyst at fixed
PO2 = 10− 5 mbar,
T = 440 K. A cycle is
subdivided into three distinct
stages. Shown are the time
dependencies of: a adsorbate
coverages on Rh (solid lines)
and Pt (dashed lines); b the
total reaction rate (thick blue
line), and the partial reaction
rates on Rh (thin line) and on
Pt (dashed line); c diffusion
fluxes of CO (blue) and O
(red) from Pt to Rh.
(Reprinted from Ref. [13])
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The oscillations in the model result from the interplay between the reaction rates
over both metals and the diffusion fluxes. Due to the larger binding energy of atomic
oxygen on Rh practically all oxygen atoms, adsorbed on the Pt surface quickly
spillover onto the Rh surface if vacant sites are available. Therefore WPt→Rh

O is
always positive despite the small concentration of oxygen on Pt as compared to Rh.
In spite of ΔECO =0, the flux WPt→Rh

CO is also always positive during oscillations,
because the CO coverage is constantly larger on Pt than that on Rh.

Figure 4 shows that at stage 1 the Rh part of the composite Pt-Rh catalyst is
covered by oxygen (θO, 1 > 0.99 ML) although for the isolated Rh surface the
oxygen coverage would be θO≈0.7 ML.

The total reaction rate is low and it coincides mainly with the reaction rate over
the Pt part. The high oxygen coverage on Rh is fueled by the diffusion of oxygen
from Pt although the values of fluxes are low due to the small amount of free sites
over Rh. On Pt the CO coverage gradually increases (under these conditions iso-
lated Pt would be covered by CO), while O coverage gradually decreases. The first
stage ends, when the oxygen coverage over Pt reaches its critical minimal value and
the flux of CO from Pt to Rh starts to exceed the flux of O from Pt to Rh. At stage 2
the oxygen concentration on Rh cannot be sustained at the high value and it begins
to decrease. The free sites appearing on Rh due to the CO2 formation reaction are
quickly occupied by adsorbed CO species diffusing from Pt. The supply of
adsorbed CO from Pt results in a sharp autocatalytic increase of the reaction rate on
Rh. The maximum of the global reaction rate coincides with the maximum of CO
coverage on Rh and the maximum value of WPt→Rh

CO . During stage 2 the CO
coverage on Pt and oxygen coverage on Rh sharply decreases. This stage ends
when both fluxes become practically equal and the decrease of oxygen coverage on
Rh stops. At the third stage the flux of oxygen atoms from Rh exceeds the flux of
adsorbed CO and the surface coverage of oxygen on Rh gradually increases. Finally
the whole surface of Rh becomes covered by oxygen and the system returns to the
beginning of the new cycle.

It has been well-established that kinetic oscillations during CO oxidation over Pt
and Rh originate as a result of the coupling of adsorption–desorption processes with
the reaction rates [2]. The oscillations on Pt-Rh catalyst occur under conditions at
which no kinetic oscillations exist over isolated Pt and Rh catalyst. They originate
due to the coupling of surface diffusion between two catalysts and the reaction rates.
The spillover of adsorbed CO species from Pt to Rh (due to a concentration gra-
dient) and the spillover of adsorbed oxygen atoms from Pt to Rh (due to the large
difference in binding energy of oxygen over two metals) are the driving forces for
these “synergetic” oscillations. The results of simulations demonstrate that the
model (3) generates oscillations in a very large range of the parameters values. In
particular the model exhibits oscillations even for kr2 = 0.

In summary the results of mathematical modelling revealed the origin of the
synergetic effect during CO oxidation over Pt-Rh composite catalyst, which was
observed experimentally by Kalinkin et al. [10]. At elevated temperature O atoms
and CO molecules diffused to Rh immediately after adsorption on Pt surface
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leaving it adsorbate free. The CO2 formation occurred only over the Rh part, while
the Pt part of the composite catalyst served only as a source of adsorbed CO and O
species. The larger CO sticking coefficients on Pt provided a positive synergistic
effect due to the larger supply of CO to the active Rh centers in Pt-Rh composite
catalyst in comparison with the isolated Rh surface.

3 Coupling of 2 Nonlinear Oscillators at a Reactor Level.
Can One Catalyst Produce the Same Activity as Two
Catalysts?

The gas-phase coupling, where local reaction rate variations are communicated via
variations in the partial pressure of reactants in the gas phase above the surface is
the very important mechanism of communication of kinetic oscillations at all levels
of a heterogeneous catalytic system. For kinetic oscillations in CO oxidation under
normal pressure conditions it was shown that this is a dominant mechanism
operated during the coupling of individual grains on polycrystalline catalysts [14],
during the coupling of various parts of the Pt wire [15] and during the coupling of
various parts of the catalyst bed [16]. In all these experiments “in-phase” syn-
chronization of local oscillations has been detected under the proper conditions.

The “in-phase” synchronization for equal oscillators in a CSTR has been detected
experimentally and theoretically also for methane oxidation over two Ni foils [17].

The temperatures of similar Ni foils oscillated always in-phase even for the
largest distance between two foils. Therefore, it was surprising to find out that
depending upon the experimental conditions two equal Pd foils could generate both
‘in-phase’ and ‘anti-phase’ oscillations shown in Fig. 5 [18].

In order to understand the origin of “antiphase” oscillations of two coupled
catalytic oscillators mathematical modelling has been done. Each oscillator was
simulated with the simplest mathematical model, describing oscillations during
methane oxidation over Pd catalysts [19]. The reaction steps and parameters of the
mathematical model are shown in Table 2. Here Pds and Pdv denote free sites on the
catalyst surface and in the subsurface layer, and Pdv-O and Pdv-C indicate the
subsurface O and C atoms, PCH4 and PO2 are the partial pressures of CH4 and O2;
θCH3 , θCH2 , θCH , θO, θC, θH are the surface coverages of adsorbed species, θOν is the
concentration of the dissolved oxygen in the subsurface layer, θCν is the concen-
tration of the dissolved carbon in the subsurface layer, θ* = 1− ðθCH3 + θCH2 +
θCH + θO + θC + θHÞ is the concentration of free adsorption sites on the catalyst
surface; θr =1− ðθOν + θCνÞ is the concentration of free sites in the first subsurface
layer. The reaction mechanism includes stages shown in Table 2. Agreeing to the
experimental data the carbon atoms can penetrate into Pd bulk to a depth of up to
hundred subsurface atomic layers [20]. Taking into account this fact we assume that
the dissolved carbon atoms Cν are uniformly distributed over nz(= 100) atomic
layers. However, only the carbon atoms from the first subsurface layer participate in
stage 7. According to the proposed reaction mechanism, the dynamic behaviour of
the system can be simulated by the following equations:
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θ′CH3 = r1 − r1.2,

θ′CH2 = r1.2 − r1.3,

θ′CH = r1.3 − r1.4,

θ′H = r1 + r1.2 + r1.3 + r1.4 − 2r− 1 − 2r4 − 2r8,

θ′C = r1.4 − r3 − r6,

θ′O =2r2 − 2r− 2 − 2r3 − r4 − 2r7 − r5,

θ′Cv = ðr6 − r7Þ ̸nz,

θ′Ov = r5 − r8,

T ′ = αðT0 − TÞ+ β ∑
12

i=1
riΔHi,

P′

CH4 = ðP0
CH4 −PCH4Þ ̸τ− γr1,

P′

o2 = ðP0
O2 −PO2Þ ̸τ− γðr2 − r− 2Þ,

ð5Þ

Fig. 5 Different dynamic
behavior, which was observed
over two Pd foils inserted in
one reactor: a “in-phase”
synchronization,
b “anti-phase”
synchronization, c the
transition from “in-phase”
oscillations to “anti-phase”
oscillations during the
increase of the temperature.
Reaction mixture: 15%
O2 + CH4; feed flow rate,
50 mL/min. The thick solid
(dashed) line refers to the first
(second) oscillator. (Reprinted
from Ref. [19])
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Here α = (hS0)/(WCp); β = (S0 N)/(WCp); γ = (SNRT0)/V; τ = V/F, where: h is
the heat transfer coefficient, S0—the catalyst surface area, W—the catalyst weight,
Cp—the catalyst heat capacity; N—the adsorption capacity of Pd; R—the universal
gas constant, V—the reactor volume; F—the flow rate of the reactant mixture,
ΔHi—the heat effects of the corresponding studies of the reaction mechanism. The
numerical values of these parameters correspond to the conditions of the experi-
mental study of the oscillatory behaviour during methane oxidation in a CSTR over
the Pd foil presented in Ref. [20]: h = 0.003 cal/(s × K), S0 = 0.27 cm2,
W = 0.065 g, Cp = 0.057 cal/(g × K), N = 1.6 × 10−9 mol/cm2, V = 0.126 cm3,
F = 0.33 cm3/s. The external values of parameters were also taken from Ref. [20],
namely P0

CH4
= 621 Torr, P0

O2
= 109 Torr and T0 = 618 K.

The numerical solutions of system (5) demonstrate that the variables θCHx (x = 1,
2, 3) can be considered as the fast variables both in transient and in self-oscillating
dynamic regimes. Thus one can simplify the system (5) replacing the dynamic values
of variables θCHxðtÞ with their ‘quasi-stationary’ values CHx̄ðtÞ. To obtain these
values one has to set the right hand sides of the first three equations in the system (5)
equal to zero and to solve the resulting algebraic equations, assuming that θ* ≠ 0.
Since at the chosen parameters k1.2 = k1.3 = k1.4 = kd ≫ 3k1P0

CH4
, CHx species can be

totally eliminated from the model assuming the following expression for θ*:

Table 2 Temperature dependent reaction parameters and heat effects of various stages of methane
oxidation over Pd

i Reaction step The rates of ri Prefactor koi
(s−1)

Activation
energy
(kJ/mol)

Heats of
reaction steps
(kJ/mol)

1. CH4 + 2Pds → Pds-CH3 + Pds-H r1 = k1PCH4θ
2
* s = 2 × 10−3 20 −103

1.2 Pds-CH3 + Pds → Pds-CH2 + Pds-H r1.2 = k1.2θCH3θ* 1013 20 −103

1.3 Pds-CH2 + Pds → Pds-CH + Pds-H r1.3 = k1.3θCH2θ* 1013 20 −103

1.4 Pds-CH + Pds → Pds-C + Pds-H r1.4 = k1.4θCHθ* 1013 20 −103

−1 Pds-H + Pds-H → H2 + 2Pds r− 1 = k− 1θ
2
H 3.8 × 107 80 −102.5

2 O2 + 2Pds → 2Pds-O r2 = k2PO2θ
2
*e

− δOν s = 1 0 221

−2 Pds-O + Pds-O →O2 + 2Pds r− 2 = k− 2θ
2
O 1013 170 −221

3. Pds-C + 2Pds-O → CO2 + 3Pds r3 = k3θCθ2O 0.9 × 108 60 722

4. 2Pds-H + Pds-O → H2O + 3Pds r4 = k4θOθ2H 5.1 × 106 29 30.2

5. Pds-O + Pdv → Pdv-O + Pds r5 = k5θOθr 1.0 × 105 90 0

6. Pds-C + Pdv → Pdv-C + Pds r6 = k6θCθr 4.0 × 1010 107 0

7. Pdv-C + 2Pds-
O → CO2 + 2Pds + Pdv

r7 = k7θOvθ2O 1.2 × 106 50 722

8. Pdv-O + 2Pds-
H → H2O + 2Pds + Pdv

r8 = k8θOvθ2H 0.6 × 106 80 30.2
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θ* = 1− θO − θC − θH ð6Þ

In the reduced model the equations for the variation of H and C atoms can be
written as follows:

θ′H =4r1 − 2r− 1 − 2r4 − 2r8,

θ′C = r1 − r3 − r6,
ð7Þ

The reduced model, describing methane oxidation over one single foil with a
surface area S0 can be re-written in the following concise form:

x′ =Fðx, pÞ
p′=GτðpÞ−Gðx, pÞ ð8Þ

where x is the vector of variables θH , θc, θO, θCν, θOν,Tf g determining the state of
the catalyst and p is the vector of partial pressures PCH4 ,PO2f g.

The model, describing the dynamic behaviour of methane oxidation over two
equal Pd foils in a CSTR can be formulated using the same definitions as follows:

x′1 =Fðx1, pÞ
x′2 =Fðx2, pÞ
p′ =GτðpÞ−Gðx1, pÞ−Gðx2, pÞ

ð9Þ

Here two oscillators are coupled via the balance equations corresponding to the
CSTR reactor.

The bifurcation diagrams of a stationary catalyst temperature T in dependence of
an inlet oxygen pressure P0

O2 for models (8) and (9) are shown in Fig. 6a, b.
Only two bifurcation points can be distinguished in the bifurcation diagram for

the model (8): the turning point t1 at P0
O2 = 6.866 kPa and the Andronov-Hopf

bifurcation point h1 at P0
O2 = 22.965 kPa. Two unstable steady states (indicated by

the dashed line) occur to the right of the point t1, while only one stable stationary
solution (marked with the solid line) exists to the left of the point t1. The region of
oscillations is marked in grey. It locates around the lower unstable steady state and
is bounded by the Andronov-Hopf bifurcation h1 to the right and by the homoclinic
bifurcation to the left. The nonlinear feedback mechanism, which gives rise to the
oscillations is carried out by the multiplier expð− δθOνÞ in stage 2. The physical
meaning of this multiplier is the dependence of the oxygen adsorption rate on the
concentration of the subsurface oxygen, detected experimentally in Ref. [21].

In contrast the bifurcation diagram for the model (9) contains two parts of
qualitatively different stationary solutions (see Fig. 6b). One basic part marked in
black coincides with the stationary solutions of one Pd foil having a double area
S = 2S0. It contains the symmetric stationary solution ys = {x, x, p}, where {x,p} is
the stationary solution of the model (8) for one foil with a double area S. Here the
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temperatures of two foils coincide. The second part contains the asymmetric
solution ya = {x+, x-, p} together with its ‘mirror’ asymmetric solution{x-, x+, p}.
The symbols x+ and x- denote the states of high and low temperatures corre-
spondingly. As can be seen from Fig. 6b the asymmetric solution corresponds to
the situation when the catalyst temperature of two similar foils is significantly
different indicating that one of the foils becomes more active than the other.
Moreover with the P0

O2 increase the high temperature branch of the asymmetric
state approaches the stationary temperature of the model (8) (thin dotted line in
Fig. 6b). This means that the high activity foil behaves as if it is alone in the reactor
and in a dual catalyst only one foil is active in methane oxidation.

There are two regions of the oscillatory behaviour in the model (9): one asso-
ciated with the asymmetric solution and the other with the symmetric solution. The
first type of oscillations is shown in Fig. 7.

It occurs in the region between h3 and h4 points. Here only “out of phase”
oscillations can be detected. Figure 7 demonstrates that during antiphase oscilla-
tions one of the foils spends the most time in a high active state, which corresponds
to the steady state temperature obtained in the model (8) for a one foil with the area
S = S0. The other foil at this time is totally non-active. It becomes active only when
the activity of the first foil begins to decrease demonstrating two opposite balanced
processes.

The second type of oscillations is related with the symmetric solution. It occurs
in the region between t2 and h2 similar to the oscillations obtained in the model (8)
for a one foil. The properties of the periodic oscillations change with the variation
of P0

O2 . At low initial oxygen pressure “out of phase” oscillations occur, while at

Fig. 6 Bifurcation diagrams of stationary catalyst temperature with P0
O2

as a bifurcation
parameter. a Model (8): solid line stable solutions; dashed line unstable solutions. h1 denotes the
Andronov-Hopf bifurcation, t1 indicates the turning point. The region of oscillations is marked in
grey. b Model (9): T1 and T2—temperatures of both foils. Solid line stable solutions; dashed line
unstable solutions. h denotes Andronov-Hopf bifurcations, t indicates turning points, while f marks
the pitch-fork bifurcations
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high P0
O2 the “in-phase” synchronization is detected. Figure 8 demonstrates the

examples of ‘out of phase’ and ‘in phase’ oscillations for various values of P0
O2.

The results of simulations demonstrate that the division of the Pd foil in two
identical parts can lead not to ‘in-phase’ synchronized oscillations, as was always
detected earlier for equal oscillators [16, 17], but to the appearance of “out of

Fig. 7 The development of temperature oscillations of both foils T1 and T2 at P0
O2

= 4.825 kPa.
Thick dashed line indicates unstable symmetric stationary temperature and thin dashed lines
indicate asymmetric stationary temperature in the model (9). Dotted line—the stable stationary
temperature in the model (8). (Reprinted from Ref. [19])

Fig. 8 Time series of T1 (in blue) and T2 (in red) at various initial oxygen pressure:
a P0

O2
= 8.5 kPa and b P0

O2
= 22.6 kPa. The projection of the phase trajectory on the T1–T2

parameter plane. c P0
O2

= 8.5 kPa and d P0
O2

= 22.6 kPa. (Reprinted from Ref. [19])
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phase” reaction rate oscillations over two equal separated parts. Moreover the
inhomogeneous stable steady state (one foil with high and the other with a low
activity) can come out after cutting of the Pd foil in two identical parts. Under some
conditions the activity of the dual foil coincides with the activity of a single foil. It
happens, when one of the foils behaves as if it is alone in the reactor while the
second foil is not active at all. The same situation happens periodically during
“antiphase” oscillations shown in Fig. 7 when one of the foils is in an active state,
while the second foil is completely inactive.

The obtained results demonstrate that there is no any linear dependence of the
catalytic activity upon the catalyst surface and the number of active centers in
contrast to the Boreskov theory of constant specific catalytic activity in catalysts of
constant chemical composition [22]. Due to the nonlinearity of the system and the
ability to form spatial structures two Pd foils can produce the same catalytic activity
as one Pd foil.

4 Conclusions

The above examples show how the nonlinear phenomena influence upon the tra-
ditional concepts of catalysis. Contrary to the principle of superposition the reaction
rate is not necessarily increased with the number of active centers and due to the
formation of some kind of a spatial structure some part of the catalyst may be
non-active under the well mixed homogeneous conditions. The results presented in
Sect. 3 demonstrate that under certain conditions half of the bigger foil can be
removed from the reactor without any loss in the degree of conversion.

The synergetic effect in heterogeneous catalysis also originates in violation of
the principle of superposition. The results given in Sect. 2 show that the surface
coupling of different parts of the catalyst may lead not only to the improvement of
the catalyst activity, but also to the appearance of the new dynamic behavior. They
demonstrate how two nonlinear bistable systems can produce an oscillatory
behavior and reveal the new type of kinetic oscillations that originate due to the
interplay of surface diffusion and reaction rates on various parts of a catalyst.
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Catalytic Oxidation of CO—A Striking
Example of Synergetics

Experimental Studies of Coupled Zeolite
Catalyst Wafers in a Tube Reactor

Peter J. Plath and Carsten Ballandis

Abstract The dynamics of coupled catalyst wafers in a tube reactor was studied
and traced by examining the oxidation of CO on a supported palladium zeolite
catalyst under normal pressure in a continuous flow of reactants. An X-type zeolite
loaded with 0.05% by weight palladium was used as catalyst. The overall con-
version rate exhibits a dynamic behavior with self-affine patterns of excursions to
smaller conversion rates on a time scale in the order of some seconds. Similar
patterns were observed for the temperature time series of the catalyst wafers. The
influence of the flow rate on catalyst wafer coupling was studied. Increasing the
flow rate causes decoupling of the catalyst wafers, increased frequency of maxi-
mum excursions, increasing rate of smaller excursions, increasing pattern com-
plexity and a decrease in maximum conversion (baseline).

1 Introduction

Palladium-catalyzed CO-oxidation on support catalysts has long been one of the
famous examples for studying oscillating phenomena in heterogeneous catalytic
systems [1–6]. In most cases, the reaction exhibits very strange time series which
show self-similar patterns of breakdowns in conversion. However, there are also
conditions in which regular oscillations can be found [7, 8].

Cellular automata models have been developed to describe self-affine temporal
patterns qualitatively [9–13]. These models are based on the local interaction of
elementary reactors that show only two states of reaction behavior: active or pas-
sive, depending on the reduced or oxidized state of the palladium (Pd) particles of
the catalyst. In the automaton model of Liauw et al. [14], the phase transition
between Pd and PdO was modelled explicitly for the first time. In said model, there
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is no spatial interaction of the elementary reaction units. Instead, Liauw took into
consideration only the global coupling via the gas phase.

Based on experimental results, Svensson et al. [7] and Slin’ko et al. [8] developed
a reaction-diffusion model in order to describe the regular oscillations observed [15].
Both classes of models describe very different experimental situations. It is not the
mathematical tool used for these models that accounts for the differences, but the
physico-chemical background on which the models are based. The reason for this is
the experimental situation involving pre-treatment of the catalyst, which provides
quite different results. We decided to focus on the chaotic “stationary” state of the
catalytic system, which starts in the reduced state and which is structurally stable
across a wide range of flow rates and catalyst particle sizes.

Our model is therefore confined to these specific experimental conditions. Our
aim was to describe qualitatively and even semi-quantitatively these chaotic
dynamics of CO oxidation catalysed by Pd supported on an X-type zeolite or
Al2O3. The qualitative success of the discrete models [3, 4, 7, 9, 10, 16] encouraged
us to enhance these models

(a) by introducing different sizes of the “elementary palladium reactors” and
(b) by including the non-isothermal behavior of the strong exothermic CO oxi-

dation which has already been used [16].

There is a particle size distribution among the single Pd crystals in the zeolite
crystal framework. For a given number of reactants which touch the surface in a
given unit of time, there exists a very large set of particles which behave in just the
same way, since they have almost the same size and surface area. All these Pd
particles thus become synchronized if they can be regarded as only one “elementary
palladium reactor”. This is true only if the accessibility of the particle surface for the
reactants is not restricted by diffusion.

Our aim is to describe the experimentally observed temporal pattern formation
obtained solely by coupling these elementary palladium reactors via the gas phase. In
this way, we are following the advice of Hermann Haken: “Synergetics deals with
systems composed of many subsystems of quite different natures,…” “In particular,
our attention will be focused on those situations in which these structures arise in a
self-organized fashion, …” [17]. However, in contrast to the usual chemical pro-
cedure for describing heterogeneously catalyzed reactions, our interacting elemen-
tary units are not molecules and surface sites, but each consist of a very large set of
commonly reacting Pd particles of similar sizes which we take as a new chemical
entity—the “elementary palladium reactor”. A similar ansatz for new reacting cat-
alytic entities—but coupled locally—has previously been described in order to
simulate the catalytic behavior of the Pd-catalyzed oxidation of methanol [10].

Given that the production of CO2 is an exothermic reaction all particles of almost
the same size produce an equivalent amount of heat within the same time. This will
cause an enormous increase in particle temperature, because the particles are very
small. Consequently, all the reaction properties will be synchronized, as well. By
choosing enough elementary reactors and a proper “particle size distribution” close
to the reality of the Pd particles in the catalyst support, one should be able to
describe the experimental results even quantitatively in a convincing way.
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In this new work, our aim was to leave the approximately two-dimensional
system comprising only one catalyst wafer by introducing a second wafer in order
to model a fixed-bed reactor in a tube by means of two differential reactors. The
reactants flew through these catalyst wafers one after the other. The coupling of the
catalyst wafers was observed for different flow rates and different distances between
the catalyst wafers. The results were simulated by using an extended version of the
model described earlier [16]. The results of the experimental studies are presented
in Sect. 1, while the results of the theoretical studies are described briefly in Sect. 2.
Finally, our conclusions and remarks are provided in Sect. 3.

2 Results of the Experimental Studies

2.1 Experimental System and Procedure

The catalyst chosen for the oxidation of CO was an X-type zeolite, used as a matrix
for 0.05% by weight highly dispersed Pd. The concentration of Pd in the catalyst is
thus only one tenth of the Pd concentration used in previous work [16]. The zeolite
was loaded by ion exchange with an aqueous solution of [Pd(NH3)4]Cl2. The Pd ions
were subsequently reduced under hydrogen flow at 623 K. Under these conditions,
Pd particles with an average size of 4 nm can be obtained. Preparation of the catalyst
was part of our experimental work. The details of preparation and characterisation
are described by Jaeger et al. [2], Svensson et al. [7] and Slin’ko et al. [8]. Oxidation
occurred in a continuous flow reactor under non-isothermal conditions.

A new reactor was designed specifically for these experiments. Some important
changes were made relative to the reactor which was used in previous work [16]. The
new reactor was designed such that a second catalyst layer could be added to the
reactor. To this end, several glass tripods could be inserted into the reactor from the
top. These tripods were placed on the catalyst wafer, which was positioned on a
permanently installed glass frit, because the catalyst wafers had almost the same
diameter as the reactor. On top of the tripod was another glass frit on which a second
catalyst wafer could be positioned. The length of the legs of the different tripods
could be varied from 1 to 10 cm, so it was possible to change the distance between
the two catalyst wafers. In order to measure the dynamic behavior of each catalyst
layer, three NiCr-Ni thermocouples were positioned in the reactor. Silver plates
(diameter 3 mm; weight 14.8 mg and 16.0 mg for wafer 2, and one of 17.8 mg for
wafer 1) were soldered to the end of each NiCr-Ni thermocouple. The silver plates
were used to enhance local heat conductivity to the catalyst wafers. Two thermo-
couples were positioned in the lower glass frit. These two thermocouples were
inserted into the reactor via a hole in the glass reactor and then through two holes in
the lower glass frit. Above the lower glass frit, the silver plates were soldered to each
thermocouple. The hole in the reactor for the thermocouples was sealed with cement.

The present paper discusses only the influence of the gas flow rate on the
dynamics of CO conversion. The distance between the two catalyst wafers was
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5 cm. The CO inlet concentration was 1.23% by volume and the O2 inlet con-
centration 13.5% by volume. There was therefore a large excess of oxygen.

The reactor was heated up in a tube oven, the temperature of which was set to
473 K (200 °C) with a precision of about ±0.3 K, and measured with a NiCr-Ni
thermocouple in the oven and in the reactor. The gas mixture first flowed through a
preheating coil which had been placed in the oven. 23.4 mg (for wafer 1) and
24.3 mg (for wafer 2) of the catalyst powder were pressed into wafers with a
diameter of 13 mm. The height of the catalyst wafers ranged from 0.1 to 0.2 mm.
These catalyst wafers were then placed on the glass frits in a glass reactor. The flow
rate of the gas mixture was varied from 40 to 200 ml/min.

Gases supplied for the reaction comprised a mixture of CO and N2 (10.1% by
volume CO in N2, 99.97% pure, Messer-Griesheim), O2 (99.995% pure,
Messer-Griesheim) and N2 (99.996% pure, Messer-Griesheim) under atmospheric
pressure. The flow rates of the feed were controlled by thermal mass flow meters
(±0.1% precision, HI-TEC Series F-100/200). The mass flow meters were con-
nected to a controller (HI-TEC E-5500). The geometric volume of the reactor was
9 ml for a distance between the catalyst wafers of 5 cm. The residence time was
therefore 3.6 s for a flow rate of 150 ml/min.

The CO and CO2 concentrations were measured at the outlet of the reactor by
non-dispersive infrared absorption spectroscopy (URAS 3G, Hartmann and Braun).
In addition to the CO and CO2 concentrations, the temperatures of the catalyst
wafers were continuously monitored by the three thermocouples which were sol-
dered to the silver plates touching the catalyst wafers. The voltages of the ther-
mocouples were reduced by counter voltage devices (Novocontrol, Hundsangen),
and were each amplified by a factor of 5000 times using two measurement
amplifiers (Linseis, T-MV-100, one with factor 100 and one with factor 50). The
concentrations of CO and CO2 and the modified voltages of the thermocouples
were recorded on a computer (Intel Pentium MMX, 90 MHz with a 4.3 GB
Quantum Fireball hard disk) using a 12 bit A/D transformer card (P 1000, BMC
Systeme GmbH) and the “NextView Version 2.5” software (BMC Systeme
GmbH). Due to these modifications, the output voltages of the small range of
temperature oscillations measured at the catalyst wafers (about 1 or 2 K) were
amplified to 3 V. Even temperature changes of about 0.01 K could thus be recorded
with precision.

2.2 Experimental Results

By performing the catalytic oxidation in the new reactor (Fig. 1) with only one
catalyst wafer, self-affine time series are obtained (Fig. 2), as was the case with the old
reactor [16]. These series do not depend on the position of the wafer in the reactor.

Figure 3 shows the correlation between the temperature events on the wafers
(wafer 1 and wafer 2) and the CO concentration in the outlet. The delay of about
23 s between the temperature breakdown-events at the catalyst wafers and the
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observed increase in CO concentration are based on the time required by the gas
flow from the reactor to the URAS detector.

Each peak of the CO concentration is correlated with a temperature decrease of at
least one of the catalyst wafers. The numbered peaks show exemplarily the corre-
lation of temperature and CO conversion. Same numbers in Fig. 3a, b belong to the
same events. The events (3) and (4) are not coupled although they are temporally
close. The detailed examination of the time series has shown that the delay times
between these two events are too long in order to result from a coupling. The same
applies to the events (1a) and (1b) which are temporally close at random.

The self-affine structures of the time series are again evident. However, the
self-affine structure is not as well developed as in the case of only one catalyst wafer
(Fig. 2), since the reactions on the first catalyst wafer influence the reactions on the
second. Nevertheless, each breakdown of the conversion—this means each peak in
the CO outlet concentration—can be correlated to a very sharp decrease in the
temperature of at least one of the catalyst wafers. Even the excursion magnitudes of
the temperature and concentration events can be correlated. Depending on the flow
rate, decoupling or different kinds of coupling of the catalyst wafers were found.
These different behaviors are described in the following.

Fig. 1 Flow-reactor with two
catalyst wafers (wafer 1 and
wafer 2) placed on two frits

Fig. 2 Self-affine time series
for only one catalyst wafer in
the reactor at a flow rate of
100 ml/min
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2.2.1 Decoupling of Catalytic Wafers

There are also events of temperature decrease which appear in one of the catalyst
wafers only, either in wafer 1 (event (1, 0)) or wafer 2 (event (0, 1)) (see Fig. 3),
even though wafer 1 is exposed first to the flow of gaseous reactants. This behavior
occurs at higher flow rates, especially, for example at 100 ml/min. This means that
both catalyst wafers start to react independently.

Very surprisingly, the breakdown in conversion at the first catalyst wafer (event
(1, 0)) does not seem to have any influence at all on the reaction at the second
catalyst wafer. The reason is the following: the Pd particles of the second catalyst
wafer are in a state that is far from the phase transition function (Fig. 5, point A).
There may be a slight increase in the mean temperature of wafer 2, but no set of Pd
particles oversteps this function. Therefore, no breakdown in conversion at the
second catalyst wafer can be observed.

2.2.2 “In-Phase” Phase Transitions

If a breakdown in conversion occurs at the first catalyst wafer (wafer 1), a sudden
exponential decrease in its temperature can be observed. At medium or high flow
rates (60 ml/min and higher), a breakdown in conversion at the first wafer is

Fig. 3 Measured time series
for two catalyst wafers spaced
5 cm apart, for a flow rate of
100 ml/min; a of the CO
concentration in the outlet and
b of the temperature of the
two catalyst wafers (wafer 1
and wafer 2)
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sometimes followed by a breakdown in conversion at the second catalyst wafer, as
well (Fig. 4). The delay in the breakdowns occurs over the time needed for the CO
peak from the breakdown of the first catalyst wafer to reach the second wafer.
Assuming plugged flow behavior; the said time can be calculated for a flow rate of
100 ml/min:

9ml reactor volume
100ml ̸min

⋅ 60= 5.4 s

In Fig. 4, it can be seen that exactly this calculated time delay can be found in
the measured time series.

The breakdown in conversion is caused by the phase transition of some or all Pd
particles in the catalyst. As has been demonstrated earlier [16], a breakdown can be
described as a phase transition from the catalytically active Pd to the inactive PdO
of a set of Pd particles with similar diameter, and subsequently a very fast cascade
of phase transitions of all sets of smaller Pd particles. This phase transition from an
active to an inactive state of the catalytic Pd particles leads immediately to an
exponential decrease in the temperature of the first catalyst wafer (see Fig. 4).

Due to the breakdown in CO conversion, the remaining CO which is not con-
verted to CO2 at the first catalyst wafer will increase the CO concentration at the
second wafer. If the catalytic Pd particles in the second wafer are in an active state
close to the inactive state—for example if their degree of oxidation is high enough
—the increase in the CO concentration in the feed will also shift these critical Pd
particles to the inactive PdO state (see Fig. 5, Point B). As a consequence, we can
observe an exponential decrease in the temperature in the second wafer as well.
Both catalytic wafers are cooperating “in-phase”.

Increase of CO concentration due to conversion breakdown at wafer 1 can
produce a breakdown at wafer 2 (point B; “in-phase” coupling) or not (point A;
decoupling), if the Pd-particles of wafer 2 are in a state far from the phase transition
function.

Fig. 4 “In-phase” phase
transition: measured time
series for two catalyst wafers
spaced 5 cm apart, for a flow
rate of 100 ml/min
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2.2.3 Compensation of Conversion between Different Catalyst Wafers

At low flow rates, a remarkable effect occurs, as evident in Fig. 6. We call this the
“compensation effect”. A breakdown in conversion at the first catalyst wafer (wafer
1) leads to an excess of CO in the feed downstream from that catalyst. When this
pulse of increased CO concentration passes the second catalyst wafer, the over-
supply of CO leads to a strong increase in the absolute rate of CO to CO2 con-
version compared to the CO supply which normally reaches the second catalyst
wafer. This results in sharp temperature peaks in the time series of the latter catalyst
(wafer 2). Watching the total CO concentration at the outlet of the reactor (see
Fig. 6b), the lack of conversion at the first catalyst wafer is somehow compensated
by a correlated excess in conversion on the second catalyst wafer.

(a) Measured temperature time series of the two catalyst wafers. The events are
marked where the conversion breakdowns of wafer 1 are compensated at wafer 2.

(b) Measured time series of the CO outlet concentration. Although the catalyst
wafer 1 stops CO conversion, a large amount of the 1.23 vol.% CO inlet
concentrations is converted at the catalyst wafer 2 due to the “compensation
effect”.

Although catalyst wafer 1 stops CO conversion, the CO outlet concentration
remains in a range between 0.5 and 0.8% by volume. This means that a large
amount of the 1.23% by volume CO inlet concentration is still converted at catalyst
wafer 2. Three occurrences of this compensation effect are marked in Fig. 6a.

It is of interest to gain deeper insight into the chemical dynamics of this com-
pensation effect. Figure 7 shows a temporal magnification of the experimental
temperature time series. The points of ignition and extinction on both catalyst
wafers are marked.

As shown by previous results [16], the breakdown in conversion at the first
catalyst wafer is due to a common phase transition of a set of Pd particles to PdO
particles. This leads immediately to an exponential decrease in the temperature of

Fig. 5 Schematic
representation of the phase
transition function of the
Pd-particles
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this catalyst wafer (see Fig. 7, area A). The effective CO concentration increases in
the vicinity of the catalyst, and this set of PdO particles becomes reduced and
reactivated due to the reverse phase transition from PdO to Pd (see Fig. 5). The
conversion rate and its correlated temperature rise again exponentially in con-
junction with this phase transition. The baseline temperature of wafer 1 is tem-
porarily higher than before (see Fig. 7, area B). Finally, the baseline temperature of
wafer 1 returns to the normal baseline (see Fig. 7, area C).

Fig. 6 Experimental time
series for two catalyst wafers
spaced 5 cm apart, for a flow
rate of 40 ml/min

Fig. 7 Magnified time series
for two catalyst wafers spaced
5 cm apart, for a flow rate of
40 ml/min (see Fig. 6, second
marked event)
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The phase transitions are indicated by the points of discontinuity in the
derivation of the temperature time series. Despite the time shift due to the flow rate
and the volume between the two catalyst wafers, a sudden increase occurs in the
temperature and the conversion rate on the second catalyst, when the CO pulse
reaches wafer 2 (see Fig. 7, area D). Wafer 2 then switches to the inactive state. The
temperature increase accelerates this phase transition from Pd to PdO (see Fig. 7,
area E).

When wafer 2 switches back to the active state, its temperature baseline is
temporarily much higher than before (see Fig. 7, area F). This can be explained by
the excess of CO due to the breakdown in conversion at wafer 1. Finally, the
baseline for wafer 2 returns to the normal value also (see Fig. 7, area G).

3 A Short Commentary on the Theoretical Studies

The automaton model for calculating the results for only one catalyst wafer is taken
as a basis for the extended model for two catalyst wafers. This basic model has been
published in detail [16]. In the following, the basic principles of the one-layer-
model will be sketched briefly. For better understanding, some of the key iterative
equations of the basic model are provided below. It should be emphasized that we
are modelling the reaction system by use of a coupled “iterative function system”

with discrete time, not taking into account any spatial dependencies of the reaction.
Using the terms of H. Haken’s concept of synergetics the CO-concentration

takes over the function of an “order parameter” of the reaction.
For example, the CO concentration in the reactor at the next time step cco(t+1) is

calculated by:

cCO t+1ð Þ= cCOðtÞ 1− c′conv
� �

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
reaction

+ af c0CO|fflffl{zfflffl}
gas inlet

− af cCOðtÞ 1− c′convðtÞ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
gas outlet

Here, “af “ is the “exchange factor” defined by: af =1− e−
v
vol, where “v” is the

flow velocity, and “vol” has the meaning of the volume of the reaction zone, i.e. the
volume of the very thin catalyst layer.

Calculations have shown that for the conversion rate the following approxi-
mation can be used:

cconvðtÞ= 1, if active
0, if inactive

�

One of the really new ideas of the basic model is to introduce the temperature of
each elementary palladium reactor. The lowest possible temperature of the particles
is, of course, the oven temperature. To calculate the temperature of each elementary
reactor, the heat production Hprod due to reaction heat and the heat loss Hloss due to
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the gas flow V ̇ are taken into account. Heat production and heat loss are added as
the quantity of heat Q(t) for each elementary reactor. The temperature T is obtained
from the quantity of heat Q(t), which is the second “order parameter”, since the
temperature T(t) can simply be derived linearly from Q(t). The quantity of heat for
the next time step Q(t+1) is calculated for each model Pd particle:

Q t+1ð Þ=QðtÞ+HprodðtÞ−HlossðtÞ
HprodðtÞ= hprodvflowcconvðtÞOsurface

HlossðtÞ= QðtÞ−Q0ð Þ 1− e
hloss −Osurface tstep

tstep

� �

By including the oxidation and reduction velocities constants kox and kred, the
degree of oxidation for the next time step G(t + 1) can be calculated for each
elementary palladium reactor. The functions with form 1− e− k

� �
cause the degree

of conversion not to cross the value below 0 or above 1;

if active:Gox t+1ð Þ=GoxðtÞ+ 1−GoxðtÞð Þ 1− e− kox
� �

if inactive:Gox t+1ð Þ=GoxðtÞ−GoxðtÞ 1− e− kred
� �

This degree of oxidation is the third “order parameter” of our system. Since we
know that the Pd particles undergo strong variations of the temperature because of
the heat production and heat loss, the reaction velocities are no longer constants:

kox = Aoxe
Eox
RTðtÞ

kred =Arede
Ered
RTðtÞ

The structure of two-wafer model [18] is documented in Fig. 8. One of the
crucial differences to the one wafer model is the space between the wafers. A vol-
ume, which acts as a storage for the reactants and products is introduced between
catalyst layer 1 and catalyst layer 2. This allows us to simulate different spacings
between the catalyst wafers.

This storage space is assumed to be a well-mixed zone. It is a simplification of
the real reactor, where the behavior of this space seems to behave more as a plugged
flow zone.

To illustrate the capability of the enhanced two-wafer model, we demonstrate
this briefly in one example. In Sect. 2.2.2, it was reported that an “in-phase” phase
transition can occur. Figure 9 shows that the two wafer model reflects this striking
behavior.

We calculated temperature time series of two catalyst wafers spaced 5 cm apart
and at a flow rate of 200 ml/min. The breakdown of CO conversion at wafer 1
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causes a breakdown of CO conversion at wafer 2. Both catalyst wafers are coupled
and act in the same way which amplifies the CO decrease at the reactor outlet.

It is remarkable that the seven-second delay between the conversion breakdowns
at wafer 1 and wafer 2 is very close to the measured time delay of 5.4 s (see
Sect. 2.2.2), although a storage with a continuously stirred tank reactor (CSTR)
behavior was used as approximation for the spacing between the catalyst wafers.

Catalyst wafers 1 and 2 are coupled and act in the same way. This causes the
decrease in CO concentration at the reactor outlet to be amplified. The catalyst
wafers act “in-phase”.

Fig. 8 Structure of the
automaton with two wafers

Fig. 9 “In-phase” phase
transition calculated by the
two-wafer model

98 P.J. Plath and C. Ballandis



4 Conclusion and Remarks

Looking at only one catalyst wafer, one sees that its width is much larger than its
thickness. Thus, previous measurements [16] were performed in an approximately
two-dimensional system. In the present work, the successive arrangement of two
catalyst wafers in the reactor—both acting as differential reactors—was the first
step-in proceeding from a two-dimensional to a three-dimensional fixed-bed reactor
system. The task was to measure and to simulate the possible kinds of coupling
between these catalyst wafers. As described in the previous work [16], the oxidation
of CO on Pd support catalysts produces complicated patterns of CO conversion
breakdowns. In our model system, the coupling of the Pd particles is assumed to
occur via the gas phase only. Therefore, it was correctly anticipated that the patterns
of CO conversion breakdowns at the first catalyst wafer can affect the patterns of
the CO conversion breakdowns at the second catalyst wafer.

In this work, the influence of the flow rate of the educts gases on the dynamics of
the patterns and of the coupling of the catalyst wafers was observed at a constant
oven temperature of 473 K (200 °C). Three kinds of coupling between the catalyst
wafers were identified:

• “Decoupling of the catalyst wafers”. Breakdowns in CO conversion were
observed independently at both wafers. A conversion breakdown at one catalyst
wafer was not caused by a breakdown at the other wafer. This behavior was
observed at higher flow rates ranging from 60 to 100 ml/min.

• “In-phase phase-transition”. Discontinuation of CO conversion at the first cat-
alyst wafer could affect a conversion breakdown at the second wafer after a
specific time delay. Reverse coupling from the second to the first catalyst wafer
was not observed. This behavior occurred at a higher flow rate in the range from
60 to 100 ml/min, also.

• “Compensation of conversion”. Excess CO resulting from a conversion break-
down at the first wafer could be partially compensated with respect to the overall
conversion by an increase in the activity of the second wafer. This kind of
coupling only occurs at relatively low flow rates (in a range from 30 to
50 ml/min) and produces a complicated pattern.

By upgrading the one-layer model [16] to a two-layer system (in preparation), it
was possible to simulate the main effects of the real measurements qualitatively in
detail. The two-layer model will be published elsewhere in the near future. This
proves once again the robustness of the previous one-layer model. Even the changes
made to the real system by adding a second catalyst wafer could be simulated very
well simply by duplicating the one-layer computer model.

It could be shown clearly that the automaton model of the coupled iterative
functions describes perfectly the observed macroscopic temporal pattern formation
during catalytic CO oxidation. We have introduced a new kind of chemical entity
which we now call “elementary Pd reactors” (in the former work [16] we used the
expression “model Pd particle”) in order to describe in every detail the highly
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complicated temporal patterns of the linearly coupled two-layer system of catalytic
differential reactors in a tube.

These new chemical entities are neither electrons, or molecules, nor concen-
trations. One can understand them as mesoscopic ensembles of nanoscale particles
of single Pd crystals [18] acting in synchrony to create macroscopic temporal
patterns. We thus conclude that the synergetic approach of Haken [17] has been
confirmed in an extraordinary manner.
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Understanding Earth: The
Self-organization Concept and Its
Geological Significance; on the Example
of Liesegang-Structures and Electric
Fields

Sabine Dietrich and Karl-Heinz Jacob

Abstract The existence of ordered structures in the lithosphere is a well-known
and yet remarkable matter of fact. They appear as banded formations, layered and
folded structures, diapirs, or cockade ores and in numerous other shapes and forms.
Their size ranges from less than one centimeter up to kilometers. In many cases
ordered structures develop in self-organized systems, making this concept a useful
tool for better understanding complex and diverse processes in geology. In essence,
self-organized systems are autonomously shaped units resulting from their inner
determination under the influence of environmental conditions. It is important to
recognize ordered structures and interpret them as self-organized with respect to
their (external) environment and their (inner) components and properties in order to
understand their genesis. Conversely, self-organized geological systems that have
ordered structures contain valuable information about their genesis that is preserved
within the structure. Because geological objects typically preserve only one picture
for a very long time-frame, it is important to evaluate the ordered structures from
the perspective of self-organization to gain access to the information. Reading this
information enables us to learn more about Earth’s history and future, and to use it
toward the sustainable management of global resources. For this reason, applying
the self-organization concept to geology is also important for the society as a whole.
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1 Introduction

Geological structures come in numerous formations and sizes, ranging from
sub-millimetre structures to kilometre-long mountain ranges. Particularly striking
are, for instance, geological folds, mineral deposits and banded ore bodies, which
are formed by complex and diverse processes. In many cases, and especially in the
case of ordered structures, they show the typical features of a self-organized
genesis.

Today, geoscience generally recognizes ordered structures relating to the for-
mation of rocks as a way of describing the shared boundaries of the different
components, namely parts of rocks and their last displacement. According to
Murawski [1], the spatial position of a structure’s building block marks its last
movement. Press and Siever [2] state the same in different words. According to
them, the “displacement” of a structure depends directly and solely on external
parameters.

However, for ordered structures of rocks, as shown in Fig. 1, the predominant
hypotheses about their genesis are not an adequate fit and do not provide a sound
explanation of their genesis. Considering geological systems as complex dynamic
systems and not as systems in thermodynamical equilibrium, however, leapfrogs
the current prevailing geoscientific concept and offers additional differentiated
explanations.

Fig. 1 Examples of geological structures for which the prevailing geo-scientific models for
structure forming are disputable and which should be interpreted using the self-organization
concept. (Left) Cockades structure of a lead-zinc ore-vein, Harz Mountains, Germany; (Center)
Karoo sediment, RSA; (Right) Zebra fluorspar, Almeria, Spain. Photographs K.-H. Jacob
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2 Some Principles in the Study of Self-organized Systems
Featuring Ordered Structures

According to Ebeling [3], a structure is the space and time dependent distribution
of components as well as properties of a system. This is a promising approach to
understanding that “control parameters,” such as energy or material supply, may
not only act on a system as a whole but also influence it at the level of its com-
ponents and its properties. The latter in turn interact as a network and keep adapting
the relations to each other, which in turn keep changing under the influence of the
control parameters. Due to the inner determination of the system and under certain
conditions, these interactions and the relations between the components and
properties produce, meaning self-organize, autonomously shaped units. The
emerging units, for example, rock structures, display properties of a new quality. In
the sense of thermodynamics, a phase transition takes place. If there is a feedback
mechanism, the transition may repeat itself leading to the repetition of time- and
space- dependent patterns or ordered structures. The macroscopic parameter that is
used to describe the different phases of the system’s components and properties is
called “order parameter.” The identification of the appropriate order parameter is
not a trivial issue and requires a deep understanding of the nature of the system.
Because of its nonlinear coupling to the control parameters, the order parameters
represent the macroscopic descriptors for self-organized units, Haken [4]. In
self-organized systems the dynamics of the order parameters have lower dimension
than the dynamics of the control parameters. Hence, macroscopic ordered structures
seen from the perspective of a self-organized system, and using the appropriate
order parameter, are easier to describe, and provide a useful tool for understanding
the nature and origin of geological structures.

A list of geochemical self-organization phenomena was already created in 1987
by Ortoleva [5], who also did extensive basic research into this topic. Nobel lau-
reate Prigogine [6] said that applying ideas of non-equilibrium physics to geology
will have a profound influence on the interpretation of numerous geological
depositions “Self-organization is, how nature really works!”

3 Liesegang-Bands—An Example for Self-organized Band
Formation Due to Nonlinear Coupling
of Reaction-Transport-Processes

Since the middle of the nineteen 19th century we know from physical chemistry
that combining at least two continuous processes under certain conditions can lead
to rhythmic structures—although external rhythms in time or space do not apply. In
Liesegang-experiments, the diffusion of aqueous solutions into a homogeneous
matrix containing another substance creates a salt of lower solubility through
chemical reaction. It does not precipitate homogeneously but in distinct lines within
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certain distances, the so called A-lines (Liesegang [7]). The findings from
physical-chemistry had already been transferred to geoscience at that time, although
the interpretation of the ordered structures remained phenomenological (Liesegang
[8] and Watanabe [9]).

How the evolving types of structures for the different substances and matrices
depend on the inner determination, meaning the interactions and relations of the
system’s components and its properties, is illustrated by a selection of examples,
Fig. 2.

First, different substances may form the same type of ordered structure. Their
characteristic appearance, however, varies depending on the inner relations and
specific properties of the different substances themselves (Fig. 2 Top: left and
right). Second, it illustrates the influence of parameters such as the particle growth
rate or surface tension depending on the surrounding matrix. The same substances
at same concentration allow amorphous or crystal-loaded bands to grow in gelatin
as opposed to in a silica matrix (Fig. 2 Top: center; bottom: left). Third, in addition
to the reacting substances, the type of transport mechanism influences the shape of
ordered structures. Classical Liesegang experiments are carried out in gel matrices

Fig. 2 Examples of Liesegang and Runge experiments. (Top) Liesegang rings in a 1 mm thick
gelatin layer around a droplet from silver nitrate solution; Liesegang bands in a gelatin matrix that
is several centimetres thick topped with silver nitrate solution; Liesegang rings from PbJ2; (Bottom
left) Liesegang bands in silica gel matrix; (Bottom: centre and right) Runge patterns on blotting
paper: using a mixture of manganese and potassium sulphate solution (Center), and manganese
and copper sulphate solution (Right)—spreading the solution from a droplet onto the blotting paper
(Center), and rising into the blotting paper by dipping it into the solution (Bottom). Photographs S.
Dietrich
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with diffusion-controlled transport. In blotting paper, the same substances migrate
mainly by capillary transport (Runge [10]). Remarkably, Runge gave his book on
this topic the title “The formative tendency of substances illustrated by autono-
mously developed images” (Self-published, 1855).

Scientific interpretation of the structures has progressed since Liesegang’s
finding (Kuhnert and Niedersen [11]). Two main models have been established: the
Ostwald-Prager (super-saturation) model and the Ostwald ripening model, also
known as competitive particle growth model or Turing instability. Müller and Ross
[12] analyzed the findings of a selection of experiments with respect to the inner
determination of the components and evaluated the theoretical evidence of the
models. They state:We found extensive experimental evidence for the second model
for a large range of initial concentrations of electrolytes as well as theoretical
evidence, and we find the experimental evidence presented for the validity of the
first model alone to be insufficient. They also point out that there is an indication of
colloid forming prior to banding. The colloid will later undergo ripening processes
to form the rings. Depending on the concentration of the substances, which lead to
weaker or stronger concentration gradients around a growing particle, the resulting
structures will show different shapes. Bands develop if the gradient exceeds a
certain value. At weak potentials, clusters are established or homogenous distri-
bution takes place. Furthermore, Chopard et al. [13] analysed three models, namely
the coagulation model, the competitive particle growth model, and super-saturation
model. They state that none of these models can account for all experimental
observations. They believe, … that super-saturation mechanism based on Ost-
wald’s ideas plays a crucial role in band formation. By using a cellular automata
model, they obtained a phase diagram showing the different possible patterns and
phases (amorphous, crystals, dendrites, none of them), described as a function of
critical super-saturation value and growth rate. Every type of the patterns can also
be observed in the lithosphere.

Reseach into the formation of fragmented periodic bands revealed that the
models are also suited to describe the evolution of lateral instabilities of Liesegang
bands, the so-called bifurcations (Krug et al. [14, 15], Polezhaev and Müller [16],
Krug and Bandtstädter [17]). This work provides the theoretical and experimental
proof that fissure-containing structures are not necessarily the result of mechanical
fractioning, Fig. 3.

Slight changes in the components or properties of the system or their interactions
cause ordered structures to develop with bifurcation-like shapes, fissures or spirals.
It is necessary to emphasize that the irregularities are explicitly caused by the
complex inner determination of the system itself and not by any primary fissures,
faults, mechanical influences or displacements.

Liesegang band-like and other ordered structures in the lithosphere can reach
huge extensions. Especially mineral deposits and ores in the Earth’s crust represent
significant accumulations of usable minerals that occur in dimensions and by
concentrations that make them worth mining. It is worth noting that the majority of
the mineral deposits and ore bodies exhibit ordered structures.
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4 Electric Fields—An Example for Permanent Energy
or Material Supply and Structure Forming Forces
in the Environment

Sometimes lucky coincidence leads down a fruitful path. While solving a problem
with damp walls in his home, K.-H. Jacob used a professional electro-kinetic
masonry dehumification system to remove the moisture. He placed electrodes made
from simple sheet iron into the walls and applied the prescribed voltage of just
1.0 V. The walls dryed as desired, but in addition, various new salt minerals grew
between and near the electrodes. The new mineral formations featured ordered
structures like the ore deposits K.-H. Jacob was familiar with from his experience as
a mining engineer. However, in contrast to the explanations provided by
state-of-the-art genesis models in geoscience, there was no sequential input of mass
or change in energy supply during the wall’s entire drying procedure. Curious about
this, he performed cursory experiments, Fig. 4. In all of the experiments, colored
redox horizons developed, shaped just as natural mineral fabrics (Jacob [18]).

These results are reproducible and indicate the great importance of electricity for
geology as already postulated by the English scientist Priestley in 1772 [19].
During 18th and 19th century, frequent attempts were made to demonstrate the
importance of electricity for geological processes and structure forming, but
unfortunately proved unsuccessful. Consequently, all interest in electricity as a
driving force for the genesis of mineral structures was lost.

During more systematic experiments at the Technical University Berlin during
the 1990th, Klein [20], revealed that applying a weak electric field resulted in the

Fig. 3 (Left) Liesegang-bands around a larger irregularly shaped drop of silver nitrate. The
anastomoses due to its irregular shape. (Center) Zebra mineralization from Bakal siderite deposit
Ural, Russia. The banded patterns repetitively consist of pure siderite (white) and soiled siderite
containing a small amount of clay minerals and organic impurities (dark). Maximum scale of
sample is 15 cm. (Right) Numerical simulations of Liesegang bands based on super-saturation
model for a silver chromate system (Krug et al. [15]). Photographs/Images S. Dietrich, R. Ellmis
and H.-J. Krug
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formation of “artificial structures” that showed significant phenomenological sim-
ilarity to natural ones, see Figs. 5 and 6, and demonstrably can produce artificial
“iron ores”, see Figs. 7 and 8.

Noteworthy is that a characteristic structure/pattern evolves for every experiment
that is performed with the same setup. Their individual features, however, vary as
they are influenced by fluctuations in the same basic starting conditions. Some
representative structures are shown in Fig. 5. Micro-diapirs, rosettes (cockades) of
different dimensions, fractals such as dendrites or cauliflower structures, and patchy
and spotty patterns similar to Ostwald ripening patterns, also develop. They form
without any displacement of rocks and without any flow of fluids.

In contrast, the prevailing geoscientific consensus is that interactions between
mineral systems and their environment are based on energy fluxes or material
displacements caused by gravitation, temperature and pressure, migrating
(hydrothermal) solutions or magma.

But gradients in temperature, pressure, chemical concentrations, and solubility—
to name but a few—may result in more than just processes such as heat conduction,
displacements, and diffusion. At the same time, they can also generate corresponding

(a) (b)

(c) (d) (e)

Fig. 5 Mineral fabrics, self-organized due to electrically induced non-equilibrium in laboratory
experiments: a rhythmic bands, b vertically “displaced” horizons, c banded minerals, d undulatory,
fold-like structures, e discordant banding. Photographs K.-H. Jacob

Fig. 4 (Left) Glasses with electrodes in place and already filled with moist sand, (Center) Visible
effect of electric fields applied by a common battery, (Right) Development of colored redox
horizon caused by electric energy input. Photographs K.-H. Jacob
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currents and fields. For instance, electric fields can originate from mechanisms such
as the well-known Thompson and Seebeck effects, Fig. 9. Klein [20] investigated
processes in the lithosphere by inducing electric potentials and grouped them into
six categories: electrochemical potentials (Eh/pH) as for redox reactions,
tensor-induced potentials (by pressure/temperature gradients), potentials as a func-
tion of phase transformation (phase boundary), potentials produced by induction

Fig. 7 Laboratory experiments with horizontally positioned electrodes: (Top) Anode (positive
electrode) situated at the top: Iron ions move downwards with gravity. Irregular structures evolve.
(Bottom) Anode situated at the bottom: Iron ions move in the opposite direction to gravity.
Uniform structures that look like coal seams develop. Unexpectedly, the same experiment 7 days
later shows a “broken structure”. Three days later, these structures widen. Photographs K.-H.
Jacob

(a)

(c) (d) (e)

(b)

Fig. 6 Natural mineral structures: a snow sediments, b metamorphic “tiger eye” with vertically
staggered hematite-horizon from Banded Iron Formation (BIF), Postmasburg district, RSA,
c Lead-Zinc ore (Schalenblende) from Kalusz, Poland, d layered schist from Harz Mountains,
Germany, e folded anhydrite layer in a German salt mine within the Zechstein horizon.
Photographs K.-H. Jacob

108 S. Dietrich and K.-H. Jacob



(polarization), electro kinetic potentials (electrophoresis/electro-osmosis), and
electro-potentials produced by radioactivity.

According to the standard Borchert-Model, large quantities of hydrothermal
fluids are needed to explain the genesis of ore deposits. However, these quantities
are not detectable in-situ. In contrast, the ion diffusion-based TEC process does not

Fig. 8 Laboratory experiment with vertically positioned electrodes, so-called “vein experiment”.
(Top left) Full image of the 20 cm × 20 cm × 15 cm test container; (Right) Enlarged section of
the symmetrically evolved veinlet; (Bottom left) Ore microscopy analysis Step I: shows quartz
grains surrounded by magnetite- like cockade ore; (Center left) Step II: square section of
20 mm: the quartz grains dissolved and banded magnetite deposited instead. It looks like a
“hydrothermal ore-vein”. Photographs K.-H. Jacob

Fig. 9 (Left) Seebeck (1826): Electricity, generated at contact zones of different materials
(metallic/ionic conductors) exposed to different temperatures. Thomson (1850): Electric currents,
generated within metals exposed to a temperature gradient. They cause concentration exchange
along contact zones of different materials (minerals) or along temperature gradients within a
material; e.g., veins, horizons and filled gaps, fractures and even homogeneous bulk material.
(Right) Borchert-Model [30] for ore deposits extended with thermoelectric chemical (TEC) pro-
cesses according to Oesterle [31]. Graphics W. Klein, O. Oesterle after Borchert
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need any fluid flows to transfer mass. Instead, thermal gradients, which are typically
available in particular at granite intrusions, not only lead to thermo-diffusion, they
also generate corresponding electric fields, which are responsible for the ion-and
charge-diffusion-based transfer. This new approach and type of research is in an
early stage of development and needs to be continued.

Laboratory experiments demonstrate that at least in moist natural systems,
electrical fields are able to generate transport processes and phase transitions. They
cause mobilization and accumulation of substances as well as the formation of new
minerals featuring ordered structures, and may also be responsible for the devel-
opment of geological structures, and most likely responsible for many ore-bearing
structures too (Jacob et al. [21–23]).

The results of the experiments clearly show the conditions under which typical
“natural” structures of minerals and rocks form by applying continuous field forces,
and without changing mechanical inputs. We believe that this contributes to the
acceptance of the self-organization principles also in geology.

5 Recent Mineral Formation—An Example
for Self-organized Layering in Geological Structures

To humans, geological objects typically appear to be in steady state. They are
“carved in stone” so long as there are no volcano eruptions, earthquakes, floods or
intensive desertification or erosion. Other, less spectacular but permanently acting
processes, may be ignored unintentionally and the significance of their contribution
to geological systems overlooked.

We took the opportunity of evaluating the development of a recently structured
iron-manganese mud to identify the layering processes in-situ. The object of the
investigation is located in the abandoned but accessible underground mine “Laut-
enthals Glück” in the Harz Mountains, Germany. Column-probing the mate-
rial clearly displayed visible changes of red-brownish and black layers up to 4–
5 cm on top, but getting more fine-banded at the bottom. During a period of
2 years, we observed the 20 cm thick mud that had been accumulating for 40
years. We took monthly probes, measured key parameters hourly (automated),
performed time-series and substance analyses and used the results to derive a
genesis-model.

In order to proof the postulated model, the recent early-diagenetic mineral
accumulation was simulated numerically. The simulation basically combines two
approaches: first, the mud accumulation is described time-dependent with changing
manganese content according to the monthly amount of rain by some kind of
super-saturation model. The second approach consists of ripening the components
within the continuously growing mud, the so-called Ostwald ripening. It is
described by using the competitive particle growth model together with the scaling
procedure according to Feeney et al. [24]. The results of the simulation are shown in
Fig. 10 (Right), (Dietrich [25]). Clearly visible is the increasing impact of the
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secondary banding, which becomes more and more dominant with the growing age
of the material, i.e. with depth of the profile.

The long-term observation and analysis of characterizing chemical and physical
parameters for the recent mineralization led to the result that numerous complex
processes are contributing to the formation of the banded iron-manganese mud. It
also revealed that these processes are linked to each other both linearly and
non-linearly. The ripening of low crystallized colloidal, and therefore
thermo-dynamically unstable hydrated iron and manganese oxides, causes a rear-
rangement of a primary banding toward a secondary fine banding of the mud.
Primary banding is caused by varying oxygen content and therefore changing
Eh conditions and electrical potential gradients of the system. They are externally
controlled by the amount of rain, i.e., water throughput, and are responsible for the
amount of manganese precipitating together with the iron-containing compounds.
However, the accumulation is superimposed by processes such as Ostwald ripen-
ing, redox reactions and microbial activity, providing nonlinear coupling to
parameters such as the size of particles, surface tension, chemical potentials, ion
concentrations and others. They create self-organized secondary bands, which
become predominat with the growing age of the older mud partitions, i.e., along
with depth, while the mud keeps accumulating. At the same time, the mud shows
the primary banding in the freshly deposited partitions. The bands are already

Fig. 10 (Left and center) Accumulated mud in the abandoned mine in Lautenthal. This “natural
laboratory” is situated ca. 200 meters underground, completely decoupled from daily
changing temperatures sun radiation. However, permanent coupling to the environment is
provided by the inflow of water that has migrated through the covering mountain. (Center) Taking
time series of hourly measured key parameters; (Right: from right to left) monthly sums of the rain,
numerically calculated mud profile without Ostwald ripening, Column-probe: ca. 20 cm, numer-
ically calculated mud profile including Ostwald ripening. Photographs/Images K.-H. Jacob, S.
Dietrich
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clearly visible within a few decades of mud accumulation, a very short time span
from geological point of view, and it is forming at constant temperature and normal
pressure.

It must be emphasized that structures such as those evaluated in the mud are very
common in the lithosphere and are described, for instance, by Cornu [26] and
Landmessser [27]. They appear as hydrogels. Already in 1909, Cornu stated that
hydrogels are widespread and found in the oxidation zone of nearly every ore body
in the Earth’s crust. The results of the long-term evaluation of a recent iron-
manganese mud indicate how the self-organization concept leads to a new under-
standing of the layered geological structure and therefore its significance for
geology. More systematic research is needed to improve the understanding of the
genesis of the various mineral systems and self-organized ordered structures in the
lithosphere.

6 Summary

After a short introduction to the self-organization concept and its relevance to
structure-forming processes in general, we looked at Liesegang bands as one example
of nonlinear coupling of reaction-transport processes able to produce macroscopic
ordered structures. We showed how the inner determination of the system influences
the evolving structures and how slightly changing parameters can cause spontaneous
growth of discontinuities even in homogeneous bulk systems. We then looked at
an example of permanent energy andmaterial supply, the electric field, which couples
a system to the environment and being able to causes phase transitions.

Finally, the results of the long-term evaluation of a recent banded iron-
manganese mud show that electric processes also contribute primarily to the

Fig. 11 Examples of ordered structures in ores and minerals whose components might have had
hydrogel phase before or might have developed because of the contrast in competency. (Left)
Banded Iron Formation (BIF) from Hamersley Range, Western Australia, (Right) Boudinage
structure from Wadi ad Dil, Oman. Photographs K.-H. Jacob, S. Dietrich
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accumulation of themud and secondarily, combinedwith processes that are responsible
for the formationofLiesegangbands, lead to the formation of the repetitivemacroscopic
structures that can be observed. The examined early-diagenetic iron-manganese system
consists of hydrated iron and manganese oxides in the colloid phase. These hydrogels
are wide spread in the mineral world. For almost every hydrogel, i.e., thermodynami-
cally energy-rich phase, there is a comparable crystalline ore body, i.e., the dehydrated
and thermodynamically more stable phase. We showed that a demonstrable accumu-
lation of material featuring macroscopic ordered structures—namely bands—grows
from a considerably low-mineralized aqueous material source within a geologically
short time span under undisturbed environmental conditions.

Fig. 12 The first 5 pictures were taken at a landfill only six years after the sludge had been filled
in that place and stayed undisturbed. The structure shows remarkable similarity to banded
“metamorphic rocks”. Striking is not only the rhythmic banding, but also the cleavage, which is
characteristic for schistose rocks. The picture in the bottom left corner shows a special type of soil:
the banded pararendzina (Rid [32]). Structures such as these occur relatively often in nature and
could be explained by means of self-organization (Radebold [33]). Photographs K.-H. Jacob

Understanding Earth: The Self-organization Concept … 113



In the end these structures turned out to be independent from externally imposed
cycles and very common in the Earth’s crust.

Consequently, the concept of self-organization may enable us to answer hitherto
unanswered questions about the formation of ordered structures in ores, rocks and
minerals, for example, structures such as shown in Figs. 11 and 12.

We believe that our findings have fundamental relevance for the interpretation of
various geological structures. The acceptance of self-organization processes occur-
ring in the Earth’s crust might lead to a new perspective in Earth science [28, 29].

It is important to recognize ordered structures and interpret them as
self-organized with respect to their (external) environment and their (inner) com-
ponents and properties in order to understand their genesis. Conversely,
self-organized geological systems that have ordered structures contain valuable
information about their genesis that is preserved within the structure. Because
geological objects typically preserve only one picture for a very long time-frame, it
is important to evaluate the ordered structures from the perspective of
self-organization to gain access to the information. Reading this information
enables us to learn more about Earth’s history and future, and to use it toward the
sustainable management of global resources. For this reason, applying the
self-organization concept to geology is also important for the society as a whole.

However, more systematic research is needed to support our theses.
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Pattern Formation in Microemulsions
Affected by Electric Fields

Patricia Dähmlow and Stefan C. Müller

Abstract In living nature and biological morphogenesis, Turing’s mechanism plays

an important role. Accordingly, patterns can be found on animal skins or in chemical

reactive systems. The formation of these structures is governed by gradients of chem-

ical reactants and ions and thus, of electric fields. Here, an electric field is applied to

a chemical compartmentalized reaction (i.e., a water-in-oil microemulsion), in which

Turing patterns may form. In this system, percolation can occur when the volume of

water is large compared to that of the oil. Thus, water droplets generate a network of

water channels. Due to the presence of ions, this formation can be manipulated by an

electric field. Turing patterns show a spatial drift, caused by the electric field. The

strength of the field resolves the resulting drift velocity of the patterns. Additionally,

a reorientation of the patterns is induced by a gradient generated by the electric field.

