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Many indigenous artists imagine themselves hovering over the land (country) observing both the 
natural and metaphysical forms and markings of the landscape. These bird’s-eye views are charac-
teristic of a hunter and gatherer society. They read the earth surface closely for signs of life, for 
tracking animals and for recognizing recent events.1

1 Extracted from https://www.aboriginal-art-australia.com/aboriginal-art-library/the-story-of-abo 
riginal-art/
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Introducing the Book “The Roles of Remote 
Sensing in Nature Conservation”

Ricardo Díaz-Delgado, Clive Hurford, and Richard Lucas

Abstract Although many books describe recent advances in remote sensing, there 
is a gap in the market for a book dedicated to the application of remote sensing to 
aid nature conservation. Our activities in training workshops and seminars with 
conservation managers and practitioners have clarified their requirements, particu-
larly in relation to the low transferability of remote sensing tools in their day to day 
work. Here, we outline each chapter and present the results of a survey carried out 
in the context of a workshop on remote sensing tools for conservation management. 
We provide the original questions and answers which support the common narrative 
found in the different conservation forums: a need for examples of good practice in 
the application of remote sensing tools.

Keywords Remote sensing applications • Remote sensing tools • Nature conserva-
tion • Nature conservation management • Workshop • Survey

 The Need for a Book on RS and Conservation: Filling the gap

If we ‘Google’ for “Remote Sensing”, we find almost 30 million entries, and if we 
then filter to “books”, we discover half a million entries. So why are we writing a 
new remote sensing book? Well, the discipline of remote sensing offers the tools for 
countless and varied applications, so much so that if we then search Google for 
books on remote sensing applied in nature conservation, then the answer supplied 
by Google Inc. is just one book (Katsch and Vogt 1999; Nagendra et  al. 2013; 
Spanhove et al. 2012). The reader will convene with us there is a gap to fill.
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Apart from statistics, we, the editors, had the common feeling that much work 
had to be done in order to effectively transfer remote sensing technology, findings 
and tools to managers in protected areas. This idea comes mainly from several 
European meetings on habitat mapping under Natura 2000 and the implementation 
of EU Habitats Directive. In one such workshop held in 2016, we proposed to the 
delegates a survey on their awareness and usability of remote sensing applications. 
The survey is still accessible and shown in the next section. One of the preliminary 
findings was the urgent need for a real transference from scientific methods to 
 applicable tools for managers.

In Europe, one of the major challenges of nature conservation is related to the 
need to provide updated spatial information on habitat status and sustaining long- 
term monitoring activities (Vanden Borre et al. 2011). The managers of protected 
areas are aware of such needs and of the potential applications. However, they sud-
denly face difficult technical issues and background limitations to locally imple-
ment remote sensing or to interpret European-wide remote sensing products. So, 
our main reason for this book was to raise awareness of very basic remote sensing 
applications and to draw attention to its limitations; but also to highlight and convey 
the opportunities. To some extent, the book is intended for conservation site manag-
ers rather than scientists or technicians. Obviously, we may fail to fulfill these aims, 
but is up to you, the manager with the book in your hands, who has to decide this.

 Book Structure

The book is composed of contributions by several authors. Most of these authors are 
at the interface between managers in nature conservation and researchers. They 
have largely contributed to spread the word of remote sensing applications to audi-
ences of managers at international, national and local scales. Their chapters usually 
provide guidelines to overcome the shortcomings in implementing a technique or 
taking decisions according to method accuracy and easiness.

The book is therefore structured in four sections: A first introductory section on 
habitat mapping and monitoring, focusing on the needs of ecologists and managers 
and providing several adopted solutions. Following this, the second section pro-
vides a group of case studies focusing on detailed vegetation mapping, which can 
provide a baseline for habitat and biodiversity mapping and monitoring; The third 
section presents case studies that are devoted to remote sensing applications and 
new technologies which are used to identify, map or track individual or groups of 
species. We showcase several studies that have used remote sensing tools for faunal 
surveys, nowadays clearly enhanced by the use of drones. The final section looks 
ahead through very recent methods that are relevant to nature conservation and a 
final chapter briefly summarizes the future tangible options to be transferred to 
managers from the remote sensing community.

Thus, under the first section, Jeroen Vande Borre and colleagues introduce the 
challenge of continuous habitat mapping by managers. This is a pending request by 

R. Díaz-Delgado et al.



5

ecologists to the remote sensing community and raises the critical issue of the trans-
ferability of remote sensing methods, which is the motivation behind the whole 
book.

After posing the needs from ecologists and managers, Peter Bunting shares with 
us a very valuable manual on the basic remote sensing techniques to elucidate the 
data source to use and the processing procedures to apply.

In order to enrich the vision of the many utilities of remote sensing in long-term 
ecological monitoring, Ricardo Díaz-Delgado briefly describes the different moni-
toring protocols in the protected area of Doñana National Park in Spain that are 
carried out at the landscape scale by means of remote sensing.

The second section starts with a nationwide case study of habitat mapping. Anna 
Allard provides a detailed chapter on the setup of the Swedish programme to moni-
tor landscape changes. This chapter is a very good example on how to implement a 
wise design enhancing monitoring efficiency with the help of remote sensing data 
sources. Afterwards, Gwawr Jones and colleagues share their experiences in the use 
of very high resolution (VHR) remote sensing for mapping and assessing te condi-
tion of terrestrial coastal habitats listed as Annex I by the EC’s Habitats Directive.

With a continued focus on vegetation, Katie Medcalf and colleagues introduce a 
biodiversity monitoring system that has been implemented in Norfolk, UK, and uses 
earth observation data. In the final chapter of this second section, Marcos Jiménez 
and Díaz-Delgado provide a good example on plant species mapping by means of 
subpixel classification through application of spectral unmixing methods to air-
borne hyperspectral images.

The third section, which offers case studies focusing on single species, begins 
with two chapters on the successful use of drones for mapping plant species. Abigail 
Sanders describes how drones can be used with standard cameras to retrieve the 
understorey distribution of the invasive. Jens Oldeland and colleagues then provide 
evidence on the use of proximal sensing with drones equipped with visible cameras 
to identify different tree species in Namibia.

Still under the section, several chapters converge on the use of new technologies 
including drones and trap cameras, and innovative digital image analysis to inven-
tory fauna species. The chapter by Michael Schneider and Holger Dettki opens the 
floor for less traditional remote sensing methods (e.g., camera traps and bioteleme-
try with Global Positioning Systems or GPS) in the surveillance and monitoring of 
large carnivores in Sweden. Then, Sonali Gosh and Richard Lucas introduce the 
integration of camera trap surveys with remote sensing information on land cover, 
fire and human activities to better understand the distribution, movement and behav-
ior of tigers and other large cats in Manas National Park in northeast India. Clive 
Hurford in his chapter reviews different digital image analysis techniques and open 
source software to automatically count bird species in pictures of bird flocks. 
Finally, Ricardo Díaz-Delgado and colleagues share with us an essay where drones, 
commonly referred to as unmanned airborne systems or vehicles (UAS or UAVs), 
are contributing to improve the efficiency of bird breeding monitoring in the Doñana 
protected area.

Introducing the Book “The Roles of Remote Sensing in Nature Conservation”
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In the final section, Richard Lucas and Anthea Mitchell presents an overview of 
the Earth Observation Data for Ecosystem Monitoring (EODESM) system which 
was developed through two European-funded projects (BIO_SOS and 
ECOPTENTIAL). This system facilitates the integration of a diverse range of 
remote sensing observations and derived products, ancillary spatial datasets and 
field data to classify land covers and habitats using consistent taxonomies and pro-
vide evidence-based assessments of change. The book is closed with a short epi-
logue on what are the most likely innovations in remote sensing that will be available 
in the foreseeable future for nature conservation and management.

 The Feeling of Managers: A Survey

We, the authors, are engaged in several activities involving information exchange 
with conservation managers, either at local, regional, national or international level. 
These include workshops, seminars, training lectures and participatory meetings 
and so on. In the preparation of the 2016 workshop on the application and potential 
of remote sensing in nature conservation management, a survey was prepared to 
review the awareness of conservation managers of remote sensing applications and 
their experiences of working with data and derived information. Twenty of the 
workshop participants provided a response to the survey, with these being either 
managers or technicians working in protected areas although several few scientists 
involved in research projects within protected areas were also present. This sample 
size was too small and hence we would like to keep the exercise open to invite views 
from others involved in remote sensing for nature conservation. The survey can 
therefore be accessed at https://goo.gl/GqC63f and we will endeavour to write up 
the outcomes as a journal article in the near future.

Below, we have listed the questions together with the answers and the percent 
assigned to each one by the respondents, although these are available on the survey 
website:

 1. Have you ever used remote sensing in your day-to-day work? (exclusive answer)

 (a) Yes (90%)
 (b) No
 (c) I don’t know (10%)

 2. In such a case, for what purpose? (not exclusive answer)

 (a) Data source for management planning (63%)
 (b) Data source for decision-making (54%)
 (c) Data source for monitoring of management actions (36%)
 (d) Data source for measuring the extent of disturbances or extreme events such 

as wildfires, invasive species spread, pollution, etc. (45%)

R. Díaz-Delgado et al.
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 3. What remote sensing applications do you know in nature conservation and man-
agement of protected areas? (not exclusive answer)

 (a) Use of either historical or recent aerial pictures, (90%)
 (b) Use of land use cover, vegetation or habitat maps (100%)
 (c) Use of multispectral indices (NDVI, EVI, GEMI, etc.) (72%)
 (d) Others, please specify (18%)

 4. Are you aware about remote sensing research projects carried out in your pro-
tected area? (exclusive answer)

 (a) Yes, many (46%)
 (b) Yes, some (46%)
 (c) Not at all (8%)

 5. In such a case, please briefly describe one example:

 Some answers were: monitoring of natural systems, LiDAR flights, mapping of 
invasive species, among others.

 6. To what extent do you think remote sensing and its products play a relevant role 
in the day-to-day management of a protected area? (exclusive answer)

 (a) It is essential (54%)
 (b) It is a complementary information (46%)
 (c) It is not important (0%)

 7. What advantages do you believe remote sensing provides to nature conserva-
tion? (not exclusive answer)

 (a) Synoptic view of the protected area (81%)
 (b) Historical background (91%)
 (c) Multispectral information (wavelengths other than visible) (72%)
 (d) I don’t know (0%)
 (e) Others, please specify, (0%)

 8. Is there a staff member in your management headquarters skilled in the use of 
remote sensing? (exclusive answer)

 (a) Yes, he/she’s an expert (9%)
 (b) Yes, he/she’s a technician with some background (36%)
 (c) No (55%)

 9. In the case you could incorporate a new technician in your working team, how 
relevant would it be that he/she has a background in remote sensing applications 
to nature conservation? (exclusive answer)

 (a) Of critical importance (46%)
 (b) Of relative importance (54%)
 (c) Not relevant (0%)

Introducing the Book “The Roles of Remote Sensing in Nature Conservation”
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 10. Please, indicate which of the following remote sensing applications you are 
aware of (not exclusive answer)

 (a) Interpretation of aerial pictures (82%)
 (b) Digital classification of multi and hyperspectral images (for land use cover 

maps) (55%)
 (c) Thermal imagery (36%)
 (d) Radar imagery or data (27%)
 (e) LiDAR data or derived information such as Digital Elevation Models 

(72%)
 (f) Field spectroscopy and spectral signatures (27%)
 (g) Vegetation indices (NDVI, EVI, GEMI, etc.) (73%)
 (h) Portable ground radar (9%)
 (i) Terrestrial LiDAR (54%)
 (j) Airborne images (by airplane, drones or other platform) (73%)
 (k) Bathimetric mapping with sonar (36%)
 (l) Others, please specify

 11. Do you know which remote sensing applications have been used in the pro-
tected area you work for? (not exclusive answer)

 (a) Iinterpretation of aerial pictures (90%)
 (b) Digital classification of multi and hyperspectral images (for land use cover 

maps) (55%)
 (c) Thermal imagery (0%)
 (d) Radar imagery or data (0%)
 (e) LiDAR data or derived information such as Digital Elevation Models 

(55%)
 (f) Field spectroscopy and spectral signatures (9%)
 (g) Vegetation indices (NDVI, EVI, GEMI, etc) (46%)
 (h) Portable ground radar (0%)
 (i) Terrestrial LiDAR (36%)
 (j) Airborne images (by airplane, drones or other platform) (46%)
 (k) Bathymetric mapping with sonar (18%)
 (l) Others, please specify

 12. Which ecosystem/s is/are the most representative/s of the protected area where 
you work? (not exclusive answer)

 (a) Forest and shrubs (82%)
 (b) Wetlands (27%)
 (c) Alpine grasslands and meadows (45%)
 (d) Coastal and marine ecosystems (55%)

 13. Did you ever hear about Copernicus European programme (formerly known as 
GMES)? (exclusive answer)

 (a) Yes indeed (45%)
 (b) Not at all (36%)
 (c) It sounds familiar to me (18%)

R. Díaz-Delgado et al.
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 14. Do you know about Remote Sensing agencies and associations in your coun-
try? (exclusive answer)

 (a) Yes, I do (36%)
 (b) I am afraid I don’t (55%)
 (c) I am aware of something similar (9%)

 15. Overall and from your point of view, the main remote sensing applications are: 
(not exclusive answer)

 (a) Mapping of vegetation, habitats, species etc. (81%)
 (b) Valuable images to visualize the territory (64%)
 (c) Information to characterize land use cover change through time (100%)
 (d) Very detailed images to detect, identify and discriminate specific features 

such as wildfires, forest decay, etc. (91%)
 (e) Landscape analysis (connectivity, fragmentation, etc.) (73%)
 (f) Quantitative information of the territory (biomass, primary production, 

etc.) (73%)
 (g) Others, please specify

 16. Which of the following do you think are the constraints of using remote sensing 
applications in your day-to-day work: (not exclusive answer)

 (a) A too high degree of knowledge required to deal with the information pro-
vided by remote sensing sources (73%)

 (b) Very high prices of the very high resolution images (both for satellite, air-
borne and drone) (55%)

 (c) Overall ignorance of the operational applications (46%)
 (d) Low temporal resolution of the available remote sensing images (9%)
 (e) Low spatial resolution of the available remote sensing images (18%)
 (f) Others, please specify: lack of time and low interest level of the staff on 

such techniques

 17. Do you think there are enough lectures on remote sensing in the University 
degrees related to nature conservation? (such as Biological or Environmental 
Sciences, Forestry, Geography, etc.) (exclusive answer)

 (a) Yes (0%)
 (b) No (54%)
 (c) I don’t know (46%)

Although the size of the sampled population is low, the survey provides a pre-
liminary overview of the knowledge that this group of conservation managers had 
on the topic. They mostly knew about different and specific remote sensing applica-
tions such as LiDAR or vegetation indices, while they miss more skilled staff at the 
management agencies.

We kindly encourage the readers to read the book and fill the survey available 
online in order to enhance the knowledge on the success in transferring remote sens-
ing applications to nature conservation and management.

Introducing the Book “The Roles of Remote Sensing in Nature Conservation”
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Towards a Mature Age of Remote Sensing 
for Natura 2000 Habitat Conservation: Poor 
Method Transferability as a Prime Obstacle

Jeroen Vanden Borre, Toon Spanhove, and Birgen Haest

Abstract Over the past decades, remote sensing has been repeatedly identified as 
a promising and powerful tool to aid nature conservation. Many methods and appli-
cations of remote sensing to monitor biodiversity have indeed been published, and 
continue to be at an increasing rate. As such, remote sensing is seemingly living up 
to its expectations; yet, its actual use in nature conservation (or rather the lack 
thereof) contradicts this. We argue that, at least for the practical implementation of 
regular vegetation monitoring, including within protected areas (e.g., European 
Natura 2000 sites), a lack of transferability of remote sensing methods is an over-
looked factor that hinders its effective operational use for nature conservation. 
Among the causes of poor method transferability is the large variation in objects of 
interest, user requirements, ground reference data, and image properties, but also 
the lack of consideration of transferability during method development. To stimu-
late the adoption of remote sensing based techniques in vegetation monitoring and 
conservation, we recommend that a number of actions are taken. We call upon 
remote sensing scientists and nature monitoring experts to specifically consider and 
demonstrate method transferability by using widely available image data, limiting 
ground reference data dependence, and making their preferably open-source pro-
gramming code publicly available. Furthermore, we recommend that nature conser-
vation specialists are open and realistic about potential outcomes by not expecting 
the replacement of current in-place methodologies, and actively contributing to the 
thought process of generating transferable and repeatable methods.

We believe a new focus on method repeatability instead of novelty, would 
herald a mature era for remote sensing in nature conservation, in which remote 
sensing, through its operational use, would truly live up to its potential for nature 
conservation.

J. Vanden Borre (*) • T. Spanhove 
Research Institute for Nature and Forest (INBO), Kliniekstraat 25, 1070 Brussels, Belgium
e-mail: Jeroen.VandenBorre@inbo.be; Toon.Spanhove@inbo.be 

B. Haest 
Remote Sensing Department, Flemish Institute for Technological Research (VITO), 
Boeretang 200, 2040 Mol, Belgium 

Bird Migration Department, Institute of Avian Research, An der Vogelwarte 21,  
26386 Wilhelmshaven, Germany
e-mail: birgen.haest@gmail.com

mailto:Jeroen.VandenBorre@inbo.be
mailto:Toon.Spanhove@inbo.be
mailto:birgen.haest@gmail.com


12

Keywords Earth observation • EU Habitats Directive • Annex I habitats • Habitat 
mapping • Habitat monitoring • Conservation status • User requirements

 Introduction

Remote sensing and, in particular, earth observation (i.e., the gathering of informa-
tion about the earth’s surface and events on it from the air or from space; Jones and 
Vaughan 2010), has been around as a tool and a science for several decades. Over the 
years, technological advancements in sensors (increasing spatial and spectral resolu-
tion, active sensors), platforms (satellites, airborne, and more recently unmanned 
systems), image analysis techniques (e.g., object-based image analysis; Blaschke 
et al. 2014) and computer processing capacity have made the tool ever more power-
ful. Not surprisingly, remote sensing has repeatedly been identified as a very promis-
ing and powerful tool to aid biodiversity mapping and monitoring (e.g., Stoms and 
Estes 1993; Innes and Koch 1998; Nagendra 2001; Kerr and Ostrovsky 2003; Turner 
et al. 2003; Aplin 2005; Xie et al. 2008; Gross et al. 2009; Wang et al. 2010; Nagendra 
et al. 2013; Corbane et al. 2015; Pettorelli et al. 2016), and many studies have set out 
to develop practical applications of remote sensing to specific needs of the ecological 
and conservation communities (e.g., Feilhauer et al. 2014; Franke et al. 2012; Kopeć 
et al. 2016; Neumann et al. 2015; Riedler et al. 2015; Thoonen et al. 2013; Zlinszky 
et al. 2014). Indeed, the use of remote sensing offers a number of distinct advantages 
over field-based data collection, such as the provision of a spatially explicit and con-
sistent view over larger areas, that is free of a priori interpretation at the time of data 
collection. It also allows for easier updates, and even retrospective evaluation of 
changes (when archive images are available) (Vanden Borre et al. 2011a).

Natura 2000 is a European Union-wide policy aimed at the restoration and long- 
term maintenance of the most typical and most threatened habitat types and species 
in Europe. As part of its implementation, EU member states have selected outstand-
ing natural areas within their territories to become part of the Natura 2000 network 
(Evans 2012), and are monitoring and reporting the status of species and habitat 
types on their territory in six-yearly intervals. Vanden Borre et al. (2011b) analysed 
the use of remote sensing in this process and found that its application was mostly 
limited to research contexts. Despite the potential advantages and continuous scien-
tific and technological progress, the step towards operational monitoring using 
remote sensing appeared to be too big a hurdle to take. It has been suggested that 
ecologists have lagged behind in adopting the new technological opportunities 
 provided by remote sensing (Newton et  al. 2009; Horning et  al. 2010), and one 
could easily think that this is because remote sensing requires technical skills that 
are too far from general ecologists’ skills. But is that really the case? And if so, is it 
the only reason? Ecologists and nature conservationists have not been particularly 
slow in taking up other useful technologies when they emerged, such as GPS  
and radio tracking, population genetic analysis, aerial photography and GIS, 
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computer- intensive statistical procedures, or citizen science, each of which requir-
ing specialized skills and (often expensive) equipment.

In this paper, we focus on another critical factor that, in our view, may form a 
major barrier to the operationalization of remote sensing in nature conservation 
applications, but is all too often overlooked. That factor is method transferability, or 
more precisely, the lack thereof. We argue that poor transferability of remote sens-
ing methods may be the cause of many disappointments among potential users, and 
therefore hinder further attempts to their operational implementation in biodiversity 
conservation. We discuss different causes of poor method transferability, and illus-
trate this with some examples based on Natura 2000 habitat monitoring, an applica-
tion field where operationalization of remote sensing monitoring could have a large 
impact. Finally, we discuss pathways to overcome the current mismatch, and make 
remote sensing applications more widely useful and transferable.

 Transferability as a Critical Success Factor: The Case 
of Natura 2000 Habitat Monitoring

Vanden Borre et al. (2011b) noticed a low uptake of operational remote sensing in 
Natura 2000 habitat monitoring. Several possible causes were put forward, both on 
the technical and on the practical side. Technical challenges include, for instance, the 
fact that habitat types strongly vary in scale, show high variation across Europe, and 
sometimes can only be reliably identified by the presence of a selected set of indica-
tor species (the latter mostly occurring in low numbers) (Vanden Borre et al. 2011a). 
Challenges of a more practical kind are inter alia the difficulty of obtaining suitable 
image data at a suitable time, and the potentially high cost associated with that. Also, 
many potential user organizations lack the profound GIS and remote sensing skills 
needed to effectively make use of this type of information (Kennedy et al. 2009).

While each of these causes may be valid, another aspect has, until now, been 
largely ignored but could prove to be a critical factor, namely: a lack of method 
transferability. With the right kind of data and properly fine-tuned methods, remote 
sensing can deliver highly detailed spatial and thematic information. Many biodi-
versity monitoring schemes, such as Natura 2000 habitat monitoring, require, or at 
least benefit from, high spatial and thematic detail. However, when details are 
important, and the potential to extract such detail is there, approaches not surpris-
ingly tend to be specifically geared to the problem at hand. After all, remote sensing 
scientists, like other scientists, need to publish to persist. And failures usually do not 
make it to publication (Fanelli 2012; Matosin et al. 2014). Additionally, in a method- 
focused field like remote sensing, coming up with novel methods further increases 
the chances of getting the work published. In recent years, the number of published 
methods for detailed remote sensing of Natura 2000 habitats has soared. Many of 
these include extensive fine-tuning to tackle complex problems. As such, the meth-
ods are often adjusted to one particular location, to such an extent that it may jeop-
ardize their applicability elsewhere.

Towards a Mature Age of Remote Sensing for Natura 2000 Habitat Conservation: Poor…
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 Possible Causes of Poor Transferability

 Objects of Interest Differ (Even if They Carry the Same Name)

Biodiversity is extremely diverse, as are the stakeholders in biodiversity conserva-
tion and the (living) objects they are studying, monitoring and/or conserving. 
Although designated by the same name, objects may actually be extremely variable 
across Europe or even globally, and therefore hard to define. Forest, for instance, is 
a widely used and intuitively understood term, but the variation in national forest 
definitions is huge, with different thresholds applied for crown closure, tree height, 
minimum area and minimum width (Lawrence et  al. 2010). As a result, what is 
considered a forest in one country, may not classify as a forest in a neighbouring 
country, or vice versa.

Natura 2000 habitat types provide another example of different definitions under 
the same name. Although this typology is embedded in European legislation, guid-
ance from the EU on the identification of the different habitat types has been rather 
limited and biased towards regions with pre-existing vegetation typologies (UK, 
Germany, Nordic countries) at the time when the list was drawn up (Evans 2006). 
As a result, most member states produced their own national interpretation hand-
books for the habitat types on their territory, with varying levels of agreement 
between states. To illustrate this variation, we screened a selection of these hand-
books (see Annex) for the national definitions of two rather widespread habitat 
types; the ‘European dry heaths’ (Natura 2000 code: 4030) (45 descriptive defini-
tions of the type or subtypes found, in 18 different sources, from 10 member states) 
and ‘Luzulo-Fagetum beech forests’ (Natura 2000 code: 9110) (19 descriptions, 16 
sources, 8 member states), We noted the plant species mentioned as ‘characteristic’, 
‘typical’, ‘indicative’, or similar wordings. Looking at these species lists, the extent 
of the variation (or the difference in interpretation) becomes immediately obvious 
(Fig. 1). The vast majority (68%) of species were mentioned only once or twice. Of 
the 219 vascular plant species and 37 lichens and mosses typical of ‘European dry 
heaths’, only eleven vascular plant species (i.e., 5%) and one moss were mentioned 
in more than a quarter of the descriptions. For the ‘Luzulo-Fagetum beech forests’, 
the species list is somewhat more uniform, with 23 out of 90 vascular plants (26%) 
and three out of nine mosses mentioned in more than a quarter of the habitat descrip-
tions. The low agreement in component species is partly due to different ecological 
characteristics of the habitat across Europe. However, different interpretations 
between member states, and even between regions within a member state, undoubt-
edly also play a role (Evans, 2010).

J. Vanden Borre et al.
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 User Requirements Abound and Differ (Even if They  
Appear Similar)

Understanding user requirements is an integral part of the design of any kind of 
product, and is critical to its eventual success. Discovering the real requirements, 
however, is often difficult. Different people will define a specific set of needs in dif-
ferent ways, mostly depending on their personal experience, interests and expecta-
tions. Furthermore, most users typically think along the lines of their current 
framework and existing workflows, rather than being innovative and focusing on the 
real needs (both current and future) and exploiting technical developments. 
Similarly, users are not always aware of the specifications of current products and 
of the potential of future products. As a result, what is a similar requirement at first 
sight (e.g., conservation status of a habitat) may actually reveal very different under-
lying data needs. In heathlands, for instance, desiccation and atmospheric nitrogen 
deposition both lead to the dominance of Purple moorgrass (Molinia caerulea). 
From a remote sensing perspective, the observation (i.e., the grass cover) is the 
same, but from a management perspective, different actions are required.

Conservation status reporting under Natura 2000 requires four aspects for each 
habitat to be monitored and assessed against thresholds or reference values: habitat 

Fig. 1 Histogram of the number of national habitat definitions in which a plant species is 
mentioned, for the two Natura 2000 habitat types European dry heaths (4030) and Luzulo-Fagetum 
beech forests (9110) and their subtypes. The majority of species are only mentioned for a few (sub) 
types and in a few member states. In contrast, only a few species, mainly vascular plants, are 
mentioned in the bulk of the descriptions

Towards a Mature Age of Remote Sensing for Natura 2000 Habitat Conservation: Poor…



16

area, habitat range, specific structures and functions (incl. typical species), and 
future prospects (ETC/BD 2011; see also Vanden Borre et al. 2011b). To assess the 
specific structures and functions, several EU member states have taken an approach 
to evaluate local habitat quality at (all or a sample of) individual habitat occur-
rences, and identified relevant indicators to grade habitat quality in the field (e.g., 
North Rhine-Westphalia, Germany: Verbücheln et al. 2002; Austria: Ellmauer 2005; 
Flanders, Belgium: T’jollyn et al. 2009). Such an approach benefits local conserva-
tion managers, by providing data on where habitats are in good or poor condition. 
This may be directly used to prioritize the areas where conservation actions are 
needed most.

Generally, the indicators cover floristic and/or fauna composition (e.g., number 
of key species present), vegetation structure (e.g., height, cover, proportion of dead 
wood), disturbances (e.g., invasive species), and landscape configuration (e.g., con-
nectivity and isolation). All these indicators relate to specific properties of the habi-
tat (Bock et  al. 2005), and hence contain useful information for managers and 
policy-makers (Spanhove et al. 2012; T’jollyn et al. 2009). However, their relative 
importance in the eventual conservation status assessment strongly depends on the 
context (geographically, socio-economically, etc.). Adding to that the large variation 
between and within habitat types, it becomes clear that ‘default’ remote sensing 
methods will only be able to address a small number of indicators. A degree of 
adaptation of the method will generally be unavoidable.

As an example, we evaluated the indicators that are used for the assessment of 
natural habitats in Flanders (T’jollyn et  al. 2009) and Germany (PAN & ILÖK 
2010). In Flanders, 120 indicators have been defined for 43 habitat types (69 sub-
types). Frequently used indicators are the number and spatial coverage of key spe-
cies, and some widespread threats such as forest, grass and tall herb encroachment 
and alien invasive species. The majority of the indicators, however, are only relevant 
for a few habitats, and almost half of them (48%) are used for only one habitat type 
or subtype (Fig. 2). Figure 3 shows the results of a ‘rarefaction’-like analysis, where 
the number of conservation status indicators or key species is modelled as a function 
of the number of habitat (sub) types evaluated, for Flanders (T’jollyn et al. 2009) 
and Germany (PAN & ILÖK 2010). None of the curves shows signs of nearing a 
plateau value, indicating that any habitat type added will further raise the total num-
ber of indicators/species on which data need to be gathered.

 Available Ground Reference Data Differ

Ground reference data, if available, come in many forms, both sampling-wise and 
content-wise (Stehman and Czaplewski 1998). Depending on the applied sampling 
design, samples can be provided as points (but referring to a spatial sample unit on 
the ground of all possible sizes and shapes) or as objects (polygons). Their selection 
can have followed random or non-random sampling principles, and they can have 
been collected in the field, or deduced from other (usually older) map information. 
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With respect to content, the dataset can contain all classes in the area, or only target 
classes. Likewise, it can have mixtures and gradients between classes included, or 
(un-)intentionally excluded from the dataset. Sample sizes can be more or less 
evenly spread over the classes, or highly skewed. Also, the data can be topical or 
(partially) outdated. In some cases, reference data can even be completely absent.

All these aspects affect the potential outcome and application of specific remote 
sensing methods to a certain degree. Given the currently limited sharing of refer-
ence data (Pettorelli et al. 2014), which further impedes the availability of similar 
reference data over different areas, the impact of ground reference data availability 
on remote sensing method transferability cannot be disregarded.

 Image Properties Differ

In common with ground reference data, image data also come in a variety of forms. 
Not only do specifications for each sensor differ (number and location of bands, 
band widths and spectral sensitivities, spatial and radiometric resolutions, known 

Fig. 2 Histogram of the number of habitat (sub) types in which a given indicator is used in the 
Flemish manual for conservation status assessments (T’jollyn et al. 2009). The majority of the 
indicators are used for one or a few habitat (sub) types only

Towards a Mature Age of Remote Sensing for Natura 2000 Habitat Conservation: Poor…
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and unknown flaws and anomalies,…), commonly applied pre-processing algo-
rithms may further inflate differences, even between two images of the same sensor 
(through resampling and reductions in spatial, spectral and/or radiometric resolu-
tion) (Jones and Vaughan 2010). For vegetation monitoring however, constraints in 
applications most often arise from difficulties in obtaining suitable high-resolution 
imagery. A limited number of data providers, cloudy weather, and yearly variations 
in vegetation phenology, make it very difficult to obtain truly comparable pairs of 
image data from two different timestamps.

 Real-World Examples

Next, we present some examples of transfer cases from our own experience, illus-
trating the type of problems that occurred, and the solutions that were (sometimes) 
found.

The method we tested for transferability was originally developed in the frame-
work of a Belgian research project called ‘HABISTAT’. Its aim was to map Natura 
2000 habitat types and their conservation status in Natura 2000 sites, with a focus 
on Atlantic heathland in Flanders. The method is described in Haest et al. (2010) 
and Haest et al. (2017). In short, it consists of a supervised classification (Linear 
Discriminant Analysis) of vegetation using classes geared towards remote identifi-
cation, followed by a rule-based reclassification into occurrences (‘patches’) of 
Natura 2000 habitat.

In the frame of a follow-up project ‘MS.MONINA’ (EU 7th Framework 
Programme), three transfer cases were tested, with the method being applied to: (a) 
the original study area, but at later dates, (b) a Continental heathland ecosystem in 
Germany, and (c) a coastal dune ecosystem in Flanders. In the course of the tests, 
several method adjustments had to be made:

• In the original context of the HABISTAT project, the study area of Atlantic 
heathland was intensively visited, with many hundreds of field reference plots 
recorded in either carefully selected homogeneous vegetation patches or in ran-
dom locations. These served as training and validation data respectively. In a 
more operational remote sensing context, such large datasets are rarely available, 
and therefore, the method had to be extended to accommodate different types of 
training data. In particular, the method was adapted to work with extracted train-
ing data from existing (field-driven) vegetation maps, rather than the point-based 
field plots in the original version. We considered two options, using either single 
or multiple points per polygon of the field map.

• For the new study sites in the transfer cases, a new remote-sensing oriented 
classification scheme had to be developed, based on vegetation descriptions or 
maps of the new study sites. It was not always straightforward to ‘translate’ 
existing field data into the new classification scheme, either because the existing 
 classification was too detailed or not detailed enough, or because the existing 
field information was biased towards a few specific vegetation types only.

Towards a Mature Age of Remote Sensing for Natura 2000 Habitat Conservation: Poor…
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• The reclassification algorithms to convert a vegetation map into a habitat map 
also had to be further developed. Reclassification rules were added or adapted to 
deal with the known habitats that occurred on the new study sites. Furthermore, 
the rules for delineating ‘relevant’ habitat patches (based on the BIOHAB 
method; Bunce et al. 2008) were extended to work not only in a heathland con-
text, but (at least in theory) in all European ecosystems.

It is important to notice that in the tests, we did not strive for success at all cost. 
It was our intention to evaluate what could be done with the method in – what we 
considered  – a realistic timeframe. We therefore limited the available time to 
approximately 2 weeks of work per case. If, after that time, we did not feel yet we 
were on track to a result in the very near future, we would stop the test.

 Transfer Test Case 1: To Later Dates

 Study Site

The heathland of Kalmthoutse Heide is part of a cross-border Natura 2000 site in 
Belgium and the Netherlands, located some 20 km northeast of the city of Antwerp 
(Belgium), in the Atlantic Biogeographical Region of Europe. It consists of a core 
area of over 1000 ha of open heathland and inland dunes, surrounded by broad- 
leaved forests (oak, birch) and pine plantations. Prevailing Natura 2000 habitat 
types are wet (4010) and dry heathland (4030) and open habitats on inland dunes 
(2310 and 2330). The area is also home to a wide range of heathland-associated 
birds, reptiles, amphibians and invertebrates.

