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The Potential of UAV Derived Image Features 
for Discriminating Savannah Tree Species

J. Oldeland, A. Große-Stoltenberg, L. Naftal, and B.J. Strohbach

Abstract  Mapping tree species at the single-tree level is an active field of research 
linking ecology and remote sensing. However, the discrimination of tree species 
requires the selection of the relevant spectral features derived from imagery. We can 
extract an extensive number of image parameters even from images with a low spec-
tral resolution, such as Red-Green-Blue (RGB) or near-infrared (NIR) images. 
Hence, identifying the most relevant image parameters for tree species discrimina-
tion is still an issue. We generated 42 parameters from very high resolution images 
acquired by Unmanned Aerial Vehicles (UAV), such as chromatic coordinates, spec-
tral indices, texture measures and a canopy height model (CHM). The aim of this 
study was to compare the relevance of these components for classifying savannah 
tree species. We obtained very high (5 cm) pixel resolution RGB-NIR imagery with 
a delta-wing UAV in a thorn bush savannah landscape in central Namibia in April 
2016. Simultaneously, we gathered ground truth data on the location of 478 indi-
vidual trees and large shrubs belonging to 16 species. We then used a Random 
Forest classifier on single and combined thematic sets of image data, e.g. RGB, 
NIR, texture and in combination with CHM. The best average overall accuracy was 
0.77 and the best Cohen´s Kappa value was 0.63 for a combination of RGB imagery 
and the CHM. Our results are comparable to other studies using hyperspectral data 
and LiDAR information. We further found that the abundance of the tree species is 
crucial for successful mapping, with only species with a high abundance being clas-
sified satisfactorily. Diverse ecosystems such as savannahs could therefore be a 
challenge for future tree mapping projects. Nevertheless, this study indicates that 
UAV-borne RGB imagery seems promising for detailed mapping of tree species.
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�Introduction

Classifying and mapping individual trees is increasingly applied in forestry, urban 
management and nature conservation. According to a review by Fassnacht et  al. 
(2016), since the year 2000 and particularly from 2010 onwards, there has been a 
dramatic increase in the number of studies that compare the suitability of different 
datasets, classifiers, and sensor platforms. However, most studies on the classifica-
tion of tree species use expensive technology to capture data, e.g. hyperspectral or 
LiDAR sensors, with only a few studies applying relatively cheap solutions such as 
UAVs carrying consumer-grade cameras that provide Red-Green-Blue (RGB) or 
Near-Infrared (NIR) imagery. Furthermore, most studies to date have focussed on 
temperate or boreal forest ecosystems while Savannah ecosystems, which are rela-
tively rich in tree species, remain understudied.

This chapter evaluates the suitability of image parameters derived from low-cost, 
UAV-borne, consumer-grade cameras for classifying tree species in a savannah eco-
system. In particular, we aim to test (a) whether savannah tree species can be dis-
criminated successfully with very high resolution UAV imagery, (b) whether RGB 
or NIR spectral indices perform better, and (c) if a canopy height model can signifi-
cantly improve the classification. Finally, we discuss the role of a species abundance 
for it´s potential to be accurately mapped.

�Background

Mapping the distribution of tree species using remote sensing means producing a 
vector or raster layer that contains the information on locations of tree species either 
at the stand-level or single-stem level. These maps or data sets are valuable in nature 
conservation, particularly in a biodiversity monitoring context. However, until 
recently, the most commonly used image data for mapping tree species were from 
hyperspectral and LiDAR sensors (Fassnacht et al. 2016) which are costly, difficult 
to preprocess, and require expert knowledge in their analysis. The recent advent of 
drones, also called Unmanned Aerial Vehicles (UAVs), provides new tools and the 
opportunity to obtain more spatial detail for tree species mapping, and the use of 
UAVs for mapping tree species is becoming increasingly popular (Singh et al. 2015; 
Lisein et al. 2015). UAVs have several advantages over satellite or airborne data. 
They are extremely flexible in usage, can be scheduled in a very short time interval 
(e.g. daily or weekly), are easily carried to diverse locations and, unlike satellites, 
are not limited by clouded skies. The main drawbacks are the limited spatial 
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coverage and a restricted carrying capacity which renders UAVs unsuitable for 
heavy hyperspectral or LiDAR sensors and thus being restricted to consumer-grade 
cameras or small multispectral cameras. Only a few studies have evaluated RGB 
spectral indices for species discrimination, e.g. Rasmussen et al. (2013), who tested 
the potential of RGB indices for site-specific weed management, Dvořák et  al. 
(2015) used RGB imagery for invasive plant detection, and Rasmussen et al. (2016) 
studied the performance of RGB indices to measure barley biomass. Hence, the 
question remains open as to whether very high spatial resolution imagery taken by 
a standard UAV can successfully discriminate tree species. If so, nature conserva-
tion could make use of a very flexible image acquisition platform for monitoring 
small areas, i.e. covering several square kilometres with a small number of flights. 
Furthermore, the question how consumer-grade cameras with RGB or a NIR-filter 
perform in such a task needs to be addressed. Is NIR really necessary or are observa-
tions in RGB sufficient?

