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Pre-processing of Remotely Sensed Imagery

Peter Bunting

Abstract  A common obstacle to the use of remote sensing data for nature conser-
vation is the difficulty in obtaining or generating data that are pre-processed to a 
standard that gives confidence in their subsequent use. Such processing is essential 
in order to facilitate physical measurement (e.g., of temperature, surface reflectance, 
height) and compare data (e.g., reflectance or radar backscatter) acquired for differ-
ent dates or areas. For optical and radar data, this pre-processing includes orthorec-
tification, calibration, atmospheric and topographic correction and, in the case of 
LiDAR, ground return classification and surface height retrieval. This chapter 
therefore provides an overview of the common pre-processing steps that are under-
taken or needed in order to create what has been recently termed an analysis ready 
data (ARD) product. Increasingly, such products are being provided routinely to 
minimize the effort of data users but knowledge of how this is achieved is important 
in determining the integrity and understanding the use of the data. The information 
provided should help users to identify, select and use data with confidence or to 
perform their own processing of the raw data.

Keywords  Earth observation • Optical • Radar • Lidar • Preprocessing • Atmosphere 
• Topography • Geometric correction

�Introduction

Pre-processing of all remotely sensed imagery, whether airborne or spaceborne, first 
involves a geometric correction, with this ensuring accurate spatial location of data-
sets on the Earth’s surface (Lillesand et al. 2004). Standardization to a scientific unit 
is then undertaken such that the data are comparable to that acquired from the same 
or different sensors (Analysis Ready Data; ARD), with this including calibration of 
optical data to radiometric units and atmospheric correction to units of reflectance, 
transformation of Synthetic Aperture Radar (SAR) data to backscatter and other 
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units or classification of LiDAR ground returns to surface elevation (Table 1). The 
generation of ARD is often performed by the data providers, reseller or consultant 
specialists with knowledge of the algorithms and procedures but where in-house 
expertise and software are available, costs can be reduced. The following sections 
discuss each of these products and pre-processing routines with specific guidance 
on the selection of data request specifications and implications of pre-processing 
decisions.

�Geometric Correction of Airborne and Spaceborne Data

In many instances, particularly for modern spaceborne and airborne LiDAR acqui-
sitions, high-quality geometric correction is provided by the data provider (Shan 
and Toth 2009). However, there are several considerations when undertaking or 
contracting geometric correction of data.

For airborne datasets, the quality of the geometric correction is defined by the 
accuracy of the 3-dimensional (3-D) position and orientation of the aircraft during 
the acquisition (Schlapfer and Richter 2002). An inertial motion unit (IMU) and 
differential Global Positioning System (dGPS) measure the position and orientation 
of the aircraft and it is the frequency and accuracy of these measurements that need 
to be considered when commissioning airborne data acquisitions. For satellite data-
sets, the location of the satellite and the parameters of the acquisition are key and 

Table 1  Standard processing levels and products that could be requested

Sensor Type Typical Pre-processing Derived products

Optical Spaceborne multispectral Surface reflectance using 
a modeled atmosphere.

–

Airborne multispectral Surface reflectance using 
ground targets and/or 
ground reflectance 
targets.

–

Airborne Hyperspectral Surface reflectance using 
ground targets and/or 
ground reflectance 
targets.

–

UAV multispectral Surface reflectance using 
ground reference targets

Stereo-derived Digital 
Surface Model (DSM).

LiDAR Airborne (small footprint) Ground returns classified 
and return height above 
surface defined

Digital Terrain Model 
(DTM), Digital Surface 
Model (DSM) and 
Canopy Height Model 
(CHM).

SAR Spaceborne/airborne Normalised radar cross 
section (σ0), commonly 
displayed in decibels 
(dB).

–
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should be provided with the image data by the data provider in a standard format 
(format is commonly customised to each data provider) for ingestion to the appro-
priate processing software (e.g., Schwind et al. 2009).

Once the location of the instrument (whether aircraft or satellite) has been 
defined and recorded, a model of the acquisition is defined in software. LiDAR 
directly measures the 3-D component of the environment but for optical (e.g., multi-
spectral and hyperspectral) and SAR, a Digital Elevation Model (DEM) is required 
to perform an orthorectification. Orthorectification removes the geometric distor-
tion from the image acquisition (i.e., being captured from a single point) such that 
there is a common viewpoint or datum plane (Fig. 1; Lillesand et al. 2004). However, 
at extreme viewing angles, full correction may not be possible because of regions of 
missing data (i.e., shadowing) while the resolution of the DEM used for the correc-
tion needs to be appropriate for the scale of features within the scene. For example, 
where an orthorectification is being performed on imagery where individual iso-
lated trees or buildings are visible, then the DEM needs to have a 3D representation 
of these features for the imagery to be fully orthorectified. Where a suitably high-
resolution DEM has not been used and the viewing geometry differed between 

Datum Plane

Orthographic View Perspective View

Fig. 1  Orthorectification corrects the geometry of the image with respect to the datum 
plane
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scenes, pixel misalignments between images might be expected for these small 3D 
features (e.g., trees, buildings, etc.).