The site’s location, amidst an intensively used agricultural area (especially 
fertilizer- demanding maize culture) and in the vicinity of the port of Antwerp’s 
industry, makes it extremely prone to nutrient enrichment from atmospheric deposi-
tions. This results in the encroachment of Purple moorgrass (Molinia caerulea) at 
the expense of the ericoid dwarf shrub vegetation (Calluna vulgaris and Erica tetra-
lix) that is typical of heathlands. Other pressures include dune fixation by an inva-
sive exotic moss species (Campylopus introflexus), desiccation from drinking water 
extraction, recreational use, and uncontrolled wildfires. The management primarily 
aims at counteracting the negative effects of nutrient accumulation, through grazing, 
mowing and sod-cutting, and restoring the natural dynamics of the inland dunes.

 Method Application

The original application of our method was on a Airborne Hyperspectral Scanner 
(AHS) image acquired on 2nd June 2007  by the Spanish National Institute of 
Aeronautics (INTA). The same method was then applied (the transfer case) to sev-
eral hyperspectral images of the same area acquired by the German Aerospace 
Centre’s (DLR) Airborne Prism Experiment (APEX) in 2010, 2011 and 2012. The 
same hierarchical classification scheme (Table 1) and the same reference dataset 
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Table 1 Four-level classification scheme for the Grenspark De Zoom-Kalmthoutse Heide

Level 1 Level 2 Level 3 Level 4

H Heath- 
land

Hd Dry heathland Hdc Calluna 
vulgaris- 
dominated 
heathland

Hdcy Calluna-stand of 
predominantly 
young age

Hdca Calluna-stand of 
predominantly 
adult age

Hdco Calluna-stand of 
predominantly old 
age

Hdcm Calluna-stand of 
mixed age classes

Hw Wet heathland Hwe Erica tetralix- 
dominated 
heathland

Hwe- Erica tetralix- 
dominated 
heathland

Hg Grass- 
encroached 
heathland

Hgm Molinia 
caerulea- 
dominated 
heathland

Hgmd Molinia-stand on 
dry soil

Hgmw Molinia-stand on 
moist soil

Hgd Deschampsia 
flexuosa- 
dominated 
heathland

Hgd- Deschampsia 
flexuosa-dominated 
heathland

Hs Shrub/
tree- encroached 
heathland

Hst Tree-encroached 
heathland

Hst- Tree-encroached 
heathland

Hsr Rubus- 
encroached 
heathland

Hsr- Rubus-encroached 
heathland

G Grass- 
land

Gt Temporary 
grassland

Gt- Temporary 
grassland

Gt-- Temporary 
grassland

Gp Permanent 
grassland

Gpa Permanent 
grassland in 
intensive 
agricultural use

Gpap Species-poor 
permanent 
agricultural 
grassland

Gpar Species-rich 
permanent 
agricultural 
grassland

Gpn Permanent 
grassland with 
semi-natural 
vegetation

Gpnd Dry semi-natural 
permanent 
grassland

Gpj Juncus effusus- 
dominated 
grassland

Gpj- Juncus effusus- 
dominated 
grassland

(continued)
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(containing data from 2007–2009) were re-used on each occasion. However, all 
field data were checked on aerial photos to account for major events that would 
render them invalid for further use (e.g., sod cutting, tree removal and wildfires). 
Therefore, the effective sample size for training and validation gradually decreased 
from 2010 to 2012.

An overview of accuracies obtained after transfer can be found in Table 2. Not 
surprisingly, accuracy levels decreased from level 1 (6 classes) to level 4 (24 classes) 
because of the increasing level of complexity and fewer training samples per class. 
It was also apparent that accuracy levels dropped from 2007 to 2012. This can be 
explained by the increasing time gap between the acquisitions of the training data 
(2007–2009) and the imagery.

Figure 4 shows the dynamics of an excerpt of the Kalmthoutse Heide as revealed 
by the time series of image classifications. The sudden and large increase of Sfm 
(bare sand with some mosses) in June 2011 was a result of a wildfire in May 2011. 
In the following months and years, this bare sand was gradually recolonized, mainly 
by Molinia caerulea (Hgm).

Table 1 (continued)

Level 1 Level 2 Level 3 Level 4

F Forest Fc Coniferous 
forest

Fcp Pine forest Fcpc Corsican pine
Fcps Scots pine

Fd Deciduous 
forest

Fdb Birch forest Fdb- Birch forest
Fdq Oak forest Fdqz Pedunculate oak

S Sand 
dune

Sb Bare sand Sb- Bare sand Sb-- Bare sand
Sf Fixed sand dune Sfg Sand dune with 

grasses as 
important fixators

Sfgm Sand dune fixed by 
grasses and mosses

Sfm Sand dune with 
mosses as 
dominating 
fixators

Sfmc Fixed sand dune 
with predominantly 
Campylopus 
introflexus

Sfmp Fixed sand dune 
with predominantly 
Polytrichum 
piliferum

W Water 
body

Wo Oligotrophic 
water body

Wov Shallow, 
vegetated 
oligotrophic 
water body

Wov- Shallow, vegetated 
oligotrophic water 
body

Wou Unvegetated 
oligotrophic 
water body

Wou- Unvegetated 
oligotrophic 
water body

A Arable 
fields

Ac Arable field 
with crop

Acm Arable 
field – Maize

Acm- Arable 
field – Maize

Aco Arable field – 
other crops

Aco- Arable field – other 
crops
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 Transfer Test Case 2: To a Different Site – From Atlantic 
to Continental Heathland

 Study Site

The Wahner Heide is a heathland in between the cities of Cologne and Bonn in 
Germany, in the Continental Biogeographical Region of Europe. In terms of vegeta-
tion (and Natura 2000 habitats), the area is similar to the Kalmthoutse Heide: a 
complex mixture of dry and wet heathlands, inland dunes, open grasslands and for-
ested areas. Its history, however, is different. Whereas Kalmthoutse Heide has been 
a nature reserve attracting visitors for almost a century, Wahner Heide was used as 
military training grounds up until the 1990s. During that time, exercises with heavy 
military tanks kept the area open, while at the same time inaccessible to the public. 
Once the military use was discontinued, the area underwent a transition into succes-
sional forests and the use as a local recreation area increased. A management plan 
is currently in place to preserve the open habitats.

Table 2 Overview of obtained accuracies of method transfer to later dates, for the Grenspark De 
Zoom-Kalmthoutse Heide

Image date
Image 
type

Training 
sample size Level

OA 
(%)

Avg. PA 
(%)

Avg. UA 
(%) Kappa

2007–June–02 AHS 938 1 93.82 93.19 94.00 0.93
2 90.19 89.63 90.09 0.89
3 87.10 79.83 84.85 0.86
4 81.24 69.87 73.64 0.80

2010–June–28 APEX 1375 1 89.09 86.40 88.03 0.86
2 83.93 83.76 84.52 0.82
3 81.16 74.96 78.57 0.79
4 70.84 63.65 66.43 0.69

2011–June–27 APEX 687 1 87.48 87.59 87.86 0.85
2 83.99 83.10 84.38 0.82
3 77.87 71.32 74.49 0.76
4 69.87 62.67 64.45 0.68

2011–Sept–24 APEX 687 1 85.15 85.34 85.09 0.82
2 80.49 77.77 80.31 0.78
3 75.84 66.22 72.85 0.74
4 68.70 59.62 63.53 0.67

2012–July–02 APEX 686 1 87.32 87.70 87.71 0.85
2 81.49 78.91 79.16 0.79
3 74.20 66.13 68.97 0.72
4 67.64 58.55 59.59 0.65

AHS Airborne Hyperspectral Scanner, APEX Airborne Prism Experiment. Level: see Table 1, OA 
overall accuracy, Avg. PA average producer’s accuracy, Avg. UA average user’s accuracy

Towards a Mature Age of Remote Sensing for Natura 2000 Habitat Conservation: Poor…
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 Method Application

Good field reference data for training is crucial for a successful application of the 
method. For Wahner Heide, no tailor-made dataset (as in the case of Kalmthout) 
was available. Instead, data from three different sources were compiled: two sets of 
vegetation relevés from 2011 and an old vegetation map of 1990. However, despite 
this apparent wealth of data, we did not succeed in drawing up a useful classification 
scheme for the area. The datasets turned out to be too different in typology and 
detail, and lacked almost all spatial overlap. No other information on vegetation 
types or Natura 2000 habitats was available, and we had no personal acquaintance 
with the area. As a result, the transfer attempt had to be ceased before obtaining any 
result.

Fig. 4 Excerpts of the Kalmthoutse Heide time series, 2007–2012. Classification at level 3 of the 
classification scheme (Legend: see Table 1)

J. Vanden Borre et al.
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 Transfer Test Case 3: To a Different Ecosystem – 
from Heathlands to Coastal Dunes

 Study Site

The Flemish nature reserve De Westhoek is one of the oldest nature reserves in 
Belgium and the largest remaining area of coastal dunes in the country, bordering 
France at its westernmost tip. It hosts a variety of Natura 2000 habitats, such as 
Marram (Ammophila arenaria) dunes (2120), grey dunes (2130), Sea-buckthorn 
(Hippophae rhamnoides) shrub (2160), Creeping willow (Salix repens) shrub 
(2170), wooded dunes (2180), and humid dune slacks (2190). Although this array of 
habitats is completely different from Kalmthoutse Heide, the landscape is structur-
ally very similar, consisting mainly of dry sandy dunes, either bare or covered with 
grasses, mosses or low shrubs, interspersed with humid depressions and occasional 
snippets of woodland. Moreover, there are also parallels in threats and disturbances 
to both sites: dune fixation, invasive exotic species, groundwater extractions and 
recreational use are affecting the functioning of the ecosystem. Therefore, we con-
sidered it appropriate to test the transferability of our method from heathland eco-
systems to coastal dune ecosystems.

 Method Application

Hyperspectral APEX images of the area were acquired on 14 June 2011. The first 
task was to draw up a remote sensing oriented classification scheme for this site. 
This was especially crucial since it was the first time the method was to be applied 
outside heathlands. For the Westhoek, a detailed (almost to the level of dominant 
species) and recent (2010) vegetation map was available, which proved very valu-
able for this task. The resulting classification scheme is shown in Table 3.

Training data extraction proved less straightforward. Since the source data were 
provided as polygons, selecting random pixels within these polygons for training 
could not exclude the possibility of including impure pixels. Furthermore, the 
 training dataset was highly imbalanced, with a high amount of Hawthorn (Crataegus 
monogyna). The first trial classification runs indeed showed this imbalance to cause 
problems, but after several adaptations (see introduction to section “Real-world 
examples”), the accuracy levels could be brought to an acceptable level (see Table 4; 
validation based on a separate dataset extracted from the same source map of 2010). 
However, the next step, the translation into a habitat map by the rule-based reclas-
sification algorithm (Haest et al. 2017), resulted in clear errors: the ‘No habitat type’ 
class dominated overall although, in reality, the area is almost entirely covered by 
Natura 2000 habitats. It seems that the higher species diversity in coastal dunes, 
compared to heathlands, proved difficult to accommodate in simple rules. Substantial 
additional fine-tuning of the rule-base would be needed to make this step work sat-
isfactorily, which we did not pursue, as it would have taken more time and raised the 
risk of over-fitting to one site. The classification result at Level 3 and an excerpt of 
the erroneous habitat map is shown in Fig. 5.

Towards a Mature Age of Remote Sensing for Natura 2000 Habitat Conservation: Poor…
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 Towards Better Transferability

In the previous sections, we identified the lack of transferability as a potential major 
impediment for the use of remote sensing methods, discussed possible causes, and 
illustrated the problem with some examples from our own work. In the following, 
we want to explore some possible solutions, and make recommendations to over-
come the problem and stimulate the uptake of remote sensing in Natura 2000 habitat 
conservation.

Table 4 Accuracy of vegetation classification for De Westhoek based on a separate validation 
dataset

Level No of classes No of samples OA (%) Avg. PA (%) Avg. UA (%) Kappa

1 7 1619 83.8 65.4 75.2 0.75
2 10 1618 79.5 50.9 63.6 0.71
3 17 1618 76.1 48.6 57.9 0.69
4 31 1388 72.2 43.3 56.4 0.68

Level: see Table 3; OA overall accuracy, Avg. PA average producer’s accuracy, Avg. UA average 
user’s accuracy

Fig. 5 Classification excerpt at level 3 (left) and resulting (erroneous) habitat map (right) for 
De Westhoek. (Classification legend: see Table  3; habitat code legend: see main text section 
“Study site”)

J. Vanden Borre et al.
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 Use More Widely Available Image Data

User requirements in vegetation remote sensing can be diverse and demanding. As a 
result, there is a tendency to use state-of-the-art image data (hyperspectral and/or 
very high spatial resolution) to fulfil requirements as much as possible. Although this 
has its scientific merit, obtaining good quality data of such types can be quite cum-
bersome: data providers are few, demand is high and data are costly. Less expensive 
images may be purchased from the archive, but this gives less control over timing of 
imagery. Moreover, clouds and year-to-year phenological variations may make it 
virtually impossible to obtain truly comparable image pairs of different years suit-
able for change detection analysis. At the same time, there is a range of cheaper or 
even free data products whose potential has not been fully tested, at least not for 
detailed Natura 2000 habitat conservation: Landsat, Aster and, since 2015, Sentinel-2 
all provide multispectral data of a somewhat lower spatial resolution (10–60 m) than 
is mostly desired but it is hard to imagine that this excludes any application on Natura 
2000 habitats, even at a local level (e.g., Feilhauer et  al. 2014). Moreover, many 
countries routinely acquire aerial orthophotos of very high spatial resolution (<2 m 
pixel resolution), which are sometimes available for free to government agencies and 
NGOs, and which could be combined with satellite data. Even with these free data 
sources, acquiring the perfect data set (e.g., in terms of timing, cloud cover etc.) may 
still be a challenge but at least these data have the advantage of not consuming sub-
stantive components of the available budget before the work even starts.

 Limit the Dependence on Ground Reference Data

Obtaining good reference data (i.e., the right variables, collected at the right time, in 
the right way and the right format, and in sufficient amount) is often a problem, both 
for training and for validation. Existing data may turn out to be (wholly or partly) of 
limited use for various reasons. For example, they may be too old, do not cover the 
core/entire area or are inconsistent in content and coverage. Collecting new data 
may be too expensive or impractical because of, for example, inaccessible terrain 
and sub-optimal seasons. Generally, it is advisable to rely on easily accessible refer-
ence data (e.g., from online map services like Google Earth) or limit the reference 
data dependency altogether to enhance transferability. The best way to achieve this 
is probably to reduce the complexity of the reference dataset as much as possible, to 
a level where it balances fitness for purpose with technical feasibility. Ontology- 
based methods (e.g., Nieland et al. 2015) may also boost the chances of successfully 
re-using existing, non-tailor-made datasets. However, more research is needed to 
ensure these methods are applicable for non-experts.

Towards a Mature Age of Remote Sensing for Natura 2000 Habitat Conservation: Poor…
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 Exploit the Strengths of Remote Sensing

Vegetation types are complex phenomena. Over the course of decades, ecologists 
have developed ways of studying and describing this complexity, mostly involving 
the classification of a continuous phenomenon into vegetation types (i.e., categories 
characterized by plant species and their abundances). Through careful study, tempo-
ral changes in vegetation types have also been linked to changes in environmental 
conditions and, further, to pressures and driving forces causing these changes. This 
provided a framework for monitoring vegetation status, which was eagerly adopted 
in Natura 2000 monitoring.

With the advent of remote sensing, attempts were (and are) made to apply this 
new technology as an alternative data source for established monitoring methods. 
However, this is not necessarily the best way to exploit remote sensing. Vanden 
Borre et al. (2011b) already pointed out that remote sensing may be far more suited 
for studying vegetation, and unravelling linkages, in ways that were previously 
unimaginable. However, this requires active involvement and forward-thinking cre-
ativity of both users and method developers to come up with methods that do not 
solely replace existing monitoring schemes but instead result in new approaches to 
biodiversity monitoring in which remote sensing methods are integrated with other 
methods, such as field surveys.

In recent years, a number of such approaches have emerged. For instance, Buck 
et al. (2015) identified features of relevance for Natura 2000 grasslands, and mapped 
these as raster information layers over larger areas from various remote sensing or 
other sources. These information layers constitute a type of primitives that can be 
flexibly used by ecologists to infer conclusions about grassland habitat types, such as 
probability of occurrence, intensity of use, threats, etc. Since these information layers 
(e.g., patch size and shape, spectral homogeneity, line structures, temporal profile of 
biomass) are usually derived from established remote sensing methods, they are less 
error-prone than a direct grassland habitat classification, and more flexible in accom-
modating changed relationships (e.g., over space or time) between these information 
layers and the habitat types. Hence, they are expected to be more easily transferable.

Lucas et al. (2015) used the principle of data primitives in various stages of their 
EODHaM system, a comprehensive method aimed at consistent mapping of land 
cover and Natura 2000 habitat types in and around Natura 2000 sites. Whereas 
obtaining the data primitives from remote sensing data is more or less straightfor-
ward (e.g., spectral indices, but also: size, shape and density of small objects within 
larger objects, e.g., tree crowns within a forest versus an orchard), their translation 
to Natura 2000 habitat types is achieved through rulesets based on expert input, 
which allows for a more flexible adaptation to different geographical settings.

J. Vanden Borre et al.
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 More Considerations for Repeatability and Transferability

Transferability is undervalued, and rarely explicitly assessed in publications (one 
exception is Keramitsoglou et al. 2015). Nevertheless, we are convinced that more 
consideration of, and transparency about, transferability will have beneficial effects 
on the reputation of remote sensing, and eventually its uptake, in the Natura 2000 
monitoring community. It will help potential users to gain an idea of what is achiev-
able with remote sensing (avoiding unrealistic expectations). It will also help remote 
sensing scientists to detect flaws and dependencies in their methods, and fix them. 
Therefore, we call upon the scientific community to be more considerate towards 
the transferability of remote sensing methods, by testing these themselves, or by 
making it easy for others to do so, e.g., by releasing their (preferably open-source) 
programming code into the public domain.

 Conclusions

Remote sensing has been around as a tool for several decades, but its uptake in opera-
tional monitoring for nature conservation remains rather limited. In this paper, we 
argued that poor method transferability may be a hitherto overlooked cause of that. 
Until now, the complexity of biodiversity has been captured using mostly tailor- made 
remote sensing approaches, which were then promoted among other members of the 
nature conservation community with presumably the same requirements. However, 
transfer of the approach often resulted in unsatisfactory results, leading to disappoint-
ment in the potential of remote sensing among intended users. Although poor method 
transferability is not the only cause for poor uptake of remote sensing products in 
nature conservation, we call upon both the remote sensing and the nature conserva-
tion communities to consider wider applicability at an early stage when new methods 
are devised. Doing so might be exactly what is needed to unlock the full potential of 
remote sensing for biodiversity monitoring, and induce its regular operational use.
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Pre-processing of Remotely Sensed Imagery

Peter Bunting

Abstract A common obstacle to the use of remote sensing data for nature conser-
vation is the difficulty in obtaining or generating data that are pre-processed to a 
standard that gives confidence in their subsequent use. Such processing is essential 
in order to facilitate physical measurement (e.g., of temperature, surface reflectance, 
height) and compare data (e.g., reflectance or radar backscatter) acquired for differ-
ent dates or areas. For optical and radar data, this pre-processing includes orthorec-
tification, calibration, atmospheric and topographic correction and, in the case of 
LiDAR, ground return classification and surface height retrieval. This chapter 
 therefore provides an overview of the common pre-processing steps that are under-
taken or needed in order to create what has been recently termed an analysis ready 
data (ARD) product. Increasingly, such products are being provided routinely to 
minimize the effort of data users but knowledge of how this is achieved is important 
in determining the integrity and understanding the use of the data. The information 
provided should help users to identify, select and use data with confidence or to 
perform their own processing of the raw data.

Keywords Earth observation • Optical • Radar • Lidar • Preprocessing • Atmosphere 
• Topography • Geometric correction

 Introduction

Pre-processing of all remotely sensed imagery, whether airborne or spaceborne, first 
involves a geometric correction, with this ensuring accurate spatial location of data-
sets on the Earth’s surface (Lillesand et al. 2004). Standardization to a scientific unit 
is then undertaken such that the data are comparable to that acquired from the same 
or different sensors (Analysis Ready Data; ARD), with this including calibration of 
optical data to radiometric units and atmospheric correction to units of reflectance, 
transformation of Synthetic Aperture Radar (SAR) data to backscatter and other 
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units or classification of LiDAR ground returns to surface elevation (Table 1). The 
generation of ARD is often performed by the data providers, reseller or consultant 
specialists with knowledge of the algorithms and procedures but where in-house 
expertise and software are available, costs can be reduced. The following sections 
discuss each of these products and pre-processing routines with specific guidance 
on the selection of data request specifications and implications of pre-processing 
decisions.

 Geometric Correction of Airborne and Spaceborne Data

In many instances, particularly for modern spaceborne and airborne LiDAR acqui-
sitions, high-quality geometric correction is provided by the data provider (Shan 
and Toth 2009). However, there are several considerations when undertaking or 
contracting geometric correction of data.

For airborne datasets, the quality of the geometric correction is defined by the 
accuracy of the 3-dimensional (3-D) position and orientation of the aircraft during 
the acquisition (Schlapfer and Richter 2002). An inertial motion unit (IMU) and 
differential Global Positioning System (dGPS) measure the position and orientation 
of the aircraft and it is the frequency and accuracy of these measurements that need 
to be considered when commissioning airborne data acquisitions. For satellite data-
sets, the location of the satellite and the parameters of the acquisition are key and 

Table 1 Standard processing levels and products that could be requested

Sensor Type Typical Pre-processing Derived products

Optical Spaceborne multispectral Surface reflectance using 
a modeled atmosphere.

–

Airborne multispectral Surface reflectance using 
ground targets and/or 
ground reflectance 
targets.

–

Airborne Hyperspectral Surface reflectance using 
ground targets and/or 
ground reflectance 
targets.

–

UAV multispectral Surface reflectance using 
ground reference targets

Stereo-derived Digital 
Surface Model (DSM).

LiDAR Airborne (small footprint) Ground returns classified 
and return height above 
surface defined

Digital Terrain Model 
(DTM), Digital Surface 
Model (DSM) and 
Canopy Height Model 
(CHM).

SAR Spaceborne/airborne Normalised radar cross 
section (σ0), commonly 
displayed in decibels 
(dB).

–
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should be provided with the image data by the data provider in a standard format 
(format is commonly customised to each data provider) for ingestion to the appro-
priate processing software (e.g., Schwind et al. 2009).

Once the location of the instrument (whether aircraft or satellite) has been 
defined and recorded, a model of the acquisition is defined in software. LiDAR 
directly measures the 3-D component of the environment but for optical (e.g., multi- 
spectral and hyperspectral) and SAR, a Digital Elevation Model (DEM) is required 
to perform an orthorectification. Orthorectification removes the geometric distor-
tion from the image acquisition (i.e., being captured from a single point) such that 
there is a common viewpoint or datum plane (Fig. 1; Lillesand et al. 2004). However, 
at extreme viewing angles, full correction may not be possible because of regions of 
missing data (i.e., shadowing) while the resolution of the DEM used for the correc-
tion needs to be appropriate for the scale of features within the scene. For example, 
where an orthorectification is being performed on imagery where individual iso-
lated trees or buildings are visible, then the DEM needs to have a 3D representation 
of these features for the imagery to be fully orthorectified. Where a suitably high- 
resolution DEM has not been used and the viewing geometry differed between 

Datum Plane

Orthographic View Perspective View

Fig. 1 Orthorectification corrects the geometry of the image with respect to the datum 
plane
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scenes, pixel misalignments between images might be expected for these small 3D 
features (e.g., trees, buildings, etc.).

While recent imagery acquired from larger manned platforms has demonstrated 
a high degree of geometric quality, with standard and robust geometric correction 
routines developed, correction of data from the newer Unmanned Aerial Vehicles 
(UAVs or drone) platforms needs greater consideration and care. Specifically, 
because of the weight requirements of the UAV platforms, lighter and lower quality 
IMU and GPS units are fitted and therefore accuracy is lowered. Additionally, as the 
acquisition process involves a large number of images, with each covering small 
areas, an image matching process is required to create a single mosaicked image. 
The overlapping regions of these images can also be used to build a high-resolution 
DEM for the area, which can be subsequently utilised for the orthorectification of 
the image mosaic (Jhan et al. 2016). It is recommended that ground control points 
(GCPs) are acquired for ground targets unless differential GPS (dGPS) system with 
real-time kinematic GNSS (RTK) or post-processed kinematic (PPK) are used dur-
ing the UAV acquisition. Where GCPs are used, these will subsequently need to be 
identified within the UAV imagery, which can be a time-consuming process. 
However, with the latest RTK and PPK enabled GPS systems, pixel 9 locational 
accuracies are commonly within ±5 cm in the x and y axis’ and ±10 cm in the z axis 
without the need for manual intervention.

 Optical Data

Optical sensors measure the amount of light that is reflected from the ground sur-
face. However, between the ground surface and the sensor, there is an atmosphere 
that contributes to the measured reflectance. There are various pre-processing stages 
that can be applied, but removing the atmospheric and bidirectional effects is key to 
providing a comparable and full standardised product. However, bidirectional 
effects are commonly not corrected for (Nagol et al. 2015), as it can be difficult to 
fully define the bidirectional reflectance distribution function (BRDF). For high- 
resolution data, knowledge of the ground surface orientation at comparable resolu-
tions or better is commonly not available. Bidirectional reflectance is the change in 
the amount of light reflected due to the geometry of the acquisition, which is attrib-
utable to differences in the solar angles (e.g., with season and time of day) and sen-
sor geometry (i.e., view angle of the sensor). These angles are with respect to the 
ground surface, which themselves are defined with respect to the pixel resolution of 
the imagery acquired. Therefore, for very high-resolution (VHR datasets, such as 
acquired from a UAV), the orientation of individual leaves might need to be known 
to correct for bidirectional effects within the image.

When energy (in this case, light) interacts with a medium, reflection, transmis-
sion or absorbance occurs. For example, as light from the sun interacts with plant 
leaves, a proportion of this is reflected and transmitted and the remaining is absorbed. 
It is the reflected component that is measured by remote sensing instruments. 
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The  percent or proportion of energy reflected throughout the electromagnetic 
 spectrum is commonly referred to as the reflectance curve (Fig. 2).

The spectral curve for vegetation in Fig.  2 has been measured at a very high 
spectral resolution (i.e., sampling at intervals every 1 nanometer; nm). Commonly, 
multi-spectral imagers are used for remote data acquisition and the resolution at 
which the reflectance of the surface is measured is therefore at a much lower spec-
tral resolution. The resolution and sensitivity of the sensor is defined by its spectral 
response functions (e.g., Fig. 3a and b), with one available for each image band 
captured. When considering the use of an instrument for a particular application, it 
is the position (i.e., wavelength) of the peak of maximum sensitivity and the width 
of the peak that defines the measured reflectance response. The spectral response is 
commonly modeled as a Gaussian and therefore is quoted as the wavelength of the 
peak and a full-width half maximum (FWHM) of the response sensitivity. When 
comparing field-derived ground spectra (e.g., Fig.  2) to the signal measured by 
 satellite or aircraft sensors, the spectral response functions need to be applied to the 
ground measurement (e.g., Fig. 3c).

 Radiance

Optical data recorded in a particular wavelength region (λ), and obtained from the 
data provider, should be given in units of radiance (LλW m−2 sr−1 μm−1). In order to 
compress (i.e., reduce the file size), the image is typically provided with a gain and 
offset to convert the pixel value, commonly referred to as the digital number (DN), 
to radiance where:
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Ll = ´( ) +gain DN offset

 

Before proceeding with further processing, these gains and offsets should be 
applied to your imagery, such that each pixel value represents the radiance mea-
sured by the sensor.

For UAV imagery mosaicked from many individual images, care is needed where 
the camera has used different exposure parameters (i.e., ISO, aperture, shutter 
speed). The pixels values correlating to the amount of radiance will differ and con-
verting to radiance will not be possible once mosaicked. If correction is required for 
UAV imagery, then the camera parameters need to be known and ideally should be 
constant throughout the flight. Additionally, the camera needs to be calibrated to 
relate the digital number (DN) value of the camera to radiance.

 At Sensor Radiance

At sensor reflectance, also referred to as top of atmosphere (TOA) reflectance, is a 
standard and easily calculated ratio of the incoming radiant energy (light) from the 
sun (ESUN) and the corresponding radiance measured by the sensor. The radiance 
measured at the sensor differs from the incoming signal due to the reflectance of the 
Earth surface and the atmosphere (or part of the atmosphere) the signal has trans-
mitted through. Although providing a standard measure and common range of val-
ues (0–1), the reflectance measurement includes the reflectance from the atmosphere 
and the ground surface and therefore images taken at different times are not directly 
comparable. At sensor reflectance is calculated as:

 
r

p
ql

l

l

=
× ×

×
L d

ESUN cos s

2

 

where λ is the wavelength, ρλ is the spectral (at sensor or top of atmosphere) 
reflectance for wavelength λ, Lλ is the spectral radiance (W m−2 sr−1 μm−1), d is the 
Earth-Sun distance in astronomical units, ESUNλ is the mean solar exoatmospheric 
irradiance in units of W m−2 μm−1 and θs is the solar zenith angle.

 Surface Reflectance

Surface reflectance, also called ‘bottom of atmosphere reflectance’ is the ratio of 
incoming radiance (i.e., from the sun) with the radiance that is measured by the sen-
sor without the atmospheric effect and should be equivalent to the signal measured 
if the sensor was at ground level or there was no atmosphere. To derive this 
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measurement, the effect of the atmosphere needs to be removed from the at sensor 
radiance measured at the sensor. There are a number of options (Fig. 4) for this.

The Empirical Line Calibration (Smith and Milton 2010) is commonly used to 
correct high-resolution airborne imagery but requires that ground data of bright and 
dark targets be captured at the time of the overflight. Dark Object Subtraction meth-
ods (Chavez 1988) are relatively simple and require relatively little inputs so can be 
easily applied to all image data but do not produce the most reliable and consistent 
results. It is, therefore, the method used when the others are not available. Modeled 
Atmospheric Correction Methods (Vermote et al. 1997; Masek et al. 2006) model 
reflection, absorption and scattering by the atmosphere and commonly used models 
include 6S (Vermote et  al. 1997), LOWTRAN, MODTRAN, FLAASH, ATCOR 
and HYCOR. These models require many parameters to be known or estimated and 
can, therefore, be complex to apply. However, for lower resolution imagery or where 
ground spectra for targets are not available, it is the best solution. Further details on 
these approaches are provided in the following sections.

 Empirical Line Calibration

An empirical line calibration is a simple process (Smith and Milton 2010) of col-
lecting the ground reflectance of at least two targets that will be captured by the 
observing sensor, one that has a reflectance of 0% (or close to; i.e., black) and 
another with a reflectance of or near 100% (i.e., white). Additional targets of 
 different shades of grey (i.e., levels of reflectance) can also be laid out to improve 
the reflectance estimates. The targets need to be at least three times the size of the 
image pixels (i.e., 1 m pixels requires at least a 3 × 3 m target) to ensure that more 
than one pure pixel of the target is acquired. However, larger targets producing 
more than one pure pixel at the pixel resolution are preferable. Another consider-
ation is that the targets need to have a consistent reflectance across the full range of 

Input Image High (< 2m) or low
resolution

Are black and white
ground targets and field

data available?
High Resolution

Are parameters for 
atmospheric model

available?

Low Resolution

No

Use Empirical
Line Calibration

Use Modelled
atmosphere

Use Dark Object
Subtraction

Yes

Yes

No

Fig. 4 Decision tree for which measure of atmospheric correction you should use
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wavelengths that the sensor is measuring. Once pure pixels have been identified, a 
linear regression of the image pixel values to the ground reflectance measurements 
for each wavelength is undertaken and the resulting relationship is used to convert 
the image to surface reflectance. Where multiple targets at each reflectance level are 
available, a validation of the relationship can be carried out.

 Dark Object Subtraction (DOS)

A dark object subtraction (DOS; Chavez 1988) is built on a simple assumption that 
the darkest pixels within the scene have little or no surface reflectance and that the 
radiance measured by the sensor is from the atmosphere. Therefore, while assuming 
the atmosphere is consistent across the scene, subtracting that atmosphere compo-
nent from the whole scene can be used to convert the at-sensor reflectance values to 
surface reflectance. This is performed independently for each of the image bands 
(i.e., wavelengths). However, there is a risk that the relative relationships between 
the image bands can vary.

 Modeled Atmospheres

Modeling the atmosphere is the most common way in which imagery is atmospheri-
cally corrected but this requires a radiative transfer (RT) model and associated 
parameters, many of which are supplied in the image header file from the data pro-
vider (e.g., date and time of the acquisition). However, typically you, as the end- 
user, would perform this analysis through a software package that aids the 
parameterization (e.g., automatically parses the supplied header file or associated 
metadata), runs the atmospheric model and applies the model outputs to the image 
file. There are a number of software packages and models that support this analysis 
(Table 2), but they each only support a defined number of sensors. These lists are 
being updated on a regular basis. Additionally, some products and analysis steps 
may not be possible for all sensors and therefore functionality may not be equal 
across all sensors (e.g., cirrus cloud correction uses bands only provided by 
Sentinel-2 and Landsat-8 instruments).

More recently, there has been some effort to standardize these processing stages 
and levels (Claverie et al. 2015; Feng et al. 2013; Ju et al. 2012; Roy et al. 2010) for 
the Landsat and Sentinel-2 imagery. The United States Geological Survey (USGS) 
is already supplying the Landsat archive (TM, ETM+, OSL) as an atmospherically 
corrected product (Masek et al. 2006) and, in time, there may be a similar service 
for Sentinel-2 imagery.

For the Second Simulation of the Satellite Signal in the Solar Spectrum (6S; Vermote 
et al. 1997) model (others models are similar), the parameters needed are given in 
Table  3. The sensor configuration and position parameters are well defined and 
known so these can be parameterized using the image header information. However, 
the parameters associated with the atmosphere at the time of the acquisition, specifically 
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the aerosol optical depth (AOD) and the total amount of water in a vertical path 
through the atmosphere (water vapour), are unknown and need to be provided by the 
user or estimated from the image for a more accurate atmospheric correction. The 
sensor and surface altitude parameters are defining the length of the path through 
the atmosphere that the signal being measured has taken (Fig. 5). The more atmo-
sphere the signal passes through to the sensor, the larger the atmospheric effect 
which needs to be removed from the image (Fig. 5c).

For the dynamic components of the atmosphere, specifically the AOD and water 
vapour, there are various sources of information and methods that attempt to esti-
mate those parameters from the image data itself (e.g., Masek et al. 2006). These 
parameters can vary over short temporal and spatial baselines while the quality of 
the atmospheric correction is highly sensitive (Fig. 6) to the correct estimation of 
these parameters. They also vary as a function of the wavelength.