1 Introduction

Patterns in time and space occur in the inamimate nature and in living systems. They

may be periodic and regular or they develop irregular and complex features [1, 2].

There are numerous examples in many scientific disciplines dealing with the prop-

erties of such systems, as described in Chap. 2 of this book. And either well a great

number of scientists consider the phenomenon of complexity, as exemplified in many

other chapters.

In this contribution, we are concerned with a “classical” example in liquid

chemistry—the Belousov-Zhabotinsky (BZ) reaction, which shows, under appropri-
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ate conditions, regular and irregular oscillations in homogeneous aqueous solution. If

an excitable regime is prepared, propagating wave fronts with circular, spiral-shaped

or more complex geometry are formed in the reaction [3, 4]. In this classical case,

the prepared solution initiates the oxidation of an organic substrate (usually mal-

onic acid) by bromate in an acidified aqueous medium in the presence of a metal

ion catalyst (e.g., ferroin). In this form many salient investigations have been made,

rendering the BZ reaction a standard system for spatio-temporal self-organization.

Later on, significant modifications have been introduced by replacing, for instance,

the substrate malonic acid by CHD (1,4-cyclohexanedione), a substance which does

not produce the normally emerging CO2 bubbles [5, 6]. Other modifications were

concerned with the choice of the medium in which the reaction proceeds. Several

hydrogels can be used, in which disturbances like hydrodynamic flows due to evapo-

ration or chemical fronts are avoided [7]. Furthermore, such gels offer opportunities

to feed substrates to the reactive system in a controlled way.

Recently the usefulness of microemulsions (ME) has been detected [8]. If the

BZ-solution is embedded in a reverse ME and experiments are performed below

the percolation threshold (see below), the activator of the autocatalytic reaction is

trapped in water droplets (where the BZ reaction takes place) and diffuses with their

velocity. The non-polar inhibitor, on the other hand, is able to diffuse in the oil phase,

and has therefore a higher diffusion coefficient. These conditions produce conditions,

where Turing or Turing-type patterns may form, a most attractive application of the

properties of the BZ reaction.

Beyond these chemical means to influence and control the pattern-forming sys-

tem, there are physical parameters that prove to be efficient in their control function.

These are light effects in photosensitive versions of the BZ reaction [9], and electric

fields which act on the many charged variables in the BZ solution [10].

In this work we investigate the BZ reaction under chemically and physically spe-

cific conditions: we choose a microemulsion for controlling the diffusion coefficients

of activator and inhibitor variables. Our system will be subjected to an electrical field,

thus making observations of the pattern dynamics under an external forcing possible.

The observed behavior will be compared to previous electric field effects, as found

in the reaction under “classical” conditions.

2 Experimental

Experiments are performed preparing two non-reactive microemulsions with the

same molar ratio between water and the anionic surfactant AOT 𝜔 (𝜔= [H2SO4]

[AOT]
−1

, where [H2O] and [AOT] are the molar concentrations of H2O and AOT,

respectively) and the same droplet fraction of the dispersed phase 𝜑d (𝜑d = (VAOT +
VH2O)(VAOT + VH2O + Voil)−1, where Vi are the volumes of AOT, water and oil). The

droplet fraction indicates the ratio of droplets compared to the whole system.

The first microemulsion (ME1) consists of AOT (Sigma), water, malonic acid

(Merck) and sulfuric acid (Fluka). The second microemulsion (ME2) consists of
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Fig. 1 Reactor for observing pattern formation in microemulsions subjected to an electric field.

The microemulsion is sandwiched between two Plexiglas plates. The platinum/iridium electrodes

play the role of a spacer and are connected to a voltage source. The electric current is measured

with an ammeter. The distance between the electrodes can be varied

AOT, water, sodium bromate (Merck) and ferroin. Both solutions appear milky after

all components are added. Thus, they must be stirred for several minutes until they

appear homogeneously. The BZ reaction does not start until both microemulsions

are brought together. They are mixed with a ratio of 1:1, and a certain volume of

the solvent (n-octane; Arcos Organics) is added, depending on the requested droplet

fraction 𝜑d, which is chosen below and above the percolation transition with values

of 0.48 and 0.52.

The reactive microemulsion is sandwiched between to Plexiglas plates. Plat-

inum/iridium (90/10 wt%) electrodes (Alfa Aesar) with a thickness of 100µm (length

2.5 cm) are used, additionally taking the role of a spacer (Fig. 1). They are immersed

directly into the microemulsion, since they do not interfere with the reaction. No

electrolysis can be observed on the electrodes. Differently sized cover plates allow

a variation of the distance between the electrodes between 2.5 and 4 cm in 0.5 cm

steps. Measurements with direct current (DC) are performed as follows: The elec-

trodes are connected to a voltage source (Voltcraft DIGI 40) and an ammeter (Präc-

itronic MV 40) as in Fig. 1. When the patterns are fully developed, the electric field is

switched on. Simultaneously, the current is measured with the ammeter. The electric

field strength is changed between 3.0 to 15.7 V cm
−1

. Patterns forming in the reactor

are observed under a stereo microscope (Zeiss GSZ 2T) equipped with a CCD cam-

era (AVT Stingray F-046B), which is connected to a computer. The used frame rate

is 0.495 Hz. The illumination of the patterns is realized by a self-made LED panel

with 100 white LEDs (maximum intensity at ≈455 nm) through an interference filter

(480 nm, bandwidth 10 nm). This wavelength is chosen, since the absorption spec-

trum of ferroin and ferriin has a maximum difference around 480 nm, which yields

a good contrast.
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3 Results

In this section, the effect of homogeneous electric fields on stationary Turing pat-

terns is investigated. These patterns are well suited to study their drift induced by

an electric field. In the BZ reaction, many charge carriers are present, such as Br
−

,

H
+

, BrO
−
3 . Even the catalyst ferroin has positive charges. Depending on its state the

charges change between Fe
2+

(ferroin, red color) and Fe
3+

(ferriin, blue color). Addi-

tionally to all these charges, embedding the BZ reaction in a microemulsion leads

to further charges, since the surfactant AOT has a SO
−
3 -and a Na

+
-group located on

the head group.

This large number of charge carriers causes the patterns, formed in the BZ reac-

tion, to drift. It is known from the aqueous BZ reaction, that the velocity of a propa-

gating wave front is reduced, when an electric field is applied with a polarity coun-

teracting the overall motion of the bromide ion, the negatively charged inhibitor [10].

Thus, a drift of stationary Turing patterns caused by the electric field can be expected

in this work.

The recipe for all measurements shown in this chapter is: [MA] = 0.259M,

[NaBrO3] = 0.155M, [H2SO4] = 0.207M and [ferroin] = 1.74mM, 𝜔 = 18.03. The

Fig. 2 Two snapshots of

drifting Turing patterns at

E = 8.7V cm
−1

with 𝜑d =

0.48 at different instants of

time. A time-space plot is

extracted along the

horizontal line in a (Fig. 3).

Patterns are drifting towards

the positive electrode, which

is located at the left side of

the image. a Label “A”

marks the position of a

bright spot in the image at

t = 55.3min. b Here, label

B’ marks the identical spot

as “A” at a later instant and

thus, at another position. The

projection of B’ is marked

with “B” in image a at

t = 63.7min. Labels B’ and

“A” are connected through

the inclined line. Image size:

4.2 × 3.1mm
2
. Reprinted

from [13], with the

permission of AIP

Publishing

(a)

(b)
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Fig. 3 Time-space plot of drifting Turing patterns with 𝜑d = 0.48. An electric field is applied

when Turing patterns are fully developed (left arrow), causing a drift towards the positive electrode.

After 27 min, the polarity is changed (right arrow) and the drift reverses its direction immediately.

Reprinted from [13], with the permission of AIP Publishing

droplet fraction is chosen between 0.48 and 0.52. Both values are close to the per-

colation threshold (𝜑d ≈ 0.5) [11]. However, in both cases Turing patterns can be

observed. Although the value of 0.52 lies above the percolation transition, Turing

patterns can still be observed [12]. This indicates, that percolation is not completely

reached in this system. It can be assumed, that already some lager droplet clusters

have been formed, but not an infinite cluster. Otherwise, Turing patterns cannot be

observed.

A homogeneous electric field (direct current) is applied to the patterns in the range

of 3.0 and 15.7 V cm
−1

. Turing patterns are found to evolve a drift under the influence

of the electric field, which is constant for a certain value of the electric field strength

E (compare Figs. 2 and 3). In Fig. 2 fully developed labyrinth-like Turing patterns are

shown, which move due to the electric field. A large number of negatively charged

bromide ions, which are able to diffuse into the oil phase, force the pattern to drift

towards the left side of the image. Here, the positive electrode is located. Labels “A”

and B’ mark the same spot with a time delay of 8.4 min. The inclined line between

both labels clarifies the distance, the patterns traveled within the time interval of

8.4 min. Label “B” presents the projection of B’ at the earlier instant.

In Fig. 3 the time-space plot extracted from Fig. 2 is depicted. The arrows on the

top of the image indicate, when the electric field is applied (left arrow) and when

the polarity of the field is changed (right arrow). The patterns react immediately on

the polarity change and reverse their drift direction. The overall movement of the

patterns is fully reversed within a minute. In addition to the intensity of the elec-

tric field, the current is measured. Before turning on the field, the current is zero.

Immediately after the application of the gradient, the current increases rapidly until

it reaches a maximum value and decreases slowly up to a final value (Fig. 4a). The

maximum value, which is reached by the current lies between 250 and 400µA and

the final value around 5 or 60µA, which remains almost constant for the rest of the

experiment. In Fig. 4a the evolution of the current is shown exemplarily for a droplet

fraction of 0.52. Here, the current increases up to 270µA within 3 min (the arrow

marks the instant, when the current is turned on). Afterwards, the current decreases
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(a) (b)

Fig. 4 a Course of current during a measurement for 𝜑d = 0.52. After switching on the constant

electric field (arrow), the current increases quickly and subsequently decreases much slower, until

reaching a final value, which remains constant for the remaining time of the experiment. b Drift

velocity of Turing patterns versus the electric current. The velocity is measured in a time interval

between 100 and 600 s during the period of current decrease (declining part in (a)). A linear fit has

been computed with a correlation coefficient of 0.934. Reprinted from [13], with the permission

of AIP Publishing
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Fig. 5 Drift velocity v of Turing patterns versus the applied field strength E. Below the percola-

tion threshold (black circles), a nonlinear (presumably exponential) increase of the velocity with

increasing field strength is observed (correlation coefficient = 0.8382). Above the threshold (red
diamonds), a linear behavior is observed (correlation coefficient = 0.9874). The dashed lines are

the corresponding fitted curves. Note, that each data point represents an individual experiment.

Reprinted from [13], with the permission of AIP Publishing

and remains around 23µA. The maximum value of the current above the percolation

transition (𝜑d > 0.5) and the final value are typically higher than below the transition.

The slow decrease of the current can be used to calculate the drift velocity of the

patterns, depending on the current. The value of the velocity is calculated from the
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time-space plot. Here, a linear part of the inclined lines is needed to estimate the

velocity. In Fig. 4b the velocity is calculated during the decreasing tail of (a), which

results in a linear behavior between current and speed. The continuous decrease of

the current makes the estimation of the drift velocity challenging, since it requires

a linear part of a line in the corresponding time-space plot. Thus, the quality of the

time-space plot determines the estimation of the pattern’s drift velocity.

As seen from the current measurement (i.e., from the values of the maximum

and final value), the drift of patterns depends on whether the experiments are

performed below or above the percolation threshold. Thus, experiments with two

different droplet fractions near the threshold are performed (i.e., at 0.48 and 0.52).

In Fig. 5 the course of the pattern drift velocity versus the electric field strength E is

shown for 𝜑d = 0.48 and 0.52. Above the percolation transition, a linear increase of

the drift velocity of Turing patterns with increasing electric field strength is found

(red diamonds in Fig. 5). Below the percolation transition, the course of the drift

velocity is nonlinear, presumably exponential (black circles).

An exponential fit of the data for the drift velocity at 𝜑d = 0.48 is performed for E
> 8.7 V cm

−1
. At lower values the velocity is scattered in the range between 0.2 and

0.4 µm s
−1

. Thus, the errors are too large to include them in the exponential fit. A

statistical test [14] is performed to examine, whether a linear or an exponential fit is

the better choice for the data points below the percolation transition. The correlation

coefficient of a linear fit is found to be smaller than that of an exponential fit on a

significance level of 99% (see Ref. [13]).

(a)

(d) (e) (f)

(b) (c)

Fig. 6 Alignment of Turing patterns at different field strengths for 𝜑d = 0.52. The cathode is

located on the left side and the field lines are oriented horizontally. Turing patterns a are randomly

oriented at 5 V cm
−1

. b A mean field strength (12 V cm
−1

) yields an almost parallel alignment of the

line with a certain angle to the field vector. In c the line patterns is oriented almost perpendicular

to the field lines at 15.7 V cm
−1

. Image size: 5.2× 3.8 mm
2
. d–f Amplitude spectrum of the Turing

patterns a–c to illustrate the reorientation of the patterns. Reprinted from [13], with the permission

of AIP Publishing
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Fig. 7 Characteristic wavelength of Turing patterns as a function of the electric field strength with

different droplet fractions. Below (black circles) and above the percolation transition (red diamonds)
the wavelength of Turing patterns is almost equal. Reprinted from [13], with the permission of AIP

Publishing

Further investigation of the patterns themselves has revealed, that the patterns

reorient under the influence of the electric field (Fig. 6). The electric field lines are

parallel to each other and lie horizontally. Depending on the intensity of the electric

field, labyrinth-like Turing patterns show either a random orientation or an ordered

configuration, where the lines of the patterns are almost parallel to each other. A weak

field up to 5 V cm
−1

yields the mentioned random orientation as depicted in Fig. 6a.

With an intermediate intensity (5–12 V m
−1

), the lines of the labyrinth structures

become almost parallel to each other, but are inclined with respect to the horizontal

field lines (Fig. 6b). With increasing field strength (about 14 V cm
−1

), the parallel

alignment of the structures becomes more pronounced and they orient perpendic-

ularly to the field lines (Fig. 6c). To illustrate the reorientation, a spatial Fourier

transform of the patterns (a–c) is computed to obtain the amplitude spectrum of the

original images (Fig. 6d–f).

A low field strength shows a well-defined homogeneous wavelength distribution

around the point of origin (Fig. 6d). This means, that in all directions in space an

equal wavelength can be found. At a medium field strength, the distribution loses

its spatial homogeneity. It shows a gap in the upper right (and lower left) corner

(Fig. 6e). The position of the gap corresponds to the angle between the lines of the

Turing patterns and the field vector. With further increase of the field strength the gap

rotates, such that it is located at the top (and bottom) of the wavelength distribution

(Fig. 6f). When this alignment is reached, the reorientation of the Turing patterns

is completed. The reorientation occurs in a continuous fashion and can be found

above and below the percolation threshold. The characteristic wavelength of Turing

patterns evolving under conditions of different field strengths is shown in Fig. 7.
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Here, the wavelength above and below the percolation transition is estimated from

the spatial Fourier transform. For both droplet fractions (𝜑d = 0.48 and 0.52), the

wavelength lies around 200µm and is almost the same for both values of 𝜑d over

the whole used range of electric field intensity. Even the reorientation of the patterns

does not affect the values of the wavelength.

4 Discussion

The effect of an electric field on complex structures, which can be found in pattern-

forming chemical or biological systems, belongs to the strongest methods to manip-

ulate the inherent dynamics of such systems. They contain many electrically charged

components which are known to govern the spatio-temporal organization. One can

imagine, that an electric field dominates the formation process of patterns, as long

as the activating and inhibiting species of such a self-organizing chemical reac-

tion carry an electric charge. This is true for the BZ reaction, where the negatively

charged bromide ion plays the role of the inhibitor, dominating the dynamics to a

large extent. Manipulating the dynamics of the latter by an electric force, change the

interior dynamics of the system and, e.g., a spatial drift of macroscopic patterns can

be observed [15].

Modeling the role of an electrical or chemical gradient in the BZ reaction, a real-

istic reaction scheme of the reaction is taken, for instance in the Oregonator model

[4, 16], and an additional equation for the gradient is added [17]. Here, the drift

velocity of patterns depends linearly on the field strength or on the electric current

[18, 19], which is also true for other reactions, such as the chlorine dioxide-iodine-

malonic acid reaction [20]. To go a step further, the BZ reaction can be incorporated

in a reverse emulsion (i.e. a water-in-oil emulsion), which enables us to obverse Tur-

ing patterns [8]. Within the water droplets, the BZ reaction proceeds yielding a short

range interaction of the activator (which is trapped within the droplets). A long range

interaction within this reaction is generated by the inhibitor species, diffusing within

the oil phase. Our findings in the investigation of the BZ reaction incorporated in a

reverse emulsion under external electrical forcing show a linear or exponential drift

of Turing patterns, depending on the initial droplet fraction.

The measured current in the microemulsion changes during any specific experi-

ment, which can be explained by the large number of free charge carriers, such as

Br
−

ions (located in the oil phase), SO
−
3 and Na

+
(ions from the surfactant, located in

the water phase). When the electric field is turned on, the ions in the oil phase (Br
−

)

propagate towards the positive electrode, whereas the ions in the water phase prop-

agate with almost the velocity of a droplet, which is much slower than the velocity

of the free ions. If the percolation threshold is reached, the ions in the water phase

can move faster, since they can diffuse through the forming water channels. Thus,

the final value of the current is higher above the percolation transition than below.

Even the course of the pattern drift velocity depends on the percolation process

(Fig. 5). Above the percolation transition, a linear increase in drift velocity with
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increasing field strength is observed, as in the aqueous BZ system [18, 19]. Below

the threshold, a more rapid increase of the velocity with increasing field strength

is observed from 8.7 to 15.7 V cm
−1

. This increase is primarily nonlinear, justify-

ing an empirical exponential fit in the measured range. With higher field strengths,

this exponential function might become linear, when the system is percolated due

to the electric field. However, there is no appropriate theory yet to explain such an

exponential behavior.

Structural changes in the mircoemulsion, induced by the electric field, appear to

be responsible for the observed nonlinear velocity increase below the percolation

transition. Due to the action of the field, the nanodroplets become more elongated

and polarized (mediated by dissociation into SO
−
3 and Na

+
) [21, 22], thus forming

droplet clusters. In these clusters, the monolayer of AOT molecules opens up and

water molecules can diffuse from one droplet within the cluster into an adjacent one

[23]. As a result, the conductivity of the microemulsion increases [22]. This might

be a case of the so-called electric-field induced percolation. This effect may also be

the reason for the reorientation of the patterns in Fig. 6.

Moreover, in other systems, like in the polyacrylamide methyleneblue-sulfide-

oxygen reaction (PA-MBO), the orientation of Turing patterns is found to change

with the strength of the electric field. In this system, a weak electric field (up to

5 V cm
−1

) leads to a parallel orientation to the field, whereas fields above 10 V cm
−1

produce patterns, which are oriented perpendicular to the field vector [24].

The results presented here emphasize the complexity of the BZ-AOT system,

as suggested by the assumed exponential increase of the drift velocity. This should

motivate a more detailed investigation of the physical properties of pattern forming

microemulsions by further experimental and theoretical efforts.

5 Conclusion

The reactive system under investigation in this article follows in a broader sense

properties that are characteristic for the large class of activator-inhibitor interactions.

As long as the reactive species diffuse in water or in an appropriate hydrogel, one

frequently finds homogeneous oscillations or spatio-temporal patterns, such as prop-

agating wave fronts (circular or spiral-shaped) and Turing patterns (dots or stripes),

some times summarized as “classical” self-organized reactions [1, 4].

Whereas structures in these reactions exhibit relatively simple geometrical shapes

(although being mechanistically quite involved), the addition of certain ingredients

can lead to substantial changes in evolution and pattern formation, mostly to much

more complex ones. One way would be to use a compartmentalized system, sup-

porting different transport properties of activator and inhibitor, as done in this work

(and following to some extent the procedures developed in Refs. [8, 11]). This sup-

ports the formation of, for instance, Turing-like structures not known from the sim-

pler “classical” preparations. Another way to interfere with these active reactions is

based on the idea that practically all the relevant chemical variables carry an electri-
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cal charge. Therefore applying an electrical field of a given strength, direction and

polarity of the field can be expected to have a clear influence on the pattern formation

and its dynamics [13]. This external forcing has been investigated in this work, as it

acts on a BZ system in a microemulsion.

A major result is that under such conditions the complexity of the nonlinear sys-

tem increases in a pronounced way. Detailed mechanistic studies about the experi-

mental observations have not been presented yet. The authors hope for progress in

this field in the framework of powerful analytical and numerical techniques, avail-

able by modern concepts, as for instance the synergetic approach.
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Unpinning of Spiral Waves
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Abstract Spiral waves are propagating self-organized structures commonly found
in excitable media. Spiral waves of electrical excitation in cardiac systems connect
to some arrhythmias, such as tachycardia and fibrillations, potentially leading to
sudden cardiac death so that they should be eliminated. Such waves may drift and
eventually annihilate at the boundary. However, they can be stabilized, when they
are pinned to obstacles, that are weakly excitable or unexcitable regions in the
medium. Recently, we used the Belousov-Zhabotinsky solutions, the well-known
excitable chemical systems, to study the propagation of spiral waves pinned to
obstacles and applied electrical forcing to unpin them in different situations of
obstacle size and excitability. We employed simulations with the Oregonator
model, a realistic scheme for the Belousov-Zhabotinsky reaction, to confirm the
experimental findings as well as to reveal the detailed motions of the spiral waves
under some specific conditions that are difficult to be realized in the experiments.
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1 Introduction

Self-organized rotating spiral waves are commonly observed in many excitable
media [1–5]. These waves also have important impacts on human health, since
rotating spiral patterns of electrical excitation in the heart and their instabilities
concern cardiac tachycardia and life-threatening fibrillations [6, 7]. The rotation of
spiral waves may cease and subsequently disappear, when the spiral tip is induced
by some gradient to drift until it hits the boundary of the medium. However, spiral
waves in cardiac tissues are often stabilized by being pinned to weakly excitable or
unexcitable obstacles like veins and scars [3]. Therefore, such obstacles in excitable
media act as helpers of the spiral waves by enlarging the lifetime of the waves.

Experimental investigations of spiral waves are mostly performed using an
excitable chemical medium, namely the Belousov-Zhabotinsky (BZ) reaction,
because the reaction preparation and the wave observation are convenient. Exper-
iments on pinned spiral waves in a thin layer of the photosensitive
ruthenium-catalyzed BZ reaction [8] have demonstrated that wave period, wave-
length and velocity increase with the diameter of a circular unexcitable obstacle
created by a laser spot. Elimination of pinned spiral waves in cardiac tissue cultures
can be done by using a high-frequency train of electrical stimuli to induce unpin-
ning and drift of the waves. The necessary frequency increases with the obstacle
diameter [9–12]. Such an application of a wave train has been demonstrated in the
BZ reaction, where small oil droplets were taken as obstacles [11].

Applying an electric field can induce a linear drift of the rotation center of free
spiral waves in the BZ reaction, since the electrical current causes advective
motions of key ionic species in the reaction. The drift speed and angle increase with
the magnitude of the electric field [13–15]. In 3D media, the applied field causes
closed-loop filaments of free scroll rings to reorient, until the unit vector normal to
the plane of the filament ring is anti-parallel to the field direction [16]. It has been
demonstrated that such electric field application results in an unpinning of a scroll
ring from a pair of unexcitable spheres [17].

In this chapter, we review our recent investigations [18–20] on the dynamics of
pinned spiral waves and their unpinning in BZ media under electrical forcing to
elucidate the effect of the size and shape of the obstacles and the excitability of the
medium. The experiments were conducted in uniform thin layers of the BZ reaction
[21], and well-defined objects made from chemically inert plastic were used as
unexcitable obstacles. We performed simulations using the Oregonator model [22,
23] in close correspondence with the experimental results.

2 Experimental

The BZ reaction is prepared with the following initial concentrations: [NaBrO3] =
50 mM, [MA] = 50 mM, [ferroin] = 0.625 mM, and [H2SO4] 160 or 200 mM in
the study of the influence of obstacle size and shape. The effect of excitability is
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investigated using the reaction with [H2SO4] varied between 100 and 280 mM.
A high [H2SO4] corresponds to a stronger excitability. To prevent any hydrody-
namic perturbation, the reaction is embedded in a 1.0% wt/wt agarose gel. Various
circles or rectangles made from chemically inert plastic are used as obstacles. In each
experiment, an obstacle is attached to a transparent flat reactor with a size of
100 × 100 × 1.0 mm3, before the BZ solution is filled into the reactor. A spiral
wave pinned to the obstacle is initiated using a two-layer method [18].

To study the unpinning of the spiral wave, a constant electrical current is applied
via two electrolytic compartments (size of each 25 × 100 × 2.0 mm3), which are
attached to the left and the right boundaries of the main reactor. The density of
applied electrical current is stepwise increased every few spiral rotations until the
spiral wave is detached from the obstacle [18, 19]. This critical value of the current
density is defined as Junpin. The influence of excitability on the termination of free
spiral waves is studied by forcing the spiral tip to hit the bottom of the reactor, and
the critical current density is called Jterm [19]. In order to control the temperature,
the reactor is placed vertically in a transparent thermostating bath, which is located
between a white light source and a color CCD camera to record the images.

Examples of pinned spiral waves in the BZ reaction with different concentrations
of sulfuric acid or obstacle sizes and shapes are shown in Fig. 1. For a given
circular obstacle, the wavelength increases while [H2SO4] decreases (Fig. 1a and
b). For the same concentration, the wavelength increases with the circle diameter
(Fig. 1b and c). In the case of obstacles with the same area size, the wavelength
becomes larger with the circumference (Fig. 1c and d). Our detailed investigation of
propagating spiral waves pinned to circular and rectangular obstacles shows as
common features that the wavelength, wave period, and velocity of pinned spiral
waves increase with the circumference, regardless of the obstacle area [20].

Typical spiral structures unpinned from the obstacle due to the action of an
applied electrical current are illustrated in Fig. 2a–d. For a small current density

Fig. 1 Pinned spiral waves in the BZ reaction. Concentrations of sulfuric acid are a 200 mM and
b–d 160 mM. Obstacles are circles with a diameter of a 1.5 mm, b 1.5 mm, and c 2.8 mm and d a
rectangle with dimensions 6.5 mm × 0.9 mm. The wavelengths in a–d are 7.25 mm, 11.5 mm,
14.3 mm, and 20.3 mm, respectively [20]
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J < Junpin, the spiral wave remains attached to the obstacle and the wave has an
anisotropic distorted form (Fig. 2a). This results from the fact that the electrical
current accelerates/decelerates the front propagating towards/away from the posi-
tive electrode [15]. When J reaches Junpin, the spiral wave is detached from the
obstacle (Fig. 2b). Under a constant electrical current, the unpinned spiral tip moves
towards the positive electrode with an angle and the front structure changes with

Fig. 2 Unpinning of spiral waves in the BZ reaction. a–d Time sequence of images of a spiral
wave unpinned from a circular obstacle by electrical current. The curling line indicates the tip
trajectory of the spiral wave leaving the obstacle [18, 19]. e Junpin increases with the obstacle
diameter. The dashed line indicates the core diameter of 0.8 mm of a free spiral wave [18]. e Both
Junpin and Jterm increase with the concentration of sulfuric acid [19]
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time (Fig. 2b and c). Finally, the deformed wave structure (Fig. 3d) is similar to a
drifting spiral wave under electrical forcing in the absence of obstacles [13].

The effect of the diameter of circular obstacles on the unpinning is shown in Fig. 2e.
The experiments have been donewith the BZ solutionwith [H2SO4] = 200 mMand at
a temperature of 24 ± 1°C [18]. In the absence of the obstacle, the tip of a free spiral
wave rotates around the spiral core, which is a small circle with a diameter of 0.75 mm.
When the obstacle diameterd increases from0.4 to 1.5 mm, the required current density
Junpin increases monotonously. Linear fits for two ranges of the obstacle diameter show
that the slope ΔJunpin/Δd = 0.590 ± 0.052 and 1.389 ± 0.048 A cm−3 for
d < 0.75 mm and d > 0.75 mm, respectively. This means that Junpin increases with a
much higher rate for the large obstacles in comparison with the small ones. The results
show that it is more difficult to release spiral waves pinned to larger circles, especially
when the obstacle diameter is larger than that of the free spiral core.

The influence of the medium excitability on the unpinning as well as the ter-
mination of spiral waves at the boundary is shown in Fig. 2f. The same circular
obstacle with a diameter of 0.8 mm was used in the experiments, and the tem-
perature was set at 24 ± 1°C [19]. The results show that the critical density of the
applied electrical current for unpinning Junpin increases with the concentration of
H2SO4. This is due to the fact that the intrinsic properties of the spiral waves in the
absence of the obstacle depend on the excitability. The spiral core diameter dS of
free spiral waves decreases from 1.20 to 0.45 mm when [H2SO4] in the BZ solu-
tions is increased from 100 to 280 mM. Thus, dS ranges from a value larger to
smaller than the obstacle diameter (d = 0.8 mm). Therefore, the smaller the free
spiral core, the more difficult to unpin the spiral wave from a given obstacle. The
excitability also affects the termination of free spiral waves. Under an applied
electrical current, the spiral tip is forced to drift towards the bottom of the reactor,
and subsequently it drifts parallel to the boundary with a distance of about 1 mm.
The tip is forced to drift closer to the bottom and finally hits the boundary, when the
current density reaches the critical value Jterm, so that the rotation of the spiral wave

Fig. 3 Unpinning of spiral waves in the Oregonator model. a Eunpin increases with the obstacle
diameter d. The dashed line indicates the spiral core diameter of 0.9 s.u. [18]. h Both Eunpin and
Eterm increase with the value of the parameter ε−1 [19]
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is terminated. Jterm also increases with [H2SO4] as in Fig. 2f. Therefore, it is more
difficult to release a spiral wave pinned to a given obstacle, and either well to
terminate a free spiral wave at the boundary in a medium with higher excitability.

3 Simulations

Simulations are performed using the two-variable Oregonator model to describe the
dynamics of two variables u and v. The additional advection terms for u and v ac-
count for the electric field E applied in the x direction [18, 19]:

∂u
∂t

=
1
ε

u− u2 − fv
u− q
u+ q

� �
+ Du∇2u−MuE

∂u
∂x

,

∂v
∂t

= u− v + Dv∇2v−MvE
∂v
∂x

.

ð1Þ

The parameters are chosen as follows: q = 0.002, f = 1.4, diffusion coefficients
Du = 1.0 and Dv = 0.6, ionic mobilities Mu = −1.0 and Mv = 2.0, and ε−1 = 100
in the study of the influence of obstacle size and shape. The effect of excitability is
investigated by modulating the parameter ε−1 between 20 and 200. A high ε−1

corresponds to a stronger excitability.
We use an explicit Euler method with a 9-point approximation of the

two-dimensional Laplacian operator and a centered-space approximation of the
gradient term in a discrete system with a uniform grid space Δx between 0.025 and
0.1 system unit (s.u.) and a time step Δt ≤ (3/8)(Δx)2 time unit (t.u.) as required
for numerical stability [24]. A circular or rectangular area in the middle of the
system is defined as the unexcitable obstacle so that the system and the obstacle
have no-flux boundaries described in detail in [19].

A spiral wave is initiated by triggering a planar wave (u = 1.0 and v = 0). When
the propagating wave is located at the middle, a half of the medium is reset to an
excitable state (u = 0 and v = 0) leading to wave front end, which subsequently
curls to form a rotating spiral wave pinned to the obstacle or a free spiral wave in
the absence of the obstacle. To unpin the spiral wave, a constant electric field E is
applied. E is increased with a fine step ΔE = 0.005 every few spiral rotations until
the spiral wave is detached from the obstacle. The critical value of the electric field
E is called Eunpin. Finally, the influence of excitability on the termination of free
spiral waves is studied by forcing the spiral tip to hit the bottom and the critical
value of E is called Eterm.

How the size of circular obstacles influences the unpinning was investigated in a
system with a given ε−1 = 100 [18]. At this parameter value, the spiral tip rotates
around the spiral core with a diameter of 0.9 s.u. in the absence of the obstacle. As
shown in Fig. 3a, the critical value of the applied field Eunpin increases with the
obstacle diameters d. The growth rate ΔEunpin/Δd is about 0.145 ± 0.011 s.u.−1

and 0.501 ± 0.016 s.u.−1 for d < 0.9 s.u. and d > 0.9 s.u., respectively. Thus
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Eunpin increases with a much higher rate for obstacles larger than the free spiral core
as found in the experiments in Fig. 2e.

The effect of the excitability on the unpinning as well as the termination of spiral
waves at the boundary of the simulated system was investigated for the parameter
values ε−1 = 20−200 [19]. When ε−1 is increased in this range, the core diameter
dS of free spiral waves decreases from 1.65 to 0.70 s.u. For a given circular obstacle
with a diameter of 1.0 s.u., Eunpin increases with the value of ε−1, i.e., the
excitability, as shown in Fig. 3b. The excitability has the same effect on the ter-
mination of free spiral waves. When the electric field reaches the critical value Eterm,
the spiral wave is forced to terminating at the boundary. Therefore, the simulations
show the same trend as found in the experiments (Fig. 2f).

Besides the confirmation of the experimental results, we can use the simulations to
reveal the details of the pinning and unpinning phenomena, since the parameter
adjustment and the analysis can be done precisely. As in Fig. 4a, a small circular
obstacle (0.5 s.u. in diameter) is added into the larger spiral core (0.9 s.u. in diameter).
Even though the center of the obstacle is located exactly at themiddle of the spiral core
at the beginning, the motion of the spiral tip is affected by the smaller obstacle leading
to a temporary pinning—the spiral tip is alternately attached to and detached from the
obstacle in the absence of an electric field, e.g., as in Fig. 4b and c [18].

Fig. 4 Detailed motion of spiral waves in the Oregonator model. a–c A spiral wave is alternately
attached to and detached from a small obstacle (0.5 s.u. in diameter) in the absence of an electric
field (E = 0) [18]. The dashed circle indicates the spiral core with 0.9 s.u. in diameter. d–
f Sequential images of a spiral wave unpinned from an obstacle (1.0 s.u. in diameter) by the
electric field Eunpin. The lines represent the trajectory of the spiral tip [19]
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The fine adjustment of the applied electric field allows us to observe a temporary
unpinning as in Figs. 4d–f [19], which was not found in the experiments. When the
electric field reaches the critical value Eunpin, the tip of the pinned spiral wave
leaves the obstacle (Fig. 4d) but then it approaches the obstacle again (Fig. 4e). The
forward—backward motion of the spiral tip occurs for a few rotations before the tip
permanently moves away from the obstacle (Fig. 4f).

4 Discussion

Experiments using the BZ reaction and corroborated by simulations with the
Oregonator model were used in our studies of pinned spiral waves and their
unpinning by electrical forcing. The propagation of pinned waves depends on the
excitability of the medium as well as the obstacle size that is more influential by the
obstacle circumference than by the area, at least in cases of circles and rectangles.

Under electrical forcing, the unpinning of spiral waves from circular obstacles
occurs when the strength of the forcing reaches a critical value that increases with
the obstacle diameter. Furthermore, the electrically forced unpinning becomes a
tough endeavor, when the obstacle diameter larger than the free spiral core. Our
findings are consistent with earlier reports [11, 25, 26], where the unpinning occurs
only when the frequency of the applied wave train is higher than a critical value that
increases with the obstacle diameter. However, the highest frequency of waves is
limited by the refractory period of the excitable medium so that the unpinning is
impossible when the obstacle is very large [11, 25].

The electrically forced unpinning of spiral waves is also affected by the
excitability of the medium: the critical value of the electrical forcing increases with
the excitability. These results agree well with a numerical study [26] which shows
that one can improve the success of unpinning of spiral waves induced by a train of
stimuli by reducing the excitability of the medium which results in an enlargement
of the spiral core. Other experimental studies using cardiac specimens have shown
that unpinning of spiral waves occurred after application of anti-arrhythmic agents,
which reduced the excitability [27, 28].
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Battery—Determination and Forecast
via Synergetics

Ernst-Christoph Haß, Katharina Knicker, Uwe Sydow,
Matthias Schulz and Peter J. Plath

Abstract A rechargeable battery can be considered as a complex system which is
self-organizing under charging, discharging and relaxation. Depending of the type
of battery and the kind of external influences, the battery is stressed in many
different ways. This leads to an alteration of the internal self-organization processes
which are indicative for the present internal state and the future development of the
battery. To get detailed information about the State-Of-Charge (SOC) and the
State-Of-Health (SOH) of such electrochemical systems we carried out on the one
hand internal spatio-temporal measurements of the half-cell potentials within
lead-acid batteries. By this, significant structure formation can be observed and is
represented using several methods of synergetics. On the other hand, we performed
external short-time measurements of the battery’s voltage with differently triggered
charging and discharging currents. The response curves of repeated excitations are
characteristic for the dynamic behavior of the electrochemical system providing
information on the battery’s aging state. The fits of these curves are comprehended
in a small set of significant parameters.
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1 Introduction

Already in the beginning of this century it was forecasted that the overall growth of
world consumption of energy will increase by around 40% over the next 20 years,
and concluded that energy storage will be a key technology for global energy
sustainability [1]. At present days, major efforts are done to improve the utilization
of renewable energy resources for electro mobility as well as for stationary energy
storage [2, 3]. Also in battery-powered medical devices, many unresolved problems
exist such as potential battery loss and failure at frequent use [4]. Some crucially
important unresolved problems are non-sufficient lifetime of the batteries, lack of
reliability at on-line remote measurements of the remaining capacity and prediction
of the future performance of the batteries. Therefore, a reliable prediction of the
actual state (State-Of-Charge, SOC, and State-Of-Health, SOH) of an accumulator
is highly desirable [5, 6] (and references cited therein).

In the first part of our work, local potential measurements in lead-acid batteries are
realized in order to find reliable quantities for State-Of-Charge and State-Of-Health
evaluations. It is known that in lead-acid batteries as an example for strongly coupled
non-linear electrochemical systems, spatial inhomogeneities can be found like acid
stratification due to inhomogeneous current density distribution. To detect such
inhomogeneities in situ, we carried out spatially resolved potential measurements
between the plates of a cell stack under charging/discharging conditions. The
resulting spatially resolved potential curves from inside the cell stack give additional
information about the driven electro-chemical process of charging and discharging.
This information cannot be obtained by potential and current monitoring at the
outside poles of the battery. Nevertheless, such internal information might be suitable
for developing a reliable prognosis of the battery’s service time.

In the second part, we imitated the influence of the outside world on the battery
in order to achieve a forecast of the capability of the battery without knowing what
happens internally. Clearly, one cannot simulate the total history of an individual
battery, but it is possible to investigate the responsiveness of the battery on specific
complex external signals. The evaluation of the battery’s answers using methods of
synergetics [6] enables forecasting its lifetime and capability without having an
insight on the internal processes. Although we concentrated our experiments mainly
to lead-acid batteries, this method is not restricted to this type of accumulators.

2 Local Potential Measurements with Auxiliary
Lead Electrodes

2.1 Experimental Setup

In order to measure local potentials, small auxiliary lead electrodes have been
developed and were placed inside the lead-acid battery. The principal setup for
these measurements is shown in Fig. 1.
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Lead electrodes were prepared by soldering a small piece of pure lead wire (Alfa
Aesar puratronic 99.998%, 0.5 mm ∅) to the end of an insulated copper wire
(0.5 mm ∅). The contact between the lead and the insulated copper wire was coated
to achieve acid resistance. Only the tip was left uncoated to enable local potential
measurements.

In order to get information about the local potentials between the auxiliary
electrodes (local sensors, probes) and both the negative and positive battery plates,
the electrical setup was chosen in such a way that the probes could be switched by a
relay periodically to either the positive or the negative cell plate (see Fig. 2).

In order to get local potentials at different horizontal and vertical positions as
well as from positions between different plates in a stack, an arrangement of aux-
iliary electrodes was chosen as shown in Fig. 3 (see also Fig. 1).

Fig. 2 Electrical setup for local potential measurements between internal probes and the battery
plates. The auxiliary lead electrodes (local sensors) are periodically switched between the positive
and the negative plate with a triggered relay. The frequency of the relay was set to 0.2 Hz, the
sampling rate was 2 Hz and the input impedance of the analog/digital channels (signal input)
was >1 GΩ

Fig. 1 Setup of a lead-acid battery for local potential measurements (left) and an enlarged single
auxiliary lead sensor as reference electrode (right)
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2.2 Industry-Like Long-Term Measurements—Aging
of a Battery

In industry, long term stress tests are carried out to get information about aging and
lifetime of the battery. These tests consist of mutually strong load for a short time
with subsequent moderate recovery and periodically repeated discharging/charging
cycles (up to 100 times) with constant currents. Each of the short time stress tests
leaves traces of aging in the battery which should be detectable. The repetition of
about 100 discharging/charging cycles corresponds to an aging of approximately
one year.

A typical example is the so-called Großglockner test where the downhill drive of
a car with strong braking and running with weak load is simulated. The measured
voltages at the poles of the battery for such a test is shown in Fig. 4.

After about 3 month of such tests the battery operation breaks down. Figure 5
illustrates exemplarily a damaged lead plate of a ‘dead’ battery.

In the case of lead-acid batteries the mechanism of deterioration of the
electro-chemical system is explained mainly by acid stratification due to chemical
reactions shown in Fig. 6.

During charging, the acid density of H2SO4 between the plates increases and
thus pure acid moves down due to gravity. Conversely, during discharging, the acid
density decreases. As a result of these processes, a density gradient evolves with
low density at the top and high density at the bottom. This means that during the
lifetime of a battery the internal inhomogeneities are growing, hardly noticeable in
the beginning and over a long time, but almost suddenly at the end of the battery’s
life leading to its breakdown.

Fig. 3 Arrangement of local sensors in the cell stack. Each five probes are placed in the same way
between two plates (Pos. 1 and Pos. 2). Two of them are located left and right at top (light gray),
one is placed in the center (gray) and the remaining two are situated at bottom (black). This takes
account of the fact that the electrolytic density varies from top to bottom due to increasing strength
of sulfuric acid
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Fig. 5 Lead plate of a ‘dead’ battery cell after about 3 month of stress tests. The light gray area at
the bottom of the plate is caused by PbSO4 particles which crystallized out at higher concentrations
of sulfuric acid

Fig. 6 Basic chemical reactions in lead-acid batteries

Fig. 4 Long term stress test of a battery with alternating simulation of downhill driving and 100
periodically repeated discharging/charging cycles. The small peaks are due to extreme stress (sharp
braking). After about two thirds of battery lifetime, one can observe a beginning structural change
of discharging/charging cycles due to aging; after about 100 days the battery is ‘dead’
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2.3 Results of Long-Term Local Cell Voltage Measurements

Starting from the observations mentioned above, one can consider the battery as a
complex dynamical system with pronounced self-organization under charging,
discharging and relaxation conditions and thus may raise the question whether its
State-Of-Health (SOH) is detectable by short time investigations long before it
breaks down. One method we have chosen consists of temporarily and spatially
resolved measurements of local voltages using the experimental setup described in
Figs. 1, 2 and 3.

Figure 7 shows the time series of local potentials recorded for sensors at top
right and bottom right positions inside the battery cell during the industrial stress

Fig. 7 Time series of local potentials from industrial stress tests The upper diagram is recorded at
top right sensor position and the lower diagram at bottom right position. The latter shows already
after about 35 days pronounced potential fluctuations during strong load indicating a higher
discharge rate in the lower cell position than in the upper one. This may be explained by higher
concentration of sulfuric acid and beginning PbSO4 crystallization
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test discussed in the previous section. A comparison with the time series of voltages
measured at the poles (Fig. 4) indicates already significant differences of the
breaking behavior in the middle of the battery’s lifetime (after about 35 days and
even more pronounced between 50 and 60 days).

More information about the health state of the battery can by gained if one
compares local cell voltages. For this purpose, we plotted the differences between
two local cell potentials against time. In Fig. 8, this is exemplarily demonstrated for
two vertically positioned and for two horizontally positioned probes, respectively.

In the first case, a beat like pattern is visible in higher resolution during the first
period of repetition cycles (day 12.5–16.5) of a healthy battery reflecting the almost
regular periodic charging/discharging process. In the latter case, a complex pattern
can be seen during stress tests (day 25–32), if the battery is slightly more aged. Both
examples demonstrate that local dynamics can be quite different in various regions
between the plates of the electro-chemical cell and thus local measurements can
give more information than recording the integral cell voltage.

Another method to obtain information of space-time resolved measurements of
dynamical systems which is frequently used in synergetics is the phase space
representation of two or three time series. To give an example, Fig. 9 shows four
time series of local potentials corresponding to four partial systems measured over a
period of about half a week during cycling (30 min discharging, 40 min charging,
both with about 53.9 A). The four auxiliary electrodes are placed at the four upper
positions of the battery cell, two each between different electrode plates (see Fig. 3).
Only the (half-) potentials against the positive PbO2 plate are shown in Fig. 9.

Fig. 8 Time series of differences of local cell voltage measurements between two vertically
positioned probes (left) and between two horizontally positioned probes (right). In both cases, the
upper image corresponds to the full time scale of aging and the lower one is a significant section of
a few days
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A phase space representation in three dimensions of the time series of the
potential responses, U1(t), U2(t) and U3(t), corresponding to three of these upper
probes is given in Fig. 10. The attractors match three different time intervals: 1.4–
1.7 days (blue), 2.5–3.8 days (yellow) and 4.3–4.8 days (red). The points at the
highest potential values reflect the situation of maximum charge and those at lowest
potential values the situation of maximum discharge. Figure 10 demonstrates that
after a few days different scenarios have been established in different regions of the
stack due to short time aging of the battery which are indicative for its
State-Of-Health.

Another possibility to gain insight into the internal state of a battery cell is to
compare the values of a single auxiliary electrode at different times. This can be
achieved by a phase diagram with delay coordinates as shown in Fig. 11. In this
example, the two-dimensional delay attractors of local cell voltages obtained by a
probe in the upper left position in the middle of a cell stack (see Fig. 3) are
depicted. The potentials were compared through charge/discharge cycling by a
delay of τ = 150 s in time intervals of about 2 weeks over a period of 1 month.

From Fig. 11 it is obvious, that the ranges of attractors are widening in time. In
the beginning of a cycling period, the attractor comprises the smallest area which is
indicative for a healthy state of the battery. A few weeks later, the extension of the
attractor corresponds to a warning state, and after a very long time (more than a
month) of cyclic stressing, the expansiveness of the attractor indicates a critical
state.

Fig. 9 Time series of the local (half-) potentials measured with four auxiliary electrodes in upper
position versus the positive mass PbO2. The three plot segments which are arranged under each
other correspond to cycling (30 min discharging, 40 min charging, both with about 53.9 A) in
three different time intervals
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Fig. 11 Delay attractors of local potentials measured by an auxiliary electrode located in the
upper left position in the middle of a cell stack. The delay time of each attractor is τ = 150 s. The
attractors are obtained at begin of the 2nd week, begin of the 4th week, and the end of the 5th week
of a cyclic charging/discharging period, respectively

Fig. 10 Phase space representation of the attractors of local (half-) potentials measured with three
auxiliary electrodes in upper position versus the positive mass PbO2 corresponding to three
different time intervals (1.4–1.7 days (blue), 2.5–3.8 days (yellow) and 4.3–4.8 days (red)). This
figure shows clearly, that the attractors are changing in time due to short time aging of the battery
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This example demonstrates that one can make a prediction about the develop-
ment of the battery’s health state if one measures the local potential inside the cell
with only one auxiliary electrode which is located in a suitable position.

3 Short Time Measurements at the Battery’s Poles
with Periodic Excitation

Since measurements inside the battery are relatively costly, in particular because of
preparation of the auxiliary electrodes and putting them into the accumulator, we
tested an additional way to get knowledge about its State-Of-Health and making a
prediction about its life-time without having information about its history.

Considering the battery as a dynamical system, it should react to external
influences in an individual way. This was investigated by completely unloading the
battery below a certain limit superimposed by specific short-time trigger functions.
The voltage response to the excitation currents was measured at the poles of the
battery. In Fig. 12 the discharge curves of 8 batteries in different aging states are
shown which are obtained on the one hand analogously to industrial tests and on the
other hand overlaid by asymmetric periodic excitations.

Fig. 12 Voltage response
curves for complete unload
below a voltage limit of
10.5 V measured on 8
batteries in different aging
states. The upper diagram
shows the graphs for
discharging with a constant
current of 20 A analogously
to industrial tests. The lower
diagram shows the resulting
curves if the discharging
process is overlaid by an
asymmetric periodic
excitation
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3.1 Measuring Principle and Evaluation Method

The asymmetric periodic excitations are performed in such way that in pre-defined
time intervals the battery cell is abruptly partially discharged and after a short
relaxation time again charged to a certain amount. This process was repeated every
4 min in the actual measurements. The constant discharge and charge currents
flowing thereby and the respective time intervals are shown in Fig. 13. The
resulting curve of voltage response measured at the battery poles for a single
asymmetric excitation period is represented in Fig. 14.

During complete unloading below a certain voltage limit, the shape of the
response curve of each section should evolve systematically in subsequent asym-
metric excitation periods due to aging of the battery. To get a quantitative measure,
we approximated the discharge curves (Sect. 1) of successive periods by the
3-parametric fit function given in Eq. (1):

Fig. 13 Current trigger
signal for two asymmetric
excitation periods of each
4 min: 20 s discharge at ≈ 49
A, 73 s relaxation, 20 s
charge at 5 A and 127 s
relaxation

Fig. 14 Single period of
voltage response at one
asymmetric excitation.
Section 1 corresponds to
discharging, Sect. 2 to
relaxation after discharging,
Sect. 3 to charging and
Sect. 4 to relaxation after
charging
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UðtÞ=U0 exp − btcð Þ. ð1Þ

This fit method turned out to be optimal with respect to flexibility and quality by
comparing with various other fit approaches.

Starting from these spline functions of single periods, another function c= f ðbÞ
was used for further evaluation which combines the single pairs of values b and c
obtained by successive splines of discharge cycles and represents a time-independent
characteristic of the battery. As fit approachwe have chosen the two-parametric spline
function (2),

c=A ̸bB, ð2Þ

which proved to be most flexible with an optimal regression coefficient by com-
paring different fit trials. The resulting parameters A and B can be conceived as
specific values for each battery.

3.2 Results of Discharge Measurements with Asymmetric
Periodic Excitations

As an example, Fig. 15 shows the discharge spline function of voltage response
during the third period for a new battery with 100 Ah capacity and a 3D-plot offitting
parameters of all discharging splines from an unload process down to 10.5 V.

The dependency between spline parameters b and c of all periods together with
the fitting function according Eq. (2) is visualized in Fig. 16. The fit provides the
parameters A and B, i.e. the individual battery characteristic, in good approximation
(r2 = 0.996). Surprisingly, almost the same values for A and B are obtained if one

Fig. 15 Left Discharge spline function of voltage response. Right 3D plot of fitting parameters U0,
b and c of all discharging splines from an unload process down to 10.5 V. The arrow indicates the
time development

150 E.-C. Haß et al.



fits only a small interval (about 1 h) of the spline function c= f ðbÞ (see also
Fig. 16).

To summarize our results, the courses of spline parameters b and c depending on
the asymmetric excitation periods are represented in Fig. 17 for the 8 batteries
mentioned above (see Fig. 12). One can clearly see that the batteries are divided
into two groups with distinctly different dynamical behavior, one of them con-
taining 6 and the other containing 2 accumulators. This reflects the fact, that they
are produced by two different manufacturers.

In addition, from the length and the structure of the plotted curves one can
already conclude on the aging state of the respective battery. For instance, a long
and comparatively smooth curve is indicative for a newer battery, and a short and
noisy curve, in particular with a maximum of b, suggests an aged one.

Fig. 16 Dependency
between spline parameters
c and b as well as their fitting
function (Eq. (2)).The upper
diagram shows the fit over all
discharging periods, whereas
the lower diagram covers only
the periods of about 1 h. The
resulting characteristic values
A and B are quite similar, i.e.
one only needs a small
interval to get the required
information about the
individual battery
characteristic
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4 Conclusion and Outlook

Local potential measurements in Pb/PbO2 cells using special sensors can be carried
out to get reliable quantities about the State-Of-Charge (SOC) and the
State-Of-Health (SOH). It is generally known that lead-acid batteries are an
example of strongly coupled non-linear electrochemical systems in which special
inhomogeneities and acid stratification occur due to uneven distribution of current
density and hindered diffusion. Such inhomogeneities can be detected by
spatio-temporal potential measurements, but it requires a considerable measuring
effort and hence this method is relatively costly.

On the other hand, one can assume that many of the different local states and
potential distributions are reflected in measured values of the total current and the
total voltage at the poles of an accumulator. We are convinced that aging of
electrochemical systems, such as Pb/PbO2 or Li-Ion batteries, can be ascribed to
chemical modifications within the electrolyte as well as to self-organized structure
formation, in particular in the vicinity of the electrodes.

In the second part of this article we have exemplarily demonstrated that one can
get information about aging and the future performance of an electrochemical
system by studying the response behavior to small short-term external perturba-
tions. Using asymmetric periodic excitations we obtained individual characteristics
of the batteries from fitted spline functions of the voltage response behavior which
can be summarized in battery specific parameters A and B.

Fig. 17 Three dimensional plot of spline parameters b and c depending on the number of periods
for the 8 batteries mentioned above. There are two groups of battery plots due to different
manufactures: 6 in the upper left and 2 almost in the plane spanned by coordinates N and b. The
blue curve corresponds to a new battery, and the black one to an aged one short before the end of
its lifetime
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For future work, it is conjectured that by applying more complex charge and
discharge current profiles the information content of the responding voltage signal
under the imposed current application can be strongly increased. Figure 18
demonstrates schematically the increase of information using a stationary, periodic
or chaotic current input.

For instance, imposing a chaotic current profile will give a chaotic voltage
answer of the battery which can be evaluated in frequency space leading to a set of
Fourier coefficients which may allow a refined prediction of the battery’s state.
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Dynamics and Control of Spiral
and Scroll Waves

Sumana Dutta, Nirmali Prabha Das and Dhriti Mahanta

Abstract Excitable systems can sustain different kinds of wave forms like target

patterns, two-dimensional spiral waves or their three-dimensional counterparts, the

scroll waves. The dynamics of these excitation patterns and their responses to differ-

ent kinds of internal and external perturbations are being looked into. These waves

interact with neighboring vortices, that could lead to either attraction or repulsion

and sometimes even their merging. Thermal gradients and electric fields can be used

to control the motion of spiral and scroll waves. Scroll waves anchor to unexcitable

heterogeneities and external field gradients can be used to unpin them from such

obstacles. Our experiments with the Belousov–Zhabotinsky reaction are explained

on the basis of numerical simulations using the Barkley model.

1 Introduction

Spiral and scroll wave activities are often encountered in different kinds of excitable

media, like slime molds, viz. Dictyostelium discoideum [1], the nervous [2], retinal

[3] and cardiac tissues [4, 5], catalytic [6] and precipitation chemical processes [7],

etc. These waves have a higher frequency and shorter wavelength than the plane

waves or target waves in the same medium [8]. Hence, once formed, they take over

the entire excitable space, casting aside any target waves that may have been present.

In a system such as the heart, this gives rise to arrhythmia, or fast and irregular heart-

beats. This means that the heart cannot pump enough blood to the organs [9]. The
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situation may further worsen when there is spiral breakup or turbulence, as that is

reflected in a medical condition called Fibrillation, which when occurring in the ven-

tricles of the heart (VF) can cause immediate cardiac arrest and death. The under-

standing of such phenomenon requires a complete knowledge of the dynamics of

these wave forms. Further, in order to find measures of cure, one needs to be able

to control these waves. Current methods of defibrillation employ a strong and quick

electric pulse that aims at erasing all wave forms and depends on the pacemaker cells

of the heart to restart the supply of the regular waves. But such strong electric shock

can create scars in the cardiac tissues which will act as seeds of future fibrillation.

Milder methods of control of spiral and scroll waves are hence sought after. The

heart is a complicated biological organ, and experiments on a live heart are neither

easy nor cost-effective to be carried out on a regular basis. Another excitable system

which shows similar kinds of wave forms is the Belousov–Zhabotinsky (BZ) reac-

tion [10, 11]. This is an oscillatory redox reaction that can sustain spiral and scroll

waves in an unstirred medium. Though there are several mismatches between the two

systems: the heart is highly heterogeneous and the conduction velocity of the cardiac

waves are around 0.2–0.5 m s
−1

, whereas the BZ system is mostly homogenous and

its waves have a typical velocity in the range of 0.01–0.1 mm s
−1

; nevertheless, the

exact nature of the waves that they sustain, makes the BZ system one of the simplest

laboratory models for the study of spiral and scroll waves.

Through this contribution we try to summarize the results of some experimental

research of spiral and scroll waves, specifically in the BZ system. Our main focus

is on the methods employed for controlling the dynamics of these waveforms. We

explore how vortices interact with each other, anchor to unexcitable obstacles, and

how they respond to external stimuli. Simple numerical simulations used to explain

the experimental findings are also discussed.

2 Spiral and Scroll Waves in the BZ System

In the last couple of decades, several studies have employed the BZ system to under-

stand spiral and scroll wave dynamics [12]. The BZ system constitutes the oxidation

of an organic acid by sodium bromate, in the presence of sulphuric acid. Ferroin

as well as some ruthenium or cerium complex can act as a catalyst in the reaction

that can show a change of color when stirred. In unstirred layers of BZ solution, the

system can sustain two-dimensional (2D) spiral and three-dimensional (3D) scroll

waves (Fig. 1). A typical BZ reaction in 2D constitutes a 2 mm layer of agarose gel

with the required concentrations of the reagents. A gel is used to rule out convection

effects. A 3D BZ system involves two gel layers (of 4 mm each) placed one above

the other.

In a typical experiment, the reaction is carried out in a flat reaction chamber (like

a petri dish) that is illuminated from below by a white light source and viewed from

the top. In recent times, a charge coupled device camera connected to a personal

computer is frequently used to take snapshots of the experiment and record the data.
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The images are later analyzed by using different computational techniques, and the

variation of the intensity studied to make observations on the dynamics of the wave

forms. Tomographic techniques are also used by some groups to analyze the 3D

scroll waves [13]. This enables one to get a three-dimensional view of the entire

scroll as opposed to the top view. The latter gives an intensity profile that is basically

the sum of intensities of every layer in the 3D object, more like a projection image.

Numerical studies of spiral and scroll waves are also very beneficial to understand

the dynamics of the tips and the filaments. There are several mathematical models

that mimic reaction diffusion systems. The simplest and most versatile amongst them

is the Barkley model [14]. This is purely a mathematical model of an activator—

inhibitor system that supports the formation of spiral and scroll waves (Fig. 2).

𝜕u
𝜕t

= 1
𝜖

{
u(1 − u)

(
u − v + b

a

)}
− ∇Ju, (1)

𝜕v
𝜕t

= u − v − ∇Jv. (2)

where u and v are the concentrations of the activator and inhibitor respectively, 𝜖, a
and b are system parameters of the system, Ju and Jv are the fluxes of the ions. In the

presence of diffusion, the fluxes are given by, Ju = −Du∇u and Jv = −Dv∇v, where

Du and Dv are the translational diffusion coefficients of u and v respectively.

The Oregonator model, which has been derived from the simplified kinetics of

the BZ system, is also widely used in the theoretical study of these systems.

A two-dimensional spiral wave has a singularity, its tip. The trajectories of spi-

ral tips are very interesting, and several attempts have been made to study them.

Oftentimes the tip traces out trajectories that are aesthetically pleasing (Fig. 3a). The

trajectory could be circular (Fig. 3b) or a meandering one (Fig. 3c). Meandering tra-

jectories could be epicycloid or hypocycloid in nature [15].

The three-dimensional scroll waves also have a one-dimensional singularity. This

is the filament of the scroll (Fig. 3d). The filament is that geometry around which the

vortex rotates [16]. The ends of the filament will either close in on itself or touch the

boundaries. Filaments are geometrical entities that follow the curvature dependent

Fig. 1 a Spiral and b scroll waves in the Ferroin catalyzed BZ system. The initial concentrations

of reactants in the 0.8% (w/v) agarose gel layers are, [NaBrO3] = 0.04 M, [CH2(COOH)2] = 0.04
M, [H2SO4] = 0.16 M, and [Fe(o-phen)3]SO4 = 0.5 mM
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Fig. 2 Numerical simulation of the Barkley model showing formation of a spiral in two dimensions

(a) and a scroll in three dimensions (b). Parameter values taken are a = 1.1, b = 0.84, and 𝜖 = 0.02.

Du = 1.0, Dv = 1.0. Zero flux boundary condition is set for each diffusing species along all the

boundaries

Fig. 3 a–c Various tip trajectories of spiral waves in the experimental BZ system. d A three-

dimensional scroll wave obtained by simulation of the Barkley model. The filament, which is traced

in blue, is identified at regions where u = 0.5 and v = a∕2 − b. Other parameters same as in Fig. 2

Fig. 4 Time evolution of the filament of a scroll ring. The filament shrinks with time. a Filaments

from four snapshots of an experiment with the BZ system, superposed on each other. Each snapshot

is 15 min apart. b Filaments of a simulation involving a scroll ring in the Barkley model
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motion, according as

ds
dt

= 𝛼𝜅N̂ + 𝛽𝜅B̂, (3)

where 𝛼 is the filament tension, 𝛽 the translational drift coefficient, 𝜅 the local cur-

vature, N̂ the unit normal vector, and B̂ the unit binormal vector of the curve. It has

been shown that the filament of a scroll wave in the BZ reaction has positive filament

tension 𝛼 > 0, meaning a round scroll ring will always shrink (Fig. 4). Also 𝛽 ∼ 0 in

an appreciable concentration range, choosing which would ascertain that there is no

movement in the z−direction. Alternatively, negative filament tension paves the way

for interesting situations like spiral wave turbulence.

3 Interaction of Spiral and Scroll Waves

Spiral waves of same frequency and wavelength will coexist side by side in a

homogenously excitable system. Spiral waves generally occur in pairs. In a homoge-

neous environment, the two tips rotate with the same frequency and hence the mutual

distance between them does not change with time. But if the excitability of one of

the two tips of the spiral pair can be changed, then the faster arm will perturb the

slower arm, and the two tips will move away from each other (Fig. 5).

Again a spiral arm may act as a defect when it is forced by a high-frequency

wave train that may be originating from a target source or another fast moving spiral

(Fig. 6) [17].

Depending on the relative frequencies of the spiral wave and the forcing wave,

the direction of drift may vary. Two or three forcing waves can allow the positioning

of the spiral at a specific point in space (Fig. 6d).

Scroll waves may interact with each other if they are close enough [18]. Depending

on their mutual orientation, two scroll rings can push each other away and rupture

on touching the system boundary, or they can reconnect to form a single, large ring

(Fig. 7). Reconnection only occurs when the filaments lie within one core length of

each other (Fig. 8). The reconnected filament has highly extended lifetimes, which

could have serious implications in systems where they occur.

Fig. 5 Faster arm (lower) of a spiral pair pushing away the slower arm in experiments involving a

thin layer of the BZ system. a 15 min and b 100 min after initiation of spiral
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4 Influence of External Gradients

Reaction-diffusion systems react to external field gradients. Noise, electromagnetic

fields and thermal gradients can bring about instability in a stable system [19]. The

ions in the BZ system are also expected to be directly affected by the application of

such external fields. The flux in these cases get modified due to the presence of the

gradients. In the presence of an electric field, the flux for a species u is of the form:

Ju = −Du∇u + DuzuuE (4)

where zu is the charge on u, and E the electric field or electric potential gradient. The

flux in the presence of a thermal gradient takes the form [20]:

Ju = −Du∇u − DTuu(1 − ru)∇T (5)

where DTu = (DuST0 )∕(1 + ksu), is the thermal diffusion coefficient of species u, ru
is its relative concentration given by, ru = u∕(u + v), and ∇T is the thermal gradient

Fig. 6 a–c Drift of a spiral defect in a BZ system. The time between subsequent snapshots is 200s.

The arrows indicate the position of the defect at every instant. d Trapping of a defect by three

forcing waves. The snapshot is from a later stage of the experiment, after the trapping of the defect.

The trajectory of the defect has been superscribed in white

Fig. 7 Schematic representation of filament interaction [18]. Small black arrows denote the motion

of the constituent spirals around the points of nearest approach of the filaments. a Reconnection of

vortex filaments. The nearest approaching spirals have opposite sense of rotation. b Repulsion of

filaments and possible rupture at the boundary. Here the nearest spirals have same sense of rotation
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Fig. 8 a–dReconnection of scroll wave filaments in the BZ system. Snapshots of a pair of coplanar

scroll waves at a 7 min, b 21 min, c 35 min, and d 49 min after scroll-wave initiation. eReconnection

as a function of inter-filament distance Z0, and ring diameter, d0. Reconnected filaments are marked

as full (red) circles and nonreconnected ones as open (blue) circles

Fig. 9 a Movement of a spiral under the influence of an electric field (1.5 V cm
−1

, positive elec-

trode on the left). The snapshot has been taken 10 min after the field has been applied, and the tip

trajectory has been superposed on it to show the path the spiral has traced. b–c Reorientation of a

scroll ring under a thermal gradient (∇T = 1 ◦
C cm

−1
, right to left). The two snapshots have been

taken b just before and c 26 min after applying the gradient

between two sides of the reaction vessel and a constant for a reaction. The flux of

species v also gets similarly modified in the presence of external gradients.

Spiral waves meander away from their point of initiation under the influence of

electrical and thermal gradients [21] (Fig. 9a). Scroll waves on the other hand try to

align themselves perpendicular to the direction of the gradient [22, 23] (Fig. 9b, c).

It was found that the reoriented scroll ring later moves in the direction of the hot end

(thermal gradient) or the positive electrode (electric potential gradient).

This observation can be further extended to control the position of spiral and scroll

waves. A scroll ring can be made to traverse in a particular direction by employing

moving or multiple gradients (Fig. 10) [24].