While recent imagery acquired from larger manned platforms has demonstrated 
a high degree of geometric quality, with standard and robust geometric correction 
routines developed, correction of data from the newer Unmanned Aerial Vehicles 
(UAVs or drone) platforms needs greater consideration and care. Specifically, 
because of the weight requirements of the UAV platforms, lighter and lower quality 
IMU and GPS units are fitted and therefore accuracy is lowered. Additionally, as the 
acquisition process involves a large number of images, with each covering small 
areas, an image matching process is required to create a single mosaicked image. 
The overlapping regions of these images can also be used to build a high-resolution 
DEM for the area, which can be subsequently utilised for the orthorectification of 
the image mosaic (Jhan et al. 2016). It is recommended that ground control points 
(GCPs) are acquired for ground targets unless differential GPS (dGPS) system with 
real-time kinematic GNSS (RTK) or post-processed kinematic (PPK) are used dur-
ing the UAV acquisition. Where GCPs are used, these will subsequently need to be 
identified within the UAV imagery, which can be a time-consuming process. 
However, with the latest RTK and PPK enabled GPS systems, pixel 9 locational 
accuracies are commonly within ±5 cm in the x and y axis’ and ±10 cm in the z axis 
without the need for manual intervention.

�Optical Data

Optical sensors measure the amount of light that is reflected from the ground sur-
face. However, between the ground surface and the sensor, there is an atmosphere 
that contributes to the measured reflectance. There are various pre-processing stages 
that can be applied, but removing the atmospheric and bidirectional effects is key to 
providing a comparable and full standardised product. However, bidirectional 
effects are commonly not corrected for (Nagol et al. 2015), as it can be difficult to 
fully define the bidirectional reflectance distribution function (BRDF). For high-
resolution data, knowledge of the ground surface orientation at comparable resolu-
tions or better is commonly not available. Bidirectional reflectance is the change in 
the amount of light reflected due to the geometry of the acquisition, which is attrib-
utable to differences in the solar angles (e.g., with season and time of day) and sen-
sor geometry (i.e., view angle of the sensor). These angles are with respect to the 
ground surface, which themselves are defined with respect to the pixel resolution of 
the imagery acquired. Therefore, for very high-resolution (VHR datasets, such as 
acquired from a UAV), the orientation of individual leaves might need to be known 
to correct for bidirectional effects within the image.

When energy (in this case, light) interacts with a medium, reflection, transmis-
sion or absorbance occurs. For example, as light from the sun interacts with plant 
leaves, a proportion of this is reflected and transmitted and the remaining is absorbed. 
It is the reflected component that is measured by remote sensing instruments. 
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The  percent or proportion of energy reflected throughout the electromagnetic 
spectrum is commonly referred to as the reflectance curve (Fig. 2).

The spectral curve for vegetation in Fig.  2 has been measured at a very high 
spectral resolution (i.e., sampling at intervals every 1 nanometer; nm). Commonly, 
multi-spectral imagers are used for remote data acquisition and the resolution at 
which the reflectance of the surface is measured is therefore at a much lower spec-
tral resolution. The resolution and sensitivity of the sensor is defined by its spectral 
response functions (e.g., Fig. 3a and b), with one available for each image band 
captured. When considering the use of an instrument for a particular application, it 
is the position (i.e., wavelength) of the peak of maximum sensitivity and the width 
of the peak that defines the measured reflectance response. The spectral response is 
commonly modeled as a Gaussian and therefore is quoted as the wavelength of the 
peak and a full-width half maximum (FWHM) of the response sensitivity. When 
comparing field-derived ground spectra (e.g., Fig.  2) to the signal measured by 
satellite or aircraft sensors, the spectral response functions need to be applied to the 
ground measurement (e.g., Fig. 3c).

�Radiance

Optical data recorded in a particular wavelength region (λ), and obtained from the 
data provider, should be given in units of radiance (LλW m−2 sr−1 μm−1). In order to 
compress (i.e., reduce the file size), the image is typically provided with a gain and 
offset to convert the pixel value, commonly referred to as the digital number (DN), 
to radiance where:
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Fig. 2  Typical reflectance curve for vegetation from a field spectrometer sampling at 1 nm inter-
vals from 300–2500 nm
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Fig. 3  (a) Multi-spectral image bands spectral response functions and (b) the panchromatic 
response functions for Worldview-2 data as an example. (c) The reflectance curve for vegetation 
(440–880 nm) resampled using the Worldview-2 multi-spectral functions
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Ll = ´( ) +gain DN offset

	

Before proceeding with further processing, these gains and offsets should be 
applied to your imagery, such that each pixel value represents the radiance mea-
sured by the sensor.