The AOD is correlated with visibility (in km), and the two can be transformed 
from one another using the following relationship,

AOD
vis

= +
3 9449

0 08498
.

.

There are three main sources of AOD for parameterisation of the atmospheric 
model; (a) ground measurements, (b) estimates from a third party satellite or (c) 
estimates from the image being corrected. As the AOD varies over short temporal 
and spatial baselines (Wilson et al. 2014), estimates from the image being corrected 
will be the most reliable, both spatially and temporally, and hence this is the pre-

Table 2 List of software packages for applying an atmospheric correction using a modeled 
atmosphere

Software RT Model Sensors License

ATCOR-4a 
(airborne)

MODTRAN Many – see website Commercial

ATCOR-3b 
(satellite)

MODTRAN Many – see website Commercial

FLAASHc MODTRAN Many – see website Commercial
LEDAPSd 6S Landsat (TM, ETM+) Free but closed source
SEN2CORe MODTRAN Sentinel-2 Free but closed source
ARCSIf 6S Landsat (MSS, TM, ETM+, 

OLI), Rapideye, SPOT5, SPOT6, 
SPOT7, WorldView-2, 
WorldView-3, Pleiades, 
Sentinel-2

Free and Open Source

awww.rese-apps.com/software/atcor-4-airborn
bwww.rese-apps.com/software/atcor-3-satellites
cwww.harrisgeospatial.com/docs/FLAASH.html
dledaps.nascom.nasa.gov
estep.esa.int/main/third-party-plugins-2/sen2cor/
fwww.rsgislib.org/arcsi
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ferred option. However, estimating the AOD from the image data requires some 
assumptions to be made to derive some estimates of the surface reflectance of the 
visible image bands and considerable computing resource to invert (at least par-
tially) an atmospheric model.

Ground measurements, using a sun photometer, provide very accurate measures 
of AOD but these are point measurements and therefore not necessarily representa-
tive of the whole scene. Additionally, because of the sparse nature of the ground 
measurements, it is unlikely that data will be available for the image being  processed. 
Some weather stations provide visibility data (e.g., in the UK) but again these are 
point measurements and not available everywhere.

Table 3 Parameters for the 6S model

Parameter Description Known

Solar zenith The zenith angle of the sun with respect to the earth surface for 
the area of acquisition.

✔

Solar azimuth The azimuth angle of the sun with respect to the earth surface 
for the area of acquisition.

✔

Sensor zenith The zenith angle of the sensor with respect to the earth surface 
for the area of acquisition.

✔

Sensor azimuth The azimuth angle of the sensor with respect to the earth 
surface for the area of acquisition.

✔

Acquisition date 
and time

The exact date and time of the acquisition. ✔

Centre point of 
scene (lat, long)

The point on the Earth’s surface for where the model is being 
run.

✔

Altitude of sensor The height of the sensor above the Earth’s surface. ✔
Altitude of ground 
surface

The height above sea level of the ground surface being 
measured.

✔

Atmospheric 
profile

The vertical distribution of the atmospheric layers at a given 
altitude with pressure, temperature and water vapour and 
ozone at that layer. However, this is commonly generalised to 
standard profiles for tropical, mid-latitude summer, mid- 
latitude winter, sub-arctic summer, sub-arctic winter. 
Standardised profiles can be automatically selected based on 
time and location.

✗ (✔)

Water vapour The total amount of water in a vertical path through the 
atmosphere (in g/cm2).

✗

Ozone The total amount of ozone in a vertical path through the 
atmosphere (in cm-atm).

✗

Aerosol profile The proportion of water-like, dust-like, oceanic-like and 
soot-like aerosol partials in the atmosphere. However, this is 
commonly generalised to standard profiles for continental, 
maritime, urban, desert and biomass burning. Standardised 
profiles can be automatically selected.

✗ (✔)

Aerosol optical 
depth (AOD)

The total amount of AOD in the vertical path through the 
atmosphere at 550 nm.

✗
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There are a number of satellite-based AOD products, primarily those derived 
from MODIS (Green et  al. 2009). However, these products are produced at low 
spatial resolution (e.g., 1 km) and are generally not obtained at the same time as the 
image to be corrected. Furthermore, the downloading and processing of extra third 
party data is potentially a significant overhead for the correction of individual 
images. Table 4 provides an overview and reference to sources and algorithms for 
the retrieval of AOD.

For the correction of atmospheric water, there are a number of sources for 
water vapor within the vertical path (Table 5). The most commonly used sources are 
from third party satellites such as the MODIS. However, average climate data and 
ground-based measurements have also been used.

a) b)

c)

Fig. 5 Changes in the distance of the path through the atmosphere due to (a) sensor angular geom-
etry and (b) surface altitude, which results in a variation in the outputted reflectance without appro-
priate correction (c) an example for the Landsat TM bands, where elevation varies from 0–5000 m
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difference for Landsat TM 
bands with respect varying 
the following parameters in 
6S (a) AOD (0.05–1.5).  
(b) vertical water column 
(1–15 g/cm2) and (c) 
Ozone (0–5 cm-atm)
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Table 4 Sources of measures of AOD

Source Description

AERONETa A network of sun photometers providing AOD measurements 
globally.

UK Meteorological Office 
(MIDAS)b

Integrated Data Archive System (MIDIS); specific to the UK, the 
Met Office makes ground measurements publically available.

MODISc Satellite-based measurement of AOD at 550 nm; available for free 
download.

LEDAPSd Estimates of AOD for Landsat using dense dark vegetation (DDV) 
targets and relationships with the SWIR to visible wavelengths.

ARCSIe Multiple algorithms, including the DDV method, but primarily 
uses a DOS based method to estimate surface reflectance in the 
blue wavelengths used for inversion.

SEN2CORf Estimates AOD for Sentinel-2 using dense dark vegetation (DDV) 
targets and relationship from the SWIR to visible wavelengths.

Frantz et al. (n.d.) Time series analysis to identify persistently dark targets that are 
used for AOD inversion.

ahttp://aeronet.gsfc.nasa.gov
bhttp://catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0
chttp://modis-atmos.gsfc.nasa.gov/MOD04_L2/
dhttp://ledaps.nascom.nasa.gov
ehttp://www.rsgislib.org/arcsi
fhttp://step.esa.int/main/third-party-plugins-2/sen2cor/

Table 5 Sources of measures of atmospheric water

Source Description

MODISa Satellite-based measurement of total column water vapour. 
Freely available download.

Global precipitation 
measurement (GPM)b

NASA owned satellite that includes instruments for the 
measurement of total column water vapour.

AMSR-2c JAXA owned satellite that includes instruments for the 
measurement of total column water vapour.

Seasonal averaged Where satellite estimates are not available for that date of 
acquisition Frantz et al. (n.d.) uses a local average.

ahttp://modis-atmos.gsfc.nasa.gov/MOD05_L2
bhttp://www.nasa.gov/mission_pages/GPM/main; Draper et al. (2015)
chttp://suzaku.eorc.jaxa.jp/GCOM_W
dFrantz et al. (n.d.)
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As with water, ozone is commonly sourced externally from sensors such as 
NASA’s Total Ozone Mapping Spectrometer (TOMS; 1978–2005) and ESA’s 
Global Ozone Monitoring Experiment (GOME; 1996 to 2011). The Ozone 
Monitoring Instrument (OMI) has continued the time series of TOMS data since 
2004 until the present. The download sites for these data are listed in Table 6, which 
also includes the NASA Ozone map tool that can be used to find the value of ozone 
from 1978 to the present based on TOMs and OMI data through a single interface.

 Light Detection and Ranging (LiDAR)

 Overview of Products and Software

Small footprint LiDAR data acquired via airborne platforms, primarily manned 
flights. However, more recently, there are small UAV octocopter based systems avail-
able (e.g., yellowscan; http://www.yellowscan.fr). LiDAR directly measures the 3D 
structure of a surface by way of a 3D point cloud, where other than the points returned 
from the same pulse, the topology of the point cloud is unknown (i.e., each pulse is 
independent). Multiple returns from a single fired pulse are only recorded for ‘soft’ 
targets such as vegetation (Fig. 7a) or the edges of hard targets, such as buildings 
(Fig. 7b). Multiple returns occur where a target causing the reflection back to the 
sensor is smaller than the footprint of the LiDAR. For a small footprint LiDAR, the 
footprint is typically around 20–30  cm. There are also so-called large- footprint 
LiDAR systems (e.g., ICESAT; Zwally et al. 2002), where the footprint is measured 
in metres, but these are not considered within this Chapter. Please refer to Shan and 
Toth (2009) for a discussion of large-footprint systems and their applications.

Regarding products, LiDAR produces elevation surfaces, digital terrain models 
(DTM) and digital surface models (DSM). The difference between the DTM and 
DSM provides a measure of the vertical height of features protruding from the DTM 
surface such as vegetation and buildings. However, to produce these products, a 
classification of the points associated with the ground and in some cases hard (build-
ings) and soft (vegetation) above the ground surface needs to be undertaken (Fig. 8). 
Following classification, the elevation surfaces can be interpolated to form regularly 
spaced raster grids. To derive other products from LiDAR, such as gap fraction (e.g., 

Table 6 Data and tools for establishing atmospheric ozone levels

TOMS http://ozoneaq.gsfc.nasa.gov/data/toms/
GOME http://www.ospo.noaa.gov/Products/atmosphere/gome/gome-A.html
OMI http://neo.sci.gsfc.nasa.gov/view.php?datasetId=AURA_OZONE_E
NASA 
Ozone 
map tool

http://ozoneaq.gsfc.nasa.gov/tools/ozonemap/
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Armston et al. 2013; Morsdorf et al. 2006), above ground biomass (e.g., Babcock 
et al. 2016; Popescu 2007; Nelson et al. 1988) and other structural measures (e.g., 
Palace et al. 2015; Higgins et al. 2014; Zimble et al. 2003), site or region specific 
relationships are needed. These involve the correlation of LiDAR-derived metrics 
associated with the vertical structure of the vegetation with ground-based field data.

To undertake LiDAR data processing, dedicated software processing tools are 
required. LiDAR datasets are typically large and require a reasonable amount of 
computing power and storage to handle these data. Table 7 lists a number of soft-
ware packages available for analyzing LiDAR data where LAStools is probably the 
most popular and widely used providing plugins for both ESRI ArcMap and the 
QGIS software packages to provide an ‘easy to use’ environment.

 Classification of Point Clouds

To produce a DTM product from LiDAR data, the classification of ground returns 
and the quality of that classification is a critical processing step. There are many 
publications demonstrating methods for this task (e.g., Mongus and Zalik 2012; 
Evans and Hudak 2007; Zhang et al. 2003). However, you will most likely be lim-
ited to the algorithms implemented within the processing tools you have available.

The quality of the classification of the ground returns, and therefore the derived 
DTM, is limited by the number and density of the LiDAR returns that have reached 
the ground surface. If the LiDAR has not recorded the ground surface, then obvi-
ously the ground returns cannot be correctly identified. Where ground returns are 
very sparse, it is likely that they will be identified as outliers (i.e., noise) rather than 
true ground returns. Dense vegetation over-stories, particularly those close to the 
ground (i.e., 1–2 m in height), often limit the number of ground returns. However, 

a) b)

First Return

Second Return

Third Return

First Return

Second Return

Fig. 7 (a) Multiple returns within a vegetation canopy and (b) multiple returns from the edge of a 
building
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if known, this can be mitigated by (a) flying higher resolution LiDAR (i.e., the num-
ber of pulses per m2), (b) decreasing the flying height (i.e., more laser power to get 
weaker ground returns, but this limits the swath width), and (c) using a sensor which 
can differentiate returns closer to one another along the path of the pulse. Some 
older instruments can only differentiate returns more than 0.5–1 m from one another 
along the path of the pulse. Another area where ground returns can be poorly defined 
or classified is very steep terrain, particularly where there is also vegetation cover 
(Bater and Coops 2009). It is recommended that for deriving elevation models, at 
least 4 points per m2 are acquired but if retrieving the vertical forest structure is of 

Input Data

Large Dataset

No

Tile datasets for 
processing

Yes

Ground return
classification

Define height
above ground

surface (i.e., veg
heights)

Interpolate DTM,
DSM and CHM

Calculate metrics Metrics Raster

Raster outputs

Discrete returns or 
waveforms

Discrete Return

Decompose
waveforms to find
discrete returns.

Waveform

Fig. 8 Flowchart for a standard LiDAR processing chain (Adapted from Bunting et al. 2013)
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interest (e.g., for establishing relationships to forest biomass), then increasing that 
to 8 points per m2 is beneficial.

 Standard Raster Products

 Interpolation of Elevation Surfaces

The resolution at which the raster surface can be interpolated to is dependent on the 
density of returns that define the surface. Using the Nyquist rate, the density of 
returns to accurately sample the surface needs to be twice the resolution of the sur-
face being produced to ensure all features are completely represented. However, as 
the ground return density varies across the scene, a compromise is usually made.

A common requirement for a DTM is that it is hydraulically correct in that it 
contains no holes or artificial troughs. To ensure hydraulic correctness, algorithms 
for filling DTM holes are applied and additional information such as break lines 
(e.g., river shore) can also be included in the interpolation processing.

There are many interpolation algorithms available for the generation of elevation 
surfaces from point cloud files including Natural Neighbour, Thin Plated Splines, 
Nearest Neighbour, Linear Triangulation and Inverse Distance Weighted. Bater and 
Coops (2009) compared a number of these algorithms and demonstrated, for a 
vegetation- dominated environment, that the Natural Neighbour algorithm produced 
high-quality results. They recommended this algorithm for general use.

Table 7 Software for processing LiDAR data

Software Description License

LAStoolsa Becoming the most commonly used tools across the 
industry providing a wide range of tools. However, 
the free version is limited.

Commercial & 
Limited free version.

SPDLibb Tools and file format for common LiDAR processing 
steps including waveform data.

Open Source

PyLiDARc A set of python modules enabling easy assesses to 
the LiDAR (discrete return and waveform) data as 
numpy arrays allowing implementation of your own 
algorithms.

Open Source

BCal LiDAR 
Toolsd

Widely used tools, written in IDL and used through 
ENVI.

Open Source

Fusione US Forestry Service tools, used by many. Free but closed source
Potreef Tool for visualisation LiDAR on the web Open Source

ahttp://lastools.org
bhttp://www.spdlib.org
chttp://www.pylidar.org
dhttps://bcal.boisestate.edu/tools/lidar
ehttp://forsys.cfr.washington.edu/fusion/fusionlatest.html
fhttp://potree.org
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 Derivation of Metrics for Vertical Vegetation Structure

There are numerous statistical measures of the vertical distribution of the point 
cloud that have been used within the literature (e.g., Bunting et al. 2013). These 
include, the ratio of the number of ground returns to all returns, mean height, median 
height, mode height, maximum height, standard deviation of all or returns above a 
certain height, percentiles of height, skewness in height, Pearson mode of height, 
Pearson median of height and the kurtosis in height. Additionally, by filtering the 
returns based on their classification (e.g., ground or not-ground) or return number 
(e.g., first returns) etc., there are many variants of metrics which can be calculated. 
Your given choice of software tools will enable these metrics to be calculated. For 
instance, LAStools provides a command line tool to retrieve forestry metrics (las-
canopy) while SPDLib provides a tool called spdmetrics. Once calculated, these 
metrics are commonly used within either a classification scheme to retrieve categor-
ical classes for the scene or used within a regression analysis to field data to retrieve 
parameters, such as above ground biomass.

 Radiometric Correction

There have been a number of attempts to radiometrically correct and/or normalise 
the LiDAR intensity/amplitude data (e.g., Donoghue et al. 2007). However, as of 
yet, there are few examples within the literature that demonstrate a clear application 
for this product. Therefore, for information on these processing stages, the reader is 
referred to Wagner (2010) and Coren and Sterzai (2007).

 Standard Data Specifications

A number of organisations worldwide (e.g., the Intergovernmental Committee on 
Surveying and Mapping’s; http://www.icsm.gov.au/elevation/) have set out standard 
specifications for the acquisition of LiDAR data. These specifications are com-
monly regarded as the minimum specification for the organisation. These specifica-
tions help ensure that data acquisitions are fit for purpose and can be used to meet 
the wider requirements of the organisation rather than just specific project needs. 
Table 8 lists a number of available specifications and, if you are acquiring LIDAR 
data, reference to these specifications is recommended.
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 Synthetic Aperture Radar (SAR)

 Overview of SAR

SAR is an active instrument that sends pulses in the microwave region of the elec-
tromagnetic spectrum and records the return. The returns are processed in such a 
way that the movement of the instrument is used to synthesise a larger antenna than 
would others be physically impossible, which allows a high spatial resolution image 
to be produced. Forming a SAR image from the raw data is normally carried out by 
the data provider. The most common product from a SAR is an image of normalised 
radar cross section or ‘backscatter’ (σ0), which is unitless. Partly because of the 
large range of values, σ0 is normally expressed on a log scale in decibels (dB). 
However, depending on the mode and specification of the instrument, other prod-
ucts such as polarimetric decompositions (e.g., Pauli Decomposition; Krogager 
1990) can also be generated. Where multiple acquisitions from different geometries 
are available (i.e., multiple satellite passes), products such as the coherence (Gaveau 
et al. 2003) and 3D structural information can also be derived (e.g., Ho Tong Minh 
et al. 2016). However, within this Chapter, just the considerations of the backscatter 
intensity and SAR, in general, will be discussed. For a full introduction to SAR 
imagery and processing, refer to Woodhouse (2005).

The intensity of σ0 is dependent on the vertical structure (i.e., buildings and veg-
etation) and moisture (predominantly soil). As the size of the vertical structure 
increases, the magnitude of the SAR backscatter increases. For example, within a 
forest, pixels of higher backscatter will typical correspond with areas of larger trees. 
However, the background soil and vegetation moisture can also influence the signal. 
For example, Lucas et al. (2010) demonstrated that in dry regions of Australia, rain 
events can increase the SAR backscatter and therefore recommended the use of the 
driest scenes available when generating regional mosaics. These were identified 
through reference to spatial interpolations of rainfall measurements or low resolu-
tion, high-frequency AMSR-E passive microwave radiometer measures of surface 

Table 8 LiDAR acquisition specifications

Organisations Location

ICSMa Australia and New 
Zealand

British Columbiab Canada
AusCoverc Australia
National Network of Regional Coastal Monitoring Programmes of 
Englandd

UK

USGSe USA
ahttp://www.icsm.gov.au/elevation/
bhttp://geobc.gov.bc.ca/base-mapping/atlas/trim/specs/
chttp://data.auscover.org.au/xwiki/bin/view/Good+Practice+Handbook/WebHome
dhttp://www.channelcoast.org/national/procurement
ehttps://lta.cr.usgs.gov/lidar_digitalelevation
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moisture. Reference to datasets such as these is particularly important where a time 
series is being constructed as scene(s) or parts of scenes might not be directly com-
parable in terms of vegetation change as the backscatter changes would correspond 
with soil and/or surface vegetation moisture amounts.

 Geometric Correction

The geometry of a SAR system is quite different from that of an optical or LiDAR 
in that the sensor is side looking (Fig. 9) and therefore features closer to the sensor 
will be closer together than those further away in the raw slant- range image space. 
Therefore, one of the first processing stages within the geometric correction is to 
convert the slant-range image space into ground-range (i.e., all pixels have an equal 
ground cover). Following the conversion to ground range, an orthorectification is 
required to place the SAR imagery into the required geographic coordinate system, 
with consideration given to topographic relief.

 Defining Sigma Nought (σ0) and Gamma Nought (γ0)

Typically the pixel values of the ground range images are supplied as digital num-
bers (DN) (to reduce the file size) and need to be converted to σ0[dB]. To achieve 
this, a calibration offset (C) is applied.

 s 0[ ] logdB C= +10 (DN)10  

Fig. 9 The side-looking geometry of a SAR system
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The exact form of the equation to convert from DN to σ0 varies for each instru-
ment. σ0 has an angular effect due to the variance in the incidence angles across the 
scene, particularly for airborne SAR where the variance in incidence angle is higher. 
Therefore, a correction to γ0 can also be applied, where θ is the local incidence angle.
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When using σ0 [dB] or γ0 [dB] values for further processing, care is required 
when applying a process that takes an average or sums any of the pixel values, as dB 
is a log value. To convert from dB use:
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Following any calculations, for example calculating a mean backscatter for a set 
of image segments, dB values can be retrieved using:

 
s s0 10dB[ ] = ( )log10 0

 

 SAR Image Filtering

SAR images contain speckle, which is noise from the image acquisition process. To 
reduce speckle within the scene image, filters are commonly used. Filters can be 
applied to a single image (e.g., Lee Filter; Lee 1981) or to time-series (Trouve et al. 
2003). It is commonly recommended (Woodhouse 2005) that speckle filters are 
applied to SAR imagery before it is used unless the image data is being smoothed 
(averaged) in some way, which is the case when segmentation procedures are applied.

 Conclusions

This chapter has attempted to provide an brief but wide ranging overview of the 
methods and processes that need to be considered when receiving remote sensing 
imagery prior to using the imagery for your application of interest. Once these pro-
cesses are applied, the image data can be considered as analysis ready. Without 
satisfying the requirement of an ARD product prior to undertaking your application, 
is likely that your analysis will either fail or produce suboptimal results. 
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The  deviation of ARD products can be undertaken by yourself if you have the 
appropriate background knowledge and software tools. However, the data provider(s) 
or other organisations or individuals can provide services to derive these products.
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Abstract This chapter describes, as an example, the integration of a landscape 
scale approach based on remote sensing applications into the Long-Term Ecological 
Monitoring program of the Doñana protected area. I report the contribution of the 
landscape- scale monitoring by using remote sensing tools sensu lato, provided by 
its retrospective vision and multi-scale analysis capacity. The implemented proto-
cols are set up as a multi-scale approach and are validated with a network of ground- 
truth field plots. The landscape scale monitoring program is being applied not only 
to habitats but also to species and to track natural and human-driven processes, 
mainly management actions. The approach is applied to monitor wetlands, terres-
trial plant communities and geophysical processes. The chapter focuses on trends 
and shifts evidenced by the landscape scale approach that have been published or 
reported for decision making and conservation management planning. Some pros 
and cons are finally discussed in relation to data source availability, mission conti-
nuity and technical requirements.

Keywords Landscape scale • Remote sensing • Global change • Conservation 
management

 Introduction

From its beginnings back in 1969, conservation in Doñana (Southwest of Spain) 
involved a team of researchers and managers who were aware of the importance of 
acquiring knowledge for the effective preservation of this protected area. In this 
process, the birds, Iberian (Lynx pardinus) and Cork Oak (Quercus suber) popula-
tions were critical in raising awareness of the need for systematic long-term data 
acquisition as a baseline for management.
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Many of these monitoring procedures have allowed retrospective analysis to 
show trends, changes and even relationships that reflect human impact. This reflects 
the broad consensus that long term monitoring programs are essential in addressing 
global change effects and in implementing decision-making (Inouye 2017; 
Lindenmayer et al. 2015; Magurran et al. 2010; Navarrete et al. 2010; Willig and 
Walker 2016).

In 2002, the Doñana Biological Station (EBD), a research centre of the Spanish 
Research Council (CSIC), together with the Doñana National Park Officers, pro-
posed an integrated Long-Term Ecological Monitoring (LTEM) program. Almost a 
hundred monitoring protocols were defined, some to assess the status of threatened 
or flagship species and habitats of interest and others to track natural processes and 
the effects of conservation management actions (Díaz-Delgado 2010). After 
15 years of implementation, the program has contributed data to provide evidence 
of spatial patterns and temporal trends of the target species and habitats: these have 
been reported in many publications. Consequently, quite a few research projects 
have been proposed and initiated to seek the scientific causes of the observed trends 
and their relationships with a range of environmental factors. Furthermore, the 
 different management agencies have had uninterrupted access to the monitoring 
data and used these for decision-making in several conservation success stories at 
Doñana (Díaz-Delgado et al. 2016b).

The integration of the program into the Long-Term Ecological Research (LTER) 
network in 2008 allowed us to enhance the results and their outreach. Since then, the 
monitoring program and the research associated with it have benefited from the 
advances provided by the collaboration with the LTER networks, through participa-
tion in different research projects.

On the other hand, the program has largely benefited the available remote sens-
ing applications by providing a full set of protocols and assisting in the interpreta-
tion of other monitoring results. All across the planet we find different conservation 
agencies and research projects using remote sensing tools to monitor ecosystems 
state and trends. Recent advances are also achieving good successes in biodiversity 
monitoring (Nagendra et  al. 2013; Paganini et  al. 2016; Pettorelli et  al. 2016; 
Vihervaara et al. 2017; Wulder 2011).

I present an overview of some of the results obtained from the treatment, analysis 
and interpretation of the information collected through the monitoring program at a 
landscape scale. Most of these have contributed to conservation management in the 
Doñana protected area.

 Long-Term Ecological Monitoring at Landscape Scale 
in the Doñana Protected Area

The landscape-scale approach integrated into the LTEM program is implemented in 
the Doñana Natural Space (END), south-west Spain. The approach has greatly 
 contributed to improving our knowledge of different, ecologically relevant, natural 
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processes (Díaz-Delgado 2010). The protocols associated with this approach are 
mainly applied using a combination of remote sensing images, sensu lato, and 
ground truth data from permanent field plots (Barrett 2013; Richards 2013). One 
advantage of this approach is the possibility to look back in time and use the first 
available aerial photos as a temporal reference. The current availability of long time 
series of images for many places in the world enables us to identify trends and shifts 
in different ecological processes and features (Gardiner and Díaz-Delgado 2007).

The landscape scale monitoring focuses on three different subject areas: the 
Doñana wetland ecosystems, including marshes and ponds, geophysical processes, 
and terrestrial plant communities.

 Ground-Truthing

The landscape-scale approach uses plots, transects and in situ sampling points as 
ground-truth for validation purposes, which includes percentage cover for most 
plant communities present in Doñana.

The multi-scale approach uses involves sampling from the individual plots 
(microscale) through to the landscape level including mesoscale plots. When deal-
ing with woodlands, the spatial location and associated information on individual 
trees (size and species) is recorded to allow scaling up using airborne (including 
drone) and spaceborne data.

Since 1999, we have reported trends and changes in the surface cover of domi-
nant plant communities in Doñana. For example, there has been a general increase 
in the density and area occupied by Stone Pine (Pinus pinea)  woodlands and a 
decrease of Erica scoparia healthlands replaced by more xeric species, including 
woodlands dominated by Juniper (Juniperus phoenicea spp. turbinata). These plots 
also provide information on habitat structure, species density, population dynamics, 
species abundance and diversity.

 Monitoring of Doñana Wetlands

Monitoring the annual flooding and drying out processes of the Doñana natural 
marshes has allowed to test the ‘largely assumed’ hypothesis of an increase in the 
hydroperiod in recent decades (Díaz-Delgado et  al. 2016a; Díaz-Delgado et  al. 
2010; Díaz-Delgado et al. 2006). Figure 1 shows the median trend estimated from 
the 1974–2014 time series of flooding masks retrieved from Landsat MSS, TM and 
ETM+ images. This approach allows us to spatially locate the temporal trends 
(increases or reductions) in the duration of the flooding: this is a critical variable for 
the biological communities of Doñana marshes. The temporal analysis reveals two 
significant trends: on the one hand, the hydroperiod has increased in the 
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northwestern quadrant (red and yellow colored pixels) but has reduced in the south-
east quadrant (blue and green colors) (Díaz-Delgado et al. 2016a).

The results from the landscape scale monitoring were used to evidence the effects 
of different restoration actions under the framework of the Doñana 2005 project 
(Chans and Díaz-Delgado 2006; Frisch et al. 2009; Santamaría et al. 2006).

Different studies have revealed the importance of the hydroperiod variable in 
explaining the presence, abundance and breeding success of different waterfowl 
(Kloskowski et al. 2009; Márquez-Ferrando et al. 2014; Ramo et al. 2013; Rendón 
et al. 2008; Toral et al. 2011). By using remote sensing, we were able to map the 
expansion of the invasive aquatic fern Azolla filiculoides using Landsat images and 
target detection techniques (Díaz-Delgado et al. 2008, 2011) enhanced by the use of 
hyperspectral images (Bustamante et al. 2009a). The hydroperiod was also linked to 
the spread of Azolla in the Doñana marshes (Espinar et al. 2015).

The landscape scale monitoring has benefited from the use of hyperspectral 
images from airborne sensors, as these have allowed more detailed mapping of the 

Fig. 1 The location of Doñana protected area (a) in Europe and (b) in Andalusia and (c) the pixel 
values of the hydroperiod trends (in days per year) for Doñana National (red lines) and Natural 
(yellow line) Parks for the 1974–2014 period. Red and yellow colors indicate an increase and green/
blue colors a decrease. Background: Landsat 5 TM false color composition with bands 5-4-3
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location of most of the temporal water pools in the Aeolian sands of the Doñana 
protected area (Gómez-Rodríguez et al. 2011). Gómez-Rodríguez et al. (2008) used 
this detailed cartography to produce an enhanced predictive model for the breeding 
habitats of the different amphibian species of Doñana. The decrease of the hydrope-
riod in the recent decades has been also evidenced in the Doñana water bodies 
(Bustamante et al. 2016) and was shown to be one of the most relevant causes of the 
decline in amphibian reproduction (Gómez-Rodríguez et al. 2010).

The multispectral information provided by the Landsat satellite images is sys-
tematically used to map water turbidity in both the Doñana marshes (Bustamante 
et al. 2009b) and the Guadalquivir estuary (Díaz-Delgado et al. 2010). The analysis 
of the turbidity time series has helped to quantify the spatiotemporal  variability and 
reconstruct the turbidity regime by differentiating extreme turbid events from long-
term turbid trends (Díaz-Delgado et al. 2015). Periodic flooding masks and turbidity 
maps from the landscape scale monitoring are accessible online through OGC Web 
Map Services at http://venus.ebd.csic.es/imgs/ (Fig. 2).

 Monitoring of Geophysical Processes

Geophysical processes are usually quite conspicuous in remote sensing images. In 
the case of Doñana, the dynamics of the large sand-dune system and of the shoreline 
are being reconstructed and periodically mapped by applying a very simple proce-
dure based on image segmentation (Berberoglu and Akin 2009; Pardo-Pascual et al. 

Fig. 2 The website offering the results of the Doñana wetlands monitoring program at landscape 
scale. The example shows the turbidity mapped for the 10th March 2016. RGB composites, flood-
ing masks and NDVI images are also available for visualization and download
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2012). Shoreline regression and progradation (beach creation) are mapped along the 
25 km of coastline (Díaz-Delgado 2008).

We also monitor the sedimentation processes in Doñana marshes: these data 
enabled us to assess the effects of the restoration actions of the Doñana 2005 proj-
ect. For instance, we mapped the progressive reduction of the dejection cone caused 
by the Arroyo del Partido, one of the main tributaries to the marshes. We also located 
the emergence of new streams from the artificial lagoons created to retain the 
sediments.

 Monitoring of Terrestrial Plant Communities

The application of a landscape scale monitoring approach to the Juniper woodlands 
has revealed the dramatic effects of the mortality events in the autumn of 2005. 
Mortality and damage in these plant communities affected juvenilies (canopy height 
lower than 1 m) more than adults (higher than 1 m). Greater damage and mortality 
was observed in areas with high plant density (Díaz-Delgado et  al. 2014). The 
effects of these types of events persist during the following years despite the vigor-
ous sprouting observed from damaged individuals (Fig. 3). In addition, a retrospec-
tive spatial analysis starting from 1956 revealed both an expansion of Juniper 
woodlands and a increase in plant density (García et al. 2014).

This monitoring  program also  benefited from using airborne hyperspectral 
images to map the abundances of the dominant woody species in the shrublands, by 
using spectral unmixing techniques (Jiménez 2011; Jiménez et  al. 2005, 2011 ) 
based on spectroradiometric ground measurements (Jiménez and Díaz-Delgado 
2015). The periodic detailed mapping provides evidence of the dramatic effects of 
drought on the monte negro hygrophytic plant communities and the defoliation pro-
cesses in monte blanco xeric shrublands.

The setting-up of permanent ground-truth monitoring plots has provided a better 
understanding of the resilience of Doñana shrubland communities. By quantifying 
the functional diversity of the different plant species combined with the ground 
survey information on the percentage cover, structure and density of plants, we have 
established the great stability of shrubland communities in Doñana after extreme 
events (Lloret et al. 2016; Pérez-Ramos et al. 2017; de la Riva et al. 2017).

In the case of the permanent plots in the floodplain forest of Arroyo de la Rocina 
(tributary to Doñana marshes), we have evidenced the need for an integrated moni-
toring approach using field plots and remote sensing (Rodríguez-González et  al. 
2017). We found a consistent and decreasing trend of the area occupied by Willows 
(Salix atrocinerea) and an increase in the stem density of Narrow-leaved Ash trees 
(Fraxinus angustifolia) (Fig. 4). We found a higher percent of fallen Willow trunks 
in the plots. The results highlight the recent hydrological changes in one of the most 
important tributary rivers entering the Doñana marshes.
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Fig. 3 An example of one of the meso-scale ground-truth  plots for the monitoring of Juniper 
woodlands in Doñana protected area. The distribution of adult and juvenile individuals is depicted 
together with the percent of canopy damage measured for every individual inside the 1 ha plot

Fig. 4 Map of changes in species dominance in the Arroyo de la Rocina from the comparison of 
2004 and 2015 hyperspectral image classifications. The image in the right corner shows the loca-
tion of the Arroyo de la Rocina in relation to Doñana protected area (red line) and Doñana marshes 
(blue area)
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 The Pros and Cons of Integrating Remote Sensing in Nature 
Conservation

The use of remote sensing is strongly recommended to complement traditional 
long-term ecological monitoring programs based on field sampling (Gross et  al. 
2009; Willis 2015; Rodríguez-González et  al. 2017). Monitoring at a landscape 
scale provides a synoptic view of natural processes and enhances the interpretation 
of data collected in field plots. In addition, historical time series of remote sensing 
images are now widely available, and this can inform our selection of reference 
points for restoration projects (Reif and Theel 2016) or to assess temporal trends, 
anomalies or shifts of relevant ecological and biodiversity indicators (Pettorelli 
et al. 2016; Skidmore et al. 2015).

However, the major constraints for conservation managers using remote sensing 
applications arise from:

• A lack of sufficient knowledge and skilled staff to integrate remote sensing tech-
niques into decision making.

• A lack of clear guidelines on how to apply the procedures or to access the most 
reliable data available online.

• The lack of specific scientific and technical committees offering assessment and 
supervision on the optimal products, methods and technologies to be used in the 
long run to manage and preserve natural areas.