5 Pinning of Scroll Waves to Unexcitable Obstacles

The breakage of a plane wave due to some unexcitable obstacle, in conducive condi-

tions of excitability, can lead to the formation of spiral and scroll waves. Again, such
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Fig. 10 Trajectory of a scroll ring under a moving electric potential. The field strength is 1.5 V

cm
−1

, and the position of the electrodes are changed after every 1 h. The continuous bold line in

every box shows the trajectory for the current position of the electrodes, while broken lines denote

past trajectory. Open circle in a denotes the initial position of the center of the scroll ring and 5 in

d is the final position of the ring center. For any orientation of the gradient, it is observed that the

scroll ring moves in the direction of the positive electrode

Fig. 11 Pinning of scroll waves. Snapshots (a, c, e) and corresponding time-space plots (b, d, f)
of three experiments. a, b freely collapsing scroll; c, d vortex pinned to glass beads of 1 mm radius;

e, f scroll ring pinned to a rubber O-ring of diameter 6.0 mm and thickness 2.0 mm. The time-space

plots have been constructed by plotting intensity profiles with time, along the straight black lines
seen in the corresponding snapshot. These plots (time going left to right) span time intervals of

120 min (b), 210 min (d) and 183 min (f)
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unexcitable obstacles can also act as anchors to these wave forms. Pinning is a phe-

nomenon which can be seen in the BZ reaction, where spiral waves and scroll waves

get attached to glass beads and rubber rings (Fig. 11). Once pinned, the filament

tends to be stabilized and no longer shrinks like a free filament. This increases the

lifetime of the scroll rings infinitely [25, 26]. In the cardiac tissue, scroll waves may

get pinned to scar tissues and other heterogeneous anomalies. The elongated life-

times of these pinned vortices will be further detrimental to cardiac health. Hence,

along with the control of free scroll waves, the mechanism of pinning and possible

ways of unpinning of scroll waves are topics of major concern.

Fig. 12 a–b Electric field controlled unpinning of scroll ring in an experimental BZ system. The

two snapshots are taken just before (a) and 23 min after (b) the application of electric field (1.5 V

cm
−1

). c—f Filament dynamics of unpinning under a thermal gradient (right to left) for different

orientations of inert obstacles. Results of two sets of simulation for the Barkley model: interbead

axis parallel to the gradient vector in (c, d) and perpendicular in (e, f). The curves (red) in the

center of the cube are the filaments, the spheres (blue) are the pinning obstacles, and the curves
(blue) along with the circles (purple) at the bottom of the box are the two-dimensional projections

of the filament and the obstacle
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6 Unpinning of Scroll Waves by External Gradients

In the earlier sections we have seen that spiral and scroll waves can be controlled by

external field gradients. It is hence worthwhile to speculate if such external gradients

could be successful in unpinning the waves anchored to inhomogeneous obstacles.

Further studies showed that thermal [27] and electric potential [28] gradeints were

able to unpin stable scroll rings attached to beads, in the BZ system (Fig. 12).

7 Discussion and Future Direction

The study of 2D spiral waves and 3D scroll waves in the homogeneous BZ system has

led to an appreciable understanding of their dynamics. Activity of free and pinned

waves, and their modified dynamics under the influence of neighboring sources of

excitation waves and external field gradients have been well studied. It has been

shown that such external fields can be used to control them and position them in

space. Further studies aiming at the annihilation of trapped defects needs to be car-

ried out. However, the real challenge lies in extending our knowledge to the control of

such waves in biological systems, like the cardiac tissues. For this, we have to under-

stand better the effect of irregular heterogeneities and other complexities present in

such excitable systems. Once we are successful in bridging this gap and a correlation

has been established between the waveforms in the BZ system and the heart, it may

be possible to design medical gadgets that will pave the way for better treatment of

conditions like VT and VF that results from these waves.
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One-Way Diffusion and Active Motion
of Ionic Liquids in a Dissolution
Process in Water

Noriko Oikawa and Rei Kurita

Abstract The dissolution dynamics of ionic liquid (IL) in ILs/water systems and at

an IL/water/air interface is investigated. When a hydrophobic IL dissolves in water,

it forms a droplet with a clear interface even though it is soluble to water. The transi-

tion between the two liquids remains sharp throughout the dissolution process, and it

seems that the diffusion occurs unidirectionally, only outward from the droplet. The

dissolution dynamics can be described as an activation process in which IL mole-

cules escape from the droplet with a probability proportional to the surface area of the

droplet. This distinctive feature of the dissolution dynamics may relate to alignment

of the IL molecules at the IL/water interface. On the other hand, an active motion of

water appears around the IL droplet, when hydrophobic ILs dissolve in a thin layer

of water with contacting the air/water boundary.

1 Introduction

When two fluids, which are in different phases, are mixed, the transition between

the two fluids remains sharp throughout the mixing process. Examples are found in

crystals that dissolve in a liquid and droplets of liquid that evaporate into the air.

In these systems diffusion occurs unidirectionally, only outward from the solutes,

due to differences of the partial pressures. This mixing process could be regarded

as a “one-way diffusion”. For a mixing process between two miscible liquids, on

the other hand, it is known that mass transfer takes place in both direction across the

boundary between the two liquids and the concentration dynamics follow a diffusion

equation [1]. However, it is known that some liquids do not follow this conventional
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diffusion process during mixing, even when the system is at a thermodynamically

homogeneous phase. When the surfactant dispersions are injected to other solvents,

surfactant molecules typically generate mesoscale self-assembled structures such as

micelles and lamellar [2, 3]. In case of n-butanol and isobutyric acid, the solute

forms a droplet with a sharp interface in a solvent [4, 5] even without a surfactant.

In these systems, the two miscible liquids remain in a non-equilibrium state until the

solute dissolves into the solvent [6]. These are in contrast to the mixing behavior of

traditional molecular solvents in which the dynamics follows a diffusion equation.

Thus the mixing dynamics of the above systems might be related to the one-way

diffusion realized in two miscible liquids. Although the one-way diffusion in miscible

liquids has attracted many interests, there are only few reports on the detailed process

of the mixing.

Ionic liquids (ILs) are a series of low temperature melting ionic compounds.

Although ILs are composed merely of ions, hydrophobic alkyl chains attached

mainly to the cation molecules lead to the low melting temperature by preventing IL

molecules from packing closely as a crystal. ILs have found wide application in var-

ious fields such as chemical synthesis and electrochemistry [7–10]. Recently it has

been reported that, unlike water and common organic solvents, ILs have a nanoscale

structure composed of aggregates of polar and non-polar components [11–18]. It is

recognized that ILs resemble ionic surfactants [19–22].

[Cnmim][PF6], 3-methylimidazolium hexafluorophosphate with different alkyl

chain length n = 2, 4, 6 and 8, is a hydrophobic IL commonly used in the ILs research

(see Fig. 1a). It is found that [Cnmim][PF6] form droplets in water while mixing.

The droplet retains a sharp interface with a surface tension, gradually decreasing in

droplet size until completely mixed. The shape of the droplet is stable against dis-

turbance of flow. This behavior is in sharp contrast to the usual diffusive mixing

process between two miscible liquids and can be assumed as a one-way diffusion.

On the other hand, when [Cnmim][PF6] dissolve in thin layers of water with contact-

ing the air/water boundary, dissolution dynamics induces an active motion of water

around the [Cnmim][PF6] droplet. The amphiphilic feature of the cation molecules

and the solubility of [Cnmim][PF6] make the surface tension of water spatially inho-

mogeneous, and the system becomes unstable.

In this letter, the one-way diffusion and the active motion observed in the

[Cnmim][PF6]/H2O system are reported. Due to the stability of the [Cnmim][PF6]
droplet against flow, the dissolution dynamics can be obtained in detail. The mech-

anism of the dissolution dynamics will be discussed in relation with the mesoscale

structure created at the [Cnmim][PF6]/water interface.

2 Experimental

[PF6]−-based ILs, [Cnmim][PF6], of different alkyl chain lengths n = 2, 4, 6 and 8,

are used in the experiments. The magnetic ionic liquid (MIL), 1-butyl-3-methylimi-

dazolium tetrachloroferrate (bmim[FeCl4]) [23, 24] is also used mainly to obtain
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Fig. 1 Structure of the

molecules of a the ILs

([Cnmim][PF6]) and b the

MIL ([bmim][FeCl4]−)

concentration profile of the droplet in the mixing process utilizing its brown color.

The cation of the MIL has alkyl chains of n = 4. The images of the ILs molecules and

the MIL molecules are shown in Fig. 1. The hydrophobic alkyl chains are attached

in the imidazolium cations. All the samples were purchased from Kanto Chemical

Co., Inc. The dissolution processes of the IL droplets were recorded with Panasonic

HC-V520M High Definition Video Camera. For the experiments of dissolution

dynamics, we used a petri dish of 7.8 cm diameter, which is sufficiently large com-

pared to the size of the droplets. 30 g of deionized water was used as a solvent of

the mixing. Thus the layer thickness of water in the petri dish is roughly 0.6 cm. The

experiments have been performed at 18
◦
C, which is controlled by an air condition-

ing, except as described in the text. In experiments with changing temperature, the

error of the temperature value was ±0.1
◦
C throughout each experiment.

3 Results and Discussion

50 µL of a MIL is gently injected into deionized water in a petri dish. We observe

that the MIL forms a spherical droplet in water. Since the formation of a droplet

is a characteristic feature of phase separation, it seems as if the MIL and water are

immiscible. However, the saturation concentration of the MIL is 𝜙c ∼ 25% in water,

and the experiment is performed on 𝜙 ∼ 0.001% (𝜙 ≪ 𝜙c), where 𝜙 is volume frac-

tion of the MIL in the system. It seems unusual that the sharp interface remains even

though the system is in a homogeneous phase at equilibrium. In order to quantita-

tively investigate the dissolution process of the droplet, we analyzed the temporal

change of the image intensity around the droplet, which corresponds to the con-

centration of the MIL, due to the brown color of the MIL. The thickness 𝜉 of the

boundary region can be determined from the concentration profile measured across

the droplet, as the width of the transition region where the intensity abruptly changes.

It is confirmed that 𝜉 is thin compared to the size of the droplet and remains constant

with time as shown in Fig. 2. This indicates that a clear interface between MIL and

water remains throughout the dissolution process. The neighboring water turns to a
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Fig. 2 Time dependence of

the boundary thickness 𝜉 of

the MIL droplet and

temporal change of the MIL

droplet dissolving in water

light yellow-color as the MIL dissolves in water. Subsequently, the size of the droplet

decreases with time as seen in the pictures in Fig. 2, and finally the MIL completely

dissolves into water.

We go on to investigate ILs of [Cnmim][PF6]. [Cnmim][PF6] is known to have

a hydrophobic nanoscale structure in a [Cnmim][PF6]/water mixture at equilib-

rium [13–15]. We inject [C4mim][PF6] into water in the same manner as in the MIL

experiment. Similarly to the MIL case, [C4mim][PF6] forms a droplet in water and

dissolves slowly while retaining the interface and the spherical shape of the droplet.

When the [C4mim][PF6]/water system is cooled, the reversed process happens by

phase separation of [C4mim][PF6] from water. Thus the mixing of [C4mim][PF6]
and water is a thermodynamical phenomenon and not a chemical reaction process

such as the decomposition of [C4mim][PF6].
In order to examine whether the mixing process is the one-way diffusion or not,

the water content of the [C4mim][PF6] droplet, which had been undergoing the dis-

solution process in water by 20% decrease in volume, was measured with transmit-

ted IR light intensity by using a spectrophotometer. As a result, the water content

of the [C4mim][PF6] droplet was estimated as less than 3%. If the [Cnmim][PF6]
molecules and the water molecules exchange their position simultaneously in the

dissolution process, the water content in the droplet should increase as much as the

volume decrease of the droplet due to the dissolution. In the present system, how-

ever, the water content of the droplet was much smaller than the volume decrease

of the droplet. Thus it seems that the one-way diffusion effectively occurs, in which

mass transfer takes place unidirectionally only from the [Cnmim][PF6] droplets.

The one-way diffusion exhibited in [C4mim][PF6]/water system is further inves-

tigated quantitatively. The time evolution of the diameter d of the [Cnmim][PF6]
droplet is examined at 80

◦
C for different alkyl chain lengths n = 2, 6, 8. d linearly

decreases with time for all the cases as plotted in Fig. 3a. This leads us to the equa-

tion, dV∕dt = −aS, where V , S and t are droplet volume, surface area and time,
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respectively. The coefficient a corresponds to the IL flux that dissolves from the

surface of the droplet per unit time and unit area. The obtained results indicate that

the dissolution of the IL droplet is an activation process. In Fig. 3b the temperature

dependence of a is plotted with respect to 1/T on the basis of the Arrhenius plot.

The dissolution speed increases as the temperature increases. ln(a) linearly depends

on 1/T , supporting the assumption that the dissolution occurs through an activa-

tion process. Since the nanostructures formed in ILs are induced by the solvophobic

interaction of alkyl chains [20–22], it is thought that the alkyl chain length affects the

dissolution dynamics of [Cnmim][PF6]. The activation energy 𝛥E can be obtained

by the equation a = a0exp(−ΔE∕kBT). The slope in the ln(a)–1/T plot (Fig. 3b)

corresponds to (−𝛥E∕kBT). The activation energies per 1 mol for [C2mim][PF6],
[C4mim][PF6], [C6mim][PF6] and [C8mim][PF6] are 36.9 kJ/mol, 41.5 kJ/mol, 43.9

kJ/mol and 51.3 kJ/mol, respectively. One finds that 𝛥E increases as n increases.

Since longer alkyl chains lead to enhanced hydrophobicity, it is considered that the

hydrophobicity controls the dissolution dynamics via a rearrangements of the alkyl

chains at the interface.

When an energy barrier exists at the interface, it is advantageous for the system

to minimize the interfacial surface area. We investigate the existence of an interfa-

cial tension by making a collision of two [C4mim][PF6] droplets. We extract edge

lines of the droplets by digital image analysis for each time frame and calculate a

total circumference L for the droplets. In Fig. 4, the temporal change of L is plot-

ted. The edge line images of the droplets are also inserted in the figure at times

when the droplets change their forms. One can see that the collided droplets merge

with each other within a short time interval (less than 100 ms), and the form of the

[C4mim][PF6] droplet recovers the spherical shape immediately after the collision.

This observation provides strong evidence that there exists an interfacial tension at

Fig. 3 a Time evolution of the diameter d of [C2mim][PF6], [C6mim][PF6] and [C8mim][PF6]
droplets in water obtained at 80

◦
C. d decreases proportionally with time. b Dependence of the

slopes a in (a) on 1/T . The solid lines are obtained by linear fitting
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the [C4mim][PF6]/water interface. The interfacial tension of [C4mim][PF6] in water

was measured by using the pendant drop method and determined as 19.04 [mN/m].

These results lead to an interpretation about the contrasting behavior in the dis-

solution dynamics of [Cnmim][PF6]. The [Cnmim][PF6] are primarily soluble to

water when the system is at the homogeneous phase point. On the other hand,

the hydrophobic interaction of alkyl chains likely induces a nanoscale structure at

the interface with water. Since the characteristic time scale of the formation of the

nanoscale structure is much shorter than that of the dissolution dynamics, the struc-

ture is created at the interface before the [Cnmim][PF6] and water are mixed. It is

thought that the structure formed at the interface plays a role of the energy barrier in

the dissolution process of the droplet and also creates the interfacial tension of the

droplet.

When [Cnmim][PF6] dissolves in a thin layer of water with contacting the

air/water boundary, another type of dissolution process is observed. 10 µL of

[C4mim][PF6]was dropped onto 30 g of distilled water, which was poured into a petri

dish of 15.5 cm diameter. Since the thickness of the water is small, the top part of the

[C4mim][PF6] droplet is not covered completely by the water and is in contact with

the air. In such a situation, [C4mim][PF6] expands to the surface of water first because

of the amphiphilic nature of the cation molecules. Therefore, the surface tension of

the water is strongly influenced at the same time when the [C4mim][PF6] dissolves.

The system undergoes the following processes, which are represented as schematic

images in Fig. 6. Cations evading from the droplet expand to the surface of water

and decrease the surface tension around the droplet as mentioned above (Fig. 6a). At

this stage water is pulled away from the droplet, and the droplet becomes isolated

against water (Fig. 6b). After the cations, which are floating on the surface, dissolve

into water, the imbalance of the surface tension is diminished (Fig. 6c), and water

returns back toward the droplet (Fig. 6d). These inverted processes occur repeatedly

and irregularly, and induce an active motion of the water surface around the droplet

Fig. 4 Temporal change of

the circumference L of

[C4mim][PF6] droplets

during the merging process

of two droplets in water. The

two droplets merge together

when they collide, and

recover the spherical shape

immediately after the

collision
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(a) (b)

1cm

(c)

Fig. 5 Successive images of the temporal change of [C4mim][PF6] droplet dissolving in a thin

layer of water acquired at a 0 sec, b 0.6 sec, and c 1.2 sec. The droplet exists at the center

of the dish

Fig. 6 The mechanism of the active motion observed in [Cnmim][PF6]/water/air interface. a The

cation molecules expand to the surface of the water and decrease the surface tension around the

droplet. b Water is pulled apart from the droplet because of the imbalance of the surface tension.

c The cation molecules dissolve into water and the imbalance of the surface tension is diminished.

d Water returns back toward the droplet

as shown in Fig. 5. The active motion observed in the present system can be regarded

as a camphor scraping pinned at a certain point in space.

4 Summary

The present study has investigated the dynamics of a mixing process between

hydrophobic ILs and water. It is found that the ILs form a droplet in water in the

dissolution process. The droplet retains a sharp interface with a surface tension, and

the size of the droplet gradually decreases until it completely disappears. This is

in contrast to the usual diffusive mixing process between two miscible liquids. The

observed dissolution dynamics of [Cnmim][PF6] and MIL droplets indicate that the

dissolution of the ILs obeys an activation process, and the one-way diffusion takes

place, in which ions diffuse in one direction only from the IL droplets into water. The

activation energy at the [Cnmim][PF6]/water interface increases with increasing the

length of the hydrophobic alkyl chains of the [Cnmim][PF6]. Based on the depen-
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dence of the activation energy on the morphology of the cations, it is considered

that a reorientation of the alkyl chains at the [Cnmim][PF6]/water interface induces

formation of a structure on the surface of the droplet. Indeed, recent studies have

revealed that when hydrophobic ILs get in contact with water the charged parts of

the IL molecules are oriented towards the water [13–15, 25, 26]. Thus, the nanoscale

structure of ILs presumably influences macroscopic non-equilibrium dynamics in the

mixing process of ILs and water. It is expected that the new aspects of the dissolution

dynamics will lead to further understanding of mixing dynamics of miscible liquids.
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Pattern Formation in Marine Systems

Ulrike Feudel

Abstract Pattern formation processes in marine science are very versatile, the spa-

tial scale of these patterns ranges from cm to about a 100 km. We demonstrate three

mechanisms of pattern formation in the water column as well as in the sediment of the

ocean. Plankton patterns result from an intricate interplay between biological growth

and transport by ocean currents. Mesoscale hydrodynamic structures like vortices

can act as incubators for plankton blooms, while transport barriers in the flow can

lead to a segregation of species in certain spatial regions of the ocean characterized

by the dominance of a particular plankton species. Spatial patterns of chemicals and

microorganisms in the sediment can emanate from a Turing instability leading to

inhomogeneous distributions of nutrients and bacteria. Marine aggregates agglom-

erations of plankton, bacteria and inorganic substances form preferential concentra-

tions, i.e. inhomogeneous distributions in space, which in turn influence strongly

aggregation and fragmentation processes and, hence, the export of carbon from the

atmosphere to the bottom of the ocean.

1 Introduction

Several decades of research in nonlinear dynamics have resulted in comprehensive

theories of pattern formation in systems characterized by nonlinear biological, chem-

ical or physical interactions of system components and described by partial differen-

tial equations [1]. Already in 1952 Turing [2] derived in his seminal paper conditions

leading to stationary inhomogeneous distributions of chemical substances caused by

a diffusion instability. Today we know a large variety of examples of pattern for-

mation in nature that range from fluid dynamics, e.g. Rayleigh-Bénard convection
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[3, 4] and Taylor-Couette flows [5], via spatial and spatio-temporal patterns in

chemical systems, e.g. the Belousov-Zhabotinsky reaction [6] to patterns in ecology

[7, 8], e.g. vegetation patterns in semiarid areas [9] to name only a few. The emer-

gence of stationary or time-dependent patterns in space are a result of an intricate

interplay between nonlinear local processes and physical transport processes such

as diffusion or advection processes. An appropriate description is often given in

terms of partial differential equations by either reaction-diffusion systems (RDS)

and reaction-advection-diffusion systems (RADS).

Interesting classes of patterns have been reported in marine science studying dif-

ferent processes in the open ocean, in tidal areas close to the coast as well as at

the sediment-water interface. These patterns emanate from the interaction of grow-

ing marine organisms with their physical environment, either the transport of nutri-

ents by hydrodynamic flows in the water column or by diffusion in the sediment

[10]. Since the seminal paper by Abraham [11], the coupling of biological and phys-

ical processes in the open ocean has been addressed in various studies [12–14]. Sev-

eral different aspects of plankton growth have been discussed, such as the emergence

of sustainable plankton blooms [15], localized plankton blooms in vortices [16], the

coexistence [17] and dominance [18, 19] of different plankton species. The patterns

arising at the sediment-water interface include the spatial distribution of plants such

as salt marsh vegetation and seagrass [20, 21], the formation of mussel beds [22]

and the inhomogeneous distribution of bacteria within the sediment [23, 24].

In this contribution we discuss three different examples of pattern formation

in marine science to illustrate the large variety of possible patterns. Thereby we

focus on very different spatial scales in which the different patterns arise. As a first

example we demonstrate in Sect. 2 how mesoscale hydrodynamic vortices of about

50–100 km in diameter influence the growth and competition of plankton species.

We show that such vortices can act as incubators for plankton growth as well as pos-

sible causes for the segregation of different plankton species. In Sect. 3 we illustrate

the emergence of Turing patterns on a spatial scale of about 1–10 cm in the sediment

as a possible mechanism to explain the appearance of depth-dependent inhomoge-

neous distributions of bacteria. Finally, in Sect. 4 we discuss the role of preferential

distributions of finite size inertial particles like marine aggregates for aggregation

and fragmentation processes at scales below 1 cm. The latter processes are an essen-

tial part of the carbon cycle in the earth system responsible for part of the export of

carbon to the deep ocean.

2 Plankton Patterns in the Ocean

One of the major requirements for the growth of phytoplankton—the plants in the

world’s oceans—is the availability of nutrients which is strongly dependent on the

hydrodynamic flow patterns. Hence, one of the essential factors controlling the pri-

mary production are horizontal and vertical transport of nutrients. Horizontal trans-

port is influenced by the mesoscale hydrodynamic flow structures such as vortices

and jet currents, while vertical transport is often related to coastal upwelling. The
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latter occurs usually when wind-driven currents, in combination with the Coriolis

force, produce Ekman transport, by which surface waters are driven away from the

coast and are replaced by nutrient-rich deep waters. Due to this upwelling the growth

of phytoplankton in these areas is strongly enhanced, subsequently leading to an

increase of zooplankton and fish populations. On the one hand, horizontal stirring

by mesoscale structures like vortices and jets is responsible for the redistribution

of plankton and nutrients and may therefore enhance primary production [13, 15].

On the other hand, it influences competition and coexistence of different plankton

species [17–19].

The basic equations which govern the dynamics of chemical substances and

plankton species are reaction-advection-diffusion equations. Accordingly, three dif-

ferent processes are considered: (a) reaction stands for the biological growth of

species and their consumption of inorganic nutrients, (b) advection accounts for the

transport of plankton and chemical substances by hydrodynamic flows and (c) dif-

fusion takes the small scale turbulent mixing into account which is usually not con-

tained in the large scale velocity fields used to describe the flow patterns in the ocean.

Food webs which represent the complex interactions between various species in an

ecosystem are modeled by highly nonlinear ordinary differential equations which

incorporate mathematical terms specifying growth, predator-prey interactions, com-

petition, mutualism and mortality. Simpler versions of ecosystem dynamics restrict

themselves to food chains where on each trophic level only one group of species is

taken into account. For such a food chain consisting of nutrients N, phytoplankton

P and zooplankton Z the equations would read:

𝜕N
𝜕t

+ v ⋅ ∇N = FN + D𝛥N

𝜕P
𝜕t

+ v ⋅ ∇P = FP + D𝛥P (1)

𝜕Z
𝜕t

+ v ⋅ ∇P = FZ + D𝛥Z.

A large variety of different models is used to study the biological interactions for the

growth of the species FN ,FP,FZ . These include models exhibiting steady state and

oscillatory behavior [25] as well as models particularly designed to model plankton

blooms in terms of excitable systems [26]. The velocity fields v are either given

by simple two-dimensional kinematic flows [15] or by ocean circulation models in

more realistic setups [18, 27]. Since the diffusion term stands for eddy diffusion, all

diffusion constants used for the different species obey the same value D. The Eq. (1)

are solved numerically by a semi-Lagrangian algorithm [28]. This procedure allows

for resolving filamental structures, which are important features of hydrodynamic

flows.

In the following we demonstrate the versatile impacts of mesoscale hydrodynamic

flow patterns on various aspects of plankton growth: (i) Mesoscale hydrodynamic

structures can act as incubators for plankton growth and enhance productivity in the

ocean. (ii) transport barriers to nutrients can facilitate the emergence of dominance
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Fig. 1 Sketch of the flow in

the wake of an island. The

upper border of the picture

denotes the coastline

patterns, i.e. a spatial separation of different regions in the ocean in which different

species dominate the ecosystem. (iii) Flow patterns are possible structures to support

biodiversity in the ocean leading to a coexistence of species which without flow

would outcompete each other yielding a loss of diversity.

The hydrodynamic flow field acts like a forcing and is given externally. While

marine oceanographers use large scale ocean models as the velocity field v(x, t) to

investigate the growth and distribution of plankton, conceptual models which high-

light the mechanisms of the interactions of flow fields and biological growth focus

on kinematic models for two-dimensional flows using stream functions. The justifi-

cation of employing only 2d velocity fields lies in the fact that vertical velocities in

the ocean are often at least one order of magnitude smaller than the horizontal ones.

Here we consider only the flow in the wake of an island which mimics the dynam-

ics of a von Kármán vortex street (cf. Fig. 1). Such a situation can be found in the

Canary current with the Canary islands located in the flow and an upwelling region

at the African coast [29] or in a similar setup in the California Bight [30]. The details

of the employed flow field can be found in [31]; its parametrization for the Canary

island area is described in [29].

To illustrate the effects on plankton patterns we use here a simple food chain

model [16] which is based on a three component model developed by Steele and Hen-

derson [32]. An extension which focusses on the competition of different species can

be found in [19]. The marine food chain model contains two different trophic levels

consisting of nutrients N, phytoplankton P consuming nutrients, and zooplankton Z
feeding on phytoplankton. The processes taken into account can be formulated as:

dN
dt

= upwelling − uptake + recycling

dP
dt

= uptake − grazing − mortality

dZ
dt

= grazing − mortality.

Expressed in mathematical terms this reads:
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dN
dt

= FN = 𝛷N − 𝛽
N

kN + N
P + 𝜇N

(
(1 − 𝛾) 𝛼𝜂P2

𝛼 + 𝜂P2 Z + 𝜇PP + 𝜇Z2
)

dP
dt

= FP = 𝛽
N

kN + N
P − 𝛼𝜂P2

𝛼 + 𝜂P2 Z − 𝜇PP (2)

dZ
dt

= FZ = 𝛾
𝛼𝜂P2

𝛼 + 𝜂P2 Z − 𝜇Z2
,

where the upwelling term 𝛷N accounts for an additional supply of nutrients due to

vertical transport from deeper nutrient-rich layers in the ocean. For details of the

biological modelling we refer to [16]. The parameters used in this model are taken

from [27] and mimic the situation in the open ocean.

Let us now discuss the impact of mesoscale hydrodynamic structures in the flow

(in our case vortices emerging in the wake of the island) on the growth of plankton

and their dominance with respect to competitors. To this end we couple the biological

and the hydrodynamical model and simulate the growth of plankton depending on

the inflow of nutrients and plankton from the left into the observation area shown in

Fig. 1. The role of the hydrodynamic flow consists to a large extent in a redistribution

of nutrients leading to plankton patterns observable in satellite pictures. To enhance

the effect of nutrient distribution on the emergence of these patterns, we assume the

existence of an upwelling region (cf. rectangular between the island and the coast-

line, i.e., the upper boundary of the observation area in Fig. 1) in which a hundred

times more nutrients are upwelled into the upper layer of the ocean compared to the

remaining area. Due to the background flow those nutrients are transported through

the observation area. As nutrients are the basis of the growth of plankton, we would

expect that more nutrients would lead to more growth of plankton. This is indeed

the case for a high inflow of nutrients and plankton into the observation area as

reflected by the high phytoplankton abundances concentrated in the upwelling plume

(Fig. 2, left panel). Under these inflow conditions no bloom within the vortex can be

observed. On the contrary we obtain a strong plankton bloom within the vortex,

when we assume a low input of plankton and nutrients into the observation area

(Fig. 2, right panel). This bloom would be even observed when we would shut off

the additional upwelling from the upwelling region. This latter dynamics is coun-

terintuitive and shows that nutrients and plankton are entrained into the vortex in

which the exchange of water with its surroundings is rather low. Due to this con-

finement in the vortex, plankton spends a rather long time within the vortex leading

to an enhanced biological growth. This way the vortex acts like an incubator for a

localized plankton bloom. Satellite pictures from various regions around the globe

exhibit such localized bloom patterns (cf. http://www.nasa.org/oceancolor).

To unravel the mechanism how nutrients and plankton are transported into the

vortex it is useful to employ methods from nonlinear dynamics which allow to gain

insights into the details of the flow structures. Jung et al. [31] have analyzed the

flow field and shown that there exists a chaotic saddle located in the space between

the island and the vortex street. A chaotic saddle is an unstable invariant chaotic

set possessing stable and unstable manifolds (foliations) in a similar way as fixed

http://www.nasa.org/oceancolor
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Fig. 2 Snapshot of the phytoplankton abundance with high inflow (left panel) and low inflow

(right panel) from the surrounding ocean. Concentrations and abundances from low to high are

denoted by colors from blue via green to red

points or periodic orbits of saddle type. Tracer particles in the neighborhood of the

stable manifolds move towards the chaotic saddle while tracers close to the chaotic

saddle leave its neighborhood along its unstable manifolds. Hence this chaotic saddle

embedded in the flow can be considered as a “bridge” between the island and the

vortex. Nutrients and plankton entering the observation area will slow down in the

neighborhood of the island and spend some time there, where the velocity field is

rather slow (the velocity goes to zero along the coast of the island). During that

time plankton starts growing and are transported along the stable manifolds from

the vicinity of the island towards the chaotic saddle and from there into the vortex

along the unstable manifolds of the chaotic saddle. Therefore, the chaotic saddle

builds the backbone of transport between the immediate neighborhood of the island

and the interior of the vortex. This transport mechanism is visible in the filamental

structures stretching from the island to the vortex in Fig. 2 (right panel).

To elucidate this transport mechanism further, we utilize the concept of finite time

or finite size Lyapunov exponents (FTLE or FSLE). This method has been success-

fully applied to identify Lagrangian coherent structures like vortices and barriers to

transport in general time-dependent hydrodynamic flows. The computation of finite

size Lyapunov exponents (FSLE) is based on the calculation of the time needed for

two tracers to reach a final prescribed distance 𝛿f when starting from an initial dis-

tance 𝛿0 [33, 34]. From the elapsed time, 𝜏±, the FSLE is calculated as

𝜆±(x, t, 𝛿0, 𝛿f ) =
1
𝜏±

log
𝛿f

𝛿0
(3)

The positive subscripts indicate that the tracers are advected forward in time,

while for the negative subscript they are advected backward in time. 𝜆± is a scalar

measure for the stretching/contracting rate in the flow given by the inverse of the

separation time 𝜏±. Maxima in the spatial distribution of 𝜆+ (𝜆−), the positive (nega-

tive) or expanding (contracting) FSLE, approximate the underlying stable (unstable)
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manifold embedded in the flow [34]. We observe that the stable and unstable mani-

folds are intertwined around the vortex cores and at the island (Fig. 3) in such a way,

that the “bridge” between the island and the vortex core becomes visible.

Note the white tracers in Fig. 3 symbolizing nutrients released in the upwelling

region. They are entrained into one of the vortices along the stable manifolds of the

chaotic saddle, but they are completely blocked to enter the interior of the second

vortex. This blocking is realized by the unstable manifolds which act as transport

barriers in the flow.

The organization of the flow by the time-dependent manifold structures has some

other important consequences for the formation of plankton blooms when several

species compete for the same nutrients. The manifolds which would redistribute the

nutrients from upwelling regions, particularly the unstable manifolds which act as

transport barriers, can “organize” preferred regions for certain species, i.e. the unsta-

ble manifolds segregate different species according to their nutrient needs yielding

a spatial structure of dominance of different species in different regions. The emer-

gence of such dominance structures has been shown explicitly in [19] using the same

kinematic flow. Furthermore, this possible segregation of species is capable of cre-

ating niches for different species in the ocean and can be considered as a possible

mechanism for maintaining a high level of biodiversity in the ocean providing local

niches for the coexistence of many species [17].

Upwelling events are usually rather intermittent since they are related to the

interplay of wind parallel to the coast, Ekman drift and the Coriolis force. There-

fore, the wind patterns determine the strength of upwelling and subsequently the

amount of nutrients provided for the growth of plankton. Upwelling events can last

a very short time, say 1–2 days, but also for a week and longer. Taking into account

that the growth of plankton is much slower than upwelling, one can imagine that

short upwelling pulses would hardly have any effect and only longer and stronger

upwelling would be capable of enhancing plankton growth. Furthermore, the time-

dependent location of the manifolds would not always transport the upwelled nutri-

ents to the regions where the plankton resides. If the upwelling happens in a inappro-

priate moment, then the upwelled nutrients could be blocked by transport barriers

in form of unstable manifolds and do not get to the plankton community to boost a

Fig. 3 Snapshot of the

stable (yellow) and unstable

(blue) manifolds in the wake

of the island
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Fig. 4 Simulation of the competition of two phytoplankton species in the wake of an island with

intermittent upwelling of nutrients. Though higher nutrient input happens more often, a domi-

nance change is only occasionally visible. When there is no dominance change, the upwelling event

occurred at a time instant when the flow would not transport the nutrients into the region where the

phytoplankton resides

bloom or to change the dominance of plankton species. Using the simple kinematic

flow outlined above one can demonstrate this behavior by replacing the constant

upwelling 𝛷N by an intermittent upwelling. A simple way of constructing such an

intermittent upwelling is to take a chaotic time series for the upwelling strength 𝛷N
in Eq. (1) (cf. Fig. 4 left panel). Applying such an upwelling scenario results in dom-

inance changes which occur only occasionally, as depicted in Fig. 4 (right panel).

In summary, these investigations show, that spatio-temporal plankton patterns in

the ocean are a result of the complex interplay of biological growth processes and

physical transport by hydrodynamic flows. Mesoscale structures like vortices and

transport barriers play a fundamental role in the emergence of such patterns and can

lead to localized plankton blooms, dominance patterns for competing species and

even to a support of the coexistence of more species.

3 Bacteria Patterns in Sediments

Stationary spatial patterns in a marine environment can be observed as vegetation

patterns at the sediment-water interface. Prominent examples are the patchy vege-

tation of seagrass and salt marsh vegetation [20, 21], the development of plankton

films on sediment surfaces [10] or communities of benthic organisms within the sed-

iment [35]. While all the patterns mentioned above are horizontally extended, other

patterns related to bacterial activity can be found in the vertical, exhibiting inhomo-

geneous distribution patterns of different bacterial species in deeper sediment layers

below the sediment-water interface [36, 37]. Recently, the formation of mussel beds

has been described as a result of a pattern formation process based on equations

which are similar to the Swift-Hohenberg equations [22].
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Biogeochemical processes in sediments at the bottom of the ocean are character-

ized by a complex network of chemical reactions which are mediated by bacteria

[38]. Therefore, the investigation of the various interactions between bacteria and

their nutrients is an essential part of marine research. Observations of bacterial activ-

ity in different depths of the sediment reveal distinct heterogeneous distributions of

different bacteria species and chemical substances [36]. Various mechanisms for the

emergence of such patterns of microorganisms have been proposed, most of them are

based on heterogeneous geophysical conditions as an external forcing for the growth

of bacteria. However, one can show that such patterns can also emanate from a dif-

fusion instability discovered by Turing [2] implying that no external influences are

necessary to explain those patterns. They can arise solely due to nonlinear processes

combined with physical transport. To demonstrate this, we consider a conceptual

model describing the growth of a bacteria species feeding upon a nutrient in the sed-

iment. We focus here on a mud flat in which advection processes can be neglected due

to the very small grain size. Hence, there are only two different transport processes:

diffusion as a passive and bioirrigation as an active transport process for nutrients.

The latter is realized by higher organisms which move in the sediment and actively

transport nutrients from the sediment-water interface into deeper layers of the sedi-

ment. A sketch of the model is represented in Fig. 5.

The mathematical formulation of this model reads as follows when we denote the

bacteria by B and the nutrients by N:

Ḃ = 𝛼

(
𝛾 + (1 − 𝛾) B

K + B

) BN
L + N

− mB + 𝜀 + DB𝛥B

Ṅ = −𝛽
(
𝛾 + (1 − 𝛾) B

K + B

) BN
L + N

+ 𝜎(N0 − N) + DN𝛥N (4)

where 𝛼 denotes the maximum growth rate and m the mortality of bacteria. The para-

meter 𝛾 stands for the fraction of active bacteria. The parameter 𝜀 introduces a small

but constant input of bacteria from outside, i.e. neighboring regions. This term guar-

antees that bacteria would never die out corresponding to a realistic situation. The

growth term of the bacteria depends on the nutrientsN and repeats in the equation for

the nutrients with an uptake rate 𝛽 but with a negative sign because the gain term for

bacteria is at the same time a loss term for nutrients. The active transport process by

higher organisms is proportional to the difference between nutrient concentration in

the water above the sediment N0 and the concentration at the local site. Its strength,

which is used as a bifurcation parameter is denoted by 𝜎.

Turing patterns as stationary spatially inhomogeneous distributions of different

chemical species arising from a diffusion instability are one of the most studied pat-

tern formation processes in nature [1]. Though the theoretical basis has been out-

lined by Turing [2] already in 1952, it took almost 40 years to show their existence

in experiment [39]. Turing derived mathematical conditions for the emergence of

an instability of a homogeneous distribution of two interacting species in a reaction

diffusion system (RDS) to find a possible mechanism for morphogenesis. He identi-

fied two conditions which have to be fulfilled for a diffusion instability to occur: (i)
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there should be an autocatalytic reaction and (ii) the two species have to have dif-

ferent mobilities represented by their diffusion constants. While the first condition

can be realized for different chemical reactions, the second condition is difficult to

fulfill, if the chemical experiment is taking place in a solution. Let us check those

conditions in the sediment: (i) Autocatalytic reactions are equivalent to reproduc-

tion processes of bacteria, which involve a positive feedback of the individuals of

the populations on their growth. Bacteria often occur in two different states, a lively

state in which they actively decompose organic material, i.e. their nutrients, and a

dormant state, in which they do not take part in the degradation process [40]. It has

been shown that bacteria can communicate with each other based on signal mole-

cules (e.g. cAMP) [41] and our model assumes such a communication to increase

the number of active bacteria from the pool of dormant bacteria. This results in a

self-reproduction process needed for a Turing instability to occur. (ii) The condition

of different mobility of nutrients and bacteria is given by the fact that bacteria usually

stick to the grains in the sediment matrix and move only very slowly if at all, while

the nutrients diffuse freely. This way the conditions for a Turing instability can be

fulfilled and we can expect to obtain Turing patterns for certain parameter ranges.

Indeed, we find three different kinds of patterns (Fig. 6) when taking the strength

of bioirrigation as a bifurcation parameter: (1) hot spots of bacterial activity with

large abundances of bacteria inside the spots and corresponding low abundances of

nutrients, (2) labyrinth patterns and (3) cold spots with low abundances of bacte-

ria within the spots large abundances around them. Surprisingly the same kind of

patterns have been observed in experiments with real bacterial communities from

sediments which have been taken from tidal flats [24]. The experimenters called the

cold spots honey comb patterns and the hot spots inverse honey combs. In nature,

bioirrigation is not constant in space but decreases with increasing depth. If such a

depth dependence is introduced one can find all the different patterns shown above

in different depths resulting in a zonation of the patterns as observed in the sediment

[23, 37]. The observed patterns are on a scale of a few cm.
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Fig. 5 Sketch of the sediment model
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Fig. 6 Turing patterns arising in the sediment model: hot spots (left panel), labyrinth pattern (mid-
dle panel), cold spots (right panel)

Instead of a nutrient-consumer model as the one explained above, one can also

analyze a more general setup of a predator-prey model from population dynamics.

Let us consider the following model for a prey X and a predator Y developing in

space and time and migrating diffusively with mobilities DX , DY :

Ẋ = 𝛼B(1 − X
K
) − 𝛽

X
𝛾 + X

Y + DX𝛥X

Ẏ = 𝛿𝛽
X

𝛾 + X
Y − 𝜇Y − 𝜈Y2 + DY𝛥Y (5)

This model is a modified version of the famous Rosenzweig-MacArthur model

[42] which describes the logistic growth of a prey with maximum growth rate 𝛼

and carrying capacity K. The prey X is consumed by the predator Y with maximum

rate 𝛽 and half-saturation constant 𝛾 . The grazing term shows up again in the equa-

tion for the predator with the opposite sign since it is now a growth term, which is

additionally multiplied by a conversion factor 𝛿 since only this fraction of prey is

converted into biomass of the predator. Finally, the predator dies with natural mor-

tality rate 𝜇 and due to grazing by predators on a higher trophic level with rate 𝜈.

This model exhibits a very versatile behavior; without the spatial interaction we find

steady states, bistability and oscillations. Adding the migration to the model Turing

patterns become possible as in the previously discussed model.

However, since the parameter space is rather large, one can ask what kind of

behaviors can be obtained. To shed some light on achievable patterns we focus here

only on the mathematical possibilities regardless of their biological relevance. In

parameter space various bifurcations arise: several saddle-node, a Hopf and a Turing

bifurcation. Furthermore, a cusp and a Turing-Hopf as higher co-dimension bifur-

cations occur. Finally there is a homoclinic bifurcation as a global bifurcation. Due

to this complexity we expect a quite complicated behavior in space and time. To this

end we perform a Monte-Carlo selection of parameters in the huge parameter space

after identifying for each parameter a search interval which is biologically reason-

able. As a result, we obtain lots of different space-time patterns which are interest-

ing and have not been observed before. Figure 7 presents snapshots of some of those

spatio-temporal patterns which are presumably all related to space-time chaos.
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Fig. 7 Snapshots of spatio-temporal patterns for the predator prey system Eq. (5) in various regions

in parameter space: mixture of hot and cold spot patterns embedded in an oscillatory background

(upper left panel); spiral with a hot or a cold spot as the tip of the spiral (lower left panel); irregularly

spreading domains of different concentrations of the species, where the domain walls represent

wave-like structures (upper right panel); almost stationary spot and labyrinth patterns interspersed

with homogeneous regions which are oscillating (lower right panel)

4 Inertial Particles in Flows

As a last example we turn to the smallest spatial scale in the ocean. Pattern for-

mation processes on a scale below 1 cm concern the spatial distribution of marine

aggregates, which we model as finite size particles. Marine aggregates are parti-

cles consisting of an inorganic kernel like sand or silt, to which plankton cells are

attached. These particles also called marine snow are an integral part of the car-

bon cycle in the ocean [43]. Chemical substances produced by the attached plankton

cells in their metabolism make the aggregates sticky, so that they can grow in size

when colliding with other aggregates [44]. The larger aggregates sink down due to

gravity and this process contributes to the export of carbon to the deep ocean. Addi-

tionally, those chemicals, called transparent exopolymers, attract bacteria which can

again decompose the aggregates. Besides this degradation by bacteria, marine aggre-

gates are fragmented by shear forces in the flow exceeding the binding forces of the
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aggregate. Aggregation by collision due to shear or differential sinking and frag-

mentation due to shear forces lead to dynamical sizes of the aggregates and finally

to steady-state size distributions when aggregation and fragmentation events bal-

ance each other. Because of these changes in size, marine aggregates are not only

passively transported by the flow but are active particles. Their sizes can be rather

large when consisting mainly of plankton cells as in the open ocean or their density

can be rather large compared to the fluid density when consisting mainly of inorganic

material as in coastal areas. In both cases, they can not be treated as tracer particles

but their finite volume needs to be taken into account.

While tracer particles are considered as point particles which follow precisely the

flow and move along trajectories of fluid parcels, particles with a finite volume follow

their own trajectories which are different from the flow. The simplest description of

the movement of finite size particles in a hydrodynamic flow is given by the Stokes

equation which considers only two forces acting on the particles: the Stokes drag

and in case of the ocean and the atmosphere also gravity. Therefore the equations of

motion of a particles with position 𝐗 and velocity 𝐕 are:

d𝐗
dt

= 𝐕

d𝐕
dt

= 1
St
(𝐮 − 𝐕) −W𝐞 (6)

where 𝐮 denotes the velocity field of the hydrodynamic flow, St the Stokes number,

W the settling velocity and 𝐞 is a vector pointing in z-direction. The two parameters St
and W depend on the properties of the particle particularly their size and density. The

Stokes equations Eq. (6) are a simplification of the Maxey-Riley equations [45, 46]

and are valid for the case of heavy particles whose density is much larger than the

density of the fluid. Another assumption is that the particle Reynolds number is

small, i.e. the interaction between particles can be neglected corresponding to a high

dilution. To demonstrate the formation of spatial pattern for marine aggregates we

concentrate here on this limit only, a more comprehensive description can be found

in [47].

Let us now discuss aggregation and fragmentation of marine aggregates from a

dynamical systems point of view. Since the aggregates are active particles as outlined

above, their dynamics is more complicated than pure advection of finite-size parti-

cles. The difficulty lies in the different sizes of the aggregates being advected by the

fluid. Aggregates of different sizes correspond to different parameters, namely differ-

ent Stokes numbers St and settling velocities W in Eq. (6). Instead of one dynamical

system one has to deal with a set of dynamical systems, each of them corresponding

to a certain aggregate size. Moreover, the number of aggregates in each dynamical

system is changing continuously due to aggregation and fragmentation events.

We now fix the density of the aggregates focussing on heavy particles and dis-

cuss only the impact of the size. To illustrate the patterns of marine aggregates

we employ a very simple velocity field 𝐮 describing four counter rotating vor-

tices with a sinusoidal change in their strength (for details cf. [48]). Though this
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Fig. 8 Attractors for 3 different size classes in a convection flow a St−1 = 7.0, b St−1 = 2.778, c
St−1 = 2.253

two-dimensional velocity field is time periodic and the flow is laminar, it has been

shown that the motion of finite size particles in this flow can be chaotic and hence

is called chaotic advection [49]. The most striking consequence of chaotic advec-

tion is, that the motion of the particles converges to attractors in configuration space.

The shape of these attractors depends strongly on the size and the density of the

aggregates (cf. Fig. 8) and ranges from fixed point attractors via limit cycles and

quasiperiodic motion on tori to chaotic attractors [49, 50]. Some of them are rather

localized in space while others are distributed over most of the configuration space.

Moreover, the whole dynamics for all sizes consists of an overlay of all different

attractors for the various sizes present in the system. Additionally, since aggregation

and fragmentation events happen usually on much smaller time scales than conver-

gence to the attractor, the overall dynamics is in general transient and only a blurred

structure of the attractors will be observable.

This behavior has some important consequences for the dynamics: Aggregates of

different size are located in different regions of the configuration space in the long-

term limit. For this reason their collision rate is larger in highly populated regions

than in regions with only a small number of particles. This fact highlights the impor-

tance of the distribution of the aggregates in space which is usually neglected in

oceanographic approaches based on Smoluchowski equations [51]. The same applies

to fragmentation processes, where the spatial distribution of shear determines in

which areas of the configuration space the fragmentation rate is largest. In the classi-

cal oceanographic approaches this spatial dependence of fragmentation is again not

taken into consideration. This simple example already demonstrates that the spatial

distribution of aggregates plays an important role for aggregation and fragmentation

processes in hydrodynamic flows and needs to be taken into account when computing

size distributions in the open ocean or in tidal areas close to the coast.

Hydrodynamic flows in nature are of course not properly described by chaotic

advection but by real turbulent flows. All results outlined above are still valid for

such flows, but of course, due to the non-steady behavior of the flow, the particles

do not converge to attractors. However, for a considerable range of Stokes num-

bers they are still concentrated in certain regions of space leading to patterns of
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preferential concentration [52, 53]. These patterns move with the flow and have the

same impact on aggregation and fragmentation rates as discussed above [54]. For

real ocean flows, the spatial scales which are usually resolved in hydrodynamic mod-

els are much larger than the ones considered above. For this reason either size-class

based [51] or distribution-based [55, 56] models are mostly used to calculate size

distributions of marine aggregates, which do not take the spatially inhomogeneous

distribution of the aggregates into account. Nonetheless, the framework of consider-

ing individual particles outlined here can help to reformulate collision kernels and

fragmentation rates of marine aggregates depending on their spatial distribution to

be finally incorporated into Smoluchowski-like approaches to analyze size distrib-

utions of those aggregates. Despite the fact that such approaches are still not fully

developed, this simple example of chaotic advection emphasizes the essential role

of spatial patterns formed by marine aggregates in the biogeochemical cycles of the

ocean.

5 Future Challenges to Analyze Marine Systems

We have demonstrated the importance of pattern formation mechanisms to explain

a variety of observations in marine science. While in terrestrial ecology as well as

in general population dynamics, the emergence of spatial patterns has been inves-

tigated for a long time [8, 57], such studies are rather rare in marine science. One

reason could be that in the past the focus was on Turing patterns or, more general, on

reaction-diffusion systems. The nutrient-bacteria patterns in the sediment discussed

above, follows this way of analysis too. But in marine systems hydrodynamic flow

patterns are, at least in the water column, more important than diffusion processes.

However, they are difficult to handle. The easiest way to start these studies is to

employ simple velocity fields which are periodic but still possess certain features of

real ocean flows. Such kinematic flows have been used here to show, how plankton

blooms are influenced by structures embedded in the hydrodynamic flow. We have

shown, that mesoscale vortices can act as incubators for plankton blooms; trans-

port barriers can lead to dominance patterns of different species or can even create

niches for the coexistence of different species. Additionally, we have discussed the

role of spatial patterns for aggregation and fragmentation of marine aggregates. For

the latter again a simple kinematic flow has been used to illustrate the emerging pat-

terns which have a large impact on the collision rates of finite size aggregates in the

ocean. However, real ocean flows are not periodic but exhibit a complicated time

dependence leading to a more complicated setup. Only rather recently new tech-

niques in nonlinear dynamics have been established to tackle arbitrary time depen-

dencies. These developments have paved the road to investigate patterns arising in

reaction-advection-diffusion systems driven by real ocean flows. Concepts as finite

time or finite size Lyapunov exponents [33, 34], the identification of Lagrangian

coherent structures [58] open new ways to find patterns in systems with arbitrary

time-dependent flows. Additionally some progress has been made in extending
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conventional bifurcation theory to parameters following certain trends [59]. So far

those new techniques can be employed to study the impact of climate change on

marine systems, their extension to bifurcations leading to pattern formation is a

future challenge.
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Nonlinear Behavior of a Self-Propelled
Droplet Coupled with a Chemical
Oscillatory Reaction

Nobuhiko J. Suematsu, Yoshihito Mori, Takashi Amemiya
and Satoshi Nakata

Abstract Several self-propelled objects have been investigated and used to add
functionalities mimicking biological systems. One promising approach is the
introduction of nonlinear chemical reactions such as the Belousov-Zhabotinsky
(BZ) reaction. In this work we placed an aqueous droplet of the BZ solution into an
oil phase composed of monoolein and squalane. The BZ droplet moved sponta-
neously, and its speed oscillated periodically in synchronization with the redox state
of the aqueous solution. This finding and measurements of the interfacial tension
between water and squalane reveal that the oscillatory motion of the BZ droplet
originated from the oscillation of the Br2-concentration. This system has the
potential to reflect the characteristics of nonlinear chemical reactions inside the
aqueous droplet: not only periodical oscillation but also bifurcations, hysteresis, and
responsiveness to the environment.
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1 Introduction

Movement or locomotion is an important characteristic of living systems. Cells
migrate [1], bacteria and microorganisms swim [2], one species of insects moves on
water [3], and almost all animals walk. Recently, many small swimmers have been
developed in non-living systems as biomimetic motors or locomotors [4]; examples
include a solid disk or a droplet spontaneously moving on water [5–7], an oil
droplet swimming within an aqueous phase containing a surfactant [8], and an oil
droplet moving on a glass plate in an aqueous phase containing a surfactant [9].
Those moving objects are called “self-propelled objects” . Although their detailed
mechanisms of movement are different from those of living matter, self-propelled
objects are a promising system for understanding biological motion and collective
behavior [10].

Self-propelled objects with many functionalities, e.g., responsiveness to their
physical or chemical environment [11] and rhythmic motion [12], have been
developed. However, these objects are much simpler than living matter, which
shows a variety of functional movements [2]. One of the next steps in the devel-
opment of self-propelled objects is to recreate the properties of nonlinear chemistry
[13]. Nonlinear chemical systems with various characteristic behaviors have been
realized, e.g., oscillation, bifurcation, hysteresis, pattern formation, and nonlinear
response to the environment [14–16]. Thus, an object whose self-propelled motion
reflects the characteristic properties of nonlinear chemistry would have the potential
to exhibit a variety of functional movements.

Several constructions of a self-propelled object coupled to the Belousov-
Zhabotinsky (BZ) reaction, a well-known nonlinear chemical reaction, have been
reported. The first idea was suggested by Steinbock and Müller [17] and was
demonstrated by Kitahata et al. [18]. After that, several types of self-propelled
object coupled to BZ reaction have been constructed [19–21]. Kitahata et al. placed
a BZ droplet on/in an oleic acid solution without any surfactant and observed
reciprocal motion [19]. In this case, the motion is driven by the spatial hetero-
geneity of the redox state in the BZ droplet, i.e., a chemical wave. Other examples
include self-propelled motion induced by a difference in the contact angle between
reduced and oxidized states. Szymanski et al. reported swelling and constriction
cycles synchronized with BZ oscillation [20]. Furthermore, Nakata et al. showed
the sliding of a BZ gel on the BZ solution without a catalyst which is triggered by a
chemical wave generated inside the gel [21]. Although these self-propelled objects
are well coupled to the BZ reaction, reciprocation [19, 21] and stretching vibration
[20] are hard to carry the object over long distance.

Here, we propose a strategy for creating a novel self-propelled object coupled
with a nonlinear chemical reaction. We focus on a droplet system driven by an
interfacial chemical reaction [22]. In this system, an interfacial tension gradient is
generated by the fluctuation of the interfacial chemical reaction, which induces an
inhomogeneous distribution of the surfactant on the interface (Fig. 1). If Marangoni
flow enhances the inhomogeneity, i.e., if there is positive feedback process, the
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convective flow is stably generated inside the droplet, providing the droplet with a
driving force [22]. In this system, self-propelled motion strongly depends on the
rate of the interfacial chemical reaction. Therefore, if a nonlinear chemical reaction
controls the reactant concentration, the droplet motion might reflect the properties
of the nonlinear chemical reaction. To explore this idea, we focus on the moving
droplet within an oil phase reported by Thutupalli et al. in 2011 [23]. A droplet of
an aqueous bromine (Br2) solution is driven within a squalane oil phase including
monoolein (MO) as a surfactant. Thutupalli et al. suggested that this self-propelled
motion is driven by the bromination of MO on the interface. Because Br2 is an
intermediate of the BZ reaction, this system is suitable for realizing our strategy. In
a recent work by Herminghaus et al., they briefly demonstrate an oscillatory motion
of a BZ droplet synchronized with the redox state [24]. However, these researchers
do not discuss the coupling mechanism in detail. In a recent work, we controlled the
chemical conditions and identified the appropriate conditions for achieving oscil-
latory motion [25, 26]. In that report, we discussed the coupling mechanism and
concluded that the BZ reaction controlled the concentration of the reactant (Br2), as
mentioned above.

In this report, we first investigate the effect of the MO concentration on the
droplet motion and discuss the mechanism of self-propelled motion based on
oil/water interfacial tension measurements. We then report the characteristic
behavior of a self-propelled BZ droplet, which reflects the properties of nonlinear
chemical reactions.

2 Experimental Setup

Monoolein (MO) and squalane were purchased from Wako Pure Chemical (Kyoto,
Japan) and used without further purification. Water was distilled using a Milli-Q
filtering system. To prepare brominated MO (Br2MO) solution, MO solution was
exposed to Br2 gas for over 12 h. The solution became dark brown in color.

Fig. 1 Schematic illustration of the mechanism for droplet motion induced by an interfacial
chemical reaction of the surfactant
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An aqueous droplet (0.2 μl) was placed in squalane solutions of various MO
concentrations (0.1—100 mM) using a micropipette. The motion of the droplet was
observed every 1 s for 10 min using a microscope (SMZ 745-T or TS100, Nikon
Inc., Japan), and at least three replicate experiments were conducted for each MO
concentration. The videos were analyzed using image analysis software (ImageJ,
National Institute for Health, USA) on a personal computer.

The interfacial tension between squalane andwaterwasmeasured using the standard
Wilhelmymethod (DyneMaster DY-300; Kyowa Interface Science Co. Ltd., Japan) at
room temperature (24 ± 1 °C). The concentration of the MO in the squalene was
between0.001 and50 mM.The surface pressure ofMOandBr2MO(π-A isotherm)was
measured using a surface pressure meter (Kyowa Interface Science Co. Ltd., Japan) at
25 ± 1 °C. To prepare the monolayer of MO or Br2MO, a chloroform solution of the
surfactantwas dropped on awater phase,where the total amountwas 1.62 × 10−8mol.
After the chloroformevaporated, the surface areawas decreased from210 to 40 cm2 at a
rate of 0.315 cm2 s−1, and the sampling rate was 2.0 Hz.

3 Dependence of the Speed of Self-propelled Motion
on Surfactant Concentration

The aqueous droplet in the squalane solution of MO moved spontaneously. The
droplet settled downwards due to its weight and moved in two dimensions on the
glass surface. In a previous work, the droplet motion was attributed to the chemical
reaction of MO [23]. Because the MO concentration is therefore a key determinant
of the droplet motion, we investigated the influence of the MO concentration on the
speed of self-propelled motion. For simplicity, we used the following aqueous
solution, not the BZ solution: 0.40 M BrO3

−, 1.80 M H2SO4, and 4.0 mM Fe
(phen)3

2+. The average speed of the self-propelled motion increased as the MO
concentration increased up to 10 mM and decreased thereafter (Fig. 2a).

Fig. 2 Average speed of the self-propelled motion of an aqueous droplet (0.2 μl) as a function of
MO concentration. The aqueous droplets contained a 0.40 M BrO3

−, 1.80 M H2SO4, and 4.0 mM
Fe(phen)3

2+ or b 0.40 M BrO3
−, 1.20 M H2SO4, and 4.0 mM Fe(phen)3

2+. The error bars indicate
the standard deviation for 10 min data
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These results are quite different from those reported by Thutupalli et al., in which
the speed increased monotonically and then plateaued as the MO concentration
increased [23]. This discrepancy might be due to differences in the droplet size and
composition. In Thutupalli et al.’s study, the droplets were approximately 100 μm
in size and composed of 28 mM BrO3

−, 50 mM H2SO4, 400 mM CH2(COOH)2,
and 2.7 mM Fe(phen)3

2+, which was the BZ solution. In contrast, the droplets in our
experiment were approximately 1 mm in diameter, and the BZ solution was not
used. The composition affects the droplet motion. Indeed, when the H2SO4 con-
centration was varied, the relationship between the average speed and MO con-
centration changed (Fig. 2b).

4 Driving Force of Droplet Motion

The driving force of the self-propelled motion is believed to originate from the
difference in the oil/water interfacial tensions of the MO and Br2MO surfactants
[23]. However, no detailed measurements of these interfacial tensions have been
reported. Herein, the interfacial tension between squalane and pure water was
measured with varying concentrations of MO or Br2MO. For both surfactants, the
interfacial tension decreased monotonically with increasing surfactant concentration
(Fig. 3a). Over the concentration range studied, the interfacial tension of the MO
solution was lower than that of the Br2MO solution.

Based on the interfacial tension measurements, the surface concentration was
calculated using the Gibbs adsorption isotherm as follows [27, 28]:

Γ = −
C
RT

∂γ

∂c

� �
, ð1Þ

Fig. 3 a Squalane/water interfacial tension as a function of surfactant concentration (filled square:
MO, open circle: Br2MO). b Surface concentration of MO and Br2MO as a function of its bulk
concentration. The solid and broken lines are the fitting curves for MO and Br2MO, respectively
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where c (mol m−3) is the bulk concentration of the surfactant, γ (N m−1) is the
interfacial tension, Γ (mol m−2) is the surface concentration of the surfactant,
R (J mol−1 K−1) is the gas constant, and T (K−1) is the absolute temperature. The
surface concentrations of MO and Br2MO increased with increasing bulk con-
centration and then plateaued (Fig. 3b). The interfacial tension of Br2MO was
higher than that of MO because the surface concentration of MO higher than that of
Br2MO, which was caused by the adsorption of less Br2MO to the interface.

The adsorption can be roughly estimated based on the size of the molecules. To
estimate the molecular size, we measured the surface pressure of MO and Br2MO.
The surface pressure began to increase at 70 Å2 molecule−1 for MO and 80 Å2

molecule−1 for Br2MO (Fig. 4). Therefore, the volume of the Br2MO was estimated
to be larger than that of MO, with a ratio of 0.87. To check the validity of these
parameters, we utilized a molecular model and calculated its size as a 15-Å-wide
rectangle that is 3.8 Å and 4.4 Å in height for MO and Br2MO, respectively. The
areas were estimated to be 57 Å2 molecule−1 for MO and 66 Å2 molecule−1 for
Br2MO, making the ratio of areas of Br2MO and MO is 0.87. Thus, although the
experimental results were overestimations for both molecules, the ratio between
MO and Br2MO was close to the calculated values.

The difference in the oil/water interfacial tensions of MO and Br2MO is the
origin of the Marangoni flow on the interface of the aqueous droplet. Although
dynamic interfacial tension is necessary to estimate the driving force of the droplet
motion [23], the equilibrium interfacial tension (shown in Fig. 3a) is also an
important indicator. The speed of the droplet motion is proportional to the Mar-
angoni coefficient M = ∂γ ̸∂ϕ, where ϕ is the fraction of Br2MO on the interface
[23]. Assuming that the interfacial tension is proportional to ϕ, M becomes constant
for the whole parameter region and is determined by the difference in the interfacial
tensions of MO and Br2MO (Δγ). Figure 3a shows that M increases with increasing
bulk concentration up to 0.1 mM and then decreases. The value of M is still a
coefficient used to determine grad(γ), the driving force for Marangoni flow, which
must be considered when estimating the driving force for the droplet motion.

Fig. 4 π-A curve for MO and Br2MO. The total mass of the surfactant on the water chamber was
1.62 × 10−8 mol. The barrier moved at a rate of 0.315 cm2 s−1
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The value of grad(ϕ) is determined by the interfacial chemical reaction of MO,
adsorption-desorption of the surfactants, and diffusion.

Our experimental results (Fig. 2) reveal that the optimum concentration of MO
is 10 mM. Figure 3a indicates that the value of M is the highest at a bulk con-
centration of 0.1 mM, in conflict with the result in Fig. 2. This mismatch might be
due to the different values of grad(ϕ). Applying a simplification, ϕ becomes almost
1 for the whole interface of the droplet, and the value of grad(ϕ) is low in the case
of a low bulk concentration because of the slow adsorption process. This is why the
droplet motion was slow in the case of a low bulk concentration of MO. On the
other hand, the value of M becomes low and ϕ approaches 0 due to the fast
adsorption-desorption process at high bulk concentrations, making the motion slow.
Thus, the local maximum observed for the speed may result from the competition
between M and grad(ϕ).

5 Oscillatory Motion of a BZ Droplet

In the aqueous droplet of the BZ reaction, the redox state spontaneously oscillated
over time with a period that depends on the droplet size. Smaller droplets had a
shorter period, and no oscillation was observed for droplets smaller than almost
100 μm in diameter for the aqueous droplet composed of 0.40 M BrO3

−, 0.60 M
H2SO4, 0.20 M CH2(COOH)2, 0.03 M Br−, and 2.0 mM Fe(phen)3

2+. In the aqueous
droplet with a diameter of approximately 1 mm (0.2 μl), the redox state oscillated
spontaneously, and periodic color changes were observed (Fig. 5a). In that case, the
droplet speed also oscillated and synchronized in phase with the color change [25,
26]. Specifically, when the droplet was blue, the droplet motion was fast. The speed
and blue color reached a local maximum at the same time. Thus, the speed of the
droplet motion was affected by the chemical environment in the droplet.

Fig. 5 a Superimposed image of a moving BZ droplet. The black arrow indicates the direction of
the droplet motion. Images were acquired every 30 s. b Time series of droplet speed and color
([MO] = 10 mM). The droplet color was estimated by the intensity of the blue component. Thus,
high blue values indicate the oxidized state and low the reduced state
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The speed of self-propelled motion is determined by the droplet size and sur-
factant and reactant concentrations, as theoretically investigated [22, 23]. In the BZ
reaction, Br2 is an intermediate, and its concentration also oscillates in time [29].
Numerical calculation of the BZ reaction using a modified Oregonator model
indicated that the Br2 concentration drastically increases as the redox state transi-
tions from the reduced to the oxidized state [30]. This numerical result reveals that
the Br2 concentration is high and the droplet motion is fast in the oxidized state of
the droplet. Our experimental observations, shown in Fig. 5, agree well with the
results of these theoretical and numerical studies. Therefore, the oscillatory motion
of the BZ droplet was realized by the oscillation of the concentration of Br2 in the
aqueous phase. This result indicates that the self-propelled motion generated by the
interfacial chemical reaction of the surfactant is suitable for coupling to nonlinear
chemical reaction and that the droplet behavior strongly reflects the characteristics
of the chemical environment inside the aqueous phase.

6 Effect of MO on the BZ Reaction

In the previous section, it was shown that the concentration of the intermediate of
the BZ reaction (Br2) affected the droplet motion. This finding reveals that con-
sumption of the intermediate influences the BZ reaction. Indeed, the period of the

Fig. 6 Influence of the addition of MO on the behavior of the BZ reaction. a Time series of the
color of the BZ solution; b oscillation period
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BZ oscillation depended on the droplet size. As mentioned above, smaller droplets
exhibited shorter oscillation periods. Assuming that the MO surfactant does not
dissolve well into the aqueous phase, the MO only reacts with Br2 on the oil/water
interface; thus, the rate of the chemical reaction is proportional to the specific
surface area of the droplet. The interfacial chemical reaction therefore has a stronger
influence in the case of smaller droplets.

To confirm the effect of MO, the oscillation of the BZ reaction in the bulk phase
was observed before and after the addition of MO. Upon the addition of MO, the
oscillation period decreased (Fig. 6). This result agrees with the observations for the
BZ reaction in the droplet, where the period was shorter than that in the bulk phase.

Numerical calculations support these experimental observations. The Oregonator
is a well-known mathematical model for the BZ reaction and can numerically
reproduce several of its characteristics. The original version of the Oregonator is
constructed with five chemical reactions, as shown below.