For UAV imagery mosaicked from many individual images, care is needed where 
the camera has used different exposure parameters (i.e., ISO, aperture, shutter 
speed). The pixels values correlating to the amount of radiance will differ and con-
verting to radiance will not be possible once mosaicked. If correction is required for 
UAV imagery, then the camera parameters need to be known and ideally should be 
constant throughout the flight. Additionally, the camera needs to be calibrated to 
relate the digital number (DN) value of the camera to radiance.

�At Sensor Radiance

At sensor reflectance, also referred to as top of atmosphere (TOA) reflectance, is a 
standard and easily calculated ratio of the incoming radiant energy (light) from the 
sun (ESUN) and the corresponding radiance measured by the sensor. The radiance 
measured at the sensor differs from the incoming signal due to the reflectance of the 
Earth surface and the atmosphere (or part of the atmosphere) the signal has trans-
mitted through. Although providing a standard measure and common range of val-
ues (0–1), the reflectance measurement includes the reflectance from the atmosphere 
and the ground surface and therefore images taken at different times are not directly 
comparable. At sensor reflectance is calculated as:

	
r

p
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l

l

=
× ×

×
L d
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where λ is the wavelength, ρλ is the spectral (at sensor or top of atmosphere) 
reflectance for wavelength λ, Lλ is the spectral radiance (W m−2 sr−1 μm−1), d is the 
Earth-Sun distance in astronomical units, ESUNλ is the mean solar exoatmospheric 
irradiance in units of W m−2 μm−1 and θs is the solar zenith angle.

�Surface Reflectance

Surface reflectance, also called ‘bottom of atmosphere reflectance’ is the ratio of 
incoming radiance (i.e., from the sun) with the radiance that is measured by the sen-
sor without the atmospheric effect and should be equivalent to the signal measured 
if the sensor was at ground level or there was no atmosphere. To derive this 
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measurement, the effect of the atmosphere needs to be removed from the at sensor 
radiance measured at the sensor. There are a number of options (Fig. 4) for this.

The Empirical Line Calibration (Smith and Milton 2010) is commonly used to 
correct high-resolution airborne imagery but requires that ground data of bright and 
dark targets be captured at the time of the overflight. Dark Object Subtraction meth-
ods (Chavez 1988) are relatively simple and require relatively little inputs so can be 
easily applied to all image data but do not produce the most reliable and consistent 
results. It is, therefore, the method used when the others are not available. Modeled 
Atmospheric Correction Methods (Vermote et al. 1997; Masek et al. 2006) model 
reflection, absorption and scattering by the atmosphere and commonly used models 
include 6S (Vermote et  al. 1997), LOWTRAN, MODTRAN, FLAASH, ATCOR 
and HYCOR. These models require many parameters to be known or estimated and 
can, therefore, be complex to apply. However, for lower resolution imagery or where 
ground spectra for targets are not available, it is the best solution. Further details on 
these approaches are provided in the following sections.

�Empirical Line Calibration

An empirical line calibration is a simple process (Smith and Milton 2010) of col-
lecting the ground reflectance of at least two targets that will be captured by the 
observing sensor, one that has a reflectance of 0% (or close to; i.e., black) and 
another with a reflectance of or near 100% (i.e., white). Additional targets of 
different shades of grey (i.e., levels of reflectance) can also be laid out to improve 
the reflectance estimates. The targets need to be at least three times the size of the 
image pixels (i.e., 1 m pixels requires at least a 3 × 3 m target) to ensure that more 
than one pure pixel of the target is acquired. However, larger targets producing 
more than one pure pixel at the pixel resolution are preferable. Another consider-
ation is that the targets need to have a consistent reflectance across the full range of 

Input Image High (< 2m) or low
resolution

Are black and white
ground targets and field

data available?
High Resolution

Are parameters for 
atmospheric model

available?

Low Resolution

No

Use Empirical
Line Calibration

Use Modelled
atmosphere

Use Dark Object
Subtraction

Yes

Yes

No

Fig. 4  Decision tree for which measure of atmospheric correction you should use
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wavelengths that the sensor is measuring. Once pure pixels have been identified, a 
linear regression of the image pixel values to the ground reflectance measurements 
for each wavelength is undertaken and the resulting relationship is used to convert 
the image to surface reflectance. Where multiple targets at each reflectance level are 
available, a validation of the relationship can be carried out.

�Dark Object Subtraction (DOS)

A dark object subtraction (DOS; Chavez 1988) is built on a simple assumption that 
the darkest pixels within the scene have little or no surface reflectance and that the 
radiance measured by the sensor is from the atmosphere. Therefore, while assuming 
the atmosphere is consistent across the scene, subtracting that atmosphere compo-
nent from the whole scene can be used to convert the at-sensor reflectance values to 
surface reflectance. This is performed independently for each of the image bands 
(i.e., wavelengths). However, there is a risk that the relative relationships between 
the image bands can vary.