Most of the studies reviewed by Fassnacht et al. (2016) had two things in com-
mon: they used hyperspectral imagery in combination with LiDAR data and were 
undertaken in temperate or boreal forests. Bunting and Lucas (2006) and Lucas 
et al. (2008) established the use of CASI and HYMAP hyperspectral data for dis-
criminating tree species in open woodlands and forests in Queensland, Australia, 
confirming that differences in the mean spectra from crown objects increased the 
accuracy of discrimination. However, only a few studies set out to classify savannah 
tree species in southern Africa (Naidoo et al. 2012; Cho et al. 2012; Colgan et al. 
2012). These studies classified between six and 15 tree species. Cho et al. (2015) 
also tested the suitability of very high resolution satellite imagery for this purpose, 
but only used three out of ten dominant canopy species. It seems that the abundance 
of a tree species also contributes to its capability for being mapped precisely. We are 
of the opinion that this issue has not been sufficiently highlighted in the literature 
(but see comments in Fassnacht et al. 2016).

�Study Area

The study was part of the Biodiversity Observatory S05 of the BIOTA Africa project 
(www.biota-africa.org), which is a cross-country biodiversity monitoring project 
with a standardized monitoring approach performing monitoring in southern, west-
ern, and northern Africa (Jürgens et al. 2012). The observatory is located on the 
cattle farm Erichsfelde (coordinates: 16.935° E 21.597° S) in central Namibia. The 
Biodiversity Observatory spans 1 km2 and is divided into 100 ha from which 20 
were selected in the year 2001 for permanent annual monitoring of vegetation and 
animal diversity. The vegetation monitoring was undertaken within plots of 
20 × 50 m, which were situated at the mid-point of a selected hectare. The vegeta-
tion consisted of typical Thornbush savanna sensu Giess (1998), dominated by 
Acacia mellifera subsp. detinens and Boscia albitrunca. Other Acacia species also 
occurred, in particular A. hebeclada subsp. hebeclada, A. tortilis, A. reficiens and A. 
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karroo. The vegetation structure is a typical semi-closed bushland, with a low grass 
layer, and shrubs of up to 4 m high (Fig. 1). These are interspersed by few trees, 
between 4 and 8 m in height. Erichsfelde is a private cattle farm of about 13,000 ha 
that is used extensively for meat production (cattle grazing). Game species, includ-
ing Oryx and Kudu are also present. The Observatory is not excluded from regular 
land-use.

�Methods

�UAV Imagery Acquisition

On 21.03.2016, we acquired an image mosaic with 5 cm ground resolution for the 
whole Biodiversity Observatory S05, i.e. approximately 1 km2 (Fig. 2). We covered 
the area in two flights with an eBee 3 drone (costs ca. 30.000€, SenseFly 2015, 
Cheseaux-Lausanne, Switzerland). The settings for the flight missions were 70% 
longitudinal and 60% lateral overlap, with a flying height of 115 m above take-off 
point. Each image had a width of 160 m and a length of 120 m. The first flight was 
conducted using a modified Canon S110 where the blue filter was replaced by a NIR 
filter, recording at 850 nm. This camera also recorded a green band (550 nm) and a 
red band (625 nm). The second flight was performed using a regular RGB camera 
(Canon S110), recording at 450  nm (blue), 520  nm (green) and 660  nm (red) 
(SenseFly 2014). The flights to collect the images took about 30 min each and took 
place on the same day between 10h45 and 12h00. The first flight (NIR) yielded 411 
single images; the second flight (RGB) 358 images. We then mosaicked the image 
sets into two single orthomosaics using the PiX4D software. We did not use ground 

Fig. 1  Landscape perspective of the thorn bush savannah vegetation on the private cattle-farm 
Erichsfelde. The tree layer consists mainly Acacia mellifera subsp. detinens with one larger Acacia 
tortilis in the back. Small shrubs and a dense grass layer leaving some open soil patches character-
ize the landscape. Picture taken 05. April 2016, by L. Naftal
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control points for the mosaicking procedure, so we needed to adjust the imagery by 
shifting the NIR image manually by five pixels on the x-axis and three pixels on the 
y-axis to ensure proper matching with RGB imagery. We used QGIS v.2.16 (QGIS 
Development Team 2016) to shift the image.