In addition to these specific limitations, the users of remote sensing images and 
products are aware of the limited lifetime of sensors and satellites: this can be an 
issue for the agencies responsible for maintaining continuity in their missions. 
Hopefully, the recent launching of Landsat 8 with the OLI instrument and the 
 constellation of Sentinel satellites by ESA has secured the provision of Earth 
Observation images to the remote sensing community and will increase the use of 
its applications.

 Conclusions

While traditional long-term ecological monitoring programs are typically under-
pinned solely on field sampling, a combined approach incorporating remote sensing 
tools is essential to providing a landscape-scale perspective. The integration should 
be carried out according to the specific monitoring program targets and imple-
mented with complementary methods of ground-truth.
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for Monitoring the Conditions and Changes 
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Abstract The National Inventory of Landscapes in Sweden (NILS) was established 
by the Swedish Environmental Protection Agency to provide data for policy- makers 
in the country.  Its main role is to determine the status of (and changes in) the Swedish 
landscape, either as a consequence of natural and/or anthropogenic disturbances, or 
because of ecological processes. In 2017, data from NILS will become available on 
the NILS data portal for analysis by researchers and other interested parties, such as 
governmental bodies. NILS’s data collection covers all terrestrial areas and identifies 
variables such as land cover, land use (including historical land use), tree, shrub, field 
and ground vegetation and surfaces. The program consists of two parallel invento-
ries, a field inventory and a remote sensing inventory, with both covering the nation 
in five-year rotations. The field inventory employs a large group of field-workers, 
and all sample squares are also inventoried using aerial near-infrared stereo imagery 
provided by the Swedish Land Survey. The first rotations of field data will soon be 
available, and the data from the first rotation of the remote sensing component 
(2003–2007) is already available. As part of the EU, Sweden is currently updating 
the mapping of land cover data, using the national coverage of airborne Light 
Detection and Ranging (LIDAR) and the European satellites of the Sentinel series. 
While at the same time strengthening the statistical estimates made from the NILS 
data. The principal role of the NILS program is to provide the reference data for both 
the classification of chosen vegetation types and for the validation of the results. The 
data collection for this mapping will start in 2017, using remote sensing and model-
ling, and sampling additional inventory areas for reference data.
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 Introduction

The National Inventory of Landscapes in Sweden (NILS) was established in 2003, 
by the Swedish Environmental Protection Agency (Swedish EPA) to provide data to 
support policy-makers in decisions, and for international reporting. Another goal 
was to create a basis for analysis in the research community: to better understand 
and quantify the response of the Swedish landscape to either natural or anthropo-
genic change at a national level. This represents a “Top-Down” approach to moni-
toring/reporting of nature and conservation compared to the “Bottom-Up” approach, 
for example, which consists of locally monitoring smaller units of a Nature reserve 
and reporting to a national authority. The statistical nature of the sampling means 
that larger areas of widely distributed habitats tend to be better represented statisti-
cally than small areas of rarer habitats. This means that some areas of the rarer and 
more threatened habitats need to be targeted for additional data collection, primarily 
to inform conservation measures. The sampling method is, however, enough to 
monitor changes that occur following policy decisions that affect the landscape, 
such as trends in people’s movements, types of farming, or the culture in managing 
forestry. The infrastructure of the program also makes it possible for other data- 
collection projects to collaborate, sharing costs for staff, travel and accommodation. 
Examples of monitoring collaborations include; the demonstration of an integrated 
North-European system for monitoring terrestrial habitats (MOTH), (MOTH 2017), 
a follow-up of the National Survey of Meadows and Pastures (the TUVA database), 
and inventory programs for butterflies and bumble bees carried out in the landscape 
squares and commissioned by the Swedish Board of Agriculture (2017). Regional 
monitoring collaborations include the Remiil program, (Glimskär et  al. 2016), 
which comprises the inventory of small biotopes in farmed fields, mires and areas 
of grass outside grazing grounds: this program was commissioned by eight Counties 
in the rural areas of central Sweden.

The NILS was motivated primarily by the need to address the national 
Environmental Objectives in relation to, for example, sustainable forestry and the 
functioning of natural/semi-natural and managed landscapes, including areas of agri-
culture. Different authorities are designated by the government as responsible for 
each objective. Examples of these include the ‘Thriving Wetlands’ objective (Swedish 
EPA responsible), which concerns the conservation and restoration of peatlands and 
the ‘Magnificent Mountain Landscape’ objective, which focuses on the natural and 
cultural values of landscapes that require preservation (Swedish EPA, 2017). NILS 
plays an active part in discussions and in the current work of developing indicators 
and monitoring at the authority level (Hedenås et  al. 2014, 2016; Svensson et  al. 
2016a, 2016b, Svensson et al. 2009). Data from the program is used for different 
research projects, for example to inform research on the distribution and main eco-
system characteristics of wetland and peatland types in elevation zones, from the 
coast to the mountains (Jeglum et  al. 2011). The program also contributes to the 
development of monitoring indicators, notably for wetlands (Berglund et al. 2016) 
but also to assess ecosystem services in mountainous or forested areas (Svensson 
et al. 2016b).
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The five broad monitoring targets identified at the start of the NILS program 
were: (1) Landscape patterns, (2) Amount and status of sensitive or threatened habi-
tats, (3) Land use and disturbances, (4) Structural indicators and substrates, and (5) 
Indicative or sensitive species. Data from the NILS program is also intended to 
provide Swedish input to the international (including European Union) databases. 
Increasingly remote sensing is providing the basis for reporting and monitoring in 
the EU (Zlinszky et al. 2015; Van den Borre et al. 2011).

 Design of Monitoring in NILS

NILS encompasses all terrestrial habitats in Sweden, and includes land cover, land 
use (including historical land use), characterizing the tree, shrub, field and ground 
vegetation and surfaces. The inventory is designed to collect data both in the field 
and using remote sensing, in the same areas, as close in time as possible, enabling 
the capture of different resolutions of landscape. Data are collected on a total of 356 
variables, 269 of which are collected during the field inventory. Definitions and 
instructions can be found in the manuals (NILS 2017a; Allard et al. 2010) and the 
program is further described in Ståhl et al. (2011).

Both the field and the remote sensing (using stereo near-infrared imagery) inven-
tories use a rigorous set of rules and decision trees to determine the variables, and 
both are carried out by trained staff. In a five-year rotation, all of the 631 sample 
squares are sampled at both resolutions, thus capturing the “Everyday landscape” 
(Fig. 1). In the stratified sampling system, each sample contains a landscape square 
of 5 × 5 km, with an inner square of 1 × 1 km where the main inventory is carried 
out: this makes it possible to scale up to the national level, and estimate cover, 
occurrences or changes in the variables. The landscape square creates the contextual 
basis for the inventory.

It was important for the Swedish EPA to conform to the European standards of 
reporting in 2003, so the NILS program was required to describe the variables or 
possible groupings into the context the DPSIR Framework (Driving forces, Pressure, 
State, Impact, Response) used by the European Environment Agency in its reporting 
activities (Smeets and Weterings 1999). Table 1 shows a grouping of these variables 
also described by Ståhl et al. (2011). Currently, the issue of Ecological Indicators is 
addressed at the national level, and work is ongoing to describe the NILS data in this 
context, to be of use for policy and planning purposes.

To alleviate the lack of official coordinates, the program has adopted a number of 
Flagship squares outside of the statistical sample, subjectively chosen in discussion 
with governmental entities such as County Boards and Municipalities. The selection 
is an ‘ongoing list’ of add-on inventories or collaborations, and squares are added as 
the need occurs: the most recent being a collaboration with Swedish and Sami 
Authorities to establish how to use NILS data for integrated landscape planning 
(Hedblom et al. 2014).
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Fig. 1 The data collection design in the NILS program: 631 sample units of 1 × 1 km are moni-
tored by aerial imagery, in polygons, lines and points. The same area is inventoried by field survey-
ors: in 12 circular sample plots, each comprising different radiuses, together with a line- intersect 
inventory along 12 lines

Table 1 An example of how NILS groups and expresses the variables in the context of the DPSIR 
framework

Processes (pressure) Structures (state)
Ground disturbance Vegetation structure
Hydrological changes Dead wood and canopy structure
Grazing and mowing Hydromorphological mire structures
Forestry Linear and point features
Climate changes and air pollution Soil properties
Habitats (state) Species (impact)
Forest Vegetation-forming plants
Wetlands and shores Epiphytes
Grassland and heath Grasslands indicators (e.g. grazing impact)
Cliffs, rocks, bare substrates Game (droppings, etc.)
Man-made habitats (parks, etc.)
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 Inventory by Remote Sensing

Aerial imagery is used in many countries to support environmental mapping and 
monitoring, and is discussed in conservation research (e.g. Rose et  al. 2014). 
Examples include the UK Countryside Survey (Brandt et al. 2002; Barr et al. 2003), 
and the Norwegian Monitoring System, 3Q, (Dramstad et al. 2002). As with Sweden, 
Estonia used stereo near-infrared imagery to sample the landscape, and initial tests 
have been successfully carried out in Scotland for monitoring of Natura 2000- areas 
(Roose et al. 2007; Mattisson and Sullivan 2017). The advantage of using stereo 
near-infrared imagery is that different land cover (including vegetation) types can 
be differentiated and their health also indicated (Ihse 2007). The greatest benefit 
arises when these are interpreted by those with knowledge of the landscape and its 
ecology. Whilst individual species are often difficult to discriminate using colour 
infrared imagery, this can be achieved where they become dominant. However, most 
mapping is based on life-forms and their relative distribution in the landscape and 
this is generally the basis for mapping land cover, use and change as a consequence 
of natural process and human activities.

The military forces first established the benefits of near-infrared imagery as dif-
ferences in reflectance separated camouflaged vehicles and guns from natural leaf 
cover. Since then, it has been used extensively in Sweden. An example is given in 
Fig. 2, which compares a colour infrared image with delineated land covers (Allard 
2012b). The landscape is a typical setting in the mid-eastern part of Sweden, where 
the former rural areas have been mostly abandoned to regrowth. The foreground 
shows grazing land (1), with bedrock outcrops and woody shrubs on land that was 
never farmed or fertilized and is of comparatively high biological diversity. The area 
may still be grazed but the intensity is low. A second area (2) represents an area that 
may historically have been used to produce hay but where the unevenness of the 
ground hindered ploughing and hence only grazing has taken place. Recent aban-
donment of the area is indicated by the regenerating deciduous trees and some 
elderly birches and oaks. The third area (3) represents a farmed field that has been 
abandoned but where the addition of fertilizers has led to differences in the compo-
sition of herbaceous (grasses, forbs) and woody shrubs. The final area (4) is a mix 
of former grazing land but also mature coniferous forests that has been managed for 
timber (house and tool construction). Each of these units can be differentiated 
within the colour aerial photography.

Throughout Sweden, changes in the landscape are varied but can be quantified 
from the time-series of aerial images available: the nation was fully covered by 
stereo images in the 1950s–1960s and again in the 1970s–1980s, which presents 
good opportunities to ‘hindcast’ the estimations backwards in time. To date, all of 
the sample squares of the 1970s–1980s in farming areas have been fully invento-
ried: pastures and artificial land types (e.g. built-up areas) and agricultural areas 
have been compared (Christensen et al. 2015), and there is an on-going inventory 
that goes further back in time into the 1950–1960s. The results of this inventory will 
be compared to European efforts (Köhler et al. 2006). As examples of hindcasting, 
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Fig. 3a illustrates an environment much discussed in Sweden, the peri-urban areas 
including urban sprawl. This environment is undergoing rapid  change, with farmed 
and grazed fields abandoned as a consequence of new land use; where people work 
in towns or are employed by forestry instead of farming. Both squares are situated 
in the mid/southern part of Sweden, and convey areas that were farmed in the 1980s 
and are now road construction (No. 1), golf courses (No. 2) surrounded by non-
managed grass/shrublands and non-used wooded grazing lands reverting to forest.

Fig. 2 Example of how to delineate land use, land cover and historical depth in a Swedish rural 
landscape, see text for explanations. The upper photo is taken by Clas Hättestrand, Stockholm 
University and the drawing is an excerpt from the NILS Interpretation manual
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The approach of using variables instead of predefined classes enables the program 
to conform by conversion into other classifications, both nationally and internation-
ally, including the European Environment Agency EUNIS habitat type classification 
(Davies et  al. 2004), the Food and Agriculture Organisation (FAO) Land Cover 
Classification system, LCCS (Di Gregorio and Janssen 2005). The harmonization 
effort of the European Biodiversity Observation Network (EBONE), represents the 
first work with conversion of the NILS remote sensing data (Ortega et  al. 2012; 
Allard 2012a). A presentation of the national NILS remote sensing data, in the land 
use classification system of the governmental authority Statistics Sweden, is given in 
Fig. 4. The data is from the first rotation, 2003–2007 and compares well to the offi-
cial data from 2005, as is shown on the NILS on-line data portal (NILS 2017b). 
Sweden is dominated by forest, wetland and mountainous areas, although almost all 
forests are actively managed, with rotations of clear-cuts and plantations of new sap-
lings, and should not be considered as “natural land”. This classification uses a con-
cept of forests as areas covered densely by trees, a closed canopy. Since then, 
Statistics Sweden has adopted the classification system of the FAO, where forest is 
most often classified as a 10% cover of trees (and a potential of reaching 5 m in 
height), and no obvious other land use. Using the FAO classification Sweden has a 
cover of “forest” reaching 79% (Statistics Sweden 2013).

Fig. 3 An example of two NILS squares, showing peri-urban landscape change over roughly 
20 years. The delineated polygons have been classified into an overall descriptor variable, see the 
legend for types
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For the data to be consistent across Sweden, the ancillary digital data covers 
should also be consistent. That is seldom possible over a large country, so controlled 
deviations are allowed in some cases: for example, LIDAR data and National 
Reference maps are registered at lower resolution over the Mountains parts. During 
the run of the program, research has been undertaken on several occasions to pro-
vide reliable data at low cost over the landscape square, mostly as hybrid methods, 
using different digital layers of national data together with complementary interpre-
tation of the stereo imagery. Updates to the classification procedures, including cali-
bration and validation, are provided in Lindgren et al. (2015). A new digital terrain 
model has also been integrated to produce wetness indices that cover most water 
courses, including those within forests (Lestander et al. 2015). Many of the smaller 
water courses in mountainous areas are also included in the mapping.

The NILS program is also looking forward and maximising the use of data from 
the new European Sentinel-2 optical sensors, which became available from 2015. 
As providers of data to others, SLU is currently collaborating with Metria in 
Stockholm, to design a new scheme for collecting reference data (for training 
 classification algorithms as well as validation of the product) for the new National 
Land Cover Data of Sweden: a continuation of a project called CadasterENV, 
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Fig. 4 Land use in Sweden, using NILS-data converted to conform to the definitions used by 
‘Statistics Sweden’. Note that forest/forestry in this classification system does not conform to the 
European FAO-class “forest”, where forest would cover 79% of the land surface. Using the vari-
ables in the NILS, the collected data can be reclassified into many different classification systems
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financed by the European Space Agency (ESA). This Land Cover Data will be made 
publicly available and, when combined with other statistical data, has the potential 
to be used for landscape analysis and for planning of nature conservation actions. 
The different types of forest are well understood, as are built-up areas, so the devel-
opment part of the collaboration entails updates on methodology for large-scale 
classifications of open land into varied field layers, starting with the mountain range 
and moving on to the rest of the country (Metria 2017; Metria and SLU 2017). The 
work will be done during 2017–2019 and includes collating existing data from the 
inventories, and creating new data for any vegetation type that is not captured well 
enough in the samples (for example seminatural grasslands or some of the more 
uncommon types of vegetation in the mountainous areas). The method will encom-
pass a modified version of modelling of desired vegetation types, using Sentinel-2 
data, surface layers and wetness indices from; LIDAR data.  The sampling design 
will then be modified to better capture the vegetation types, both inside and between 
the existing NILS squares (Svensson et al. 2017; Reese et al. 2011). The available 
infrastructure of annual field workers in NILS enables relatively easy collection of 
ground truth-data, and the integration of stereo interpretation ensures that any new 
plots are suitable for remote sensing purposes (e.g. being sufficiently large and 
homogenous). The long-term aim is to build a database of reference data, which is 
accessible to both researchers and authorities for classification purposes.

 Challenges in Using Remote Sensing for Monitoring

In any national inventory program, a number of challenges arise. Sweden is an elon-
gated country with a diversity of ecosystems and biogeographical regions, therefore 
those interpreting the remote sensing data need a wide breadth of knowledge. This 
is often acquired by living in a region or by developing an interest in particular eco-
systems and/or how these are used or can be best managed for differing gains. 
Recruiting people with sufficient knowledge can sometimes prove difficult.

Whilst remote sensing data provide a valuable source of information for moni-
toring landscapes, the technologies are constantly evolving: this can compromise 
the consistency of observations generally required by monitoring systems. In some 
cases, changes may be the result of a difference in observation modes and time 
periods. Furthermore, some datasets have only been acquired on relatively few 
occasions (e.g., the national LIDAR survey) and hence the lack of repeat coverage 
may limit change detection. Alternative methods for retrieving biophysical attri-
butes (e.g., image matching based on aerial photography) may be used but errors in 
retrieval are often introduced (Granholm et al. 2015, 2017). Monitoring programs, 
therefore, have to be consistent in terms of the data used and knowledge available, 
as well as flexible in response to changing technologies and ideas.
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Mapping Coastal Habitats in Wales

Gwawr Jones, Peter Bunting, and Clive Hurford

Abstract Many areas across Europe are mapped and monitored using a large range 
of different data types, sources and classification schemes leading to gaps in the 
knowledge required to fulfill the European Council’s Habitats Directive (1992). The 
Earth Observation Data for Habitat Monitoring (EODHaM) system, developed dur-
ing the EU FP7 BioSOS project, introduces a systematic, hierarchical approach that 
is applicable to all sites and available as a standard, providing classifications of high 
value for conservation and biodiversity purposes (Lucas et  al. Int J Appl Earth 
Observ Geoinf 37:17–28, 2015). The system is built on the Land Cover Classification 
System (LCCS) developed by the FAO for use in the field. The aim of this project is 
to generate accurate maps of the location, extent and condition of coastal Annex I 
habitats at Kenfig Burrows Special Area of Conservation (SAC), using VHR 
Worldview-2 data.

Indices, such as Normalized Difference Vegetation Index (NDVI) allow straight-
forward visual threshold determination in the rule base, classifying LCCS Level 3 
with accuracies of 90% and above. Beyond Level 3, in situ data is key for training 
and validating EO data to determine if (a) lifeforms/habitats are separable with the 
available EO data, and (b) suitable thresholds can be determined for classification. 
Numerous indices can be calculated, and using the GPS point training data, a sepa-
rability analysis based on Analysis of Variance (ANOVA) allows those with the 
highest separation scores to be chosen as layers for classification. By plotting the 
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training data sets into boxplots, suitable thresholds are determined. The appropriate-
ness of LCCS here varies with specific sites; for example, slack habitat in sand dune 
ecosystems can be accurately mapped from contextual information derived from 
slope (calculated using VHR LiDAR data) and can therefore be translated to habitat 
from LCCS Level 3. Classifications are therefore translated from land cover to habi-
tat after LCCS Level 3 instead of following the hierarchy to Level 4 and beyond.

Once the broad habitat baseline is mapped, thresholds become restricting as they 
set clear straight lines in the feature space when classifying, therefore machine 
learning techniques such as random forest and/or support vector machines are more 
suitable for determining whether dominant species within broad habitat classes can 
be separated and classified accurately. By classifying dominant species, condition 
of habitats can be inferred. With accuracies of classifying some habitats higher than 
others when implementing EO data into a monitoring system, field surveying can 
never be ruled out to attain the knowledge required for the habitats directive. 
However, surveying can be applied specifically to those habitats that EO data cannot 
sufficiently classify.

Keywords Annex I • Habitat mapping • Land Cover Classification System • 
EODHaM system • Machine-learning

 Introduction

The heterogeneous nature of habitats, particularly beyond the broad habitat level, 
presents complications when classifying from remotely sensed imagery, as these 
habitats are often difficult to separate spectrally due to low inter-class separation 
and high intra-class variability. Many classification methods are available within the 
remote sensing community, which address the complexity of habitat mapping, but 
conservation bodies use few of these, as the products produced by Earth Observation 
(EO) are often either not detailed or accurate enough for purpose. Therefore, the 
chosen methods need to be as automated as possible and readily interpreted with 
simple user-defined parameters that can be adjusted easily.

This study aimed to test the ability of remote sensing to map the extents of pro-
tected habitats, and mainly those listed as Annex I (of European importance) by the 
EC’s Habitat Directive (of Annex I habitats of European importance listed in the EC 
Habitat’s Directive). The study site comprises terrestrial coastal habitats. The study 
also tested the ability to infer habitat condition from EO data, mainly using the pres-
ence of a dominant species as a proxy for condition.
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 Background

 Habitat Mapping with Remote Sensing

Remote sensing has enormous potential as a source of information on landscape pat-
terns, habitats and dominant species (Bock et al. 2005). Many advantages of remote 
sensing data for improving the efficiency for habitat mapping and monitoring have 
already been discussed, and similar to the advantages mentioned in Alexandridis 
et al. (2009) can be summarised as: High Resolution (HR) coverage of large areas at 
low cost; observation at several non-visible wavelengths of the spectrum, and; more 
consistent processing across a study area. Mapping of broad habitat types as generic 
land cover classes is a common practice using remote sensing and is done on a very 
coarse scale (Wulder et al. 2004). At a global scale, land cover mapping has been 
accomplished by utilising the Moderate Resolution Imaging Spectroradiometer 
(MODIS) satellite at 500 m resolution (Friedl et al. 2010), while country and regional 
level land cover classifications have been accomplished using medium resolution 
sensors. The two main types of satellite imagery at this resolution, which are more 
commonly used in ecological remote sensing, are the Landsat images and the SPOT 
system, neither of which, with resolutions of 30 m and 10 m respectively, are capable 
of providing the quality needed for the whole range of habitats mapped. This is par-
ticularly true if also trying to detect components associated with habitat condition – 
always a requirement for conservation management and reporting.

The first satellite-derived pixel-based land cover map of the UK was generated 
using Landsat TM in 1990 as part of the United Kingdom Land Cover Map (UK 
LCM) (Fuller et al. 1994). Another map was generated in 2000 using an object- 
based approach (Fuller et al. 2002) but these maps have been used reluctantly by the 
ecological community due to, mainly, low resolutions and inaccuracies, but also due 
to the lack of understanding amongst users of the limitations of remote sensing. The 
updating of the Phase 1 survey in Wales in 2010 (Lucas et al. 2011) also used EO 
data in the form of SPOT-5, ASTER and IRS time-series as a repeat field survey was 
deemed unlikely. However, many of the previous problems still existed even with 
higher resolutions and better accuracies. On the other hand, this study created the 
first national habitat map (as opposed to land cover) generated through the 
 implementation of EO data, and can potentially be adapted to allow continual moni-
toring of the extent and condition of habitats (Lucas et al. 2011).

The prospect of monitoring vegetation phenology from EO platforms is also a 
key area of interest when discussing the use of EO data and habitat monitoring. 
With the emergence of long time data records from sensors it is now possible to 
observe variations in phenological parameters, such as length of the growing sea-
son. Visible changes in vegetation phenology may be important indicators of cli-
matic change, as phenology responds to the effect of several physiological and 
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biogeochemical factors of the ecosystem (Menzel 2002). For example, time-series 
NDVI data have been used to indicate changes in LAI globally, with these reflecting 
human-induced and natural events and processes, including those related to climac-
tic fluctuation (Liu et al. 2010). Phenology is also important for estimating biologi-
cal productivity, understanding land-atmosphere interactions and the management 
of vegetative resources (Lieth 1971; Taylor 1974; Sarmiento and Monasterio 1983). 
Therefore, it is a key factor in mapping to the species level using EO data and also 
essential for monitoring change. Additionally, timing the acquisition of remotely 
sensed datasets to coincide with critical phenological stages of flowering or leaf 
senescence is very important when mapping invasive species (He et al. 2011).

In recent years, Very High Resolution datasets have increased in popularity as 
there is the potential to resolve more habitat categories, but the lack of 
 shortwave-infrared band in these datasets has significantly hampered their potential 
for monitoring complex environments. However, sensors such as Worldview-2 and 
Worldview-3, with additional coastal, yellow, red edge and near infrared bands are 
anticipated to provide benefits over other VHR sensors such as IKONOS, Quickbird 
and GeoEye. Techniques and software for processing these data, in addition to SAR 
and LiDAR data, are also likely to become more available in future years, and the 
increase in open source material will benefit many managers of protected areas in 
countries where funding is more limited (Nagendra et al. 2013). However, it is rec-
ognised that more effort should be put into developing a coherent and operational 
method which produces most, or all, relevant parameters to contribute to assessment 
of conservation status (Corbane et al. 2015).

It is also important to have well designed programmes of field data collection 
that maximise the use of data for remote sensing interpretation and conservation 
assessments. In situ field sampling networks therefore, need to be designed in com-
bination with remote sensing using, for instance, stratified sampling designs to care-
fully assess species distributions across different habitat types and enhance 
interpretative power (Nagendra 2001). Unless the spatial grain, extent and timing of 
remote sensing data, in situ data and models are well matched to these features of 
the habitats, the robustness of conclusions on management effectiveness, and the 
interpretive power of the analytical techniques used, will be limited. Remote sens-
ing interpretation needs to be grounded in field data, as this is critical for effective 
adaptive management and monitoring (Nagendra et al. 2013).

 Image Analysis Techniques

Image analysis within the remote sensing community traditionally refers to image 
classification, which is described as the systematic grouping of classes or themes 
extracted from remotely sensed data: it is a preferred technique because the methods 
are well known and widely used within the community. The output is generally 
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simple to understand, and the accuracy of the results can be assessed quantitatively 
and qualitatively (McDermid et al. 2005).

Traditional classification methods can generally be referred to as either unsuper-
vised or supervised. As stated from the name, unsupervised classification does not 
require prior knowledge of the area, whereas supervised classification does require 
a priori knowledge for training the classifier. Classes can then be assigned based on 
predicted variables measured from the training dataset (Cerna and Chytry 2005). 
Examples of unsupervised algorithms include K-means and ISODATA, and are 
often used for thematic mapping on a large scale as they do not require spatially 
detailed ground data initially, and produce useful information by clustering spec-
trally similar pixels (Tso and Olsen 2005; Giri et al. 2011). The algorithms are also 
often widely available in image processing and statistical software packages 
(Langley et al. 2001). However, the benefits of unsupervised techniques are often 
outweighed by the difficulty of post classification labelling, which does require 
ground information (McDermid et al. 2005).

The most widely used supervised classification technique is the Maximum 
Likelihood Classifier (MLC). It has been used to successfully map areas with high 
classification accuracies (MacAlister and Mahaxay 2009; Laba et  al. 2008) but 
works on the assumption that input data follow a Gaussian distribution. MLC may 
perform poorly in the presence of non-parametric distributions (Peddle 1995) as it 
is heavily reliant on the distribution of the training data. Another method includes 
the calculation of spectral indices to characterise specific attributes of plants 
(DeFries et al. 1995). The most widely used spectral index is the NDVI and is based 
on the fact that vegetation is highly reflective in the near infrared and has a high 
absorption rate in the visible red wavelengths. The contrast between these wave-
lengths can be used as a biophysical parameter that correlates with photosynthetic 
activity of vegetation, which is an indication of ‘greenness’ (Wang and Tenhunen 
2004). Therefore, NDVI is a good indicator to reflect dynamic changes of different 
vegetation groups (Geerken et al. 2005). This area of spectral indices has expanded 
rapidly and numerous indices are available for different biophysical parameters 
(e.g, soil moisture, plant senescence).

Another approach to mapping in comparison to pixel based classification is 
object-based image analysis (OBIA). Environmental objects are parts of the real 
world for which information can or should become available (e.g, a tree). As soon 
as the real world part becomes a formal object in a spatial dimension then it can be 
subject to some kind of classification (Bock et  al. 2005). However, object based 
analysis is very much dependent on the spatial resolution of available imagery. The 
follow-up map for the UK LCM (Fuller et al. 2002) was one of the principal drivers 
in the development of OBIA in ecological remote sensing.

The advantage of the object-based approach is that it offers new possibilities for 
image analysis as image objects can be characterised not only by spectral values but 
by texture, shape, context, relationship and thematic information supplied by ancil-
lary data (Bock et al. 2005). Additional layers of knowledge can be valuable to a 
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classification system especially when certain habitat types do not have very distinct 
spectral features. Many segmentation algorithms are not adapted to detect the vari-
ety of geographical entities comprising a complex scene and while they perform 
well in delineating some landscape objects, this is rarely true for all objects of inter-
est (Marceau et al. 1994). The issue of scale is problematic for segmentation algo-
rithms as segments in an image will never represent meaningful objects at all scales 
which is required for many applications, although multi-scale segmentation 
approaches may be able to combat this (Blaschke et al. 2001).

Traditional methods are able to learn automatically from clustering or training 
data, while knowledge based classifiers require user-defined thresholds to determine 
class relationship. While training data is not necessarily required, expert knowledge 
of the area of interest is needed, which is why knowledge based classifiers require 
information from ecologists for vegetation characterisation. The use of extensive 
field knowledge and auxiliary data and the use of empirical rules to extract thematic 
features has proved successful, and can even improve classification accuracy (Gad 
and Kusky 2006; Shrestha and Zinck 2001). The most common knowledge-based 
classifiers are therefore, rule-based, and are commonly accompanied by image seg-
mentation and OBIA approaches. Lucas et al. (2011) applied a rule-based approach 
to update the Phase 1 habitat of Wales, by utilising satellite imagery and ancillary 
data. Approaches like this enable full user control but gathering specific knowledge 
and obtaining ancillary data is often seen as an enormous task and can be very costly 
and too time consuming (Xie et al. 2008). However, in countries such as the UK, 
much of this data is already acquired by conservation bodies, and better communi-
cation between the remote sensing and ecological communities is encouraged 
(Lucas et al. 2007).

In recent years, when faced with large dimensional and complex data spaces, 
machine-learning algorithms have emerged as more accurate and efficient alterna-
tives to the traditional classification techniques used within the remote sensing com-
munity (Roudriguez-Galiano et  al. 2012). The algorithms used typically involve 
statistical pattern recognition, the theory of which was mostly developed in the 
1960s and 1970s. Some major developments include the Bayes decision theory 
problem (Chow 1957), nearest neighbour decision rules (Cover and Hart 1967) and 
supervised and unsupervised learning (Fukunaga 1990). During the latter part of the 
1980s, artificial neural networks and support vector machines were developed as 
statistical classifiers and these had a significant impact on the remote sensing com-
munity (Bishop 2006). The early assumption that each pixel in a multispectral 
image has a histogram with an approximate Gaussian distribution was made by Fu 
(1982) and became most popular in classifying multispectral data with use of the 
maximum likelihood algorithm for example. Even with the development of new 
sensors and the expanded applications of remote sensing, the Gaussian assumption 
remains a good approximation (Chen and Ho 2008), which explains their popular-
ity. However, most parametric classifiers are heavily reliant on this assumption and 
data may not always represent normal distributions.

A variety of nonparametric machine algorithms exist including k-Nearest 
Neighbour (Gabroswki et al. 2003), Bagging (Breiman 1996), Adaboost (Freund 
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and Schapire 1996), Decision Trees (Breiman 1984), and Support Vector Machines 
(Mountrakis et al. 2011).. An ensemble of classifiers based on decision trees are also 
proving popular such as Random Forest (Breiman 2001). As Chan and Paelinckx 
(2008) stated, no single algorithm has demonstrated clear superiority for all prob-
lems therefore it is recommended that multiple techniques are investigated for map-
ping applications.

 Study Area

Coastal and near shore environments contain a wide range of habitats that are often 
characterised by high biodiversity, including rocky cliffs, shore platforms, sandy 
beaches, dunes, salt marshes and mudflats. Wales has a total coastline length of 
approximately 1600 km (Brazier et al. 2007). Geologically, north and west Wales 
are mostly composed of relatively hard rocks such as slates, mudstones and sand-
stones, while south and south-east Wales is dominated by softer rocks such as 
shales, coal measures and limestone (Webb et al. 2010). The Welsh coastline sup-
ports a wealth of habitats and c.70% is protected by environmental or conservation 
designations (Williams and Davies 2001). This study focuses on a sand dune eco-
system in south east Wales, called Kenfig Burrows, The Kenfig Special Area of 
Conservation (SAC) is a site of European importance (Fig. 1), a National Nature 
Reserve (NNR) and and a UK Site of Special Scientific Interest (SSSI). The Annex 
I habitats that are contained are listed in Table 1.

The dune system at Kenfig is stabilizing and suffering an ongoing loss of 
successionally- young habitats, including successionally-young humid dune slack 
vegetation which supports populations of the rare and declining fen orchid, Liparis 
loeselii. The entire UK population of L.loeselli var. ovata (which is listed in Annex 
II of the EC Habitats Directive) occurs at Kenfig.’ This species is also protected by 
the 1992 Bern Convention and Wildlife and Countryside Act, 1992.

Slack mowing, managed by Bridgend Borough Council, combined with stock 
grazing, occurs on a regular cycle at Kenfig. The blowout enlargements and rejuve-
nation areas at Kenfig are trial management interventions that have the potential to 
improve the mobility of sand at Kenfig, though any sand movement to date has been 
local in nature. The fen orchid restoration scrapes have been more successful in 
recreating successionally-young humid dune slack vegetation at Kenfig, and c.15% 
of these had been recolonised by fen orchids at the time of writing. These scrapes 
are unlikely to increase sand mobility of the site, but they do provide more 
 opportunities for the spread of the stress tolerating species associated with the 
successionally- young slack habitats. A need for increased grazing levels stimulated 
the building of a 3.7 km fence in the north of the site, which excludes areas of the 
dune system. However, this has had a negligible impact on the availability of bare 
sand (Pye and Blott 2011).
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Fig. 1 Location of Kenfig Burrows site and aerial photography of the site acquired in 2006 before 
any major management measures were performed. The extent (in red) is the SAC boundary. Note 
the near absence of bare sand

Table 1 List of features that are present at Kenfig Burrows SAC

Designation Feature

Annex I habitats that are primary reason for the 
selection of this site

2130 – Fixed dunes with herbaceous 
vegetation (‘grey dunes’);
2170 – Dunes with Salix repens ssp. 
argentea (Salicion arenariae);

2190 – Humid dune slacks;
3140 – Hard oligo-mesotrophic waters with 
benthic vegetation Chara spp.