�Modeled Atmospheres

Modeling the atmosphere is the most common way in which imagery is atmospheri-
cally corrected but this requires a radiative transfer (RT) model and associated 
parameters, many of which are supplied in the image header file from the data pro-
vider (e.g., date and time of the acquisition). However, typically you, as the end-
user, would perform this analysis through a software package that aids the 
parameterization (e.g., automatically parses the supplied header file or associated 
metadata), runs the atmospheric model and applies the model outputs to the image 
file. There are a number of software packages and models that support this analysis 
(Table 2), but they each only support a defined number of sensors. These lists are 
being updated on a regular basis. Additionally, some products and analysis steps 
may not be possible for all sensors and therefore functionality may not be equal 
across all sensors (e.g., cirrus cloud correction uses bands only provided by 
Sentinel-2 and Landsat-8 instruments).

More recently, there has been some effort to standardize these processing stages 
and levels (Claverie et al. 2015; Feng et al. 2013; Ju et al. 2012; Roy et al. 2010) for 
the Landsat and Sentinel-2 imagery. The United States Geological Survey (USGS) 
is already supplying the Landsat archive (TM, ETM+, OSL) as an atmospherically 
corrected product (Masek et al. 2006) and, in time, there may be a similar service 
for Sentinel-2 imagery.

For the Second Simulation of the Satellite Signal in the Solar Spectrum (6S; Vermote 
et al. 1997) model (others models are similar), the parameters needed are given in 
Table  3. The sensor configuration and position parameters are well defined and 
known so these can be parameterized using the image header information. However, 
the parameters associated with the atmosphere at the time of the acquisition, specifically 
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the aerosol optical depth (AOD) and the total amount of water in a vertical path 
through the atmosphere (water vapour), are unknown and need to be provided by the 
user or estimated from the image for a more accurate atmospheric correction. The 
sensor and surface altitude parameters are defining the length of the path through 
the atmosphere that the signal being measured has taken (Fig. 5). The more atmo-
sphere the signal passes through to the sensor, the larger the atmospheric effect 
which needs to be removed from the image (Fig. 5c).

For the dynamic components of the atmosphere, specifically the AOD and water 
vapour, there are various sources of information and methods that attempt to esti-
mate those parameters from the image data itself (e.g., Masek et al. 2006). These 
parameters can vary over short temporal and spatial baselines while the quality of 
the atmospheric correction is highly sensitive (Fig. 6) to the correct estimation of 
these parameters. They also vary as a function of the wavelength.

The AOD is correlated with visibility (in km), and the two can be transformed 
from one another using the following relationship,

AOD
vis

= +
3 9449

0 08498
.

.

There are three main sources of AOD for parameterisation of the atmospheric 
model; (a) ground measurements, (b) estimates from a third party satellite or (c) 
estimates from the image being corrected. As the AOD varies over short temporal 
and spatial baselines (Wilson et al. 2014), estimates from the image being corrected 
will be the most reliable, both spatially and temporally, and hence this is the pre-

Table 2  List of software packages for applying an atmospheric correction using a modeled 
atmosphere

Software RT Model Sensors License

ATCOR-4a 
(airborne)

MODTRAN Many – see website Commercial

ATCOR-3b 
(satellite)

MODTRAN Many – see website Commercial

FLAASHc MODTRAN Many – see website Commercial
LEDAPSd 6S Landsat (TM, ETM+) Free but closed source
SEN2CORe MODTRAN Sentinel-2 Free but closed source
ARCSIf 6S Landsat (MSS, TM, ETM+, 

OLI), Rapideye, SPOT5, SPOT6, 
SPOT7, WorldView-2, 
WorldView-3, Pleiades, 
Sentinel-2

Free and Open Source

awww.rese-apps.com/software/atcor-4-airborn
bwww.rese-apps.com/software/atcor-3-satellites
cwww.harrisgeospatial.com/docs/FLAASH.html
dledaps.nascom.nasa.gov
estep.esa.int/main/third-party-plugins-2/sen2cor/
fwww.rsgislib.org/arcsi
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ferred option. However, estimating the AOD from the image data requires some 
assumptions to be made to derive some estimates of the surface reflectance of the 
visible image bands and considerable computing resource to invert (at least par-
tially) an atmospheric model.

Ground measurements, using a sun photometer, provide very accurate measures 
of AOD but these are point measurements and therefore not necessarily representa-
tive of the whole scene. Additionally, because of the sparse nature of the ground 
measurements, it is unlikely that data will be available for the image being processed. 
Some weather stations provide visibility data (e.g., in the UK) but again these are 
point measurements and not available everywhere.

Table 3  Parameters for the 6S model

Parameter Description Known

Solar zenith The zenith angle of the sun with respect to the earth surface for 
the area of acquisition.

✔

Solar azimuth The azimuth angle of the sun with respect to the earth surface 
for the area of acquisition.

✔

Sensor zenith The zenith angle of the sensor with respect to the earth surface 
for the area of acquisition.