�Ground Truth Data

After image processing, subsections of the orthomosaics corresponding to each of 
20 permanent monitoring plots were taken to the field. Within each plot, all trees 
and shrubs in the image were compared to each tree and shrub in the vegetation plot. 
Then, for each single-stem individual, an outline for each individual was drawn onto 
the image. This was necessary as the crowns of species were commonly overlapping 
where multiple stemmed individuals occurred. In total, 16 species were recorded 
and only living individuals were considered. However, we excluded seven of these 
species from further analysis because they occurred with an abundance of less than 
ten individuals within the samples (Table 1). We then converted our paper drawings 
into polygons per species in QGIS based on the RGB orthomosaic. Although 

Fig. 2  UAV imagery of the BIOTA Observatory S05 Otjiamongombe / Erichsfelde. (a) 1 km2 
RGB image with a 5 cm resolution acquired on 21.03.2016.(b) a subset focused on hectare 46 from 
the centre of the observatory (c) photo of hectare 46 from the year 2003
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several software solutions exist that promise to segment tree crowns from point 
clouds and RGB imagery, such as the TIDA algorithm (Culvenor 2002), these algo-
rithms are difficult to handle and come with their own error. As the number of poly-
gons required was small, we preferred the manual approach of delineating tree 
crowns. In total, we drew 478 polygons to build the species dataset. The abundance 
of the observed species is described in Table 1. Note that this includes only living 
individuals.

�RGB and NIR Spectral Indices

As the aim of this study was to identify the most suitable predictors for species 
discrimination, we derived an extensive set of parameters from both the RGB and 
NIR imagery. Based on the RGB imagery, we calculated the chromatic coordinates 
(Woebbecke et al. 1995; Meyer and Neto 2008) as well as the excessive Red (exR) 
and Green (exG) indices (Table 2). Recent studies had found these to be the most 
suitable to discriminate crop species (Woebbecke et al. 1995; Meyer and Neto 2008) 
or to predict vegetation parameters based solely on RGB imagery (Zhang et  al. 
2010; Schirrmann et al. 2016; Vergara-Díaz et al. 2016). In addition, we calculated 
the normalised green-red difference index (NGRDI) and the exG–exR parameter. 

Table 1  Sampled tree and shrub species with observed and relative abundance

Nr. Species name Family Short Individuals Rel. %

1 Acacia mellifera Fabaceae AM 174 0.38
2 Grewia flava Malvaceae GF 109 0.24
3 Acacia tortilis Fabaceae AT 45 0.10
4 Lycium eenii Solanaceae LA 35 0.08
5 Acacia reficiens Fabaceae AR 17 0.04
6 Dichrostachys cinerea Fabaceae DS 16 0.03
7 Acacia hereroensis Fabaceae AHR 14 0.03
8 Boscia albitrunca Capparaceae BA 13 0.03
9 Acacia hebeclada Fabaceae AH 12 0.03
10 Phaeoptilum spinosum Nyctaginaceae PS 8 0.02
11 Acacia luederitzii Fabaceae AL 7 0.02
12 Leucosphaera bainesii Amaranthaceae LB 4 0.01
13 Ziziphus mucronata Rhamnaceae ZZ 3 0.01
14 Commiphora africana Burseraceae CA 3 0.01
15 Acacia fleckii Fabaceae AF 2 0.00
16 Acacia erubescens Fabaceae AE 1 0.00

Short = species name abbreviation, Rel.% = relative abundance in percent. Taxonomy follows A 
Checklist of Namibian Indigenous and Naturalised Plants (Klaassen and Kwembeya 2013) as 
Namibian standard. Updated names for the genus Acacia can be found in Kyalangalilwa et  al. 
(2013). Species with less than ten observed individuals were not considered in this analysis, as 
these do not provide sufficient ground truth information
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Table 2  Overview of all image parameters extracted for crown polygons

Image parameter Short Data Formular References

Normalized 
Difference 
Vegetation Index

NDVI NIR (NIR-RED)/
(NIR+RED)

Tucker (1979)

Thiam’s 
Transformed 
Vegetation Index

TTVI NIR sqrt(ABS(NDVI + 0.5)) Thiam (1998)

Transformed Soil 
Adjusted 
Vegetation Index

TSAVI NIR a(NIR-a) (R-b) /  
R + aNIR -ab

Baret et al. (1989)

Perpendicular 
Vegetation Index 1

PVI84 NIR (bNIR-R) + a / 
(sqrt(b2+1))

Perry and 
Lautenschlager (1984)

Perpendicular 
Vegetation Index 3

PVI94 NIR aNIR-bRED Qi et al. (1994)

Normalized 
Green-Red 
Difference Index

NGRDI NIR (G- R) / (G + R) Rasmussen et al. (2016)

excessive Redness exR RGB 1.4*chrR-chrG Meyer and Neto (2008)
excessive Greeness exG RGB 2*chrG-chrR-chrB Meyer and Neto (2008)
exG-exR exG-exR RGB exG-exR Meyer and Neto (2008)
excessive Greeness 2 exG2 RGB (2*G-R-B) / (G+R+B) Rasmussen et al. (2016)
chromatic 
coordinate R

chrR RGB R* / R* + G* + B* Meyer and Neto (2008)

chromatic 
coordinate G

chrG RGB G* / R* + G* + B* Meyer and Neto (2008)

chromatic 
coordinate B

chrB RGB B* / R* + G* + B* Meyer and Neto (2008)