Annex I habitats present as a qualifying feature, 
but not primary reason for the selection of this 
site

1330 – Atlantic salt meadows (Glauco- 
Puccinellietalia maritimae)

Annex II species that are primary reason for the 
selection of this site

1395 – Petalwort Petalophyllum ralfsii;
1903 – Fen orchid Liparis loeselii
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 Methods

 Data Collection and Pre-processing of Earth Observation 
(EO) Data

A wide variety of remotely sensed data have provided observations of the earth’s 
environments, with the availability of satellite images increasing exponentially in 
recent years. It is, however, very important that datasets are selected based on the 
capability of the data to perform the task at hand. This section describes the satellite 
and airborne data used in this study.

 Very High Resolution Satellite Imagery

One of the many advantages of using satellite imagery for mapping and monitoring 
is the possibility of acquiring data regularly with identical sensor specifications. 
This increases the potential use, particularly within vegetation monitoring systems, 
as the repeatability of surveys is often deemed problematic and renders many meth-
ods of data acquisition unsuitable. With a range of Very High Resolution (VHR) 
satellites (<2 m pixel resolution) now available, the level of detail seen from space 
provides greater opportunities to map and monitor habitats at finer scales.

Images gathered by Worldview-2 are often used to provide detailed classifica-
tions of landscapes. This satellite was launched in 2009 and observes in 8 spectral 
bands at a spatial resolution of 2 m: a 0.46 m panchromatic band is also available. 
In addition to the red, green, blue and Near Infra-Red (NIR) bands, there are four 
additional bands that have been created to support specific applications. The coastal 
(400–450  nm), yellow (585–625  nm), red edge (705–745  nm) and NIR2 bands 
(860–1040 nm) all support vegetation identification and analysis. The red edge band 
is particularly important for the analysis of vegetation condition, as changes in chlo-
rophyll production in this region can indicate plant health. Furthermore, Worldview-2 
can revisit any site location within one day and is capable of imaging 975,000 km2 
of the land surface on a daily basis (Digital Globe 2009).

As a commercial satellite, Worldview-2 allows users to task image acquisition by 
setting the area of interest (minimum of 10 km2) and the time window for image 
capture. The minimum recommendation for time window duration is 6–8 weeks, 
which increases the likelihood of a cloud free acquisition. This amount of control 
allows users to capture seasonal variability within the landscape, which is important 
for vegetation monitoring and can be used to map habitats that are only spectrally 
unique at certain times of the year. For European environments, Lucas et al. (2015) 
suggested to use (as a minimum) imagery acquired during the pre- and peak-flush 
periods, where the vegetation is relatively stable for extended periods (e.g., no or 
full leaf cover). However, additional discrimination can be provided in the transi-
tions from the pre- to the peak-flush and the peak to the post-flush period. The latter 
period can be particularly useful for discriminating different plant species. It should 
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be noted that in some environments (e.g., the southern Mediterranean), the pre- and 
peak-flush periods may be associated with summer and winter whereas in northern 
Europe, this is reversed.

For this project, a Worldview-2 image was captured at peak (July 2012) and post 
flush (September 2012). Unfortunately, satellite imagery is not provided as ready- 
to- use data and a set of processing steps needs to be undertaken before any further 
analysis such as classification. Several factors can affect satellite measurements, 
from variations in atmospheric conditions to viewing geometry, and these effects 
need to be corrected to ensure comparability of different images and sensors within 
and between years. The main corrections applied to imagery are atmospheric, radio-
metric and orthorectification and have been reviewed in Chap. 3.

 LiDAR

Light Detection and Ranging (LiDAR) data is often used (for) to create VHR Digital 
Terrain Models (DTMs) and Digital Surface Models (DSMs). In the UK, the 
Environment Agency Geomatics Group routinely collects airborne LiDAR data 
from coastlines and catchments in England and Wales to generate DTMs and derived 
products at 1–2  m spatial resolution. As of September 2015, processed Digital 
Terrain and Surface Models and point cloud 3D datasets are freely available to any-
one under a governmental open-data scheme in the UK. (Available from Data.gov.
uk). For this project, products such as slope and aspect were also calculated from 
this dataset in addition to the DTM.

 Data from Unmanned Aerial Vehicles (UAVs) and Aerial Photography

Recent advances in UAV technologies and software have facilitated routine and 
exponential use of these data for environmental applications. However, for habitat 
monitoring, data needs to be flown at consistent heights under optimal conditions 
for comparability. For this reason, users need to consider their options carefully and 
plan flights in a manner that aids the processing of data after acquisitions (e.g., by 
placing light and dark tarpaulins on sites that are sufficiently large to capture atmo-
spheric conditions for correction, which might not be suitable for small protected 
sites). The UAV data used for this project were acquired at low cost over multiple 
days and were mosaicked and georeferenced subsequently to create a visual single 
snapshot product at 40 cm pixel resolution.

Aerial photography is still extensively used by nature conservation bodies in the 
UK. The images are typically acquired every 5 years, in the red, green and blue 
channels with a pixel resolution of <1 m, depending on flight altitude. Data acquired 
in the NIR channels are also becoming more popular but processing usually involves 
mosaicking of different flight paths and colour rendering and matching to remove 
variability within the imagery as, during national acquisitions, data are captured on 
different days. These images, therefore, are not calibrated and cannot be used to 
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retrieve biophysical attributes. This type of product can only be used visually and 
the boundaries of sites and habitats are usually digitised manually by monitoring 
staff. Aerial photography can also be used as a training and validation dataset for 
products generated from satellite sensor data, such as land cover and habitat maps.

 Field Data

The decision support tools used for vegetation management require accurate infor-
mation on the spatial array of different plant communities. The use of Global 
Positioning Systems (GPS) allows habitat data to be collected with location accu-
racy of below 1  m, these data can include habitat type, presence of species and 
photographs. Ideally, to accommodate errors in satellite image processing at 2 m 
resolution and GPS accuracy, habitats need to be homogenous across a 6 m2 area to 
ensure that data associated with the GPS points are truly representative of that spe-
cific location. When using coarser pixel resolution data, this area needs to be 
increased. However, with rare or sparse habitats, this may not be possible and the 
heterogeneous and nature of vegetation (e.g., those occurring in fine-grained mosa-
ics) needs to be at the forefront of any considerations for collecting training points 
and validation datasets.

Staff who are undertaking site monitoring routinely georeference ground data 
collections using a GPS. However, these point datasets tend to include only habitats 
of interest and very rarely include other classes that are in abundance on sites and 
these are often ignored (i.e., are not monitored). For a dataset to be suitable for train-
ing and validating satellite products, both types of habitat need to be represented. 
For this study, those points were collected from the UAV data and aerial photogra-
phy and combined with field-measured data. To ensure an even spatial distribution 
of points into training and accuracy classes, a sampling grid was generated at differ-
ent resolutions (5 m, 10 m, 15 m, 20 m) and split accordingly. (Fig. 2).

 Index Calculation

For characterizing vegetation health and condition, a number of spectral indices are 
commonly used. These include (a) the Normalised Difference Vegetation Index 
(NDVI), which represents a ratio of productivity from vegetation, (b) the Normalised 
Difference Wetness Index (NDWI), which calculates the proportion of water in 
leaves and c) the Plant Senescence Reflectance Index (PSRI), which calculates the 
proportion of senescent or non-photosynthetic vegetation. The indices that are avail-
able are sensor dependent and the Index Database (2016) is a particularly useful 
resource for making a selection. For Worldview-2, there are 134 indices that can be 
calculated. For this study, two Worldview-2 images were obtained in the peak and 
post-flush period, allowing these indices to be calculated and compared over time.
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 EODHaM System and ANOVA Separation

Most areas in Europe are mapped and monitored using a range of different data 
sources and methods and with varying degrees of success: this has led to large gaps 
in the knowledge required to fulfill the requirements of the EC Habitats Directive 
(Borre et  al. 2011). The only project that has attempted to create a systematic 
approach for mapping habitats from EO data to date is the FP7-funded biodiversity 
multi-source monitoring system: from space to species (BIOSOS) project, which 

Fig. 2 Allocation of ground measurements according to their role in training and validating habi-
tat classifications
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focused on a multidisciplinary approach to bridge the gap between remote sensing 
scientists and ecologists, allowing funding to be used effectively for both monitor-
ing and management practices. The project also developed the Earth Observation 
for Habitat Monitoring (EODHaM) system (Lucas et al. 2015), which provided a 
standardised framework for consistent land cover and habitat mapping and for mon-
itoring Natura 2000 sites. A key component of the system is the inclusion of deci-
sion rules within a hierarchical classification structure generated by experienced 
ecologists and remote sensing scientists, and the system’s use of the Land Cover 
Classification System (LCCS). The LCCS was developed by the Food and 
Agricultural Association (FAO) and represents a common classification scheme that 
can be used anywhere on global to local scales (Fig. 3).

The EODHaM system was utilised for the first stage of mapping (Fig. 4) as it 
allows the use of multiple data sources and types and is run within open source 
software that is freely available.

For the first stage of classification (LCCS level 3), a rule-based classification 
based primarily on thresholds of spectral data and indices is used. First, vegetated 
areas were separated from non-vegetated areas, which created a classification with 
an overall accuracy of 98%. All discrepancies encountered were explained by the 
presence of short sparse vegetation in primarily sandy areas known as dune annuals 
communities, shifting dune and semi-fixed dune habitat. However, as the spectral 
diversity within the vegetated areas is high, a more robust method was developed to 
select the data layers that would provide the best separation for distinguishing the 
more complicated classes such as lifeform.

An Analysis of Variance (ANOVA) was performed on all possible data layers, 
from the 134 indices calculated per Worldview-2 scene to the DTM and derived 
measures such as slope. The training dataset allowed analyses to test if a significant 
difference (at ρ < 0.05) existed between data layers for each lifeform category. The 
ANOVA coefficient or F-ratio is an extension of Fisher’s discriminant and provides 
a measure of separability between multiple classes (Scheffe 1959). The magnitude 
and significance level associated with each ANOVA F value were used to determine 
the most effective layers in separating categories where the larger the F value, the 
more likely it is that the null hypothesis of no differences between group means is 
false, indicating greater separation. Although, one of the assumptions of this method 
is that data are normally distributed, numerous studies have demonstrated that the 
data’s distribution has very little effect on the F-ratio (Tiku 1971; Box and Watson 
1961). Once the best layer or layers were selected, boxplots were then used to deter-
mine the optimal threshold values for classification.

An example of a successful category classified using this approach is the woody 
(trees) lifeform class. The class is separable by using two data layers and was clas-
sified with an overall accuracy of 84%. However, some classes were deemed insepa-
rable based on ANOVA as the distribution of classes in n-dimensional space 
becomes too complicated Therefore, alternative methods of classification were con-
sidered, and described in the next section (Figs. 5 and 6).
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Fig. 4 The EODHaM system and thresholds for level 3 mapping using the FAO Land Cover 
Classification System (LCCS). With this hierarchical system, each object (which can include pix-
els) is classified only once into one of eight level 3 broad categories. Natural terrestrial vegetated 
is classified last and the threshold for this is low to capture all the variability within the class

Fig. 3 The FAO LCCS encompassing levels 1–3 and beyond
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 Detailed Habitat Mapping

For the next stage of mapping, machine learning algorithms were used. Fig. 7 shows 
the method used to calculate multiple layers for each habitat class. This is necessary 
to test which algorithm would be most suitable, which input features are the most 
significant and which layer shows the highest correspondence with actual spatial 
distributions of classes in the field.

 Algorithm Selection

Table 2 provides brief descriptions of algorithms tested before a selection of the best 
performing were chosen for further classification. An open source python library 
called scikit-learn was utilised to perform all classifications and for more informa-
tion on calculating these algorithms see (Scikit-learn website 2016).

The algorithms that were finally selected were all nonparametric, as there is a 
known bias in the training dataset caused by the presence of sparse or rare habitats 
and a lack of representative point data in those classes. Reasons to not adopt algo-
rithms for further analysis include overestimation of some classes leading to others 
not being classified, which is to be expected with assumptions of Gaussian distribu-
tions that are not present in the data. The chosen algorithms were mainly ensemble 
classifiers as they produce higher accuracies and are particularly more robust than, 
for example, the decision tree algorithm. Also, a group of classifiers has been found 
to perform more accurately than any single classifier (Ghimire et al. 2006). The sup-
port vector machine (SVM) also proved robust, although the selection of parameters 

Fig. 5 Example of training data projected into an n-dimensional space between the two most 
separable indices where the classes are deemed separable. Indices are: Datt 6 (Datt 1998); SRBY 
Simple ratio of blue and yellow bands. Chosen thresholds are Peak Datt 6  >  0.03 and Peak 
SRBY > 0.9
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was particularly difficult. As SVMs are traditionally binary classifiers, kernels are 
necessary to combat the multivariate problem, and the chosen kernels for this study 
were linear and used a radial basis function. The multivariate problem also includes 
a choice between ‘one against the rest’ and ‘one against one’ methods, where the 
latter was chosen based on its preference within the literature (Pal and Mather 2005; 
Mountrakis et al. 2011).

 Input Feature Selection

Feature selection to provide inputs for predicting classification algorithms is also a 
key consideration that could affect the efficacy and accuracy of mapping outputs. 
Another reason to be selective about input features is the curse of high dimensional-
ity, or the Hughes phenomenon, where classification performance will reach a peak 
without proportional increase in the training sample size, beyond which perfor-
mance degrades (Landgrebe 2003). Therefore, high dimensions in the data need to 
be reduced to ensure the predictive power of algorithms. Techniques such as 
Principal Components Analysis (PCA) or Independent Component Analysis (ICA) 
are often employed for this purpose where only the first few components are used as 
feature vector input to the classifiers. However, in this process, some useful 

Fig. 6 Example of an n-dimensional space between the most separable indices where classes 
(bracken (orange), other vegetation (green)) are deemed inseparable. Indices are: CVI Chlorophyll 
Vegetation Index (Hunt et al. 2011); SRGNIR1 Simple ratio of green and Near-Infrared 1 band; 
IPVI Infrared Percentage Vegetation Index (Crippen 1990); Datt1 (Datt 1999); SRYB Simple ratio 
of yellow and blue bands
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information may be lost (Chen and Ho 2008) and these approaches were therefore 
not considered further. Instead, five different scenarios where used:

 1. Image bands and DTM layers such as slope and aspect only (known as Images in 
Fig. 6);

 2. Indices chosen on their recommendation from the EODHaM system and litera-
ture (known as EODHaM in Fig. 6);

 3. 20 indices with the highest F scores from the separation analysis (ANOVA) per 
class (known as ANOVA in Fig. 6);

 4. Indices that have a low correlation value for each class (i.e., every observation 
that has a correlation of 0.75 or above is discarded from further analysis (known 
as Uncorrelated in Fig. 6);

 5. 20 indices with the highest calculated importance for each class, as delineated 
from the Random Forest (RF) algorithm (known as RF in Fig. 6).

 Classification Structure and Validation

To preserve the hierarchical nature of the EODHaM system, a similar structure was 
formulated where classes were determined by outputs from algorithms instead of 
manually inputted thresholds (Fig. 8). This structure would still allow other datasets 

Fig. 7 Schematic of the classifying process integrating machine learning algorithms
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such as vector maps to be inputted as masks. As the basic land cover classes generated 
using the EODHaM system were sufficiently accurate, these outputs where used as 
baseline masks. Another key feature of maintaining the hierarchical nature of the 
EODHaM system is the ability to classify the same class on different land covers. For 
example, some of the discrepancies in the basic land cover classification were attrib-
uted to the presence of short sparse vegetation in primarily sandy areas known as 
dune annuals communities, shifting dune and semi-fixed dune habitat. By running 
that class on the bare ground mask, all those areas were targeted and mapped regard-
less of the known error in masks created from the EODHaM system. The class was 
then combined to create the final Annex I habitat map (Fig. 13), which in this instance 
was the Shifting Dunes along the shoreline with Ammophila arenaria (“white dunes”). 
In addition, the dominant species within the Annex I habitats were also mapped, 
which provides a proxy for condition and can help inform management decisions for 
maintaining the site. An example of where knowing the dominant species in a slack 
habitat indicates poorer condition is the presence of the grass Calamagrostis epigejos, 
as it can become a near-monoculture and prevent other species from thriving.

Table 2 Algorithms that were investigated and subsequently chosen for further classification 
analysis

Algorithm Description Chosen

AdaBoost Meta-estimator that begins by fitting a classifier on the original 
dataset and then fits additional copies of the classifier on the 
same dataset but where the weights of incorrectly classified 
instances are adjusted such that subsequent classifiers focus 
more on difficult cases.

✓

Decision tree A decision tree classifier.
Extremely 
random forest

Meta-estimator that fits a number of randomised decision trees 
on various sub-samples of the dataset and uses averaging to 
improve the predictive accuracy and control over-fitting.

✓

Linear 
discriminant 
analysis

A classifier with a linear decision boundary, generated by 
fitting class conditional densities to the data and using Bayes’ 
rule. The model fits a Gaussian density to each class, assuming 
that all classes share the same covariance matrix.

Gaussian Naïve 
Bayes

Implements the Gaussian Naïve Bayes algorithm for 
classification where the likelihood of the features is assumed to 
be Gaussian.

Nearest neighbour Classifier implementing the k-nearest neighbours vote.
Quadratic 
discriminant 
analysis

A classifier with a quadratic decision boundary, generated by 
fitting class conditional densities to the data and using Bayes’ 
rule. The model fits a Gaussian density to each class.

Random forest Meta-estimator that fits a number of decision tree classifiers on 
various sub-samples of the dataset and use averaging to 
improve the predictive accuracy and control over-fitting. The 
sub-sample size is always the same as the original input sample 
size but the samples are drawn with replacement if bootstrap is 
used.

✓

Support vector 
machine

Support vector classification where the multiclass support is 
handled according to one against one scheme.

✓
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A number of layers were selected (see example in Table 3) based on a visual 
interpretation for further field analysis as quantitative methods of validating map-
ping products from EO are not sufficient at validating spatial aspects of outputs 
(Foody 2002). These outputs were entered into a Global Positioning System (GPS) 
and were further scrutinised in the field to provide a qualitative validation and 
examine which layers represented the most suitable spatial distribution. The final 
layer for each class was chosen in the field. An analysis of overall accuracies deter-
mined from error matrices was also carried out.

 Results

The results show that no single layer was a perfect fit for all classes within the 
masked output. Table 4 shows the final layer chosen at each stage of the classifica-
tion hierarchy and a different algorithm with a different input feature were chosen 
each time, while Fig. 9 shows an illustration of these layers.

Figure 10 shows the overall point accuracy for layers generated from the herba-
ceous mask. There are some that clearly performed better than others according to this 
method of determining accuracy. The layer deemed to best represent classes in the field 
was the Extremely Random Forest algorithm with the BioSOS input  features. There 

Fig. 8 Classification hierarchical structure for Kenfig. Each box that splits into nodes is used as a 
mask each time the algorithms are run
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were nine layers that performed better than the chosen final layer. However, these 
methods of accuracy are based on point data. To test the accuracy of the qualitative 
methods of validation using the expertise of site managers and ecologist, GPS areas 
were acquired of certain slack features on site (Fig. 11). The overall areas of these 
features were calculated and the chosen layer had a higher percentage of slack classi-
fied than any other layer (Fig. 12). This proved that testing mapped outputs in the field, 
in addition to relying on point data to represent spatial accuracy, is key and important 
for the uptake of products derived from EO in monitoring solutions (Fig. 13).

 Discussion and Conclusions

This study has evaluated and tested a method designed to generate high-resolution 
maps for monitoring a network of protected designated sites. It has then integrated 
approaches that can be more automated to enhance the method and ensure better 

Table 3 An example of the method for choosing which layers were most suitable for further field 
assessment before choosing the final layer for mapping

G. Jones et al.
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Fig. 9 Layers used for final map creation

Fig. 10 The overall point accuracies for all classification layers within the herbaceous mask. The 
combined average is 80% accuracy
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Fig. 11 Location of the slack boundaries collected using a hand-held GPS device in the field

Fig. 12 Percentage of pixels classified correctly within the slack boundaries seen in Fig. 10 for all 
layers chosen for further field assessment. The chosen layer is EODHaM_ERF
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Fig. 13 Final maps created for Kenfig SAC where (a): Annex I habitat map; (b): Dominant spe-
cies within the Humid dune slack class; (c): Dominant species within the Fixed dune grassland 
class

2170 Dunes with Salix repens ssp. argentea (Salicion arenariae)

0 0.5 1 km

Na

Legend

2120 Shifting dunes along the shoreline with Ammophila arenaria (’white dunes’)

2130 Fixed dunes with herbaceous vegetation (’grey dunes’)

2190 Humid dune slacks
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quality and efficacy. Very few studies have considered a integrating two very differ-
ent classification methods into a hierarchical system, preferring instead to individu-
ally test methods and select that which provides better overall performance. The 
benefit of the EODHaM system is its ability to integrate any dataset or layer and the 
hierarchical structure aids separation, particularly if classes of spectral similarity 
are present on the areas of interest.

This study aimed to map the extent of habitats that are protected by law, and to 
provide both a baseline map to monitor the habitats and evidence to inform policy. 
Now that high-resolution boundaries have been established for this site, other EO 
datasets, such as those generated by the Sentinel satellites (from the European Space 
Agency’s Copernicus Programme), can be used to identify areas of change. As the 
data from the Sentinel programme is distributed at no cost, the expense of running 
this method as an operational system has been reduced considerably. The monitor-
ing aspect is envisaged to be a risk system where it will be up to site managers to 
interpret whether the change seen is a normal seasonal change or a risk worth inves-
tigating further with a field visit.

This system is semi-automated and relies on the ecological contextual informa-
tion to generate a hierarchy that works for each site: this means that it can easily be 
enrolled UK wide (depending on availability of EO and field data) and readily 
implemented in other countries. Using the VHR satellite data proved effective for 
mapping the Annex I habitats at this site and even went a step further by separating 
dominant species. However, although the resolution of the EO data was deemed 
efficient for this site, we cannot assume that it will be effective for all Annex I habi-
tats. For example, this method would not perform well for habitats concealed under 
canopies or fine-grained habitats with a patch size smaller than the pixel size of the 
data and the corresponding GPS error. For more suggestions on the habitats that can 
or cannot be mapped with EO data, see the Crick Framework (Medcalf et al. 2014 
and Chap. 7).
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Integrated Monitoring for Biodiversity Using 
Remote Sensing: From Local to Regional –  
A Case Study from Norfolk

Katie Medcalf, Jacqueline Parker, Gemma Bell, Paul Robinson, Samuel Neal, 
Martin Horlock, and Johanna Breyer

Abstract The integration of ecological knowledge into remote sensing classifica-
tion schemes can support operational biodiversity conservation work. Focusing on 
the county of Norfolk in the UK, this chapter describes a Defra-JNCC funded proj-
ect (Making Earth Observation Work for UK Biodiversity) that aimed to develop 
cost effective tools and techniques for mapping semi-natural habitats, thereby sup-
porting the work of the Norfolk Biodiversity Information Service. To meet the 
breadth of needs of habitat practitioners in the county, maps were produced across 
scales ranging from a county-level map to those providing more detail, as required 
by site managers. The finer scale maps also provided information on habitat condi-
tion. This approach to mapping complements other habitat surveillance methods 
and can form part of an ecological mapping and monitoring toolbox of techniques.

Each of the maps was generated using Object Based Image Analysis (OBIA) 
techniques that incorporated ecological knowledge into a rule-based classification. 
As input, we used images from earth observation platforms of varying spatial reso-
lution, spectral range and seasonal frequency. Ecological principles and local 
knowledge guided the classifications. We used available ground truth data to per-
form targeted validation and to guide revisions to the maps. The continual enhance-
ment and updating of the maps results in a ‘living map’ that benefits from the 
learning process.

The maps have subsequently been used by local partners on a diverse range 
of projects, from pollution and sediment modelling to supporting analysis of bat 
distribution. The regional maps are being further developed and enhanced by ecolo-
gists on the ground to record the presence and ecological status of habitats in the 
county. This chapter also explores how this continual enhancement and updating 
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develops as a ‘living’ map and allows learning from all of the projects to feed back 
into the map.

Keywords Habitat mapping • Ecological rule base • Remote sensing of vegetation 
• Norfolk • Multi-scale classification • Living map • Making Earth Observation 
Work • Object based image analysis (OBIA)

 A ‘Multi-scale’ Approach with Ecological Input

 Why Adopt a Multi-scale Approach to Mapping?

Information on the extent, location and condition of semi-natural habitats is essen-
tial to meet UK reporting obligations and commitments. These include legislative 
obligations in the EU Habitats Directive as well as domestic commitments to moni-
tor the status and condition of priority habitats or provide audits of ecosystem func-
tion and service provision, as set out in the Convention for Biodiversity (2010); 
Strategic Plan for Biodiversity (2011–20201). Gaps remain in our knowledge about 
the location and condition of semi-natural habitats of high nature conservation value 
(Medcalf et al. 2011) and, in particular, where they are located outside of the statu-
tory site series.

A suite of Defra2-JNCC3 funded projects, Making Earth Observation Work for 
UK Biodiversity (Medcalf et al. 2011, 2013, 2015; Gerard et al. 2015; Rowland and 
Morton 2013) and follow-on mapping work4 (Bell et al. 2015) set out to provide a 
platform and improve the capacity and capability, particularly at the local level, to 
use Earth Observation (EO) and geoinformation techniques to inform the conserva-
tion and management of natural resources.

The Norfolk Biodiversity Information Service (NBIS) collates, manages and 
supplies biodiversity data to a wide range of users. Maps were produced for the 
NBIS using a range of remotely sensed imagery, with the outputs mapped to ‘real 
world’ Ordinance Survey (OS) features that are both recognizable and practical.5 A 
multi-scale approach addressed the needs for biodiversity data at the regional, sub- 
regional and site scales.

The regional scale maps provided information about the location and extent of 
semi-natural habitats in Norfolk and were designed to:

1 See: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/69446/pb13 
583-biodiversity-strategy-2020-111111.pdf
2 Department for Environment, Food and Rural Affairs.
3 Joint Nature Conservation Committee
4 A paper by Bell et al. (2015) provides the results of a follow-on project to map the whole of 
Norfolk.
5 https://www.ordnancesurvey.co.uk/business-and-government/products/mastermap-products.html
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• Support a range of strategic policy applications (e.g., for land use planning, eco-
system restoration, targeting agri-environment schemes and planning integrated 
landscapes);

• Provide a source for collating regional information for reporting purposes;
• Help direct fieldwork where the specific habitat type is uncertain;
• Provide a baseline against which to monitor change;
• Provide an information source to feed into other analyses (e.g. green infrastruc-

ture and connectivity modelling).
• Provide a baseline for ecosystem service mapping

The sub-regional and more localised scale maps focused on areas known to be 
important for biodiversity and included the Norfolk Broads and the North Norfolk 
Coast. These maps were developed to:

• Inform site-based management for specific plant communities and the species 
that depend upon them;

• Increase understanding of how the different components of the habitats identified 
in remote sensing imagery relate to habitat condition;

• Provide a cost-effective alternative to traditional survey techniques – dynamic 
habitats, fragmented habitats and those that occur in complex mosaics and in 
inaccessible locations are difficult and costly to map by fieldwork.

The site level maps provided more detailed information on habitats and features 
in designated sites and were intended to:

• Be used by site managers
• Help managers to understand the condition of habitats and other natural features 

on the site
• Build an understanding of the extent of alien species invasion

 Mapping Approach

The project evaluated the transferability of mapping techniques that use the Object 
Based Image Analysis (OBIA) method developed for Wales (Lucas et al. 2011), on 
the premise that if the same techniques could be used in a very different biogeo-
graphical area of the United Kingdom, then it may be possible to produce nationally 
consistent map data. The project also had a specific focus on ensuring knowledge 
exchange, enabling habitat practitioners to better understand EO imagery, products 
and techniques.

Integrated Monitoring for Biodiversity Using Remote Sensing: From Local…
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 Principles Guiding Mapping at all Scales

 Spectral and Textural

Ecologists can use phenotypic characteristics of individual species, including the 
combination of species in different parts of the canopy, including the understorey, to 
help identify plant communities and habitats. With optical remote sensing, this is 
not the case, and the features identifiable are only those seen from above, therefore 
all (or with a sparse canopy, most) of the return from the signal comprises the can-
opy species. With a dense canopy no component of the understorey will be visible 
in the signal. Therefore, habitats can only be identified clearly from EO if they are 
distinguished in botanical terms by their main canopy dominant species. This 
knowledge of the dominant cover species of each habitat is considered in terms of 
how it is manifest in the imagery in terms of:

• Vegetation productivity (estimated using the Normalised Difference Vegetation 
Index (NDVI) (Tucker 1979);

• Vegetation wetness/dryness (which requires the Short Wave Infra-Red band 
(SWIR) (Gao 1996);

• The amount of living and dead vegetation and proportion of non-vegetated areas 
(Tucker 1979);

• The structure of the vegetation, including woodiness (Kerr and Ostrovsky 2003);
• Variation in the spectral characteristics of different communities at different 

stages in the growing season (Cole et al. 2014).

These factors determine the type, scale and amount of imagery needed to map 
the habitats.

 The Crick Framework

The Crick Framework, was developed as part of the project (Medcalf et al. 2011, 
2013); it brings together ecological and Earth Observation knowledge and serves to:

• Categorise habitats in terms of their ability to be mapped remotely; and,
• Provide detailed descriptions of the capacity of EO to support the identification 

of habitats.

A wide range of interacting factors has been considered along with ecological 
knowledge, to develop a generic classification system that proposes categories 
(tiers) of habitat groups (Fig. 1). Habitats are described in terms of spectral charac-
teristics and the spatial detail needed to map them. For instance, small scale or nar-
row habitats can only be mapped with spatially detailed image data (of a finer scale 
than the object itself, so it is clearly identifiable in the imagery), and are therefore 
placed in Tier 3b.
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Similarly, certain habitats are only associated with particular geological substrate 
conditions and are therefore assigned to Tier 2c or 3c, which require more ancillary 
information. A User Manual, aimed at habitat specialists provides a detailed descrip-
tion of all aspects of the Crick Framework (Environment Systems 2012). This is 
supported with examples, explanations and illustrative scenarios of how the frame-
work can be used to support the evaluation of opportunities for mapping different 
types of habitats using a range of types of EO and ancillary data.

To apply the Crick framework to Norfolk, a detailed understanding of the 
habitats in an area, their species assemblages and scale of variation was required. 
The NBIS provided a list of habitats known to be present in the region and field 
visits were conducted to gather ‘training data’ so that the spectral properties of the 
main habitat types in the imagery could be described. The field work concentrated 
on those features of the vegetation communities that were a priori considered as 
critical to distinguish communities from one another in the imagery and included:

• Differences in sward structure;
• Differences in sward heterogeneity;
• The productivity differences and annual growth cycles;
• The amount of bare ground and the colour of the soil (particularly those with a 

red coloration);
• The amount of woody material and vegetation structure.

These factors determined the type, scale and amount of imagery needed to map 
the habitats.

Fig. 1 The Crick Framework: The Tiers categorise habitats based on the EO and ancillary data 
required to map them. VHR Very High Resolution (<10 m per pixel)
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 Mapping to ‘Real World’ Objects

The process of image analysis used is known as Object Based Image Analysis 
(OBIA) (Lucas et al. 2007) and eCognition image processing software (eCognition) 
was used. Pixels with similar spectral characteristics were grouped into objects, with 
the user defining their spectral characteristics, size and shape (Burnett and Blaschke 
2003; Karl and Maurer 2010). For Norfolk, a multi-resolution -stage ‘segmentation – 
classification  – re-segmentation’ approach was used where large ‘woodland’ and 
‘field-sized’ objects were firstly delineated and classified. Then, the image was  
re-segmented within these boundaries to delineate and classify smaller, irregularly-
shaped polygons which were commensurate in dimensions and geometry with the 
vegetation patches within the various communities. Within this project, each object 
needed to comprise at least five pixels of the remote sensing data to give sufficient 
statistical validity to describe the object accurately according to Blaschke et  al. 
(2008). The spatial scale of the features and imagery therefore drive the image 
choice, as illustrated in Fig. 2. The grid represents the spatial resolution of the imag-
ery, with each grid square being an image pixel. The controlling factor in the identi-
fication of wet grassland is the combination of pixel size (i.e., image resolution) and 
the relative size of the woodland, grassland and scrub. In Fig. 2a, all the wet grass-
land can be clearly discriminated from the surrounding vegetation as it is represented 
by many pixels in high resolution imagery. In Fig. 2b, it would be possible, but more 
difficult, to identify as the pixel at the boundary of the wet grassland receives spectral 
contributions from the surrounding dry woodland. In Fig. 2c, the grassland would not 
be distinguishable as it is of a smaller dimension than the pixel.

The description of real world objects within the habitat map was assisted by 
using ancillary information. For example, the OS MasterMap6 topography layer 
with field boundaries was used within the segmentation to set rules to restrict habitats 
to occur only within particular polygons, based on ecological knowledge (e.g. small 
areas of scrub woodland at the edge of, or within, an agricultural field). Using this 

6 https://www.ordnancesurvey.co.uk/business-and-government/products/topography-layer.html

Fig. 2 Diagrammatic representation of the effect of pixel size, (a) 30 m, (b) 100 m and (c) 1000 
m, on habitat feature recognition with areas of wet grassland (purple) surrounded by dry woodland 
(blue) and scrub (yellow)
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type of data also ensures that the outputs are of practical use at the local level and 
enabled the maps produced at differing scales in Norfolk to be aligned and compa-
rable. This allows key features (e.g., roads, rivers and field boundaries) within the 
landscape to be consistently mapped at all scales.

 Landscape Context: Confining the Search for Habitats

Once real world objects are defined, these can be classified using the rule-based 
approach which is informed by ecological knowledge. Often there is insufficient 
spectral information within the EO data to allow classification of habitats given the 
diverse range of land cover and habitats types present in the extensive areas covered 
by a satellite image. To overcome this, the component elements in the landscape are 
separated using the ecological properties of the main habitat types. This ‘landscape 
context’ of the habitat (Lucas 2011) is significant when mapping at the regional 
scale because some habitats only occur in specific locations in the landscape. For 
example, Floodplain and Coastal Grazing Marsh is only found within the floodplain 
or next to brackish waters which are seasonally inundated. The location of these 
habitats therefore has a direct geographic range. By first considering and examining 
this ‘macro-scale’ the ecologist is able to define the ‘ecologically coherent’ distinct 
landscapes where particular habitats are known to be located. The EO specialist can 
then exploit this information together with knowledge of the spectral properties of 
the habitats to produce the classification. This is shown in Fig. 3 (see Bell et al. 
2015; Medcalf et al. 2011; Medcalf et al. 2013).