A +Y→X +P ðO1Þ

X +Y→ 2P ðO2Þ

A +X→ 2X +2Z ðO3Þ

2X→A +P ðO4Þ

Z→ fY ðO5Þ

where A is BrO3
−, P is HOBr, X is HBrO2, Y is Br−, and Z is the oxidized catalyst.

Although the original version of the Oregonator neglects the effect of Br2, a
modified version including this effect has been reported [30]. In the modified
model, following three reactions are added:

P→Y ðO6Þ

Y +P↔U ðO7Þ

U→ atmosphere ðO8Þ

where U is Br2, and Eq. (O8) describes the effect of the evaporation of Br2. In the
case of the droplet system, evaporation can be neglected because the aqueous phase
is completely covered by the oil phase. Instead of the evaporation process, we must
consider the effect of the dissolution to the oil phase and the interfacial chemical
reaction of Br2 with MO. Assuming that the interfacial chemical reaction is linear
and much faster than the dissolution, we can rewrite Eq. (O8) as follows:

U +S→Q ðO9Þ
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where S is the surfactant (MO) and Q is the product of the interfacial chemical
reaction (Br2MO). Using Eqs. (O1–O7) and Eq. (O9), we numerically calculated
the modified Oregonator model. Here, the reaction rate of Eq. (O9) (k9) is an
unknown coefficient. The results indicated that the period of the oscillation
decreased with increasing k9S (Fig. 7), where S, concentration of MO, was regarded
as constant due to the large excess of MO. This finding, namely, that the addition of
MO shortens the period, is in agreement with our experimental observations.

7 Conclusion

We suggested a strategy for constructing a functional self-propelled object that
exhibits the characteristics of a nonlinear chemical reaction. The crux of this
strategy is that a nonlinear chemical reaction controls an interfacial reaction of the
surfactant, which generates the driving force for the self-propelled motion. To
demonstrate this strategy, an aqueous droplet of Belousov-Zhabotinsky (BZ)

Fig. 7 Numerical calculation using the modified Oregonator model. As the consumption rate of
Br2 (k9S) increases, the period of the oscillation decreases and bifurcates to the steady-state. The
solid and broken lines indicate the concentration of Br2 and oxidized catalyst, respectively. The
parameters are A = 0.40, B = 0.20, H = 1.20, f = 1.5, k1 = 2H2, k2 = 3 × 106H, k3 = 48H,
k4 = 3 × 103, k5 = B, k6 = 0.5B, k7 = 8 × 109, and k−7 = 110
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solution was placed in a squalane monoolein (MO) solution, producing oscillatory
motion of the aqueous droplet due to the oscillation of the Br2 concentration
induced by the BZ reaction. The droplet motion and BZ reaction are interdependent
through the Br2 concentration. Our strategy is widely applicable for constructing
self-propelled objects coupled to characteristic chemical reactions. We believe that
the self-propelled BZ droplet provides a foundation for the future development of
functional self-propelled droplets.
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All About Cells

Lisa Kolb and Susanne Krömker

Abstract Investigating the longterm behaviour of cells in the lymph nodes releasing

an activating substance into an intercellular space is a demanding task for mathemat-

ical modelling and numerical simulations of reaction-diffusion systems coupled with

ordinary differential equations on unstructred 3D grids. To explore the vast amount

of computed spatio-temporal data the visualization has to be fast and concise. Persis-

tent homology in discrete Morse theory is a mighty tool for meaningful data reduc-

tion. Isosurfaces at characteristic thresholds can be extracted from the data without

missing the crucial changes in the topology of the manifold. Visualization results are

presented for single and multiple cells with details on the topological concept and

computational efforts of the preprocessing steps.

1 Mathematical Model of Cytokine Signaling

Cells are the building blocks of life, the characteristics of living things. Especially

the cells of the immune system are of interest for biologists and physicians, and

here, the lymph nodes play an important role. Therein three types of T lymphocytes

can be differentiated: T helper cells that have already been activated, responding

T helper cells that have not yet been activated and regulatory T cells (see [1] and

[2]). Stimulation of T helper cells by an antigen make them release Interleukin-2

(IL-2) on a synapse. The increasing concentration of IL-2 in the intercellular space

can activate the responding T helper cells by an increase of the IL-2 concentration

around them. Once activated they proliferate and differentiate into effector T cells.
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The regulatory T cells function as inhibitors by absorbing IL-2. A mathematical

model for the interaction of cellular signaling with diffusion processes (see [3]) can

be analysed in terms of macroscopic effects of equations on a microscopic scale as

was done earlier in [4]. The cells and their interactions can be described by four

functions. There is the concentration of IL-2 itself, which is a function u of time

t and position x ∈ ℝ3
. This function is only defined on the intercellular space 𝛺

and its boundaries. Furthermore, for each T cell three numbers R, B and E are of

interest, which are all connected to the number of receptors. The sum R + B is the

total number of receptors of a cell. Above a certain number of receptors the cell is

surely activated, below another critical number it is not.

Let 𝛺 be the domain, the intercellular area, 𝛤i then is the boundary of cell i and

𝛤out is the outer boundary of 𝛺. The function u(t, x) ∶ [0,T] ×𝛺 → ℝ models the

concentration of IL-2 at time t and position x, and the functions Ri ∶ [0,T] → ℝ
model the number of receptors, Bi ∶ [0,T] → ℝ model the number of built receptor-

complexes, and Ei ∶ [0,T] → ℝ model the number of internalized complexes for

cell Ti. These functions are not explicitly known but mathematically modelled by a

reaction-diffusion equation for the IL-2 concentration in the intercellular space with

no-flux conditions at the outer boundary, D being a matrix with diffusion coefficients.

𝜕tu(t, x) = D𝛥u(t, x) − kdu(t, x) ∀(t, x) ∈ (0,T] ×𝛺

D𝜕nu(t, x) = qi(t, x) − konRi(t)u(t, x) + koff Bi(t) ∀(t, x) ∈ (0,T] × 𝛤i

𝜕nu(t, x) = 0 ∀(t, x) ∈ (0,T] × 𝛤out

A mathematical cell in this context can be a small and repeated spatial domain for

mappings of any kind, the term is used in homogenization as well as in topology. In

the cell problem for homogenization it makes sense to change the no-flux to periodic

boundary conditions, which means that everything that leaves on one side of 𝛤out re-

enters on the opposite side. This differential equation (PDE) is coupled with ordinary

differential equations (ODEs) for the various biological cell types

𝜕tRi(t) = w0
i + w1

i
Bi(t)3

K3 + Bi(t)3
− konRi(t)ũi(t) − kiRRi(t)

+ koff Bi(t) + krecEi(t)
𝜕tBi(t) = konRi(t)ũi(t) − (koff + kiB)Bi(t)
𝜕iEi(t) = kiBBi(t) − (krec + ddeg)Ei(t)

ũi(t) =
∫
𝛤i

u(t, s)ds

|𝛤i|

and completed with initial conditions u(0, x) = 0 ∀ x ∈ 𝛺 and Ri(0) = R0
i , Bi(0) =

B0
i , and Ei(0) = E0

i for all cells i.
As an approach to realistic multicellular settings a model of 6 × 6 × 6 = 216 bio-

logical cells in 3D space with periodic boundary conditions is implemented and the
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Fig. 1 Number of receptors per T cell over time

(a) mesh (b) equidistant isosurfaces (c) well-placed isosurfaces

Fig. 2 a Mesh of a single biological cell with IL-2 concentration using b 20 isosurfaces distributed

uniformly; c shows the result after applying persistent homology

production and diffusion of concentrations in intercellular space is computed (see

[5]). The system is time-dependent. Initially, the concentration of IL-2 is assumed 0

everywhere. Figure 1 shows that the number of receptors for all cells increases, but

after about 10 hours they start to differentiate. Finally a steady state is reached and

the number of receptors in the activated cells stays high.

There have been earlier simulations of T cells in the lymph nodes in 2D as

described in [2]. In 3D the distribution of IL-2 is not restricted to the plane with

2D obstacles and can emerge into this third dimension. For simplicity in the analysis

of the homogenization and in numerical simulation it is assumed that the cells have

a fixed position. The system is discretized by defining a grid around each biological

cell as in Fig. 2a. The used grid is mainly rectangular, but slightly deformed around

the enclosed biological cell. Since only the intercellular space is modelled no lattice

points are placed within the biological cell.

The simulation output data is stored in the file format of the Visualization Toolkit

(VTK) containing information about the geometric location of the data, in this case

stored in an unstructured grid for the domain around the spherical biological cells.
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(a) cutting plane (b) volume rendering

Fig. 3 Intercellular space of 216 cells with regulatory T cells

The position of the vertices and connectivity form 3D mathematical cells. Here only

hexahedrons are used, which are, as the grid is mostly rectangular, mainly cubes.

Finally a scalar value for the IL-2 concentration is stored for each vertex.

2 Topological Methods Used for Visualization

In mathematically terms, a set of mathematical, not biological, cells build up a topo-

logical space by attaching them to each other according to predefined rules to end

up with a complex of a certain dimension. The easiest such complex is a simpli-

cial complex formed by vertices (0-cells), straight lines (1-cells), triangular faces

(2-cells), terahedrons (3-cells) and possibly higher dimensional cells. This resem-

bles a discretization of any spatial domain. In the case of the simulated biological

data, a scalar field is given on an unstructured 3D grid that is mainly rectangular.

This is why a so-called cubical complex can be used for a discretized domain 𝛺.

The vertices are again 0-cells, the edges between the vertices (usually of unit lenght)

are 1-cells, the squares are 2-cells and the cubes are 3-cells.

Definition 1 (Faces, cofaces and complex) Let K = K (𝛺) be such a set of p-cells

in 𝛺. A p-cell 𝛼
(p)

is face of a q-cell 𝛽
(q)

if p < q and the vertices of 𝛼 are a subset

of the vertices of 𝛽. Write: 𝛼
(p)

< 𝛽
(q)

. Then 𝛽 is called a coface of 𝛼. A set of

cells S is a complex if for all 𝛼 ∈ S all faces of 𝛼 are also in S.

One way of visualizing the high resolution data from the simulated system of

differential equations is by using cutting planes passing through the domain 𝛺 as can

be seen in Fig. 3a. The secretory T cells are displayed in pink, regulatory T cells are

green, and responding T cells are gray. The problem with this type of visualization
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is that the data can only be seen on a 2D plane. Visualizing the whole data using this

method requires either multiple pictures or a film in which the cutting plane traverses

the whole domain. Another method is to use volume rendering as can be seen in

Fig. 3b. However, it takes a lot of time to render a single projection in acceptable

quality. Since exploration of the spatial data needs transformations in real time, this

method turned out to be not suitable.

The amount of data produced during the simulations is that huge that gaining

insight is possible only with fast and good visualization tools revealing the impor-

tant features. The idea is to use isosurfaces for visualizing the IL-2 concentration.

These isosurfaces can be rendered with VTK fast enough to allow for any kind of

transformations in real time. Imagine the gas bubbles in sparkling water. The inter-

face between gas and water can be located at a jump in density, and an isosurface

at a threshold value within this jump may be extracted from given data. This isosur-

face marks the boundary of all bubbles. They may not all be spherical, have different

sizes and are nonuniformly distributed. When stirred they may also separate or join

over time forming smaller or bigger cavities. In topology the exact form and location

is neglected but changes, e.g., in the number of cavities will be registered. Unfortu-

nately, it is difficult to determine suitable isovalues, and nested opaque isosurfaces

hide each other, whereas displaying transparent isosurfaces raises other difficulties.

The goal is to get rid of these disadvantages by acquiring information about the topol-

ogy of the data. Isovalues then can be located at characteristic and persistent changes

in the data.

In topology, distances between points are no longer important. The only inter-

est is in the relation to a neighborhood for every point in space. Imagine a rather

complicated surface which can be deformed into something much simpler by disre-

garding the exact location of each and every vertex. Such a deformation should be

a continuous mapping that works back and forth and is called a homeomorphism.

A topological invariant like the Euler characteristic 𝜒(𝛺) just counts the number

of vertices V , subtracts the number of edges E and adds the number of faces F,

and do not change under such transformations. As can be easily seen, a bounded

simply connected, compact subset 𝛺 of the real Euclidean plane ℝ2
, that has no

holes, is homeomorphic to a square. In case of starting with 𝛺 being a square, it has

𝜒(𝛺) = V − E + F = 4 − 4 + 1 = 1. Subdividing the square by a diagonal edge adds

another edge but also another face, and still 𝜒(𝛺) = V − E + F = 4 − 5 + 2 = 1. A

triangle 𝛥 counts for 𝜒(𝛥) = V − E + F = 3 − 3 + 1 = 1. Any continuous bijective

transformation, e.g., scrunching a sheet of paper and describing its shape with con-

nected triangles, will not change this topological invariant.

Homotopy gives a weak definition of two geometric objects to be equal and resem-

bles a continuous morphing. A map f ∶ X → Y is said to be a homotopy equivalence

if there is a continous map g ∶ Y → X such that g ◦ f ≃ idX and f ◦ g ≃ idY and the

spaces are said to be homotopy equivalent, X ≃ Y . The point and a disk are homo-

topy equivalent. The point and the circular line, however, are not. The idea is that

spaces may be deformed and stretched, but it is not allowed to cut out holes. In the

deformation only so-called free pairs may be removed.
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Definition 2 (Free pair) The pair (𝛼, 𝛽) is called a free pair, if a cell 𝛽
(p)

of a cubical

complex has a free face 𝛼
(p−1)

, that is if 𝛼 is a face of 𝛽 and 𝛼 has no other cofaces.

By removing such a free pair from a complex K , a subcomplex K ′
is created.

Two complexesK andK ′
are equivalent if a sequence of collapses (or the contrary:

expansions) can transform one into the other, which is nothing else but a continuous

morphing, previously called a homotopy.

Now imagine a 2D grid with scalar data that can be visualized as a landscape with

mountains and valleys with their specific height. The landscape is filled with water.

As long as the water level is below the lowest valley, the landscape is dry. Once

the water starts filling the lowest valley, a lake is formed and the topology of the

water surface changes. Once the water level exceeds a saddle between two hills and

thereby combines two valleys such that two lakes join, the topology changes again.

As long as no new valleys are filled and the water level does not exceed mountains,

the topology does not change. This also works in the case of a 3D grid with the scalar

values of neighboring vertices. Consider the lower level cuts, which contain all cells

with values lower than a threshold. The idea is to analyse how the topology of these

lower level cuts changes as the threshold value varies, and then use these critical

values as isovalues.

Definition 3 (Lower star) The star of a cell 𝛼
(p)

in a cubical complex is the set of

all cofaces 𝛽
(p+1)

of 𝛼, the lower star of a cell 𝛼
(p)

in a cubical complex is the set of

all cofaces of 𝛼 with scalar value less or equal to the scalar value of 𝛼.

Definition 4 (Lower level cut of a cubical complex) Let 𝛺 be a discrete (rectan-

gular) grid and let g(x) ∶ 𝛺 → ℝ be a scalar function defined on 𝛺. A lower level

cut of 𝛺 is the set of all data points with scalar value less than a threshold t, that is

𝛺t = {x ∈ 𝛺|g(x) ≤ t}. A cell 𝛼 is in the lower level cut if all its vertices x ∈ 𝛼 have

scalar values less than the threshold:

Kt = {𝛼 ∈ K |g(x) ≤ t,∀x ∈ 𝛼} .

Figure 4a shows an example of a lower level cut for the threshold value t = 6 with

only 0-cells and 1-cells, whereas in (b) is shown the lower level cut for t = 8 which

is more connected and also contains a 2-cell. All cells of the lower level cut for a

lower threshold are contained in the one of a higher threshold.

An isosurface I is defined as the set of all points in the domain 𝛺 with the

same scalar value t, that is I(t) = {x ∈ 𝛺|g(x) = t} and thereby is the boundary of

a lower level cut. It changes when the threshold value is varied. For t less than the

smallest scalar data value, Kt = ∅. By increasing t, cells are added to Kt so that

Kt1 ⊂ Kt2 ∀ t1 < t2. For t bigger than the maximum scalar value, Kt is the whole

data set. Such a sequence of nested complexes is called a filtration. The simulated

data is a scalar field on the vertices of a grid forming a cubical complex. Lower level

cuts or their boundaries shall now be compared to each other.
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(a) lower level cut for t = 6
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(b) lower level cut for t = 8

Fig. 4 The red cells show examples for lower level cuts

3 Discrete Morse Theory

Morse theory was originally defined only for smooth manifolds that are mathemati-

cal spaces which locally look like the ℝn
and are differentiable. For further readings

see [6] and [7]. A Morse complex on the data has the same topology as the cubical

complex, but contains only the critical cells (see [8]). As our data is given on a dis-

crete grid of points, this Morse theory is not applicable. Instead, a discrete Morse

theory which is defined for cell complexes as introduced by Forman ([9, 10]) is used

here.

Definition 5 (Discrete Morse function) A function f ∶ K → ℝ is called discrete

Morse function if for all 𝛼
(p) ∈ K : f is less or equal f (𝛼) on at most one coface of 𝛼

and f is bigger or equal f (𝛼) on at most one face of 𝛼 ([10], p. 11):

#{𝛽(p+1) > 𝛼|f (𝛽) ≤ f (𝛼)} ≤ 1 ,
#{𝛾 (p−1) < 𝛼|f (𝛾) ≥ f (𝛼)} ≤ 1 .

Figure 5 illustrates the definition, where the functions assign values to 0-cells

(vertices) and 1-cells (arcs). Then (a) is an example for a discrete Morse function,

whereas (b) is no such function, as the 1-cell with value 0 has two faces both of

which have a value higher than zero.

Fig. 5 Example of a

discrete Morse function

(a) discrete Morse function (b) no such function
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(b) V-paths

Fig. 6 Pairs (arrows) and critical cells (green) in a discrete vector field; b V-paths (red) from 0-cell

(10) to 0-cell (2) and (blue) from 1-cell (12.4) to 1-cell (9.7)

Definition 6 (Critical cells ) A cell 𝛼
(p)

is critical if all its cofaces have strictly higher

values and all faces have strictly lower values.

The function in Fig. 5a has two critical cells: one with value 0, as both cofaces

have values bigger than 0 and the cell itself has no faces. The other one with value

5 is also critical, as both faces have values lower than 5 and the cell has no cofaces.

Definition 7 (Discrete vector field) A discrete vector field V is a set of pairs (𝛼(p)
,

𝛽
(p+1)) of cells in K with 𝛼

(p)
< 𝛽

(p+1)
, such that every cell appears in at most one

pair of V (see [10], Definition 3.3).

When graphically showing discrete vector fields, arrows are often used to mark

the pairing as shown in Fig. 6a.

Definition 8 (V-path) A V-path is a sequence of cells:

𝛼
(p)
0 , 𝛽

(p+1)
0 , 𝛼

(p)
1 , 𝛽

(p+1)
1 , 𝛼

(p)
2 ,… , 𝛽

(p+1)
r−1 , 𝛼

(p)
r

with (𝛼i, 𝛽i) ∈ V , 𝛽i > 𝛼i+1, and 𝛼i ≠ 𝛼i+1 ∀ i = 0,… , r − 1. A V-path is trivial if

r = 1. It is closed if 𝛼r = 𝛼0 (see [10], p. 19).

Figure 6b shows two V-paths in a vector field. Graphically speaking, you get the

V-paths by following the arrows.

Definition 9 (Gradient vector field) A discrete Morse function defines a discrete

gradient vector field by pairing 𝛼
(p)

< 𝛽
(p+1)

if f (𝛽) ≤ f (𝛼). The critical cells are

exactly those which do not appear in a pair.

Along a V-path in the gradient vector field, the Morse function decreases con-

tinuously (see [10], Theorem 3.4). A discrete vector field is a gradient vector field

of a Morse function if and only if there are no non-trivial closed V-paths (see [10],

Theorem 3.5).
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Theorem 1 Let K be a cubical complex with a discrete Morse function. Then K
is homotopy equivalent to a closure-finite weak topology (CW)-complex with exactly
one p-cell for every critical p-cell in K ([9], Corollary 3.5).

The neighborhood of cells in a Morse complex is defined by the boundary map:

Definition 10 (Boundary map) Let Mp ⊆ Cp(K ,ℤ2) be the subgroup of a chain

Cp of p-cells generated by the critical p-cells. Let 𝛤 (𝛽, 𝛼) be the set of all V-paths

from faces of 𝛽 to 𝛼 and

c
𝛼,𝛽

=
{

1, if #𝛤 (𝛽, 𝛼) odd

0, if #𝛤 (𝛽, 𝛼) even.

The boundary map is then defined as follows:

𝜕p ∶ Mp → Mp−1

𝜕p𝛽 =
∑

𝛼∈Mp−1

c
𝛼,𝛽

𝛼

Definition 11 (Morse chain complex) A (cubical) Morse chain complex in 3D space

is a sequence of spaces and maps of the following form:

0 → M3(X,ℤ2)
𝜕3
→ M2(X,ℤ2)

𝜕2
→ M1(X,ℤ2)

𝜕1
→ M0(X,ℤ2) → 0.

Homology groups are the quotients

Hp(M , 𝜕) =
Ker 𝜕p

Im 𝜕p+1
.

Then for all p it holds that Hp(M , 𝜕) ≅ Hp(K ,ℤ2). In other words the field ℤ2 =
{0, 1} is just needed to answer whether a cell belongs to a chain or not, and in short

the homotopy of the homology groups reduces the more difficult idea of being the

boundary of an object in a higher dimension to the simple idea of being a perfect

surface or having cut out holes.

As the 3D scalar data is given in the form of a VTK file, its cubical complex is

implicitly given. At first a discrete vector field on that cubical complex has to be

constructed. Then its critical points are used to build a Morse chain complex. The

implementation details follow [11] on 2D or 3D grayscale images from CT scans

and had to be adapted to work for 3D curvilinear grids and with different range of

scalar data. The idea of the algorithm is to iteratively construct the vector field by

using simple homotopy expansion. The algorithm thus starts with the 0-cell with

the lowest scalar value and computes the lower level cut for t = tmin. Then cells are

added to the complex by gradually increasing t. For 0-cell xi the lower star L(xi) is

examined (see definition 3). The algorithm assumes that the scalar values on all data
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points are unique so that Ki+1 = Ki ∪ L(xi). With a slight change of the data this is

achieved easily. Thus, every data point (0-cell) can be examined independently, as

every cell is contained in the lower star of exactly one 0-cell.

Afterwards the Morse chain complex can be computed and its cells coincide with

the critical cells. The algorithm follows the V-paths from the faces of the critical

cells to other critical cells using a breadth-first search. The number of paths between

two critical cells then defines the boundary map. If critical cells can be reached by

more than one path, they appear once for each distinct path stored in a list of faces.

The algorithm traverses all critical cells. For each critical p-cell, a p-cell is added to

the Morse chain complex. For p = 0 nothing else needs to be done, as 0-cells do not

have a boundary and thus there are no V-paths to follow. For all other cells 𝛾
(p)

their

faces 𝛼
(p−1)

are determined.

With that, the Morse chain complex is fully determined and the homology groups

and corresponding Betti numbers can be computed as follows. The pth homology

group corresponds to the set of p-cells that have no boundary (Ker 𝜕p) and that

are not the boundary of a (p + 1)-cell (Im 𝜕p+1). The rank of the pth homology

group Hp(X, 𝜕) is called pth Betti number and corresponds to the number of closed

p-dimensional loops that are p-cycles which are not filled. When considering 3D

objects, the 0th Betti number is the number of connected components, the 1st Betti

number is the number of handles and the 2nd Betti number the number of enclosed

voids. For implementation details see the thesis of [12].

The algorithm for persistent Betti numbers is from [13], who introduced the con-

cept of persistent homology. The idea is to iteratively add cells to the complex. For

every cell added, exactly one Betti number changes by exactly one. If for example a

0-cell is added, the number of connected components increases and, therefore, also

the 0th Betti number. When adding a 1-cell to the complex, two different things can

happen. The first possibility is that two different formerly unconnected components

are connected by the 1-cell. The result of this is that the 0th Betti number decreases

by one. Otherwise, the 1-cell connects two 0-cells that are already connected. In

this case, the 1st Betti number increases, as this 1-cell then closes a 1-cycle. This

works analogously for 2- and 3-cells. Cells that create a cycle are called creators and

cells that fill in a cycle are called destroyers. Creator and destroyer cells build pairs.

The persistence is then some sort of difference between the creator and destroyer

cells. The longer a cycle exists in the filtration, the higher is its persistence value. By

removing cells that have low persistence values, small fluctuations in the data can be

ignored.

With the introduction of persistent homology we return to the initial idea to use

isosurfaces for the visualization of IL-2 concentration. Persistent Betti numbers sup-

port the selection of isovalues which are placed such that every important topological

feature is represented in the set of rendered isosurfaces. See Sects. 4.2 and 4.3 for the

application of this idea.
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Table 1 Sizes of cubical and Morse complex

Single cell Cell synapse 216 cells

Size of VTK file (kB) 543 4489 13498

Number of 0-cells (cubical) 2170 15282 50437

Number of 1-cells (cubical) 5976 43824 146556

Number of 2-cells (cubical) 5472 41856 141264

Number of 3-cells (cubical) 1664 13312 44928

Total number (cubical) 15282 114274 383185

Number of 0-cells (Morse) 12 68 587

Number of 1-cells (Morse) 46 101 720

Number of 2-cells (Morse) 42 35 350

Number of 3-cells (Morse) 6 0 0

Total number (Morse) 106 204 1657

Morse cells to cubical cells (%) 0.7 0.18 0.4

4 Visualization Results

The results focus on three simulations: (i) a single biological cell that emits IL-2

on its whole surface, (ii) a single biological cell emitting IL-2 on a synapse, that is

on a tiny point on its surface, and (iii) a simulation of 216 biological cells. This last

example is much more complex than the previous two. From a biological perspective

it is of greater interest, as the interaction between the cells can be observed.

Table 1 shows the different sizes of the example data. The total number of cells

in the cubical complex is, depending on the number of data points, extremely high.

The total number of cells in the corresponding Morse complex is much lower, less

than 1%, but still contains the same topological information.

Table 2 shows the execution times on a laptop computer with Intel Core i3

M370 @ 2.40 GHz processor. The table shows that the times for transforming the

data to a cubical complex and for processing the lower stars are highest. These times

strongly depend on the number of data points, as a loop over all data points is needed

in both cases. The cubical complex has to be built only once for every grid. After-

wards, execution times are much lower because there are fewer cells in the itera-

tion. The rendering times are low enough to allow user interaction. All the examples

shown in this section can be interactively rotated and zoomed in real time. The times

for I/O are not listed.
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Table 2 Execution times for different data examples

Single cell (s) Cell synapse (s) 216 cells (s)

Cubical complex 0.04 2.39 8.56

Vector field 0.04 2.52 8.99

Morse complex 0 0.03 0.3

Betti numbers 0 0.01 0.06

Rendering 0.13 0.16 0.65

Total 0.22 5.42 19.48

4.1 Single Cell

The first simulation considered is of a single biological cell that emits IL-2 on its

whole surface. The data is given in two different resolutions. The concentration of

IL-2 decreases very fast as the distance from the biological cell grows. Therefore,

the concentration is lowest in the corners of the grid cube. Isosurfaces in this data

would all be spheres around the biological cell if the domain were not restricted. As

the domain is a cube, some of the spheres are cut off at the boundary of the domain.

The algorithm for lower star computations determines the critical cells as shown

in Fig. 7a. These critical points reflect the topological changes of the lower level cuts

as the threshold value increases. For this example, 8 critical 0-cells in the corners,

12 critical 1-cells along the edges and 6 critical 2-cells on the sides can be expected.

The critical cells highly depend on the grid of the data. This can be seen in Fig. 7b.

It shows the critical points for the same data, but for a higher resolution. One can see

that there are more critical cells. Here, the used grid produces local minima around

the cell. These can be removed by using information about the persistence. As the

corresponding p-cycles do not persist for a big range of threshold values, they have a

low persistence value. Figure 7c shows only those critical cells that have a persistence

value higher than 0.1. The resulting critical cells are then the same as for the lower

resolution and correspond with what is expected.

(a) low resolution (b) high resolution (c) high res. persistent cells

Fig. 7 Single cell computed with different resolutions. Critical 0-cells are shown as spheres,

1-cells as lines and 2-cells as squares
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(a) 57 isosurfaces at critical values (b) 18 persistent isosurfaces

Fig. 8 Single cell, isosurfaces at a critical or b persistent values and color scale with 20% quantile

compared to Fig. 2c

4.2 Single Cell Emitting on a Synapse

A model closer to a real biological cell let it secrete only on a tiny point on its surface

at a synapse. Isosurfaces are now truncated spheres around the synapse as can be

seen in Fig. 2b. Periodic boundary conditions are used, as all isosurfaces that end on

one side continue on the opposite side. The isovalues are chosen uniformly over the

range of the data from around 0.0006 to 0.0037. This example demonstrates quite

well that the data is not uniformly distributed, as all isosurfaces are very close to the

synapse. Using information about the critical cells of the data to determine isovalues

results in more uniformly distributed isosufaces. Figure 8a shows 57 isosurfaces of

204 cells with critical isovalues (see in Table 1). It can be seen that the isosurfaces

are distributed over the whole domain of the data, but it is still difficult to distinguish

between that many isosurfaces.

Selecting only the most persistent critical cells reduces the number of isosurfaces.

Figure 8b shows only the isosurfaces that correspond to cells with persistence val-

ues higher or equal to 0.1. In that case 18 isosurfaces are drawn. The example with

transparent isosurfaces demonstrates better the high concentration values around the

synapse, but it is somewhat difficult to distinguish the isosurfaces. For opaque iso-

surfaces it is easier to see the exact position of the isosurfaces, but the very high

concentrations close to the synapse cannot be seen as the corresponding isosurfaces

are hidden.

4.3 Multiple Cells

An even more realistic example shows 216 cells arranged regularly in a 6 × 6 × 6
grid. Almost a third of them are T helper cells that emit IL-2 on a synapse, like in

the second example. Next there are as many regulatory T helper cells, and the rest are
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Fig. 9 The intercellular space is filled with 18 isosurfaces for values chosen according to a loga-

rithmic scale; 71 spheres are secretory T helper cells (pink)

responding T helper cells that can be activated. Now the coupling through the diffus-

ing IL-2 concentration in the intercellular space can be simulated. Figure 9 shows 18

isosurfaces using a logarithmic scale for the coloring with changing transparencies

for the various values. The secreting T helper cells are shown in pink. As they emit

IL-2, concentration values are highest around their synapses.

The next step is to choose the isosurfaces according to the critical values of the

data. As the data is very complex, the total number of critical cells in the Morse chain

complex is 1657 (see Table 1). It is important to choose those critical values that

actually represent important changes in the topology. In this case it is not possible to

make suggestions on the geometric shape of the isosurfaces. Close to the secreting

T helper cells they will also be truncated spheres around the synapse, but for lower
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(b) only persistent critical cells considered

Fig. 10 Plot of the Betti numbers for the upper level cuts for different threshold values, b shows

only Betti numbers produced by persistent critical cells
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(a) transparent (b) opaque

Fig. 11 Multiple cells, three selected isosurfaces; color scale with quantile

isovalues they will start to merge. Upper level cuts can be used instead of the lower

level cuts. Figure 10a shows the plot that corresponds to the upper level cuts. This plot

is to be read from right to left. For scalar values that are higher than the maximum

value, all Betti numbers are zero. As the value decreases, the upper level cuts are

points or balls around the synapses of the emitting T cells. Therefore, the 0th Betti

number, which is the number of connected components, increases to a value of 71,

as there are 71 secreting T helper cells. For a threshold value of about 0.02 some of

the balls around the T cells start to reach the boundary of the domain, which leads to

an increase of the 0th Betti number as new components appear. For the same value,

the first balls around different synapses merge. At values slightly above 0.01, the first

biological cells are surrounded by the upper level cuts. For a value close to zero, the

whole domain is in the upper level cut. As there are 216 biological cells, the 2nd

Betti number, which is the number of enclosed voids, increases to this value.

In Fig. 10b only those critical cells with persistence values higher or equal to

0.05 are considered. The persistence values in this case are computed using a simple

difference between the critical values of creator-destroyer-pairs. It can be seen that

for high values the plot looks exactly the same. For lower values, the plot appears

smoother. The 1st Betti number stays zero for all threshold values. The 0th Betti

number initially increases until it reaches a plateau. It does not become higher than

71, as seen in Fig. 10a. This plot shows that these new components do not persist for

a long range of scalar values, but are connected to other components for only slightly

smaller threshold values.

The Fig. 11a and b show isosurfaces that are picked according to decisive values

of the plot in Fig. 10. They both show three isosurfaces. One isovalue is chosen at

a value with persistence slightly higher than 0.02, where the number of connected

components is still highest. The second isovalue is chosen as the value where the 1st

Betti number increases to 1. For that value, the 2nd Betti number is 26. The third

isosurface is chosen at the value 0.01 where the upper level cut is connected and 51
biological cells are already surrounded.
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5 Conclusion and Outlook

The implemented algorithms are fast and efficient to extract topological information

about the data. However, computing persistence values that perfectly mirror the most

important topological changes is difficult since the values range over several orders

of magnitude. Another peculiarity of the data are the periodic boundary conditions.

Critical cells are added if the level cut crosses the boundary of the domain, resem-

bling the same level cut. These additional connected components could be removed

by identifying points on opposite sides of the domain.

Up to now only the steady state of the data is visualized by applying topological

methods for choosing relevant isovalues and rendering steady state isosurfaces. A

challenging task would be to visualize the data over time. This requires to be able to

follow single isosurfaces over several time steps, but the data shows big jumps. The

temporal resolution of the output, although computed fine enough for numerical sta-

bility reasons, was too sparse to see a continuous development. Moreover, following

a single isosurface over time is almost impossible, as most isosurfaces that appear in

one time step do no longer exist in the next one. At times close to the steady state, the

values between different time steps stay closer together and it might thus be possible

to follow a single isosurface.

The question of topological changes over time might be answered by computing

the Morse complex with corresponding (persistent) Betti numbers for all time steps

and see if the Betti number distribution stays the same in each time step.
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Propagation and Aggregation of Motile
Cells of Escherichia coli Pattern

Tatsunari Sakurai, Tohru Tsujikawa and Daisuke Umeno

Abstract A concentric pulse by motile cells of Escherichia coli (E. coli) propagates

and the cells aggregate to form self-organized patterns. We summarize experimental

and numerical results on the self-organized pattern formation of E. coli to eluci-

date some aspects of its mechanism. Our presentation includes experiments on E.
coli patterns, as well as numerical simulations on the basis of a reaction-diffusion-

chemotaxis model. We find good agreement for one-dimensional propagating fronts

in observation and simulation. However, corresponding results for two-dimensional

circular bacterial clusters have still not been obtained.

1 Introduction

For living micro-organisms, cells are working as smart artificial swimming devices

at the microscale. For example, an individual cell of Escherichia coli (E. coli) has the

ability to move [1] and, in a large community, shows a very beautiful self-organized

pattern formation [2, 3] in semi-solid agar. Increased attention has been focused

on the elucidation of the configurational structure in microscopic behavior, such as

motilities of individual cells and macroscopic self-organized order in collective pat-

tern formations.
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Fig. 1 Cooperative patterns formed by wild type E. coli (RP437). The gray scale corresponds to

the cell density. a Eden pattern on 1.0% hard agar. b–d Aggregated patterns outside the red circle
in 0.2% semi-solid agar; b initial concentration of carbon source (nutrient) is 2 mM succinate; c
3 mM succinate; d 4 mM succinate

Figure 1 represents macroscopic E. coli patterns. When these are inoculated at

the center on harder agar (more than 0.5% agar), they grow on the agar and then

assemble to form Eden-like patterns [4] as shown in Fig. 1a. Such patterns are similar

to cooperative growth patterns in bacterial colonies of B. subtilis [5, 6] and can be

explained on the basis of reaction-diffusion systems [7–9]. On the other hand, when

on semi-solid agar (less than 0.5% agar), cells of E. coli can move into the agar, then

they swim by using flagellar filaments: Thus, an individual cell of E. coli behaves

as a self-propelled object and the motile cells of E. coli form complex patterns (see

Fig. 1b–d). Details of the pattern formation will be shown in Sect. 3.

A motile cell of E. coli swims mostly straight for about 0.8 s (running time), then

tumbles and changes the direction randomly, and subsequently swims again for about

Fig. 2 Typical example of motile cells of E. coli. a Trajectory of several cells on a 2D plane in

0.2% semi-solid agar. Scale bar: 50 µm. b Mean square displacement (MSD) of different strains

under different conditions. Lines A and B: wild type strain (RP437). Lines C and D: ΔTar strain

(RP5869), which is knock-outed a chemotaxis receptor for aspartate. Lines A and C: 2 mM succi-

nate as an initial concentration of carbon source. Lines B and D: 10 mM succinate. All lines are

very similar to one another. This means the effective diffusion coefficients of chemotactic and non-

chemotactic cells under different initial concentrations of the carbon source are almost same in our

case
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0.8 s [10, 11]. Figure 2 demonstrates a random migration (a) and its mean square dis-

placements (MSD) (b) of different strains (chemotactic and non-chemotactic cells)

and at different initial concentrations of the carbon source, which is succinate. We

can estimate the effective diffusion coefficient of cells as a macroscopic parameter

from the MSD plot.

Another feature is chemotaxis. A motile cell of E. coli senses chemo-attractants

by chemotactic receptors. When a cell swims up the gradient of an attractant, the

run time becomes longer. On the other hand, when a cell swims down the gradi-

ent, it becomes shorter or does not change. Cells, on the average, move toward the

region of higher concentration of the chemo-attractants [10, 12–14]. Figure 3 shows

the velocity of the propagating pulse of wild type cells (RP437) with a chemotactic

receptor for aspartate and of the front of disk-like pattern [15] of non-chemotactic

cells (RP5869) without the receptor for aspartate. Even if each effective diffusion

coefficient is not dependent on both strains and the initial concentration of succi-

nate as shown in Fig. 2b, the velocity of chemotactic cells is faster than that of non-

chemotactic cells. And it decreases, as the initial concentration of succinate incre-

ses. These characteristics are non-trivial in reaction-diffusion systems. Furthermore

under certain conditions, cells of E. coli make the concentration field of chemo-

attractant by excreting chemicals (here aspartate) themselves. The relation between

the self-making chemo-attractant concentration field and the chemotactic feature that

feels the field, may play an important role to establish the self-organizing pattern for-

mation of E. coli (Fig. 1b–d).

Some models based on the reaction-diffusion-chemotaxis systems with the min-

imal mechanism have been used to understand the above non-trivial pattern forma-

tion [16–21]. In these models, the patterns were very similar to the final ones result-

ing in experiments. But they did neither represent any propagating pulse (mathemat-

ical model reproposed by Aotani et al. [20] represented a propagating pulse at higher

initial concentration of nutrient in 2D). They, however, did not represent a propagat-

ing pulse in 1D and at lower initial concentration of nutrient in 2D, and also did not

clarify the two boundaries shown in Fig. 7, nor the relationship between the velocity

of the propagating pulse of chemotactic cells and the initial concentration of nutrient

(see Fig. 3). How can we revise the models to solve these problems?

Fig. 3 Velocity of

propagating pulse of wild

type cells (RP437), closed
circles, and front of disk-like

pattern [15] of

non-chemotactic cells

(RP5869), open circles
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In this paper, we summarize the self-organized patterns of E. coli experimentally

and propose a model by using a reaction-diffusion-chemotaxis mechanism to under-

stand this kind of pattern formation.

2 Methods

In the pre-culture stage, wild cells of E. coli (RP437) were grown in 5 ml solution

of 0.1 ml/ml M9 salts, 1 mM magnesium sulfate and 0.1 mM calcium chloride for

making a M9 minimal medium, 20µg/ml each of L-threonine, L-leucine, L-histidine

and L-methionine for growth, and 5 mM 𝛼-ketoglutalate as a carbon source for more

than 24 h by using a shaking incubator (37
◦
C, 200 rpm). Then the condensed E. coli

suspension was separated from the pre-cultured solution by a centrifugal separator

with 7200 rpm for 2 min. The 5 µl suspension was inoculated at the center of a 𝜙 90

mm asept petri dish on 10 ml of a similar medium containing 0.2 or 0.24% agar with a

different concentration of succinate instead off 𝛼-ketoglutalate as a carbon source and

50 µg/ml tetrazolium red as a indicator to enhance image contrast of E. coli patterns.

The dish was covered for keeping the experimental conditions. All experiments were

carried out in a box (W600 mm × H400 mm × D450 mm) controlled at 25
◦
C.

The patterns were recorded from below by cameras (Mintron: MTV-63V1N, MTV-

63W1N, and Canon EOS-Kiss).

3 Pattern Formation of E. coli

We now present some of the well-known patterns by Budrene and Berg [2, 3], as

well as our experimental results. Different patterns appear in a certain range of car-

bon source (succinate) concentration. At lower or higher initial concentration of

succinate, a circular pulse corresponding to higher density of cells, named swarm

ring, propagates outwards from the inoculation point in 0.2% semi-solid agar, to be

noticed in Fig. 4, where 6 mM succinate is used as the initial concentration. The den-

sity rapidly increases at the front of the pulse and slowly decreases at its back (see

Fig. 4d–f). The velocity of the pulse is almost constant in the later stage after 40 h,

as can be seen in the space-time plot of Fig. 4g.

At certain concentrations of succinate, the circular propagating pulse also appears

in 0.2% semi-solid agar with 2 mM succinate as the initial concentration. The veloc-

ity is also constant in the later stage (after 30 h) as shown in Fig. 5. Figure 6 shows the

enlarged pictures at the right middle region of Fig. 5c. Under this condition, the cells

aggregate in the propagating concentric ring and create spots behind the pulse. The

spots of high cell density can move soon after aggregating, because the aggregated

spots contain vigorously motile cells [2]. After a while, however, the cells lose the

ability to swim, when the concentration of succinate decreases at the corresponding

location. Thus, the cells in the spots change to non-motile ones. The spots remain
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Fig. 4 Propagating pulse, named swarm ring, in 0.2% agar with 6 mM succinate as initial con-

centration. a, b, b, e and d, f are at 20 h, 40 h and 60 h after inoculation. d–f are intensity profiles

corresponding to cell density along the black line in (a). The arrows show the front of the propa-

gating pulse. g Space-time plot of the propagating pulse along the black line in (a). White scale bar
in (a): 10 mm. These results correspond to patterns in [2, 3]

then at the same location. Finally, they make beautiful patterns representing the den-

sity of non-motile cells (see Fig. 1b–d).

To understand the characteristics of the pattern, we carried out experiments on

the velocity of the propagating pulse and the position of the first aggregated spots,

as they depend on the initial concentration of succinate in 0.24% semi-solid agar

(Fig. 7). There are two boundaries between a propagating pulse without spots (Fig. 4)

and with spots (Fig. 5) around 2 and 5 mM initial concentration of succinate. At

lower initial concentration, the velocity is getting larger with increase of the initial

concentration, but the relationship becomes negative at higher initial concentration.

At certain initial concentrations only, between 2 and 5 mM succinate, the aggregating

patterns appear and the radius, where the first aggregated spots evolve, decreases

with increase of the initial concentration.
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Fig. 5 Propagating pulse and aggregated spots, in 0.2% agar with 2 mM succinate as initial con-

centration. a,d, b, e and d, f are at 20, 30 and 40 h after inoculation. d–f are intenisity profiles

along the black linein (a). The arrows show the front of the propagating pulse. g Space-time plot

of the propagating pulse along the black line in (a). White scale bar in (a): 10 mm. These results

correspond to patterns in [2, 3]

Fig. 6 Enlarged pictures at the right middle region of Fig. 5c. Time interval between pictures is

0.5 h

4 Reaction-Diffusion-Chemotaxis Model with a Minimal
Mechanism; Numerical Results

Figure 8 shows a schematic diagram of a minimal mechanism for understanding the

E. coli pattern formation.

The mechanism leads naturally to the following equations:

𝜕u
𝜕t

= g(u, n) − i(u, n) + ∇ ⋅
(
Du(u, n)∇u

)
+ 𝛼(𝜌)∇ ⋅ (𝜒(u, n)∇c(𝜌, n)) ,
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Fig. 7 Velocity of the

propagating pulse (lower
graph) and radius of first

aggregated spots in 0.24%

agar. The radius corresponds

to one of the red circles in

Fig. 1b–d

𝜕v
𝜕t

= −i(u, n),

𝜕𝜌

𝜕t
= p(u, n) − b𝜌 + D

𝜌
∇2

𝜌,

𝜕n
𝜕t

= −𝛽g(u, n) − 𝛾p(u, n) + Dn∇2n,

where u and v are the populations of active and inactive cells of E. coli; 𝜌 and n are

the concentration of chemo-attractant (aspartate) and nutrient (succinate). The pop-

ulation of active cells increases by consuming nutrient: growth term g(u, n). The ran-

dom migration and attraction by gradients of chemo-attractant of active cells leads

to a diffusion term: the third term and chemotactic term: the fourth term on the right

hand side of the first equation, respectively. Inactive cells do none of these things. In

the case of nutrient shortage, the active cells of E. coli convert to the inactive state:

conversion term i(u, n). Active cells of E. coli secrete the chemo-attractant: p(u, n)

Fig. 8 Schematic diagram of a minimal mechanism for E. coli patterns
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Fig. 9 Profiles of u (density of active cells, red line), u + v (density of all cells, blue line), n
(concentration of nutrient, green line), and 𝜌 (concentration of chemo-attractant, purple line).

Time interval between figures is 20 (a. u.). Initial values: u(0, x) = 1
2 (1 − tanh (2 (x − 1))) , v(0, x) =

0, 𝜌(0, x) = 0, n(0, x) = 1.3

which attracts active cells themselves and the chemo-attractant decomposes itself:

b𝜌. Then the nutrient is consumed for increasing the numver of active cells and by

producing the chemo-attractant.

Here we use the following functions:

Fig. 10 Velocity of the

propagating pulse in 1D
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Fig. 11 Typical numerical

results in 2D. The color

corresponds to the density of

cells (u + v). Time interval

between figures is 20 (a. u.).

Initial values: u(0, x, y) =
1
2 (1 − tanh (2 (x − 1))) , v(0,
x, y) = 0, 𝜌(0, x, y) =
0, n(0, x, y) = 1.3

g(u, n) = 1
2
(1 + tanh (100 (u − 0.02))) nu,

i(u, n) = 0.2
1 + n

0,5

u, p(u, n) = anu,

𝛼(𝜌)∇ ⋅ (𝜒(u, n)∇c(𝜌, n)) = 𝛼(𝜌)∇ ⋅ (u∇𝜌) ,
𝛼(𝜌) = 0 (𝜌 ≥ 0.2) or 10 (𝜌 < 0.2), 𝛽 = 1, 𝛾 = 1,

a = 10, b = 2, Du(u, n) = 0.5, D
𝜌
= 1, Dn = 1.

We can reproduce the propagating pulse of concentration of cells (u + v) in 1D by

using the proposed model depicted in Fig. 9. The profile of the propagating pulse

is similar to those of the experimental results in Figs. 4d–f and 5d–f. It is the first

numerical representation of a propagating pulse in E. coli patterns. Next we present

the velocity of this pulse. The positive and negative slope as a function of nutrient

(Fig. 10) is in good agreement with the experimental results as shown in Fig. 7.

Figure 11 shows a typical numerical result in 2D. A pulse of condensed cells

propagates in the first stage (Fig. 11a), and then cells aggregate along pulse front

(Fig. 11b). The pattern (Fig. 11c, d) is similar to one of the experimental results

(Fig. 1d). The propagating pulse, however, disappears and the aggregated spots are

just moving. This behavior does not correspond to any experimental results.

5 Concluding remarks

We summarized experimental results of self-organized pattern formation of E. coli
cells and numerical analyses of our proposed model to understand the mechanism.

We reported that the velocity of a propagating pulse increases and decreases at

lower and higher initial concentration of nutrient, respectively (Fig. 7). Our proposed
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model using reaction-diffusion-chemotaxis equations represented the propagating

pulse and this way the relationship between the velocity and the initial concentration

in 1D numerical calculations (shown in Figs. 9 and 10). All models including ours,

however, have not yet revealed the secrets of the propagating pulse in 2D. Budrene

and Berg have also asked “How is the identity of the swarm ring maintained?" to

understand the complexity of pattern evolution [2, 3]. The mechanism of the prop-

agating pulse remains still an open question. We hope that our recent experimental

and numerical studies will contribute to understanding the self-organized pattern

formation of motile cells.
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From Synchronised to Desynchronised
Glycolytic Oscillations in Individual
Yeast Cells

André Weber, Yury Prokazov, Werner Zuschratter
and Marcus J.B. Hauser

Abstract The cell density dependence of the glycolytic oscillations of intact yeast

cells of the strain Saccharomyces carlsbergensiswas investigated at both the levels of

cell populations and of individual cells. On the collective, macroscopic population

level the oscillation amplitudes gradually decreased with decreasing cell densities

and below the critical density the collective dynamics became quiescent. However,

single cells kept their oscillatory behaviour for low and very low cell densities even

when cells were far away and isolated from each other. The lower the cell density

of a population, the more the glycolytic oscillations of the individual cells became

independent from that of their neighbours. This leads to a broadening of the distri-

bution of oscillation frequencies in low-density populations, and also to a loss of

entrainment among the individual cells.
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1 Introduction

Synchronisation is a frequent manifestation of self-organisation, where individ-

uals coordinate their behaviour in time, leading to the emergence of collective,

macroscopic dynamics [1–3]. For instance, in synchronised populations of cells, all

individuals adhere to a collective, common rhythm. Typical examples of synchro-

nisation in biological systems are the blinking rhythms of male fireflies [4, 5], the

synchronisation of circadian rhythms in mammals [6–8], the synchronisation of cells

in the segmentation clock of vertebrates [9], the immune response to malaria para-

sites [10, 11], and the macroscopic, collective glycolytic oscillations of yeast cells

[12]. Although the physiological function of glycolytic oscillations in yeast cells is

not yet known [13], it is conjectured that for unicellular organisms, such as yeast, life

within a community is beneficial for their long-term survival [14]. Efficient cell-to-

cell communication is a prerequisite for the organisation of communities, and such

communication among individuals may be provided by metabolic oscillations.

Glycolysis is a fundamental pathway in the energy metabolism of eukaryotic cells

and it may show oscillatory dynamics. In fact, glycolytic oscillations of NADH and

other metabolites in populations of yeasts have been intensively studied [15–19].

In dense populations, the individual cells synchronise their metabolism to a joint

oscillatory mode [16, 20]. This has been demonstrated in experiments, where two

sub-populations that oscillated with the same frequency, but at opposite phases, were

blended and a new, collective oscillatory time-trace was recovered after a few oscil-

latory cycles [18, 21].

The coupling of individual yeast cells is based on the relay and subsequent diffu-

sion of the messenger molecule acetaldehyde [18] through the extracellular medium,

where it is absorbed by the other cells. In addition to studies in stirred cell suspen-

sions, the propagation of waves of glycolytic activity has been observed in spatially

extended media, such as settled cell suspensions [22] or gel-entrapped cells [23].

Already early on, it has been observed that the dynamics of a cell population

depends on cell density. At high cell densities yeast cells show synchronous, coher-

ent oscillations. Once the cell density falls below a critical threshold, the yeast pop-

ulation no longer displays any collective oscillations, but rather remains quiescent

[24]. The transition between collective oscillatory and stationary dynamics at the

population level can follow two different pathways. The first is called ‘amplitude

death’ [25] in the field of Dynamical Systems and ‘dynamical quorum sensing’ in

biological literature [26, 27] and consists in the simultaneous cessation of oscilla-

tory dynamics in every cell of the population when the cell density drops below the

critical threshold. Thus, the stationary dynamics at the collective level is identical

to that of all cells of the population, namely quiescent. Alternatively, the transition

between oscillatory and quiescent dynamics at the collective, macroscopic level may

follow a so-called ‘Kuramoto transition’ [28, 29]. The collective oscillatory signal

is generated at high cell densities, where the oscillations of all individual cells are

coherent and synchronised both in phase and oscillation frequency. At low densities,

the individual cells remain oscillatory, but they lose their coherence so that each of



From Synchronised to Desynchronised Glycolytic Oscillations in Individual Yeast Cells 241

them oscillates with its own phase. As the collective behaviour is the sum of the

signals of the individual cells, phase-incoherent oscillations will lead to stationary,

quiescent collective dynamics [30, 31].

Theoretical studies on oscillators coupled through an external medium show that

the mechanism of transition between synchronous collective oscillations and quies-

cence on the macroscopic level depends on both, cell density and the strength of

the coupling between individual oscillators (or cells). In fact, the Kuramtoto type of

transition is found to take place at low coupling strengths. On the other hand, ampli-

tude death (dynamical quorum sensing) occurs when the cells are strongly coupled

to each other [25].

Both types of transitions, i.e., amplitude death and Kuramoto transition, have

been reported to occur in yeast cell colonies. As the occurrence of amplitude death

(dynamical quorum sensing) requires strong coupling among the cells, such dynam-

ics is usually observed in stirred yeast cell suspensions [26] or in suspended and

stirred beads of an oscillatory reaction [27]. Here, the coupling among cells is strong,

since stirring provides for an homogeneous concentration field of the messenger

acetaldehyde, such that each cell is effectively coupled to all others through the

extracellular medium. On the other hand, early reports that individual cells remain

oscillatory in unstirred cell suspensions at low cell densities [32] have recently been

confirmed in experiments using either S. carlsbergensis cells immobilised on cover-

slips [33] or S. cerevisiae fixed in a microfluidic device [34].

The present study aims at investigating details of the transition from synchronous

to asynchronous dynamics in a colony of immobilised cells. Under these conditions,

at the population level the transition between synchronous and quiescent dynamics

occurs via desynchronisation of the oscillations of the individual cells. Here, we

wish to shed some more light into the mechanisms leading to a Kuramoto transition

as observed in colonies of immobilised Saccharomyces carlsbergensis cells.

2 Materials and Methods

2.1 Experimental Procedures

Cells of the yeast Saccharomyces carlsbergensis were cultivated aerobically until

the glucose in the medium was exhausted at the transition from the logarithmic to

the stationary growth phase [20]. The cells were harvested, washed and stored as

described by Weber et al. [33]. The wet cells were suspended in phosphate buffer as a

20% (weight/volume, w/v) suspension and stirred at 23
◦
C until they showed NADH

oscillations. For the experiments, cell suspensions containing different cell densi-

ties were prepared and transferred to the batch chamber (for details, see Ref. [33]).

The batch chamber consists of two parts between which the coverslip is clamped.

100µl well-aerated yeast suspension of a chosen cell density were placed into the

chamber. After about 30 min, all cells sedimented and adhered to the poly-D-lysine-
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coated coverslip when their plasma membranes got immobilised by contact with the

polylysine coating.

After sedimentation and immobilisation of the cells the experiment was started.

3 mM KCN were added to induce anaerobiosis by blocking the activity of the mito-

chondria. About 10 min later, 52 mM glucose were added to trigger the glycolysis

and induce the metabolic oscillations in the cells.

The intracellular dynamics was monitored through the autofluorescence of NADH

which serves as an indicator for glycolytic activity [20], since NADH is an intra-

cellular metabolite directly involved in glycolysis and energy metabolism. The aut-

ofluorescence of NADH is characterised by absorption and emission maxima at

𝜆ex = 340 nm and 𝜆em = 460 nm, respectively [35].

The NADH autofluorescence from single yeast cells was measured with an

inverted Nikon Ti Eclipse microscope, equipped with a 100×/0.5–1.3 plan fluor lens

and a position sensitive single photon counting photomultiplier tube [36–38]. For

excitation of intracellular NADH a 8 MHz pulsed frequency-tripled Nd:vanadate

laser tuned at 355 nm was used. A dichroic mirror discriminated between excita-

tion and emission. The emission light of yeast cells was filtered by a long-pass (LP

442 nm) and a bandpass filter (FF01–440/40) and detected by the photomultiplier.

For all studied samples, the laser intensity was adjusted such that 3,000–65,000 flu-

orescence photons/s reached the detector, thus making sure that it operated under

optimal conditions. The positions where the photons were detected on the photo-

multiplier were binned into frames of 512× 512 pixels, resulting in a resolution of

0.33µm/pixel in the object space. The field of view had a diameter of 169µm. The

photon flux was integrated over 2 s time intervals, which was a sufficient sampling

rate to analyse glycolytic oscillations with periods T ranging from approximately 24

to 70 s.

2.2 Image Analysis

The immobilised yeast cells were randomly distributed on the coverslip. In our exper-

iments, we analyse the NADH fluorescence signal stemming from domains of dif-

ferent sizes within the field of view of the microscope. We analysed the collective

population signal as well as the fluorescence time-series for each of the individual

cells. The macroscopic, collective population signal was obtained (i) by the fluores-

cence acquired over the entire field of view and (ii) as the average of the baseline-

subtracted fluorescence of all individual cells found in the regions of interest (ROIs).

In these two cases, all incident photons stemming from the entire field of view were

summed up every second.

Furthermore, we also monitored the fluorescence signal from each single cell.

To this purpose the exact position of each cell in the population was determined as

region of interest. At any time, the single cell fluorescence Fcell is the mean value of

the intensity of the fluorescence signal detected in the area occupied by an individual

cell
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Fig. 1 Baseline correction to eliminate spurious drifts and trends as well as bandpass filtering

to the frequency range of glycolytic oscillations. a For each individual cell signal the baseline was

computed as the walking average of the fluorescence data using a 100 s wide window. bThe baseline

was subtracted from the fluorescence signal of the yeast cell. The oscillation frequency of each cell

was determined by a fast Fourier transform. Noise was reduced by applying a Fourier bandpass filter

that cuts off frequencies higher than 0.050 Hz and lower than 0.014 Hz. These filtered time-series

were used for the calculation of the phases 𝜙i

Fcell =
∑

c
a

, (1)

where c is the number of incident photons originating from the area a occupied by

the individual cell. The temporal sequence Fcell(t) yields the time evolution of the

fluorescence of an individual cell.

The time-series of the fluorescence of each cell was subjected to a baseline sub-

traction such that any spurious drifts or longterm trends were eliminated. The base-

line was computed as the walking average of the fluorescence data using a time win-

dow of 100 s (Fig. 1a). After baseline subtraction, we obtained oscillations around

zero (Fig. 1b) and determined their frequencies by a fast Fourier transform. These

baseline subtracted single cell fluorescence signals were averaged to obtain the col-

lective signal of all ROIs.

Noise reduction was achieved by bandpass filtering. The applied Fourier bandpass

filter cut off frequencies higher than 0.05 Hz and lower than 0.014 Hz. Thus, the

frequencies of the glycolytic oscillations were preserved in the filtered time series

xi(t).
The phase 𝜙i(t) of each oscillating cell i

𝜙i(t) = arctan
(
x̃i(t)
xi(t)

)

(2)

was computed through the Hilbert transform
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Fig. 2 Hilbert transform and phase of the bandpass filtered fluorescence signal of a single cell.

For each cell of a population, a the Hilbert transform and b the phase 𝜙i were calculated from the

bandpass filtered oscillations

x̃i(t) =
1
𝜋 ∫

∞

−∞

xi(t′)
t − t′

dt′ (3)

of the filtered single cell signal xi(t) (Fig. 2).

The order parameter K, introduced by Shinomoto and Kuramoto [31],

K(t) =
|
|
|
|
|
|

N−1
N∑

i
exp(i𝜙i(t)) −

⟨

N−1
N∑

i
exp(i𝜙i(t))

⟩|
|
|
|
|
|

, (4)

was chosen for measuring the phase synchronisation at each time point. An order

parameter K = 1 indicates a complete synchronisation (complete coherence) among

the cells (oscillators) in a population, whereas K = 0 means that the cells oscillate at

random phases.

3 Results

Intact yeast cells of the strain S. carlsbergensis reveal that the dynamics of glycolytic

oscillations depends on the cell density of the population. Cell populations with den-

sities varying from 𝜌 = 0.001 to 0.8% were investigated.

The collective population signal has been analysed in two ways, as described in

Sect. 2.2. First, the fluorescence signal was collected over the entire field of view,

yielding the raw macroscopic signal. Second, we determined the area and position

of each cell (as a ROI) in the field of view, and collected only photons stemming from
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Fig. 3 Collective and individual dynamics of a population of S. carlsbergensis cells at a high cell

density of 0.8%. The oscillations show a common rhythm. Oscillations start at t= 0 s about 80 s

after an aliquot of 52 mM glucose was added to the starved and immobilised cells. During the first

∼50 s, the cells start to oscillate and to synchronise with each other. a The baseline corrected time-

series of the averaged single cell signals (ROIs) represents the collective fluorescence signal, which

shows well-developed glycolytic oscillations. b The oscillations of the individual cells are highly

coherent and synchronised in their amplitudes. At t > 1000 s the oscillation amplitudes decay and

the cells lose synchrony. For visualisation the individual oscillations were filtered and their highest

amplitudes were normalised to the range [−1, 1]. Note that cells are numbered randomly. c The

phases of the oscillations of the individual cells are synchronised with each other. Again, for t >
1000 s the cells desynchronise. d For 50 s≤ t ≤ 600 s the time-dependent Kuramoto order parameter

K is higher than 0.9, indicating a very high coherence of the oscillations of the individual cells

the cells while neglecting any photons that stem from the cell-free background. The

collected photons were averaged and the time-series baseline-corrected. These time-

series are referred to as baseline-corrected averaged single cell traces. In addition to

these collective signals, the microscopic dynamics of every individual yeast cell in

the population were tracked, too.

An aliquot of 52 mM glucose was added to the cell medium containing starved

yeast cells to induce glycolytic oscillations. By convention, time t = 0 s denotes the

onset of the glycolytic oscillations approximately 40–200 s after glucose addition.

The oscillatory response of the yeast cells was long-lasting, however, always tran-

sient, since the experiments were performed under batch conditions.

Dense yeast cell populations are known to show collective glycolytic oscillations,

which are clearly detectable on a macroscopic scale, as depicted in Fig. 3. The oscil-

lations of the individual cells were highly synchronised in their amplitudes (Fig. 3b)
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Fig. 4 Collective and individual dynamics of S. carlsbergensis at an intermediate cell density of

0.3% shows a transition from synchronous to desynchronous dynamics. Oscillations start at t= 0 s

about 200 s after an aliquot of 52 mM glucose was added to the cells. a The time-series of the

collective fluorescence signal oscillates with changing amplitudes. Two episodes of oscillations of

larger amplitude occur, the first between 200 s≤ t ≤ 400 s and the second between 600 s≤ t ≤ 800 s.

b The individual cells remain oscillatory during the experiment. At t= 600 s a transient episode of

synchronised, collective oscillations sets in and the population signal attains its highest amplitudes.

For t ≥ 1000 s the single cell oscillation amplitudes dampen, which causes a decaying population

signal. Note that the cells are numbered in an random order. c At the beginning and the end of

the experiment most of the cells oscillate at their own periods and phases (𝜙i), which leads to

lower amplitudes in the collective signal (a). The synchronisation episode at 600 s ≤ t ≤ 1000 s is

caused by a temporary entrainment of the oscillations of the individual cells. d The time-dependent

Kuramoto order parameter K reflects the degree of synchronisation among the cells

and phases (Fig. 3c). The phase synchronisation is reflected by the time dependent

Kuramoto order parameter (Fig. 3d), which, after a short induction time, attained

values above 0.9, indicating a high degree of synchronisation and coherence of the

cellular oscillations.

Macroscopic population signals were monitored in experiments using different

cell densities. For intermediate cell densities in the range 0.3–0.01% the macro-

scopic and collective oscillations were detectable and the cells gradually lost their

synchrony in periods and phases as the cell density decreased.

When the cell densities fall below 𝜌 ≤ 0.3%, desynchronisation begins to set in

(Fig. 4, where 𝜌= 0.3%). In the baseline-corrected time-series, the desynchronisation

manifests itself in macroscopic oscillations whose amplitudes may change in time

(Fig. 4a). On the other hand, on the level of individual cells, one observes that each

cell shows glycolytic oscillations. However, for a long time (i.e., up to t ∼ 550 s)
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Fig. 5 Histograms of oscillation periods of individual cells in a population of intermediate cell

density (𝜌 = 0.3%) for episodes of desynchronised (black line) and synchronised (gray line) oscil-

lations. Single cell oscillations during the episode of desynchronisation (100 s ≤ t ≤ 500 s, Fig. 4)

show a fairly broad distribution of oscillation periods. During phase synchronisation (650 s ≤ t ≤
1000 s, Fig. 4) the oscillation periods decrease and the distribution of periods narrows since most

cells entrain their oscillations to a common period

these oscillations are desynchronised in both amplitude (Fig. 4b) and phase (Fig. 4c).

After this induction time, the amplitude of collective oscillations increased (Fig. 4a),

indicating the formation of a transient episode of large-amplitude oscillations. These

are due to a temporal synchronisation of the oscillations of the individual cells (e.g.,

from 600 s≤ t ≤ 1000 s in Fig. 4b, c). The time-dependent order parameterK reflects

this behaviour: it lies between 0.2 and 0.4 for times t ≤ 550 s indicating that the

oscillation phases of the cells are desynchronised (Fig. 4d). For times t ≥ 600 s cells

synchronised their oscillations for about 400 s andK reached values higher than 0.75.

The distribution of the oscillation periods of the individual cells was determined

for the two episodes of distinct macroscsopic oscillations shown in the time-series of

the population of intermediate cell density (𝜌 = 0.3%, Fig. 4). The distribution of the

oscillation periods during the episode of desynchronised cell oscillations (that lasts

from ≈ 150 s ≤ t ≤ 450 s, Fig. 4) is relatively broad (Fig. 5), whereas the distribu-

tion narrows considerably during the episode of coherent, synchronous oscillations

(from ≈ 600 s ≤ t ≤ 1000 s, Fig. 4). Furthermore, we observe that the synchronised

oscillations present a shorter mean period (T = 33 s) than that of the desynchronised

oscillations, whose mean period is about T = 37 s (Fig. 5).

As the cell densities are decreased even further, it becomes more and more diffi-

cult to detect the collective, macroscopic glycolytic oscillations because the ampli-

tude of these oscillations shrink. This is the case once the cell density gets as low

as 0.01% (Fig. 6). At such low densities, any possible macroscopic oscillations suc-

cumb to the inherent noise such that it becomes impossible to decide whether coher-

ent oscillations still occur. In fact, the raw macroscopic fluorescence signal suggests

the absence of collective oscillations (Fig. 6a).
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Fig. 6 Macroscopic population signal of the whole field of view compared to the averaged and

baseline corrected dynamics of the cell population at a low cell density of 0.01%. a The time-series

of the macroscopic, collective fluorescence signal of the whole field of view is noisy and consists of

quiescent and possibly oscillatory phases. Transient reminiscences of oscillations can be spotted at

400 s ≤ t ≤ 800 s. b The oscillations of individual cells were averaged after detrending. The oscil-

lation amplitudes change in time and eventually the collective oscillations cease because individual

cells oscillate out of phase. c Even at low cell densities the individual cells remain oscillatory when

the macroscopic collective signals of (a) and (b) are already quiescent, i.e., at t> 1400 s

However, the inspection of the dynamics at the level of individual cells reveals

that the cells continue to oscillate (Fig. 6c) even when the macroscopic oscillations

ceased, i.e., at t < 400 s, or 800 s < t < 1200 s (Fig. 6a). The collective signal com-

puted after baseline-subtraction (Fig. 6b) is considerably less noisy than the raw

macroscopic signal. Here, short episodes of oscillatory, low-amplitude dynamics and

epochs of quiescence are observed. These episodes are reflected by events of some

coherence (at 400 s≤ t ≤ 800 s and t ≈ 1200 s in Fig. 6b) or decoherence (800 s< t <
1200 s in Fig. 6b), respectively, of the phases and frequencies of the oscillations of

the individual cells (Fig. 6c). For times t > 1600 s no collective oscillations were

detectable because only a small number of cells continued to oscillate while others

oscillated with decaying amplitudes due to the batch conditions.