Energy Energy Texture ∑i,jg(i,j)2 Haralick et al. (1973)
Entropy Entropy Texture −∑i,jg(i,j)log2g(i,j) Haralick et al. (1973)
Correlation CorrL Texture

∑
−( ) −( ) ( )

i j

,

,

i j g i jµ µ
σ 2

Haralick et al. (1973)

Inverse Distance 
Moment

IDM Texture
∑

+ −( )
( )

i j

g i,j
,

1

1
2

i j

Haralick et al. (1973)

Inertia Inertia Texture ∑i,j(i−j)2g(i,j) Haralick et al. (1973)
Cluster Shade ClusSha Texture ∑i,j((i−μ)+(j−μ))3g(i,j) Haralick et al. (1973)
Cluster Prominence ClustPro Texture ∑i,j((i−μ)+(j−μ))4g(i,j) Haralick et al. (1973)
Haralick‘s 
Correlation

HarrCorr Texture ∑ ( ) ( ) −i j i j g i j i

t

, , , µ

σ

2

2

McInerney and 
Kempeneers (2015)

a=intercept, b=slope of soil line, R* = normalized Red channel. μ = window average, σ = window 
variance, g(i,j) = function for pixel pair i and j
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A recent, simplified version of the excessive greenness index (Rasmussen et  al. 
2016) was also calculated, in this study called exG2.

To exploit the additional NIR information, we calculated slope and distance 
based vegetation indices (Silleos et al. 2006). Slope based vegetation indices make 
use of the difference in the slope of the red and NIR channel; the famous Normalized 
Difference Vegetation Index (NDVI, Tucker 1979) belongs here. The SAVI is a 
modified NDVI which adjusts for potential effects of bare soil (Huete 1988). 
Thiam’s vegetation index improves on the NDVI by multiplying the absolute NIR 
and Red band values with their square root (Thiam 1998). Distance based vegeta-
tion indices make use of the concept of the so-called “soil-line” (Silleos et al. 2006). 
The distances refer to the distance of samples in the two dimensional red-NIR spec-
tral space to the soil line, that describes the lower boundary of pixels in this space, 
usually aligning across a clearly visible axis. To determine the soil line parameters 
required for the calculation of the distance based vegetation indices, a set of n = 100 
bare soil pixels were selected, stratified by the hectare grid of the Biodiversity 
Observatory, and the NIR and red values were extracted. Based on these values, a 
linear regression (R2 = 0.89, p < 0.001) was used to estimate the intercept and the 
slope of the soil line. The linear regression parameters intercept (alpha = −227.29) 
and slope (beta=1.877) were used to calculate the Perpendicular Vegetation Index 
III (Qi et al. 1994; Silleos et al. 2006). All indices were calculated and image manip-
ulations were performed with the open source software SAGA-GIS (Conrad et al. 
2015). For all individual tree crown polygons, we calculated values for the mean 
and standard deviations using the zonal statistics tool in SAGA-GIS.

�Image Texture

Richards (2013) suggested that the texture of an image can be described as smooth, 
rough or repetitive in terms of the spatial arrangement of grey values. In terms of 
canopy cover this would describe whether tree crowns consist of repeating patterns 
of shadow and greenness or whether the canopy is closed and thus equal in colour. 
Often texture measures will improve remote sensing classifiers (Krefis et al. 2011). 
As our main interest was to discriminate between tree species canopies, the green-
ness (exG) of the canopy seemed to be a good parameter for a texture analysis. We 
used the Orfeo Toolbox v.5.6.1 (McInerney and Kempeneers 2015), a free open 
source software for remote sensing image analysis, to calculate eight different types 
of simple image texture measures. Haralick’s grey level occurrence matrix (GLCM, 
Haralick et al. 1973), which is a standard for describing image texture, was the basis 
for calculating all of the texture measures. We choose a constant window size of 5×5 
pixels and an offset of 1 for x and y. The number of grey levels was set to 16. We 
then loaded the calculated image texture measures into SAGA-GIS and extracted 
the texture as average and standard deviation for each individual tree crown canopy 
polygon.
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�Canopy Height Model

We generated a canopy height model (CHM) based on the overlapping single image 
tiles. We used the software Postflight Terra 3D Vs4.0.104 (SenseFly 2015) to gener-
ate dense point clouds as *.las-files. Then we imported the *.las point cloud files 
into the LAStools software (Isenburg 2016) to generate buffered tiles. Ground 
points representing bare ground were identified visually. Based on these ground 
points, we calculated the height (height normalization) for all non-ground points of 
all tiles. These tiles were then mosaicked in SAGA-GIS using a b-spline interpola-
tion with feathering to create a seamless normalized Digital Surface Model (nDSM). 
This nDSM describes the maximum heights of the point cloud. Next, we generated 
a Digital Terrain Model (DTM), that describes the minimum heights of the point 
cloud. Finally, the CHM was generated by subtracting the DTM from the DSM, 
which gave values in the range of −0.11 to 1.89 m. The lower range was adjusted to 
zero. Average canopy height and its standard deviation were extracted for each can-
opy polygon.