 Placing Boundaries in Ecotones

Placing boundaries between habitats on maps is challenging whether mapping by 
fieldwork or by remote sensing as the habitats are not always clearly delineated. In 
some environments, a transition area occurs where habitats meet and integrate, 
which is referred to as an ecotone. In the coastal areas of north Norfolk, for example, 
saltmarsh grades into grazing marsh which in turn grades into natural grasslands as 
the distance from the sea and height of the land increases. Within these habitats, 
each of these ‘ecotones’ is represented in the imagery by a change in productivity 
and wetness in the spring. Distinguishing one habitat from another therefore 
depends on understanding the relationship between the ecotones and making a 
decision about where a ‘hard mapped’ boundary would best be placed along the 
continuum (Natural England 2011a, b, c; 2012).
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 Selecting Imagery for Classification

The number of images needed and the timing of these is driven by the particular 
biogeography of the environment. In the example above, a spring image is neces-
sary to separate the coastal grassland types. Other habitats needed a combination of 
‘leaf-on’ and ‘leaf-off’ imagery. Norfolk is a diverse and dynamic environment, 
where cycles of arable cropping dominate the landscape and factors such as topog-
raphy can limit the times of year when imagery should be acquired.

One of the key findings of the project was recognition of the effects on the map-
ping approach arising from differences in the spatial scale at which semi-natural 
habitats occur in different parts of the UK. In Wales, where the techniques were first 
developed (Lucas et  al. 2011), semi-natural habitats can occur in large upland 
blocks: mosaics of semi-natural habitats form spatial patterns across whole valley 
systems or hillsides. By contrast, in Norfolk, the pressures on the land for arable 
use, and the character of the aquifer-fed habitats have resulted in greater fragmenta-
tion of semi- natural habitats with these then covering small areas and occurring in 
far more intricate mosaics. For this reason, reliable identification of semi-natural 

Fig. 3 Diagrammatic representation of the process of ‘landscape splitting’ for Norfolk
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habitats requires the inclusion of higher resolution (more detailed) imagery espe-
cially when considering sub-regional and site scales (Bell et al. 2015). The complete 
table of imagery used for the Norfolk mapping at regional and sub-regional scale is 
shown in Fig. 4, with this ranging from Landsat and SPOT to RapidEye and GeoEye.

 Local to Regional Scale Outputs in Norfolk

To map at the regional scale (Figs. 5 and 6), we first identified areas of arable land, 
to avoid confusion with semi-natural habitats that potentially share spectral charac-
teristics at certain points in a crop growth cycle (Franke et al. 2012). In areas where 
there are many different cropping cycles, several images at different times of year 
are needed to identify land that has been ploughed or re-seeded. For semi-natural 
habitats, an image acquired both during a ‘leaf-on’ period and when the vegetation 
is ‘leaf-off’ provides key information for the OBIA rule development as the differ-
ences in spectral properties over time often helps to distinguish one community 
from another. For example, bracken has very distinct spectral characteristics in 
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Fig. 4 Satellite imagery acquired for the Norfolk pilot study
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winter, with the dead leaves having a noticeable ‘orange/brown’ colour and there is 
no photosynthetic vegetation present in the canopy. By contrast, in summer, bracken 
has very high productivity and a closed canopy. Using the ratio between these two 
states allows bracken to be identified with relative ease. The timing of the ‘leaf-on’ 
and ‘leaf-off’ imagery however needs to be considered in the biogeographical 
context. In Wales a ‘leaf-off’ image before March contains too much shadow from 

Fig. 5 Regional scale mapped output for an area of Norfolk
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the hills to be useful. However, in Norfolk, March is often well into the growing 
season and a February ‘leaf-off’ image was found to be more useable.

Within the Norfolk study, classification followed a multi-stage stage process: a 
draft map was created, which was checked by members of NBIS using randomly 
assigned ground survey points (Medcalf et al. 2011). The feedback from NBIS was 
used to refine the classification rulebase, especially for features that had not been 
well identified in the initial classification. This cycle of refining the maps and field 
checking was carried out over several iterations. The final outputs of the mapping 
are reported in Medcalf et al. (2013) and show that, following field survey by the 
NBIS, the accuracy was found to dependent on the input imagery available. For the 
eastern study area, the overall accuracy was 89% but this was lower for the western 
study area (78%). The greater classification accuracy in the eastern study area arose 
because of the greater temporal spread of imagery available, their higher pixel reso-
lution and greater spectral range.

The errors in the classification are not randomly distributed when the rule based 
mapping is used but were spatially concentrated in:

• in areas obscured or shaded by clouds;
• at the boundaries of images; or
• areas with a less than ideal time series of imagery.

At the regional scale in Norfolk, a range of high priority habitats (BAP and 
Annex I) were identified using OBIA and rule-based classification (Fig. 6). Splitting 
the landscape into its component parts also allowed the classification of habitats, 
including the floristically and structurally complex grazing marshes and Breckland 
heathlands. Based on the Crick Framework, the priority habitats that were not fully 
identified were generally of Type 4a. However, for these habitats, the segmentation 
and classification approach was useful for generating ‘areas of search’ as the broader 
or ‘parent’ habitats are identifiable and can be delineated. At the landscape scale, 
wet heathland types (required for mapping Annex I habitats) could often, but not 
always, be mapped with the use of contextual data. The landscape scale work, using 
SPOT and IRS imagery, allowed the broad saltmarsh communities (water, sediment, 
vegetated saltmarsh) to be separated. However, to distinguish particular components 
of vegetation that are relevant to specific priority or Annex 1 habitats within these 
more broadly defined classes, high resolution imagery such as GeoEye (1.65 m) and 
a high quality Digital Terrain Model (1 m or better) or LiDAR were required.

 Sub Regional Mapping: Considerations and Outputs

At a sub-regional scale, finer resolution satellite data are required to map features 
such as dykes, small pockets of scrub and wet grasslands. In addition to the satellites 
that provided spectral information, LiDAR data was used to give a structural com-
ponent to the landscape. This allowed the separation of features such as reed beds 
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from other homogeneous productive grassland types, based upon their height and 
adjacency to water.

The Norfolk coastal zone, within which sub-regional mapping took place, was 
defined by distance from the sea, height above sea level and the presence of sand 
dune features, such as dune slacks. This was achieved using spectral rules together 
with ancillary data on elevation. In addition, LiDAR data were used to provide a 
structural component for features from the saltmarsh communities. Figure  7 
 illustrates the additional detail of habitat mapping that was achievable with the 
introduction of the higher resolution imagery and LiDAR data.

Fig. 6 The distribution of selected habitats of biodiversity importance in Norfolk at a regional 
scale

K. Medcalf et al.
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 Site Level Mapping: Considerations and Outputs

Choosing imagery for mapping at the site level, again, is driven by the detail needed 
and the scale and intricacies of the habitat mosaics. At an individual site level, data 
from Unmanned Aerial Vehicles (UAVs) red, green and blue (RGB) and near infra-
red (NIR) imagery and a Digital Surface Model (DSM, vertical resolution of 10 cm) 
derived from stereo images can be used. The maps produced are extremely detailed 
and are considered by the NBIS to be particularly useful for areas that are difficult 
to access safely (e.g., salt marshes) or that cannot be visited at certain times (e.g., 
due to nesting birds on heaths). Using this approach, habitats can be mapped using 
EO to distinguish vegetation at a similar scale to an NVC survey.

A limitation of using UAV data is that only one overflight might be possible. 
Again, the choice of timing of the image acquisition is determined by the knowl-
edge of the ecological and spectral characteristics of the features of most interest. In 
the Norfolk Broads, the invasive Himalayan Balsam is a significant problem and its 
distinctive pink blooms show up clearly, and can be mapped from the August acqui-
sitions of UAV imagery (Fig. 8).

Using UAV data at a wetland bog complex at Dersingham, individual ash trees 
within the heathland were identifiable, which could potentially indicate that the 
heathland might be experiencing shrub invasion as a consequence of reduced grazing 
activity. In order to maintain the ecological value of the site, selected trees may have 
to be removed. The regional level mapping shows the main expanse of gorse scrub, 
but not the detail of individual young trees; therefore for scrub monitoring, knowl-
edge of the individual site and the species posing the problems should be sought 

Fig. 7 Classification of saltmarsh showing the difference in spatial scale and classification detail 
achievable using regional scale mapping and data (left hand image) and sub-regional scale ultra- 
high resolution imagery (Geoeye and LiDAR – right hand image). The water level varies with the 
imagery captured at different states of the tide
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before deciding on the imagery to use. On the Breckland heathland sites, grazing is 
important in maintaining the condition of the sward, with patches of bare ground and 
very short swards maintaining the biodiversity of these habitats. Whilst both regional 
and site level maps showed large patches of bare ground, the UAV data revealed the 
smaller patches which are most important for maintaining the communities.

At a site level the maps are suitable for understanding how a specific site or 
species interacts in relation to its surroundings (e.g., on wetland bog complexes and 
a Breckland heathland site). The features that could be identified are of value for:

• Planning scrub management
• Quantifying grazing pressure
• Understanding differences in wetness within sites
• Mapping bare ground and invasive species.

Examining the relationships between habitats at a site and within the surrounding 
areas can indicate where there are risk factors to the habitat condition or conversely, 
opportunities for habitat expansion (Breyer et al. 2016). This is especially informa-
tive for protected sites management (Fig. 9). In several areas of the Norfolk Broads, 
protected sites (such as SSSIs) were mapped using UAVs. Measures of vegetation 
productivity (NDVI) from lower resolution satellite data and the regional scale 
mapping were produced rapidly and at low cost, as the regional map was complete. 
Spectral measures, such as the NDVI, assisted site managers in identifying how 
management of the land surrounding a protected site impacts upon its ecological 
condition (e.g., through nutrient deposition from heavy use of fertiliser around the 
site itself).

Fig. 8 Classification of Himalayan Balsam from UAV imagery in the Norfolk Broads
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 Towards a Living Map

The regional map of Norfolk produced by the project provided an overview of habi-
tats in Norfolk at a field/part-field scale level and with knowledge that not all habi-
tats could be identified fully, but areas of search could be delineated and a ‘parent 
class’ assigned. Furthermore, there was variation in the accuracy of mapping across 
the region that was quantifiable.

This knowledge allowed the NBIS to interact with the project team and arrive at 
a potentially cost-effective way of improving the content of the map through ongo-
ing targeted field work and a citizen science approach (Medcalf et al. 2015. A sub-
sequent assessment and study (Newson et al. in press) enabled the NBIS volunteers 
to validate and update the map and take forward the concept of a ‘living map’ in a 
Defra funded project led by British Trust for Ornithology.

The project assessed the potential for volunteers to assist the process of ground- 
truthing or validating “Living Maps” using the maps and data produced for Norfolk. 
It considered the potential sampling methodologies, the technological solutions and 
the opinions of the volunteer sector, particularly with regards to their interest in 
contributing to such an exercise, their capabilities and their attitudes towards tech-
nological options. A broad spectrum of group leaders spanning charities, councils, 
leisure groups, recorder networks and conservation agencies were consulted by the 

Fig. 9 Processes present around and within a site
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NBIS to identify the volunteer capacity in Norfolk and across the UK. At every 
stage, the potential for transferability to a UK-wide approach was reviewed.

The project established that:

• Habitat patches were missed from the classification and patches of other habitat 
mistakenly included;

• Priority habitats can be difficult to identify both in the field by volunteers and 
from imagery; this is due to the complexity of the gradation of one habitat into 
another. This is compounded by the existing habitat class names, which despite 
being pinned to BAP or Annex 1 names as much as possible, were difficult for 
non-experts to use in the field.

• A stratified sampling strategy for validation would involve both a desk-based and 
field-based assessment. This is a real issue for habitats of conservation interest 
because they are often too scarce to be picked up on any random-stratified 
method. A large number of randomly selected sample squares are needed to pro-
vide scientifically robust results in Norfolk.

• Within Norfolk, there is a keen group of volunteers with a range of backgrounds 
and skills but a limited appetite to add habitat recording to existing activities or 
carry out desk-based assessments.

• Most volunteers prefer to validate locations very close to where they live, so 
volunteer sampling strategies need to take this into account.

• A well-designed smart-phone application would appeal to a wide range of users 
but would be costly to develop, unless rolled-out across the UK with the potential 
for multi-year assessments to coincide with Living Map updates.

• Training will be critical to participation, along with effective communication of 
the purpose, outputs and confidence in the product.

 Examples of the Use of the Mapped Outputs in Norfolk

Prior to the project, the NBIS held only partial records for selected sites in the 
county. They had no regional overview of the habitats but held some sub- regional 
maps and old site maps: the potential for repeating these, however, was limited by 
resource constraints.

 Regional Scale and Sub-regional Mapping

The UK National Planning Policy Framework7 (NPPF) places requirements on local 
authorities to map habitats as a means of providing evidence on biodiversity to 
understand the provision of green infrastructure and ecological networks. In a wider 

7 https://www.gov.uk/government/publications/national-planning-policy-framework--2
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context, local authorities, government agencies and conservation charities are 
working together to prevent biodiversity loss by 2020 and move to net gain in 
biodiversity as set out in Biodiversity 2020: A Strategy for England’s Wildlife and 
‘Ecosystem Services’ objectives (Defra 2011). The regional scale mapping carried 
out in Norfolk was a significant step towards realising these aspirations as it:

• Increased knowledge of the presence and extent of habitats in the wider 
countryside;

• Generated habitat maps and data to meet a wide range of landscape scale 
approaches to biodiversity delivery;

• Generated map layers to support the analysis of ecosystem goods and services, 
ecological networks, ecological restoration, pollution modeling, species distribu-
tion modeling and threat maps for non-native species and plant and animal health 
issues.

Subsequent activity that has utilised the regional and sub regional mapped out-
puts and data includes bat habitat suitability modelling by Norfolk Bat Survey and 
pollution and sediment modelling by the Broadland Catchment Partnership. The 
Norfolk Wildlife Trust have used the map within their Living Landscape plans, and 
as a tool to help local parish groups to produce a Phase 1 Map of their parishes: this 
will contribute to the development of neighbourhood plans linked to the NPPF.

 Site Level Mapping

The site level mapping achieved in Norfolk demonstrated the potential for:

• Improving the spatial definition of habitats within some designated sites;
• Producing evidence for management plans for larger sites or discrete areas to 

inform local planning;
• Identifying threats to habitats and ways of mitigating against and monitoring 

these (e.g. projects mapping the presence and extent of alien species).

Site managers in Norfolk identified one of the main benefits of the maps being a 
reduction in survey time: this enables targeted follow-up surveys and increases the 
time available for planning and site management. Site  managers in Breckland, espe-
cially at East Wretham Heath, found the maps useful for showing bare ground and 
scrub, thus assisting with the management of the rabbit population and providing 
information on the quality and nutrient levels of the Breckland grass-heath. The 
Himalayan Balsam mapping was exceptionally useful for planning eradication, 
especially for the large areas of inaccessible broads for which the NBIS had only 
very limited records of the location of this invasive species.
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 Conclusion

The Norfolk mapping project demonstrated that the Crick approach was transferable 
to a lowland situation. It highlighted the importance of understanding the ecology 
of the area, at a range of spatial scales. Using ecological knowledge, including 
fieldwork to understand how the habitats are manifested in the imagery, and to 
document the key ecological features identifiable in EO was an essential step in the 
process. The constraints of being unable to map certain habitats can be overcome 
by the NBIS, through the creation of a ‘Living Map’ programme where targeted 
field- based assessment decreases the uncertainties in the map. At a site scale, the 
combined use of satellite and UAV data illustrated that the Crick technique has 
many potential uses for site managers.

Maps are key learning and engagement tools for local authorities, government 
agencies, charities and environmental groups. The regional map of Norfolk has pro-
vided an overview of habitats in the county at a field/part-field level. The site map-
ping using UAVs highlighted how useful it is to be able to accurately identify small 
features on sites such as bare ground, patches of nettles (Urtica dioica) and the 
spread of invasive species. The future uses for EO data are expanding, with habitat 
mapping a key element, but also with opportunities to inform habitat condition 
monitoring, assessments of landscape change and to map habitat restoration and 
green infrastructure.
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Sub-pixel Mapping of Doñana Shrubland 
Species

Marcos Jiménez and Ricardo Díaz-Delgado

Abstract Periodically mapping and monitoring the spatial distribution of vegeta-
tion at species level increases knowledge about the relationship between ecological 
processes and ecosystem functioning. In protected natural areas, long-term monitor-
ing of key or invasive species can be applied in a more effective, coherent and con-
sistent way by incorporating regular mapping. To guarantee more reliable monitoring 
data, these programs should be underpinned by periodic and repeatable measure-
ments. In addition, using standard methodologies will help to ensure that we can 
make comparisons with other natural areas. In this chapter, we introduce a protocol 
for mapping the distribution of plant species using airborne imaging spectroscopy. 
We apply robust and widely used methodologies for acquiring hyperspectral airborne 
imagery and field spectroscopy, and for processing and analyzing these to generate 
spatial-explicit distribution maps of plant species. The main aim was to facilitate 
monitoring programs by supplying periodic maps of plant species that can be used 
identify major shifts in distribution. The study case focuses on the shrub communi-
ties on the stabilized sand dunes of Doñana National Park in south west Spain.

Keywords Plant species mapping protocol • Monitoring shrubland communities • 
Imaging spectroscopy • Field spectroscopy • INTA-AHS system • Doñana National Park

 Introduction

The rate of change in the structure and species composition of ecological communities 
sometimes occurs in a very dramatic way (Hooper et al. 2005). In order to slow 
down negative biodiversity trends, conservation decision-makers need knowledge 
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about the spatial distribution and temporal dynamics of flora and fauna on a relevant 
scale (Leutner et al. 2012). In this sense, being able to map and monitor the spatial 
distribution of vegetation at species level, and identify changes in population in 
space and time, will increase the knowledge about the relationship between ecologi-
cal processes and ecosystem functioning (Trochet and Schmeller 2013). 
Consequently, monitoring species that are introduced or invasive in protected areas 
can be applied with greater consistency (Schmeller 2008).

Traditional methods for vegetation mapping, such as exhaustive field surveys, 
are both time consuming and costly (Ustin et  al. 2004). Remote sensing is now 
established as an important tool for researching and monitoring the ecological 
processes of terrestrial ecosystems, and has the potential to achieve this in an 
efficient and economical way (Nagendra et al. 2010), particularly in sensitive and 
inaccessible areas (e.g., mangrove or marshland) (Kamal and Phinn 2011). In the 
early years of Earth Observation, some vegetation types and communities were 
mapped using broadband multispectral observations, typically from sensors such as 
Landsat TM or SPOT (Satellite for Earth Observation). However, with the develop-
ment of hyperspectral remote sensing, we have the capacity to map at the species 
level (Ustin et al. 2004). Among hyperspectral techniques, imaging spectroscopy is 
well adapted for airborne platforms and is reinforced with the application of 
Remotely Pilot Air Systems (RPAS). However, spaceborne instruments are still in 
the early stages of development (Schaepman et al. 2009). In this sense, forthcoming 
space missions like EnMAP (Kaufmann et  al. 2008) or PRISMA (Stefano et  al. 
2013) will present a great stimulus to consolidate this approach.

Although airborne imaging spectroscopy with very high spatial and spectral res-
olution looks promising in the arena of plant species mapping, operational 
approaches are lacking because of our limited biophysical understanding of when 
remotely sensed signatures indicate the presence of unique species within and 
across ecosystems (Somers and Asner 2012). In this sense, two of the main drawbacks 
in ecosystems are: high spectral similarity among species with similar ecological 
adaptations, and, conversely, high ‘within species’ spectral variability response due 
to variations in plant constituents (tissues chemistry and structure) (Asner 1998). To 
improve the mapping efficiency of imaging spectroscopy, the analysis techniques 
applied to the imagery could be better accomplished if based on ground truth data 
to help characterise the spectral response of each plant species (Warner 2010). Field 
spectroscopy is the primary method for registering ground truth data to develop 
spectral libraries for plants (Manakos et al. 2010). However, to create consistently 
unique and detectable spectral signatures among species, this spectral library must 
take into account the spatiotemporal variability of the plants, both throughout the 
ecosystem and the seasons (Zomer et al. 2009).

Following recommendations of the Rio de Janeiro Convention on Biological 
Diversity (CBD) in 1992 and European Habitats Directive (Directive 92/43/EEC), 
natural protected sites should be under continuous observation. Consequently, eval-
uation is undertaken and reporting required every 6 years, to determine the status of 
the habitats and species of European importance for nature conservation in a bio-
geographic region. In this sense, the organizations responsible for the management 
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and conservation of natural protected areas have been given the responsibility to 
establish long term monitoring programs for terrestrial ecosystems that allow the 
inference of trends and rates of change (Vaughan et al. 2001). However, these moni-
toring programs should be informed by periodic and repeatable measurements 
(Schmeller 2008). Standard methodologies allow better comparison with other 
maps of natural areas. In the work by Oakley et al. (2003), guidelines for monitoring 
protocols are outlined, with these highlighting the importance of the collection, 
management, analysis and reporting of the data.

In this study, we present an approach for establishing a protocol for mapping the 
distribution of plant species based on airborne imaging spectroscopy. Robust and 
widely used methodologies for hyperspectral airborne images and field spectros-
copy acquisition, processing and analyzing are selected to generate spatially-explicit 
maps of plant species distribution. The aim behind this work is to facilitate pro-
grams to monitor ecological communities based on mapping derived from imaging 
spectroscopy. These maps will help to interpret shifts in species composition in 
response to environmental changes induced by climate and land use change and 
other anthropogenic impacts.

We present a practical case study to demonstrate the usefulness of the program 
and protocols. In the ecosystem of stabilized sand dunes of Doñana National Park 
in south west Spain, the shrub communities are a very important habitat for fauna. 
In-depth knowledge of the spatial distribution of the shrub species is also essential 
for managing shrubland habitats (Cobo et al. 2002).

 Background of Plant Species Mapping Activities Using 
Imaging Spectroscopy

Before describing the procedure proposed for mapping plant species in this work, 
we should explain some aspects of the key techniques that underpin the protocols: 
the characteristics of the airborne imaging spectroscopy, the basis of field spectros-
copy data, and the spectral unmixing algorithms applied to the hyperspectral data.

 Airborne Imaging Spectroscopy

Airborne remote sensing is characterised by its flexibility in imagery acquisition 
conditions and continuous maintenance and calibration of the sensors installed. 
These characteristics offer great advantages for the acquisition of seasonal and diurnal 
processes (e.g., drought and fire impacts) and can determine the viability of specific 
research applications. There are several aerial platforms for imaging spectroscopy 
(e.g., balloons and helicopters) and more recently the Remotely Piloted Air Systems 
(RPAS), formerly Unmanned Aerial Systems –UAS- (Hruska et al. 2012). However, 
non-pressurised aircraft are the most widely used platform due to the better 
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combination of autonomy and stability. Airborne imaging spectroscopy operators 
are usually national institutions involved in aircraft research. In particular, the 
European Facility for Airborne Research (EUFAR, http://www.eufar.net/) is a 
European Commission project to integrate 24 of these operators and provide 
researchers with easy and open access to airborne research facilities.

The first whiskbroom airborne imaging spectrometers developed around 1980 
(Green et al. 1998) were manufactured with a full width half maximum (FWHM) of 
nearly 10  nm in the visible and near infra-red (VNIR) and short wave infra-red 
(SWIR) wavelength regions. Pushbroom systems offer advantages in robustness, 
integration time, speed, and spectral/spatial resolution (Schlapfer et  al. 2007). 
Moreover, the pushbroom system increases the levels of signal to noise ratios (SNR) 
to around 1000:1.

Near-ground flight conditions impose some radiometric and geometric con-
straints on the hyperspectral imagery: (1) the sensor requires a large (between 40º 
and 90º) field of view (FOV) to cover as much ground area as possible in each flight 
line. Consequently, off-nadir pixels tend to increase in pixel size and are subject to 
radiometric gradients if the scanning plane is not perpendicular to the Sun’s princi-
pal plane. In addition, rugged terrain enhances these changes of incident sun angle 
variations and pixel size; (2) to cover a typical local scale study area of 20 × 20 km, 
several flight lines, which may take 2–3 hours, are needed, to also ensure that Sun 
angle variations between flight lines are reduced; sun angles variation between flight 
lines; (3) atmospheric components with more relevance in the radiative transfer 
optic response are concentrated in the very first kilometers near-ground, thus air-
borne imagery is also affected by the atmosphere. Likewise, the platform stability is 
influenced by high-frequency velocity and attitude variations. All these aspects 
must be corrected and normalized between flight lines to obtain a better georefer-
enced ground reflectance mosaic of the study area. Algorithms for geometric correc-
tion are becoming accurate and can be implemented in a fully automatic way 
(Biesemans et al. 2007).

A wide variety of studies have been conducted on species-level mapping in dif-
ferent vegetation types, including grasslands (Miao et al. 2006; Möckel et al. 2014), 
shrublands (Roberts et  al. 1998), mangroves (Ustin et  al. 2004), marshlands 
(Silvestri et al. 2003), and forest (Kalacska et al. 2007; Asner et al. 2008).

 Field Spectroscopy

Field spectroscopy is the measurement of high-resolution spectral radiance or irra-
diance in the field to derive the reflectance or emissivity spectral signatures of tar-
gets at the Earth’s surface under natural environmental conditions. In comparison 
with airborne or spaceborne imaging spectroscopy, the sensing instrument in the 
field can remain fixed over the subject of interest for much longer, and the path 
length between the instrument and the object being measured is thereby reduced 
(Milton et al. 2009).
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The robust and portable field spectroradiometers developed in previous decades 
have evolved from the non-imaging spectrometers currently used in the laboratory. 
Fibre optic bundles providing different FOV angles has become widely used. 
Depending on the application considered, manufacturers offer two kind of spectro-
radiometer: (1) small and light devices that are designed to work only in the VNIR, 
with levels of SNR around 250:1; (2) less small and light devices that work across 
the entire solar spectrum, with refrigerated SWIR detectors and an SNR of around 
1000:1. Both instrument types have a VNIR’s full FWHM of nearly 3 nm but, for 
SWIR instruments, the FWHM is nearly 10 nm.

Methods in field spectroscopy are well described by several authors (Salisbury 
1998; Goetz 2012). The basic recommendations for better spectra acquisition are to 
measure under cloudless sky, at high sun zenith angles and with the same illumina-
tion and atmospheric conditions for the panel and target. The most widely used 
acquisition methodology to obtain near-ground reflectance is the single-beam, 
where the same instrument is used to measure both the target and the reference 
panel spectral radiance. In this case, Spectralon® (Labsphere, North Sutton, NH, 
USA) has been established as the standard material for panels, due to its high 
degree of perfect diffuse and lambertian response. Measurements with field spec-
troradiometers are often hand-held, usually with the sensor head mounted on a pole 
or yoke to keep it away from the operator’s body. In this regard, we should mention 
the novel carrier- lift system MUFSPEM@MED (Mobile Unit for Field SPEctral 
Measurements at the MEDiterranean, Manakos et al. 2010), which has the capacity 
for automated signature acquisition.

Spectral libraries are collections of spectra that characterize the reflectance or 
emissivity spectral response of Earth’s surfaces and materials. Characterizing plant 
species is always challenging due to variations in vegetation elements, growing 
states, and phenology (Asner 1998). A large number of studies have focused on the 
acquisition of plant spectra in the field over different vegetation formations, includ-
ing shrublands (Manevski et  al. 2011), marshlands (Zomer et  al. 2009), forest 
(Somers and Asner 2012) and sub-aquatic environments (Fyfe and Dekker 2001). 
Nevertheless, there is no standard protocol for the acquisition of a plants reflectance 
spectral response (Pfitzner et al. 2010), so a universally applied methodology for the 
collection of field spectra is needed (Manakos et al. 2010).

 Spectral Unmixing

When working with mono-specific plant communities, the estimation of plant spe-
cies cover by remote sensing is better accomplished by sub-pixel algorithms. In 
remote sensing imagery, the total signal integrated in a pixel is a function of:

• The optic properties of the components inside the Ground Instantaneous Field Of 
View (GIFOV), and the relationships between them. The components contribu-
tion can follow a linear mixture or a non-linear mixture model (Keshava and 
Mustard 2002);
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• The sensor’s point spatial function (PSF), which determines if the central parts 
of the pixel are going to have more relevance than the outer parts, and also the 
non- negligible part outside of the GIFOV (Schowengerdt 2007);

• Radiance incorporated by the atmosphere, with photons coming outside of the 
GIFOV by the adjacency effect from surfaces surrounding the pixel (Richter 
et al. 2006).

Spectral unmixing is the decomposition of a mixed pixel into a collection of 
distinct spectra (endmembers), and a set of fractional abundances that indicate the 
proportion of each endmember (Keshava and Mustard 2002). It is a physically based 
model that transforms radiance or reflectance to physical variables, which are linked 
to the sub-pixel abundances of endmembers within each pixel. The Linear Spectral 
Unmixing (LSU) is the most frequently used model because of its simplicity and 
more direct interpretation, and assumes the pixel spectrum to be a linear combina-
tion of a finite number of spectrally distinct endmembers (Keshava and Mustard 
2002). The three consecutive procedures for LSU are: (1) reduction of the dimen-
sion of the data using Principal Components Analysis (PCA) or Minimum Noise 
Fraction (MNF), which seeks a minimal representation that sufficiently retains the 
requisite information for successful unmixing; (2) endmember determination repre-
sentative of the physical components on the surface. Endmembers can be obtained 
directly from the image employing statistics to capture variability, such as the Pixel 
Purity Index (PPI). Similarly, the endmembers could be extracted from spectral 
libraries derived from laboratory or field spectroscopy; (3) imagery pixel reflectance 
values are inverted using least square methods to minimise the squared-error and 
achieve fractional abundances of the components.

Depending on the number of endmembers introduced and constraints applied in 
the algorithm, different varieties of LSU have been developed. For example, if only 
a few key endmembers are determined without requiring knowledge of the remain-
ing scene endmembers, Mixture-Tuned Matched Filter (MTMF) (Boardman et al. 
1995) is an algorithm that allows false positives to be identified and eliminated from 
abundance results. Additionally, Multiple Endmember Spectral Mixture Analysis 
(MESMA) extends LSU by allowing the number and types of endmembers to vary 
on a per-pixel basis (Roberts et al. 1998).

The need to provide sub-pixel proportions of vegetation components is well 
reflected in the literature (McGwire et al. 2000). When the endmembers include veg-
etation, the endmember fraction is considered proportional to the areal abundance of 
the projected canopy cover. Although the differences in canopy structure and size 
between species can be very noticeable, which entails non-linear mixture model appli-
cation, the use of LSU provides statistically significant results (McGwire et al. 2000).

 Plant Species Mapping

The protocol for mapping plant species proposed in this work is based on collaboration 
between an airborne imaging spectroscopy operator, which can be used to acquire 
and pre-process the hyperspectral imagery, and a user organization (i.e., Natural 

M. Jiménez and R. Díaz-Delgado



147

Park management unit, University Department), who can be responsible for  
supplying field data and generating the species cartography.

In order to achieve this mapping, we followed the structured design by Kerekes 
and Baum (2005) to determine the viability of imaging spectroscopy applications. 
In Fig. 1, the protocol is schematized and shows the elements that comprise their 
three different aspects: the procedures and data acquired in the field, the methodolo-
gies for acquisition and processing the airborne spectroscopy imagery, and the 
aspects for cartography generation.

Any kind of digital geographic data should be documented, as much as possible, 
to ensure that the data producer can characterise the geographic data properly and 
enable users to apply the data in the most efficient way (International Organization 
for Standardization (ISO) 2003). A standardized structure for metadata also 
increases the value of metadata by improving its readability, flexibility and utility 
for archival processing and usage with software applications (Jiménez et al. 2014). 
The most relevant organizations publishing standards to define common metadata 
structures and their hierarchies are the International Organization for Standardization 
(ISO) and the Open Geospatial Consortium (OGC).

Following the schematic outline shown in Fig. 1, the subsequent sections describe 
the protocol in depth.

Fig. 1 Plant species mapping protocol based on the use of airborne hyperspectral imagery

Sub-pixel Mapping of Doñana Shrubland Species



148

 Field Data

Field data is needed from the study area describing the plant communities present 
as auxiliary information for planning the airborne campaign, supporting the imag-
ery analysis, and validating the cartography generated by the process. The user 
organization plays a key role in the collection and preparation of these field data.

 (i) The topographic and plant community maps of the study area are used to plan 
the hyperspectral flights and provide cover estimates of the plant species. A 
Digital Elevation Model (DEM) with high spatial resolution is needed to sup-
port the processing of airborne imagery. In the case of a natural protected area, 
the managers often already have this information. As an alternative, informa-
tion from Spatial Data Infrastructures (SDI) can be obtained and used, although 
all data cartographies should be in the same projection.

 (ii) Field-based cover estimates of plant species are used to validate the plant spe-
cies maps generated by processing the imagery. The most reliable way to col-
lect plant species cover over heterogeneous ecosystems is by stratified random 
sampling (Canfield 1941). Moreover, to ensure better results for future pro-
grams that monitor species distributions, the sampling plots must be located in 
as many permanent sites as possible. The number of measurement plots is 
determined by the number of plant communities, the degree of biodiversity 
present, and the heterogeneity of environmental factors impacting the survey 
area. For validation purposes, the plot size is determined by the spatial resolu-
tion of the imagery, typically being three times the pixel size of the acquired 
imagery. To measure plant species cover in the sampling plots, a quantification 
method independent of vegetation type is desirable.

 (iii) A spectral library is generated by a dedicated field spectroscopy campaign, to 
characterise the spectral reflectance response of the plants and to obtain the 
endmember for each species. There is no standard protocol for generating a 
spectral library for plant species (Pfitzner et al. 2010). Nevertheless, the mea-
surement protocol for the spectral library must combine a sampling strategy 
and observation procedure for the spectra acquisition of the canopy. In addi-
tion, all the aspects of spectra processing must comprise the spectral reflec-
tance files preparation, spectral library generation and separability quantification 
between plant species presented. The sampling strategy is better accomplished 
by stratified sampling, and must consider obtaining several acquisitions during 
the phenological cycle to assess the optimum time of the year for separating 
the species. The aim of separability analysis is to estimate ranges of spectral 
variability within species and the spectral similarity between species.
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 Airborne Imaging Spectroscopy

The data required from airborne imaging spectroscopy to finally generate a map of 
plant species that covers all the study area is a geocoded image with all the bands 
transformed to ground reflectance. The airborne imaging spectroscopy operator has 
a key role in delivering this part of the process and must use an accurate radiometric, 
spectrally and geometrically calibrated airborne imaging spectrometer.

 (i) An airborne flight campaign comprises several flight lines designed to cover 
the study area, constrained by imagery acquisition requisites such as the spatial 
resolution, flight time and date. In this sense, HYperspectral REmote Sensing 
in Europe specific Support Actions (HYRESA) establishes a user requisites 
model that determines the local surveillance area (Reusen et  al. 2007). The 
plant spectral library could help to indicate the best time of the year for maxi-
mum separability among species, but it is also important to take into account 
that higher solar elevation angles correspond with high SNR imagery and a 
better capacity for discrimination. For mission planning, it is important to 
remember that the number of flight lines needed to cover the survey area will 
increase with spatial resolution.