Yeast populations of very low cell density (𝜌 ≤ 0.01%) are characterised by a

loss of synchronisation of the glycolytic oscillations of the individual cells. The

dynamics of individual cells reveals that oscillations in each of them may begin

at different points in time (Fig. 7). Despite of this cell-to-cell variability, the cells

remained oscillatory, but they oscillate with increasingly more independent rhythms

(Fig. 7b) the lower the cell density is. In sparse populations (𝜌 ≤ 0.01%) the oscilla-
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Fig. 7 Collective and individual dynamics of S. carlsbergensis at a low cell density of 0.01% with

loss of entrainment. a The collective fluorescence signal shows oscillations with small amplitudes

and epochs of transient quiescence at t ∼ 300 s and t ∼ 900 s. b The individual cells remain oscil-

latory. The oscillation amplitudes of the individual cells are decoherent. Note that the time spans

where individual cells show pronounced oscillatory amplitudes vary considerably from cell to cell.

c Each cell oscillates with its own phase and oscillation period. Slight and transient entrainment in

the oscillation phases of some cells occasionally give rise to the reminiscences of oscillations, e.g.

at 400 s ≤ t ≤ 800 s. d The time-dependent Kuramoto order parameter K remains low at all times,

indicating desynchronisation of the cells

tion phases of the cells are incoherent (Fig. 7c), and consequently the order parame-

ter is low (0 ≤ K ≤ 0.3, Fig. 7d). The baseline-subtracted collective signal (Fig. 7a)

reflects the dephasing of individual oscillations in episodes of quiescence (e.g., at

250 s < t < 400 s) and shows episodes of increasing oscillation amplitudes, when

individual oscillations become transiently more synchronised.

The frequency spectra and corresponding histograms of oscillation periods

obtained from experiments performed at cell densities of 𝜌 = 0.8%, 0.3% and 0.01%,

respectively, are shown in Fig. 8. We analysed the oscillations of cells during the time

interval 200 s≤ t ≤ 600 s. As the cell density of the population diminishes the distrib-

ution of the oscillation frequencies widens. At very low cell densities this leads to the

situation where cells become decoupled and oscillate independently with their own,

individual frequencies. Figure 8 provides evidence for these findings: At a high cell

density of 𝜌 = 0.8% basically all cells shared a common frequency of f ≈ 0.0194 Hz

and oscillated in concert. The glycolytic oscillations of the intermediate cell density

of 𝜌 = 0.3% are characterised by a broader frequency distribution where most cells in

the population share a common frequency band around f ≈ 0.028 Hz, but individual
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Fig. 8 Frequency spectra and histograms of oscillation periods of individual cells in populations

of cell densities of 0.8, 0.3, and 0.01%. Fourier spectra of the oscillations of individual cells were

calculated for the time intervals 200 s ≤ t ≤ 600 s. At high cell density (𝜌= 0.8%) all cells oscillate

with the same frequency which leads to a narrow distribution of the periods (top row). The lower

the cell density of the population was chosen, the more cells lose coherence in oscillation periods.

For 𝜌= 0.3% (middle row) the distribution of the oscillations periods of the cell widens, and for

even lower densities (𝜌= 0.01%, bottom row) nearly all cells oscillate with their own frequencies.

Note that the number of cells for 𝜌= 0.8% is relatively small because only a few representative cells

were selected for the analysis

cells differed. In case of low cell densities (𝜌 ≤ 0.01%) most of the cells oscillated

with their individual frequencies, which were broadly distributed (Fig. 8).

Note that the frequency of oscillations can vary from experiment to experiment

(population to population), even when all experimental parameters are kept constant;
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this is most probably due to tiny differences in the individual preparations of cells.

In other words, while the frequency distribution always remains narrow, a certain

variability of the position of the center of the distributions is found for populations

under the same nominal conditions.

4 Discussion

We have studied the dynamics of glycolytic oscillations in Saccharomyces carlsber-
gensis cell populations in dependence of the cell density. The collective, macroscro-

scopic dynamics and the dynamics of each cell were monitored at the cellular level.

We observe that at a critically low cell density the collective oscillations cease and

give way to quiescent dynamics, whereas on the single cell level the individual cells

continue to oscillate. The oscillatory dynamics of individual cells persists even for

very low cell densities (down to 𝜌 = 0.001%), where the cells are almost isolated.

The mechanism leading to the transition of the collective dynamics from oscil-

latory to quiescent (and vice-versa) is due to a loss (gain) of coherence among the

glycolytic oscillations taking place in the individual cells. Below the critical density

𝜌crit ∼ 0.3%, the cells continue to display glycolytic oscillations, but these oscilla-

tions begin to lose their synchrony in phase and frequency. This desynchronisation

scenario is typical for a Kuramoto transition to incoherence (or desynchronisation)

[28, 30, 31, 33].

The coupling between cells is provided by the messenger molecule acetaldehyde.

During glycolytic oscillations the cells release acetaldehyde periodically to the extra-

cellular medium, where the concentration of this messenger is detected by other

cells. When and where the extracellular concentration of acetaldehyde is sufficiently

high, yeast cells start to oscillate in synchrony with the oscillating concentration of

acetaldehyde in the extracellular medium. The magnitude of acetaldehyde oscilla-

tions hence provides for the strength of the coupling between cells of a population.

At populations of high cell densities a sufficiently high magnitude of extracellular

acetaldehyde is reached very briefly after addition of glucose, leading to synchro-

nised oscillations of the cells and to a clear time-series of collective oscillations.

By contrast, at very low cell densities the extracellular concentration of acetalde-

hyde always remains too low to induce synchrony in the glycolytic oscillations of

the individual cells.

An interesting behaviour is observed in yeast populations of intermediate density,

e.g., in the experiment run at a cell density of 𝜌 = 0.3% (Fig. 4), where desynchroni-

sation sets in. Here, oscillations at cellular level set in shortly after addition of glu-

cose (at 40 s ≤ t ≤ 200 s) leading to collective oscillations of low amplitude since

only a part of the cells oscillates in concert, as evidenced by the relatively low order

parameter of K ∼ 0.3. It takes a while (until about t = 550 s, Fig. 4) until the extra-

cellular concentration of acetaldehyde becomes coherent in time and space. Once

this is achieved, we observe an episode of relatively high synchronisation among the

cells of the population (in the interval 550 s ≤ t ≤ 1000 s, Fig. 4). It is noteworthy
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that amplitudes of the oscillations of the single cells have already begun to decay as

the macroscopic collective signal attains its highest amplitudes.

The time-series at the onset of desynchronisation (e.g., at 𝜌 = 0.3%, Fig. 4), allow

to study some characteristics of the oscillations of individual cells when these are

either synchronised or desynchronised. We found that in the event of desynchronised

oscillations the variability in oscillation period was larger than at times where the

cellular oscillations are synchronised (Fig. 5). Furthermore, the synchronisation of

cells led to a slightly shorter mean period of the intracellular glycolytic oscillations as

compared to the periods of oscillations when the cells were desynchronised (Fig. 5).

Hence, events of synchrony are caused by the entrainment of cells to a period that is

slightly shorter than their free-running oscillatory periods.

In summary, we report on the mechanism of the transition between collective

glycolytic oscillations and quiescence in a population of immobilised yeast cells. We

found that while the collective dynamics of the populations changed from oscillatory

to stationary, the individual cells remained oscillatory. However, the transition in the

macroscopic, collective dynamics is caused by the loss of phase and frequency coher-

ence of the individual cells. Hence, the transition between oscillatory and quiescent

dynamics in immobilised yeast cells occurs via a Kuramoto transition. This dynamic

transition differs significantly from the behaviour reported from stirred yeast cell sus-

pensions, where the cessation of collective oscillations at the population level is due

to a dynamical quorum sensing (or amplitude death) phenomenon [26], where all

cells stop oscillating immediately, once the cell density is lowered below the critical

threshold. Obviously, yeast cells can follow both routes, depending on the strength

of cell-to-cell coupling: at high coupling strength between the cells, the dynamical

quorum sensing (or amplitude death) mechanism is favoured, whereas at low cou-

pling strength, the transition occurs via a Kuramoto-type transition of synchronous

to desynchronous oscillations of the individual cells.
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Financial Market Models

Lisa Borland

Abstract The dynamics of financial markets are discussed. After a brief introduc-

tion of the price formation process, we review the statistical features (also known

as “stylized facts”) of stock return time series, which exhibit fat tails and intermit-

tent periods of higher or lower volatility. Several models aimed at understanding the

mechanisms that lead to these seemingly ubiquitous features of financial markets are

then reviewed. Those models have largely been developed within the Econophysics

community but we emphasize here that they all contain elements consistent with a

Synergetic approach.

1 Introduction

Financial markets are nonlinear non stationary complex systems, with a constantly

evolving unique history of price and transaction data. It is impossible to run exper-

iments akin to those in a physics lab, but on the other hand we have an increasing

amount of data, since every market interaction that takes place on the electronic

exchanges are recorded, resulting in terra bytes of new information each day. These

empirical observations are fodder for all kinds of analyses. On a high level of sta-

tistical observation, they show a slew of so-called stylized facts which appear to be

stable across instruments, geographies and time, hence quite universal. Over the past

decades there has been effort from the Econophysics community to analyze the data

and to come up with models of various aspects of financial markets and economies,

such as the dynamics of wealth formation in an economy, multi agent models of price

formation, and the dynamics of volatility and correlations to name a few.

This chapter will be a review of some of these interesting models that stem from

statistical physics. We emphasize and highlight that a main common feature among
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them is that they all take into account cooperative effects one way or another, very

much in the spirit of Synergetics [1].

2 Microscopic Dynamics of Price Formation

There is no such thing as “the price” of a stock. Instead the price formation process

is the result of the individual actions of market participants, each with their own

view and utility. They act on a spectrum of time scales; they base their buy or sell

decisions on their individual information set for their own individual intent. These

buy and sell orders are submitted to the market place and it is ultimately the collection

and interaction of this supply and demand that drive the microscopic dynamics of

price formation, in conjunction of course with the rules of individual exchanges and

regulations (which have evolved over the years and continue to do so).

Specifically for example in the US, in the mid nineties transactions could only

occur on the NYSE or Nasdaq, whereas today we have a fragmented market con-

sisting of “dark pools” (where traders cannot see the orders of others) and 12 “lit”

exchanges where traders can place their orders to buy or sell a given quantity of a

stock at a given price. The orders on lit exchanges can be seen by market participants

(hence the name). They can be organized into a so-called limit order book according

to the price-time priority. An order has a time, price, size and action (for example

buy, sell, cancel among others) associated to it. If two orders to buy come in with

the same price, the one that came in first gets placed ahead in the order book queue.

However if an order comes it to buy at a higher price, it goes ahead of the other

orders regardless of when it entered the book. Orders to sell are handled in the same

fashion. Size doesn’t affect priority and the different amounts available to be bought

or sold at different prices constitute the full order book. At any given moment at the

top of the book there is a best price to buy a certain amount and a best price to sell a

certain amount. The difference between them is called the spread. If an order comes

in that crosses the spread a transaction will occur. All long as there is enough vol-

ume at the top of the book, then that is the price that the transaction will occur at,

otherwise some of the order will be filled at worse prices as the liquidity at deeper

levels of the book gets consumed.

This brings us to the point here: there is no well-defined price. Is it the price to

sell or the price to buy? Is it the mid of those? Is it some kind of volume weighted

mid, depending on how many orders to buy or sell at a given price? Often, the last

recorded transaction price is what is used here, but it is easy to see how this could

be problematic if a stock doesn’t trade very frequently. All said, the price forma-

tion process is clearly a complex one, driven by events involving local and global

interactions, resulting in an evolving order book dynamic. In my opinion the most

insightful and detailed studies attempting to understand the dynamics of price for-

mation on this level, as well as the market impact of trading, have been done within

the Physics community for example by Bouchaud et al. [2, 3] and Lillo et al. [4].

They reveal that the processing of supply and demand in markets has long range
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memory, and is also related to the origin of market fluctuations among many other

interesting findings. Another succinct model of the order book was developed by

Cont et al. [5] who formulate a stochastic equation for the mid price based on the

order book dynamics. More recently, some authors model the order flow dynamics of

bids and asks via self-exciting Hawkes processes [6, 7], leading to a nice framework

where questions such as optimal trade execution for example can be studied.

In spirit and in analogy to physics, all these models eluded to above can be seen

as microscopic models, based on underlying empirical observations of the actual

order placement and execution process (namely the order book). Ultimately though,

the price once formed evolves as a stochastic process, and is typically modeled by a

Langevin equation. This level of description is in a sense analogous to a mesoscopic

view in physics, and can be seen itself as the result of a vastly complex system with a

multitude of interacting participants. This view lends itself to other classes of models

attempting to describe the collective dynamics of those participants. In this chapter

we shall review several classes of both microscopic and mesoscopic models which

can all be seen to fit very well in the spirit of Synergetics.

3 Stylized Facts of Markets

Returns (or relative price changes) of stocks can be calculated over different time

scales 𝜏, and if the distributions of these are plotted out it is clear that they are far

from Gaussian, but rather are well fit with power law tails in such a way that the

power law behavior persists from time-scales ranging from intraday to the order of

a few weeks. On daily time-scales the power law tail is about 3, often referred to as

the cubic law of finance [8, 9]. The kurtosis of these distributions decays in a regular

Fig. 1 Distributions of a velocities from turbulent flows and b normalized returns of financial

time-series



260 L. Borland

Fig. 2 Real market returns

(below) and results of a

market model simulation

(the multi-timescale model

of Eq. (16))

fashion, roughly as 𝜏
−0.2

[10]. These distributions bear many similarities to those of

turbulent systems (see Fig. 1).

Volatility (defined either as the standard deviation of returns over some past win-

dow, or simply by a proxy such as the absolute value of returns) exhibits clustering

behavior such that there appear to be regimes of higher or lower volatility (see Fig. 2).

Furthermore, there is memory in volatility in the sense that the auto-correlation of

absolute returns is very strong, decaying slowly as a power law. More subtle sta-

tistical features are inherent, such as a behavior analogous to the Omori law for

earthquakes in that a large volatility shock will be followed by aftershocks at a cer-

tain rate. Furthermore, large negative returns are indicative of higher volatility, an

effect known as the leverage effect [11]. There is also time-reversal asymmetry in the

sense that future volatility conditioned on past observations is not symmetric [12].

Finally, financial time series exhibit multi-fractal scaling of moments (see for exam-

ple [13]). Interestingly, all of these so-called stylized facts are not only observed for

stock returns, but also for other financial instruments such as commodities and cur-

rencies, and they are observed across geographies. Realistic market models should

ideally capture the basics of these features.

4 Wealth Models as Predator-Prey

The Lotka-Volterra equation is one that arises in the field of nonlinear dynamics and

Synergetics quite frequently. It is used to describe the positive and negative feed-

back loops between interacting species, where one preys on the other. It is therefore

very exciting that one of the first successful models for describing the fact that wealth

among members of the society follows a Pareto distribution (and in addition connect-

ing this to the fluctuations in financial markets) is based on that equation [14–16].
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That model also recovers realistic features of financial markets such as bubbles and

crashes as well as volatility clustering.

The basic ingredients of the model are to introduce feedback between individual

and collective wealth fluctuations of a collective set of traders. The central feedback

loop consists in computing the market price of the stock as the sum of the individual

wealths wi invested in the stock by the traders, and then determining fluctuations

of a given trader’s wealth as their previous wealth multiplied by the stock return.

Explicitly, consider the total population of wealth

w̄(t) =
N∑

i=1
wi(t) (1)

where wi is the wealth of investor i (in other words, value of the stock owned by

investor i at time t). At time t + 1, the wealth becomes:

wi(t + 1) = 𝜆(t)wi(t) + a(t)w̄(t) − c(t)w̄(t)wi(t) (2)

The first term states that wealth at time t + 1 is proportional to wealth at time t mul-

tiplied by the random factor 𝜆(t) which corresponds to relative gains or losses over

the last period. The second term represents a coupling of the individual’s wealth to

the global wealth of the society. Hence a(t)w̄(t) represents things like social services,

for example. The final term corresponds to the competition between each individual

i and the other members of society, and plays the part of limiting growth of w̄(t) to

values that are sustainable for the current conditions and resources.

The Solomon–Levy model leads to a power law for the distribution of individual

wealth namely

P(w) ∝ w−1−𝛼
(3)

where 𝛼 is typically between −1 and −2. In [16] the very interesting conclusion is

drawn that any quantity which is a sum of random increments proportional to the

wealths wi will have fluctuations described by a Levy distribution of index 𝛽 equal

to the exponent 𝛼 of the wealth power distribution. Since the individual investments

are stochastically proportional to the investors wealth, the stock market fluctuations

will be described by a truncated-Levy distribution of index equal to the measured

exponent 𝛼 = 1.4 (which results in a tail index close to 3 as eluded to above). This is

an amazing and non-trivial result: Based on simple notions of competition, local and

global feedback of the wealth of members of society, a mechanism for describing the

distribution of stock market fluctuations is designed.

Note that Eq. (2) is a mesoscopic description of the stock market; It was in fact

written down by the authors as just such as description of the outcome of many

simulation runs of their microscopic model [14]. The microscopic model looks at

individual investors with various ways of deciding how much stock to buy or sell at

a given time. Simulations of that collective group of investors then gave rise to the



262 L. Borland

dynamics of wealth fluctuations which are described by Eq. (2). We’ll discuss other

such models that have many interacting agents in the next section.

5 Many Interacting Agents, Spin Models and Minority
Games

Models with a large number of interacting agents have had success in reproducing the

emergent properties observed in real markets, such as bubbles and crashes, volatility

clustering and fat tailed distributions. A very simple class of agent-based models is

the El Farol bar problem. The bar has a limited number of seats, less than the total

number of patrons who would like to come. The goal is to learn which days to go

to the bar in order to get a seat. Agents have a set of predictors based on their past

experience and via reinforcement learning they use their best predictors more and

replace their bad predictors. A simple version of the El Farol bar problem is known

as the minority game [17]. Agents are divided into two groups and are only rewarded

if they are in the minority. This leads to a global frustration as not every agent can

be in the minority. So, in simple terms, the minority game describes how a system

evolves according to trying to maximize the payoff of each individual agent under

the given boundary conditions. When applied to modeling financial markets, the

analogy is that similar dynamics may be going on because it is often better to be in

the minority when buying or selling. In spite of the extreme simplicity of the model

in this context, the minority game model is nevertheless an interesting framework.

Another approach of interacting agents which is much more realistic is the one

proposed by Lux and Marchesi [18]. The individual trading agents are simulated,

including an explicit price formation process. Agents are modeled as different types

of traders interacting in a speculative market: “noise traders” and “fundamentalists”.

Fundamentalists base their action on fundamental valuation of the stock. The noise

traders base their trading decisions on price data and flows, which leads to herding

behavior. They react to the recent past of the market and can have either positive or

negative expectations of the future based on that past. The dynamic of the model

is that traders compare profits gained by the noise traders and fundamentalists, and

then switch their own strategy to that which was more profitable in the recent past.

Depending on whether traders want to buy or sell, supply or demand will be infused

into the market and the price will be adjusted according to the excess demand. In

addition, the dynamics of the fundamental value of the stock follows a standard log-

normal Brownian motion with uncorrelated Gaussian noise.

Lux and Marchesi formulate the state dependent transition probabilities that

describe, for each group of traders, the probability of switching to the other group.

For noise traders there is also the internal switching between a pessimistic and opti-

mistic view of the market. They obtain
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P(+|−) = v1 exp(U1) (4)

P(−|+) = v1 exp(−U1) (5)

with:

U1 = 𝛼1x + (𝛼2∕v1)p′(t)∕p (6)

where the 𝛼’s and v’s are constants and x corresponds to the majority opinion of other

noise traders (flows) and p′(t) is the recent price trend. In addition, for the traders

switching from a noise trading (N) chartist strategy to a fundamental (F) strategy

they postulate

P(N|F) = v2 exp(U2) (7)

P(F|N) = v2 exp(−U2) (8)

with: U2 = 𝛼3𝛥w where 𝛥w corresponds to the profit differential. Finally, the price

gets adjusted up or down based on supply and demand according to excess demand

being either on the buy or sell side.

Based on these rather simple yet realistic dynamics, a theoretical analysis as well

as simulations show that the most important features of real financial markets emerge

as a consequence. In particular they find that the market is on average efficient in

the sense that the price on average reflects a fundamental equilibrium. The amount

of pessimistic and optimistic traders is roughly even, and in equilibrium both the

noise traders and the fundamentalists do equally well. Though the system always

tends towards a stable equilibrium, it exhibits autocorrelated fluctuations around that

fundamental equilibrium and simulations of the model show on-off intermittency of

fluctuations. This is very similar to the properties of real market fluctuations, where

volatility shows memory and clustering.

Another class of models are spin based models in which analogies are made

between the interactions and dynamics of spin systems and financial markets. Some

interesting spin models have been proposed for example [19, 20]. These models can

reproduce (under certain parameter settings) features such as the large fluctuations of

financial markets, but need to be tuned specifically. Another spin based model [21]

that doesn’t need tuning stands out as particularly simple and intuitive, the approach

of which we summarize here. In that paper a very simple model is formulated, which

nevertheless includes terms corresponding to strategic interactions between real mar-

ket players. To be more precise, the spins correspond to ‘traders’ who can have two

states which represent positive or negative expectations of the market. The model

aims to capture two conflicting forces of financial markets: (1) Do what others do,

such as in the herding behavior of the Lux-Marchesi model, and (2) Do what the

minority does, for example if traders have knowledge about fundamental values and

as modeled in the minority game.

Explicitly, Bornholdt proposes a model with i = 1,… ,N spins such that Si(t +
1) = 1 with probability

p = (1 + exp(−2𝛽hi(t)))−1 (9)
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and Si(t + 1) = −1 with probability 1 − p. The local field h is specified by

hi(t) = JijSj𝛼Ci(t)
1
N

N∑

j=1
Sj(t) (10)

The first term is a local Ising coupling with nearest neighbor interactions Jij = J and

Jij = 0 for other pairs. The second term is a global coupling to the magnetization

of the system with a coupling 𝛼 > 0, where Ci(t), represents the strategy of agent i
with respect to the magnetization. In particular, this second coupling allows for the

case of spins frustrated across scales, seeking ferromagnetic order locally, but anti-

ferromagnetic order globally. Depending on the value and dynamics of C, the model

captures scenarios where chartists (herders) or fundamentalists (minorities) domi-

nate, and more interestingly where they switch group memberships. In that case it is

shown that a whole slew of realistic features of financial markets is recovered, such as

intermittent volatility clustering, power-law scaling of returns and auto-correlation

of absolute returns. Most interestingly, these results do not depend on tuning, and the

author concludes (much in the spirit of Synergetics) that there is self-organization of

the spin system to the financial market-like regime dominated by metastable phases

with intermittent disorder.

6 Statistical Feedback and Correlation Dynamics

The above models are useful as frameworks to think about the dynamics of market

participants and the emergence of the stylized facts one observes. For certain appli-

cations (such as for example risk management or the pricing of options) a slightly

higher level view of price formation can be useful, namely in terms of modeling the

price itself as a stochastic process.

Most of traditional mathematical finance is based on a Brownian equation of

motion for stock prices:

dS(t) = 𝜇Sdt + S𝜎d𝜔 (11)

where𝜔 is drawn from a Gaussian distribution with zero mean and variance one. This

type of model is very useful because it allows for the analytic calculation of many

important derivative instruments such as options, for which Black and Scholes [22]

received the Nobel prize in Economics in 1997. However, that model is too simple

to capture all of the anomalous statistics observed in real financial time series. In an

attempt to rectify that, several modifications to the standard Black–Scholes model

of price returns have been proposed in the literature, and they all have in common

that they somehow extend either the assumption of a constant volatility term 𝜎 in

Eq. (11), or the source of the noise term𝜔. For example there is the stochastic volatil-

ity model of Heston [23] where 𝜎 itself is modeled as a mean reverting stochastic

process, and the Levy models where the noise 𝜔 is assumed to be drawn form a fat
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tailed Levy distribution. Those models are a little more realistic than the standard

model but both have the shortcoming that they convolve too quickly to a Gaussian

distribution, meaning that they do not capture the persistence of fat tails of return

distributions over the time-scales observed in reality, where returns over time-scales

ranging up to about 2 weeks or longer all still exhibit tails. One model which does

really well in this sense (and also earned a Nobel prize for Engle [24]) is the GARCH

model, which incorporates memory into 𝜎. In fact, the memory of volatility is a key

feature that reproduces many known stylized facts of financial price series. Motivated

among other things by this, we proposed a model [25, 26] within the framework of

nonextensive statistical physics [27] in which the volatility term follows a statistical

feedback process in the sense that it depends on the probability of past observations,

explicitly:

dS = 𝜇Sdt + 𝜎Sd𝛺 (12)

where

d𝛺 = P(𝛺)
1−q
2 d𝜔. (13)

In this equation, P corresponds to the probability distribution of 𝛺, which simulta-

neously evolves according to the corresponding nonlinear Fokker–Planck equation

[28, 29]

𝜕P
𝜕t

= 𝜕P2−q

𝜕𝛺
2 . (14)

It can be solved exactly yielding

P = 1
Z(t)

(1 − (1 − q)𝛽(t)𝛺(t))
1

1−q (15)

The precise form of the coefficients Z and 𝛽 are given in [25]. Equation (15) recovers

a Gaussian in the limit q → 1 while exhibiting power law tails for q > 1. In that case,

our model is exactly equivalent to the Black–Scholes model.

The statistical feedback term P can be seen as capturing the market sentiment.

Intuitively, this means that if the market players observe unusually high deviations

of 𝛺(t) (which is essentially equal to the de-trended and normalized log stock price)

from the reference value 𝛺(0), then the effective volatility will be high because in

such cases P(𝛺) is small, and the exponent 1 − q a negative number. Conversely,

traders will react more moderately if 𝛺 is close to its more typical or less extreme

values. As a result, the model exhibits intermittent behavior consistent with that

observed in the effective volatility of markets. In practice, q can be obtained empir-

ically from a fit to the data. Remarkably, q = 1.4 − 1.5 fits very well to return distri-

butions of very many financial instruments, corresponding to a tail index of about 3.

This non-Gaussian statistical feedback model allowed us to derive closed form

option pricing formulae [25, 26] that fit very well to real market prices over many

time horizons, and we used the model in real life trading situations. For further read-

ing about this topic, summarized successes, applications and shortcomings of the
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model we refer to [30]. In spite of the success at pricing options and other deriva-

tives such as credit default swaps, as a model of real returns the statistical feedback

formulation has the drawback that returns relative to a particular initial time consti-

tute the memory in the volatility; instead we took inspiration from that model and

proposed that the volatility depends on returns over multiple time-scales [13]. The

intuition is that different traders pay attention to different time-scales. For example,

some only care about returns on an intraday or daily level, others are more focused

on monthly or whatever the rebalancing frequency is of their trades. Explicitly, this

multi-timescale model can be written as

𝛥y = 𝜎(t)𝛥𝜔 (16)

𝜎(t) = 𝜎0

T∑

𝜏=0

√
(

g
𝜏
𝛼
𝜎
2
0

(yt − yt−𝜏)2) (17)

where g and 𝛼 can be calibrated to fit empirical data (g = 0.85 and 𝛼 = 1.15) [13] and

𝜎0 corresponds to the baseline volatility. Without the summation and setting t − 𝜏 =
0, this equation can be shown to be of the same form as our statistical feedback

model. That model has the advantage of analytic tractability for options pricing,

whereas Eq. (16) does not allow for that. However it can be simulated and shown to

fit real data remarkably well, reproducing a slew of known stylized facts [13].

So far we have largely concentrated on modeling the dynamics of financial market

returns over time. We have not really said much about the cross sectional dynamics

of stock returns, i.e. the dynamics of the correlation structure of markets. After the

financial crisis of 2008 it was interesting to study the cross-sectional dynamics of the

distribution of stock returns, in particular to understand what happens during times of

panic. Understanding how correlations behave during such times can be extremely

important for managing financial risks, for example. We noticed [31] that, during

panic times, the dispersion (standard deviation) of stock returns cross-sectionally

increases as does the time-series volatility. However, the kurtosis (corresponding

to the tails of the cross sectional distribution) decreases (see Fig. 3). In addition,

correlations tend to 1. In order to model these effects we proposed a simple synergetic

framework for the correlation dynamics, and coupled that to the multi time-scale

stochastic model for stock returns of Eq. (16), as described in the following.

In the spirit of Synergetics, we define as a proxy for the collective behavior of all

stocks in the market the variable s:

s =
sup − sdown
sup + sdown

(18)
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where sup is the number of stocks that have positive returns over a given interval,

and sdownis the number of stocks that have negative moves on that same interval

(for example a day). If s = 0 then roughly the same number of stocks moved up

as down, and the assumption is that the stocks had little co-movement and so were

uncorrelated. If all stocks move together either up or down, though, the value of s

will be +1 or −1 and the stocks will have high correlation. So, the following picture

emerges: If s = 0 there is no correlation, and we are in a disordered state. However

if s ≠ 0 then there is correlation and we are in an ordered state; in other words, s
is the order parameter. Empirically we have observed rather drastic changes in the

cross-sectional distribution of stocks in the times of panic versus more normal market

conditions [31]. In particular, histograms of s in both periods show that in normal

times, s is unimodal, and in panic times we obtain a bimodal distribution (see Fig. 3).

These observations are consistent with the frame-work of a phase transition leading

to self-organization in panic times, following a schematic set of dynamics similar to

those of a ferromagnetic system: The variable s of Eq. (18) can namely be seen as

analogous to the magnetic moment in a ferromagnetic spin system. In such a system,

the total magnetic moment depends on the orientation of the individual magnetic

spins comprising the system. It is proportional to

m =
mup − mdown

mup + mdown
(19)

where mup and mdown denote the number of spins lined up and down respectively.

The distribution of possible outcomes of this macroscopic quantity is given by

P(m) = N exp(F(m,T)) (20)

Fig. 3 Features of the

cross-sectional distribution

of stocks. Kurtosis is high in

normal times, low in panic,

while dispersion shows the

opposite behavior. The

co-movement of stocks is

bi-modal in times of panic,

uni-modal in normal times



268 L. Borland

where T is the temperature, N is a normalization factor and F is the free energy of

the system. Depending on the value of T , the magnetic system will either be in an

ordered or disordered state. Assuming one can perform a Taylor expansion of F and

invoking symmetry arguments, the corresponding Langevin equation takes the form

dm
dt

= −m − m3 +Wt (21)

where Wt is thermal noise. The coefficient a can be written as

a = 𝛼(T − Tc) (22)

where Tc is the so-called critical temperature. One can envision these dynamics as

motion in a potential well V given by V(m) = −F(m). If T > Tc, the only minimum

is the trivial one at m = 0. However, for T < Tc there are two real roots appearing,

yielding non-zero values of m. Clearly, m can be positive or negative, depending on

which minima is reached by the system. This is referred to as symmetry breaking.

Due to the noise, the dynamics can also drive m from one minimum to the other.

Because the value of T determines whether the system is in the disordered state (m =
0) or the ordered state (m ≠ 0), it is called the control parameter. The probability

distribution of the system in the disordered state will be a unimodal one, while the

probability distribution of m in the ordered state will be bimodal. As T passes from

above to below Tc, or vice-versa, there is clearly a phase transition: the state of the

system is drastically altered. In this type of symmetric system, the phase transition

is referred to as a second order one.

Along exactly the same lines, we model the dynamics of s by

ds
dt

= −as − bs3 +Wt. (23)

with

a = 𝛼(𝜎c − 𝜎0) (24)

where Wt is a Gaussian noise term and 𝜎0 corresponds to the baseline volatility level

of stocks as in Eq. (16). This volatility is assumed constant across all instruments, and

essentially measures the general uncertainty in the environment, so in this sense acts

much as the temperature in the magnetic system. Note that it is the feedback effects

in the system which induce stock-specific variations in volatility over time, and can

largely explain most of the excess volatility observed in stock time-series, whereas

the parameter 𝜎0 is not driving the stock-specific dynamics, but instead describes a

“global” level of risk. The quantity 𝜎c would correspond to a critical level of uncer-

tainty, below which the market is in a normal phase, and above which we have the

onset of panic. Much as in the case of ferromagnetism, where the control parame-

ter T can be tuned externally above or below the critical temperature, in our model

the uncertainty level 𝜎0 captures the external environment. In a sense it represents
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the general perception of risk in the public mind. This volatility increases to values

larger than 𝜎c due to factors such as exogenous jumps (news) affecting all stocks so

that 𝜎0 becomes 𝜎0 + 𝜎shock. (However, an extension of the model that includes cou-

pling between different stock returns in the volatility feedback term of Eq. (16) [13]

allows for a framework where 𝜎0 can also increase due to endogenous, idiosyncratic

jumps which may for example be induced by a large negative return [32].)

Our hypothesis is that financial markets appear to exhibit a phase transition from

the disordered to ordered state, after crossing a critical level of risk perception.

Putting the dynamics together, we have the multi time-scale feedback process for

each stock k

dyki = 𝜎
k
i d𝜔

k
i (25)

with k = 1⋯N, and the volatility of each stock k given by Eq. (16) The random

variables 𝜔
k
i are drawn from a Gaussian distribution, uncorrelated in time such that

< 𝜔
k
i𝜔

k
i+𝜏 >= 𝛿(i, i + 𝜏)𝜏, yet amongst themselves at a given time point i across

stocks k, they are correlated with correlation |s|. The macroscopic order parameter s
is therefore just a signature of the cross-stock correlations, whose dynamic behavior

manifests itself in the order parameter equation (23). The coefficients must always

be such that |s| ≤ 1 which can be imposed by running the dynamics of s on a real

valued variable ŝ such that s = tanh(ŝ).
Conceptually, this model captures the main properties observed in the data.

Across time, we already showed that the main stylized facts are reproduced. Across

stocks, if 𝜎0 < 𝜎c, correlations fluctuate around s = 0 and we expect to see a uni-

modal distribution of s. The cross-sectional kurtosis should be rather high since there

is no mechanism to cause either stocks or stock volatilities to have any co-movement

at all, so at each time point it is as if the cross-sectional returns are drawn from a

Gaussian process with stochastic volatility, yielding a fat-tailed distribution as the

superposition. Then as the market crashes with 𝜎0 > 𝜎c, the system enters a phase

transition. The order parameter s becomes s ≠ 0 and the system enters the ordered

phase with high co-movement. Because the random variables 𝜔
k
i are now correlated

across stocks, cross-sectional returns will be more similar and the distribution will

have lower kurtosis. Additionally, due to the fact that the phase transition is triggered

by an external shock in volatility, all stocks will tend to have higher volatilities and

higher cross-sectional dispersion.

Simulations of this model for the joint stochastic process of stocks were performed

(see Fig. 4) and we refer the reader to [31] for details on the implementation. To sum-

marize those results, the baseline volatility was assumed to be 𝜎 = 0.2, and at a cer-

tain time a volatility shock 𝜎shock = 0.6 (consistent with levels observed in the VIX

volatility index in late 2008) was applied to the system. This induced the phase tran-

sition from the disordered state where correlation among stocks are relatively low,

centered around zero, to a highly ordered state where the correlations are different

from zero. We found that the main features of financial markets are captured within

this framework. The order parameter s goes from 0 (the disordered state) to s ≈ 0.8
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Fig. 4 Simulations of Eq. (25) with correlations evolving according to Eq. (23). The same features

as for real markets are found: Kurtosis is high in normal times, low in panic, while dispersion

shows the opposite behavior. The co-movement of stocks is bi-modal in times of panic, uni-modal

in normal times

(the ordered state) at the time of the volatility shock. When the shock subsides, it

returns to the disordered state again. As expected, the market volatility rises when s
is in the ordered state, which corresponds to the panic phase. In addition, the cross-

sectional dispersion rises during the market panic, while the cross-sectional kurtosis

drops close to zero. The correlation between the two quantities is in this example

−17%, consistent with empirical observations that also showed a strong negative

correlation. Histograms corresponding to the distribution of the order parameter s
in the normal market phase as well as in the panic phase are in excellent agreement

with the empirical observations of the real market data, namely unimodal in the nor-

mal phase, and clearly bimodal during the panic time. Encouraged by these findings

we extended this joint stochastic model to include skew and explored its self-similar

properties on different time-scales, as presented in [32]. Additional studies of inter-

est in a similar vein aiming to understand and explore the joint dynamics of stocks

as well as correlations in time of panic were done by others [33–39].

This work was initially done following the financial crisis of 2008. After the Flash

Crash of May 2010 we extended the work to look at intraday properties and signa-

tures. On May 6, 2010, there was a stock market crash in the US equity markets,

which started at 2:32 pm. Eastern Time and lasted for a little over half an hour. We

analyzed market behavior in a time frame surrounding this event, and found quite

similar results [32] to that of the larger time-scale crisis of 2008. Figure 5 shows a

marked jump in 5 min volatility right after the intra-day crash, and it is also seen

that the distribution of s is clearly bi-modal as a consequence. More recently in July
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Fig. 5 Top Volatility (over

5 min time scales) on the day

of the flash crash. Bottom
Co-movement of stocks in

bi-modal following the flash

crash

2015 we performed an updated analysis as follows: The Euro Vix levels jumped up

indicating external fear in those geographies, probably due to worries about Greece,

whereas the Vix levels in the United States markets stayed moderate. We looked at

Fig. 6 Panic in Europe in 2015, calm in the US. There are less stocks in the Euro Stoxx universe

so the effect is less pronounced but still there
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the distribution of s Eq. (18) in the S&P 500 and the Euro Stoxx for January–July

2015 and the results (Fig. 6) confirmed the notions of this model: Bi-modal for Stoxx,

where panic prevailed, uni-modal for the S&P 500.

7 Conclusion

We have reviewed a set of models, all capture some aspects of real financial markets.

Key common components are feedback and a coupling between the external system

and the local dynamics. Though typically discussed in an Econophysics setting it

might be useful, as we have done here, to point out that concepts and notions from

Synergetics are inherent to these models. It makes intuitive sense that this is the case,

as the dynamics of financial markets are due to the complex interactions of humans

(and algorithms), dispersed across time scales, time zones, and geographies. These

local interactions of market participants quite amazingly give rise ultimately to a

collective consensus of notions such as a fair price or a market sentiment—which

again feed back to the decisions made by those same humans and algorithms, very

much in the essence of the Synergetics framework.
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Structural Change in (Economic)
Time Series

Christian Kleiber

Abstract Methods for detecting structural changes, or change points, in time series

data are widely used in many fields of science and engineering. This chapter sketches

some basic methods for the analysis of structural changes in time series data. The

exposition is confined to retrospective methods for univariate time series. Several

recent methods for dating structural changes are compared using a time series of oil

prices spanning more than 60 years. The methods broadly agree for the first part of

the series up to the mid-1980s, for which changes are associated with major histor-

ical events, but provide somewhat different solutions thereafter, reflecting a grad-

ual increase in oil prices that is not well described by a step function. As a further

illustration, 1990s data on the volatility of the Hang Seng stock market index are

reanalyzed.

1 Introduction

In time series analysis, the point of reference is that of a stationary stochastic process;

i.e., a process for which the sequence of first and second-order moments is constant

(‘weak stationarity’), or even the sequence of the entire marginal distributions (‘strict

stationarity’). In practice, many time series exhibit some form of nonstationarity:

changing levels, changing variances, changing autocorrelations, or a combination of

some or all of these aspects. These phenomena are then called structural changes

or structural breaks and the associated statistical methodology is sometimes called

change point analysis. Such phenomena may be seen as ‘complex’ in the sense of

this Volume, in that classical models with constant coefficients are rejected by the

data.
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Structural change methodology is widely used in economics, finance, bioinfor-

matics, engineering, public health, and climatology, to mention just a few fields of

application. An interesting recent contribution [1] disputes the existence of a ‘lit-

tle ice age’ for parts of Central and Northern Europe between the 14th and 19th

century. Using structural change methodology (of the type used below) on temper-

ature reconstructions spanning several centuries, Kelly and Ó Gráda find no evi-

dence for sustained falls in mean temperatures prior to 1900, instead several relevant

series are best seen as white noise series. One explanation for the contradiction to

the established view is the climatological practice of smoothing data prior to analy-

sis. When the raw data are in fact uncorrelated, such preprocessing can introduce

spurious dependencies (the ‘Slutsky effect’).

More than 25 years ago, a bibliography on structural change methodology and

applications published in an economics journal [2] already lists some 500 references,

and the literature has grown rather rapidly since then. More recently, a bibliography

available with theR package strucchange provides more than 800 references, ending

in 2006 [3]. Recent surveys of the methodology include [4–6]. Much of this method-

ology relies quite heavily on functional central limit theorems (FCLTs), an excellent

reference is [7].

Apart from practical relevance of the associated issues, one reason for the large

number of publications is that the notion of ‘structural change’ can be formalized in

many different ways. In terms of statistical hypothesis tests, the null hypothesis of

‘no structural change’ is reasonably clear (model parameters are constant), but the

alternative can mean many things: a parameter (or several parameters) change(s) its

(their) value(s) abruptly (once, twice, or more often), or it changes gradually accord-

ing to a stochastic mechanism (e.g., via a random coefficient model), or it switches

randomly among a small number of states (e.g., via a hidden Markov model), etc.

There are many further possibilities.

The available methodology therefore incorporates ideas from a variety of fields:

linear models, sequential analysis, wavelets, etc. In economics, there is compara-

tively greater interest in changes in regression models, whereas in many other fields

of application interest is focused on changes in a univariate time series. A further

dividing line is on-line (sequential) analysis of a growing sample versus off-line (ret-

rospective) analysis of a fixed sample.

This chapter provides some basic ideas of change point methodology along with

empirical examples. It is biased towards least-squares methods, methodology used

in economics and finance as well as availability in statistical software. The following

section outlines selected methods in the context of a simple signal-plus-noise model.

For reasons of space, the exposition is confined to retrospective analysis of changes

in univariate time series. In Sect. 3, several recent algorithms are explored for dating

structural changes in a series of oil prices. Section 4 dates volatility changes in Hang

Seng stock market index returns, thereby revisiting data formerly studied in [8]. The

final section provides some references for sequential analysis of structural change

and also for more complex data structures.
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2 Some Basic Ideas in Change Point Analysis

To fix ideas, consider a signal-plus-noise model for an observable (univariate) quan-

tity yi,
yi = 𝜇i + ei, i = 1,… ,T ,

where 𝜇i is the (deterministic) signal and ei is the noise, with E[ei] = 0 and Var[ei] =
𝜎
2
. As noted above, this chapter is confined to changes in a univariate time series.

However, for many methods, there is a regression version with 𝜇i = x⊤i 𝛽i, where

xi is a vector of covariates and 𝛽i the corresponding set of regression coefficients.

In the classical setting, the ei form a sequence of independent and identically dis-

tributed (i.i.d.) random variables, but many more recent contributions, especially in

economics and finance, consider dependent processes.

2.1 Testing for Structural Change

In terms of statistical testing, the null hypothesis of interest is H0 ∶ 𝜇i = 𝜇0 for all

i; i.e., the signal exhibits no change. (For the regression version, the corresponding

null hypothesis is H0 ∶ 𝛽i = 𝛽0 for all i.) Under the null hypothesis, natural estimates

of 𝜇0 are the recursive estimates �̂�k = k−1
∑k

i=1 yi, k = 1,… ,T; i.e., the sequence

of sample means computed from a growing sample. The corresponding recursive

residuals are ẽi = yi − �̂�i−1, k = 2,… ,T .

A classical idea is to study the fluctuations of partial (or cumulative) sums

(CUSUMs) of these recursive residuals and to reject the null hypothesis of parameter

stability if their fluctuations are excessive. In order to assess significance, introduce

an empirical fluctuation process indexed by t ∈ [0, 1] as the process of partial sums

of the recursive residuals via

S̃T (t) =
1

�̂�T

√
T

[Tt]∑

i=1
ẽi, 0 ≤ t ≤ 1, (1)

where [Tt] denotes the integer part of Tt and �̂�
2
T some consistent estimate of 𝜎

2
.

This object is often called the Rec-CUSUM process as it is based on recursive resid-

uals. It is well known that under the above assumptions this empirical fluctuation

process can be approximated by a Brownian motion, B(t), 0 ≤ t ≤ 1, and hence the

enormous literature on properties of this stochastic process can be used to assess

the fluctuations in the recursive residuals. Excessive fluctuation is determined from

the crossing probabilities of certain boundaries, this is the approach proposed in the

seminal paper by Brown et al. [9].

However, from a regression point of view, the ordinary least-squares (OLS) resid-

uals êi = yi − �̂�T are perhaps a more natural starting point, leading to the test statistic
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Fig. 1 Nile river discharges: Raw data (left) and OLS-CUSUM process (right)
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As OLS residuals are correlated and sum to zero by construction, the limiting

process corresponding to the OLS-CUSUM process is no longer a Brownian motion.

Instead, the limiting process is now a Brownian bridge, B0(t), with B0(t) = B(t) −
t B(1), 0 ≤ t ≤ 1, and the relevant limiting quantity for assessing significant deviation

from the null hypothesis is

sup
0≤t≤1

|B0(t)|, (3)

the supremum of the absolute value of a Brownian bridge on the unit interval [10].

This object is well known in the statistical literature, and quantiles of its distribution

provide critical values for a test based on (2).

To briefly illustrate the machinery, consider a time series of measurements of

the annual flow of the river Nile at Aswan, for the period 1871–1970. This series is

part of any binary distribution of R [11] under the name Nile and has been used

repeatedly in the statistical literature on change point methods. The following illus-

trations make use of the R package strucchange, which among other things imple-

ments structural change detection using empirical fluctuation processes and related

techniques. It should be noted that the original paper [3] describing the software

documents the first release of the package, but many methods were added in sub-

sequent years, including the methods for dating structural changes that are used in

the next section. The package is still actively maintained, but the main developments

happened some 10 years ago.

Figure 1 plots the time series (left panel) and the corresponding OLS-CUSUM

process (right panel) along with a boundary indicating the 5% critical value for the

test statistic (2). It is seen that the empirical fluctuation process crosses the boundary,

and hence the hypothesis of a constant level is rejected at the 5% level.
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The test statistic (2), often called the OLS-CUSUM test, measures the maximal

absolute deviation from zero of the corresponding OLS-CUSUM process. There are

many variations of this idea. For example, it is possible to use other functionals of the

empirical fluctuation process, such as the range or some average of the fluctuations.

It is also possible to study moving instead of cumulative sums, leading to moving

sum (MOSUM) processes. Or, instead of the fluctuations in the residuals, one can

directly assess the fluctuations in the estimates themselves; there are again recursive

and moving versions [12]. In the univariate case considered here, the latter idea is

equivalent to CUSUMs or MOSUMs of the residuals, but in the regression case it

leads to new procedures. It is also possible to assess fluctuations in first-order con-

ditions of fitting methods other than least squares, for example likelihood methods

[13].

Also, applications in economics and finance often involve dependent data, so that

the machinery described above requires adjustments. These involve the long-run
variance,

𝜔
2 = lim

T→∞
Var(S̃T (1)).

If a consistent estimator �̂�
2

of 𝜔
2

is available, then �̂�
−1S̃T (t) or �̂�

−1ŜT (t) can, in

many settings of interest, again be approximated by a Brownian motion or a Brown-

ian bridge.

2.2 Dating Structural Changes

Having found evidence for the presence of structural change it is of interest to esti-

mate the change points themselves. In economics, basic references for dating struc-

tural changes are Bai and Perron [14, 15], who among other things provide a method

for obtaining confidence intervals for the break dates. The associated point estima-

tion issue—the segmentation of the sample into homogeneous parts—dates back at

least to Bellman and Roth [16].

The model of interest is now a step function for the signal. With m + 1 segments

(corresponding to m breaks), this is

yi = 𝜇j + ei, 𝜏j−1 + 1 ≤ i ≤ 𝜏j, j = 1,… ,m + 1. (4)

Here j is the segment index and {𝜏1,… , 𝜏m} denotes the set of the break points.

By convention, 𝜏0 = 0 and 𝜏m+1 = T .

Given the break points 𝜏1,… , 𝜏m, the least squares estimate of 𝜇j is the sample

mean of the observations pertaining to segment j. The resulting aggregate residual

sum of squares is given by

RSS(𝜏1,… , 𝜏m) =
m+1∑

j=1
rss(𝜏j−1 + 1, 𝜏j), (5)
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Fig. 2 Nile river discharges: Model with constant level (left) versus model with two regimes (right)

where rss(𝜏j−1 + 1, 𝜏j) is the residual sum of squares for segment j. The problem

of dating structural changes is to find the break points 𝜏1,… , 𝜏m that minimize the

objective function,

{𝜏1,… , 𝜏m} = argmin{𝜏1,…,𝜏m} RSS(𝜏1,… , 𝜏m), (6)

over all partitions {𝜏1,… , 𝜏m} with 𝜏j − 𝜏j−1 ≥ Tmin. Here Tmin is a bandwidth para-

meter to be specified by the user, it defines the minimal segment length. For a given

number m of break points, their optimal location can be found using a dynamic

programming algorithm. The number of change points m itself can be determined

via information criteria, the breakpoints() function in strucchange employs

the Bayesian Information Criterion (BIC). Below, this algorithm is referred to as

breakpoints. More details on the implementation may be found in [17].

Returning to the Nile river flows, Fig. 2 (left panel) provides the fit for a traditional

autoregressive model of order one (AR(1)) with constant parameters. Clearly, the fit

is quite poor in that for the first part of the series the data are almost always above the

fitted mean level, whereas after approximately the year 1900 they are mostly below.

In contrast, Fig. 2 (right panel) provides a model with a changing level, the BIC

suggesting a model with a single break corresponding to the year 1898. There is a

simple explanation for this break: the opening of the Aswan dam in 1898. It is worth

noting that after modelling the break there is no need for further modelling of any

dependence about the changing level: the dependence implied by the fitted AR(1)

process (left panel), with an autoregressive parameter of 0.51, is spurious and stems

from the neglected data feature of a changing level.

3 Dating Changes in a Commodity Price Series

This section revisits an empirical example presented in [17], namely dating structural

breaks in a time series of oil prices. That paper considered a quarterly index of import

prices of petroleum products obtained from the German Federal Statistical Office—
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Fig. 3 Quarterly spot prices for West Texas Intermediate (WTI) Source Federal Reserve Bank of

St. Louis (FRED database)
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Fig. 4 German oil price data, 1960(1)–1994(4) (base year: 1991) Data source German Federal

Statistical Office. Segmentation as in [17]

hereafter referred to as the German oil price data—for the period 1960(1)–1994(4)

(base year: 1991). The present paper uses a much longer series, a quarterly time series

of spot prices for West Texas Intermediate (WTI)—hereafter referred to as the WTI

data—from 1947(1) to 2013(3). It is publicly available from the FRED database

of the Federal Reserve Bank of St. Louis, more specifically from https://research.

stlouisfed.org/fred2/series/OILPRICE/. The series is deflated using the GDP defla-

tor (base year: 2009), which is available from https://research.stlouisfed.org/fred2/

series/GDPDEF/. This deflated version is given in Fig. 3 (data are in logarithms).

The task is to compare a change point model for the WTI data with the correspond-

ing segmentation for the older German oil price data, and also to try out several more

recent dating algorithms, on which more below.

https://research.stlouisfed.org/fred2/series/OILPRICE/
https://research.stlouisfed.org/fred2/series/OILPRICE/
https://research.stlouisfed.org/fred2/series/GDPDEF/
https://research.stlouisfed.org/fred2/series/GDPDEF/
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Fig. 5 WTI data (top panel) and segmentations obtained from three algorithms: breakpoints,

e.divisive and wbs

For ease of reference, the older series along with a segmentation with three

regimes is given in Fig. 4 (data are again in logarithms). The three breaks are for

the quarters 1973(3), 1979(1) and 1985(1). The first two breaks correspond to two

major historical events, the first oil crisis (the Arab oil embargo following the Yom

Kippur war) and the beginning of the Iranian revolution. The break in 1985(1) may

be seen as resulting from demand shifts, quarrels within OPEC, and the entry of sev-

eral new suppliers (namely Great Britain, Mexico, and Norway) in international oil

markets [17].

Repeating the exercise with the newer WTI data and a minimal segment size of 10

quarters, the BIC now favors a segmentation with 10 regimes. The resulting solution

is provided in the second panel of Fig. 5. There is good agreement for the breaks

corresponding to major historical events, here estimated at 1973(4) and 1979(2).

Beginning in the second half of the 1990s, there is a gradual trend in the newer

series that is not described well by a step function. Also, the two oil price series

differ visibly in the first half of the 1980s, leading to two estimated change points for
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the newer series, at 1982(4) and 1985(4). These differences result from the fact that

the older series is a price index while the newer is for a single product; also, there

appear to be exchange rate effects in the older series.

We next compare the least-squares-based solution with two recent methods. The

first method [18] uses ideas from cluster analysis combined with a nonparametric

form of ANOVA based on so-called energy statistics [19]. The latter are functions

of distances between statistical observations in Euclidean spaces (and beyond), the

name derives from an analogy with Newton’s gravitational potential energy. It should

be noted that this method assesses differences in entire distributions, not just level

shifts. However, there is a variant that assesses only changes in the mean; the rele-

vant settings for this variant are used below. An implementation is available in the

R package ecp [20]. The package offers several methods, here only the algorithm

named e.divisive there is used, a form of hierarchical clustering. The second

method is wild binary segmentation [21] (hereafter: WBS), a stochastic algorithm

that uses ideas from the wavelets literature. The setup analyzed in the original paper

is (4) with i.i.d. Gaussian noise. An implementation is available in the R package

wbs.
All three procedures require specification of a trimming parameter, for the least-

squares approach and e.divisive this is the minimal segment length (or ‘cluster

size’, in the terminology of the ecp package), details differ from method to method.

For e.divisive, the minimal segment size was again set to 10 quarters, here

yielding 9 breaks. For WBS, which does not need a minimal segment size, the max-

imum number of breaks was fixed at 10 for comparability reasons. The solutions

are provided in the third and fourth panel of Fig. 5. There is good agreement for the

major historical events, while the algorithms differ somewhat for the second half of

the series. This partly reflects the problems with this part of the series mentioned

above. Overall, WBS tries to adapt to smaller details towards the end of the series. It

is also worth noting that, using the settings recommended by the authors of the soft-

ware, the WBS algorithm favors a solution with no fewer than 35 breaks. Clearly, not

all of the estimated breaks will be of economic interest. This appears to be a prob-

lem in some financial applications, where alarms can be frequent with long series.

As an example, not all changes identified in [21] for the S&P 500 index will likely

be of practical relevance. Figure 5 provides an overall comparison of all solutions.

The display highlights similarities and differences of the solutions obtained from the

algorithms. Notably the breakpoints and e.divisive solutions are very sim-

ilar. In contrast, wbs is more faithful to the more lively part towards the end of the

series. breakpoints has one further change point in the second half of the 1990s

(namely for the quarter 1997(1)), the other breaks differ, with one exception, by at

most two quarters. For example, the break corresponding to the first oil crisis is in

1973(4) according to breakpoints and in 1974(1) according to e.divisive.

For the Iranian revolution break, the algorithms give 1979(2) and 1979(4), respec-

tively.
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4 Dating Changes in the Volatility of a Stock Market Index

The previous section considered changes in the mean of a time series. It is also pos-

sible to study changes in other characteristics of the data, for example variances

or autocorrelations. With financial time series, for example stock returns, assessing

risks is a central issue; both squared and absolute returns may be seen as measures

of risk. Assessing changes in such transformed returns can be viewed as an indirect

check of structural change in GARCH-type models of volatility.

As a brief empirical illustration, we revisit an example from [8]. They consider

four stock market indices (FTSE, Hang Seng, Nikkei, S&P 500) with an eye on

changes associated with the Asian and Russian financial crises in the second half

of the 1990s. Here we just consider one of these series, the Hang Seng index for

the period 1989–01–04 to 2001–10–19, giving T = 3338 observations. For compa-

rability reasons, the data are taken from Datastream. The data for the segmentation

algorithm are the Hang Seng absolute returns (for which more breaks are found than

for the more common squared returns). The original paper documents only the maxi-

mal number of breaks used but not the minimal segment size. Here we use a minimal

segment size corresponding to 10% of the length of the series, which should permit

recovery of the segmentation from [8]. This is only partly possible, however.

Figure 6 provides a plot of the absolute returns along with two models. The

original paper suggests that a segmentation with three breaks, for the dates 1992–

07–03, 1995–01–24 and 1997–08–15, is optimal. The 3-breaks solution found by

breakpoints (the dashed line in the plot) differs, it finds 1995–06–14, 1997–08–
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Fig. 6 Segmentation of Hang Seng absolute returns with breakpoints. Dashed line maximal

number of breaks 3, minimal segment size 10%. Solid line maximal number of breaks 5, minimal

segment size 10%
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15 and 1998–11–30, so only the last break from the paper is recovered. Also, the

breakpoints solution has no break prior to 1995 but a new break after 1997.

It is also worth noting that the method finds a further break upon increasing the

maximum number of breaks. Setting the latter to five breaks, a segmentation with

four breaks is found. Interestingly, the new break at 1993–10–01 is before 1995,

although not overly close to the 1992–07–03 break of [8]. Further experiments with

the minimal segment length (down to 5% of the length of the series) and the admis-

sible number of breaks (up to 10) suggest that the results are quite sensitive to the

settings of these parameters. The only break that is practically always found is for

August 1997, it is often estimated at 1997–08–15 and is associated with the Asian

financial crisis.

5 Discussion and Outlook

This chapter has illustrated some basic ideas in change point analysis. The exposition

was confined to retrospective methods for univariate time series. (Most of) The meth-

ods described have extensions to regression models [4]. Many further topics had to be

excluded, notably the timely topic of on-line monitoring and also structural change

in multivariate or functional data. For on-line monitoring, in some fields referred to

as surveillance or ‘quickest detection’ problems, see the recent survey [22] and refer-

ences therein, for an exposition of associated optimality issues in a financial setting

see [23]. Multivariate and functional data are briefly addressed in the recent survey

[6], where further references may be found.

The literature will likely continue to grow rapidly, for several reasons: The clas-

sical methods are largely confined to linear models fitted via least squares methods.

Nonlinear models for discrete-valued data are needed in some applications, but here

the literature is still relatively small. Also, the growing number of large data sets

demands improvements on the algorithmic side. Unfortunately, many recent meth-

ods are not readily available in statistical software, which to some extent hinders

progress. A further big challenge is the unification of this widely scattered literature.

Computational Details

All results were obtained using R 3.2.4, with the packages strucchange 1.5-1,

ecp 2.0.0, and wbs 1.3, on PCs running Mac OS X, version 10.10.5. Some plots

were drawn using the package ggplot2 2.1.0 [24].
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Coarse-Graining to Investigate Cerebral
Cortex Dynamics

The Case for Experimental Simplification
of Biological Phenomena

Kentaroh Takagaki and Frank W. Ohl

Abstract Advances in multi-channel/multi-detector recordings and data analysis
over the last decades have led to an explosion in the exploration of complex
neural dynamics in mammalian cortex. Powerful methods have been applied to
investigate such dynamics, including connectivity measures (correlation, causality,
resting state synchrony, etc.), spatiotemporal pattern analyses, and finite-element
modelling based on model neurons. These methods were initially applied to data
from simple experimental models such as invertebrate neurons/ganglia/tecta, cell
cultures, and organotypic slice preparations. Advances in the field have triggered
the expanded use of such measures on more complex data, for example to mam-
malian ex vivo preparations, anesthetized preparations, and mammalian awake
behaving preparations. With the increasing surgical, behavioral, and physiological
complexity of the preparations themselves, less invasive measurement methods
such as optical recordings, massively implanted arrays, or fMRI and other elec-
tromagnetic methods must be used to ensure robustness; however, these measures
tend to feature lower signal-to-noise ratios, and are often prone to various biases.
Furthermore, the high dimensionality of the data itself leads directly to potential
errors in programming of analysis algorithms and overinterpretation of statistically
significant but biologically insignificant findings. Given this situation, we advocate
for the complementary use of the classical biological approach: the use of simplified
preparations which may be limited in scope, but which highlight fundamental
principles. We illustrate this approach with three experimental examples which use
experimental and observational approaches to coarse-grain dynamic spatiotemporal
activity patterns, to make coarse-graining observations of clinically relevant
oscillations, and to coarse-grain complex behavior in mammalian discrimination
learning.
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1 Putting the Mesoscopic Complexity of the Cerebral
Cortex into Perspective: A Comparison with the Heart

In order to highlight the complexity problem we have described above and to
illustrate the complexity of the cerebral cortex in particular, we start by comparing
the physiological complexity of the cerebral cortex with that of the heart.

The heart is perhaps the best characterized mammalian organ in terms of its
physiology and dynamics. Half a century of work has led to the characterization of
the dynamics of, for example, basic pathological dynamics in atrial fibrillation [1,
2]. However, even in this extremely dramatic and common pathological dynamic,
we are just now starting to unravel the causal influences of these atrial dynamics on
the ventricle [3], to give an example. Even in the heart, we are far from being able
to make quantitative predictions regarding the dynamic outcomes of even very
basic pharmacological interventions, such as how an individual case of atrial fib-
rillation will respond dynamically to digitalis treatment.

Accepting that we have established that even the most basic of cardiac dynamics
are just starting to be characterized, we can now illustrate the difficulty of handling
cortical dynamics by comparing the cerebral cortex as a physiological system to the
heart in terms of degrees of freedom.

We believe that it is justified to claim that the brain is astronomically more
complex compared to the heart, in terms of its degrees of freedom (Table 1). One
can start with the number of active elements, the basic unit of each dynamic system.
It can be argued that the heart has only on the order of 100 active elements, since
individual cardiomyocytes join into huge cardiac syncytia which are coupled both
on the electrical and the cytoplasmic levels. Even if one counts individual car-
diomyocyte nuclei as the basic unit, the number of nuclei in the heart is at least one
order of magnitude less than the brain (Table 1). Next, one can think of the
complexity of individual constituent units of each dynamic system. Whereas car-
diac cells can be essentially classified into nodal cells and myocytes, even the most
rudimentary classification of neurons will result in 101 transmitter classes and 102

anatomical morphological classes.
Spatially speaking, there is also a vast difference in degrees of freedom between

the two dynamic systems. For example, the cardiac syncytium can essentially be
handled as a warped two-dimensional excitable medium [2]. In contrast, the cortical
mantle features not only a two-dimensional spatial distribution, but also a handful
of topological degrees of freedom in the columnar (depth) dimension, as well as
numerous proximal, short-range, and long-range projections, which can be con-
sidered as further dimensions in the cortical matrix, thus increasing the spatial
dimensionality of the dynamic system. This difference in spatial dimensionality is
clearly manifested by the types of clinical measurements utilized: for the heart, a
12-lead EKG will allow the description of most dynamic patterns, whereas even the
coarsest measure of brain activity, the 10–20 EEG, features 19 leads, and this only
allows unambiguous documentation of the simplest of dynamic patterns, such as
epileptiform activity patterns and sleep slow waves.
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Related to spatial dimensionality on the level of unit connectivity, the difference
in degrees of freedom is also obvious: whereas cardiomyocytes are basically all
interconnected as syncytia, cortical neurons form an interwoven network of
mind-boggling complexity, as with the oft-cited number of 103 connections per
neuron.

We can also illustrate the complexity of the cortex as a system based on the
complexity of its functional outputs.

In terms of temporal dynamics, whereas the heart operates physiologically at a
regulated rate of approximately 60–120 beats per minute, the cortical mantle
operates not only at varying frequencies, but on at least 6 temporal scales: the
sub-millisecond scale of STDP, the millisecond scale of spikes and spike rates, the
second scale of metabolic changes as seen in fMRI and SPECT, the minute-to-hour
scale of classical plasticity paradigms such as LTP and LTD, the daily scale of
circadian activity patterns, and the days-to-decades scale of learning and forgetting
as well as of cortical development and degeneration.

As physiologists, we cannot fail to mention the vast differences in the functional
phenomenological complexity of the two dynamic systems. While the essence of
cardiac function is limited to a unidirectional pumping of blood, the physiological
essence of the cortical mantle encompasses a wild array of behavioral and neuro-
logical functions, spanning sensation in various modalities, planning and patterning
of motor output for a vast array of both skeletal and smooth muscles throughout the

Table 1 The brain is more complex than the heart. Various anatomical and functional measures
are given to illuminate the magnitude of this difference

Heart Brain

Number of cells 100∼ (nuclei: 1010) 1011

Types of
excitable cells

2 102–103

Spatial network
dimensions

<2 spatial dimensions >4 spatial dimensions

Connectivity 101/myocyte 103∼/neuron
Temporal
scales

1 temporal scale, fixed frequency
for the most part

multiple irregular timescales
spanning ≥ 6 orders of magnitude

Physiological
oscillatory
modes

Single Desynchronized (δ, θ, α, β, γ, …)

Physiological
outcomes of
dynamic
activity

Blood is pumped Various sensations, motor planning,
emotional states, hypothesizing,
calculating, remembering, planning,
daydreaming, empathizing, etc.

Dynamic
pathological
disturbances

Blood is not pumped effectively
(atrial fibrillation, ventricular
fibrillation, conduction block,
ventricular tachycardia, atrial
tachycardia/bradycardia, etc.)

Seizures (innumerable different
types), loss of consciousness,
amnesia, psychiatric disturbances
(innumerable types), movement
disorders, sleep disturbances, coma,
migraine, etc.
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body, resting states such as sleep or posterior basic rhythm, as well as the myriad of
cognitive and emotional states which make our lives so rich.

In terms of pathologies based on disruption patterns of dynamics, there is also a
marked difference in the complexity of disruption patterns. Whereas the heart as an
organ has only a handful of common failure modes, even a rudimentary list of
common neurological and psychiatric disturbances would easily fill this page.

Taking all of the above comparisons together and summarizing them, it is a
priori clear that the dynamics of the cerebral cortex are vastly more complex than
that of the heart and have an astronomically higher degree of freedom, both on the
constitutional substrate level and on the physiological phenomenological level. If
one takes this together with the fact that even the vastly simpler cardiac dynamics
have been explained to a limited extent, as argued above, it is no wonder that
describing the neural dynamics of the cerebral cortex is a Sisyphean task.