�Random Forest Classification

The Random Forest algorithm (Breiman Breimanx) is now a common standard non-
parametric classifier with high performance as was found by many comparative 
studies in a remote sensing context (Pal 2005; Duro et al. 2012; Qian et al. 2014). 
Random Forest makes use of the concept of classification and regression trees 
(CART) but combines them with ensemble modelling and bagging. Random Forest 
is a non-parametric classifier that creates thousands of single decision trees and 
averages their results. Each decision tree is a subsample of the whole dataset. The 
split for each tree node is determined by the Gini criterion, which measures the 
entropy of the dataset. The best split is that parameter value that leads to the largest 
decrease in the Gini criterion. When the classifier is applied to the test dataset, the 
final class label is then based on the majority vote of all constructed decision trees 
(Immitzer et al. 2012).

A Random Forest classifier was used to predict species labels, with this achieved 
by first dividing the dataset into training and testing polygons, with an 80:20 ratio 
per class. To establish if any single set of parameters were sufficient alone, the data-
set was split into a RGB, a NIR, a texture and a complete dataset (ALL). For quan-
tifying the importance of the CHM, we added these values to each parameter dataset. 
Before classification, all parameters with Pearson correlations higher than 0.75 
were deleted to ensure that multicollinearity issues would not be an issue. Only two 
texture parameters where omitted because of multicollinearity, the Cluster 
Prominence and Haralick’s correlation. The latter was correlated with “correlation 
(corrL)” and the first with “inverse distance moment (IDM)”. Finally, in order to test 
the effect of species abundance on the classification results, the species data were 
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divided into three datasets, considering (a) all species with an abundance larger than 
10, (b) frequent species with an abundance larger than 30 and (c) infrequent species 
with abundances between 30 and 10 individuals (Table 2). These species subsets 
were all tested in combination with all parameter subsets, leading to a final number 
of 24 single datasets.

For each single dataset, a classifier was produced and its accuracy was verified 
using the test dataset. For accuracy assessment, confusion matrices were generated 
and the following accuracy measures were derived: Overall accuracy (OA), confi-
dence limits for OA based on cross-validation, and Cohen´s Kappa which takes 
class imbalance into account (Kuhn and Johnson 2013). As a null-model for the 
overall accuracy, we calculated the No-Information Rate (Kuhn and Johnson 2013), 
which is simply defined as the proportion of the largest class expressed as a percent-
age. A one-sided test of equal proportions was then conducted to provide a p-value 
for the null-model.

The relevance of the single predictors was assessed by calculating their variable 
importance. Variable importance describes the relationship between each parameter 
and the outcome of the classification or regression procedure. It is measured as the 
loss in performance when the respective parameter is not considered. Variable 
importance was measured for all parameters in the three species subsets in order to 
identify consistently important predictors across all predictors considered.

Random Forests were run with 5000 trials. The parameter mtry was set to 1/3 of 
the number of variables considered. The parameter mtry describes the number of 
parameters that are included in each single decision tree. In addition, a repeated 
cross validation was implemented using a tenfold cross validation with five repeti-
tions to be able to achieve standard errors and confidence intervals for the overall 
accuracy. Classification was performed in the free and open source software R (R 
Core Team 2016) using the packages caret (Kuhn et al. 2016), randomForest (Liaw 
and Wiener 2002) and e1071 (Meyer et al. 2015).

�Results

Only frequent species constantly exhibited significant p-values (Table  3, Fig.  3) 
meaning that OA was higher than the respective null-model. When using all species 
or only infrequent species, this was not the case. The species subsets “All” and 
“Infrequent” had always low Kappa and OA values except for infrequent species 
with the ALL and ALL+CHM (Table 3).

The highest OA and Kappa values were obtained for the combined RGB and 
CHM dataset for the frequent species, with an OA value of 0.77 and a Kappa value 
of 0.63. Globally, the “ALL” model was ranked second by Kappa for frequent spe-
cies. However, “ALL” is much more complex (42 parameters) than RGB+CHM (16 
parameters). Thus, the simpler RGB solution can be regarded as much more infor-
mative and easier to reproduce as fewer parameters have to be derived from the 
imagery (Table 3). The lower quality of the infrequent species dataset was also evi-
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dent by the large confidence intervals (Fig. 3). These are much smaller in the case 
for ALL and frequent species. This effect was attributed to the small number of 
samples within the infrequent species (72 samples spread across five classes, see 
Table 1). Models that used texture (TEXT) alone or a combination of texture and 
CHM (TEXTCHM) were never significant in any of the species sets (Table 3). Best 
results for texture models were found for the frequent species with an OA of 0.70 
and a Kappa value of 0.49.