✔

Sensor azimuth The azimuth angle of the sensor with respect to the earth 
surface for the area of acquisition.

✔

Acquisition date 
and time

The exact date and time of the acquisition. ✔

Centre point of 
scene (lat, long)

The point on the Earth’s surface for where the model is being 
run.

✔

Altitude of sensor The height of the sensor above the Earth’s surface. ✔
Altitude of ground 
surface

The height above sea level of the ground surface being 
measured.

✔

Atmospheric 
profile

The vertical distribution of the atmospheric layers at a given 
altitude with pressure, temperature and water vapour and 
ozone at that layer. However, this is commonly generalised to 
standard profiles for tropical, mid-latitude summer, mid-
latitude winter, sub-arctic summer, sub-arctic winter. 
Standardised profiles can be automatically selected based on 
time and location.

✗ (✔)

Water vapour The total amount of water in a vertical path through the 
atmosphere (in g/cm2).

✗

Ozone The total amount of ozone in a vertical path through the 
atmosphere (in cm-atm).

✗

Aerosol profile The proportion of water-like, dust-like, oceanic-like and 
soot-like aerosol partials in the atmosphere. However, this is 
commonly generalised to standard profiles for continental, 
maritime, urban, desert and biomass burning. Standardised 
profiles can be automatically selected.

✗ (✔)

Aerosol optical 
depth (AOD)

The total amount of AOD in the vertical path through the 
atmosphere at 550 nm.

✗

Pre-processing of Remotely Sensed Imagery
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There are a number of satellite-based AOD products, primarily those derived 
from MODIS (Green et  al. 2009). However, these products are produced at low 
spatial resolution (e.g., 1 km) and are generally not obtained at the same time as the 
image to be corrected. Furthermore, the downloading and processing of extra third 
party data is potentially a significant overhead for the correction of individual 
images. Table 4 provides an overview and reference to sources and algorithms for 
the retrieval of AOD.

For the correction of atmospheric water, there are a number of sources for 
water vapor within the vertical path (Table 5). The most commonly used sources are 
from third party satellites such as the MODIS. However, average climate data and 
ground-based measurements have also been used.

a) b)

c)

Fig. 5  Changes in the distance of the path through the atmosphere due to (a) sensor angular geom-
etry and (b) surface altitude, which results in a variation in the outputted reflectance without appro-
priate correction (c) an example for the Landsat TM bands, where elevation varies from 0–5000 m

P. Bunting
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Table 4  Sources of measures of AOD

Source Description

AERONETa A network of sun photometers providing AOD measurements 
globally.

UK Meteorological Office 
(MIDAS)b

Integrated Data Archive System (MIDIS); specific to the UK, the 
Met Office makes ground measurements publically available.

MODISc Satellite-based measurement of AOD at 550 nm; available for free 
download.

LEDAPSd Estimates of AOD for Landsat using dense dark vegetation (DDV) 
targets and relationships with the SWIR to visible wavelengths.

ARCSIe Multiple algorithms, including the DDV method, but primarily 
uses a DOS based method to estimate surface reflectance in the 
blue wavelengths used for inversion.

SEN2CORf Estimates AOD for Sentinel-2 using dense dark vegetation (DDV) 
targets and relationship from the SWIR to visible wavelengths.

Frantz et al. (n.d.) Time series analysis to identify persistently dark targets that are 
used for AOD inversion.

ahttp://aeronet.gsfc.nasa.gov
bhttp://catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0
chttp://modis-atmos.gsfc.nasa.gov/MOD04_L2/
dhttp://ledaps.nascom.nasa.gov
ehttp://www.rsgislib.org/arcsi
fhttp://step.esa.int/main/third-party-plugins-2/sen2cor/

Table 5  Sources of measures of atmospheric water

Source Description

MODISa Satellite-based measurement of total column water vapour. 
Freely available download.

Global precipitation 
measurement (GPM)b

NASA owned satellite that includes instruments for the 
measurement of total column water vapour.

AMSR-2c JAXA owned satellite that includes instruments for the 
measurement of total column water vapour.

Seasonal averaged Where satellite estimates are not available for that date of 
acquisition Frantz et al. (n.d.) uses a local average.

ahttp://modis-atmos.gsfc.nasa.gov/MOD05_L2
bhttp://www.nasa.gov/mission_pages/GPM/main; Draper et al. (2015)
chttp://suzaku.eorc.jaxa.jp/GCOM_W
dFrantz et al. (n.d.)
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http://suzaku.eorc.jaxa.jp/GCOM_W
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As with water, ozone is commonly sourced externally from sensors such as 
NASA’s Total Ozone Mapping Spectrometer (TOMS; 1978–2005) and ESA’s 
Global Ozone Monitoring Experiment (GOME; 1996 to 2011). The Ozone 
Monitoring Instrument (OMI) has continued the time series of TOMS data since 
2004 until the present. The download sites for these data are listed in Table 6, which 
also includes the NASA Ozone map tool that can be used to find the value of ozone 
from 1978 to the present based on TOMs and OMI data through a single interface.