Recent decades have seen the exponential growth of ever more precise mea-
surement methods spanning from three-dimensional anatomical-physiological
methods such as multiphoton imaging and MRI, to two-dimensional functional
imaging methods such as single photon calcium and voltage-sensitive dye imaging,
to metabolic methods such as intrinsic signal imaging, PET and fMRI, to electrical
methods such as high-density EEG and massively parallel electrophysiology. We
have seen a concurrent explosion in computational power, optimized algorithms
(such as the vastly influential fast Fourier transform), and computational paradigms
such as parallelization. Given such a large amount of information and information
processing power, it is tempting to attempt bottom-up simulations of the brain from
ground principles.

Valiant attempts have been made at bottom-up simulations of cortical dynamics
from the unit level, most recently through the Blue Brain project [4]. However, the
difficulty of the problem is illustrated by the result that even this most heroic of efforts
by the most technically advanced computational neuroscientists has only succeeded
in providing a partial reconstruction of a specific area of the cortex of a particular
species, and only reproduces activity patterns resembling the most basic state tran-
sitions and cellular parameters. How does one then tackle the daunting task of
understanding the dynamics of the brain?We argue that even in this age of massively
parallel recordings and unprecedented information processing power, given the vast
complexity of neural dynamics, that there is still persisting value in coarse-graining
on a phenomenological level, i.e. to deal with biologically simplified systems.

Indeed, if one takes a step back, extrapolating from corner cases and
simplified/special systems to understand general principles is a time-honored and
vastly successful approach in biology: be it the study of genetics and reproduction
in yeast or E. coli [5], the study of functional physiology in isolated organ prepa-
rations [6], or the study of evolutionary and adaptive principles in exotic ecosys-
tems [7]. These approaches have provided insights which would not have been
possible by directly studying human genetics, in vivo human physiology, or the full
complexity of the Linnaean taxonomy, respectively.

For the field of neural dynamics, an equivalent biological approach is
coarse-graining of observations. Indeed, this strategy has been fruitfully exploited,
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and most of the ground-breaking studies in neurodynamics have been on simplified
preparations. For example, while anesthetics had long been used in animal neu-
rophysiology for practical reasons of animal handling during electrophysiological
recording experiments, it was the notion that some anesthetics effectively function
as “openers” for feedback loops in the sense of engineering control theory that has
paved the way for entirely new approaches in experimental and theoretical neu-
rophysiology [8]: With the experimental availability of techniques for opening and
closing feedback loops in brain circuitry, far-reaching new conceptualizations of
neuronal mass activity in paleocortex and neocortex became possible by applying
concepts of (linear) control theory to (linearized) neuronal dynamics (for review,
see [9, 10]). A similarly fundamental phenomenon of brain dynamics, the coordi-
nation of multiple rhythms, has been principally elucidated by the simple experi-
ment of coordinating periodic finger movement [11]. It was possible to demonstrate
with this approach that “synergetic” concepts, developed for describing
self-organization of systems far from thermodynamic equilibrium [12], can be used
to identify coordinated movements is this type of scenarios with order parameters
emerging in a synergetic system of competing oscillators (for review see [13, 14]).

In this chapter, we advocate a renewed focus on biological and experimental
coarse-graining, that is, a renewed focus on experimentally simplified preparations.
We elaborate on the argument that advances in measurement and computation can
best be taken advantage of by simultaneously coarse-graining our preparations
experimentally, such that they manifest core biological phenomena in a simplified
system, and provide robust experimental observations on a level amenable to in
silico science. We illustrate this approach through three experimental systems
which we have utilized in our recent work.

2 Example 1: Coarse-Graining of Emergent Dynamic
Spatial Activity Patterns: Spiral Waves in the Epileptic
Neocortex

A classical method of coarse graining in mesoscopic neurophysiology is to use
preparations with simplified state dynamics, which are evoked using pharmaco-
logical agents. This can be either with explicit pharmacological blocking of certain
receptors, or implicit global state changes with anesthetic agents.

Pharmacological studies of cortical dynamics have traditionally focused on
agents which create clear oscillatory or epileptiform states, such as interictal-like
spiking elicited by the GABAA inhibitor bicuculline. Although the dynamics of
such states tend to be vastly simplified, the clear spiking/oscillatory nature of the
preparation is conducive to the analysis of spatial connectivity and propagation (e.g.
[15]). One can also block certain pharmacological subcircuits of the cortex in vivo
to try to elucidate the roles of different subcomponents (e.g. [16]). Of note, given
the complex dynamics of the cortex, even the most delicate pharmacological
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blockades of the cortical network tend to lead to massively simplified and
coarse-grained dynamic patterns, amenable to reductionistic analysis.

One recent line of work using a weakly coupled oscillatory state induced by
bicuculline and the cholinergic agonist carbachol, for example, has shown that
spiral dynamics can serve as an organizing principle for mesoscopic activity within
the cortical mantle [17]. This is an example where experimental coarse graining of
cortical dynamics has illustrated a new dynamic principle in cortical organization.
Although one may question the extent to which such organizing principles are
relevant for non-pharmacologically treated intact cortex, we are guardedly opti-
mistic about the general significance of our findings given that the phenomenon,
which was first discovered in organotypic slice preparations, has now been seen in
in vivo pharmacologically treated preparations as well as in sleep-like states of light
anesthesia [18]. We have also observed such activity in epileptiform cortical
activity patterns of Mongolian gerbils with epilepsy (Fig. 1b; [19]). Since the spiral
dynamics are much less stable in vivo than in drug-treated slice preparations, one
can very well imagine that without initial coarse-grained study in non-physiological
organotypic slice preparations, the phenomenon had very little chance of being
observed at all.

Anesthetic states provide a somewhat more physiological means to curtail the
dynamic degrees of freedom inherent in the cortex. Given the “burstiness” of
anesthetized cortex in general (true anesthetic agents invariably lead to cortical
depression and rebound bursting), these simplified preparations allow study of the
transmission of large bursting impulses of population activity (e.g. [20]).

Fig. 1 Spiral activity in the neocortex as seen with voltage-sensitive dye imaging. Two examples
of stable spiral dynamics are demonstrated, first in an organotypic slice preparation treated with
carbachol and bicuculline (a), and next in an epileptiform intact cortex from an epileptic
Mongolian gerbil, recorded through a craniotomy. From [19], with permission from Elsevier
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By modulating the depth of anesthesia, one can attain dynamics which are
somewhat less simplified, yet still stable. For example, slow withdrawal of pen-
tobarbital anesthesia leads to sleep-like cortical states with theta and delta wave
domination; we have recently shown that such states can sustain short in vivo bouts
of spiral dynamics [18], which we speculate may play a role to stabilize recurrent
cortical dynamics during memory consolidation in sleep. Modulating the depth of
urethane anesthesia leads to a biphasic state of slow-wave deep sleep-like activity
and fast desynchronized REM sleep-like activity, and one can take advantage of
such simplified dynamics to study the lateral propagation of mesoscopic activity
[21]. Based on such findings, one can speculate as to the extrapolability to analo-
gous physiological states of deep sleep and REM/wakefulness.

3 Example 2: Coarse-Graining of Human Mesoscopic
Brain Dynamics: Posterior Basic Rhythm
in the Development of Autism

Pharmacological simplifications such as in the previous section are rarely possible
for studying the human brain, where pharmacological interventions are reserved for
medical indications. Even if a medically necessary pharmacological treatment
fortuitously simplifies cortical dynamics, such as say with pregabalin-induced in-
crease in slow-wave sleep [22], various uncontrollable factors such as
co-medication and disease state will necessarily complicate interpretation of results.

Although it is increasingly fashionable to measure complex metrics of cortical
dynamics such as resting state connectivity, for example, these measures feature a
low signal-to-noise ratio, and are much more susceptible to potential multiple
testing and other statistical errors. Given the complexity of these measures, we
believe that there is enduring value in focusing instead on the simplest of human
brain dynamics and conducting coarse-grained observations at this level.

One classical method of coarse-graining human cortical dynamics is to drive the
system with entraining stimuli. Stimuli driving strong dynamics are usually regular,
such as photic stimulation eliciting epileptiform oscillatory bursting. This is used
regularly in clinical practice to provoke and document non-overt epileptiform
dynamics in patients with epileptic habitus [23]. Another classical experimen-
tal approach is to use continuous tone sequences which drive regular population
activity in auditory areas of the brain; by occasionally changing these driving
stimuli, for example by dropping stimuli or inserting “oddball” stimuli within the
driving train stimulus, one can investigate excursions from a mesoscopically
entrained and stable brain dynamic [24].

Another approach is to use highly synchronized brain states to the advantage of
investigative questions. To this end, we have recently focused on one of the most
classic and one of the most robust of human brain dynamics, the posterior basic
EEG rhythm of Berger [25]. This very stable dynamic emerges in the posterior pole
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at around several months of age at a frequency of 3–4 Hz, and gradually develops
over the course of 8–10 years of life to reach the adult “alpha” range of 8–12 Hz.
Functionally, this stable dynamic is characterized by high amplitude in a quiet
restful state with eyes closed, and is attenuated by eye opening. We focused on this
most simple of cortical dynamics recorded by EEG, and retrospectively analyzed
this state in children with autism and normal controls (We also studied epileptic
children, given the high incidence of overt and covert epileptiform activity reported
in autistic children.) By quantifying even the most simple characteristics of this
state such as base oscillation frequency, we concluded that children with autism (on
a retrospective cohort base) show faster development of the posterior basic rhythm
than their non-autistic peers (Fig. 2).

4 Example 3: Coarse-Graining of Complex Behavior

Another dimension of complexity which must be dealt with in neuroscience is the
diversity of behavior. For example, even the simplest tasks in experimental human
psychology feature a large degree of hidden complexity, in that the subject is
verbally appraised of the task context (e.g. sitting in a chair in a quiet room), the
modality in question (e.g. looking at the monitor), as well as the general timescale
of the experiment (e.g. “you will be asked to answer questions for about 30 min”).
Such covert contextual cues cannot be given to animals, much less advanced lin-
guistic descriptions of task contingencies.

A further dimension of complexity is the unitary nature of experience. Even for
relatively simple tasks, it has been shown that operant responses are dependent

A. B.

Fig. 2 The development of the posterior basic rhythm (PBR) is accelerated in autistic children.
a Development of PBR in normal children (n = 134) who were referred to our center for
evaluation of inattentiveness and other issues, which turned out to have a non-psychiatric
diagnosis. b Corrected PBR frequency in developing children shows statistically significant
increase in autistic children (green), and statistically significant decrease (developmental delay) in
epileptic children (red). We believe that these statistically significant results may also be
biologically and clinically significant. From [26], with permission from Elsevier
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upon the proximal history of reward [27]. Such history effects are further compli-
cated by learning paradigms, where the animal’s behavior changes progressively.
Sometimes, sudden changes in behavior can mark the animals’ mastery of the
operant contingency, what we refer to the “aha” moment [28].

How can one simplify complex behaviors, and coarse grain them such that their
dynamics are amenable to analysis? We have approached simplification of rodent
auditory discrimination/categorization by using a Go/NoGo shuttlebox paradigm
(Fig. 3). Using this task, we are able to simplify behavioral response contingencies
into the four categories of signal detection theory, namely, hit, miss, false alarm,
and correct rejection. The key point in terms of behavioral coarse-graining here is
that the discrimination is manifested in a purely binary decision: whether to jump
(Go) or to stay (NoGo). This binary nature reduces the complexity of the task when
compared to more common rodent sensory two-choice discrimination tasks such as
T maze or two nosepoke choice tasks, as these tasks are not strictly binary; they
actually constitute a trinary choice task: go left, go right, or do not go, which
complicates the behavioral readout in terms of signal detection theory.

By coarse-graining the behavioral paradigm in a manner tailored to our question
(i.e. by simplifying our task to mirror our theoretical framework of signal detection
theory), we were able to demonstrate spatiotemporal patterns in cortical ECoGs
which predict, in a manner not time-locked to sensory stimulus, the animal´s
behavioral contingency in single trials based on the framework of signal detection
theory [28].

A. B.

Fig. 3 The Mongolian gerbil auditory Go/NoGo shuttlebox task. a The animal performs the task
in a two-chamber shuttlebox, with hurdle. We use a hurdle here (in contrast to the tunnels more
common in shuttleboxes for mice), to take advantage of the species-specific tendency of gerbils to
jump. The grid floor delivers a mildly aversive footshock to provide negative reinforcement to the
animal. b Timeline of four possible behavioral outcomes. For Go trials, the animal will receive a
certain tone, in this case a rising FM sweep (light green). If the animal shuttles to the other
compartment within a fixed period of time, this is a correct “hit” trial (first row). If the animal fails
to shuttle in response to a Go tone, this is considered a “miss” trial, and it will receive footshock
until it escapes. For a NoGo tone (in this case a falling FM sweep; orange), the animal must remain
in its current shuttlebox compartment (fourth row; “correct rejection”). If it shuttles, it will receive
a mild footshock (third row; “false alarm”)
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5 Summary

In this chapter, we have argued that experimental coarse-graining is still necessary
to effectively tackle the vast complexity presented by the cerebral cortex, even with
modern advances in computational capacity and algorithmic efficiency. We have
supported our arguments by comparing cortical dynamics to the vastly simpler yet
nonetheless highly complex dynamics of the heart. We illustrate our approach by
describing three experimental systems which have provided us insights into cortical
dynamics which would not have been possible through the more fashionable
approach of attempting bottom-up induction from single-neuron dynamics or by
using complex methods to analyze fine-grained data.

Acknowledgements We would like to thank Prof. Stefan Müller for inviting us to present in the
Hannover symposium, and Profs. Walter J. Freeman, Gholam Motamedi, Henning Scheich, and
Jian-Young Wu for inspiring our work. This work was supported by the Alexander von Humboldt
Foundation and Deutsche Forschungsgemeinschaft (DFG) grant SPP 1665. We thank Jennifer
Tegtmeier for the illustration in Fig. 3.

References

1. J. Jalife, Deja vu in the theories of atrial fibrillation dynamics. Cardiovasc. Res. 89, 766–775
(2011). https://doi.org/10.1093/cvr/cvq364

2. S.V. Pandit, J. Jalife, Rotors and the dynamics of cardiac fibrillation. Circ. Res. 112, 849–862
(2013). https://doi.org/10.1161/CIRCRESAHA.111.300158

3. M. Masè, M. Marini, M. Disertor, F. Ravelli, Dynamics of AV coupling during human atrial
fibrillation: role of atrial rate. Am. J. Physiol.—Heart Circ. Physiol. 309, H198–H205 (2015).
https://doi.org/10.1152/ajpheart.00726.2014

4. H. Markram, E. Muller, S. Ramaswamy, M.W. Reimann, M. Abdellah, C.A. Sanchez et al.,
Reconstruction and simulation of neocortical microcircuitry. Cell 163, 456–492 (2015).
https://doi.org/10.1016/j.cell.2015.09.029

5. B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts et al., Molecular Biology of
the Cell, 6th edn. (Carland Science, New York, 2014)

6. J.E. Hall, Guyton and Hall Textbook of Medical Physiology, 13th edn. (Saunders,
Philadelphia, 2015)

7. C. Darwin, J. Huxley, The Origin of Species: 150th Anniversary Edition (Signet, New York,
2003)

8. W.J. Freeman, Effects of surgical isolation and tetanization on prepyriform cortex in cats.
J. Neurophysiol. 31, 349–357 (1968)

9. W.J. Freeman, Mass Action in the Nervous System (Academic Press, New York, 1975)
10. W.J. Freeman, Neurodynamics: An Exploration in Mesoscopic Brain Dynamics (Springer,

London, New York, 2000)
11. J.A.S. Kelso, J.P. Scholz, G. Schöner, Nonequilibrium phase transitions in coordinated

biological motion: critical fluctuations. Phys. Lett. A 118, 279–284 (1986). https://doi.org/10.
1016/0375-9601(86)90359-2

12. H. Haken, Synergetics—An Introduction. Nonequilibrium Phase Transitions and
Self-Organization in Physics, Chemistry and Biology (1983), http://www.springer.com/us/
book/9783642964695. Accessed 26 July 2016

298 K. Takagaki and F.W. Ohl

https://doi.org/10.1093/cvr/cvq364
https://doi.org/10.1161/CIRCRESAHA.111.300158
https://doi.org/10.1152/ajpheart.00726.2014
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1016/0375-9601(86)90359-2
https://doi.org/10.1016/0375-9601(86)90359-2
http://www.springer.com/us/book/9783642964695
http://www.springer.com/us/book/9783642964695


13. H. Haken, Principles of Brain Functioning: A Synergetic Approach to Brain Activity,
Behavior and Cognition, Softcover reprint of the original 1st edn. (Springer, Berlin, New
York, 1996)

14. J.A.S. Kelso, Dynamic Patterns: The Self-organization of Brain and Behavior, Revised edn.
(MIT University Press, Cambridge, 1997)

15. L. Bai, X. Huang, Q. Yang, J.Y. Wu, Spatiotemporal patterns of an evoked network
oscillation in neocortical slices: coupled local oscillators. J. Neurophysiol. 96, 2528–2538
(2006)

16. M.F.K. Happel, M. Jeschke, F.W. Ohl, Spectral integration in primary auditory cortex
attributable to temporally precise convergence of thalamocortical and intracortical input.
J. Neurosci. Off. J. Soc. Neurosci. 30, 11114–11127 (2010). https://doi.org/10.1523/
JNEUROSCI.0689-10.2010

17. X. Huang, W.C. Troy, Q. Yang, H. Ma, C.R. Laing, S.J. Schiff et al., Spiral waves in
disinhibited mammalian neocortex. J. Neurosci. 24, 9897–9902 (2004)

18. X. Huang, W. Xu, J. Liang, K. Takagaki, X. Gao, J. Wu, Spiral wave dynamics in neocortex.
Neuron 68, 978–990 (2010). https://doi.org/10.1016/j.neuron.2010.11.007

19. K. Takagaki, C. Zhang, J.-Y. Wu, F.W. Ohl, Flow detection of propagating waves with
temporospatial correlation of activity. J. Neurosci. Methods 200, 207–218 (2011). https://doi.
org/10.1016/j.jneumeth.2011.05.023

20. W. Xu, X. Huang, K. Takagaki, J.Y. Wu, Compression and reflection of visually evoked
cortical waves. Neuron 55, 119–129 (2007)

21. T. Wanger, K. Takagaki, M.T. Lippert, J. Goldschmidt, F.W. Ohl, Wave propagation of
cortical population activity under urethane anesthesia is state dependent. BMC Neurosci. 14,
78 (2013). https://doi.org/10.1186/1471-2202-14-78

22. T. Roehrs, T. Roth, Drug-related sleep stage changes: functional significance and clinical
relevance. Sleep Med. Clin. 5, 559–570 (2010). https://doi.org/10.1016/j.jsmc.2010.08.002

23. D.L. Schomer, F. Lopes da Silva (eds.), Niedermeyer’s Electroencephalography: Basic
Principles, Clinical Applications, and Related Fields, 6th edn. (LWW, Philadelphia, 2010)

24. M.I. Garrido, J.M. Kilner, K.E. Stephan, K.J. Friston, The mismatch negativity: a review of
underlying mechanisms. Clin. Neurophysiol. 120, 453–463 (2009). https://doi.org/10.1016/j.
clinph.2008.11.029

25. H. Berger, Über das Elektrenkephalogramm des Menschen. Eur. Arch. Psychiatry Clin.
Neurosci. 87, 527–570 (1929). https://doi.org/10.1007/BF01797193

26. K. Takagaki, J. Russell, M.T. Lippert, G.K. Motamedi, Development of the posterior basic
rhythm in children with autism. Clin. Neurophysiol. 126, 297–303 (2014). https://doi.org/10.
1016/j.clinph.2014.04.022

27. L.P. Sugrue, G.S. Corrado, W.T. Newsome, Matching behavior and the representation of
value in the parietal cortex. Science 304, 1782–1787 (2004). https://doi.org/10.1126/science.
1094765

28. F.W. Ohl, H. Scheich, W.J. Freeman, Change in pattern of ongoing cortical activity with
auditory category learning. Nature 412, 733–736 (2001)

Coarse-Graining to Investigate Cerebral Cortex Dynamics 299

https://doi.org/10.1523/JNEUROSCI.0689-10.2010
https://doi.org/10.1523/JNEUROSCI.0689-10.2010
https://doi.org/10.1016/j.neuron.2010.11.007
https://doi.org/10.1016/j.jneumeth.2011.05.023
https://doi.org/10.1016/j.jneumeth.2011.05.023
https://doi.org/10.1186/1471-2202-14-78
https://doi.org/10.1016/j.jsmc.2010.08.002
https://doi.org/10.1016/j.clinph.2008.11.029
https://doi.org/10.1016/j.clinph.2008.11.029
https://doi.org/10.1007/BF01797193
https://doi.org/10.1016/j.clinph.2014.04.022
https://doi.org/10.1016/j.clinph.2014.04.022
https://doi.org/10.1126/science.1094765
https://doi.org/10.1126/science.1094765


Coordination Dynamics and Synergetics:
From Finger Movements to Brain Patterns
and Ballet Dancing

Armin Fuchs and J.A. Scott Kelso

Abstract Starting with a brief review of the original Haken-Kelso-Bunz model and

its generalizations from the 1980s, we discuss three examples from more than three

decades of our research on coordination dynamics. From the 1990s, we show how

movement coordination can be used to probe the brain of individual subjects and

how coordination patterns in behavior are also manifested in brain signals. From

the 2000s, we present an experiment on social coordination in brain and behavior

and introduce an analysis technique for EEG signals recorded in such settings. Most

recently, we recorded the performance of a professional ballet dancer, where we

found the coordination patterns of in-phase and anti-phase as elementary building

blocks in complex movements.

1 Introduction

Coordination dynamics, as a quantitative field established in the mid 1980s, opened

a new level of applications to synergetics outside the hard core sciences. Hermann

Haken’s proposition that phase transitions far from thermal equilibrium play a much

bigger role than widely thought was open for a new test. The concepts of synerget-

ics had been applied with great success to the laser and hydrodynamic instabilities,

systems where the mesoscopic or even microscopic dynamics of the subsystems are
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well known and from which the order parameters guiding the macroscopic dynam-

ics can be derived—a so-called bottom-up approach. In coordination dynamics this

situation is reversed: There are transition phenomena in movements that have been

found experimentally and the goal is to establish a dynamics of order parameters at

the macroscopic level and then find a description on a lower level from which the

macroscopic dynamics can be derived. Such an approach is a top-down example of

synergetics. The two approaches, top-down and bottom-up, are of course comple-

mentary [1].

Here we start with a brief review of the original Haken-Kelso-Bunz (HKB) model

[2] and its generalizations and then focus on three applications of coordination

dynamics, namely to probe the human brain of individual subjects, to relate brain

and behavior in social coordination, and to establish the building blocks of complex

movements in professional ballet dancing.

2 The Origin of Coordination Dynamics

In what ways can you move your two index fingers rhythmically? According to the

lore of coordination dynamics, most people without special training are able to pro-

duce two stable movement patterns at low rates, i.e. flexion of one finger while the

other extends (anti-phase) and simultaneous flexion and extension of both fingers

(in-phase). Surprisingly, only the in-phase movement can be performed beyond a

certain frequency of the movement that may vary across individuals. When a move-

ment starts in anti-phase and the movement rate is increased, the coordination pat-

tern switches spontaneously and involuntarily to in-phase; if the movement starts

in in-phase no switch is observed. These observations by one of us [3, 4] led to

a fruitful collaboration with Hermann Haken in Stuttgart and to publications (e.g.,

[2, 5]) that are the pillars of coordination dynamics as a quantitative science. The

importance of these publications is at least twofold: First, they take the phenomenon

described above from the real world of two fingers doing some seemingly trivial

wagging movements to an abstract level of identifying order parameters, and deriv-

ing them using the theory of coupled nonlinear oscillators and stochastic dynam-

ics. The movement rate becomes a control parameter (that leads to destabilizing the

coordination between the limbs), and the relative phase 𝜙 is established as the order

parameter, i.e. the relevant variable for the description of the two rhythmically mov-

ing fingers at a macroscopic level. The switching that occurs when the movement

speeds up is seen as a ball moving in a potential landscape in an overdamped fashion

that changes its shape as a function of rate expressed in the famous equations

�̇� = − dV(𝜙)
d𝜙

+
√
Q𝜉t = −a sin𝜙 − 2b sin 2𝜙 +

√
Q𝜉t

< 𝜉t >= 0; < 𝜉t𝜉t′ >= 𝛿(t − t′);V(𝜙) = −a cos𝜙 − b cos 2𝜙
(1)



Coordination Dynamics and Synergetics: From Finger Movements . . . 303
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Fig. 1 Potential landscape from (1) for slow movement rates (b∕a = 0.7, left) with minima for

anti-phase and in-phase. For high rates (b∕a = 0.15, right), where only one minimum exists, the

only stable movement pattern is in-phase

where

√
Q𝜉t is Gaussian white noise of strength Q and b/a represents the movement

rate. A decrease in b/a corresponds to an increase in rate with a critical value of

b∕a = 0.25. The shape of the potential function below and above the critical rate is

shown in Fig. 1. Second, and maybe even more important, the theory that was formu-

lated in these initial papers more than 30 years ago modeled the switch in the move-

ment patterns from the viewpoint of synergetics as a second order phase transition

and made predictions that could be tested experimentally (see [6, 7], for reviews).

On the deterministic side, an oscillator, known as the hybrid, was established that

follows the amplitude-frequency relation found in human finger movements [8]; the

model was extended to situations where the individual components are not symmet-

ric (see below) and to gaits and gait changes in quadrupeds [9]. On the stochastic

side it was shown that the switch exhibits the features of a phase transition in non-

equilibrium systems: The system has to become unstable before the switch actually

occurs. Such an instability leaves footprints like an increase in the variance of the

movement (enhanced fluctuations) and a longer time to recover from a perturba-

tion (critical slowing down) when the critical point is approached but before the

actual transition takes place. The experimental discovery of these hallmarks showed

that the spontaneous change from anti-phase to in-phase is not simply a replacement

of one motor program by another but a self-organized pattern forming process that

occurs in systems far from thermal equilibrium. Moreover, the dynamic principle

seems to be universal: Whether it is two fingers, two hands, an arm and a leg [10,

11] or even the legs of two different people watching each other [12], it is always the

anti-phase movement that becomes unstable at increasing rate and the coordination

pattern switches to in-phase.

In the original work, where the interacting limbs were two fingers with the same

eigenfrequencies, the system in terms of the oscillating limbs has a symmetry with

respect to an exchange of the components. When we look at the coordination between

an arm and a leg or the syncopation of one finger with an external stimulus, this

symmetry is no longer present, i.e. we are now dealing with a system of oscillators

with different eigenfrequencies. If the equation for the relative phase (1) is derived
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Fig. 2 When the interacting components are not symmetric, the potential landscape is tilted due

to a linear term 𝛿𝜔𝜙. The fixed points are shifted away from 0 and 𝜋, the system becomes unstable

at slower rates (here b∕a = 0.4), and the transition has a preferred direction

for such a system, an additional term, usually termed 𝛿𝜔, appears in the equation of

motion and becomes a term 𝛿𝜔𝜙 in the potential function [13]. The two main effects

of this term for the dynamics of the system are: First, the coordination patterns are no

longer strictly in-phase or anti-phase, i.e. at a relative phase of 0 or 𝜋, respectively,

but the stable states are shifted with respect to these values. As shown in Fig. 2 the

potential function is now tilted. As a consequence, the states 𝜙 = 0 and 𝜙 = 2𝜋 are

no longer the same. For a system that is initially in an anti-phase pattern at 𝜙 ≈ 𝜋

it is more likely to switch to 𝜙 ≈ 2𝜋 than 𝜙 ≈ 0. Even though after the switch it is

not possible to tell whether a system is close to 0 or 2𝜋, by following the continuous

relative phase it can be detected whether the direction was to the left or right. The

coordination patterns with broken symmetry between arms and legs were studied

intensively using the device shown in Fig. 3 with one of the authors
1

as the animal

under investigation. This device, known as MAC (multi-articulation coordination),

allows for perturbing the movements by applying a brake for a short moment and

for manipulating the degree of symmetry breaking. The latter is achieved by using

weights that are either attached to the wrist, which decreases the amount of symmetry

breaking or on the ankle, which actually increases it. The predictions derived from

the theoretical model have been found in good agreement with the experimental

results [10, 11].

3 Coordination Patterns in Brain Signals

In the early 1990s coordination dynamics was used for probing the human brain,

where the syncopation-synchronization paradigm became the vehicle of choice in

many experiments. In contrast to the bimanual setup used in many of the behav-

ioral studies, here the subjects are instructed to flex (or extend) their index finger in

between two beats of a metronome, i.e. to syncopate with the stimulus. As the rate of

the metronome increases, this behavior becomes unstable and the subjects switch to

a pattern synchronized with the beats [13]. During the trials the magnetic fields orig-

1
It should be pointed out that this is not a recent picture.
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Fig. 3 A subject in the

MAC (Multi-Articulation

Coordination). This device

allows for perturbations of

the movements by applying a

brake for a short moment and

for varying the degree of

symmetry breaking by

attaching weights to either

the wrist or ankle. As the

legs naturally have a smaller

eigenfrequency than the

arms, the degree of

symmetry breaking can

either be further increased or

reduced with loads at the

ankles or wrists, respectively

inating from electrical activity in the brain were recorded using magnetoencephalog-

raphy (MEG), a technology in its infancy at the time. In the first experiment a magne-

tometer with 37 SQuIDs (Superconducting Quantum Interference Devices) was posi-

tioned over left auditory and motor cortex covering roughly 2/3 of a hemisphere. The

hallmarks of non-equilibrium phase transitions previously found in behavioral data

were now detected in the brain signals [14–16]. The experiment was later repeated

with a 143-channel device with full-head coverage that allowed for a better compari-

son of brain activity during the coordination task and signals from control condition

of auditory and motor only [17]. One of the main findings from these experiments

remains the switch in the phase of the first Fourier component of the brain signal,

shown in Fig. 4, accompanying the switch from syncopation to synchronization in

the behavior.

During the last decade, social coordination, i.e. the interaction between two or

more people has become an expanding field where not only behavioral measures are

recorded from interacting individuals but also brain signals using a dual-EEG for

instance as shown in Fig. 5. In this experimental setting two subjects (we call them

Red and Blue) are facing each other and are instructed to perform a certain coordina-

tion pattern say in-phase with their right index finger when possible. For the first 20
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Fig. 4 Phase shift by 𝜋 in the relative phase between the Fourier component of the MEG signal

at the coordination frequency and the stimulus in sensors over the left hemisphere that coincides

with the behavioral switch from syncopation to synchronization. The underlying color represents

the signal power

seconds of each trial an opaque screen prevents them from seeing the other’s finger

and they move at a comfortable rate. Then the screen turns transparent allowing the

subjects to synchronize their movements. During the trials EEG is recorded from

both subjects using caps with 60 electrodes each. In earlier work [18–20] certain

wave patterns were identified in the 𝛼-range around 10 Hz that are tied to coordi-

nated action. Here we introduce a procedure for the segmentation of multi-channel

EEG recordings that are band-pass filtered, in our case 7–13 Hz, and apply it to the

data recorded in this experiment.

A short sequence of one second from a 60-channel EEG recording is shown as

a butterfly plot in Fig. 6 together with the spatial patterns of the electric potential at

Fig. 5 Setup for a dual-EEG social coordination experiment: Two subjects are instructed to per-

form a certain coordination pattern with their index fingers. For the first 20 seconds they cannot

see the other’s movement and therefore cannot coordinate. Then the screen turns transparent and

a coordination pattern is established. During the trials the movements and EEG signals from both

subjects are recorded
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Fig. 6 Butterfly plot of 60 EEG channels for one second from the recording of one subject together

with the spatial patterns of the electric potential on the scalp at the maxima and minima. There are

segments where the signals only reverse polarity while the spatial shape remains unchanged and

other time intervals where the pattern goes from dipolar to a single maximum or minimum and on

to a quadrupole. Insert Color coding for the electrode locations

the maxima and minima and an insert on the right, which shows the color coding

of the electrode locations on the scalp. Aside from the oscillation there is also a

change in the shape of the pattern from a dipole to a pattern with a single maximum

or minimum changing to a quadrupolar shape at the end of the time series. Such

changes in the electric potential at the scalp originate from a change in the underlying

electrical activity in the cortex, primarily in the macrocolumns of the gray matter.

It is our goal to identify segments of the EEG signal where the shape of the spatial

pattern is essentially constant while only reversing polarity and relate them to the

coordination behavior.

In a first step we reduce the dimensionality of the system by applying a principal

component analysis (PCA). In PCA a set of patterns is calculated that are best suited

to represent the variance in the recordings whilst drastically reducing the number of

time series that are needed. PCA is performed by calculating the eigenvalues and

eigenvectors of the covariance matrix given by

Cij =
1
T ∫

T

0
dt {ei(t) − ēi}{ej(t) − ēj} (2)
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Fig. 7 Principal component analysis (PCA) applied to the EEG data shown in Fig. 6. The spatial

patterns corresponding to the four largest eigenvalues (left column) carry almost 96% of the variance

in the signal. Time series of the corresponding amplitudes (cyan) show oscillations around 10 Hz

like the data from the single electrodes. This fast oscillation is removed by calculating complex

slowly varying amplitudes shown in red and green for their real- and imaginary part, respectively.

The magnitude of these functions represents the envelope plotted in magenta

where ek(t) represents the time series recorded from electrode k and ēk is its temporal

mean. As the recordings were done with 60 electrodes for each subject, C is a 60 ×
60 matrix. The eigenvectors corresponding to the largest eigenvalues of this matrix

represent the spatial patterns that carry most of the variance in the EEG signal. The

patterns calculated from the time series in Fig. 6 are shown on the left of Fig. 7.

The corresponding eigenvalues 𝜆 (if properly normalized) quantify how much of

the variance is carried by a given pattern. The four eigenvalues for the patterns in

Fig. 7 sum up to 0.956, which means the four patterns represent almost 96% of the

variance. Because C is a real symmetric matrix its eigenvectors are orthogonal and

the amplitude for a pattern k at a time t, pk(t), can be computed by projecting the

EEG signal vector e(t) onto the eigenvector v(k)

pk(t) = e(t) ⋅ v(k) (3)

The amplitudes for the first four modes are plotted in cyan in Fig. 7 next to the

patterns. Like the time series from the electrodes they show oscillations around a fre-

quency of 10 Hz. The second step of the procedure is intended to eliminate these fast

oscillations and replace them by slowly varying time series like the envelope plot-

ted in magenta in Fig. 7. To this end we perform a Fourier transform on the ampli-

tudes pk(t) leading to complex valued functions p̃k(𝜔). As the pk(t) are real, their
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0 200 400 600 800 t

Fig. 8 Segmentation of the EEG data shown in a butterfly plot and patterns at the minima and

maxima of the signal. The speed along the trajectory in the 8-dimensional space is plotted in cyan
and its derivative in white. The time points where the derivative intersects the horizontal axis with

a negative slope mark the boundaries of segments (vertical white dashed lines) within which the

shape of the pattern is relatively constant

Fourier coefficients for 𝜔 and −𝜔 are complex conjugates p̃k(−𝜔) = p̃∗k (𝜔). Next we

set the coefficients for all negative frequencies to zero, shift the remaining functions

by 10 Hz to the left and apply an inverse Fourier transform. This process eliminates

the 10 Hz component from the signal and leads to complex valued amplitudes ak(t)
whose real- and imaginary part are plotted in red and green, respectively, in Fig. 7.

The envelope of the amplitudes pk(t) is given by the magnitudes |ak(t)|.
The dynamics recorded by EEG is now described by the four complex amplitudes

ak(t), which represent the journey of a trajectory in an 8-dimensional space. If this

trajectory stays within a small region of that space for a certain time the pattern is

stationary. If the trajectory moves around the pattern changes. In analogy to lower

dimensions we can define a velocity for the trajectory as the derivatives of the real-

and imaginary parts of ak(t) and a scalar speed, s(t), as the square root of the sum of

these derivatives squared

s(t) =

√
∑

k

{[ d
dt
ℜ{ak(t)}

]2
+
[ d
dt
ℑ{ak(t)}

]2}
(4)

This speed is plotted in cyan in Fig. 8 together with the original data in a butterfly

plot and spatial pattern at the maxima and minima. Changes in the spatial shape

occur where s(t) has maxima (dashed vertical white lines), which are found as the

time points where the temporal derivative of s(t) (plotted in white) intersects the

horizontal axis with a negative slope. The segments in-between the vertical lines

are time intervals where the shape of the pattern does not change or changes only

slightly.

Now we apply this segmentation to the dual-EEG recordings described above and

relate it to the coordination behavior of the subjects. As mentioned, for the first 20
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Fig. 9 Angular frequencies for the red and blue subject, 𝜔R and 𝜔B for a time span from t = 15 s
to t = 26 s. The screen turns transparent at t = 20 s indicated by the dashed black vertical line. As

in most of the trials Red starts at a lower rate and speeds up to Blue

Fig. 10 Histograms of the locations measured by the phases where the segment boundaries fall

within the movement cycles for all four brain-finger combinations. Only the boundaries from the

red brain show a relation to the movement of the blue finger

seconds of each trial the view of the partner’s finger was blocked by an opaque screen

and each individual moved at her own rate. In order to synchronize the movement

after the screen has turned transparent these rates have to become the same and there

are various ways how this can happen: The faster one may slow down, the slower one

speed up or they both change and meet in the middle or elsewhere. Here, we look

at the data from 20 trials of a pair, where the red subject, in almost all trials, started

at a slower movement rate and sped up to the blue subject, whose frequency stayed

pretty much the same. The angular frequencies from a typical trial around the time

when the screen turns transparent (from 15 to 26 s) are shown in Fig. 9.

We aim to determine whether there is any relation between the segment bound-

aries extracted from the two EEG data sets and the coordination behavior by deter-

mining where these boundaries fall into the movement cycle. This was done by calcu-

lating the phase of the movements at each boundary. There are four cases: The phase

of the blue (red) finger at the boundaries from the blue (red) brain, and the phase of

the blue (red) finger at the boundaries from the red (blue) brain. As expected, no rela-
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tion was found for the first 20 seconds when the subjects moved individually without

vision of the other’s finger movements. But also after movement synchrony had been

established for times greater than about 2 seconds after the screen had turned trans-

parent, no relation could be seen. Only during the transition interval from t = 20 s to

t = 21.5 s the histograms exhibited in Fig. 10 were found, showing that the segment

boundaries from the red brain are more than twice as likely to fall around a phase

of 𝜋 of the blue finger than a phase of 0 or 2𝜋 (right upper diagram). This finding is

an interesting reflection of the behavioral pattern where Red adjusts her movement

rate to the blue partner, whereas Blue seems to simply move at her own rate largely

independent of what the Red is doing, hinting at a master-slave or leader-follower

relation in both brain and behavior.

4 Coordination Patterns in Complex Movements: Ballet
Dancing

In the Fall of 2014 we invited the God daughter of one of us (JASK), the professional

ballet dancer (Makaila Wallace from Ballet B.C.) and asked her to perform a chore-

ography of her choosing lasting about 20 seconds in a number of different experi-

mental conditions, e.g. with and without music, fast versus slow, expressing different

emotions, etc. The performances were recorded using a Vicon motion capture system

with eight infrared cameras and 32 infrared markers attached to the dancer’s body

that allowed for a reconstruction of the trajectories of the markers in 3-dimensional

space. Snapshots of such trajectories together with stick figure representations of the

dancer during two short time intervals of the performance
2

are shown in Fig. 11.

Fig. 11 Snapshots of the stick figure representing the dancer together with trajectories of the 32

infrared markers attached to different parts of her body. Each of the traces corresponds to a duration

of one second. The colored spheres represent the six degrees of freedom for the locations and

orientations of the dancer’s body center in space

2
An animated version of this figure as well as other movies from the analysis of dancing can be

found at http://clifford.ccs.fau.edu/~coordinationofdancing.

http://clifford.ccs.fau.edu/~coordinationofdancing
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Fig. 12 Snapshot of the

stick figure together with

marker trajectories after the

translations and rotations of

the body center have been

removed. Such transformed

time series are much better

suited for an extraction of the

relevant features of the other

body parts, e.g. arms and

legs, than the original data

When the dancer performs the choreography, the movement can be split into a

movement of her body center and movements of her body and limbs internal degrees

of freedom relative to the center movement. We define the dancer’s center as the

center of gravity of a triangle given by the markers at her left and right hip, and a

marker at her back close to the lowest lumbar vertebra (L5). The location of these

points in the 3-dimensional space of the laboratory are given by three vectors we call

hl, hr and l𝟓, respectively, and determine the vector for the body center

c = 1
3
{hl + hr + l𝟓} (5)

Next, we define a coordinate system for the dancer’s body with the x-, y- and z-axis

given by

x =
(hr − l𝟓) + (hl − l𝟓)
|hr + hr − 2l𝟓|

y =
(hr − l𝟓) × (hl − l𝟓)
|(hr − l𝟓) × (hl − l𝟓)|

z = x × y (6)

After subtracting the translation of the center c from all marker coordinates and

applying a rotation that transforms the laboratory coordinate system into the body

frame (6), all movements are relative to the body center location and orientation in

space. A snapshot of the trajectories for such a coordinated movement is shown in

Fig. 12.

The time series after the center translations and rotations have been removed are

much better suited for extracting the relevant features of the movement of other body

parts. For instance the movement of the torso and the head can now be described in

terms of two additional rigid bodies as translations and rotations relative to the center.

Here we will restrict ourselves to the dynamics of the arms and legs, which have 14

and 8 markers attached, and therefore their trajectories in 3-dimensional space are

given by 42 and 24 time series (an(t), n = 1…42 and lm(t), m = 1…24), respec-

tively. To extract the basic movement patterns from these time series we perform a

principal component analysis (PCA) separately for the markers on the arms and the
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Fig. 13 Three examples from the first six modes for arm movement. The dominating pattern is

an in-phase up and down movement (left); the corresponding anti-phase pattern is the forth mode

(middle); the movement corresponding to the second largest eigenvalue is in-phase back and forth

(right)

markers on the legs. To this end we build the covariance matrix C(a)

C(a)
ij = 1

T ∫
T

0
{ai(t) − āi}{aj(t) − āj} dt (7)

for the arms, where āi,j represents the mean of the corresponding time series. In

the same way C(l)
for the legs is found; both are symmetric matrices that have real

non-negative eigenvalues and orthogonal eigenvectors. The eigenvectors represent

basic movement patterns, whereas the corresponding eigenvalues are a measure of

how much a given pattern contributes to the variance in the original time series.

Specifically, the eigenvectors describe the deviation from a given state, i.e., each

triple of components represents the magnitude and direction of the movement for a

certain marker. Therefore, each of the eigenvectors represents a movement pattern of

all markers for either the arms or the legs. Interestingly, for both the arms and legs, the

vectors corresponding to the six largest eigenvalues show coordination patterns that

are either in-phase or anti-phase movements. Three examples from the first six modes

for the arms and legs are shown in Figs. 13 and 14, respectively. The dominating

arm pattern, accounting for almost 35% of the variance is an in-phase up and down

movement (Fig. 13 left). The corresponding anti-phase pattern covering about 12%

corresponds to the fourth largest eigenvalue (middle). On the right is the second

mode, an in-phase back and forth movement covering about 26% of the variance. In

total the six dominating eigenvectors cover more than 97% of the arm movements.

For the legs, shown in Fig. 14, the two dominant coordination patterns are an

anti-phase (56%) and in-phase movement (18%) in the yz-plane (left and middle).

The sixth mode is an anti-phase walking pattern in the x-direction and the fifth mode

(not shown) is the corresponding in-phase movement. The total variance captured

by the first six modes for the legs sums up to more than 98%.

It is most intriguing that the complex arm and leg movement by a professional

ballet dancer can be captured almost completely by only six basic coordination pat-

tern for both the arms and the legs. Moreover, these patterns fall into groups and can
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Fig. 14 Three examples from the first six modes for leg movement. Modes one and two (left and

middle) are an anti-phase and an in-phase pattern in the yz-plane. The sixth mode (right) is an anti-

phase walking movement in the x-direction; the corresponding in-phase pattern is the fifth mode

(not shown)

be classified as anti-phase or in-phase movements along three different directions in

3-dimensional space.

5 Summary and Conclusion

We have tried to point to some of the highlights from more than 30 years of our

research in coordination dynamics and its relation to synergetics, where the sys-

tems’ components form entities and the interaction of such entities, modes or pat-

terns gives rise to self-organization and macroscopic structures. On the macroscopic

level, the coordination pattern is not described by the dynamics of the individual

finger movements but by their relative phase. The transition in the behavior of this

order parameter is also found in the brain signal of the dominating pattern. The way

coordination patterns are established (or lost) in social settings leaves footprints in

EEG recordings and may allow conclusions regarding the relationship between indi-

viduals. The results from the analysis of the ballet dancer in a certain sense take

us back to the question we raised at the beginning of Sect. 2, which we can now

rephrase as: In what ways do you have to be able to move your limbs in order to

perform movements as complex as the choreography of a classical ballet dance? The

answer, as we have seen here, is: In-phase and anti-phase in three different direc-

tions. Our results attest to a quite remarkable aspect of complex biological systems:

They compress their high-dimensionality into lower-dimensional, fundamental pat-

terns that are context-specific. These functional synergies or coordinative structures

[21] constitute the building blocks of coordinated behavior in living things. There

are good reasons why all healthy humans have these coordination patterns in their

repertoire.
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The Human Dynamic Clamp: A Probe
for Coordination Across Neural,
Behavioral, and Social Scales

Guillaume Dumas, Aline Lefebvre, Mengsen Zhang,
Emmanuelle Tognoli and J.A. Scott Kelso

Abstract Humans (with their brains, bodies and behaviors) are complex dynamical
systems embedded in an environment that includes a multitude of other con-
specifics. Moving beyond previous brain- centered views of the human mind
requires to develop a parsimonious yet integrative account that relates neural,
behavioral, and social scales. Social neuroscience has recently started to
acknowledge the importance of relational dynamics when it extended its purview
from social stimuli to human-human interactions. Human-machine interactions also
constitute promising tools to probe multiple scales in a controlled manner. Inspired
by the electrophysiological method of the dynamic clamp, Virtual Partner Inter-
action (VPI) allows real time interaction between human subjects and their simu-
lations as dynamical system. This provides a new test bed for operationalizing
theoretical models in experimental settings. We discuss how VPI can be generalized
into a Human Dynamic Clamp (HDC), a paradigm that allows the exploration of the
parameter spaces of interactional dynamics in various contexts: from rhythmic and
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discrete coordination to adaptive and intentional behaviors, including learning.
HDC brings humans and machines together to question our understanding of the
natural and our theory behind the artificial.

1 Introduction

Social neuroscience seeks to bridge the gap between the neural, the behavioral and
the social. Such an agenda contrasts with cognitive science and the shortcoming of
its brain-centered and individualistic approach to the mind. Recently, several
approaches have proposed to go beyond a third person representational account of
others by investigating social interaction from developmental, dynamical and
relational viewpoints. This departure from a strictly reductionist view calls for new
manners of empirical investigation of social systems along with a theoretical
account of their various scales of organization. With those advances, one aims to
integrate complementary aspects of the problem of social coordination into a
coherent, comprehensive and parsimonious whole. In this respect, non-linear
dynamical systems theory has already proved a good formalism to relate biological,
psychological and more recently social levels [1]. This paper discusses a new
experimental paradigm grounded in the framework of Coordination Dynamics [2–
4]. We describe the development of Virtual Partner Interaction (VPI), a system
allowing to couple a human with a theoretical model of movement coordination in
real time [5, 6]. We review its generalization into the “Human Dynamic Clamp”
(HDC), a new paradigm for Cognitive Science to study the multiple scales of
coordination that govern human brain and behavior.

This novel paradigm pursues an already ongoing grip of Cognitive Science
toward multiscale coordination [1, 3, 7]. In the exemplary case of hand movements
for instance, social interactions span multiple scales in time: from position, phase
and frequency of movements to the turn-taking between people (e.g. [8]). Such
social interaction also gives rise to neural coordination within and across brains [9–
11]. Multiple scales are also present in space, from the processing of information at
synaptic levels to the level of large neural assemblies giving rise to different brain
rhythms [12]. Moreover, neurophysiology shows how temporal and spatial
dimensions are intertwined: neural oscillations at large time-scales (i.e. low fre-
quencies) tend to cover larger scales in space, whereas shorter time-scales (i.e. high
frequencies) appear to be more localized [13]. Thus, both brain and behavior are
meshed together across multiple scales of time and space.

Since the present scientific approach aims to combine experimental studies with
theoretical models, the key challenge is to connect these observations across scales
and levels of organization within a coherent theoretical framework [14]. Coordi-
nation dynamics aims at such understanding through the synergetic concepts of
self-organization [15] and the mathematical tools of dynamical systems theory [3,
16, 17]. It seeks both general principles and functionally-specific mechanisms of
coordination [2] and aims at connecting multiple scales by emphasizing reciprocal
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coupling between levels, upward and downward [1]. In this perspective, coordi-
nation between humans represents an operational playground for experimental
investigation at the crossroad of the neural, the behavioral and the social.

Recently, hyperscanning techniques have offered access to the simultaneous
recording of brain activity from interacting people and thus to the study of brain and
behavior coordination at both intra- and inter-individual scales [11, 18–22]. In
doing so, this technique has also reintroduced real social interaction into laboratory
studies of human behavior, a key feature that was oddly lacking from earlier work
within a (cognitively-inspired) social neuroscience, as it resorted to exposing one
subject to social “stimuli” rather than examining interactions [23–26]. Further, the
use of reciprocal paradigms and a real second-person approach of social cognition
do not necessarily require the presence of two or more subjects in the experimental
task [26]. Instead, one of the interacting partners can be substituted with a virtual
agent whose design sustains bi-directional coupling between real and simulated
partners [6, 27, 28].

2 Human-Machine Interaction as a Research Tool

Meanwhile, in other areas of science and engineering, a plethora of studies was
concentrating on subjective perception of artificial agents by humans, with the goal
of designing realistic avatars for potential applications to, e.g. video games, cinema,
or eLearning assistants [29] to name just a few. In this line of research, the exercise
was to mimic facets of human behavior rather than to model foundational neu-
robehavioral mechanisms. Interestingly, participants’ beliefs of realism were
influenced by emotionally and behaviorally contingent responses made by the
artificial agent [30]; see also [31]; this finding hints at the importance of reciprocal
coupling with the human.

The development of realistic artificial agents extended the toolset available to
social psychological research [32], with more to come as those agents are embedded
in virtual realities that are increasingly indistinguishable from “normal” reality. The
breakthrough of virtualization has reconciled ecological validity and experimental
control, e.g. in the study of visual perception, spatial cognition and social inter-
action [5, 33].

A first level of social interaction is the mere presence of someone else [34].
Regarding this issue, virtual reality fits particularly well since it creates a sense of
presence through mediated environments carrying dynamic animations of virtual
characters [35]. Virtual characters are readily perceived as social agents and are thus
capable of exerting social influence on humans [36]. Those virtual characters with
strong similarity to real human interactions [37] can easily and valuably be com-
bined with neuroimaging recording [32].

Human-machine interaction was also used to investigate motor coordination: for
instance a finger tapping study by Repp and Keller [38] used a simple linear phase
correction model to drive a virtual agent. It showed that subjects’ behavior was
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systematically modulated by the computational parameters governing that agent.
Reframed in a functional neuroimaging study by Fairhurst et al. [39], the same
paradigm uncovered some neural basis for motor synchronization and more
importantly, for the socio-emotional consequences of different degrees of entrain-
ment success.

In the following, we describe another paradigm, the Human Dynamic Clamp
(HDC), that embraces a continuous, multiscale and nonlinear coupling between a
human and a machine. By departing from information processing approaches and
design-oriented modeling, the HDC offers: (a) a new way to bridge the gap between
theory, experiment and models; and (b) an integrative solution to linking neural,
behavioral, and social dynamics. HDC puts well established equations of human co-
ordination dynamics into themachine and studies real-time interactions between human
and virtual partners. This opens up the possibility to explore and understand a wide
variety of interactions [5, 6, 40]. Ultimately, HDC may prove useful to establishing a
much friendlier union of man and machine, based on sound interactional design, and
perhaps it will even lead to the creation of a different kind of machine altogether.

3 A Principle-Based Virtual Partner

The study of movement coordination is at the core of coordination dynamics and
for the last 30-odd years the catchy phrase “let your fingers do the walking” has
opened a rich experimental window into human behavior at both intra-individual
and inter-individual levels. In a first move, it is important to clarify what we are
looking at [1]. What is the behavior? What are the relevant variables and control
parameters? These fundamental issues are addressed by uncovering qualitative
changes in collective variables from the system called order parameters [15, 41].
Qualitative changes appear in two main flavors within the formalism of dynamical
system theory: phase transitions and bifurcations. Although they are both revealed
in the phenomenon of transition in collective dynamics, the first is related to the
switch between potential modes of behavior simultaneously accessible to the sys-
tem, and the second concerns global changes of the system’s behavioral landscape.
The landscape is usually described with a manifold in phase space (the frame of
reference representing the relationship between variables associated with each
degree of freedom). The challenge then is to uncover the most parsimonious model
that can exhibit these qualitative changes, and fit its parameters according to the
experimental data (see the discussion of Phenomenological Synergetics in [42]. One
key issue to keep in mind lies with the biological constraints that make it possible to
link a model to actual physiological mechanisms. In this perspective, it is funda-
mental to recognize that all models are false by definition. However, dynamical
system theory offers good candidates for a universal class of models, given the
needed parsimony for elegant theory [43, 44].

Born from this aim was our recently developed Human Dynamic Clamp, a
paradigm that took inspiration from the electrophysiological dynamic clamp
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[45, 46] to allow real-time interaction between a human subject and a computational
model. Using empirically-grounded models not only validated reciprocal and fully
dynamical design protocols for experimenters to use, but also provided the
opportunity to explore parameter ranges and perturbations that were out of reach of
traditional experimental designs with live interactions. The symmetry between the
human and the machine and the fact that they carry the same laws of coordination
dynamics were keys to our approach [6]. The design of the virtual partner (VP) was
grounded in the equations of motion for the coordination of the human neurobe-
havioral system. These laws were obtained from accumulated studies over the last
30-odd years to describe how parts of the human body and brain self-organize, and
to address the issue of self-reference, a condition leading to complexity.

The first version of the Human Dynamic Clamp called Virtual Partner Interac-
tion [6] embodied the Haken–Kelso–Bunz (HKB) model [47]. The original form of
HKB describes and predicts the coordination dynamics of two rhythmically moving
fingers, with its characteristically complex phenomena such as multistability, phase
transitions, hysteresis, critical slowing-down and fluctuation enhancement ([42, 17]
for reviews). Since then, the model has also been successfully validated experi-
mentally for the coordination between different limbs (e.g. [4]), between people
(e.g. [48]) and even between species [49], within unimodal and multimodal con-
texts [50]. It has been supported by empirical evidence ranging from brain
dynamics within [51, 52] and between brain areas [46, 53–55], to coordination with
external stimuli [56] and neural counterparts thereof [57, 58]. This universal
characteristic supports HKB as an ideal candidate for the Human Dynamic Clamp.

In its original implementation, the VPI system was composed of a goniometer
continuously digitizing the finger position of a human participant; a computational
circuit simulating the HKB model; and a screen rendering the virtual partner’s
behavior (see Fig. 1a–b). The computational circuit calculates the position of VP
continuously according to the differential equations of HKB (Fig. 1b), and the
resulting dynamics is mapped onto a virtual avatar displayed on the screen.

The HKB model at the collective level describes the equation of motion of the
relative phase, a variable that distills the coordination of two oscillatory compo-
nents. In this form, the HKB model reads:

ϕ= a sinϕ+ b sin 2ϕ, ð1Þ

where ϕ is the relative phase between human and VP’s finger position, and a and b
are constants (for more details, see [59]).

However, since computers do not have direct access to the relative phase, the
internal dynamics of VP is governed by the HKB model at the component level (see
Fig. 1b). In this form, two non-linearly coupled non-linear oscillators represent the
interaction between the two fingers. The collective form in Eq. (1) can be derived
from the equations at the component level (Fig. 1b). At the component level,
variables are no longer the relative phase but the individual finger positions (and
velocities by derivation). x and y represent VP’s and human’s finger positions, α, β
and γ are constants associated with the intrinsic dynamics of VP, ω is VP’s
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pulsation (frequency), A and B are constants associated with the coupling from VP
to human, and finally μ is a constant fixed to either +1 or −1, indicating VP’s
preference for in-phase or anti-phase coordination.

In the original study [6], VP and human behaviors were chosen to be quite simple.
Both partners were tasked to coordinate finger movements with one another, the
human with the intention of achieving in-phase coordination with the VP (trying to
synchronize his/her flexion and extensionmovements with VP’s). On the VP side, the
parameter μ was set to −1, inducing a VP preference for anti-phase coordination and
thus a goal opposite to human’s. Subjects were instructed to maintain a smooth and
continuous rhythmic movement with their right index finger (flexion-extension) and
to avoid stopping their movement at any time. Visual coupling was experimentally
manipulated: from unidirectional in two conditions (VP “perceives” human move-
ment but human does not perceive VP’s behavior; or reciprocally), to bi-directional in
another (both VP and human have access to each other’s finger movement). VPI
accommodated thewhole set of behavioral coordinationmodes described by theHKB
model. For instance, whenVP and human participants did not have the same preferred
movement frequency, their relative phase conformed to predictions by the extended
version of HKB [56] and exhibited phase wrapping (not shown) or metastability

(a) (b)

(c)

Fig. 1 The VPI system. a presents it key components (goniometer to transduce human movement
behavior and screen to display Virtual partner’s behavior) from the human viewpoint. Task and
coupling are outlined in (b). Human’s behavior is digitized and fed into a computer whose
software computes the corresponding position of the VP in real time, following a theoretical model
of behavioral coordination—here HKB. The picture of the VP is updated on the screen
(a) according to the output of the model. Data are stored for further study (c) to test hypotheses
about the relationship between the agent’s intrinsic properties, coupling parameters and emergent
collective behavior
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(see Fig. 1c). Pitting machine against human through opposing task demands is a way
to enhance the formation of emergent behavior, and also allowed us to examine each
partner’s individual contribution to the collective behavior. An intriguing outcome of
the experiments was that subjects ascribed intentions to the machine, reporting that it
was “messing” with them. A later study further suggested that VP elicits emotional
experiences in human: subjects’ emotional arousal was greatest when VP interactions
were (falsely) deemed to be with a human rather than with a machine [31].

In summary, Kelso et al. [6] initial VPI experiment demonstrated the feasibility
of the Human Dynamic Clamp in the context of a continuous coordination of
rhythmic movements. It uncovered unexpected behaviors, which were theoretically
tested afterward. In the following, we show how to explore a new set of behaviors
with other theoretical models of human behavior.

4 Expanding the Behavioral Repertoire

Embedding the HKB model in a Virtual Partner demonstrated that the explicit use
of non-linear relational dynamics in an experimental paradigm can lead to new
observations of emergent phenomena that linear models may miss out on. The
Human Dynamic Clamp paradigm is about developing this idea by integrating other
principle-based models grounded on canonical behaviors observed in experimental
work. More complex behaviors can then be approached through the combination of
canonical models in a modular and hierarchical manner [5, 60], see also Fig. 2.

4.1 Discrete Behavior: Phase-Space Sculpture

Although it is undeniable that living organisms rely both on rhythmic and discrete
behaviors, the field ofmotor control has traditionally studied them separately. This led
to two different ways of theoretically approaching and modeling them. While
rhythmic movements have been extensively studied through the prism of dynamical
systems, discrete movements’modeling has focused on equilibrium points or control
signals [61]. Unifying rhythmic and discrete movements is often posed to be a key
theoretical challenge in behavioral science [62, 63]. However, there is no specific need
to invoke two separate mechanisms for discrete and rhythmic behavior [64–66]. For
instance, Schöner [17] extended the HKB model to the case of discrete bistable
coordination by changing the intrinsic dynamics. Sternad et al. [67] proposed another
model for unimanual coordination with two mutually inhibiting subsystems, each of
which handled the discrete and the continuous cases respectively.

Along similar lines, Jirsa and Kelso [68] modeled discrete and rhythmic
movement based on the phase flow topology of the so-called “Excitator” model
(see also [63]). The Excitator defines a universal class of two-dimensional
dynamical systems able to exhibit limit cycles for rhythmic movement, and fixed
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point dynamics for discrete movement. This model is based on topological con-
siderations and is a parsimonious way to handle discrete and continuous behaviors
simultaneously. Furthermore, in line with the approach of HKB modeling, the
Excitator provides predictions regarding false-start phenomena that have been
confirmed experimentally [69]. Finally, it is a biologically realistic model since it
follows the self-excitable property that the FitzHugh-Nagumo model drew from
single neurons [70].

The structure of the model contains three characteristics related to topological
constraints: boundedness of the trajectory, existence of a separatrix marking the
boundary between two separate regimes in phase space, and existence of a limit
cycle for rhythmic movements and of one or two stable fixed point(s) for monos-
table and bi-stable discrete movements respectively.

The equations read as follows: x1
⋅
=ω x1 + x2 − g1 x1ð Þð Þτ

x2
⋅
= −ω x1 − a+ g2 x1, x2ð Þ− Ið Þ ̸τ,

�
ð2Þ

(a)

(b)

(c)

Fig. 2 Examples of interactions between a human participant (red) and a VP embedding
alternative models of relational dynamics (blue). a The Excitator model (with parameters
a = 0; b = 0;A=1; B= − 0.2; τ=1;ω=1; dashed line indicates switch from discrete to rhythmic
movement in the human participant); b the adaptive Excitator model (a = 0; b= 0;A=1;
B= − 0.2; τ=1;ω=1;K=1Þ; c a modified HKB with an intended relative phase of pi/2
(a = 0.641; b = 0.00709; A=0.12; B= 0.025; C= 1;ω=1; dashed line indicates release of the VPI
intentional forcing, i.e. switch to normal HKB model)
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where x1 and x2 are internal variables of the oscillator, ω is the pulsation
(frequency) of VP, a the term controlling the position of the separatrix, b the term
controlling the angle of the separatrix, I an instantaneous external input, and τ the
time constant of the system.

Note that the choice of functions g1 and g2 is not fixed but must nevertheless
guarantee the boundedness of the system so that the system belongs to the class of
self-excitable systems. Here we take

g1 x1ð Þ= 1
3
x31 and g2 x1, x2ð Þ= − bx2 ð3Þ

When this is put in unidimensional form, we retain the same coupling terms as
HKB model’s. The coupling causes either convergence or divergence of the tra-
jectories in phase space depending on initial conditions. Since trajectories are
bounded, constraints lead to in-phase or anti-phase modes of coordination (for more
details, see [68]).

Implementation of the Excitator dynamics in an HDC is quite straightforward:
one only needs to substitute the relevant equations from (2) in the software con-
trolling VP’s behavior. Note that these equations introduce a new term of impor-
tance: parameter I allows to modify the phase flow according to an external input.
An external input can originate from the experimenter or the human partner
him/herself. It is a key component for modeling discrete behaviors, which rely on
external information and is non-autonomous in a mathematical sense. The intro-
duction of the new variable allows VP and human to coordinate diverse movements
that range from simple rhythms to discrete actions. Figure 2a presents an interaction
between a human and a VP governed by the Excitator model, and shows a transition
from discrete movement (flexions and extensions interrupted by quiescent behavior)
to continuous movement.

4.2 Adaptive Behavior: Parameter Dynamics
and Modularity

The Excitator model shows how a single dynamical system may give rise to dif-
ferent behavioral modes of coordination between human and virtual partner.
However, each mode required a different set of parameters. Once those parameters
are fixed, the differential equations set the functional structure of the system for a
specific behavioral context. But structure, function and dynamics are not separated
in nature; everything is constantly evolving on different time scales [7, 3]. In
biology, organisms change their own behavior and learn new ones to better face the
world, and interact with their peers in a more effective manner. Robert Rosen even
associated adaptation as the most characteristic property of living things [71]. The
process of adaptation is ubiquitous in so-called complex adaptive systems that may
also encompass physical or artificial aspects [72]. In the case of the brain, it is not
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surprising to observe such ongoing anticipation continuously [73]. Adaptation is
especially important in social behavior, for instance mimicry at the morphological
level [74] or interactional synchrony during cooperative imitation and skill learning
[75].

Coordination may be seen as a subtle blend of reaction and adaptation to the
other [76]. Whereas reaction takes place at a given time, adaptation builds up over
time. For instance, humans may have a preferred movement frequency but they can
adapt to different partners by slowing down or speeding up their movements. In the
case of the Human Dynamic Clamp, frequency adjustment is a good candidate to
address adaptive behavior in a manner that is fully compatible with the previously
described systems, and uses the same formalism. Basically, frequency adaptation
requires a new equation in the system of differential equations that manages the rate
of change of frequency ω. At a more conceptual level, it fits with the idea that
adaptation depends on the system’s ongoing intrinsic dynamics. Furthermore,
adaptation can enhance the realism of the interaction, by expanding beyond an
instantaneous coordination with the position of a finger or the phase of a movement.

Different strategies for modeling frequency adaptation have been proposed. In a
pure Artificial Intelligence (AI) tradition, a specific module detects the frequency of
the human partner which then controls VP’s actual frequency. This shows that it is
possible to successfully design an artificial device that is able to do the job. In the
Bayesian approach, adaptation is error-based and relies on reinforcement learning
[77]. This approach is inspired from real physiological processes. In predictive
coding, adaptation of model parameters is associated with Hebbian and synaptic
plasticity in the brain [78]. Other bottom-up strategies have been developed in the
fields of signal processing [79] and robotics [80]. Here we continue to follow the
strategy of Coordination Dynamics and Dynamical System Theory. That approach
was shown to better account for frequency adaptation in fireflies [81] and in tempo
adaptation to musical rhythms [82]; see also [83]. In contrast with the AI approach,
it is worth noting that the equations stay totally continuous and do not relate to an
artificial measurement of the human frequency. This illustrates how adaptation
relies on parameter dynamics according to the scale of observation [84].

Following Righetti and colleagues [85, 86], we introduce frequency adaptation
through the addition of a new dimension—related to ω—in the set of differential
equations:

x ̇= fx x, v,ωð Þ+KF tð Þ
v ̇= fv x, v,ωð Þ

�
and ω ̇=±KF tð Þ vffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 + v2
p . ð4Þ

where K is the coupling strength of the adaptation, x and v are variables capable of
producing a limit cycle, and F tð Þ is the coupling part of the system. Figure 2b
shows how a VP governed by the extended Excitator equations is able to follow
changes in movement frequency. Addition of a third dimension also leads to
unstable dynamics, less predictable from the human point of view. This may be
associated with the emergence of chaotic regimes that are typical of 3-dimensional
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nonlinear dynamical systems [87]. Such unpredictability can be associated with a
form of intention [88]: a model of intentional behavior could be further designed.
That is what we will see in the next section.