The inclusion of the CHM led to an increase in model quality for 7 out of 12 
image parameter pairs (Table 3). The largest increase in the Kappa (0.22) was found 
for the RGB – RGB+CHM pair in the frequent species dataset. However, the second 
largest change was a decrease of 0.13 for the NIR – NIR+CHM in the infrequent 
species dataset (Table 3). Except for these two values, the average increase in Kappa 
was zero. Hence, we did not find that the CHM contributed additional information.

In the variable importance analysis (Fig.  4), none of the NIR-derived image 
parameters occurred in the top ten parameters. The RGB indices exG2, exR, exG 

Table 3  Accuracy measures of 24 random forest classification models with different combinations 
of species and UAV imagery products

Species Dataset Kappa OA OALower OAUpper OANull p-value

All ALL 0.33 0.54 0.45 0.63 0.57 0.739
ALLCHM 0.34 0.54 0.45 0.63 0.56 0.677
NIR 0.22 0.46 0.37 0.55 0.51 0.880
NIRCHM 0.25 0.48 0.39 0.58 0.53 0.841
RGB 0.36 0.56 0.47 0.65 0.57 0.609
RGBCHM 0.39 0.58 0.49 0.67 0.57 0.465
TEXT 0.31 0.53 0.43 0.62 0.56 0.794
TEXTCHM 0.28 0.51 0.42 0.60 0.56 0.882

Freq ALL 0.52 0.70 0.60 0.79 0.54 >0.001
ALLCHM 0.49 0.67 0.57 0.76 0.52 >0.01
NIR 0.43 0.64 0.54 0.73 0.53 >0.05
NIRCHM 0.49 0.68 0.58 0.77 0.55 >0.01
RGB 0.41 0.62 0.52 0.72 0.46 >0.001
RGBCHM 0.63 0.77 0.67 0.85 0.53 >0.001
TEXT 0.45 0.67 0.57 0.76 0.64 0.306
TEXTCHM 0.49 0.70 0.60 0.79 0.62 0.062

Infreq ALL 0.53 0.63 0.38 0.84 0.32 >0.01
ALLCHM 0.47 0.58 0.34 0.80 0.32 >0.05
NIR 0.27 0.42 0.20 0.67 0.37 0.399
NIRCHM 0.14 0.32 0.13 0.57 0.26 0.383
RGB 0.34 0.47 0.24 0.71 0.32 0.111
RGBCHM 0.27 0.42 0.20 0.67 0.32 0.226
TEXT 0.26 0.42 0.20 0.67 0.32 0.226
TEXTCHM 0.27 0.42 0.20 0.67 0.26 0.100

OA = Overall Accuracy (%), OANull= Null model, p-value describes whether OA is significantly 
different from OANull. Kappa is Cohen’s unweighted Kappa
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Fig. 3  Average overall accuracy with confidence limits based on tenfold cross-validation with five 
repetitions. The stars denote the overall accuracy derived by a null-model. Stars within confidence 
limits signify models that were not significantly better than the null-model and thus do not provide 
credible results. Note the very high range of confidence limits for the infrequent species data set 
(Spinfreq)

Fig. 4  Variable importance of the ten most important image parameters for the three species sub-
sets, i.e. all species (a), frequent species (b) and infrequent species (c). For full names of image 
parameters see Table 2
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and NGRDI occurred in the All and Frequent species subsets. Highest importance 
values were achieved by the RGB indices exG2 and chrR both with 32% and 20% 
for Frequent and All species subsets respectively. In the case of the infrequent spe-
cies, two texture measures appear in the ten most important variables. However, 
their variable importance did not reach values higher than five percent, rendering all 
parameters for the infrequent species redundant.

In summary, the frequent species dataset together with RGB+CHM image 
parameters provided the highest accuracy in the discrimination of tree species, used 
the lowest number of predictors and provided the smallest confidence intervals.

�Discussion

We evaluated the relevance of different parameters derived from very high resolu-
tion RGB-NIR imagery for the discrimination of savannah tree species. We could 
confirm the commonly found pattern that information based on the visual part of the 
spectrum is important for discriminating tree species (Fassnacht et al. 2016). In par-
ticular, we found that RGB-based spectral indices (Meyer and Neto 2008; Rasmussen 
et al. 2016) and simple chromatic coordinates (Woebbecke et al. 1995) in combina-
tion with a canopy height model (CHM) achieved the best results. By contrast, the 
performance of the NIR image parameters was weak and deteriorated when com-
bined with the CHM. Our overall accuracy of 77% (on average, maximum was 0.83) 
is comparable to the results of the recent review of Fassnacht (see Fig. 3 in Fassnacht 
et al. (2016)) who analysed 129 case studies on tree species mapping.