�Light Detection and Ranging (LiDAR)

�Overview of Products and Software

Small footprint LiDAR data acquired via airborne platforms, primarily manned 
flights. However, more recently, there are small UAV octocopter based systems avail-
able (e.g., yellowscan; http://www.yellowscan.fr). LiDAR directly measures the 3D 
structure of a surface by way of a 3D point cloud, where other than the points returned 
from the same pulse, the topology of the point cloud is unknown (i.e., each pulse is 
independent). Multiple returns from a single fired pulse are only recorded for ‘soft’ 
targets such as vegetation (Fig. 7a) or the edges of hard targets, such as buildings 
(Fig. 7b). Multiple returns occur where a target causing the reflection back to the 
sensor is smaller than the footprint of the LiDAR. For a small footprint LiDAR, the 
footprint is typically around 20–30  cm. There are also so-called large-footprint 
LiDAR systems (e.g., ICESAT; Zwally et al. 2002), where the footprint is measured 
in metres, but these are not considered within this Chapter. Please refer to Shan and 
Toth (2009) for a discussion of large-footprint systems and their applications.

Regarding products, LiDAR produces elevation surfaces, digital terrain models 
(DTM) and digital surface models (DSM). The difference between the DTM and 
DSM provides a measure of the vertical height of features protruding from the DTM 
surface such as vegetation and buildings. However, to produce these products, a 
classification of the points associated with the ground and in some cases hard (build-
ings) and soft (vegetation) above the ground surface needs to be undertaken (Fig. 8). 
Following classification, the elevation surfaces can be interpolated to form regularly 
spaced raster grids. To derive other products from LiDAR, such as gap fraction (e.g., 

Table 6  Data and tools for establishing atmospheric ozone levels

TOMS http://ozoneaq.gsfc.nasa.gov/data/toms/
GOME http://www.ospo.noaa.gov/Products/atmosphere/gome/gome-A.html
OMI http://neo.sci.gsfc.nasa.gov/view.php?datasetId=AURA_OZONE_E
NASA 
Ozone 
map tool

http://ozoneaq.gsfc.nasa.gov/tools/ozonemap/
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Armston et al. 2013; Morsdorf et al. 2006), above ground biomass (e.g., Babcock 
et al. 2016; Popescu 2007; Nelson et al. 1988) and other structural measures (e.g., 
Palace et al. 2015; Higgins et al. 2014; Zimble et al. 2003), site or region specific 
relationships are needed. These involve the correlation of LiDAR-derived metrics 
associated with the vertical structure of the vegetation with ground-based field data.

To undertake LiDAR data processing, dedicated software processing tools are 
required. LiDAR datasets are typically large and require a reasonable amount of 
computing power and storage to handle these data. Table 7 lists a number of soft-
ware packages available for analyzing LiDAR data where LAStools is probably the 
most popular and widely used providing plugins for both ESRI ArcMap and the 
QGIS software packages to provide an ‘easy to use’ environment.

�Classification of Point Clouds

To produce a DTM product from LiDAR data, the classification of ground returns 
and the quality of that classification is a critical processing step. There are many 
publications demonstrating methods for this task (e.g., Mongus and Zalik 2012; 
Evans and Hudak 2007; Zhang et al. 2003). However, you will most likely be lim-
ited to the algorithms implemented within the processing tools you have available.

The quality of the classification of the ground returns, and therefore the derived 
DTM, is limited by the number and density of the LiDAR returns that have reached 
the ground surface. If the LiDAR has not recorded the ground surface, then obvi-
ously the ground returns cannot be correctly identified. Where ground returns are 
very sparse, it is likely that they will be identified as outliers (i.e., noise) rather than 
true ground returns. Dense vegetation over-stories, particularly those close to the 
ground (i.e., 1–2 m in height), often limit the number of ground returns. However, 

a) b)

First Return

Second Return

Third Return

First Return

Second Return

Fig. 7  (a) Multiple returns within a vegetation canopy and (b) multiple returns from the edge of a 
building
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if known, this can be mitigated by (a) flying higher resolution LiDAR (i.e., the num-
ber of pulses per m2), (b) decreasing the flying height (i.e., more laser power to get 
weaker ground returns, but this limits the swath width), and (c) using a sensor which 
can differentiate returns closer to one another along the path of the pulse. Some 
older instruments can only differentiate returns more than 0.5–1 m from one another 
along the path of the pulse. Another area where ground returns can be poorly defined 
or classified is very steep terrain, particularly where there is also vegetation cover 
(Bater and Coops 2009). It is recommended that for deriving elevation models, at 
least 4 points per m2 are acquired but if retrieving the vertical forest structure is of 

Input Data

Large Dataset

No

Tile datasets for 
processing

Yes

Ground return
classification

Define height
above ground

surface (i.e., veg
heights)

Interpolate DTM,
DSM and CHM

Calculate metrics Metrics Raster

Raster outputs

Discrete returns or 
waveforms

Discrete Return

Decompose
waveforms to find
discrete returns.