 (ii) In general, the operator implements the geometric and radiometric algorithms 
in a processing and archiving facility (PAF), to integrate an operational work-
flow that automates the process to transform all the flight lines of the entire 
campaign. This facility incorporates all the calibrations and auxiliary parame-
ters required. Methods of direct georeferencing rely on high precision position 
and attitude measurements using an onboard Global Position System and 
Inertial Navigation System, the bundle adjustment parameters obtained in a 
geometric calibration flight, and a high-resolution digital elevation model. 
Radiometric corrections include the calibration coefficients to transform the 
digital values to at-sensor radiance, and an atmospheric compensation method 
to obtain ground reflectance. In this sense, the atmospheric compensation 
methodology could be empirical, such as the Empirical Line Correction (Smith 
and Milton 1999), or physically-based on radiative transfer models such as 
MODTRAN (Berk et al. 2006).

 (iii) Data quality is an intrinsic property that evaluates the reliability of acquired 
data (International Organization for Standardization (ISO) 2003). In this sense, 
airborne spectroscopy imagery must be evaluated against the proposed user 
requisites. Typically, a georeferenced pixel must be processed with a geoloca-
tion error of less than two pixels and the accuracy of reflectance values within 
5% (Biesemans et al. 2007). To achieve this quality, we recommend compari-
son with ground truth data, ground control points (i.e., crossroads) for georef-
erenced verification, and field spectra of comparable surfaces (i.e., bare soil) 
for reflectance evaluation. ISO 19157:2013 “Geographic Information – Data 
quality” establishes the principles to describe the quality of geographic data.
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 Species Mapping Generation

Once the surface reflectance mosaic of the study area has been generated from the 
airborne imagery and endmembers have been extracted from the spectral libraries, 
the plant species map can be generated. The user organization plays a key role in the 
generation of this map.

• In the most widely used commercial remote sensing image processing software, 
LSU algorithms are implemented by default. The hyperspectral imagery must be 
prepared by reducing the number of bands by ACP or MNF, which can also be 
implemented within commercial software. Likewise, endmembers must be 
selected and prepared by applying the same reduction algorithms as those applied 
to the imagery. The simple LSU algorithm is restricted to models in which only 
one spectrum is allowed for each endmember. For this reason, this model does 
not incorporate the natural variability in scene conditions (i.e., the same material 
could have different spectral responses). The spectral response of a plant species 
could be very variable due to the differences in its components and structure. 
Thus, a spectral unmixing algorithm, such as the MESMA, is more suitable for 
mapping plant species. MESMA allows the selection of multiple endmembers 
for each endmember class and incorporates natural variability.

• The outcome of the LSU algorithm is fraction abundances imagery for each 
introduced endmember; in our case, the fraction cover for each plant species. 
Accuracy assessment is an integral part of the information extracted from 
remotely sensed data, since thematic information always contains errors. The 
accuracy assessment can be performed using the plant cover measurement 
acquired during the field survey.

 Practical Case: Mapping Shrublands Species of Doñana 
National Park

 Study Site

Doñana National Park (DNP) is located on the south-western coast of Spain. It is 
one of the most important wetlands in Europe (García Novo and Marín Cabrera 
2005), and was recognized as a UNESCO World Heritage Site in 1995. The climate 
at Doñana is Mediterranean sub-humid and has a well-defined seasonality, with 
mild and wet winters and dry and hot summers. The mean annual precipitation is 
550 mm, with rainfall displaying a sharp seasonality, being mostly concentrated 
between October and March (wet season) and almost absent between June and 
August (dry season). Three main ecosystems have been traditionally been distin-
guished in DNP: inland marshes, mobile sand dunes, and stabilised sand dunes. 
This study was carried out in the stabilised dunes of the Doñana Biological Reserve 
(DBR), the core area of the DNP (Fig. 2).
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 Shrub Communities

Stabilised sands exhibit a rolling topography (see Fig. 2) due to the old dune mor-
phology that has been colonized by vegetation in response to changing groundwater 
supply. There are three large vegetation zones in the stabilised dunes of DBR: a 
higher zone dominated by xerophytic shrub (Naves), a lower zone dominated by 
hygrophytic shrub (Manto Arrasado), and the transitional grasslands (Vera). The 
present vegetation is a remnant of the original Juniper woodlands (Juniperus phoe-
nicea subs turbinata), stone pine plantations (Pinus pinea) and grasslands but 
mostly a mosaic of three scrubland communities.

Three main types of scrub community are now found on the stabilised sands, 
depending on the depth of the water table: Monte Blanco (Xerophytic sites) occurs 
on the crests of ancient dunes where the soil water table in summer was deeper than 
4 m, and always lies more than 3 m below the soil surface. The community is domi-
nated by Juniperus phoenicea, Halimium commutatum, Halimium halimifolium, 
Rosmarinus  officinalis, Stauracanthus genistoides and Cistus libanotis. On the 
other hand, Monte Negro (Hygrophytic sites) is located in depressions, where the 
water table in summer rarely lies more than 1 m below the soil surface and where 

Fig. 2 Overview of Doñana National Park (SW, Spain). The marked area is the stabilized dunes 
ecosystem of Doñana Biological Reserve. The sub-image shows Digital Elevation Model of study 
area
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temporary flooding occurs in winter. This plant community is dominated by Erica 
scoparia, Erica ciliaris, Calluna vulgaris, Ulex minor, Myrtus communis and Cistus 
salvifolius. The so-called Monte Intermedio (Mesic sites) is located on the slopes of 
the dune ridges with a transitional water table depth and no surface flooding. The 
community is dominated by Halimium halimifolium and Ulex australis. The spatial 
distribution of scrubland is determined, at all scales, by the rolling topography that 
modulates the groundwater level (Muñoz-Reinoso and Novo 2005).

 INTA AHS System

The Spanish National Institute for Aerospace Technology (INTA) owns and oper-
ates the Airborne Hyperspectral Scanner (AHS) (De Miguel et al. 2014). AHS is an 
airborne line-scanner imaging spectrometer manufactured by ArgonST (formerly 
Sensytech Inc.) that covers spectra from 0.45 to 12.8 microns inside atmospheric 
windows with 80 bands. It is installed onboard the INTA’s aircraft (CASA C-212) 
and is integrated with INS/GPS Applanix POS-AV 414. A calibration and naviga-
tion equipment, an auxiliary ground instrumentation and a specific Processing and 
Archiving Facility (PAF) together form the INTA AHS system. INTA offers this 
system as a technological service to public institutions or commercial companies, 
and has performed more than 60 flight campaigns since 2004. The main character-
istics of AHS are provided in Table 1.

AHS is considered to be a “generalized” type of sensor that acquires in all atmo-
spheric windows of the optic spectral region. The FWHM in the SWIR region is 
15 nm, but 30 nm in the VNIR. As the VNIR region is important for vegetation 
studies, we carried out a study on the AHS mapping capacity prior to the mapping 
(Jimenez et al. 2007) showing that the AHS has sufficient radiometric and special 
resolving power to map Doñana’s shrub species.

Table 1 The main characteristics of the AHS sensor

PORT Spectral coverage (μm) n° of bands/FWHM (nm) λ/Δλ (minimum)

Port 1 0.43 > 1.03 20/28 16
Port 2A 1.55 > 1.75 1/200 8
Port 2 2.0 > 2.54 42/13 150
Port 3 3.3 > 5.4 7/300 11
Port 4 8.2 > 12.7 10/400 20

FOV/IFOV: 90°/2.5 mrad
Scan rates: 12.5, 18.75, 25, 35 revolutions per second (pixel 7 to 2 m)
Digitization precision: 12 bits to sample the analog signal, with gain level from ×0.25 to ×10
Two controllable thermal black bodies within the field of view
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 Doñana Shrub-Species Mapping

The shrub communities that populate the stabilised sand ecosystem are a very 
important habitat of the DNP. DBR develops important research and conservation 
programs underpinned by a deep knowledge about both the habitats and the ecosys-
tem. In this sense, the actual location of shrub species is required for monitoring of 
ecological process and management activities.

The main purpose of the Doñana Biological Station (DBS) is to perform biologi-
cal research in the DNP and in this case to liaise with INTA to carry out hyperspec-
tral flights over the DNP.  Following the guidelines of the protocol illustrated in 
section “Plant species mapping”, the procedure for mapping the dominant species 
of the Doñana’s shrublands with the AHS sensor is as follows:

 (i) As the user organization, the DBS provided the auxiliary data required: a digi-
tal topography map at 1:25.000 spatial scale, an ecological map at 1:40.000 
spatial scale, a habitat map at 1:50.000 spatial scale, and a DEM at 10 m spa-
tial resolution.

 (ii) For measuring the cover of plant species, we distributed stratified plots by 
elevation: first by separating the Manto Arrasado and Naves zones, and then 
the upper and lower parts of dunes. The location of the plots was constrained 
by the local topography and often situated near pathways due to inaccessible 
areas of very dense vegetation. The size of the plots was 30 m × 30 m and was 
determined by the resolution of the AHS imagery. The cover of plant species 
was measured using the line intercept method (Canfield 1941), whereby three 
parallel transects were sampled inside each plot.

 (iii) The spectral reflectance curves of the five dominant species (E. scoparia, 
H. halimifolium, U. australis, R. officinalis and S. genistoides) were measured 
in several field spectroscopy campaigns, with the primary aim of generating a 
plant spectral library and extracting the species endmembers. We selected 
more than 15 individuals for each species (not-randomly) covering the ranges 
of the Leaf Area Index (LAI measured in m2/m2) ranges present. Targets were 
marked and measured in both seasons. The protocol that we followed is 
described in Jiménez and Díaz-Delgado (2015). The field spectroradiometer 
used was the ASD FieldSpec3® (Analytical Spectral Devices, Boulder, CO, 
USA), which collects energy using a fiber optic with the option of adapting a 
fore optic lens. It has a spectral range from 350 to 2500 nm with a spectral 
resolution of 3 nm and a sampling interval of 1.4 nm for the VNIR (350–1000 
nm) and 10 m and 2 m for the SWIR-1 ( 1000–2500 nm ) and SWIR-2 (1750–
2500 nm) spectral regions respectively. In parallel to spectral measurements, 
we took hemispherical canopy photographs for each plant with the aim of 
estimating the LAI. A 180 degree photograph was taken from beneath looking 
with a NIKON FC-E8 fisheye lens adapted to a Nikon 4000 Coolpix digital 
camera. We took the photographs shortly before sunset following the proto-
cols for field acquisition outlined by Chen and Cihlar 1995.
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 (iv) Airborne INTA-AHS flight campaigns were conducted on 28th September 
2005 (dry season) and 28th April 2008 (wet season). For the 2005 flight cam-
paign, we acquired two flight lines in a north-east to south-west direction and 
in the direction of the solar principal plane. The flight altitude was 2743 m 
above sea level, which gave a pixel size of 6.5 m. For the 2008 flight cam-
paign, we needed three flight lines with the same properties to cover the stabi-
lised sand ecosystem as the solar azimuth was larger. All of the flight lines 
were acquired using an integrated Applanix POS/AV navigation system, 
which relies upon a GPS/INS for accurate determination of the instrument 
position and orientation.

 (v) The flight lines were processed with INTA-PAF to generate a mosaic of geo-
refenced ground reflectance over the stabilised sand ecosystem for each date. 
The sensor radiometric and spectral calibration obtained at INTA facilities 
encompasses the conversion to digital numbers to at-sensor radiance (in μW/
m2 sr nm units). The imagery was directly georeferenced by PARGE software 
(Schläpfer and Richter 2002) using the GPS/INS values during the flight, the 
bundle adjustment parameters calculated in the corresponding year, and the 
DEM. The atmospheric correction was implemented using the ATCOR-4 soft-
ware (Richter and Schläpfer 2002), which performs a Look-Up Table (LUT) 
with the code MODTRAN-5 (radiative transfer model). This compensates for 
the atmospheric effect in relation to flight altitude, aerosol type, visibility, and 
water vapor content on a per-pixel basis. Furthermore, ATCOR-4 performs the 
correction of adjacency effect on a per-pixel basis. Mosaics for the study area 
can be generated using remote sensing commercial software, including the 
Exelis Visual Information Solutions (ENVI).

 (vi) Ground reflectance mosaics generated for both flight campaigns were evalu-
ated for data quality. Radiometric accuracy is a function of the sensor calibra-
tion and atmospheric correction applied. The reflectance values obtained in 
the INTA-AHS imagery processing were evaluated using ground reflectance 
data acquired with field spectroscopy in the sand dunes in Doñana. The geo-
metric accuracy was estimated using ground control points extracted from 
digital cartography.

 (vii) A Linear Spectral Unmixing Model was applied to the image mosaics using 
the endmembers derived in the spectral libraries. MESMA unmixes each pixel 
using different combinations of potential endmembers and was implemented 
in the commercial Visualization & Image Processing for Environmental 
Research (VIPER) software (Roberts et  al. 2007). For vegetation mapping 
studies, the recommended approach is that every pixel in the images can be 
modeled by a linear combination of three land-cover types (Roberts et  al. 
1998): photosynthetic vegetation (Veg), non-photosynthetic vegetation 
(Litter), substrate (soil), and a shade component (Shade) that is typically also 
present in all pixels. The mixture model that describes Doñana’s shrubland is:
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ρ λ ρ λ ρ λ ρ λpixel veg veg soil SOIL litter litterF F F( ) = ( ) + ( ) + ( ) +∑ • • • ee λ( )   

where ρ pixel is the reflectance of the pixel, F and ρ are the cover fraction and the 
reflectance of each endmember, respectively, and e is the error.

 (viii) In Fig. 3, the procedure of spectral unmixing is shown schematically. The 
AHS imagery was dimensionally reduced using MNF, and the spectral reflec-
tance of each pixel was extracted. Identifying a high quality set of reference 
or image endmembers has been defined as a critical stage of mixture model-
ing. MESMA incorporates a number of approaches for identifying those 
spectra that are most representative of a specific class, such as the Endmember 
Average RMSE (root mean squared error) (EAR) (Roberts et al. 2007): the 
endmembers that produce the lowest RMSE within a class are selected. In 
Fig. 3, the groups of representative spectra for each endmember for each date 
are illustrated.

 (ix) The accuracy assessment for plant cover values obtained with airborne imag-
ing spectroscopy was performed by applying a regression analysis on the 
plant cover fractions in the field plots.

Fig. 3 Linear spectral unmixing elements for Doñana’s shrub species mapping with INTA-AHS 
airborne hyperspectral system
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 Results

The spectral library for the five dominant shrub species is presented in Jiménez and 
Díaz-Delgado (2015), and shows the different spectral response for the species in 
both seasons taking into account LAI range variation along the ecosystem. Looking 
at the shrub spectra presented in Fig. 3, it is immediately apparent that all species 
appear to be very similar, as might be expected for a group of species that populate 
an environment with very similar conditions. Despite the increased variability 
between the species in the dry season, the comparison of the plant spectral curves 
between seasons revealed that most marked differences were the reduction in the 
water absorption bands in the NIR and the increase reflectance in lignin and cellulose 
absorption bands (centered at 2100 and 2310 nm) for the dry season. These wave-
bands are important for species discrimination. In Jiménez and Díaz-Delgado (2015), 
the separability test was applied over spectra in both seasons to determine whether 
significant differences existed in intra-species variability and the degree of inter-spe-
cies similarity. T-tests comparing the spectral libraries for both seasons indicated that 
the dry season had slightly better levels of discrimination than the wet season 
(p < 0.05), where all the species are in the same physiological state. In the estimation 
of similarity index between species, low and significant values were found for E. 
scoparia, H. halimifolium, and R. officinalis, with very high values found between 
the legume species U. australis and S. genistoides.

The airborne spectroscopy imagery mosaics processed for both flight campaigns 
are shown in Fig.  3. The ground reflectance was obtained with less than 5% 
 reflectance accuracy for both dates, when compared to the field spectra acquired 
over sand dunes. The geolocation error for both imagery mosaics was below two 
pixels, as estimated with Ground Control Points located in the field using GPS.

Plant cover measured in the 50 ground-truth plots was used to assess the classi-
fied AHS images. The distribution of the plots covers all of the altitude variability 
along the stabilised dunes ecosystem, with plots situated in both the Naves and 
Manto Arrasado zones.

In Fig. 4, we show the distribution maps for the five dominant shrub species in 
the RBD stabilized ecosystem. The species distribution maps presented were gener-
ated from the 2008 aerial imagery. The map color scale represents the cover fraction 
values estimated by AHS, with this ranging from red for lower values to orange for 
higher values, according to dominant species. The background image for the map 
representation is the band 15 of AHS. In addition, in Fig. 4, we present the correla-
tion and RMSE values obtained for the AHS imagery cover fractions from the 
ground survey on both dates.

Even through a visual inspection of the species distribution maps, it is easy to 
describe the different spatial distribution of species. E. scoparia and U. australis 
were mainly confined to Manto Arrasado areas whilst H. halimifolium and R. offici-
nalis were more widely dispersed. E. scoparia was found mainly in the lower alti-
tude and wetter areas of the Manto Arrasado, with up to 90 % cover recorded. H. 
halimifolium shows a broad spatial distribution, colonizing both the Naves and 
Manto Arrasado areas and attained a fraction cover of up to 80 % in the Manto 
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Fig. 4 Doñana Biological Reserve dominant shrub species distribution maps
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Arrasado. R. officinalis also shows such a broad spatial distribution, but it reached its 
 maximum cover in the Naves area. Meanwhile, S. genistoides colonised both the 
Naves and Manto Arrasado zones but with a lower plant cover fraction, achieving a 
maximum of 60% in the Naves. Finally, U. australis was distributed mostly across 
intermediate altitude areas of the Manto Arrasado and reached a maximum fraction 
cover of 60%.

We used the correlation coefficient and RMSE values between the resulting spe-
cies fraction cover from the AHS imagery and the ground-truth fraction cover to 
asses the overall accuracy. There was a strong correlation for E. scoparia with high 
R2 values (p < 0.05). H. halimifolium and R. officinalis had intermediate R2 values 
(p < 0.05). Finally, the correlation for U. australis and S. genistoides was very low 
and with no statistical significance.

 Discussion

The protocol presented in this study intended to incorporate the most robust and 
widely used procedures in airborne imaging spectroscopy, field spectroscopy, and 
spectral unmixing to establish a standard protocol for mapping plant species. The 
spatially-explicit distribution maps of the plant species generated by the airborne 
imaging spectroscopy increase the knowledge of the spatial spread of each species 
and its relation with the ecological processes and the perturbation that takes place 
within the ecosystem. Collaboration between the imaging sensor operator organisa-
tion and user organisation was fundamental for executing the protocol.

Although spectral unmixing enables plant species mapping, further work on 
intra-species variability and similarity among species is required. It is crucial to 
identify the time of the year with maximum separability among species. There is no 
standard protocol for developing a spectral library for plant species, but the work by 
Jiménez and Díaz-Delgado (2015) takes the first steps towards this.

Airborne imaging spectroscopy is currently the most important source of hyper-
spectral data, and has the best capacity to provide species mapping within and also 
surrounding protected areas. Hyperspectral imagery acquired by manned aircraft 
has less uncertainty in radiometric and geometric accuracy than RPAS or drones, 
which, could represent a future systems for monitoring changes in plant species 
distribution. In relation to the imaging spectrometer, the image spatial resolution 
must be adapted to the size and cover for each vegetation type, taking into account 
the number of flight lines needed to cover the study area. Furthermore, although the 
VNIR region is the most important spectrum region for vegetation studies, an imag-
ing spectrometer that records within the SWIR region is recommended to enhance 
plant species discrimination and the spectral unmixing procedure.

Nowadays, MESMA is the most appropriate LSU algorithm to cope with plant 
species mapping, primarily due to the incorporation of multiple endmembers and 
algorithms for endmember optimization. However, at present, it is only imple-
mented in the VIPER tool application (Roberts et al. 2007) and not used widely in 
commercial remote sensing software.
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The INTA-AHS hyperspectral system performed well in mapping the dominant 
shrub species of DNP. The spatial resolution of 2–7 m (see Table 1) was sufficient 
to deal with the range of canopy sizes (typically 1–2 m) encountered in the shrub-
lands of DNP. The study area was covered with two flight lines in the 2005 cam-
paign and three flight lines in the 2008 campaign, which allowed the generation of 
a geometrically and radiometrically correct image mosaic for each year.

The plant species distribution maps obtained with the INTA-AHS hypespectral 
corroborates the knowledge and work of previous expert researchers, in terms of the 
spatial distribution and plant cover fraction. Furthermore, the spatially-explicit plant 
species distribution detected gave more insights into the spatial distribution of shrub 
species that were not possible using traditional vegetation survey methods. For exam-
ple, E. scoparia covered a larger area and the fraction cover was greater in Naves than 
published in previous studies and this was similar to the distribution of R. officinalis 
in the Manto Arrasado habitat.

Having the potential to map and monitor the changes in species composition over 
time would help us to detect, monitor, measure and predict increases or decreases in 
biological diversity, as well as help to predict the impacts of these changes on eco-
system functions (Trochet and Schmeller 2013). In this work, two flight campaigns 
were carried out in two different years, which represented an excellent opportunity  
to show the potential of imaging spectroscopy for mapping and monitoring  
activities. In Fig. 5, we present a sub-scene of the stabilised dunes at DBR and show 

Fig. 5 Monitoring the spatial distribution of the shrubland in Doñana Biological Reserve. INTA- 
AHS sub-scenes and species map for 2005 a 2008 flight campaigns
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the two species maps generated through the two airborne campaigns. A variety of 
management  activities were taking place in the stabilised dune ecosystem as a con-
sequence of the plan for the conservation of Iberian lynx (Lynx pardinus), which 
included clearing selected shrubland regions. Those cleared areas can be seen in the 
INTA- AHS sub-scenes in Fig. 5. In the 2005 map, E. scoparia, H. halimifolium, and 
R. officinalis are present in the area, whereas in the 2008 map R. officinalis totally 
disappears and H. halimifolium has a reduced presence. This change was not due to 
clearance activities and instead to a perturbation episode in the winter of 2007. Very 
low temperatures led to frosts that prevented the species from colonising the crest of 
the dunes.

 Conclusions

In this work, the most widely used procedures in airborne imaging spectroscopy, 
field spectroscopy for plant endmember generation, and spectral unmixing were 
selected to establish a standard protocol for plant species mapping. The spatially- 
explicit distribution of plant species generated by the airborne imaging spectros-
copy maps help to obtain a better knowledge of the spatial distribution of species 
and their relationships with the ecological processes and perturbations that take 
place on the ecosystem.

We generated fraction cover maps for the dominant shrub species in Doñana 
National Park (Erica scoparia, Halimium. halimifolium, Ulex australis, Rosmarinus 
officinalis and Stauracanthus genistoides) in 2005 and 2008 using the INTA-AHS 
image data. The comparison between the species cover and the ground survey cover 
estimates in the images, indicated a correlation that was higher for E. scoparia, 
H. halimifolium and R. officinalis, but lower for U. australis and S. genistoides.

Being able to map and monitor the spatial distribution of vegetation at the spe-
cies level, and identify changes in population in space and time can help to under-
stand the shifts in species composition in response to environmental changes 
induced by climate and land use change as well as other human activities. Since 
2002, there has been a long term integrated ecological monitoring programme in 
DBR, with a substantial increase in the monitoring of relevant ecological variables 
(Díaz-Delgado 2010). The mapping protocols based on airborne and ground-based 
spectroscopy can be integrated within monitoring programs in the DNS but also in 
other protected areas and their surrounds.

Acknowledgments The authors would like to thank the staff from Doñana Biological Station and 
Biological Reserve who helped us during different stages of this study. The authors also recognise 
the knowledge of the staff of Instituto Nacional de Técnica Aeroespacial (INTA) Remote Sensing 
Group for performing the airborne campaigns and the geometric correction of the AHS images. 
The airborne campaigns were funded by the Spanish Ministry of Science and Innovation through 
the research projects HYDRA (No.CGL2006-02247/BOS) and HYDRA2 (CGL2009-09801/
BOS). We appreciate the contribution of Antonio Pou for his helpful direction in the work.

M. Jiménez and R. Díaz-Delgado



161

References

Asner, G.P.: Biophysical and biochemical sources of variability in canopy reflectance. Remote 
Sens. Environ. 64, 234–253 (1998). doi:10.1016/S0034-4257(98)00014-5

Asner, G.P., Knapp, D.E., Kennedy-Bowdoin, T., et al.: Invasive species detection in Hawaiian 
rainforests using airborne imaging spectroscopy and LiDAR.  Remote Sens. Environ. 112, 
1942–1955 (2008). doi:10.1016/j.rse.2007.11.016

Berk, A., Anderson, G.P., Acharya, P.K., Bernstein, L.S., Muratov, L., Lee, J., Fox, M., Adler-
Golden, S.M., Chetwynd, J.H., Hoke, M.L., Lockwood, R.B., Gardner, J.A., Cooley, T.W., 
Borel, C.C., Lewis, P.E., Shettle, E.P.: MODTRAN 5: Update. In: Proceeding of SPIE 6233, 
Algorithms and technologies for multispectral, Hyperspectral, and Ultraspectral Imagery XII, 
62331F (2006, May 8). doi:10.1117/12.665077

Biesemans, J., Sterckx, S., Knaeps, E., et al.: Image processing workflows for airborne remote 
sensing. In: Proceedings of the 5th EARSeL Workshop on Imaging Spectroscopy, pp. 1–14. 
EARSeL, Bruges, Belgium (2007)

Boardman, J., Kruse, F., Green, R.: Mapping target signatures via partial unmixing of {AVIRIS} 
data, pp. 23–26. JPL Publication, Pasadena (1995)

Canfield, R.H.: Application of the line interception method in sampling range vegetation. J. For. 
39, 34–40 (1941)

Chen, J.M., Cihlar, J.: Quantifying the effect of canopy architecture on optical measurements of 
leaf area index using two gap size analysis methods. IEEE Trans. Geosci. Remote Sens. 33, 
777–787 (1995). doi:10.1109/36.387593

Cobo, D., Sánchez, E., García, M.P.: Flora y vegetación. In: Parque nacional de doñana, Vicente 
García Canseco, pp. 109–174. Canseco Editores, S.L., Talavera Reina (2002)

De Miguel, E., Fernandez-Renau, A., Prado, E., et  al.: A review of INTA AHS PAF. EARSeL 
eProceedings, pp. 20–29 (2014)

Díaz-Delgado, R.: An integrated monitoring programme for Doñana natural space: the set-up and 
implementation. In: Conservation Monitoring in Freshwater Habitats, pp. 325–337. Springer, 
Dordrecht/Heidelberg/London/New York (2010)

Fyfe, S.K., Dekker, A.G.: Seagrass species: are they spectrally distinct? In: IGARSS 2001. Scanning 
the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and 
Remote Sensing Symposium (Cat. No.01CH37217), vol. 6, pp. 2740–2742 (2001)

García Novo, F., Marín Cabrera, C. (eds.): Doñana: agua y biosfera. Confederación Hidrográfica 
del Guadalquivir, Sevilla (2005)

Goetz, A.F.H.: Making Accurate Field Spectral Reflectance Measurements, vol. 2012. ASD Inc, 
Boulder (2012)

Green, R.O., Eastwood, M.L., Sarture, C.M., et al.: Imaging spectroscopy and the airborne vis-
ible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 65, 227–248 (1998). 
doi:10.1016/S0034-4257(98)00064-9

Hooper, D.U., Chapin, F.S., Ewel, J.J., et al.: Effects of biodiversity on ecosystem functioning: a 
consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005). doi:10.1890/04-0922

Hruska, R., Mitchell, J., Anderson, M., Glenn, N.F.: Radiometric and geometric analysis of hyper-
spectral imagery acquired from an unmanned aerial vehicle. Remote Sens. 4, 2736–2752 
(2012). doi:10.3390/rs4092736

International Organization for Standardization (ISO).: Geographic information—Metadata. 
International organization for standardization, Geneva (2003)

Jiménez, M., Díaz-Delgado, R.: Towards a standard plant species spectral library protocol for veg-
etation mapping: a case study in the Shrubland of Doñana National Park. ISPRS Int. J. Geo-Inf. 
4, 2472–2495 (2015). doi:10.3390/ijgi4042472

Jiménez M, Díaz-Delgado R, Vaughan P, et al.: Airborne hyperspectral scanner (AHS) a priori 
mapping capacity simulation for the Doñana Biological Reserve shrublands. In: Michael 
Schaepman, Shunlin Liang, Nikée Groot and Mathias Kneubühler (eds.) Proceedings of the 

Sub-pixel Mapping of Doñana Shrubland Species

https://doi.org/10.1016/S0034-4257(98)00014-5
https://doi.org/10.1016/j.rse.2007.11.016
https://doi.org/10.1117/12.665077
https://doi.org/10.1109/36.387593
https://doi.org/10.1016/S0034-4257(98)00064-9
https://doi.org/10.1890/04-0922
https://doi.org/10.3390/rs4092736
https://doi.org/10.3390/ijgi4042472


162

ISPRS Working Group VII/1 Workshop ISPMSRS’07: “Physical Measurements and Signatures 
in Remote Sensing.”, pp. 334–340. Davos, Switzerland (2007)

Jiménez, M., González, M., Amaro, A., Fernández-Renau, A.: Field spectroscopy metadata system 
based on ISO and OGC standards. ISPRS Int. J. Geo-Inf. 3, 1003–1022 (2014). doi:10.3390/
ijgi3031003

Kalacska, M., Sanchez-Azofeifa, G.A., Rivard, B., et al.: Ecological fingerprinting of ecosystem 
succession: estimating secondary tropical dry forest structure and diversity using imaging spec-
troscopy. Remote Sens. Environ. 108, 82–96 (2007). doi:10.1016/j.rse.2006.11.007

Kamal, M., Phinn, S.: Hyperspectral data for mangrove species mapping: a comparison of pixel- 
based and object-based approach. Remote Sens. 3, 2222–2242 (2011). doi:10.3390/rs3102222

Kaufmann, H., Segl, K., Guanter, L., et  al.: Environmental Mapping and Analysis Program 
(EnMAP)  – Recent Advances and Status. In: IGARSS 2008–2008 IEEE International 
Geoscience and Remote Sensing Symposium, pp. IV-109-IV-112 (2008)

Kerekes, J.P., Baum, J.E.: Full-spectrum spectral imaging system analytical model. IEEE Trans. 
Geosci. Remote Sens. 43, 571–580 (2005). doi:10.1109/TGRS.2004.841428

Keshava, N., Mustard, J.F.: Spectral unmixing. IEEE Signal Process. Mag. 19, 44–57 (2002). 
doi:10.1109/79.974727

Leutner, B.F., Reineking, B., Müller, J., et al.: Modelling Forest α-diversity and floristic compo-
sition — on the added value of LiDAR plus hyperspectral remote sensing. Remote Sens. 4, 
2818–2845 (2012). doi:10.3390/rs4092818

Manakos, I., Manevski, K., Petropoulos, G., et al.: Development of a spectral library for mediter-
ranean land cover types (2010)

Manevski, K., Manakos, I., Petropoulos, G.P., Kalaitzidis, C.: Discrimination of common 
Mediterranean plant species using field spectroradiometry. Int. J. Appl. Earth Obs. Geoinf. 13, 
922–933 (2011). doi:10.1016/j.jag.2011.07.001

McGwire, K., Minor, T., Fenstermaker, L.: Hyperspectral mixture modeling for quantifying 
sparse vegetation cover in arid environments. Remote Sens. Environ. 72, 360–374 (2000). 
doi:10.1016/S0034-4257(99)00112-1

Miao, X., Gong, P., Swope, S., et al.: Estimation of yellow starthistle abundance through CASI-2 
hyperspectral imagery using linear spectral mixture models. Remote Sens. Environ. 101, 329–
341 (2006)

Milton, E.J., Schaepman, M.E., Anderson, K., Kneubühler, M., Fox, N.: Progress in field spectros-
copy. Remote Sens. Environ. 113, 92–109 (2009)

Möckel, T., Dalmayne, J., Prentice, H.C., et  al.: Classification of grassland successional stages 
using airborne hyperspectral imagery. Remote Sens. 6, 7732–7761 (2014). doi:10.3390/
rs6087732

Muñoz-Reinoso, J.C., Novo, F.G.: Multiscale control of vegetation patterns: the case of Doñana 
(SW Spain). Landsc. Ecol. 20, 51–61 (2005). doi:10.1007/s10980-004-0466-x

Nagendra, H., Rocchini, D., Ghate, R., et al.: Assessing plant diversity in a dry tropical Forest: 
comparing the utility of Landsat and Ikonos satellite images. Remote Sens. 2, 478–496 (2010). 
doi:10.3390/rs2020478

Oakley, K.L., Thomas, L.P., Fancy, S.G.: Guidelines for long-term monitoring protocols. Wildl. 
Soc. Bull. 31, 10001003 (2003)

Pfitzner, K., Bollhöfer, A., Esparon, A., et  al.: Standardised spectra (400–2500 nm) and asso-
ciated metadata: An example from northern tropical Australia. In: 2010 IEEE International 
Geoscience and Remote Sensing Symposium, pp. 2311–2314 (2010)

Reusen, I., Holzwarth, S., Nieke, J., et al.: Towards an improved access to hyperspectral data across 
Europe (HYRESSA). In: Proceedings of the 5th EARSeL SIG IS workshop on IMAGING 
SPECTROSCOPY: innovation in environmental research, EARSeL, Bruges, Belgium (2007)

Richter, R., Bachmann, M., Dorigo, W., Muller, A.: Influence of the adjacency effect on ground 
reflectance measurements. IEEE Geosci. Remote Sens. Lett. 3, 565–569 (2006). doi:10.1109/
LGRS.2006.882146

M. Jiménez and R. Díaz-Delgado

https://doi.org/10.3390/ijgi3031003
https://doi.org/10.3390/ijgi3031003
https://doi.org/10.1016/j.rse.2006.11.007
https://doi.org/10.3390/rs3102222
https://doi.org/10.1109/TGRS.2004.841428
https://doi.org/10.1109/79.974727
https://doi.org/10.3390/rs4092818
https://doi.org/10.1016/j.jag.2011.07.001
https://doi.org/10.1016/S0034-4257(99)00112-1
https://doi.org/10.3390/rs6087732
https://doi.org/10.3390/rs6087732
https://doi.org/10.1007/s10980-004-0466-x
https://doi.org/10.3390/rs2020478
https://doi.org/10.1109/LGRS.2006.882146
https://doi.org/10.1109/LGRS.2006.882146