4.3 Intentional Behavior: Symmetry Breaking and Forcing

In the case of an adaptive system, we have seen that adding a third dimension
renders the dynamics less predictable. The system is nevertheless not random and
appears more autonomous while still being governed by deterministic rules. This
balance between autonomy and coupling creates successful agency illusion and can
trigger an attribution of intention to the human observer [89, 90]. Keeping in mind
that the Human Dynamic Clamp aims at operationalizing models for experimental
purposes, a teleonomic system is not adequate, because its intention is not directly
controllable by the experimenter.

In the initial VPI experiment [6], the control parameter μ (Eq. (1)) modulated
intention attribution in some participants. In general, adopting a principle-based
modeling requires redefining the boundary conditions of the model. Until now, we
were dealing with spontaneous coordination. It has been shown experimentally,
however, that intention affects the spontaneous potential landscape by stabilizing
and destabilizing specific dynamic patterns [91] including at the brain level [92].
The former empirical findings motivated an extension of the HKB model [17]; see
also [5] through the introduction of new term in the relative phase equation:

ϕ= a sinϕ+ b sin 2ϕ+ c sinψ −ϕ, ð5Þ

where ψ is the intended relative phase. By incorporating an intentional forcing term
c which stabilizes or destabilizes particular patterns, the model was able to explain
experimental observations related to intentional switching between in-phase and
anti-phase.

We recently generalized the Schöner and Kelso coupling model [5], so the
intended relative phase angle ψ can take on any value between − π and + π:

Cint = −C cos ψð Þ x ̇− y ̇ð Þ+ sin ψð Þωyð Þ. ð6Þ

This modification of VP dynamics makes it possible to direct a collective
behavior towards any desired pattern of coordination (see Fig. 2c). This offers new
experimental perspectives, e.g. to study how new dynamical patterns are learned on
top of a subject’s spontaneous behavioral repertoire [40].
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5 Conclusion

In this chapter, we have seen how a hybrid system called the Human Dynamic
Clamp allows for real-time interaction between humans and virtual partners, based
on the equations of coordination dynamics built originally from HKB and its
extensions. A key aspect is that the human and its virtual partner are reciprocally
coupled: the human acquires information about the partner’s behavior through
perception, and the virtual partner continuously detects the human’s behavior
through the input of sensors. Our approach is analogous to that of the original
dynamic clamp used to study the dynamics of interactions between neurons, but
now scaled up to the level of behaving humans. This principle-based approach
offers a new paradigm for the study of social interaction. While stable and inter-
mittent coordination behaviors emerged that had previously been observed in
ordinary human social interactions, we also discovered novel behaviors or strategies
that had never been observed in human social behavior. Those novel behaviors
pertained to unexplored regions of the theoretical model and were possible ways of
coordination for people to interact with each other. Such emergence of novel
behaviors demonstrates the scientific potential of HDC as a human-machine
framework. Modifying the dynamics of the virtual partner with the purpose of
inducing a desired human behavior, such as learning a new skill or as a tool for
therapy and rehabilitation, is one of several applications of VPI.

HDC allows to study social interaction with more experimental control than
other recent social neuroscience methods (e.g. hyperscanning); it is also a test bed
for theoretical models. HDC moves away from simple protocols in which systems
are ‘poked’ by virtue of ‘stimuli’ to address more complex, reciprocally connected
systems where meaningful interactions occur. Thus, the Human Dynamic Clamp
supports the development of a computational social neuroscience where theory,
experiment and modeling work hand-in-hand across neural, behavioral and social
scales [93].
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Design Principle for a Population-Based
Model of Epileptic Dynamics

Gerold Baier, Richard Rosch, Peter Neal Taylor and Yujiang Wang

Abstract Epilepsy is defined as the brain’s susceptibility to recurrent, hypersyn-

chronous discharges that disrupt normal neuronal function. Over the last decades,

progress has been made in using dynamical systems theory and computational analy-

ses to characterise the nature of seizure-like activity. Using simplified models of

population dynamics, macroscale features of epileptic seizures can be described as

expressions of model interactions. There is a trade-off between complexity of these

models and their explanatory power: Models that represent biophysical components

of the brain often contain many degrees of freedom and nonlinearities, which can

make them challenging to interpret and often means that different model parame-

terisations can produce similar results. Simple models, on the other hand, do not

usually have a direct correlate in brain anatomy or physiology, but rather capture

more abstract quantities in the brain. However, the effects of individual parameters

are easier to interpret. Here we suggest a design principle to generate the complex

rhythmic evolution of tonic-clonic epileptic seizures in a neural population approach.

Starting from a simple neuronal oscillator with a single nonlinearity, we show in a

step-by-step analysis how complex neuronal dynamics derived from patient obser-

vations can be reconstructed.
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1 Introduction

Epilepsy is a primary neurological condition marked by sudden, recurrent episodes

of synchronized, pathological neuronal activity causing behavioral disturbances and

abnormal movements. It can be conceptualized on several time scales, with rhythms

observable in the neuronal states during seizures, irregular recurrence of seizures,

diurnal variations in seizure burdens, and changes of seizure patterns during patients’

lifetimes [1]. Epileptic seizures are typically characterized by abnormal waveforms

of electric potential in extended regions of the brain. Using electroencephalography

(EEG), epileptic seizures have been recorded for decades and their observation is

an important part of clinical diagnosis and treatment decisions. Yet the underlying

pathophysiological mechanisms and their relationship to the variation in observed

seizure phenomena are still not well understood. Computational models have been

employed to try to describe epileptic rhythms in terms of nonlinear dynamics (see

[2, 3] for examples and [4] for a review). These often start from the assumption that

epileptic rhythms are the consequence of the biophysical and biochemical interaction

of known components, generally firing neurons [5]. However, due to the enormous

complexity of the human brain, simulations of large-scale dynamics as an ensem-

ble of individual, coupled neurons is not feasible. Therefore heuristic models at a

higher level of abstraction were introduced to capture the essence of the interactions

at the level of large neuronal populations [6]. These have the advantage of the phe-

nomenology of EEG recordings, whilst allowing a more comprehensive analysis

of their dynamic complexity and can therefore be used to explain a variety of

different waveforms associated with different types of epileptic seizure

dynamics [7, 8].

Very few if any of the computational model features have been used to undergo

serious testing in the clinical setting of observations in humans. This is partly due to

the unavailability of patients to scientific experimentation but also due to the nature

of the models. None of the variables in the models (nodes of the networks) and none

of the interactions between the components (edges of the network) can be studied in

isolation and a step-by-step derivation of biophysico-chemical principles is generally

not possible. Therefore, alternative approaches have been sought.

An alternative to this approach is to evaluate the dynamic consequences of generic

model components (excitation, inhibition, time scales) without direct reference to

biophysical circuit elements. In previous work, we have proposed a building block

strategy to systematically compose models with desired dynamic behaviors [8]. This

has the advantage that through comprehensive exploration of parameter space within

a simple framework of interacting components, many different dynamic phenomena

can be reproduced. Here we use the approach of minimal interacting components

to systematically generate complex rhythms of paroxysmal seizure dynamics. We

restrict the study to a single basic type of nonlinearity, the sigmoid transition func-

tion in self-regulation and connection between neural populations. As an example

we present the stepwise design of a complex rhythm sequence which is representa-

tive of the so-called tonic-clonic seizure rhythm. We discuss qualitatively different



Design Principle for a Population-Based Model of Epileptic Dynamics 335

ways to create the seizure and the potential value of this finding in future studies of

epileptiform dynamics in clinical data.

2 Basic 2-Variable Oscillator Model

The model studied in the present contribution uses a neural population approach

based on the neural field equations proposed by Amari [9] and was employed pre-

viously to describe epileptiform dynamics, e.g. in [10–12]. The set of two ordinary

differential equations is based on the canonical feedback loop between the activities

of an excitatory and an inhibitory neuronal population and is given as:

dEx1
dt

= 𝜏ex1(hex1 − Ex1 + C1 f [Ex1] − C3 f [In1])
dIn1
dt

= 𝜏in1(hin1 − In1 + C2 Ex1)
(1)

where hex1,in1 are input parameters, 𝜏ex1,in1 are time scale parameters, C1,2,3 are con-

nectivity parameters and f [x] is the sigmoidal activation function:

f [x] = (1∕(1 + 𝜀
−x),

where x = Ex1, In1 and 𝜀 = 1000.

These equations implement the set of interactions shown schematically in Fig. 1.

The scheme consists of an excitatory population Ex1 which can self-excite. The

strength of the self-excitation is controlled by parameter C1. This population also

excites the inhibitory population In1, control parameter isC2. In return, the inhibitory

population inhibits the activity of the excitatory population, controlled by parameter

C3. The input parameters hex1 and hin1 describe constant input from external, unspec-

ified sources. Both populations operate at a time scale adjusted by the two time scale

parameters.

Parameter values are selected based on previous studies of the dynamics of epilep-

tiform rhythms. In this approach we adjust parameters to produce certain dynamic

Fig. 1 Scheme of

interaction between two

neural populations, one

excitatory (Ex1) and one

inhibitory (In1). Labels to

arrow denote positive

(green) or negative (red)

impact of coupling on a

population. The Ci denote

the parameter to control

coupling strength
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Table 1 Parameter values used to produce Fig. 2

Parameter Interpretation Fig. 2a Fig. 2b Fig. 2c

C1 Ex1 → Ex1 connectivity strength 2 2 2

C2 Ex1 → In1 connectivity strength 6 6 6

C3 In1 → Ex1 connectivity strength 0 2 2

𝜏ex1 Ex1 timescale 2 2 2

𝜏in1 In1 timescale 3 3 3

hex1 Input Ex1 Scanned Scanned See caption

hin1 Input In1 −1 −1 −1

𝜀 Sigmoid steepness 1000 1000 1000

features characteristic of a type of epileptic seizure, rather than relating the parame-

ters themselves to match biological realism. The dynamic features we focus on are:

(i) an onset of a regular rhythm with characteristic frequency, simple waveform and

a temporal evolution where amplitude increases and frequency decreases; (ii) tran-

sition of this onset rhythm into a complex waveform consisting of large amplitude

spike-wave discharges and further slowing of frequency; and (iii) an abrupt end of

the seizure rhythm leading to a non-oscillatory post-seizure state. These dynamic

features are typical of tonic-clonic seizures, a common seizure type in a number of

different epilepsy syndromes. A clinical recording is shown in Fig. 6c. Investigations

of this type of seizure rhythm have indicated that the characteristic frequency slow-

ing and the abrupt ending is consistent with the occurrence of a homoclinic bifur-

cation in an autonomous oscillator [3]. We therefore adjusted the model parameters

of Eq. (1) in the vicinity of a homoclinic bifurcation. The parameter values used to

produce the figures are listed in Table 1.

We first look at the dynamics of a single neural population variable in the absence

of inter-population coupling. This is done by setting coupling parameter C2 equal to

zero. A single variable can only have steady state solutions, but if we scan hex1 as a

control parameter we find that there exists a region of bistability of the activities of

both populations. Figure 2a displays a forward and backward scan of parameter hex1
showing the region of bistability or coexistence of two stable solutions in the region

between ≈ −1.4 and ≈ −0.5. In that region, the stable, observable state of the system

can be either on the upper or on the lower branch, depending on the preparation of

the initial conditions. The bistability is created by the only available nonlinearity,

the sigmoidal self-excitation.

When inter-population coupling is introduced, C2 > 0, the bistability persists but

its nature can change. We chose a setting where there is a bistability of a steady state

on the lower branch with an oscillatory solution on the upper branch. The bifurcation

diagram in Fig. 2b shows the region of bistability in this case. Technically, the region

of bistability is defined by two bifurcations. The upper border of the bistable region is

due to a saddle-node bifurcation of the lower branch fixed point. The lower border is

due to a homoclinic bifurcation of the limit cycle on the upper branch. Outside of the

bistability, there is a region of parameter where the limit cycle exists as the only stable
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solution. It ceases to exist in a supercritical Hopf bifurcation at hex1 ≈ −0.3 resulting

in the stable upper fixed point. Our single-parameter space is therefore structured into

four distinct regions.

When interpreting the model output in the context of epilepsy, the oscillatory

region is taken to represent the seizure rhythm. The bifurcation diagram then repre-

sents specifically what can happen for certain values of constant input to population

Ex1. To explain the onset and the offset of the seizure rhythm it is commonly assumed

that the value of at least one of the model parameters changes continuously on a slow

time scale.

To implement this, our oscillator model is prepared in the upper fixed point and

parameter hex1 is then slowly decreased and the dynamics recorded (Fig. 2c). The

simulation shows a continuous evolution of the dynamics from the upper fixed point

via the first (Hopf) bifurcation to fast small amplitude oscillations. It then continues

with growing amplitude and decreasing frequency until there is a sudden drop to the

lower fixed point where the value of activity slowly decreases further.

If one wanted the model to undergo a second transition into the seizure rhythm

one would have to reset parameter hex1 to a value where the activities settle on the

upper branch. While this can easily be done in the model equation, there is no known

and intuitive, biophysical equivalent of this resetting mechanism in the human brain.

Starting with a simple model containing only two populations, as well as some

structured knowledge of neuronal dynamics, we were able to recreate some key fea-

tures of epileptic rhythms as seen in tonic-clonic seizures. Two nonlinearities (in

the self-excitation, and the feedback inhibition, respectively) were used to obtain a

region of bistability and oscillations. Introducing slow variation within one parame-

ter, allowed transition between the dynamic states that resembles the natural pro-

gression of seizure dynamics as outlined above. In this scheme, repeated changes of

the control parameter would result in the recurrent “seizures”, a diagnostic criterion

for epilepsy.

3 The Oscillator with an Ultraslow Variable

The previous section showed how a two-variable oscillator with a specific bifurcation

structure can be turned into a model of recurrent epileptic seizure dynamics by a

recurring independent parameter manipulation. This approach was taken in a large

number of previous computational studies of seizure rhythms, explicitly or implicitly

[13, 14]. Here we present a set of additional possibilities to explain this phenomenon.

The length and appearance of the seizure rhythm in the previous section depends

directly on the time scale of the continuous parameter change. Following previous

suggestions [3], we now introduce a new variable that helps us dynamically imple-

ment these changes. Specifically, the model with a region of bistability such as Eq. (1)

can be made to autonomously switch between the two coexisting stable dynamics

(fixed point and oscillations) with such an addition.
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We expand our oscillator with a variable on a much slower (“ultraslow”) time

scale to get the following 3 variable model:

dEx1
dt

=𝜏ex1(hex1 − Ex1 + C1 f [Ex1] − C2 f [In1] − Cu1 f [Ul)]

dIn1
dt

=𝜏in1(hin1 − In1 + C3 Ex1)

dUl
dt

=𝜏ul(hul − Ul + C1u f [Ex1])

(2)

where hul is the additional input parameter for the ultraslow variable Ul, 𝜏ul the cor-

responding time scale parameter, and TC and CT are two new connectivity para-

meters. We label the new variable “ultraslow” to distinguish it from the two “slow”

wave populations in the context of spike-wave oscillations below.

The design principle is known from the composition of burst oscillations in the

context of neuronal firing [15].The input of one of the activities of a bistable system

into the ultraslow variable leads to its continuous modulation. The signs of the cou-

pling terms are such that the excitatory population leads to a decrease of the ultraslow

variable while it is on the lower branch. Because of its negative coupling the ultra-

slow variable leads to an increase of input to the excitatory variable, mimicking an

increase in control parameter hex1 as in the previous section. Eventually, the system

then reaches the bifurcation point of the lower branch fixed point and the activities of

the Ex1/In1 subsystem jumps to the upper branch. It starts to oscillate. While on the

upper branch, the ultraslow variable starts to continuously increase, thereby dimin-

ishing the input to variable Ex1, mimicking an increase in control parameter hex1 as

in the previous section. Eventually this leads to a sudden jump back to the lower

branch where the process starts to repeat itself.

The result is a dynamics that switches spontaneously and periodically between the

two branches. In the context of epilepsy the period of time spent on the upper branch

of activity of population Ex1 would be considered the seizure state. Figure 3 shows

one cycle of the resulting periodic switching between the lower steady state and the

oscillation on the upper branch of Fig. 2b. The trend of the ultraslow variable while

Fig. 3 Transitions to seizures by three different mechanisms. a Autonomous, periodic switching to

seizure rhythm in Eq. (2). b Excitability leading to an induced seizure rhythm in Eq. (2) in response

to a pulse stimulation at time 200 (indicated by black arrow). c Noise-induced transition to seizure

rhythm in Eq. (2) in the presence of normally distributed additive noise in the first two variables.

Parameter values provided in Table 2
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the activity of population Ex1 is in the seizure rhythm is similar to the continuously

shifting parameter in Fig. 2c, and therefore both the increase in amplitude and the

decrease of the frequency are observed during that phase. The evolution of the period

between maxima is plotted at the bottom panel. The period first decreases (when

settling into the oscillation), then remains nearly constant but increases towards the

end. Interestingly, during the final increase there is a an irregularity of the increase

of the period. Thus for certain ranges of parameter values a periodic occurrence

of the seizure rhythm can be modeled. The period spent in the silent and in the

rhythmic state, respectively, depends on the quantitative parameter settings and can

be adjusted.

The periodic bursting is limited to a finite range of the chosen control parame-

ter, e.g. hex1. If the systems is prepared just outside that range the dynamics become

excitable. Excitability means that a threshold exists which separates trivial from non-

trivial responses to single pulse stimulation. This is similar to excitability in individ-

ual neurons. If a neuron is prepared just outside the conditions for periodic (tonic)

firing, a single action potential is recorded from a neuron in response to a threshold

crossing (supra-threshold) stimulation [15].

Figure 3b shows the response dynamics of the model Eq. (2) following a brief

pulse perturbation. The dynamics is prepared in the lower branch fixed point. Fol-

lowing perturbation (arrow) it switches to the upper branch, settles to an oscilla-

tion, amplitude increases and frequency decreases until it suddenly drops back to

the stable lower fixed point where it remains if no further perturbation is applied. A

repetition of seizures is seen when the supra-threshold perturbation is repeated.

In the same setting yet another mechanism is possible. In the absence of para-

meter variations and specific pulse perturbations it is possible to induce a seizure-

like dynamics by adding a noise term to the equations (Fig. 3c). The noise con-

tinuously perturbs the system and leads to occasional (unpredictable) crossings of

the threshold resulting in a period of seizure-like activity. While the seizure rhythm

period depends on the parameter settings of the autonomous model, the frequency

of seizures depends on the amplitude of the noise level.

Table 2 Parameter values used to produce Fig. 3

Parameter Fig. 3a Fig. 3b Fig. 3c

C1 2 2 2

C2 6 6 6

C3 2 2 2

𝜏ex1 1 1 1

𝜏in1 1.5 1.5 1.5

𝜏ul2 𝜏ex1/500 𝜏ex1/500 𝜏ex1/500

hex1 −0.45 −0.49 −0.493

hin1 −1.1 −1.1 −1.1

𝜀 1000 1000 1000
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Note that in Eq. (2) we treat the ultraslow variable formally as an additional neural

population although this is not necessary to produce the dynamics described. How-

ever, it is unknown what physiological process might underlie this ultraslow process

and we therefore emphasize that qualitatively similar results can be generated with

other equations as well as long as the time scale and coupling signatures observe the

requirements.

4 Two Coupled Oscillator Model

An important feature of tonic-clonic seizures is the transition from tonic to clonic

rhythm. Typically, this means that not only does the frequency decrease but in addi-

tion a qualitative change of the waveform is observed. The main feature of the clonic

part is the “spike-wave” (SW) appearance of the rhythm. The SW oscillation is a typ-

ical feature of models with two different time scales and indeed has been modelled

using a combination of neural population with different time scale parameters.

To model a system with oscillators at two different time scales we simply dupli-

cate the populations contained within the system in Eq. (1). This leads to the follow-

ing four-variable system [16]:

Fig. 4 The two-oscillator

scheme
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Fig. 5 Bifurcations in the 4V system in the parameter hex1. a Bifurcation diagram of Eq. (3). The

system shows a bistability (shaded grey) between the oscillations (shaded green) and a lower fixed

point. Note the between hex1 = −0.7 and −0.9 the oscillations are of a (poly-) spike-wave form

(hence multiple maxima and minima), see (b) for details. b Time series of oscillator Eq. (3) and

continuously changing parameter: hex1 = −0.45 − 0.002 ∗ t. The slow parameter change underlying

the time series is additionally indicated in (a) as a magenta arrow. Parameter values provided in

Table 3

dEx1
dt

=𝜏ex1(hex1 − Ex1 + C1 f [Ex1] − C2 f [In1] + C21 f [Ex2])

dIn1
dt

=𝜏in1(hin1 − In1 + C3 Ex1)

dEx2
dt

=𝜏ex2(hex2 − Ex2 + C4 f [Ex2] − C5 f [In2] + C12 f [Ex1])

dIn2
dt

=𝜏in2(hin2 − In2 + C6 Ex2)

(3)

where hex1,in1,ex2,in2 are input parameters, 𝜏ex1,in1,ex2,in2 are time scale parameters,

C1,2,3,4,5,6,12,21 are connectivity parameters and f [.] is defined as above.

A scheme of the model of two coupled oscillators is depicted in Fig. 4. The

dynamics of this model with its large number of parameters and additional nonlin-

earities is too complex to be comprehensively evaluated in the present context. We

therefore reduce the discussion to a specific setting which relates to the dynamics of

tonic-clonic seizures. Specifically, the parameters in the two isolated oscillators are

the same with the exception of the time scale parameter. Scanning control parameter

hex1 and recording the bifurcation diagram we get the result displayed in Fig. 5a.

We can identify the lower and upper branch of activity in the two oscillator model.

Also, as before, the lower branch is a stable steady state whereas the upper branch

contains oscillatory and steady state dynamics. In contrast to the diagram in Fig. 2b,

the oscillatory dynamics now comprise multiple waveforms and, in particular, com-

plex oscillations. Due to the choice of different time-scale parameters, the oscilla-

tions include spike-wave (SW) dynamics where a fast spike or multiple fast spikes

are followed by slow waves. In the current simulations the complex oscillations are

periodic but for other parameter sets we have also seen quasiperiodic and chaotic

mixtures and spikes and waves.
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Table 3 Parameter values used to produce Figs. 5 and 6

Parameter Fig. 5a Fig. 5b Fig. 6

C1 = C4 2 2 2

C2 = C5 6 6 6

C3 = C6 2 2 2

C12 = C21 1.1 1.1 1

Cu1 NA NA 1.5

C1u NA NA 1

𝜏ex1 1 1 1

𝜏in1 1 1 1.5

𝜏ex2 = 𝜏in2 5 5 4

𝜏z NA NA 𝜏ex1∕300
hex1 Scanned See caption −0.6

hin1 −1.1 −1.1 −1.1

hex2 −0.53 −0.53 −0.53

hin2 −1 −1 −0.5

𝜀 1000 1000 1000

We can now proceed as above and continuously vary control parameter hex1. The

resulting evolving time course is shown in Fig. 5b. The representative variable Ex1
now displays a transition from small fast tonic spiking to slow clonic bursting remi-

niscent of the tonic-clonic seizure evolution. As before, the onset of oscillations can

be attributed to a supercritical Hopf bifurcation, the offset is due to a homoclinic

bifurcation, in our case in both oscillators. Due to the coupling of two nonlinear

oscillators the waveform is now no longer strictly periodic but shows some variabil-

ity in the evolution even in the absence of noise.

5 Spontaneous Seizure Model

We extend the model of two interacting oscillators with an ultraslow variable fol-

lowing the design principle in the first results section. That is, we add a ultraslow

variable which is fed from one of the oscillators and which feeds back to one of the

oscillators. The coupling is again such that spontaneous switching between the states

on the lower and upper branch of the bistability region happens.

The model with five variables is:



344 G. Baier et al.

dEx1
dt

=𝜏ex1(hex1 − Ex1 + C1 f [Ex1] − C3 f [In1] + C21 f [Ex2]) − Cu1 f [Ul]

dIn1
dt

=𝜏in1(hin1 − In1 + C2 Ex1)

dEx2
dt

=𝜏ex2(hex2 − Ex2 + C4 f [Ex2] − C6 f [In2] + C12 f [Ex1])

dIn2
dt

=𝜏in2(hin2 − In2 + C5 Ex2)

dUl
dt

=𝜏ul(hul − Ul + C1u f [Ex1])

(4)

with conventions as above. Note that the ultraslow variable modulates the slow oscil-

lator. The coupling is negative to enable cyclical interaction around the region of

bistability, similar to the set-up in the three variable model of spontaneous bursting

above.

With the parameters from the four variable model in Fig. 5a it is fairly trivial to

adjust the couplings such that spontaneous switching is found. An exemplary time

series of the result is displayed in Fig. 6. Parameters can be adjusted to obtain more

or less frequent and even rare seizure outbursts. In the case shown the onset of fast

tonic activity is spontaneous, i.e. with finite amplitude. This shows that the bista-

bility region encompasses only oscillatory dynamics on the upper branch. If the

upper branch included the Hopf bifurcation and upper branch fixed point dynam-

ics, a seizure dynamics with transition from zero amplitude could also be observed.

Again, the dynamics of the oscillations in the model involving two coupled oscilla-

tors is irregular due to dynamic interaction, even in the absence of noise.

6 Additional Remarks

The presented results show a systematic design principle to synthetically compose

(reverse engineer) a complex dynamic process from simple ingredients. The main

ingredients are a bistable element, a negative feedback oscillator and an ultraslow

variable. The use of a single ultraslow variable requires the presence of a region of

bistability to allow for spontaneous switching between qualitatively different states.

If a bifurcation diagram includes more than one dynamic state without bistability

(for example a saddle-node on invariant cycle bifurcation), it is possible to generate

autonomous switching between them if two ultraslow variables are added [15].

We have focussed our model on the presence of a Hopf and a homoclinic bifur-

cation to generate the seizure rhythm. However, in equations with two variables,

four bifurcations are known and in principle each of them could be used to gener-

ate complex oscillations either in the presence or in the absence of bistability. Thus

an enormous repertoire of waveforms and transitions between them is accessible.

This is important when it comes to the interpretation of clinical seizure rhythms. So

far, the specific dynamic components of individual seizure types have mostly been
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Fig. 6 Time series of spontaneous transitions from tonic to tonic-clonic rhythms. In the full model

(Eq. (4)), autonomous transitions to seizures can be observed, where the seizure itself shows a tran-

sition from tonic rhythms to tonic-clonic rhythms. Parameters are given in Table 3. Red markers

in the clinical recording indicate the begin and end of the seizure (data obtained from iEEG.org,

Study 031, second seizure, channel RPG35). Parameter values provided in Table 3

ignored. But as shown for example in [3] the careful observation of onset, evolution

and offset of the seizure rhythm allows certain conclusions about the dynamics that

can be modelled following the suggested design principle.

The model proposed here does not provide insight into the neuroanatomical basis

of tonic-clonic seizures in humans. Certain features, such as the spatial spread, the

irregular and unpredictable occurrence of seizures, and the co-existence of different

oscillatory states (e.g. background activity, sleep, seizure activity), are beyond the

scope of this analysis. However, minimal models that generate qualitative features

of epileptic seizure rhythms can be used in a number of different ways.

First, it is possible to fit the model dynamics to clinical recordings. Because of

the nonlinear mapping from model parameters to neuronal states, this approach may

reveal natural categories within dynamically diverse seizure phenotypes, that are

not intuitively apparent from visual EEG analysis alone [17, 18]. Second, one can

use the model to generate hypotheses about the response to perturbations, e.g. drug

administration, electric stimulation, transcranial magnetic stimulation and others.

With recent advances in epilepsy surgery and deep brain stimulation, as well as a

first in-man trial of chronic implantable recording devices, a better characterised

model of the dynamics governing epileptic seizures will be imperative to harness
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the potential of these novel approaches [19, 20]. Third, while the knowledge of the

mammalian neocortex is rather advanced on the neuronal level, large-scale under-

standing of epileptic seizure rhythms in the human patient is still limited. Epilepsy is

still commonly conceptualised on the level of an imbalance between excitation and

inhibition, as recently demonstrated in a report on invasive multiscale recordings

during presurgical monitoring of patients with focal seizures [21]. This approach is

useful, but unlikely to fully explain the qualitatively different dynamic features seen

in patients, and their associated neurological comorbidities and prognoses. Similar

modelling approaches as used applied have been used as an excellent tool to gen-

erate model-based suggestions to differentiate between clinical seizures based on

dynamic features, as suggested in the context of focal seizures in [22]. Finally, these

building blocks can be coupled laterally to investigate spatio-temporal dynamics of

seizures, e.g. seizure spreading in heterogeneous brain networks [23–25] which may

have clinical implications on surgery [26, 27] and stimulation [20, 28].
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Discrete Modeling for a Minimal Circuit
in the Hippocampus

Anastasia I. Lavrova and Eugene B. Postnikov

Abstract We present a simple discrete model for a minimal circuit in the hippocam-

pal area CA3, which consists of various types of connected cells that differ in mor-

phology and functional properties (pyramidal, basket and O-LM cells). This model

allows for reproducing not only basic characteristics of the cells oscillations for all

these types (period, amplitude and phase shift) but also to demonstrably explain the

key property of switching between different rhythms using only one control para-

meter. The model results are confirmed via comparison with in vitro experimental

results and discussed.

1 Introduction

The hippocampus is a part of the mammalian brain located inside the medial tempo-

ral lobe, beneath the cortical surface [1]. It belongs to the limbic system and plays

an important role in long-term memory formation and in encoding of new informa-

tion. The hippocampus consists of several parts (EC, DG, CA1, CA2, CA3). Since

different neuronal cell types in each region are organized into networks in the hip-

pocampus, it has been used as a model system for neurophysiological studies.
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In particular, it has been shown experimentally that the neuronal network in area

CA3 can exhibit two different types of oscillations (so called theta- and gamma oscil-

lations) and dynamically switch between them [2]. Spatial information is coded at

theta frequencies (4–12 Hz) by neurons distributed along the longitudinal axis of the

hippocampus. Gamma oscillations (30–80 Hz) are generated by the hippocampus

and involved in information transmission and storage. It has been proposed that the

hippocampus governs memory processes in brain and can switch long-term memory

into dynamics.

Thus, the development of mathematical models, which can explain the back-

ground of such dynamical regimes is subject of ongoing discussions. Among the

first physiologically based work on this topic, the articles [2, 3] should be men-

tioned. It has been shown that there are at least three types of hippocampal cells,

whose dynamics and interconnections determine slow and fast oscillations: two fast

oscillating basket cells, two slow oscillating oriens-lacunosum-molecular (O-LM)

cells and one two-compartmental pyramidal cell. More recent work [4] has allowed

for a simplification of the minimal network by reducing the number of basket cell

to one and replacing the cumbersome Hodgkin-Huxley equations by the simplified

FitzHugh-Nagumo system.

At the same time, although this simplification allows for reproducing basic dynam-

ical regimes and transitions between them, the strong non-linear character of the cou-

pled non-linear ordinary differential equations used there prevents us from a detailed

revealing of the switch mechanism and a choice of a basic parameter (or couple of

them). For this reason, discrete modelling is more promising from both point of view,

algorithmic computational simplicity and qualitative neurophysiological interpreta-

tion.

The main goal of the present work is to reduce the detailed ODE model [2] of

basic elements of a hippocampal network to a discrete system. We reproduce period,

amplitude and phase shift of the oscillations and analyze the influence of synaptic

connections between cells on the mentioned characteristics. In comparison with the

data from in vitro experiments [2], we extract a key parameter for the switch between

rhythms.

2 Model and Method

To model switching between rhythmic patterns in the hippocampus we have consid-

ered a minimal circuit shown in Fig. 1. The biophysical neuronal foundation deter-

mines the scheme, in which elements act as follows: (i) O-cells (O-LM-cells) are

independent oscillators and activated by an E-cell (pyramidal cell) only at the initial

time; (ii) E-cell spiking depends on the applied current and total inhibition by the

O- and I-cells (basket cells); (iii) the phase shift between O-cells and their period

depends on the total contribution of all synaptic connections between cells; (iv) I-

cells are self-sustained oscillators, which inhibit each other.

As a result, the dynamics of all kinds of cells used is simulated by the following

set of maps, where each discrete iteration is marked by j.
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Fig. 1 The network studied

represents a system of

discrete active elements. The

circles denote cells with their

names inside; lines show

activator (+) and inhibitor
(−) directed connections

2.1 Discrete Equation for E-Cell

The spike of an E-cell depends on its potential in the previous discrete step

VE(j − 1), on the increment of the potential r, and on the inhibition by the O- and

I-cells. Every spike of a basket cell occurs after a spike of a pyramidal cell, which

allows for introducing a delay s between I- and E-cell spikes. Concerning O-LM cell

spiking, their firing is conditioned by the first spike of an E-cell only. Therefore, the

inhibition of an E-cell by the O- and I-cells is the “sum” of the membrane potentials

of I-cells with delay s (VI1 (j − s), VI1 (j − s)) and the potential of the O-cells in the

previous step. For simplicity, we put s = 1 in this model. We have to keep in mind

that the spike of the second O-cell is shifted relatively to the first by 𝛥𝜑 and the

membrane potential growth of pyramidal cell depends on the phase shift between

the O-cells.

To take into account that the influence of O-cells leads to inhibition of E-cells in

combination with I-cells, a factor kVI1 (j − s)∕nVTE is introduced: it is equal to 1 only

if a spike of I-cells takes place and it is equal to 0 otherwise. The parameters k and

n are normalization constants and VTE is the maximum potential value for E-cells.

VE(j) = VE(j − 1) + r𝛥𝜑−
kVI1 (j − 1)

nVTE

[
VI1 (j − 1) + VI2 (j − 1) −

(
VO1

(j − 1) + VO2
(j − 1 − 𝛥𝜑)

)]

(1)

Figure 2 explains how the model parameters are determined using basic experi-

mental data [2]. Since the principal task of this work is modelling of the period and

type of oscillations under various conditions, the scheme realized in Eq. 1 connects

the discrete measurable quantities: spike amplitude, phase shift, rate of the mem-

brane potential’s growth and period of interspike intervals for E-cells.
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Due to the discrete nature of the model, we are not interested in reproducing

of the shape of the oscillations. Therefore, the growth of voltage from its min-

imal value (min(VE)) to the maximum (max(VE)) is considered as a linear map

VE(j) = VE(j − 1) + r0. The ratio of two sides (the difference of maximal and mini-

mal voltages, which are standard characteristics of a neuron, and the measured period

of oscillations) of the right triangle obtained by this map provides the growth rate

r0. The experiments also show that the period T of E-cell and I-cell spikes and the

phase shift between O-cells spikes 𝛥𝜑 are correlated. Thus, the constant r is finally

determined via linear correlation analysis applied to the experimental data.

The third term in Eq. 1 describes the repolarization process due to inhibition from

the spiking I- and O-cells. This feedback loop is organized via the coupling described

by Eq. (2). The latter states that I-cells fire when the E-cell voltage reaches its max-

imum, more precisely, during the subsequent iteration. At the same time, since the

“time steps” are integer numbers j and the E-cell’s intermediate voltage line slope is

not, the target gap 𝛥VE = r is slightly extended by the introduction of a small additive

phenomenological constant 𝜀 = 0.1. It provides more robust calculations.

Finally, the rest constants n and k are chosen in such a way that the voltage inter-

vals of O- and I-cells as well as the repolarization by subtracting them from the E-cell

voltage satisfy experimental ranges.

2.2 Discrete Equation for I-Cells

VI1 (j) = nVTE,

VI2 (j) = nVTE

}
if VTE < VE(j − 1) < VTE + (1 + 𝜀)r (2)

and

Fig. 2 Diagram demonstrating the interconnection of observable quantities (the minimal and max-

imal voltages, and the period of oscillations for E-cells) and parameters of the model
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VI1 (j) = VI1 (j − 1) − VI2 (j − 1),
VI2 (j) = VI2 (j − 1) − VI1 (j − 1)

}
otherwise. (3)

Equations (2) and (3) describe the excitation of I-cells and the mutual inhibition

of two I-cells, respectively; it is expressed as the difference between the potentials at

the previous step. The factor 1 + 𝜀 multiplied by r is introduced to correct possible

small errors emerging from the size of the discrete time steps.

2.3 Discrete Equation for O-Cells

VO1
(j) = nVTE,

VO2
(j − T) = nVTE

}
if VE(j) < VE(j − 1)& f irst event (4)

and

VO1
(j) = VO1

(j − T),
VO2

(j) = VO2
(j − T)

}
otherwise. (5)

Equation (4) describes the excitation of O-cells at the first occurrence of the VE
spike (first event). It is expressed via the conditions VE(j) < VE(j − 1). The second

cell fires with a phase shift 𝛥𝜑 (the condition VO1
(j − 𝛥𝜑) ≠ 0).

Equation (5) describes a self-sustained oscillator: after the first firing, its current

state is simply a repetition of its state T time steps before.

2.4 Realization of the Simulations

Equations (1)–(5) are simulated using a simple iteration algorithm in MATLAB. To

avoid problems related to the delays in (1) and (5), the first T + 𝛥𝜑 + 1 elements of

all arrays are filled with zeros. Thus, the first real simulated output determined by

the dynamics of the network corresponds to j = T + 𝛥𝜑 + 1.

The parameters n, VTE, r, T , s were adjusted to the in vitro experimental para-

meters (amplitude and period of oscillations) of individual cells [2] and kept fixed

during all simulations. Thus, the phase shift 𝛥𝜑 is the only control parameter.

3 Results

The important property of the system (1)–(5) is based on the phenomenological fact

[4] of the strict dependence of the E-cell oscillation period on the phase shift between

spikes of O-cells [2]. This is the reason for explicitly including this shift 𝛥𝜑 into the

term which provides the linear voltage in Eq. (1). We do not aim speculate regard-
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Fig. 3 The regime of gamma oscillations corresponding to the control parameter value 𝜀 = 0. Here

light and dark (green and blue in the color online version) lines mark to the spikes of O1 and O2
cells, respectively

ing a microscopic mechanism for such a behaviour but to reveal the background for

the transitions between theta-, gamma-, and theta-gamma-oscillations by taking this

quantity as a key control parameter.

During the simulations, we use a phase shift correction 𝛥𝜑 = [𝛥𝜑0 − 𝜀nVTE],
where square brackets denote the integer part (one needs this construction since the

phase shift must be equal to an integer number of discrete time steps) and VTE is the

maximal voltage available for an E-cell before a discharge. Such a scheme mimics

the cell interactions drawn in Fig. 1 and has a certain neurophysiological justification

(see the discussion of voltage amplitude and phase properties in linked neurosystems

in [5]).

Thus, we show below that various dynamical regimes are regulated by varying the

coupling intensity 𝜀. The rest parameters are the same for all simulations: k = 0.2,

r0 = 0.08, n = 10, 𝛥𝜑0 = 50, T = 145, VTE = 10.

Figure 3 demonstrates gamma oscillations typical for the default dynamics of con-

nected cell spikes, i.e. in absence of an additional influence of E-cell voltage ampli-

tude, 𝜀 = 0. One can see that the default phase difference between O-cells spikes as

well as their intrinsic period is sufficiently larger than the period of E-cell oscilla-

tions. As a result, the dynamics of an E-cell is particularly simple: the voltage grows

up to the maximum value, discharges and this process repeats periodically. Thus,

we see uniform saw-like dynamics for an E-cell and equidistantly distributed bars

marking spikes of O- and I-cells.

The case of sufficiently larger values of the phase-amplitude coupling parameter

(𝜖 = 0.4, see Fig. 4) leads to a decrease of 𝛥𝜑. This is reflected in the graph where

the spikes of the two O-cells are closer to each other than in Fig. 3. Consequently,



Discrete Modeling for a Minimal Circuit in the Hippocampus 355

Fig. 4 The regime of theta oscillations corresponding to the control parameter 𝜀 = 0.4

it takes more time for E-cell voltage to reach its amplitude value. As a result, theta-

oscillations emerge, see Fig. 4. Note also that the periods of I-cells and O-cells are

still incompatible. They do not affect each other (see the expression in the brackets

in Eq. (1)) and there are no intermittent dynamics in the system.

Fig. 5 The regime of theta-gamma oscillations corresponding to the control parameter 𝜀 = 0.06
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The case of compatible oscillations periods for E-cell and both O-cells results in

the modulated theta-gamma regime, see Fig. 5. The value of the coupling parameter,

𝜀 = 0.06 is small, thus the basic periodic regime is gamma. Each discharge of an

E-cell produces an I-cell spike. Their superposition with the oscillations of O-cells

causes a larger deactivation of the E-cell, i.e. the “gaps”, the periods of which cor-

respond to theta-oscillations. The fine adjustment of these processes in our model

originates from the chosen discrete formulation of Eqs. (2)–(5) leading to a repre-

sentation of the corresponding spikes as point-wise localized.

4 Discussion and Conclusion

Although the majority of works in computational neuroscience is based on the well-

developed theory of non-linear ordinary differential equations varying from detailed

Hodgkin-Huxley-like systems to simplified ones (FitzHugh-Nagumo, integrate-and-

fire, Morris-Lecar, etc.) [6], the map-based models start to attract the attention of

researchers (see the comprehensive review of the recent state-of-art in [7]). How-

ever, a sufficient part of the systems reviewed are obtained either via discretization

of the standard ODEs or via the introduction of their discrete counterparts (non-

linear maps). This technique allows to obtain a variety dynamical regimes provided

by the corresponding non-linear maps (regular, chaotic oscillations, bursting, etc.).

However, these systems keep a high complexity for analytical study; the absolute

majority requires an extensive numerical bifurcation analysis. The consideration of

connected lattices and networks of such elements increases complexity and difficul-

ties in devising of systems with prescribed properties and their adjustment to neuro-

physiological experiments.

On the other hand, the approach proposed in the present work has an advantage in

the easier correspondence to measurable properties of neuronal cell systems. In fact,

the experimentalists do deal with the timing of firing for different types of neurons

that determines an attention to phase resetting approaches in their modelling (see

e.g. [8, 9]). At the same time, there is evidence that a pure phase description may

not be enough for the correct description of real neurons’ dynamics and one needs

to take into account its interplay with the voltage amplitudes (see the discussion in

the review [5]).

In the present work, we combine both these factors in the most direct way: the

basic oscillatory properties of all three types of cells are primarily postulated via

linear delayed mapping. Its parameters are determined from experimental data since

we do not have the aim to model individual oscillators (it is a known solved problem).

Therefore, we can concentrate on the study of the influence of connections on the

dynamics of the small network block in its entirety.

We have found that two types of oscillations in the hippocampal area CA3, theta

and gamma, as well as the combined theta-gamma regime, are determined by the

phase shift between spikes of O-LM cells, which act as independent timers. The
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inhibitor input of one isolated O-LM cell (the situation with a large phase shift

between both) is not strong enough to compensate the self-sustained activation of

the pyramidal cell. Thus, the gamma oscillations of the latter are completely deter-

mined by its self-activation and the resetting induced by basket cells. If both O-LM

cells act simultaneously (small phase shift between them), the voltage growth of the

pyramidal cell is stretched and theta oscillations are produced. The most interesting

combined theta-gamma regime emerges as a combination of two inhibitor inputs,

which coincide in the regime of fractional order phase locking: from fast oscillating

basket cells and low oscillating O-LM cells. All these details of phase regimes are

confirmed by experimental results (see Fig. 5 in Ref. [2]).

Finally, this simple construction confirms the conclusion [4] about necessity of

two O-LM cells in a minimal network mimicking oscillations of constitutive blocks

of the CA3 region of the hippocampus. But in contrast to the citied ODE-based

model, our discrete system allows further to form larger networks of connected

blocks taking in mind the revealed rules for connections determining switching

between oscillatory states.

Acknowledgements We thank Prof. I.M. Sokolov (Humboldt-Universität zu Berlin) for the useful
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I See What You Do Not See

The World Observed with High-Speed Cameras

Kinko Tsuji

Abstract High-speed cameras are very useful and important tools for studying fast
phenomena that we cannot follow with our own eyes. Recent developments of
photosensitive semiconductors with memory (sensors with on-chip memory) enable
us to take images of up to 10 million frames/s without losing spatial resolution. We
explain the principles of these sensors (a CCD (charge coupled device) sensor and a
CMOS (complementary metal oxide semiconductor) sensor, both with on-chip
memory), and their trigger systems for high-speed cameras. As typical applications
the following four experiments are shown: 1. material testing: destruction processes
of a piece of CFRP (carbon fiber reinforced plastic) by tensile strain observed with
two cameras synchronously, 2. cavitation: behavior of a microbubble in various
geometries of their environment, 3. shock waves: their propagation observed with a
Mach-Zehnder interferometer, and 4. crack formation: the process of glass cracking.
Applications to chemical, biological and medical fields are on-going promising
projects.

1 Introduction

The human eye can detect changes with a maximum of 10–20 Hz. Therefore, we are
not disturbed by fluorescent lamps which work with a frequency of 50/60 Hz. And
we can enjoy “continuous” motions in classical movies using a frequency of 16 Hz.

How can we then observe fast phenomena which we cannot directly see with our
eyes? Since the middle of the 19th century people have tried to take high speed
photographs. The first practical images were taken by Eadweard Muybridge in 1887
[1, 2]. He used 12 cameras and produced a series of images of a galloping horse.At that
time, there was an exciting discussion on whether at least one of the four feet touches
the ground during galloping. His photographs showed that there is a moment when all
four legs are in the air. Moreover, they showed that very complicated coordination of
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the legs is involved: there is no symmetry between front legs and hind legs, and no
synchronized movement either of the two front legs or of the two hind legs.1

Various techniques and devices for taking high-speed images have been developed
during the following decades: using stroboscopes, rotating prisms, rotating mirrors,
streak cameras, high speed mechanical shutters, and others. One excellent example is
the observation of cavitation bubbles with a rotating mirror technique by Lauterborn
andBolle [3]. They took a few images of the cavitation bubbleswith 300,000 frames/s.

In parallel, the technique of capturing still images was drastically changed from
analog (using films with photosensitive substances, e.g., silver halide) to digital
(using photosensitive semiconductors). Since then the combination of photosensi-
tive semiconductors and some of the techniques for high-speed imaging (e.g.,
rotating mirrors) became a fundamental tool for high-speed cameras. Among var-
ious semiconductors, CCD (charge coupled device) and CMOS (complementary
metal oxide semiconductor) are photosensitive and therefore frequently used.

However, even with this combination, there are difficulties to take a series of images
with both high temporal resolution and high spatial resolution (some exceptions: e.g., a
huge Brandaris camera, 150 cm (w) × 150 cm (h) × 20 cm (d), 140 kg [4]), because
the rate determining step of such cameras is the read-out time of data: usually the rate of
data transfer from the image sensor to a device for data storage (e.g., a PC). Each camera
has a maximum amount of data transferred per second, depending on sensors, electric
circuits and storage devices. Therefore, when the number of frames per second (the
temporal resolution) is increased, the number of pixels in each frame (the spatial reso-
lution) is reduced. In an extreme case a high-speed image consists of only a few lines, and
such images are often not very useful for applications.

In order to avoid sacrificing the spatial resolution at high frame rate (and to
remain compact in size), image sensors with a storage function (on-chip memory)
have been developed. Different from the conventional image sensors without
on-chip storage, however, the total number of frames is limited, because of the
available storage space on the chip.

In this presentation we will briefly explain the principles of cameras with on-chip
memory (Sect. 2), and show in Sect. 3 what we can see with these cameras: for
example, how amaterial is deformed/damaged, how a cavitation bubble behaves during
shrinkage, how a shock wave develops, or how cracking in glass occurs. In the last
section (Sect. 4) we will describe some possible applications towards future use in the
field of chemical, biological and medical applications. Note that what we describe here
is limited to some examples, which are only a small part ofworks done bymany people.

1Perhaps Gioacchino Rossini knew this acoustically before Muybridge. He composed the William
Tell Overture in 1829. The rhythm of galloping horses in this overture reveals how their legs are
moving.
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2 Principles of High-Speed Cameras with On-Chip
Memory

We will now explain two different image sensors (CCD and CMOS) with on-chip
memory and their trigger functions in order to understand for which kind of
application these cameras are useful (or limited). An appropriate trigger is essential
for optimizing the limitation of the number of frames.

2.1 CCD Image Sensor with On-Chip Memory [5]

On theCCDchip each photo-sensitive element, P, has storage elements, the number of
which corresponds to the number of frames. As shown in Fig. 1a, photons reaching P
are converted to electron charges and transferred to the first storage element 1. When
photons arrive newly at P during the next time frame, these photons are newly con-
verted to electron charges and are again transferred to thefirst storage element 1.At the
same time the charges which had occupied the first storage element are transferred to
the second storage element 2. During the “image capturing”mode these processes are
repeated, and charges for each frame are continuously transferred from one element to
the next. Charges arriving at the last storage element n are drained (D).When a trigger
signal arrives, the charge transfer is stopped: it means that the information of the
amount of photons reaching P at every frame is fixed. Then the amount of electron
charges in each storage element is read out into an external storage device (e.g., a PC).

2.2 CMOS Image Sensor with On-Chip Memory [6]

In this sensor photons are captured by the photo-sensitive element, P, converted to
photoelectrons, further to voltage and stored in the storage element. The signal
reading-out process from P to on-chip memory takes less than 10 ns. Different from
the CCD image sensors no charge transfer from one storage element to the next
element occurs. The voltage signal for the first frame is kept in the storage element
1, for the second frame in the storage element 2 and further on (see Fig. 1b). The
number of the storage elements for each P corresponds to the number of frames.
When the storage element n is occupied, the signal stored in element 1 is over-
written by the next signal (n + 1). During the image capturing mode, the memory is
overwritten one by one in each frame. When a trigger signal is sent, the image
capture is stopped and the signals in each storage element are read out. A big
advantage of the CMOS sensor with on-chip memory compared with the CCD
sensor with on-chip memory is less heat dissipation, and subsequently, less energy
consumption: on the CMOS sensor only one storage element per P is driven at each
frame, while on the CCD sensor all storage elements are driven for transferring
electrons from one storage element to the next.
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2.3 Trigger

For high-speed image capturing, a trigger is important for taking images at the right
moment. Especially when the number of frames is limited such as in the case of
on-chip memory, an appropriate timing of the trigger is essential. As mentioned
above images are captured continuously, till a trigger signal arrives. When this
signal arrives, image capturing and overwriting processes are stopped. Afterward
the image signals of all storage elements are read out one by one. Usually a TTL
(Transistor-Transistor-Logic) signal from electronic, optical, acoustic or other
sensors is used as a trigger signal. It is practical to set a variable delay to stop the
image capturing process after an input of the TTL signal. It is also possible to set a
number of frames (m), during which images are still captured after the trigger signal
arrives. For example, if the image capturing is stopped immediately (m = 0), all
signals kept in the memory are those for the phenomena happening before the
trigger (pre-trigger mode: case (a) of Fig. 2). If the image capturing continues for n
frames (m = n) after the trigger, then images of n frames after the trigger are
recorded (post-trigger mode: case (b) of Fig. 2). The image capturing can be
stopped at any frame within n frames (case (c) of Fig. 2). Thus, the on-chip memory
has an additional advantage regarding such flexible trigger modes.

Fig. 1 a On-chip memory of a CCD image sensor, b on-chip memory of a CMOS image sensor.
P, photosensitive element; 1, 2, 3, …, n are memory storage elements; D, drain
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Fig. 2 Flexible trigger modes. a Pre-trigger mode, n images before the trigger are kept for
read-out, b post-trigger mode, n images after the trigger are kept for read-out, c intermediate-trigger
mode, m images before the trigger and (n-m) images after trigger are kept for read-out

3 Applications

3.1 Why Do We Need a High-Speed Camera?

• Temporal resolution

The human eye can detect changes of 10 Hz. This corresponds to a camera
which takes images every 0.1 s. If we like to see the light intensity changes of a
fluorescent lamp lighted by a power source with alternating current of 50 Hz, we
need a camera which works with a time interval shorter than 0.02 s, as long as the
lamp itself does not move. If the change of the light intensity is faster, then we need
a correspondingly faster camera: for instance, for observing light intensity changes
of 106 Hz, we need a camera which records images faster than every 1 μs.

• Spatio-temporal resolution

When an object is moving (relative to the camera), then we have to take a spatial
factor into consideration. In order to illustrate such a case, we often show a movie
of a fast train passing with 180 km/h a camera fixed on the platform. With a
conventional video camera you see a kind of band moving, whereby you maybe
detect segments of wagons. Here the question is: With which frequency do you
have to take images in order to see faces of passengers in this train?

In our example the train moves in one direction with 50 m/s (=180 km/h).
Human eyes with the temporal resolution limit of 10 Hz can observe objects in the
train larger than 5 m length along the train. If you have to detect an object of 1 cm
length (which is necessary for the recognition of human faces), a frequency 500
times larger (5000 Hz corresponding 0.2 ms) is required.
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• Microscopic observation

When a small particle is moving with a velocity of 0.01 m/s, you can observe
this movement with your own eyes, as far as the particle is large enough to be seen.
However, if the particle is so small that you have to magnify it with a microscope,
then the observation of even such a slow movement (0.01 m/s) is not any more so
obvious. Under a microscope an apparent velocity is magnified, depending on the
magnification factor. If the magnification factor is 100, the apparent velocity of the
moving object with 0.01 m/s is 1 m/s. Moreover, the field of view gets small, also
depending on the magnification.

3.2 Material Tests

One of the most familiar applications of high-speed cameras is material testing. It is
essential for new materials to test how stable (or weak) they are under various
stresses. A carbon-fiber-reinforced polymer (CFRP), for example, is known to be a
strong and light material and, therefore, is used often for airplanes or racing cars.
Since CFRP is brittle, fracture occurs instantaneously (for our eyes). A frame rate
faster than 100,000 frames/s is required for observing the destruction process. In the
experiment shown in Fig. 3, a piece of CFRP (l: 150 mm, w: 36 mm, d: 2.5 mm)
with a hole of 6 mm diameter at the center was tested. The CRFP piece was set in
the tensile testing machine (AG-X plus, Shimadzu Corp., Japan) and pulled with
100 kN and a speed of 5 mm/min. A front view (Fig. 3a) and a side view (Fig. 3b)
are documented synchronously with two cameras (HPV-X2, Shimadzu Corp.,
Japan) [7]. The direction of the strain is vertical. As shown in Fig. 3a the cleavage

Fig. 3 Fracture observed in the tensile test of a CFRP piece with a hole at the center. Synchronous
imaging of a front view and b side view. Camera speed: 200,000 frames/s, scale bar: 5 mm
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starts from the vicinity of the hole along the alignment of the surface layer of fibers
(at 45° to the strain direction). The detailed evolution of the cleavage pattern can be
seen in the subsequent time series. The side view (Fig. 3b) indicates additionally
how the fibers are raveling.

3.3 Cavitation

This is a typical example of high-speed imaging with a microscope. Zwaan et al.
studied single cavitation bubbles oscillating in a confined fluid environment [8].
A single bubble is generated in PDMS (polydimethylsiloxine)-based microsystems
by using a pulsed Nd-Yag laser (532 nm, 5 μJ, 6 ns pulse duration) in a
light-absorbing liquid. The bubble dynamics is recorded with 1 million frames/s
(HPV-1, Shimadzu Corp., Japan). The behavior of the flow can be visualized by
tracer particles of 2 µm diameter. Figure 4 shows the dynamics of a cavitation
bubble in various geometries of its environment. When there is no boundary close
to the bubble, the cavitation process is circular symmetric in both expansion and
shrinkage (Fig. 4a). If there is a pin in the neighborhood, then the circular sym-
metry is broken in the vicinity of the pin, and a jet is observed towards the pin
(Fig. 4b). When a bubble is created in a triangular or square boundary, the
shrinking bubble forms a three-leaf or four-leaf clover as shown in Fig. 4c and d.
Jet-like flows emerge from each corner. Another example is the case close to the
surface of a single wall (Fig. 4e). A very fast process of expansion (within 4 µs) is
followed by a slower collapsing process (∼10 µs), where a jet towards the wall is
observed. The velocity of the flow here reaches a maximum of 7.4 m/s. It is known
that screw propellers of ships are damaged by small bubbles which are formed on
the surface during fast rotating motion. The jet towards the surface of propellers
could be an explanation of these damages.

3.4 Shock Waves

Processes in transparent media with changing density can be visualized by several
methods, e.g., the Schlieren method, the shadow method and interferometry.
Figure 5 shows the dynamic behavior of shock waves exiting from an open-end
shock tube (inner diameter 20 mm) as a sequence of Mach-Zehnder interferograms,
taken with the HPV-1 [9]. The initial shock speed in the tube is 465 m/s. The shock
wave quickly attains a hemispherical shape (t = 40 μs) and continues to expand at a
velocity of 370 m/s, which is slightly higher than the sound velocity. When the
exiting shock diffracts around the corner of the shock tube, it induces a prominent
vortex ring. The influence of different exit geometries with various initial shock
speeds is under further investigation.
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Fig. 5 Shock waves exiting from an open-end shock tube, observed by a Mach-Zehnder
interferometer. Camera speed: 250,000 frames/s, scale bar: 20 mm

Fig. 4 Microbubble dynamics in various geometries of their environment. A bubble is created
a in a boundary-free environment, b close to a pin, c in a triangular wall, d in a square wall, e close
to a wall of a channel. The dashed arrows indicate the direction of the jet flows. Camera speed: 1
million frames/s, scale bar: 100 µm
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3.5 Glass Cracking

Crack formation in glass is a very fast process. Figure 6 shows the development of
cracks on a slide glass for microscopes, when a polystyrene ball of 6 mm diameter
collides with it at a velocity of 50 m/s, taken by 10 million frames/s with a high
speed camera (HPV-X, Shimadzu Corp., Japan) [10]. The length of a crack
(a selected crack of medium length) and the velocity of its development are plotted
against time in Fig. 7a and b, respectively. The graphs were drawn up to 7 µs,
because some cracks reach the edge of the slide glass at 7 µs. The average velocity
of the crack development is about 1100 m/s. The small minimum of the velocity
between 3 and 4 µs could be associated with the formation of dendrites. However, it
is necessary to analyze the data statistically for clarifying this point.

4 Towards the Future

Many applications of high-speed cameras, some of which are described in Sect. 3,
are in the field of physical changes of non-living objects. Recently, some people
challenge to visualize chemical reactions, biological processes and medical

Fig. 6 Observation of glass cracking. Dashed arrows point to the start of dendrite formation.
Camera speed: 10 million frames/s, scale bar: 5 mm
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treatments, although this is not so trivial. In order to observe chemical reactions one
should choose systems where any kind of optical change is involved. It is further
critical how to initiate the reaction in the observation field and how to trigger the
camera. Tsuji and Müller investigated an early stage of color change caused by a
droplet containing a pH indicator when impinging on alkaline solution [11].
High-speed observations of up to 16,000 frames/s reveal a finger formation at the
reaction front, suggesting an instability at the boundary. Le Gac et al. studied how
cancer cells are killed with a single cavitation bubble in a microfluidic system [12].
Here one should be careful not to kill the cells by other effects like strong illu-
mination or heat. One example for a medical application is dental root canal
cleaning through cavitation and microstreaming [13]. Here the cleaning efficiency
of needle irrigation, ultrasonic irrigation and laser-activated irrigation was studied
by using artificial glass root canal models. So far it has not yet been achieved to
observe such fast phenomena in a living body. It would be interesting to see, for
example, how kidney stones are destroyed by ultra sound.

Some of these difficulties could be overcome if techniques of high-speed
imaging were developed further, for example by increasing the number of frame
sequences, by increasing sensitivity or by triggering with a different concept (e.g.,
an image trigger—triggered by changes in the image itself).

Finally, we would like to compare the development of high-speed cameras with
the development of microscopes: the former is a tool to obtain better temporal
resolution, while the latter is a tool to obtain better spatial resolution.

Fig. 7 Length of one of the
cracks (a) and the velocity of
its development (b) plotted
versus time
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Since traditional optical microscopes can detect only objects larger than the
wavelength of visible light, people were not able to see most viruses, the size of
which is about 100 nm or less. Therefore, before the electron microscope was
invented, there was no way for people to verify the existence of viruses, even
though they knew something smaller than bacteria causing diseases had to exist.
Only after the invention of electron microscopes, they were able to observe them.
For the temporal resolution, the invention of high-speed cameras with a time res-
olution larger than 1 million frames/s corresponds to the invention of the electron
microscope. There would be many fast movements/phenomena/steps which we
have not observed yet. It is possible that we will be able to observe something that
we never knew exists. We are sure that high-speed cameras contribute to further
developments in science and technologies for human beings and the environment.

Acknowledgements We are grateful to Nobuyuki Tokuoka for checking of the technical details
on high-speed cameras. We thank Stefan C. Müller and Sho Tsuji for critical reading of the
manuscript.
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Performative Science—Transgressions from
Scientific to Artistic Practices and Reverse

Hans H. Diebner

Abstract Performative Science is a research practice that is inherently processual

and takes up a first person stance on epistemic things. It bears resemblance to phe-

nomenological, that is to say, artistic practices and is most notably characterised by

its reflective power. The current era of harsh reification of the meaning of Being in

the course of an ongoing cybernetisation demands for such a reflection. Performa-
tive Science is a veritable attempt to turn technology into a hermeneutic practice,

and if possible, even as part of an hermeneutics of facticity, that is to say, the inher-

ently temporal understanding of (human) Being. A few concrete applications are

introduced that partially have self-deconstructive features in order to emphasise the

radical openness of Performative Science, that is far from being a scientific method.

Rather, a method becomes emergent by tuning oneself into the epistemic thing.

1 Enacting the Performative

Performative Science started in 1999 as an embodied epistemology bridging prac-

tices from the arts and the sciences in order to come close to an enacting of a

performative dimension, i.e., to performativity, within scientific research [1]. Perfor-

mativity is here understood as opposed to semioticity, i.e., disjunct to any formally

signifying concept (the libretto, if you like), thus subject to a first-person-perspective

only. Initially, it shared many ideas with other fast-growing art and science move-

1
“Enframing” refers to Heidegger’s notion of “Gestell” with which he characterised the “truth-

obstructing” essence of technology.
2
Heidegger’s notion of “Machenschaft” refers to the scientific practice to conceive Being from

an inventory, computational or instrumental point of view.
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Fig. 1 Series of film stills showing the interaction of spectators with the reactive installation Liquid
Perceptron taken during the opera enactment Einstein on the Beach [6]

ments as, e.g., the so called artistic research [2, 3]. However, it gradually turned out

that the scientific partners within these hybrid practices tend to monopolize the arts,

which is in line with the conception of systems sciences (including synergetics) as a

unified discipline [4, 5]. Consequentially, Performative Science startet to cultivate a

critical discourse including a reflection of its own initial constitution.

In his historical and epistemological investigations, Andy Pickering felt compelled

to call the constructive approaches of complex systems sciences an “ontological the-

atre” [7, 8], thus putting them quasi equal to performative practices in the arts. Yet,

in such an equalisation the non-propositional aspects of the arts or, using Martin

Heidegger’s vocabulary, the fundamental ontological basis of the arts, is buried in

oblivion [9, 10]. Although Pickering claims that complexity theory escapes from

the process of enframing,
1

it rather perfects what Heidegger called machination.
2

Remarkably, soon after the introduction of cybernetics and the mathematical theory

of communication, Heidegger noticed that:

No prophecy is necessary to recognise that the sciences now establishing themselves will

soon be determined and steered by the new fundamental science which is called cybernetics.

This science corresponds to the determination of man as an acting social being. For it is the

theory of the steering of the possible planning and arrangement of human labour. Cyber-

netics transforms language into an exchange of news. The arts become regulated-regulating

instruments of information [10, p.14, in German].

Within the scope of Performative Science, several “ontological stagings” have

been designed and presented to the public in enactments (Figs. 1, 2) or in the context

of exhibitions (Fig. 3) [1, 11]. No doubt, such stagings caused reflections about sci-

entific results but also meta reflections about art and science including their hybridi-

sations, which all to often mock sciences and at the same time ridicule art [12].

After all, Performative Science is understood in a triadic way as (i) a critical

philosophy of science [5, 13, 14], (ii) a critical discourse of new media art includ-

ing the art and science movement [12, 15] and, (iii) an exploration of performative

modes of expression of scientific research [1]. From this perspective, the art and sci-

ence synergy is unlocked neither by a unification of art and science nor by building

a bridge, but rather by allowing for leaps from the enframing essence of the sciences

down into the abysmal arts and reverse.
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Fig. 2 Opera singer in front

of the reactive installation

Liquid Perceptron. Photo

taken during the enactment

of the opera Einstein on the
Beach [6]

Fig. 3 Spectator/user of

Eye Vision Bot as presented

in the ZKM|Media Museum,

Karlsruhe [37, 38]

2 Designing Freedom

The love-hate relationship between humanities and sciences has a long history [16].

Recently, the controversy reached an unprecedented peak with an extreme self-

referential flavour, that is to say, the discussion is guided more by a vociferous meta

dispute of whether or not art is equal to science, rather than by concrete realisations.

Prominent forums advocating the art and science community are “Leonardo” [17]

and the “Society for Artistic Research [. . . ] that nurtures, connects and disseminates

artistic research as specific practices of creating knowledge and insight” [3].

It is beyond the scope of this short essay to touch on all controversial aspects of

art and science. Having said this, it is worth mentioning for the needs of the present

critique that more and more trained scientists commit themselves to the arts which

can be seen from contributions in forums as, e.g., Leonardo [17] and SAR [3] or

by visiting relevant exhibitions (see [18] for an example). Surely, it is not the first

time that scientists felt that their methodological “corset became to tight”. Perhaps

Paul Feyerabend’s “anything goes” drawn from his “masterpiece” “Wissenschaft

als Kunst” is the most prominent historical example. However, it seems that the term

“straitjacket” is more appropriate to characterise the current uneasiness.

To give a short analysis of this situation with historical reference, we point to the

deeply normative, partially even moralistic nature of early general systems theory:
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Especially the gap between natural and social sciences, or, to use the more expressive Ger-

man terms, of Natur- und Geisteswissenschaften, is greatly diminished, not in the sense of

a reduction of the latter to biological conceptions but in the sense of structural similarities.

[… ] If, therefore, we would have a well-developed science of human society and a corre-

sponding technology, it would be the way out of the chaos and impending destruction of our

present world. This seems to be plausible and is, in fact, but a modern version of Plato’s

precept that only if the rulers are philosophers, humanity will be saved [19, p. 52, 87].

Such scientifically justified moral imperative expressed by one of its founders, Lud-

wig von Bertalanffy, has been leading motif behind the foundation of general sys-

tems theory. Brian Gaines, co-founders of the 1954 established Society for General

Systems Research, wrote in 1979 [20] that systems theory

[...] is also foundational in the extreme and hence philosophical but differs from philosophy

in that philosophers are not expected to make things work. [...] Systems theory is a form of

philosophical engineering. On these grounds I would certainly claim Plato’s Republic as an

outstanding example of early work on general systems theory as distinct from philosophy.

Now compare this with the blurb of Pickering’s book “The cybernetic brain”, where

he states that we need an “imaginative model of open-ended experimentation in stark

opposition to the modern urge to achieve domination over nature and each other”

[21]. All this lead to a temptation that became manifest in the media art community:

Art conceived as rescuer. Cybernetics conceived as art [22, 23]. Voilà!

In this context it is worth to recall that both art and cybernetics have been exploited

from the end of World War II on by the US government and the CIA to construct and

control a “better” society as an answer to the Bolshevist threat (cf. [12] for details).