Most case studies have used a combination of hyperspectral and/or LiDAR for 
tree species mapping and have typically achieved overall accuracies of between 75 
and 90%. Of these, three were carried out in southern Africa, all in Kruger National 
Park, and all used hyperspectral image data and height information derived from 
LiDAR sensors. Naidoo et al. (2012) achieved 82% with four hyperspectral indices 
(including NDVI) and height information; whilst Cho et al. (2012) also used hyper-
spectral data but resampled them to seven World View 2 multispectral bands and 
combined them with LiDAR based height information. They achieved OA values of 
between 63 and 81%. Colgan et al. (2012) used LiDAR-based height information 
and BRDF corrected reflectance values for the VIS-NIR region. The bidirectional 
reflectance distribution function (BRDF) is a function describing the change in 
reflectance values due to view angle and sun position during image assessment. The 
BRDF correction improved the hyperspectral information and thus led to OAs of 
between 70 and 78%. Hence, our UAV based tree species discrimination approach, 
requiring only a ≈100$ RGB camera, performed equally well, when compared to 
the technically more sophisticated, and also much more expensive, hyperspectral 
and LiDAR sensors.

VIS-NIR imagery is by far the most commonly used data source for generating 
spectral indices. Pure RGB based spectral information has been used less often in 
remote sensing studies that have focused on the discrimination and mapping species. 
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In their review on tree species mapping, Fassnacht et al. (2016) also state that the 
VIS region (350–650 nm) contains the most often selected features for tree species 
mapping, without mentioning the relation to RGB. A recent study comparing spec-
tral indices derived from RGB and NIR camera images to multispectral imagery 
(Rasmussen et al. 2016) showed that cheaper RGB / NIR cameras are equal in per-
formance for mapping barley biomass in agricultural fields. Another study (Fischer 
et al. 2012) compared an NDVI calculated from high spectral resolution field spec-
trometer (i.e. ASD Field Spec 3) with an NDVI derived from a modified Olympus 
consumer-grade camera for mapping the spatial variability of NDVI in biotic soil 
crusts; they found strong correlations with R2 of 0.91.

In this study, we found that RGB bands were an important predictor but the least 
important was texture. This is surprising as we thought that texture would have a 
high potential for describing crown properties related to shadow patterning or varia-
tion in greenness. Fassnacht et al. (2016) list several studies that applied texture to 
improve tree species classification by 10–15%. However, using texture also creates 
problems that make its use seem clumsy and time consuming. First of all, the idea of 
texture is a multiscale problem. The relevant scale (i.e., the size of the window in 
which a texture value is calculated) has to be identified empirically. Therefore, dif-
ferent window sizes have to be compared with these usually being 3×3, 5×5, 7×7, 
9×9 and so on. When UAV data volumes are large (>1 GB), this quickly becomes 
unwieldy. Also, with very high resolution images, larger window sizes are needed 
but these slow processing times. Other options such as the offset and the number of 
grey levels considered, provide further opportunities to optimize the results; yet 
leading to a seemingly endless endeavour in finding the right parameter settings. 
Second, different species might require different window sizes. This seems logical 
but is difficult to realize technically. Third, the large number of available texture 
measures makes it difficult to select those that are optimal or most appropriate. This 
is complicated by the typically high correlation between the different texture mea-
sures. In our study, all parameters were kept stable (i.e., a window size of 5×5, offset 
of 1×1 and 16 grey levels). Not testing different settings might explain the poor 
performance of the texture parameters. We also used only a small fraction of the 
available texture measures. Other texture measures related to tree crown shape and 
size could have been considered (Fassnacht et al. 2016). The Orfeo Toolbox provides 
around 40 different texture measures in total. Hence, texture measures derived from 
UAV imagery require more studies on selecting and optimising the best measures 
and optimal window sizes for tree species discrimination or tree crown analyses.

Tree species mapping through remote sensing data can become an efficient tool 
in biodiversity monitoring. However, the nature of biodiversity is that communities 
under study almost always consist of common and rare species (Magurran and 
McGill 2011). The occurrence of rare tree species (rare equal to less than ten indi-
viduals overall) severely affected the potential to classify the whole tree species 
pool. Out of 16 species, seven species were considered as too rare to be used in the 
classification. Another five infrequent species, i.e. with less than 30 tree crowns for 
training and testing, led to poor classification results due to the small amount of 
training data. However, the infrequent species were impossible to classify correctly, 
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as can be seen from the non-significant or low quality models (Table 2, Fig. 3). Thus 
out of 16 species, only the four frequent species could be classified to acceptable 
levels of accuracy. The pattern that only frequent species can be mapped with suf-
ficient accuracy is confirmed by many other studies (Naidoo et al. 2012; Immitzer 
et al. 2012; Cho et al. 2012; Baldeck et al. 2015). The review of Fassnacht et al. 
(2016) reports the number of species that were classified in the analysed studies 
ranging from two to seventeen with an average of five or six. This finding has impor-
tant implications for future biodiversity monitoring that should be based on tree 
species mapping leading to a complete census. Mapping rare tree and shrub species 
becomes a challenge when too few individuals can be found for training and testing 
a classifier. Thus, in future studies, more emphasis should be put on high quality 
ground truth data gathering an equal number of ground truth tree locations per spe-
cies. In the study of Colgan et al. (2012), three species made up 30% of the land-
scape while the category “other” also had 20% of all occurring tree crowns. Thus, 
rare species can make a large fraction of tree crowns in a savannah but are repre-
sented by a small number of individuals per species. Common trees however, bear 
different challenges. For example, a high genus – species ratio (i.e. where many 
species of the same genus occur as in the genus Acacia or Combretum) means these 
species are sometimes lumped together into a single tree category at genus level 
(Naidoo et  al. 2012). The species abundances in (semi-)natural ecosystems are 
much more complex than in temperate forests and will require special consider-
ations for an operative tree species mapping based on remote sensing imagery.