Waveform

Fig. 8  Flowchart for a standard LiDAR processing chain (Adapted from Bunting et al. 2013)
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interest (e.g., for establishing relationships to forest biomass), then increasing that 
to 8 points per m2 is beneficial.

�Standard Raster Products

�Interpolation of Elevation Surfaces

The resolution at which the raster surface can be interpolated to is dependent on the 
density of returns that define the surface. Using the Nyquist rate, the density of 
returns to accurately sample the surface needs to be twice the resolution of the sur-
face being produced to ensure all features are completely represented. However, as 
the ground return density varies across the scene, a compromise is usually made.

A common requirement for a DTM is that it is hydraulically correct in that it 
contains no holes or artificial troughs. To ensure hydraulic correctness, algorithms 
for filling DTM holes are applied and additional information such as break lines 
(e.g., river shore) can also be included in the interpolation processing.

There are many interpolation algorithms available for the generation of elevation 
surfaces from point cloud files including Natural Neighbour, Thin Plated Splines, 
Nearest Neighbour, Linear Triangulation and Inverse Distance Weighted. Bater and 
Coops (2009) compared a number of these algorithms and demonstrated, for a 
vegetation-dominated environment, that the Natural Neighbour algorithm produced 
high-quality results. They recommended this algorithm for general use.

Table 7  Software for processing LiDAR data

Software Description License

LAStoolsa Becoming the most commonly used tools across the 
industry providing a wide range of tools. However, 
the free version is limited.

Commercial & 
Limited free version.

SPDLibb Tools and file format for common LiDAR processing 
steps including waveform data.

Open Source

PyLiDARc A set of python modules enabling easy assesses to 
the LiDAR (discrete return and waveform) data as 
numpy arrays allowing implementation of your own 
algorithms.

Open Source

BCal LiDAR 
Toolsd

Widely used tools, written in IDL and used through 
ENVI.

Open Source

Fusione US Forestry Service tools, used by many. Free but closed source
Potreef Tool for visualisation LiDAR on the web Open Source

ahttp://lastools.org
bhttp://www.spdlib.org
chttp://www.pylidar.org
dhttps://bcal.boisestate.edu/tools/lidar
ehttp://forsys.cfr.washington.edu/fusion/fusionlatest.html
fhttp://potree.org
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�Derivation of Metrics for Vertical Vegetation Structure

There are numerous statistical measures of the vertical distribution of the point 
cloud that have been used within the literature (e.g., Bunting et al. 2013). These 
include, the ratio of the number of ground returns to all returns, mean height, median 
height, mode height, maximum height, standard deviation of all or returns above a 
certain height, percentiles of height, skewness in height, Pearson mode of height, 
Pearson median of height and the kurtosis in height. Additionally, by filtering the 
returns based on their classification (e.g., ground or not-ground) or return number 
(e.g., first returns) etc., there are many variants of metrics which can be calculated. 
Your given choice of software tools will enable these metrics to be calculated. For 
instance, LAStools provides a command line tool to retrieve forestry metrics (las-
canopy) while SPDLib provides a tool called spdmetrics. Once calculated, these 
metrics are commonly used within either a classification scheme to retrieve categor-
ical classes for the scene or used within a regression analysis to field data to retrieve 
parameters, such as above ground biomass.

�Radiometric Correction

There have been a number of attempts to radiometrically correct and/or normalise 
the LiDAR intensity/amplitude data (e.g., Donoghue et al. 2007). However, as of 
yet, there are few examples within the literature that demonstrate a clear application 
for this product. Therefore, for information on these processing stages, the reader is 
referred to Wagner (2010) and Coren and Sterzai (2007).

�Standard Data Specifications

A number of organisations worldwide (e.g., the Intergovernmental Committee on 
Surveying and Mapping’s; http://www.icsm.gov.au/elevation/) have set out standard 
specifications for the acquisition of LiDAR data. These specifications are com-
monly regarded as the minimum specification for the organisation. These specifica-
tions help ensure that data acquisitions are fit for purpose and can be used to meet 
the wider requirements of the organisation rather than just specific project needs. 
Table 8 lists a number of available specifications and, if you are acquiring LIDAR 
data, reference to these specifications is recommended.
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�Synthetic Aperture Radar (SAR)

�Overview of SAR

SAR is an active instrument that sends pulses in the microwave region of the elec-
tromagnetic spectrum and records the return. The returns are processed in such a 
way that the movement of the instrument is used to synthesise a larger antenna than 
would others be physically impossible, which allows a high spatial resolution image 
to be produced. Forming a SAR image from the raw data is normally carried out by 
the data provider. The most common product from a SAR is an image of normalised 
radar cross section or ‘backscatter’ (σ0), which is unitless. Partly because of the 
large range of values, σ0 is normally expressed on a log scale in decibels (dB). 
However, depending on the mode and specification of the instrument, other prod-
ucts such as polarimetric decompositions (e.g., Pauli Decomposition; Krogager 
1990) can also be generated. Where multiple acquisitions from different geometries 
are available (i.e., multiple satellite passes), products such as the coherence (Gaveau 
et al. 2003) and 3D structural information can also be derived (e.g., Ho Tong Minh 
et al. 2016). However, within this Chapter, just the considerations of the backscatter 
intensity and SAR, in general, will be discussed. For a full introduction to SAR 
imagery and processing, refer to Woodhouse (2005).