The GDR cybernetician Georg Klaus presented cybernetics as a rigorous mathemat-

ical representation of Historical Materialism [24]. Cybernetics has also been used

in the Chilenian CyberSyn project to “design freedom” [25, 26]. CyberSyn can be

called a megalomaniac surveillance project meant to design an “invisible governing

hand” hard to beat for its hubris. The susceptibility for ideologisation is completely

comprehensible, for cybernetics can be instantiated in all kind of fields, including

social engineering [27]. A moral claim for systems theory/cybernetics in such a pre-

sumptuous way entails its reductio ad absurdum.

3 Emergency Brake

Some 15 years after CyberSyn, project leader Fernando Flores called for a halt of a

pure operational cybernetics that degrades humans to “nodding-through-machines.”

Together with Terry Winograd he suddenly advocated a hermeneutic perspective

and promoted Heidegger’s “Being-in-the-World” within systems theory in their

book “Understanding Computers and Cognition” [28], as if hermeneutics never were

the fundamental characteristic of systems theory [5, 13].
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3.1 Pharmakon

These days, a well-intentioned machine désirante (“desiring machine”, after

G. Deleuze), as most anticipating algorithms can be called, functions in an even more

obscure and subtle way best described by 𝜑�́�𝜌𝜇𝛼𝜅o𝜈 (pharmakon), a notion used

in critical theory [29]. A provocative piece by the eminent artist collective Uber-

morgen.com gives a pointed explanation. The video installation “Psych|OS” is an

entirely confusing recording made by one of the members of the net-actionist group,

Hans Bernhard, during his stay in a psychiatric hospital due to a psychosis result-

ing from troubles with the FBI—such is the narration—after provocative Internet

activities. The quarrel with “the net” constitutes a self-therapy for H. Bernhard:

Hans Bernhard’s neuronal networks are connected to the global network, and his mental

illness – the bipolar affective disorder that in March 2002 sent him to a mental hospital

– is the network’s illness. The video called Psych|OS (2005) sums up that experience, in

which those two levels – digital and real, bio & tech, nervous system and operative system

– merge. This nervous system, infected by the hi-tech, needs a treatment, and the hi-tech

society prescribes its remedies, bio-chemical ’agents’ which control the internal information

flow. [...] The “Psych|OS Generator” (2006) is the literal application of this kind of control:

a piece of software that asks the user about the symptoms of her disease and provides her

with a remedy, in the form of a ’forged original’ medical prescription [30].

I hypothesise that the true cause of such a “systemic disease” lies in a lapse of Being
(Seinsverfehlung) after Heidegger [9, 10].

Beyond the hyperbolic narrative by Ubermorgen.com, more and more critical

appraisals and serious attempts to get rid with an increasing reification are published,

in particular with reversions to hermeneutic (as opposed to algorithmic or machine-

learning-based) understanding [31–35]. At the same time, scientists acquire a taste

for artistic or performative approaches either within their own disciplines or com-

plementing their trained research skills (cf. [36] for an example).

The usage of anticipating machines is of course not immoral per se. However,

even in the area of information engineering, the “Midas touch problem” is frequently

discussed. This name comes from King Midas in Greek mythology who asked the

Gods to turn everything he touches into gold. The Gods’ fulfilment of his desire

turned his beloved daughter after a warm hug into a golden statue. Eventually he

died from starvation after turning all food into gold.

3.2 Eye Vision Bot

To relate this back to our own research, we developed a content-based image retrieval

interface called Eye Vision Bot (Fig. 3) that uses an eye-tracking device [38]. In the

beginning of the search, a collection of about 25 images randomly retrieved from a

database or the Internet are shown to the user. With the aid of the eye-tracking device,

the attention paid by a user to each image is measured via the gazing times that the

images receive. The gazing times are used to anticipate the searched-for category
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with the help of adaptive algorithms. The collection of images is then progressively

replaced. The search progresses by supplying more and more images that come out

of the desired category. In a certain sense, the artificial intelligent systems is able to

anticipate the user’s decisions and takes over the decision making process.

In developing Eye Vision Bot, we faced an antinomy within the concept. An effi-

cient adaptation to the most desired category keeps away from any future correction.

The converged category can never be disapproved, but only be confirmed through

gazing at images out of this desired category. Whether or not this is welcomed by the

users depends on their attitudes. However, this is my assessment, they often do not

really become aware that the bits are bite-sized tailored, such that they are delivered

to the persuasive power due to convenience.

Self-modifying features built into the algorithms are regarded as rescue but are

mere window dressing. What nowadays, with the help of complex systems theories,

comes under the euphemistic label of evidence-based knowledge management, most

likely belongs to the same category of tools that I prefer to call a “prejudice confirm-

ing machinery.” The deeper cause of the failure of “artificial intelligence” lies in the

categorical mistake to define rationality in an operational way (cf. [39]).

4 Liquid Perceptron

Liquid Perceptron simulates a neural network excitable by an external stimulus

taken from the live video of spectators moving in front of the video projection

(Figs. 1 and 2). The artificial neurons are arranged to a 400 × 300 array and con-

nected to their neighbours. The neuronal activity is colour coded, where bright areas

code for a high activity. In a specific setting, chosen to yield excitability as a result

of “playful” interactions, the network reacts such that if no evocative stimulus is

present, it reduces its activity to a small background noise, whereas an externally

applied stimulus via video signals excites spatially correlated neurons. The activity

of the excited neurons spreads over the network due to neuronal coupling and syn-

chronizes to a coherent dynamical pattern that encodes the stimulus in an abstract

representation.

4.1 Formal Representation

The (Turing) pattern forming features of Liquid Perceptron are well known in com-

plex systems research [40]. The model is used in different physiological contexts

as, e.g., calcium oscillations in biological cells [41]. Liquid Perceptron obeys the

following set of differential equations,
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ẋi,j = a + xi,jyi,j −
c1xi,j

c2+xi,j
+ Dx Diff

x
i,j + c ⋅ Videoi,j

ẏi,j = b − ẋi,jẏi,j + Dy Diff
y
i,j

,

with Videoi,j(t) = pixeli,j(t) − pixeli,j(t − 1) and a coupling constant c in the order

of 0.1. For the diffusion terms Diff
𝜉

i,j; 𝜉 ∈ {x, y}, zero-flux boundary conditions are

used. The parameters a, b, c1, c2,Dx and Dy are constants. A working set of parame-

ter values is given by: a = 0.056, b = 0.12, c1 = 0.5, c2 = 0.1, Dx = 0.1, Dy = 0.03.

The difference of two subsequent video frames, Videoi,j(t) = pixeli,j(t) − pixeli,j(t −
1), is used to excite the neurons. Thus, only motion in the external world leads to a

stimulation of the network.

4.2 Performative Dimension

The stimulation through the live video leads to the emergence of coherent dynamical

spiral patterns. If decoupled from the stimulus, the network relaxes to an equilibrium

state of low amplitude random oscillations. Variations of parameter values yield an

enormous variability of the qualitative behaviour of the network, the transient time,

for example, which is related to “echo effects” of the “virtual reality”. Thus, Liquid

Perceptron supplies an experiential environment for a hermeneutic understanding of

this complex dynamical system.

Although Liquid Perceptron is far from capturing most of the characteristics of a

real brain, the interaction of the spectators with the model simulation yielded valu-

able insight in perceptional procecesses. Human brains seem to have a tendency to

strive for synchronization. In this regard, two productions of Philip Glass’ and Bob

Wilson’s “Einstein on Beach” directed by Berthold Schneider in 2001 and 2005,

respectively, allowed for valuable observations [6]. The spectators move in front of

the projection and try to synchronize the motion of patterns, their own movement,

and the musical rhythm (Fig. 1). In this sense, the brain is a synergetic system that fol-

lows eigen-dynamics according to Hermann Haken’s so called “enslaving principle”

[42]. However, in my view, human Beings (potentially) have the freedom to choose

the “order parameters” such that the notion of “enslaving” sounds harsh within this

context and certainly serves only as a rough sketch. A performative phenomenolog-

ical approach can contribute to a deeper understanding, such is the expectation.

The essential point is that the model of the epistemic thing is performatively

explored and interpreted from a first-person-perspective. Since the epistemic thing

here coincides with a basic experience of Dasein (the functioning of the brain), the

formal/semiotical articulation of this experience helps to understand it in the sense

of a hermeneutics of facticity if fed back to the spectators. Thus, Liquid Perceptron
also shares characteristics with biofeedback, however, beyond mere conditioning

of behaviouristic modi. An apriori method how to interact with Liquid Perceptron
does not exist, rather the methodology itself is emergent. The “field study” during

the enactments yielded most valuable performative scientific experiences. Remains
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to be mentioned that the success of these events is due to a consistent general curating

and choreography, including other positions from the arts.

5 At the End: Preliminarity and Openness

Performative Science is a phenomenological practice, designs systemic images [43]

and sound [44], and has thus proximity to the arts. Phenomenology, thus Performa-
tive Science, can remain faithful to itself only under the self-conception of its open-

ness and preliminarity. Performative Science is, therefore, determined by its radical

self-critical essence that becomes manifest by its readiness to continually scrutinise

and revise its own results (e.g., Eye Vision Bot). Moreover, Performative Science
cannot be characterised by the utilization of a specific method. Rather, the method

becomes emergent by tuning oneself in to the epistemic thing. It is up to the spectator

to relate this back to a scientific context. Having said that, the spectator, seen from

the perspective of Performative Science, is considered more as co-researcher than as

recipient. The largest benefit, for sure, is derived by the bricoleurs themselves.
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Dynamics and Synchronisation
in Wind Farms

Mehrnaz Anvari, M. Reza Rahimi Tabar, Joachim Peinke
and Matthias Wächter

Abstract Renewable energy sources such as wind power and photovoltaics shall

account for about 20% of the total energy consumption by 2020 and 60% by 2050

in the European Union. These renewable resources which are spatiotemporally sto-

chastic in nature, can influence the stability of the power grids. Therefore, a detailed

modelling and understanding of their statistical behaviour is necessary to achieve an

optimal design and operation of future power grids. Here, we present results on the

complex statistics of wind power in general and the local phase synchronisation of

turbines in a wind farm.

1 Short-Time Stochastic Characteristics of Wind Power

A wind turbine converts wind velocity fluctuations into power fluctuations. Appar-

ently the conversion dynamics take place at short time scale of seconds for wind

power [1–3]. The wind speed and power output of the single wind turbine have a

similar spectral (and correlation) behaviour at low frequencies f < 0.1 Hz, and obey

the 5/3 Kolmogorov-law of turbulence i.e. S(f ) ∼ f −5∕3, as shown in Fig. 1. Due to the

finiteness of the reaction time of wind turbines, the fast wind fluctuations are partly

filtered out [2], while slower wind fluctuations are adiabatically converted into power

output fluctuations. We should note that for a wind farm consisting of many turbines,

because of the geographical averaging, the reduction of the high frequencies by these

averaging effect is stronger for the cumulative wind power than for the wind power
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Fig. 1 Power spectra of wind velocity and wind power in log-log scale. The Kolmogorov exponent

5/3 is represented by dashed lines. In the inset, the log-log plot of the compensated energy spectra

f 5∕3S(f ) versus frequency f are plotted. Here, we use the data of Ref. [1]

of a single turbine (see reference [4]). Thus the power output of a wind farm shows

weaker high frequency fluctuations than a single turbine.

To understand the observation of the exponent 5/3 in wind power, we point out

that wind velocity has the well-known Kolmogorov type of power spectrum, i.e.

S(f ) ∼ f −5∕3, similar to idealized turbulence. Here, Su(f ) = |u(f )|2 and u(f ) is the

Fourier transform of the wind velocity time series. Although, the wind power P(t)
is proportional to u(t)3 [5], we find that the characteristic power of −5/3 does not

change significantly for the power spectrum of the corresponding wind power data.

This finding was verified by investigating the power spectra of u(t)3, which shows

(a)

(b)

Fig. 2 a The spatial position of wind turbines. b Probability distribution functions (PDF), P(X
𝜏
),

of wind power increments for time lags 𝜏 = 1 and 10 s, in linear-log scale. The PDFs have been

vertically shifted for better clarity and a Gaussian PDF with unit variance is plotted for comparison.

Clear deviation from a Gaussian PDF is observed for both the single wind turbine and the wind farm;

after [1]
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the same power law exponent for frequencies 0.001 < f < 0.05Hz, of course with

different amplitudes, see also [2].

Techniques such as spectral and correlation analysis can uncover only linear struc-

tures and correlations of a given time series. To investigate the nature of the wind

power fluctuations and their temporal correlations in more details, we consider the

statistics of increments [6] for fixed time lags 𝜏, i.e. X
𝜏
= X(t + 𝜏) − X(t), where

X(t) denotes here the wind power. By considering the complete increment probabil-

ity distribution functions (PDFs) we are able to capture also higher order two-point

correlations.

Here, we present results of wind power data sampled with 1Hz. These data are

from a wind farm in North Germany consisting of 12 turbines. Further details about

the data sets are given in reference [1]. Figure 2a shows the spatial arrangement of

these wind turbines. The increment PDFs P(X
𝜏
) of power output for one exemplarily

chosen wind turbine and the wind farm for the time lags 𝜏 = 1 and 10 s are shown

in Fig. 2b. The PDFs are normalised to their standard deviations 𝜎
𝜏
. Note that the

standard deviation values of the PDFs for different 𝜏-values are given by the power

spectrum. Here we are interested in shapes of PDFs P(X
𝜏
). As it is clear from Fig. 2b

the normalised increment PDFs depart largely from the Gaussian distribution and

they possess exponential-like fat tails, which extend to extreme values like 20𝜎
𝜏=1s

and more. Such shapes of PDFs are a second remarkable feature of idealised turbu-

lence (cf. [7]), which is called intermittency effect. Most interestingly this effect is

present in the power output of a single turbine as well as in that of the whole wind

farm.

2 Local Phase Synchronisation in Wind Farms

As Fig. 2b depicts, not only the power output of the single wind turbine deviates

largely from the normal distribution but this non-Gaussian behaviour remains also

for the aggregated power of the wind farm. Therefore the central limit theorem, pre-

dicting a convergence to Gaussianity for independent data sets with defined stan-

dard deviation, does not apply. As a consequence, there should exist interdependency

between the wind turbines, on what we will focus in the following.

To characterize the interaction between turbines, first we use the cross-correlation

method. As an example, Fig. 3 presents the cross-correlation between the power out-

put of turbine 1 and 9 during about 1 h. It is clearly seen in Fig. 3 that the value of the

cross-correlation between the turbines changes randomly over time. Taking the aver-

age, no significant interdependency between turbines can be detected via the linear

cross-correlation method.

A more advanced approach is therefore needed in order to capture the interde-

pendency between turbines. To figure out the time-dependent interaction in the wind

farm, here we adopt the phase synchronisation method which is based on the phase

locking parameter. The phase locking parameter |𝜙n,m| for the power outputs of each

pair of wind turbines is calculated as
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Fig. 3 The

cross-correlation,

⟨P1(t)P9(t)⟩, between the

power output of the turbine 1

and 9 in time. The plot

shows the value of the

cross-correlation during

about 1 h

|𝜙n,m(t)| = |n𝜙i(t) − m𝜙j(t)| < const., (1)

where n and m are integer numbers (for simplicity we choose n = m = 1), 𝜙i,j is the

phase of the power outputs for turbines i and j.𝜙n,m is the respective phase difference.

According to the general definition of the phase locking parameter, Eq. (1), |𝜙n,m| is

bounded. Strictly speaking, the phase difference between two synchronised turbines

is not necessarily constant and |𝜙n,m| should just remain bounded [8]. Therefore, we

put here the same value for the phase locking parameter when it is in a narrow range

of the specific phase values.

In order to access synchronisation effects we need to define the phase for our data

set properly. Here we use the ideal power curve of each wind turbine, obtained by an

averaging procedure after IEC 61400-12-1 [9]. According to Fig. 4, we can divide

the power curve to three different parts. The black curve (i.e., the ideal power curve)

has two constant value regions, respectively I and III, at the beginning and the end

of the diagram. Here, we focus on the middle part of the diagram (i.e. region II) in

which the power is proportional to the third power of the wind velocity. In reality,

the wind power fluctuates dynamically around the ideal power curve as illustrated by

the red curve in Fig. 4. We can now define the consecutive times tn and tn+1 when the

power output, or in the other words, the red line crosses the power curve. For details

about the dynamics of the power curve, see reference [1], supplemental material.

In this way, the power curve can be considered as an attractor of the wind turbine

[10]. To finally derive the instantaneous phases of our time series we use the marked

events method [8]

𝜙i(t) = 𝜋

t − tn
tn+1 − tn

+ 𝜋n, tn ≤ t < tn+1. (2)
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Fig. 4 The black curve shows the power curve according to the International Electrotechnical

Commission’s industry standard IEC 61400-12-1, which is known as the standard power character-

istics of a wind turbine. The red line illustrates the short-time dynamics of the wind power around

the IEC power curve

3 Results and Conclusion

As an example for phase relations between turbines, the phase locking parameter

|𝜙n,m| of the turbines 1 and 9 is shown in Fig. 5 for about 1 h. As it is visible in the

figure, these two turbines are synchronised as the phase difference |𝜙1(t) − 𝜙9(t)| has

different constant values, each lasting for about 7 min, or is drifting slowly as it can

be seen particularly well between 1500 and 3000 s. In contrast, from 3000 to 4000 s

the phase difference is highly fluctuating, which means that these two turbines are

operating independently.

These results demonstrate that the phase synchronisation approach enables us to

quantify the interdependency between the wind turbines. Our analyses show that

synchronisation changes in time and location. This means that there are pairs of

turbines which are interdependent in specific time intervals.

In this context it remains an interesting question how this synchronisation effects

the central limit theorem and how this is related to the intermittent behaviour of the

cumulative power output of wind farms. For applications these results may pave the

Fig. 5 The phase locking

parameter |𝜙n,m| of turbines

1 and 9 for about 1 h. As it is

visible from the plot, these

turbines are synchronized for

approximately 30 min where

the phase difference does not

change in a fast way
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way for an optimal design of wind farms in the future which suppresses extreme

fluctuations in the aggregated power output. Such fluctuations are known to be a

possible cause of instability in power grids with an increased share of wind energy.
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1 Introduction

Thermodynamics and its recent new sister discipline, cryodynamics, can be both
put on the same deterministic “Newtonian” footing. Hereby the familiar close-range
repulsion between the atoms in a gas is formally replaced by a long-range
“anti-Newtonian” repulsion so as to thereby facilitate comparison. This “smoothing
trick” has surprisingly little impact on the main qualitative behavior [1]. The
resulting new mutually anti-symmetric “double reality” is summarized in the fol-
lowing in a tabular format. A third “combined case” is also included with a view to
its technological promise. A general, somewhat philosophical discussion is added.

2 Part I. Thermodynamics

FIRST LAW of deterministic statistical thermodynamics
This law is trivial in classical mechanics:

(1) Energy conservation dH
dt = 0, with H the classical Hamiltonian function

� �

The Hamiltonian may either be integrable or (in the general case) non-integrable.
For the case of a many-particle system at equilibrium, the conservation law of
Eq. (1) has an especially intuitive implication:

(1a) Ergodicity
literally “work-path involvement.” The term was coined by Boltzmann [2] to
describe the fact that the whole phase space is being re-visited arbitrarily closely but
not identically everywhere infinitely often across unlimited time (this is one pos-
sible interpretation). Ergodicity was demonstrated for deterministic systems for the
first time, under the assumption of hard-sphere repulsion, by Yakov Sinai in 1963
[3, 4]. His chaos-theoretic result could later be generalized, both towards soft
repulsion [1] and towards far-from-equilibrium conditions [1] (and towards soft
attraction, see Part II). In the soft case, so-called Kolmogorov-Arnold-Moser
(KAM) tori are automatically included in the phase space [5]. The presence of the
latter formally destroys perfect ergodicity but actually has a virtually negligible
influence under multi-particle hyperbolic interaction—a fact which does not possess
the rank of a theorem, however.

SECOND LAW of deterministic statistical thermodynamics

This law concerns the existence of an attractive (asymptotically stable) equilibrium
in the case of gases. This equilibrium was, after its hypothetical generalization
towards the whole universe, called “heat death” by Clausius [6]. That dismal fate is
being approached in a statistically progressive maximization of phase space vol-
ume, cf. [7, 8]. The same tendency in phase space holds true already for very low
particle numbers [9, 10]. The second law is sometimes also called the “first arrow”
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of nature. It implies the fact that no perpetual motion machine of the second kind is
possible in nature. It can be described best by focusing on a global observable, the
so-called entropy (“inwards-growing”), a term coined by Clausius in 1865 [6] as an
onomatopoetic sister term to energy. For the entropy S of a closed system, the
following law holds true:

(2) Positive entropy production dS
dt ≥ 0

� �
Under deterministic conditions, cf. [8, 11], the entropy is equal to the logarithm of
phase space volume apart from a scaling factor. A spontaneous increase of disorder
in forward time is implicit in Eq. (2). Note that the necessarily positive overall
entropy production does not exclude the opposite behavior from occurring in a
sub-region of state space or a subsystem, enabling biogenesis.
FIRST SUB-LAW to the second law of deterministic statistical thermodynamics

This sub-law concerns the spontaneous generation of a so-called flow-equilibrium
(“Fliessgleichgewicht,” von Bertalanffy [12]) which is a point attractor. More
generally speaking, “dissipative structures” are being formed [13]. This class
includes a progressive chemical evolution [14–16] under realistic natural condi-
tions. In the following, the restrictions that are brought-in by assuming soft
(anti-Newtonian) repulsion in place of the usual hard-sphere repulsion between the
molecules in a gas and a fluid will be neglected in order to allow for a maximally
broad overall picture. The dissipative structures which form in nature are sub-cases
to a so-called “second arrow” that is implicit in the first arrow of the second law of
thermodynamics itself [17]. The second arrow is sometimes called “complexifica-
tion” following Teilhard [17]. Note that the second arrow forms a sub-arrow of a
seemingly inverted, “anti-dissipative” orientation within the first arrow of Clausius.
The second arrow implies as its most spectacular special case the biogenetic arrow.
The latter applies as soon as very many chemical compounds [14] are eligible to
being formed (or many nuclear-reactions are likewise enabled on the surface of a
neutron star, cf. [18]). Darwin first saw this deductively predictable origin of life as
necessarily occurring “in a warm little pond” [19]. Teilhard’s parallel law of
complexification at the same time represents the first complex attractor of history
[17]: in the form of his famous

(2a) Point Omega
The deterministic arrow which tends towards a greater and greater and ever more
subtle state of order, is as we saw only possible by virtue of the fact that an even
larger disorder is simultaneously generated in the “complement” of the dissipative
structure in question. It is hereby presupposed that the overall entropy of the whole
system can be defined, a question which appears to be new. The entropy no doubt
assumes the form of a complicated functional which has never been looked at in
mathematical detail. Similarly, the term “complement” appears to be new in the
present context. The idea is that the deterministic phase space volume of Eq. (2) is
increasing overall, thereby overcompensating the local decrease in subsystems and
sub-pockets. “Life feeds on negative entropy” was Erwin Schrödinger’s original
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phrase [20]. One sees that it all is less trivial than generally assumed but well worth
looking at in thermodynamic terms.

SECOND SUB-LAW to the second law of deterministic statistical
thermodynamics

This sub-law is not usually considered in a far-from-equilibrium context since it
only deals with equilibria. The present sub-law depends on the temperature and the
volume as the two decisive parameters, but also on the specific atomic and
molecular properties and potentials of the involved particles [21]. It comprises the
existence of pressure- and temperature-dependent equilibria which, taken together,
can be comprised in a so-called

(2b) Phase diagram or p-V diagram, etc. (cf. also [22] for an example in
nuclear chemistry)
The inner energy of the gas is (apart from any remaining potential energies) the
kinetic energy of the involved particles including rotational energies.

THIRD LAW of deterministic statistical thermodynamics

This full law, introduced by Walter Nernst [23], concerns the existence of an
absolute zero of temperature. It later was complemented by special low-temperature
quantum effects which lack a deterministic analog [24–26] and the Bose-Einstein
effect [27] and still later, the quantum-Hall effect [28, 29].

(3) Absolute zero, with superfluidity, superconductivity, supercondensation,
etc.
which effects have a zero entropy increase each, a property that is essentially
retained when they occur at substantially higher-than-zero temperatures. Note that
the Cooper pairs in superconductivity have a doubled electric charge and quantum
number owing to “grid vibrations” in quantum field theory. But these quantum
details exceed the scope of the present survey. The same holds true for the effects of
a quantum-based non-deterministic formalism that postulates a negative absolute
temperature in excess of any possible positive temperature which nevertheless is
then transformable into such [30].

In conclusion of this section, all of the above qualitative facts are well known,
even though beautiful open questions remain. Many different ways of looking at the
three laws exist. The latter were presented here mostly as a “backdrop” in order to
put into a clearer perspective the recently discovered sister discipline to thermo-
dynamics that is to be described next.

3 Part II: Cryodynamics

FIRST LAW of deterministic statistical cryodynamics

This law applies when the potentials which apply between the individual particles
are, not short-range repulsive or even long-range repulsive (as suggested above for
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the sake of comparison), but rather long-range attractive. Such “Newtonian gases”
form a new object of discourse even though they could in principle have been
considered by Newton himself already. The present law is formally identical to the
first law of deterministic statistical thermodynamics (Eq. (1) in Part I above):

(1′) Energy conservation dH
dt = 0, with H the classical Hamiltonian function

� �

just as this held true before in an anti-Newtonian gas. The conserved energy can
again assume quite differing forms. Once more, we at equilibrium necessarily have
the presence of KAM tori in phase space occupying again only a small (“effectively
negligible”) subvolume of the phase space of the many-particle system in question.
But it actually makes little sense to speak of “ergodicity” applying here, for these
formally existing states occur here by definition only in the negative direction of
time. Due to their being intrinsically unstable they are predictably unphysical.

SECOND LAW of deterministic statistical cryodynamics

This law concerns the existence-in-principle of an unstable equilibrium (an
anti-attractor or synonymously repellor) which can be named “Point Alpha.” It is
characterized by a progressive (for once not increase but) decrease of overall phase
space volume in the forward direction of time. In other words, this is just the
opposite of what happens in deterministic thermodynamics as it was considered
above. Therefore, we now have for the phase space volume—or rather its logarithm
called entropy—the following law:

(2′) Negative entropy production dS
dt ≤ 0

� �
, with S the entropy of a closed

system
This law comes as a real surprise: It describes a spontaneously progressive increase of
order in positive time. That is, a positive ectropy production occurs if “ectropy” is
defined as minus S. Therefore, the existence of a repellor, an unstable “Point Alpha”
is formally implicit, named in analogy to Teilhard’s first attractor, his Point Omega.

FIRST SUB-LAW to second law of deterministic statistical cryodynamics
This law (2′a) is identical to a full-fledged law, the Fourth Law of “negative-time
Super-Life” described below as Eq. (4′).

SECOND SUB-LAW to second law of deterministic statistical cryodynamics

This sub-law—much like the analogous second sub-law (2b) of deterministic sta-
tistical thermodynamics above—describes equilibrium states that are dependent on
the temperature and pressure and density as well as on the specific physical
properties of the particles involved. However, these states cannot become manifest
empirically by virtue of the repulsive character of the equilibria in question. Nev-
ertheless it makes sense to define here a

(2′b) negative-time phase diagram (being asymptotic in negative time)
This diagram has only a formal character since the equilibria described in it apply in
negative time. It has never been investigated and presently it is not clear whether or
not it possesses physical significance.
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THIRD SUB-LAW to second law of deterministic statistical cryodynamics

This sub-law possesses for once no analog in thermodynamics. It concerns the
existence of a family of multi-particle chaotic dynamical regimes which show a
certain resemblance to attractors in dissipative systems. For lack of a better term,
they can be called pseudo-attractors:

(2′c) Pseudo-attractors of multi-particle systems in astronomy
They apply in celestial mechanics and include:

1. globular clusters of stars (cf. Chandrasekhar [31])
2. spiral galaxy structures
3. elliptical galaxy structures
4. “black” or synonymously “low-surface brightness” galaxies (see [32] for more

details about the latter)

The formation of these pseudo-attractors is strongly influenced by the principle of
“energetic capitalism” of Sonnleitner [9], see also [33]. Sonnleitner found that under a
condition ofmutual long-range attraction, a “disproportioning of the kinetic energies” of
the involved particles takes place in an inversion of what applies under repulsive
Newtonian (as well as the usual close-range repulsive) conditions. An anti-equilibration
in which the low-in-kinetic energy particles are “preyed upon” by the high-in-kinetic
energy particles was found [9]. After a while, for some reason this anti-entropic feature
of systems of mutually attractive particles comes to a standstill and even gives rise to a
visible attractor—in the form of galaxies. The latter are a stage in the development of a
self-contracting gas cloud. The qualitative dynamics of this very slow process is still
ill-understood. There exist billions of specimens before our eyes which all belong into
but a few classes. They were, by the way, first named galaxies by a physicist named
Immanuel Kant in 1755 (in his “Universal Natural History and Theory of the Heavens,”
p. 367) who soon after became a famous philosopher. Note that general-relativistic
effects play only a minor role in galaxy formation apart from the formation of black
holes, including the ultra-heavy ones found located at the galactic centers. Although
black-hole theory is still underdeveloped (there appear to exist no finished black holes in
finite outer time as a consequence of c-global), the Birkhoff theorem makes sure that
something very compact resides inside the invisible attractive region. These heavy
residents at the galactic cores by the way are bound to be the products of a very long
accretion history.

FOURTH SUB-LAW (non-chaotic) to the second law of deterministic statistical
cryodynamics

This sub-law concerns the existence of special virial theorems valid under non-
hyperbolic and non-chaotic conditions. It comprises:

(2′d) Kepler ellipses and Mercury-orbit-like Einstein rosettes and long-term
stable planetary systems
Note for curiosity’s sake that such rosettes occur under many different perturbations of
the exactly quadratic Newtonian force law, apart from the familiar general-relativistic
one.

396 O.E. Rossler et al.



THIRD LAW of deterministic statistical cryodynamics

This third law—like its analog in deterministic thermodynamics, Eq. (3) of Part I—
comprises low-temperature quantum effects that are valid here under attractive
rather than repulsive conditions:

(3′) Absolute zero, with Nernst-type collective quantum phenomena
They predictably show a zero-entropy change again. These predicted equilibrium
effects represent an unfamiliar class. A direct physical implementation appears
rather unlikely at present.

FOURTH LAW of deterministic statistical cryodynamics

This fourth law possesses no analog in thermodynamics for once, as mentioned.
Rather than representing only a second-order phenomenon, as chemical and bio-
logical evolution do in thermodynamics (whose dissipative structures do represent
only a second-order phenomenon “riding on the back” of the dissipative first-order
arrow of Clausius as we saw), the present law represents a first-order main arrow
—albeit one that is valid in negative time. Hence this arrow represents a full-fledged
repellor in positive time. As such, this repellor is identical to the Point Alpha of the
second law of deterministic statistical cryodynamics, Eq. (2′). The implied
“anti-evolution”—as it can be called—is likely to become a main topic in cryo-
dynamics eventually, but at the present moment in time it is only vaguely per-
ceptible. An interesting open question hereby is: Will a sophisticated subsystem in
this class perceive macroscopic time as flowing in the other direction? The present
dynamical attractor is only fictitious due to its instability in the forward direction of
time. Thus, it is only virtual for us—much like a virtual image. Nevertheless the
dynamical routes leading towards it in negative time do represent a very powerful
evolution (albeit in negative time). The underlying anti-attractor might play a
ubiquitous role in the cosmos but its features are totally opaque at present. Nev-
ertheless the new negative-time attractor can already be given a name:

(4′) “Negative-time Super Life”
The proud name is perhaps premature since the properties of this necessarily
existing repellor have yet to be unraveled in detail. Owing to the surreptitious
numerical instability of Sonnleitner [9] which affects all cryodynamical computer
simulations rendering them invalid in detail, it is very hard to say at present how to
tackle this negative-time origin problem empirically, that is, numerically. It cannot
even be ruled out at present that some cleverly chosen inaccurate numerical sim-
ulations will prove useful in coming closer to a solution of this conundrum. The
cosmos’ own time’s arrow thus may or may not be listening to a baton of its own.

FIFTH LAW of deterministic statistical cryodynamics

This fifth law not only is without an analog in thermodynamics but at the same time
is maximally counter-intuitive
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(5′) Paradoxical Acceleration
suffered by a very tiny particle very rich in kinetic energy, in a cluster of very tiny
particles

This law is the natural counterpart to the fact that an energy-poor lighter particle
is getting braked by many heavier particles under an attractive interaction (like the
photons passing through a gas of galaxies seen by Zwicky in 1929 and indepen-
dently by Fröhlich in 2003). The present “mirror prediction” is as counterintuitive
as the paradoxical braking of Sonnleitner’s. It appears to be new.

Ordinarily, the collisions suffered in a gas by a fast heavier particle passing
through are non-conducive to acceleration. But if a highly energetic gravitating
particle is both markedly heavier and ultra-small, it predictably is bound to undergo
an acceleration while traversing a homogeneous gas of much lighter equally small
particles. So, for example, in the interior of a planet or a star or even in a maximally
dense white-dwarf. This is because the material objects in question are on the finest
scale made up from almost point-like particles (electrons and quarks). If for this
reason, collisions are sufficiently rare, then the fast heavy mini particle should—
under the influence of Newtonian attraction—suffer an acceleration due to the
Sonnleitner principle of energetic capitalism. This prediction follows in a
straightforward manner—just as the previously described braking effect was valid for
energy-poor particles. A possible counterargument is that the present effect, while
necessarily true at “ordinary” velocities much lower than the speed of light c, might
cease to apply under relativistic conditions. This objection is probably unfounded
though because the interaction between photons and randomly moving galaxies
shows that classical cryodynamics remains valid under relativistic velocities.

Why is paradoxical acceleration, if it indeed exists, of applied interest? The
reason is black-hole theory, of all things. Since micro black holes are necessarily
uncharged (as follows from Birkhoff’s theorem which is not very well known),
they do, if very fast, pass right through massive celestial bodies getting accelerated
rather than braked and hence are doing no harm. Hence the onslaught of cosmic ray
particles on surface protons of celestial bodies may suffice to produce micro black
holes. This is because charged “point particles” like electrons cannot be effectively
point-shaped in reality since they would then have to be black holes and hence be
uncharged. Therefore, some analog to string theory is bound to be valid empirically.
The cosmic-ray borne ultrafast micro black holes (if they exist) will thus leave the
earth and other celestial bodies (up to the ultra-dense white dwarf stars) unscathed
owing to paradoxical acceleration. The still denser neutron stars are protected by a
different mechanism, their superfluidity. Unlike the natural fast micro black holes if
they exist, however, any artificial slowmicro black holes are not innocuous, however.

Now an accident of history wills that ultraslow micro black holes are currently
being attempted to be produced on earth. They cannot “Hawking evaporate” as
is traditionally believed because a black hole is never finished in finite outer time
since nothing including light can ever reach their horizon or come up from it in
finite outer time. (Hence their already 19 years old new name “almost black
holes.”)
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The upshot is that the present new phenomenon of paradoxical acceleration
which protects celestial bodies from being eaten inside out by micro black holes
provided they exist is inapplicable to slow micro black holes. This is the situation
presently valid on earth. If the experiment is successful in producing at first
undetectable uncharged micro black holes on earth, this means that an ultra-slow
specimen getting stuck inside earth can gravitationally interact in a non-hyperbolic
fashion with a charged micro particle (quark or electron) passed by very close. Such
an encounter leads to an “eating event.” The on-going interaction (before the final
“gulp”) then increases the attraction exerted by the momentarily interlocked and
hence charged pair on a neighboring charged particle of the opposite polarity by
some 30 orders of magnitude. Even a very short “eating time” cannot undo the
attendant giant boost in attractive power of the micro black hole. Therefore, an
artificial micro black hole inside earth is bound to grow. After an initial phase of
linear growth, the growth predictably becomes exponential.

This fact is titillating because the learned official safety report of the mentioned
terrestrial experiment, called LSAG [34], goes un-updated for 9 years. The new
implication of cryodynamics just shown—that ultra-slow micro black holes are
“non-harmless”—will predictably enforce an update of the LSAG soon1. This very
indirect side effect of cryodynamics was perhaps worth mentioning here, too.

4 Some Remarks Leading Over to Part III

Cryodynamics exists as a natural sister discipline to thermodynamics for symmetry
reasons, as we have seen. Many of its features are still a terra incognita. Does
cryodynamics possess an importance that is comparable to that of thermodynamics?
In light of the many surprises which the study of thermodynamics has brought over
two centuries, an equally rich “bonanza” can be expected to arise in the further
development of cryodynamics. As we saw, the defining difference between cryo-
dynamics and thermodynamics lies in the sign change of the deterministic
inter-particle potentials in charge.

The fact that in thermodynamics, the inter-particle potentials are actually
short-range repulsive rather than long-range repulsive has surprisingly little influ-
ence on the broader comparative picture. On going-over from repulsion to attrac-
tion, all equilibrium-oriented notions from deterministic thermodynamics lose much
of their relevance because the deterministic equilibria are now unstable by defini-
tion and hence unobservable. The most directly rewarding sub-task of cryody-
namics, perhaps, consists in its explaining galaxy formation as a kind of attractor in
forward-time. This task is severely hampered though through the numerical insta-
bility governing gravitationally interacting particles, demonstrated by Sonnleitner
[9, 33]. Most of the multi-particle numerical galactic simulations performed up until

1Equation (5) was triggered by a discussion with Tom Kerwick.
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now are automatically put into question as mentioned. Cryodynamics also covers
the interactions in a gas that is made up from many galaxies and clusters. And it
also governs as mentioned the interaction between the many galaxies on the one
hand and the fast-moving cosmic-ray particles and photons on the other. Hereby,
relativistic complications automatically arise but they seem not to affect the qual-
itative features outlined.

In the following, we now turn to a third, once more down-to-earth case: the
combined discipline of thermo-cryodynamics as it can be called. Like cryody-
namics proper it is a classical subject that previously had gone unnoticed for rea-
sons that are hard to explain in retrospect.

5 Part III: Combined “Thermo-Cryodynamics”
or Equivalently “Dilute-Hot-Plasma Particle Dynamics”

FIRST LAW of deterministic statistical Thermo-Cryodynamics

This law concerns the likely non-existence of a globally stable equilibrium in
compound systems made up from both mutually repulsive and mutually attractive
particles. This situation was historically speaking first looked at by Lev Landau in
his proposal to bring into contact two compartments that each contain particles of
one of the two types [35]. Next came Donald Lynden-Bell in 1960 [36] (see [37] for
details). The more complex “fully mixed” situation is still in a fledgling state
today [36, 38]. It nevertheless does allow for some cautious predictions already.
The potentially most important one concerns the predictable existence of “partial
temperatures” in a hot plasma—not only far from equilibrium where this goes
without saying but potentially also at equilibrium proper in case such exists:

(1″) Two-temperature equilibrium (predicted)
Either particle class (electrons; ions) may thus possess a different temperature—at
equilibrium. Hereby the electrons should be much “hotter” in general [39]. This
prediction comes as a surprise in view of the well-known uniqueness of the ther-
modynamic equilibrium, the “heat death” of Clausius. While pressure is known to
be capable of forming partial pressures at the same temperature and volume in a
thermodynamic gas at equilibrium, the prediction of “partial temperatures” existing
at equilibrium goes against the grain of the venerable field of high-temperature
many-particle physics. And it of course flies in the face of common sense, too.
Compare again ref. [38] for some empirical results that may or may not prove
compatible with the present conjecture. If the latter is true, the first law of
cryo-thermodynamics, Eq. (1″) above, necessarily possesses a corollary:

(1a″) Bistability of temperature (including the formation of hysteresis
phenomena)
A consequence of this corollary is a second corollary that is even more foreign: An
autonomous “dynamical switching process” of periodic or chaotic type should
predictably occur between the two “sub-equilibria” at some parameter values:
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(1b″) A non-point attractor at equilibrium (that may even become chaotic)
This hypothetical new attractor applies under “well-stirred” conditions at equilib-
rium already. Spatial structure formation would then make the situation almost
arbitrarily complicated even at equilibrium. A similar complexity is so far only
known from the relaxation processes in glass-like solids and spin glasses, cf. [39].
Note moreover that so far, no quantum effects were assumed to be involved. It is
important to state once more that the whole First Law of Cryo-Thermodynamics,
Eq. (1″), is hypothetical at present. In any new terrain one easily is led astray—as
may have occurred here. Fortunately though, experiments in the footsteps of
Landau and Lynden-Bell—but of a non-compartmentalized, “mixed” kind—can be
conducted in hot-plasma reactors so as to either falsify or confirm Eq. (1″) above.

SECOND LAW of deterministic statistical Thermo-Cryodynamics

The two-temperature equilibriumTwo-temperature equilibrium of the first law of
hot-plasma dynamics—Eq. (1″)—is (if it indeed exists) maximally sensitive to an
exogenous change of total energy or volume. Hereby, one special case predictably
presents a technologically implementable situation:

Experiment: “Concentric multidirectional injection of fast electrons into a hot
plasma”

In this way, a momentarily monopolar gas with a higher temperature and density
is generated locally. This artificial “spot” can be used in principle to paradoxically
cool down the local equilibrium temperature of the ions, if the latter have become
too hot locally in a two-temperature hot plasma for it to remain stable and not touch
the wall. Because the two temperatures in the plasma possess a fixed ratio at
equilibrium (or quasi-equilibrium, respectively) with the electrons being much
hotter in accordance with suggestive observations [38], it is predictably possible to
exogenously change the electron temperature by active intervention—in order to
thereby paradoxically cool-down the local ion temperature in the hot plasma. If so,
it is in principle possible also to—by the concentric injection of electrons of higher
density with a carefully chosen energy (temperature)—force down the temperature
of the “too hot ions” in a developing localized plasma instability that is about to
form a tongue that by licking the wall finishes the fusion process. This
“non-hydrodynamic” reaction-kinetic effect offers itself for active intervention. This
proposal is the prediction of “interventional cooling” to be possible regarding a too
hot region in a plasma that is about to get out of control in a continuous Tokamak
reactor like the STELLARATOR called the “Wendelstein 7-x” in Greifswald at the
Max Planck Institute for Plasma Physics. The latter is the famous continuous-fusion
reactor expected to start test operation in the autumn of 2017 [40].

The predicted effect can be achieved interactively by the local generation,
through concentric injection from six directions, of a somewhat hotter local partial
equilibrium at enlarged density of the lighter particle class (the electrons), as
mentioned. This injection method predictably allows one to “interactively cool” the
local temperature of the too hot ions, in the case of a local hydrodynamic instability
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in the plasma going out of control. This new option possesses no analog in the
purely PDE-based processes of the so far prevailing plasma reactor models. The
new proposal presupposes that the partial pressures and partial temperatures of the
two interacting gaseous components are capable of a double-temperature
quasi-equilibrium locally. The underlying novel phase diagram has yet to be
described. The here proposed new method can be called:

(2″) Adaptively controlled continuous hot-plasma fusion (ACCHPF)
This technological proposal of a “gas-theoretic cooling” represents an approach
very different from the traditional approach to an MHD, formulated entirely in
terms of local flows and currents in a fluid-dynamical and electromagnetic scenario
governed by PDEs. The latter does not lend itself to a point-specific active inter-
vention. The two approaches, the traditional continuous one and the present
particles-based localized one, are both legitimate. But whereas the manipulation of
local flows and currents is virtually impossible, the dirigible concentric injection
method (dci) is in principle implementable by using several injection ports for
dirigible electron beams [41]. The 6-beam method of Steve Chu, used by him and
his coworkers in an entirely different context [42], offers itself for the purpose. The
proposed new option is based on the existence of local two-temperature equilibria
or quasi-equilibria in hot plasmas. The proposal made can be tested best by “doing
in reality” rather than by simulation. This is because in molecular-dynamics sim-
ulations, an “inversion of the macroscopic time’s arrow” is notorious for intruding
surreptitiously as mentioned [9, 33].

Up until now, the high-energy industry did not signal interest in cryodynamics.
Trying the new science out empirically is arguably the fastest way to reach the new
technological goal of interactivefusion-reactor-control (ifrc) with its vast eco-
nomic promise.

THIRD LAW of deterministic statistical Thermo-Cryodynamics

The term “law” is not fully appropriate here because nothing but a technological
proposal is at stake. Nonetheless the term “law” was chosen to acknowledge the
existence of an alternative technological option to the above-described road towards
unlimited “free energy” in the everyday sense of the word. The main technological
competitor to the adaptively controlled continuous hot-plasma fusion (acchpf)
considered above is the intermittent alternative. The latter consists in the repetitive
creation-from-scratch of a hot-fusion plasma (“McGuire reactor” [43]):

(3″) Repetitively installed discontinuous hot-plasma fusion (RIDHPF)
The difference between the second law of thermo-cryodynamics offered above,
Eq. (2″), and the present third law of thermo-cryodynamics, Eq. (3″), reminds one
of the familiar difference between the continuous Stirling motor and the
discontinuous-explosion type Otto motor in automobile design. In this old tech-
nological realm, the intermittent method (Otto’s) gained the upper hand up until
now. At the present moment in time, it again is hard to predict which of the two
alternative options for running plasma fusion engines will win out on a long-term
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basis: the continuous or the intermittent one (ACCHPF or RIDHPF). However, one
thing can already be said for sure: The new fundamental field of cryodynamics is of
a high applied interest.

6 Discussion

I
The above tabular presentation of the field of deterministic statistical

multi-particle systems founded by Sinai [4] represents a new approach to the
qualitative behavior of multi-degree-of-freedom Hamiltonian systems, classical and
eventually also quantum. In this regard, the present approach belongs into the
footsteps of Paul Dirac who always insisted on “Hamiltonicity” having to be
observed also in quantum mechanics (cf. [44]). At the same time, the three-tiered
Table offered above takes up the grand tradition of mid-19th-century deterministic
billiard ball theory [45] that would later be called “chaos theory.” This theory
possesses an even older connection to the past by reviving van Helmont’s first gas
theory: the word “gas” stems etymologically from the Greek word “chaos” [46].

Gas theory was for almost two centuries dominated by the assumption that
maximally short-range repulsive potentials hold true in between the involved par-
ticles. This went so far that the repulsion could often be formally neglected alto-
gether without change of the statistical equations. This statistical approach to the
theory of heat remained the royal route for more than a century—right up to the
deterministic statistical physics founded by Sinai [3, 4]. The new chaos-theoretic
method had to struggle to obtain a niche of its own in the field. The fact that the
deterministic approach is strong enough to also cover far-from-equilibrium situa-
tions was only discovered in recent years (Fröhlich, Sonnleitner). It then turned out
that a “smoothing-out” of the maximally short-range (“hard”) repulsive potentials
of the billiard particles of a Sinai gas, into “long-range” 1/r repulsive potentials of
inverted Newtonian type, constitutes an admissible option [1] (cf. [47] for a first
pertinent simulation). The smoothing proves to be admissible without loss of the
main qualitative implications of the new deterministic statistical thermodynamics.
Gas theory in this way can be re-defined under smooth-repulsive deterministic
conditions in the footsteps of the famous KAM theory [5]. (The first author once
enjoyed a long encouraging telephone conversation with Jürgen Moser, the “M” of
KAM, in mid-1976.) This long-budding development became “fully transparent”
only with the “plane-tree alley paradigm,” as the generalized (both smoothened and
far-from equilibrium) Sinai theory was called [1].

The smoothened repulsive-Newtonian subcase is a direct generalization and
outgrowth of Sinai’s founding hard-sphere repulsion-based chaos theory. It formed
the subject matter of Part I above (with chemical constraints and quantum speci-
fications etc. yet to be added). To this smoothened deterministic case, then sur-
prisingly a twin case arose—valid under mirror-inverted potentials. The latter
situation had for intrinsic reasons been impossible to spot in the traditional
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“hard-core” approach towards thermodynamics: namely the attractive-Newtonian
case. Its previous nonexistence is nevertheless surprising in retrospect. It formed the
subject matter of Part II. The new physical science termed “cryodynamics” [1]
exists in close parallel to the venerable science of thermodynamics (krýos ice is the
twin to thermós hot). The new field forms a “second empire” within Sinai’s
deterministic-chaos based statistical physics.

In this manner, a “parallelization” was achieved between the almost
two-centuries-old theory of microscopic Hamiltonian thermodynamics (see [48] for
its groping earliest origin) on the one hand, and the brand new theory of Hamil-
tonian cryodynamics [1], on the other. Finally, Part III dealt in a preliminary fashion
with a combination of the two fundamental fields sketched before.

The two parallel anti-Newtonian and Newtonian programs described above
could have been initiated more than a century ago—or even three centuries ago by
New- ton himself (although the Cartesian billiard theory [48] was only in its earliest
infancy at the time). To date, the Newtonian multi-particle theory paradoxically is
still in its early infancy. A solid foundation is provided by the theory of deter-
ministic chaos in phase space, originally invented by Henry Poincaré in the late
19th century [49].

II
A first successful numerical simulation of the new surprise tendency towards

anti-equilibration valid in the attractive case is due to Klaus Sonnleitner [9] who
remained maximally skeptical himself during his long numerical-mathematical
voyage. He therefore placed the greatest emphasis on the controls—which fact only
made the discovery possible in the end. He achieved the counterintuitive new
finding of anti-dissipation while applying his especially transparent and hence
accurate fourth-order symplectic simulation method [9] to a formally three-particle
but dynamically two-particle system, in a two-dimensional but formally
one-dimensional configuration: the T-tube, with a frictionless particle put into either
leg [9] (cf. [33]). The immovable third particle (the massless frictionless T-tube
itself) was assumed to be held fixed in space by rigid connection to a distant very
large mass.

The heavier particle with its mostly larger kinetic energy was placed into the
vertical leg of the T-tube, and the light-weight, mostly less energetic, fast particle
was placed into the horizontal leg. The Newtonian (or anti-Newtonian, respec-
tively) potential acted across the two-dimensional space in which the T-tube is
embedded. All possible mutual relations (as to which particle has more energy
initially) were numerically checked with both polarities of the potential (repulsive
or attractive, respectively), in two carefully juxtaposed parts (see pp. 99–100 of
Sonnleitner’s dissertation [9] for a transparent tabular synopsis in the otherwise
German text). The not-so-surprising “dissipative” results found in the repulsive case
got collected just as painstakingly as the surprisingly emerging “anti-dissipative”
results found in the attractive case.

An analytical description of essentially the same 2-D two-particle situation was
offered by Ramis Movassagh [50], cf. also [51]. Almost all of the big theorems and
sub-theorems which are implicit in the new paradigm of a “Newtonian gas” [1]
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do wait to be formulated-out in detail on the way towards becoming standard
textbook stuff.

The next step planned in the simulation program was to make the heavier
vertical particle arbitrarily heavy in a step-wise fashion while leaving its local
motion and the effect it locally exerts on the light-weight horizontal particle,
unchanged. Eventually, the heavy vertical particle will then act as a mere periodic
forcing on the light-weight horizontal particle. If (as can be expected but needs to
be verified) the qualitative behavior remains unchanged under this progressive
simplification, the resulting final system will be nothing else but a periodically
forced Hamiltonian oscillator of the kind first conceptualized by Poincaré, in which
the “homoclinic point” and hence chaos was first discovered [49]. The surprise
prediction is that essentially the “same” Poincaré map explains, both a temporally
directed dissipative behavior arising from virgin initial conditions in either direction
of time in this Hamiltonian system, and a temporally directed anti-dissipative
behavior, arising from virgin initial conditions in either direction of time, in this
“same” Hamiltonian system following a sign flip in the potential. The very possi-
bility of the latter effect existing had escaped discovery over both the 19th and the
20th century.

If the stepwise simplification works as predicted, a simple “flat” 2-D Poincaré
map of two predictably related but at present totally unknown shapes will be found
numerically. This 2-D map will then both causally and intuitively, explain either
type of qualitative macroscopic behavior in nature—the “Boltzmann” case and the
new “anti-Boltzmann” one—in basically the “same” system: namely, in the oldest
and simplest chaotic oscillator of history. Boltzmann and Poincaré would then be
reconciled at last. The late Sonnnleitner planned to compute this enigmatic “twin”
Poincaré cross section in further numerical work. A simplified idealized pair of
maps producing the same behaviors can predictably be written down afterwards: to
enable the first “real” (that is, qualitative) understanding of the two “miracles” of
statistical physics, one called the “time’s arrow” and the other awaiting a fitting
name (“anti-arrow”?). This simple but not yet existing area-preserving
2-dimensional diffeomorphism with two different mutually nontrivially related
but still unknown shapes can—as the oldest playground of chaos theory that it
represents—be given a name already as the “double-faced Sonnleitner map.” All of
this presupposes that the above reasoning did not go astray at some point.

III
So far, the discussion dealt exclusively with the two pure cases—either pure

repulsion or pure attraction. The combined theory was touched upon in Part III.
This third Part is even farther away from having reached a canonical form. It comes
as a surprise that dilute-plasma theory suddenly acquires a fundamental role of its
own in science—besides and apart from the traditional formal treatment in terms of
idealized smoothened partial differential equations (PDEs) valid approximately
under less dilute conditions.

With the here assumed “celestial-mechanics-like” more dilute conditions, the
present approach led in Part III to the unexpected (possibly premature) prediction of
a two-temperature equilibrium existing in nature. Namely, in hot plasmas when
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“static interactions” prevail over “Maxwellian interactions.” New phenomena that
had been overlooked both theoretically and observationally come into focus if no
mistake was made. Nature can look amazingly foreign under the influence of the
Poincaréan angle of vision later called chaos theory. As it is well known, Poincaré
also conjured-up topology. Whether or not hot-plasma fusion reactors can become a
reality much sooner than currently hoped-for, under the new dilute-plasma para-
digm is an open question of some applied interest.

We have here a down-to-earth application of cryodynamics that offers the pro-
spect of unlimited “free energy” in the everyday sense of the word. This promise
renders the new science of cryodynamics an irresistible topic for an energy-thirsty
planet. The work-in-progress of Part III needs to be taken with a grain of salt
regarding its mathematical rigor. Nevertheless the economic consequences of the
new “molecular-dynamical dilute-hot plasma theory” (mddhp) have the potential to
render the discipline of cryodynamics attractive for applied departments across the
world. Never before was an economic bonanza lying closer to one’s door steps it
appears—provided thermo-cryodynamics keeps its promise. The 6-tiered concentric
injection method for electrons was discussed in Part III.

IV
Following this “hardest” (in the sense of technological promise) implication of

cryodynamics, we now turn to its “softest”: its impact on the only non-experimental
since purely observational science—astronomy. Celestial mechanics comes into
focus again. Sonnleitner’s numerical instability implies in the first place that
galactic simulations must be taken with a big grain of salt when based on deter-
ministic equations.

The ten billion visible galaxies of but a few morphological types point jointly to
the existence of an underlying shape-forming dynamical quasi-attractor (in several
versions) in these many-particle Newtonian systems. The empirical spiral shape of
galaxies is quite hard to understand apart from the fact that the involved large
angular momentum follows in a straightforward fashion from the random asym-
metry of the originally present gas cloud (before the latter slowly contracted while
also forming local pockets of faster contraction). Binney and Tremaine’s learned
book [37] gives an excellent survey of many of the current views and open
problems. Now Sonnleitner’s numerical instability surprisingly stands in the way of
a full numerical understanding of galaxy formation.

The bigger structures—clusters and superclusters—are even harder to under-
stand than galaxy formation itself, and so is the fractal structure of the universe at
large with its “voids” (first discovered in 1907 by Fournier d’Albe [52] quoted by
Mandelbrot2 [53]). The empirically measured fractal dimensionality of the universe
is not much larger than unity [54]. And of course, there is much more mass present
everywhere than is optically visible. This is Zwicky’s original “dark matter” as he
called it in a German-language paper in 1933 in which he proved the existence of
the latter with the aid of the virial theorem. This burnt-out, previously non-dark

2Fournier is quoted 14 times.

406 O.E. Rossler et al.



matter is still partly visible on infrared photographs in which ordinary-looking
galaxies often appear much larger than their optical counterparts—in conformity
with their flat rotation curves first discovered by Rubin [55]. Moreover, there exist
seemingly quite small galaxies with “too massive” central structures including a
giant black hole—whose outer parts would be worth looking for on deep-infrared
photographs. And there even exist fully “low surface brightness galaxies” (formerly
called “black galaxies”) which look extremely old in the same perspective with
even their centers included. The current interpretation, however, is that they must be
“very young” [32].

At the farthest distances in the cosmos, we have Riccardo Giacconi’s
equi-distributed ultra-faint X-ray point sources with but a few photons arriving per
day [56]. Their redshift will be very hard to measure in future decades. Thus, one
sees that celestial mechanics is still replete with beautiful open empirical, con-
ceptual and numerical problems. These empirical questions are totally neutral
regarding a larger overarching picture.

However, in the wake of celestial mechanics, we come via astronomy also in
touch with cosmology. Cryodynamics possesses direct relevancy for cosmology.
This is because a gas of mutually attractive moving particles exists empirically in
the sky with the myriad (more than two hundred billion) of visible galaxies. And
this “gas” happens to be perfused by a very much larger myriad of ultra-fast tiny
particles and photons traversing it.

The Sonnleitner effect of “paradoxical cooling” (jokingly called “energetic
capitalism” by him because the rich-in-kinetic-energy are preying on the
poor-in-kinetic-energy) allows for a specific prediction to be made here: The
energy-poor fast gravitating particles—photons and cosmic rays—traversing the
cosmos are bound to lose energy to the energy-rich slow gravitating particles—the
galaxies. The same possibility was first raised on intuitive grounds by Fritz Zwicky
in 1929 [57] as a competing alternative to Lemaître’s expansion postulate for
a postulated primordial “cosmic atom.” The latter “Big Bang” hypothesis as it came
to be called later is a world-famous postulate compatible with (but in no way
enforced by) general relativity. This commonly accepted Friedmann-Lemaître
postulate now suddenly gives way to a postulate-free first-principles alternative: the
comprehensive theory of Newtonian gases called cryodynamics, described in
Part II. When applied to the cosmos, cryodynamics directly entails the cosmological
redshift phenomenon as an unavoidable qualitative implication.

Cryodynamics thus re-opens the redshift problem in cosmology because it
directly implies the existence of a distance-dependent redshift as a first-order effect.
So much for a qualitative argument. Quantitatively speaking, however, the exact
“percentage question” remains totally open in cryodynamics: How much redshift is
Newton based and how much redshift is expansion-based? is a question that
remains totally open. This limitation follows from the mentioned impossibility to
perform even qualitatively correct numerical multi-particle Newtonian simulations.
As is well known historically speaking, a formal error made by Zwicky in his
mentioned founding paper of 1929 [57], pointed out to him by Eddington in a
private letter immediately made public by Zwicky in his next publication the same

A Primer for Deterministic Thermodynamics and Cryodynamics 407



year, was destined to make his qualitative insight a laughingstock amongst his
colleagues—under the catchy name “tired light theory.” A similar fate could now
await the claim that the Hubble law along with its famous wiggle at the end follows
from cryodynamics in a 100% fashion. Actually, nothing but an unknown per-
centage value follows up until now from cryodynamics. The modern Big-Bang
Cosmology thus only needs to be replaced by a slower-growing, larger and older
cosmos of otherwise the same qualitative structure as currently assumed.

This is because as we saw, a quantitative calculation based on cryodynamics that
would reproduce the Hubble line along with the famous “wiggle” at the end of its
best-studied first portion, is out of the question due to the new instability discovered
in the field of numerical mathematics. Cryodynamics therefore only causes an
unknown quantitative modification of the by now for 89 years accepted
Friedmann-Lemaître cosmology. In this way, everything has only become “more
messy” so to speak—or so it appears.

Strange enough, however, there exists an entirely independent proof to the effect
that the expansionist model is fully ruled out. This unlikely historical coincidence is
perhaps worth mentioning here as an insert to “round off” the connection between
cryodynamics and cosmology.

Insert: A re-evaluation of the famous “equivalence principle” of Einstein of
1907 reveals a new “fourth” implication. While the final conclusion reached by
Einstein remains perfectly true (that light progressing horizontally downstairs
appears slowed when watched from upstairs), the reason for this fact lies in a
previously unaddressed fact: The observable slow-down of a light ray hugging the
horizontal floor of Einstein’s constantly accelerating rocketship when watched from
above reflects, not a proportional relative reduction in c as assumed up until now
but rather a proportional increase in size valid downstairs because the slowed speed
of light visible from above is due to a local slant of the horizontally progressing
light ray, valid relative to above at every point. If this is true, the speed of light c in
the vacuum remains a global constant of nature, just as the “younger Einstein” up to
the age of 32 had assumed [58] (so it is not just an everywhere locally valid
constant, as is commonly assumed). When this retrieved global constancy of c is
added to cosmology as a new piece of information, only a “zero” cosmic expansion
remains possible because any residual velocity of expansion would imply a
superluminal mutual recession speed to exist between two sufficiently distant
points. This means that, if “c-global” is accepted as a “sister result” to cryody-
namics, the latter science has become as important for our understanding of the
world as thermodynamics has been for the better part of two centuries already.

Zwicky’s ridiculed conjecture, proven true by Sonnleitner and Movassagh,
revives the insight that the empirical Hubble line is caused by the gravitational
interaction between light and matter—that is, by cryodynamics. A derived empir-
ical prediction then states that in the direction of very large cosmic voids, especially
with several voids aligned in a row, the slope of the Hubble line must be markedly
reduced. This prediction is specific enough to warrant an empirical investigation.
The eventual direction-specific “Hubble surface” (rather than mere Hubble line)
will predictably become famous.
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If Zwicky will thus be rehabilitated not only qualitatively but also quantitatively,
his name belongs into the great historical tradition of the lonely maverick scientist
who singlehandedly takes on the whole scientific establishment and wins out.
Edwin Hubble, the discoverer of the Hubble line and before it of the existence of
galaxies including the Milky Way galaxy (conjectured by the young Immanuel
Kant as mentioned) did forego a doubly deserved Nobel Prize for the sympathy he
showed towards Zwicky’s ridiculous claim. Three centuries before, cosmologist
Giordano Bruno still would get burnt at the stakes for picturing an infinite cosmos
in the footsteps of Saint Augustine and Heraclitus. Next in line came the first
modern chemist, Antoine Lavoisier, who got executed for reasons that may have
had to do with his discovery of oxygen which dethroned the ruling heat substance
(phlogiston) theory (historical quote: “La république n’a pas besoin de savants”—
The republic can do without scientists! [59, 60]). Next in line came Ignaz Sem-
melweis, the European discoverer and first practitioner of asepsis in the first half of
the 19th century, who got driven into suicide for his not being allowed to save the
lives of thousands of mothers in childbed [60]. A few decades later, Georg Cantor’s
transfinite mathematics would owe its existence to the fact that routine drugging
had not yet entered psychiatric wards so he could write his best texts there. The
20th-century’s Fritz Zwicky was, although widely ridiculed, permitted to continue
working at CalTech to make further major discoveries like baryonic dark matter
and neutron stars. In the wake of cryodynamics and c-global, Zwicky’s dark matter
would remain the only kind of dark matter existing in a non-expanding cosmos. If
so, the famous “cold dark matter” introduced in an ad hoc fashion in the late 1990’s
to explain the wiggle in the Hubble line, becomes the modern “phlogiston.” But so
of course only unless the new cc-based (cryodynamics, c-global) cosmology proves
to be a mirage. A concerted attempt at falsifying c-global (since cryodynamics
appears invincible already) is important to confirm the new synthesis.

But cosmology has a second major leg in support of the Big-Bang model: the
famous “cosmic microwave background radiation” CMB. In the absence of
expansion, this leg now instead reflects the “mean cosmic black-body temperature”
valid in our galactic neighborhood. The latter radiation was anticipated by subse-
quent Nobel Prize winner Edouard Guillaume in 1896 already, see [61]. Only its
giant intensity and smoothness, found in the late 20th century, remained unpre-
dictable up to the cc-based cosmology just discussed. Yet however titillating this
may appear after the 90-years reign of the expansionist cosmology, a big drop of
water remains present in the wine: Unless cryodynamics becomes the huge com-
mercial success expectable on our energy-thirsty planet, the retrieved Zwicky-type
cosmology has no chance to win recognition for another 9 decades. This is because
a global consensus built-up over the better part of a century represents much too
tightly interwoven a fabric in the carpet of science to be given up without a
spectacular—in the present case financial—bonus waiting.

V
Following the most popular pastime on the planet—sky-watching –, the field of

numerics forms the second big sector of science on which Sonnleitner’s numerical
result wreaks havoc. Virtually all multi-particle “galactic” and “cosmological”
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numerical multi-particle simulations are rendered invalid by the previously unrec-
ognized tendency of such numerical simulations to surreptitiously switch-over to
the other macroscopic direction of time for numerical reasons. Increasing the
accuracy-per-step at the expense of simulation time is to no avail: A transition from
a maximally rare trajectory towards a neighboring frequent-in-type trajectory occurs
in the manner first conceived by Boltzmann [2], but with the add-on that the new
trajectory belongs even to the other direction of macroscopic time. Deterministic
galactic-dynamics simulations therefore need to be taken with a large grain of salt.

With the advent of cryodynamics, the chaos community with its mostly young
enthusiasts scattered all over the globe is offered a new identity of its own. The
chaos-and-fractals movement of the third part of the 20th century with its revived
deterministic classical thinking can be expected to get a big boost in the footsteps of
Newton, Waterston, Boltzmann, Zwicky and Sinai

VI
The third major application of cryodynamics—for once not in the sky but down

on earth—is non-polarizing for once because plasma theory is a venerable field.
The above-included preliminary Part III offers the unheard-of prediction of
two-temperature equilibria with a fixed temperature ratio existing in a hot plasma.
This predicted fundamental phenomenon is even more counterintuitive than a
recycling eternal cosmos is (metabállon anapaúetai—metabolizing it rests—was
Heraclitus’ phrase by the way). Part III’s promise of unlimited “free energy” in the
everyday sense of the word endows cryodynamics with a special appeal on an
energy-thirsty planet. The work-in-progress of Part III involves several merely
conjectural results so far. The economic bonanza promised by deterministic dilute
hot-plasma theory (DDHPT) makes the discipline of cryodynamics attractive to
applied departments across the world. The economic bonanza in case
thermo-cryodynamics keeps its promise calls for a critical evaluation by the sci-
entific community soon. An attempt at a direct technological implementation may
be the fastest method of evaluation.

VII
Finally, a big disclaimer: The above-presented three-tiered Table based on

deterministic chaos theory still contains its giant gaps and no doubt also errors. But
it at the same time marks the beginning of a more unified physics. The latter will
bring a better understanding of macroscopic time whose intrinsic arrow now no
longer stands alone. Even a better understanding of the place of human beings in
the cosmos, as envisioned by Scheler [62], may arise in the once more infinitely
extended picture of our external reality [63–64].

To conclude, the rare case of a new science eager to find its place in physics was
sketched in a preliminary, tabular form. We hope that the endeavor was not too
premature. Critical help from the part of the chaos community is solicited.
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