Although our study was successful in discriminating selected savanna tree spe-
cies with a UAV-borne RGB camera, the limitations of UAVs in comparison to air-
borne or satellite-borne sensors requires discussion. In our case, the largest obstacle 
was the mismatch in the co-registration of NIR and RGB imagery, which had to be 
corrected manually. Better results could be achieved when using multispectral cam-
eras or even lightweight hyperspectral cameras. The spatial mismatch could have 
been the reason why the averaged tree crown parameters were worse for NIR than 
for RGB. Digitization of the tree crowns was also undertaken manually using only 
the RGB imagery. Hence, it is possible that the NIR imagery parameters contained 
a higher shadow fraction or parts of neighbouring tree crowns. Although manual 
digitization seems straightforward, it is also error prone and could be avoided by 
using specifically designed algorithms or software packages, e.g. TIDA (Culvenor, 
2002), JSEG (Kang et al. 2016) or ITCsegment (Dalponte and Coomes 2016). Other 
serious problems connected to light and shadowing effects that can occur when 
using UAV imagery are discussed by Rasmussen et al. (2016). In our study, the dif-
ferent flight directions during the drone overflight affected the brightness pattern. 
Rasmussen et al. (2016) also mentioned that BRDF effects affect the outcome of a 
study when not taken into consideration. These issues, co-registration and changing 
light conditions (including BRDF effects), seem to compromise the utility of UAV 
imagery. Ground control points should be essential for proper image co-registration, 
however, often these require expensive differential-GPS equipment. Further 
improvement of technical equipment or standardized procedures for UAV image 
acquisition should bring remedies in the future.
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�Conclusions

In this study, we evaluated the relevance of RGB and NIR image products, derived 
from UAV images, for discriminating tree species in a Namibian savannah. We 
found that data acquired in the NIR wavelength region only were not sufficient or 
even necessary, although this conclusion might have been incorrectly drawn because 
of co-registration problems between the NIR and RGB imagery. Permanently 
marked, well-surveyed ground control points therefore need to be planned for future 
image acquisition campaigns. Nevertheless, the OAs achieved with RGB data and 
CHM were comparable to other studies that used more expensive hyperspectral data 
and LiDAR instruments. This indicated that UAVs have a high potential for future 
tree species mapping tasks if areas less than 1 km2 are to be monitored. However, 
the number of species that can be mapped or discriminated seems independent of 
the sensor type. The assumption is that hyperspectral data theoretically can outper-
form RGB-NIR data when a large number of species are present. However, for the 
process of training a classifier, such as a Random Forest, the number of training 
polygons needs to be at least 30 in order to achieve sufficient and acceptable accura-
cies. This seems not feasible when rare species (i.e., less than ten individuals per 
square kilometre) are present. Hence, a significant future challenge is the task of 
mapping species with low abundances.

�Practical Application for Nature Conservation

This chapter dealt with the application of UAV-borne consumer grade cameras for 
discriminating savannah tree species and has several important messages for practi-
cal applications in nature conservation. Firstly, the delta-wing UAV that we employed, 
the eBee system (SenseFly 2015), is capable of capturing an area of 1 km2 during a 
single flight when the desired resolution is a 5 cm pixel size or greater. Smaller pixel 
sizes, e.g. 2 cm, can only be achieved in several flights (four to five). However, this 
this also doubles the disk space required for storing the imagery. Affordable quad-
copter systems cannot usually cover 1 km2 in a single flight. Secondly, we showed 
that tree species discrimination based solely on RGB + Canopy Height is possible, 
suggesting that a second flight with a NIR camera is potentially unnecessary. 
However, we need more studies comparing RGB based spectral indices to NIR based 
spectral indices in order to see whether RGB can replace NIR indices in the future. 
Finally, we found that ground truthing should take the abundance or frequency of the 
species into consideration. We suggest using a minimum of 50 individuals per spe-
cies for training purposes in order to be successfully mapped. Species from the same 
genus, e.g. the different Acacia species in our study, often share similar spectral 
properties and thus are very difficult to distinguish. One alternative is to map these at 
the genus level, if it is not the users demand to produce species specific map. In con-
clusion, we have shown that using UAVs to map the individual stems of tree species 
could be a cheap and very flexible tool for nature conservation in the near future.
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