The intensity of σ0 is dependent on the vertical structure (i.e., buildings and veg-
etation) and moisture (predominantly soil). As the size of the vertical structure 
increases, the magnitude of the SAR backscatter increases. For example, within a 
forest, pixels of higher backscatter will typical correspond with areas of larger trees. 
However, the background soil and vegetation moisture can also influence the signal. 
For example, Lucas et al. (2010) demonstrated that in dry regions of Australia, rain 
events can increase the SAR backscatter and therefore recommended the use of the 
driest scenes available when generating regional mosaics. These were identified 
through reference to spatial interpolations of rainfall measurements or low resolu-
tion, high-frequency AMSR-E passive microwave radiometer measures of surface 

Table 8  LiDAR acquisition specifications

Organisations Location

ICSMa Australia and New 
Zealand

British Columbiab Canada
AusCoverc Australia
National Network of Regional Coastal Monitoring Programmes of 
Englandd

UK

USGSe USA
ahttp://www.icsm.gov.au/elevation/
bhttp://geobc.gov.bc.ca/base-mapping/atlas/trim/specs/
chttp://data.auscover.org.au/xwiki/bin/view/Good+Practice+Handbook/WebHome
dhttp://www.channelcoast.org/national/procurement
ehttps://lta.cr.usgs.gov/lidar_digitalelevation
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moisture. Reference to datasets such as these is particularly important where a time 
series is being constructed as scene(s) or parts of scenes might not be directly com-
parable in terms of vegetation change as the backscatter changes would correspond 
with soil and/or surface vegetation moisture amounts.

�Geometric Correction

The geometry of a SAR system is quite different from that of an optical or LiDAR 
in that the sensor is side looking (Fig. 9) and therefore features closer to the sensor 
will be closer together than those further away in the raw slant-range image space. 
Therefore, one of the first processing stages within the geometric correction is to 
convert the slant-range image space into ground-range (i.e., all pixels have an equal 
ground cover). Following the conversion to ground range, an orthorectification is 
required to place the SAR imagery into the required geographic coordinate system, 
with consideration given to topographic relief.

�Defining Sigma Nought (σ0) and Gamma Nought (γ0)

Typically the pixel values of the ground range images are supplied as digital num-
bers (DN) (to reduce the file size) and need to be converted to σ0[dB]. To achieve 
this, a calibration offset (C) is applied.

	 s 0[ ] logdB C= +10 (DN)10 	

Fig. 9  The side-looking geometry of a SAR system
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The exact form of the equation to convert from DN to σ0 varies for each instru-
ment. σ0 has an angular effect due to the variance in the incidence angles across the 
scene, particularly for airborne SAR where the variance in incidence angle is higher. 
Therefore, a correction to γ0 can also be applied, where θ is the local incidence angle.

	
g

q
0 10dB C[ ] = æ

è
ç

ö
ø
÷ +log10

DN

	

When using σ0 [dB] or γ0 [dB] values for further processing, care is required 
when applying a process that takes an average or sums any of the pixel values, as dB 
is a log value. To convert from dB use:
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Following any calculations, for example calculating a mean backscatter for a set 
of image segments, dB values can be retrieved using:

	
s s0 10dB[ ] = ( )log10 0

	

�SAR Image Filtering

SAR images contain speckle, which is noise from the image acquisition process. To 
reduce speckle within the scene image, filters are commonly used. Filters can be 
applied to a single image (e.g., Lee Filter; Lee 1981) or to time-series (Trouve et al. 
2003). It is commonly recommended (Woodhouse 2005) that speckle filters are 
applied to SAR imagery before it is used unless the image data is being smoothed 
(averaged) in some way, which is the case when segmentation procedures are applied.

�Conclusions

This chapter has attempted to provide an brief but wide ranging overview of the 
methods and processes that need to be considered when receiving remote sensing 
imagery prior to using the imagery for your application of interest. Once these pro-
cesses are applied, the image data can be considered as analysis ready. Without 
satisfying the requirement of an ARD product prior to undertaking your application, 
is likely that your analysis will either fail or produce suboptimal results. 
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The  deviation of ARD products can be undertaken by yourself if you have the 
appropriate background knowledge and software tools. However, the data provider(s) 
or other organisations or individuals can provide services to derive these products.
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