163

Richter, R., Schläpfer, D.: Geo-atmospheric processing of airborne imaging spectrometry data. 
Part 2: atmospheric/topographic correction. Int. J.  Remote Sens. 23, 2631–2649 (2002). 
doi:10.1080/01431160110115834

Roberts, D.A., Gardner, M., Church, R.M., et  al.: Mapping chaparral in the Santa Monica 
Mountains using multiple endmember spectral mixture models. Remote Sens. Environ. 65, 
267–279 (1998)

Roberts, D.A., Halligan, K., Dennison, P.E.: VIPER Tools user manual (Version1.5). University of 
California at Santa Barbara, 91P (2007)

Salisbury, J.W.: Spectral Measurements Field Guide. Earth Satellite Corp, Chevy Chase (1998)
Schaepman, M.E., Ustin, S.L., Plaza, A.J., et  al.: Earth system science related imaging spec-

troscopy—an assessment. Remote Sens. Environ. 113(Supplement 1), S123–S137 (2009). 
doi:10.1016/j.rse.2009.03.001

Schläpfer, D., Richter, R.: Geo-atmospheric processing of airborne imaging spectrom-
etry data. Part 1: Parametric orthorectification. Int. J. Remote Sens. 23, 2609–2630 (2002). 
doi:10.1080/01431160110115825

Schlapfer, D., Nieke, J., Itten, K.I.: Spatial PSF nonuniformity effects in airborne pushbroom imag-
ing spectrometry data. IEEE Trans. Geosci. Remote Sens. 45, 458–468 (2007).  doi:10.1109/
TGRS.2006.886182

Schmeller, D.S.: European species and habitat monitoring: where are we now? Biodivers. Conserv. 
17, 3321–3326 (2008). doi:10.1007/s10531-008-9514-1

Schowengerdt, R.A.: Remote Sensing. Models and Methods for Image Processing. Academic, 
Burlington (2007)

Silvestri, S., Marani, M., Marani, A.: Hyperspectral remote sensing of salt marsh vegetation, mor-
phology and soil topography. Phys. Chem. Earth Parts ABC. 28, 15–25 (2003). doi:10.1016/
S1474-7065(03)00004-4

Smith, G.M., Milton, E.J.: The use of the empirical line method to calibrate remotely sensed data 
to reflectance. Int. J. Remote Sens. 20, 2653–2662 (1999). doi:10.1080/014311699211994

Somers, B., Asner, G.P.: Hyperspectral time series analysis of native and invasive species in 
Hawaiian rainforests. Remote Sens. 4, 2510–2529 (2012). doi:10.3390/rs4092510

Stefano, P., Angelo, P., Simone, P., et al.: The PRISMA hyperspectral mission: science activities 
and opportunities for agriculture and land monitoring. In: 2013 IEEE International Geoscience 
and Remote Sensing Symposium – IGARSS, pp. 4558–4561 (2013)

Trochet, A., Schmeller, D.: Effectiveness of the Natura 2000 network to cover threatened species. 
Nat. Conserv. 4, 35–53 (2013). doi:10.3897/natureconservation.4.3626

Ustin, S., Zarco-Tejada, P., Jacquemoud, S., Asner, G.P.: Remote sensing of environment: state 
of the science and new directions. In: Remote Sensing for Natural Resource Management and 
Environmental Monitoring, 3rd edn, pp. 679–729. Wiley, Hoboken (2004)

Vaughan, H., Brydges, T., Fenech, A., Lumb, A.: Monitoring long-term ecological changes through 
the ecological monitoring and assessment network: science-based and policy relevant. Environ. 
Monit. Assess. 67, 3–28 (2001). doi:10.1023/A:1006423432114

Warner, T.A.: Remote sensing analysis: from project design to implementation. In: Manual of 
Geospatial Science and Technology, 2nd edn, pp.  301–318. CRC Press. Taylor & Francis 
Group, Boca Raton (2010)

Zomer, R.J., Trabucco, A., Ustin, S.L.: Building spectral libraries for wetlands land cover clas-
sification and hyperspectral remote sensing. J.  Environ. Manag. 90, 2170–2177 (2009). 
doi:10.1016/j.jenvman.2007.06.028

Sub-pixel Mapping of Doñana Shrubland Species

https://doi.org/10.1080/01431160110115834
https://doi.org/10.1016/j.rse.2009.03.001
https://doi.org/10.1080/01431160110115825
https://doi.org/10.1109/TGRS.2006.886182
https://doi.org/10.1109/TGRS.2006.886182
https://doi.org/10.1007/s10531-008-9514-1
https://doi.org/10.1016/S1474-7065(03)00004-4
https://doi.org/10.1016/S1474-7065(03)00004-4
https://doi.org/10.1080/014311699211994
https://doi.org/10.3390/rs4092510
https://doi.org/10.3897/natureconservation.4.3626
https://doi.org/10.1023/A:1006423432114
https://doi.org/10.1016/j.jenvman.2007.06.028


Part III
Species-Driven Remote Sensing and New 

Technologies Studies 



167© Springer International Publishing AG 2017 
R. Díaz-Delgado et al. (eds.), The Roles of Remote Sensing in Nature Conservation, 
DOI 10.1007/978-3-319-64332-8_9

Mapping the Distribution of Understorey 
Rhododendron Ponticum Using Low-Tech 
Multispectral UAV Derived Imagery

Abigail Sanders

Abstract Invasive species, such as Rhododendron ponticum, are an issue of global 
concern as they are a threat to biodiversity, ecosystem provisioning services and 
economies and act as a reservoir for emerging pathogen dispersal. R. ponticum is a 
Class A prohibited plant under Schedule 9(2) of the UK wildlife and countryside 
act, and removal costs in the UK in 2010 were approximately £86 million. This 
figure is not inclusive of removal costs on private land, an area where R. ponticum 
is spreading rapidly, and which amounts to 74% of the UK woodland. R. ponticum 
is a sporulation host which is tolerant to the highly virulent tree-killing root-fungus 
pathogen Phytothphera, in particular P. ramorum and P. kernoviae. These were 
introduced in 2003 and have now become widespread and are a particular threat to 
species such as the English Oak (Quercus robur). Limited access and high costs of 
aerial and satellite imagery restrict the progress of research into the spatial distribu-
tion patterns of R. ponticum and thus their effective removal strategy. Unmanned 
Aerial Vehicles (UAV) are currently used for conservation and agriculture but are as 
yet prohibitively expensive. Using commercially available action cams (Sony and 
Mobius: open source camera adapted for Infrared detection using a Rosco Red 
Filter) and a DJI Phantom 3 professional quadcopter a multispectral image com-
posed of 7 bands (440–800 nm range) was generated for sites containing invasive 
rhododendron and other non-target species. Mosaicking efficiency reduced the 
integrity of images but was rectified through georeferencing and Polynomial (spline) 
transformation. R. ponticum was shown in pairwise comparisons with non-target 
species to show greatest separability at 540 (p < 0.05) and least at 550 (p > 0.05) in 
multivariate analysis. Intra-species difference between two R. ponticum populations 
growing in differing locations was also significant at p = 0.01 in the same pairwise 
comparison. Ivy was not significantly different to larch and R. ponticum in all but 
the 540 and 750 bandwidths (p > 0.01). Seven band spectral signatures were all 
shown to be significantly different at F(1, 42) = 6.795, p < 0.001. This was con-
firmed during supervised classifications of the composite spectral checkerboard, 
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created from samples of the site mosaics which yielded 84% classification accuracy 
in ERDAS® imagine v2016 (64bit). The ‘noisy’ mosaic dataset yielded a lower 
overall classification accuracy of 64 %. The techniques demonstrated show the 
potential for low-tech, UAV derived, multispectral imagery to aid land manage-
ment. Spectral separability of rhododendron shows a high level of potential for 
mapping its distribution using this method. However, more research should be con-
ducted to streamline the process and reduce the potential sources of error.

Keywords Rhododendron • R.ponticum • Forestry management • Phytophthera • 
UAV • Invasive species • Multispectral pixel-based classification

 Introduction

Invasive species are currently classified, according to the International Union for the 
Conservation of Nature (IUCN), as the second largest threat to biodiversity world-
wide and by the UK Forestry Commission (FC) as a major obstruction to woodland 
regeneration (Blackburn et  al. 2014; Edwards 2006). Rhododendron ponticum is 
one such species, which has become invasive across much of the northern hemi-
sphere; in Europe, the UK and North America (Edwards 2006; Taylor et al. 2013).

Invasive species are traditionally surveyed manually from the ground (Lillesand 
et  al. 2014), with the surveyor undertaking species identification and estimating 
percentage cover (Brinker and Minnick 2012). Typically, the scope of the exercise 
would depend on the resources available to the organisation undertaking the survey 
(Lillesand et al. 2014). Various studies attest to the spatial inaccuracy of manual 
mapping compared with GIS spatial mapping. However, numerous studies also 
demonstrate the inability of remote sensing to perform as well as a ground surveyor, 
in accuracy and breadth of useable information (Powell et al. 2004; Burrough 1986). 
This study is an example of how remote sensing can enhance the resources available 
to land managers by providing an alternative means of surveying difficult to access 
areas to help quantify removal costs. Therefore, one aim of this research was to use 
low-cost commercially available UAV and cameras to mimic more advanced equip-
ment, which is prohibitively expensive. A second aim was to use the output to iden-
tify understorey R. ponticum and assess the feasibility and accuracy of this equipment 
for practical nature conservation purposes.

 Species Characteristics and Invasion

R. ponticum has complex global spatial distribution patterns arising from far- 
reaching radiations and advantageous hybridizations (Milne et al. 2003). The earli-
est  fossilised evidence, found in North America, is carbon dated to around 68 
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million years ago, during the last stage of the Cretaceous period (Yan et al. 2015; 
Irving and Hebda 1993). This attests to the durability of this genus to survive and 
adapt to the changes at the Earth’s surface (Milne et al. 2004; Irving and Hebda 
1993). R. ponticum is an aggressive, allelopathic, evergreen coloniser that threatens 
biodiversity. Once established, it is difficult and costly to remove (Edwards 2006). 
R. ponticum thrives in milder, wet climatic conditions, favouring acidic ground but 
capable of colonising very poor soil and cliff faces, growing from 5 to 8 m in height 
and 4 to 6 m in width to form dense impenetrable areas within seven to ten years 
(Edwards 2006; FC 2016; Milne and Abbott 2000).

Furthermore, and not insignificantly, R. ponticum is a key sporulation host for the 
emerging virulent tree-killing pathogen Phytophthora (ramorum and kernoviae 
species). This is a high concern in the UK due to its rapid spread and diversification, 
which has enabled it to infect a range of host tree species not previously known to 
be vulnerable, including the English Oak (Quercus robur) (Purse et al. 2013; FC 
2016). Infection control dictates that entering known infection sites, as well as areas 
of surrounding forest, is kept to a minimum; this limits the potential for data collec-
tion in these priority areas. (FC 2016).

 Remote Sensing Background

Light is measured in waves and the distance between each wave is typically mea-
sured in nano- meters (nm). The visible spectrum ranges from 400–700  nm, for 
human eyes, and can be broken down into groups of colour called ‘bands’: blue (B), 
green (G) and red (R) in order of increasing wavelength (nm). The wavelengths just 
outside the visible spectrum are ultraviolet (UV) light at <400 nm and infrared (IR) 
at >750 nm. Green plants reflect predominantly in the green band (around 500 nm) 
and the Near Infrared (NIR, 700  +  nm) portion of the spectrum (Heege 2015). 
Differentiating plants from non-photosynthetic organisms and objects can be 
achieved using many wavelengths but differentiating between plant groups and spe-
cies most often requires reference to the visible green and NIR bands green and 
infrared bands (Heege 2015).

Buschmann et al. (2012) determined, using high resolution 4-band (RGB + NIR) 
imagery, that leaf reflectance is categorised by three basic parameters: Leaf pigment 
content, i.e. the absorption of chlorophylls and carotenoids in the pigment protein 
complexes; leaf tissue structure, i.e. the size of aerial interspaces between cells 
(influence leaf optical properties); and structure of the leaf surface, e.g. waxes and 
hairs.

Traditional cameras split the visible spectrum into three bands, as standard: Red, 
Green, Blue (RGB, 700–400 to respectively). They are designed in this way to 
mimic our own colour chemicals, present in our eyes, to then produce images that 
mimic how we, as humans, visualise our surroundings (Pfundel et al. 2008). What 
we and our traditional cameras. However, we and our traditional cameras cannot see 
the energy reflected by an object in all wavelengths. Multispectral cameras typically 
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have sensors with numerous discrete bands, greater than just the visible region, such 
as infrared, whereas hyper-spectral cameras have sensors with continuous sensitiv-
ity across the full optical spectrum (350–2500 nm). These types of sensor are avail-
able but expensive. Although likely to become a more affordable component of 
UAV technology in the future, their cost is currently prohibitive. Traditional cam-
eras can be adapted to sense IR radiation by removing or replacing the inbuilt IR 
filters inside the internal sensor mechanism (Infragram 2016). Therefore, by using 
multiple traditional cameras (RGB) and IR adapted cameras, and combining the 
output, we should be able to produce a multispectral image capable of identifying 
plants such as R. ponticum.

Taylor et al. (2013) showed, using lab-based radiometry of more than 500 leaves 
of R. ponticum that the spectral reflectance of leaves from three non-target species; 
(namely Beech (Fagus sylvatica), Holly (Ilex aquifolium) and Laurel (Prunus lauro-
cerasus)), were significantly different (p < 0.05) from R. ponticum for all wave-
lengths except 450 and 460  nm, which yielded no significant difference (Taylor 
et al. 2013). The bands used for statistical analysis were at 490, 550, 610, 1040 and 
1490 nm, based on the absolute reflectance for the key wavelengths shown in previ-
ous studies. These reflectance wavelengths relate to the following specific pigments 
and compounds: Chlorophyll a, phycoerythrin, phycocyanin, oils and cell sugars 
respectively. The same study also found that the spectral characteristics of R. ponti-
cum leaves differ in leaf size and spectral plasticity over four habitat types (garden, 
oakwood, pinewood and lakeside), with these differences caused by variations in 
the spectral intensity of specific leaf pigments.

Taylor et al.’s study demonstrates some of the major opportunities and pitfalls for 
this technology; although differentiation between key non-target species is possible, 
under controlled conditions, the plasticity of inter species variation could render the 
information highly site specific. In our study, and contrary to the aims of many UAV 
studies, site-specific technology would not make this tool less effective if the output 
is sufficiently accurate to justify the processing time and costs.

The extent to which a remote sensing tool can be used to determine the coverage 
and distribution of understorey R. ponticum is governed by the capacity of a sensor 
in terms of spatial resolution, spectral sensitivity, extent covered, and temporal 
 frequency. Each remote sensing tool has benefits and limitations associated with 
these four factors, often where a higher capacity in one factor is attained to the detri-
ment of another attribute, for example; lower spatial resolution for greater coverage 
in satellite imagery. Monitoring large-scale changes in forest cover, for example, 
would not require a pixel size of 1 cm so using a lower resolution image would be 
more appropriate: this highlights that there is no ‘one size fits all’ model for remotely 
sensed data. Furthermore, although satellite imagery has the coverage, temporal 
frequency and the spectral sensitivity to achieve the basic objective of ‘identifying 
understorey R. ponticum from surrounding vegetation’, the spatial resolution will 
not be sufficiently high to distinguish individuals between bare branches of the 
upper canopy. Aerial imagery can overcome this but has a repeatedly high cost for 
flights and the open-source imagery currently available for our study area lacks the 
seasonal and temporal frequency (summer 2006 and 2014) to be used to identify 
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understorey R. ponticum. UAV imagery does, however, have the potential to provide 
a platform for overcoming these limiting factors if the low cost can be balanced with 
sufficient image quality. Rather than a tool to replace ground surveys, we propose 
that UAV imagery complements the work of ground survey teams, providing a bet-
ter overview to help map their target habitats.

 Study Area

The site was chosen by the Gwaun catchment area Invasive Species Department 
(IAS) of National Resources Wales (NRW), Pembrokeshire (see Fig. 1). The essen-
tial criteria was that there was Rhododendron infestation in and around woodland in 
a site where we could obtain consent to fly without UK Central Aviation Authority 
(CAA) licencing.

Trecwn Valley is a 400,000 h decommissioned Royal Navy Armaments Depot in 
north-west Pembrokeshire, Wales (OSGB 1920,2330). There is a traditional herring- 
bone format along the valley giving access to 58 cavern-based storage chambers. 
These entrances were planted with R. ponticum and Prunus laurocerasus (Cherry 
Laurel) to prevent aerial detection: these species were selected because of their fast 
growth, dense canopy and evergreen cover. Both of these species have now devel-
oped into widespread infestations in the area. Critically, an area of Larch within the 
site was issued with a Phytophthora Health Notice in 2014.

Fig. 1 Trecwn Valley (OSGB 1920,2330), Pembrokeshire, Wales (Digimap 2016)
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 Methods

 Cameras, UAVs and Flight Design

The two RGB cameras were the on-board DJI Phantom 3 professional camera and a 
Sony ActionCam, which varied in their spectral response curves despite both having 
Sony sensors. The 4 k (4 Megapixels) resolution DJI camera provided the highest 
resolution images. NIR spectra were recorded using a Mobius ActionCam with a 
Rosco RedFire (#19) adapted filter. All three cameras were mounted on the UAV and 
collected image data simultaneously for each flight. The images collected were 
treated as one survey, pairing the images from the three cameras together so that 
environmental conditions were the same for each camera. The cameras took an 
image every 2 s, or 5 m in any direction (x, y, z), and each flight survey was taken at 
a constant altitude. It was decided that the altitude for flights should be 5 m above the 
tallest tree within the flight area. Tree height was measured with an Abney level and 
altitude ranged from 19–27 m between flights.

 Image Pre-processing: Distortion Removal

The on-board DJI camera was gimbal mounted with automatic orthorectification, 
which ensured that the camera was always perpendicular to the ground. Neither the 
Sony nor Mobius Action Cams were gimbal-mounted. Both Action-cams were fitted 
(as standard) with fisheye lenses, which produced a distortion at the edges of an image 
while compressing a wider field of view into the sensor. This had to be reciprocally 
distorted to remove the edge misrepresentation and to provide the image with geospa-
tial accuracy. This was achieved by putting batches of images through the image edit-
ing software package Adobe© Photoshop, CC 2015 (Photoshop 2016), using the 
‘batch processing’ and ‘distortion removal’ functions and inputting the degree of dis-
tortion required to be removed for each specific camera. Only every 1 in 3 images was 
kept to ensure there was not excessive overlay to confuse mosaicking algorithms.

The Sony and Mobius cameras had smaller sensor sizes and resolutions (1.9 K 
and 2.3 K respectively) than the DJI (4 K) and thus a lower resolution at the same 
altitude. The Sony and Mobius mosaics, therefore, were interpolated to bring their 
pixel size down to match the DJI resolution of 7.8 mm such that the mosaics could 
be combined into mosaics into one high-resolution multispectral image. The Sony 
and Mobius were interpolated to a factor 1:2.1 and 1:1.7 respectively.

 Image Mosaicking

DJI phantom output images were automatically georeferenced to WGS 84/ UTM 
Zone 30  N reference system at a pixel size of 7.8  mm/pixel. DJI georeferenced 
mosaics were automatically created with high spatial accuracy using Pix4D Mapper 
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v.3.0 (Pix4D 2016). The Sony and Mobius output mosaics were generated without 
spatial referencing, using the automatic batch-process mosaic tool in Adobe 
Photoshop CC 2015. All of the mosaics were transferred to ERDAS®Imagine 
v2016(64bit) (ERDAS IMAGINE 2016) mapping software to be spatially aligned 
with one another and overlaid.

 Mosaic Alignment

Non-georeferenced mosaics were manually tied to the spatially accurate DJI mosaic 
using visually derived Manual Tie Points (MTPs). The Sony and Mobius mosaics 
were transformed using 3rd order polynomial spline transformation to conserve the 
exact overlay of MTPs and effectively mimic a georeferenced Ground Control Point 
(GCP). Examples of MTPs used in this study are Recognisable Visual Points 
(RVPs), which stand out in an image. Common RVPs are - manhole covers, forked 
branches, or obvious tree apexes etc. and were easily seen in the three mosaics to tie 
images together at these locations. A greater number of MTPs will result in more 
areas accurately overlapped and thus a more precise overlay. MTPs were used for 
two reasons; there are unlikely to be many feasible locations, which are clearly vis-
ible from the air, for accurate GCPs in a large catchment of woodland, and entering 
the site poses a risk of spreading the infection.

 Multispectral Image Generation

We used the manufacturer’s spectral response curves to identify the best wave-
lengths to extract into bands (Sony 2016; Mobius 2016). A 10 nm bandwidth was 
extracted around the point of highest quantum efficiency % on the y-axis (or the 
wavelength at which the most light is absorbed by the sensor/ graphical peak – see 
Fig. 2). The NIR extracted bandwidth was expanded to 50 nm to include a greater 
portion of NIR, the most important spectral region for plant identification 
(Buschmann et al. 2012).

We created a spatial model in ERDAS®Imagine v2016 (64bit) mapping software 
to extract the bands from the three mosaics and recombine these into a 7 band 
 multispectral mosaic (Fig.  3). Bands were ordered into ascending wavelength in 
order to appropriately retrieve spectral signatures from the features in the image. 
The final mosaic had the following discrete bands centred at 440, 450, 540, 550, 
600, 610 (all 6 with 10 nm width), and 750 nm (50 nm width).
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 Spectral Checkerboard

When overlapping separate high resolution images of the woodland, there are likely 
to be areas where the overlapping pictures do not exactly align for all pixels, par-
ticularly around object edges. Edge effects are imperfect overlaps of the layers that 
cause the spectral signature of a pixel found at the edge to show incorrect reflec-
tance spectra. For example, a signature at the edge may have 4 bands showing a leaf 

Fig. 2 Manufacturers spectral response curves for; the DJI on-board camera (SONY®EXMOS 
sensor) and Mobius IR adapted Actioncam with RoscoLux Red fire filter (SONY 2016; Infragram 
2016)

Fig. 3 The Spatial Model used in SpatialModeller, ERDAS®imagine mapping software v2016 
(64bit) used to separate bands from the different cameras and re-stack the layers in order of ascend-
ing wavelength (ERDAS 2016)
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signature and 3 bands showing the ground signature where they do not perfectly 
overlap in the mosaic. This signature therefore is not representative of the spectral 
signature of the plant species. To achieve a more accurate signature for any plant 
species in the composite mosaic, an average signature across a number of pixels is 
taken and the mean signature used in classifications. To reduce the likelihood of 
incorrect pixel signatures being attributed to a species in the signature editor, a spec-
tral checkerboard was created.

The spectral checkerboard was built by taking 100 pixel samples (0.78 m/pixel) 
from areas of accurate overlap, away from edges and for every target species in the 
mosaics. Accurate overlap was defined where positive Digital Numbers (DNs) for 
each band for 20 pixels, chosen at random, were found within each square (Fig. 4). 
Samples were taken from the mosaics at different locations; 5 samples for target 
species, 3 samples for non-target species. Target species found at numerous sites, 
such as Rhododendron, had samples taken from all sites because orientation, loca-
tion and neighbouring vegetative composition has been shown in the literature to 
cause spectral signature variation (Taylor et al. 2013).

The samples were taken and reprojected to be spatially adjacent in a virtual 
workspace in ERDAS®imagine v2016 (64bit) (Fig. 5). Removing and recombining 
samples in this way facilitated the creation of the equivalent of a standardised 
 spectral lab in which to train the classifier to identify individual spectral signatures 
under controlled conditions.

 Pixel-Based Digital Classification and Statistical Analysis

The ERDAS® Imagine v2016 (64bit) signature editor was used on the checkerboard 
to create a signature file to be used for a maximum likelihood supervised classifica-
tion. Means of signatures from five randomly selected pixels, within each square, 

Fig. 4 Spectral signatures of the target species: (Left) sample pixels were tested and signatures 
with any bands showing 0 pixel value removed (red). All other signatures (green) were averaged to 
a mean signature (pink). The final mean signatures were used for maximum likelihood supervised 
classification
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produced the final signature for each sample. The classification accuracy was calcu-
lated using the ERDAS® Imagine Accuracy Assessment feature and 200 randomly 
distributed points across the chosen 7-band image for both unsupervised and super-
vised classifications.

We conducted a multivariate analysis between full spectral signatures of samples 
to determine whether they were significantly different using all 7 bands (spectral 
separability). Non-target species’ signatures were compared to R. ponticum, using 
multivariate analysis, to determine which bands showed the significant variation 
within samples.

 Results

 Distortion Effects and Removal

Non-gimbal mounted cameras suffered from vibration wave-distortions and blur on 
the image outputs, meaning that many pictures were unsuitable for mosaicking. 
Identifying errors in the images and removing the distortion was time consuming: 
gimbal mounting and the removal of fisheye lenses would fully resolve these issues.

 Spectral Analysis

R. ponticum was shown in inter-species pairwise comparisons to show the greatest 
spectral separability at 540 (p < 0.05) and least at 550 (p > 0.05) using multivariate 
analysis. Intra-species difference between two populations growing in different 
locations was also significant (p = 0.01) in the same pairwise comparison. Ivy was 
not significantly different to Larch and R. ponticum in all but the 540 and 750 

Fig. 5 Checkerboard created in virtual workspace for spectral signature analysis and 
classification
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bandwidths (p  >  0.01). The MANOVA between species’ full spectral signatures 
were shown to all be universally significantly different at F(1, 42) = 6.795, p < 0.001. 
This result confirms that the analysis using 7 band signatures is sufficient to distin-
guish species in principle.

 Digital Classification

The spectral analysis checkerboard, as a tool in itself, provided a platform for stan-
dardising comparison of samples from multiple areas and was a valuable output 
from this study as a stand-alone utensil (Fig. 5). Both supervised and unsupervised 
classifications of the checkerboard displayed a clear visual distinction between 
many of the samples, which was confirmed by the overall accuracy assessment: 
52% unsupervised and 84% supervised (Fig. 5).

When a classification was conducted on 7-band test sections of the site the accu-
racy assessment yielded 62% overall classification accuracy for 100 pixel samples 
using the ERDAS® imagine internal accuracy assessment feature. Cherry Laurel, 
Beech and Ivy were all incorrectly identified as R. ponticum or vice versa. Beech 
foliage would not be present at the optimal time of survey (midwinter) and Cherry 
Laurel is an additional reservoir host for Phytophthora so both were considered as 
target species. Ivy, however, was a non-target species of concern as it would be 
expected to be present in most natural and semi-natural woodlands across the UK 
and would confound results (Fig. 5). Sample sizes for the checkerboard were greater 
than the coverage of Ivy (0.78 m) and this could have contributed to errors.

 Discussion

 Feasability Study

This study demonstrates the feasibility of creating multispectral mosaics from com-
monly sourced equipment. The separate bands of the intra-band variation were sig-
nificantly different. Variability in significance between 540 nm and 550 nm showed 
the importance of this region for the identification of Rhododendron from other 
species, which confirmed other results in the literature (Taylor et al. 2013). This 
information enables future studies to be targeted for more rapid optimisation of 
tools for identification: a greater bandwidth in the 550 nm, for example, could have 
made this region incorrectly significant due to overlap into the 540 nm bandwidth 
(Fig. 6).

The accuracy levels seen in both the checkerboard and the mosaic demonstrate 
the ability of a pixel-based supervised classification of 7-band composites to  identify 
groups of species, including the R. ponticum and Cherry Laurel group, both of 
which are reservoir hosts of Phytophthora.
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This was conducted using ArcMap and ERDASimagine, which are both high 
cost programmes, so this cannot reflect the feasibility of using open source soft-
ware, such as QGIS, though this software is rapidly advancing to meet the needs of 
users globally. For practical application, even at 62% accuracy, distribution and 
temporal changes could be reliably identified provided that Ivy could be reliably 
separated. Application of Object Based Image Analysis (OBIA), based on leaf mor-
phology and positioning, has the potential to separate both Ivy and Laurel from R. 
ponticum: this has increased vegetation classification accuracy in the literature 
(Hernando et al. 2012).

Replicate flights, at other sites and at different times in the year, would quantify 
the temporal and inter-site feasibility of either sharing site spectral data or conserv-
ing site-specific datasets for achieving the highest accuracy.

 Limitations and Cost-Benefit Analysis

UAVs cannot be flown in winds >25 m/s nor in rain which limits their use during 
winter months in the UK: this coincides with the optimal time for R. ponticum map-
ping (Anderson and Gaston 2013). Although aerial flights have a higher tolerance 

Fig. 6 Final supervised classification maps of test site for broadleaved woodland at Trecwn Valley, 
Pembrokeshire. These mosaics were created in ERDASimagine. (top) This mosaic was classified 
using an supervised classification based on the spectral signature set created from the checker-
board. (middle) This mosaic shows the RGB bands from the DJI camera output. (bottom) Isolated 
in this image are the averaged signatures for; R. ponticum, Cherry laurel and the shadow areas for 
R. ponticum. This image highlights the signature similarity with Beech, which would not be pres-
ent at the optimal time of survey
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for unfavourable weather conditions, they are also restricted, and charges may still 
apply if the job is outsourced and a flight is cancelled due to the weather (Whitehead 
and Hugenholtz 2014). Owning a UAV enables conservation managers to produce 
their own imagery as regularly as their schedule and weather permits, without costs 
beyond capital expenses, training, and electricity for charging.

General limitations include the availability of sites for consensual flight; liability 
and insurance cover is needed for any moving vehicle used for charity or business 
purposes, which covers UAV use for nature conservation (CAA 2017). The only 
directly relevant EU-wide regulation, at the time of writing, is that any Small 
Unmanned Aircraft (SUA) weighing 150 kg or less must have adequate insurance 
cover (CAA 2017). Permissions on private land are at the discretion of the land-
owner. This study, for example, was flown without certifications on private land. 
The Civil Aviation Authority (CAA), which controls UK airspace, provides the rel-
evant rules and regulations within the Civil Aviation Publication (CAP) 393 Air 
Navigation Order on topics such as negligence and privacy (articles 138 and 167 
respectively) (CAA 2017). The CAA provides training for professionals, which 
many common and large-scale land managing bodies require for permission to fly 
(CAA 2017; National Trust 2013). Commercial businesses are required to have met 
the requirements of the UKCAA’s CAP722: Chapter 4: Civil UAS Remote Pilot 
Competency to undertake commercial flights (CAA 2017). The cost of a profes-
sional course to gain a licence for flights over common land is between £900–£1300, 
a one off cost for training and examination, and £112–240 for commercial permis-
sions, which must be renewed annually at a reduced cost (CAA 2017).

The increasing demand and rapid development of drone technology means own-
ing a drone with a high resolution gimbal mounted camera can cost £800 upwards 
and can be flown using any smartphone (PCMag 2016). At an altitude of < 30 m, a 
UAV can produce a resolution of 0.1–10 cm depending on the camera sensor size 
(Lillesand et al. 2014). The cost of hiring a professional to collect drone imagery for 
a day can be £500–1000. However, an UAV is roughly the same cost (Wood et al. 
2015). Small aircraft and helicopters are often used for surveying large-scale for-
estry, particularly Phytophthora sites, and allow an on-board surveyor to ‘spot’ 
areas of interest by eye However, these flights do not yet automatically include 
accurate spatial mapping (FC 2016). There is no literature on the actual accuracy of 
these types of survey as there is no alternative. The ability of many quad copters to 
hover, remain in a stationary position, and use GPS tracking systems allows rapid 
investigation of points of interest. This was demonstrated during this study, where 
indicators of Phytophthora infection (dead upper branches) could be clearly seen in 
real time and from stored images. Furthermore, as UAVs use electricity, the use of a 
drone can reduce the CO2 emissions of any organisation with a sustainability port-
folio that relies on aerial surveys.
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 Future Directions for Nature Conservation

The spectral information generated using this technique can be carried forward into 
future spectral analysis using multi and hyper-spectral tools by targeting and dis-
seminating spectral signatures of species. Critically, this method can be used to 
inform management decisions now, and remains relevant through technological 
advances.

Of importance is finding novel, useful UAV procedures within nature conserva-
tion that will drive the industry to develop to fill this niche. Developing protocols for 
using UAVs in nature conservation is central for shaping policy on UAV use in the 
UK. It is also highly relevant within conservation organisations, particularly in the 
light of changing legislative frameworks.
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The Potential of UAV Derived Image Features 
for Discriminating Savannah Tree Species

J. Oldeland, A. Große-Stoltenberg, L. Naftal, and B.J. Strohbach

Abstract Mapping tree species at the single-tree level is an active field of research 
linking ecology and remote sensing. However, the discrimination of tree species 
requires the selection of the relevant spectral features derived from imagery. We can 
extract an extensive number of image parameters even from images with a low spec-
tral resolution, such as Red-Green-Blue (RGB) or near-infrared (NIR) images. 
Hence, identifying the most relevant image parameters for tree species discrimina-
tion is still an issue. We generated 42 parameters from very high resolution images 
acquired by Unmanned Aerial Vehicles (UAV), such as chromatic coordinates, spec-
tral indices, texture measures and a canopy height model (CHM). The aim of this 
study was to compare the relevance of these components for classifying savannah 
tree species. We obtained very high (5 cm) pixel resolution RGB-NIR imagery with 
a delta-wing UAV in a thorn bush savannah landscape in central Namibia in April 
2016. Simultaneously, we gathered ground truth data on the location of 478 indi-
vidual trees and large shrubs belonging to 16 species. We then used a Random 
Forest classifier on single and combined thematic sets of image data, e.g. RGB, 
NIR, texture and in combination with CHM. The best average overall accuracy was 
0.77 and the best Cohen´s Kappa value was 0.63 for a combination of RGB imagery 
and the CHM. Our results are comparable to other studies using hyperspectral data 
and LiDAR information. We further found that the abundance of the tree species is 
crucial for successful mapping, with only species with a high abundance being clas-
sified satisfactorily. Diverse ecosystems such as savannahs could therefore be a 
challenge for future tree mapping projects. Nevertheless, this study indicates that 
UAV-borne RGB imagery seems promising for detailed mapping of tree species.
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 Introduction

Classifying and mapping individual trees is increasingly applied in forestry, urban 
management and nature conservation. According to a review by Fassnacht et  al. 
(2016), since the year 2000 and particularly from 2010 onwards, there has been a 
dramatic increase in the number of studies that compare the suitability of different 
datasets, classifiers, and sensor platforms. However, most studies on the classifica-
tion of tree species use expensive technology to capture data, e.g. hyperspectral or 
LiDAR sensors, with only a few studies applying relatively cheap solutions such as 
UAVs carrying consumer-grade cameras that provide Red-Green-Blue (RGB) or 
Near-Infrared (NIR) imagery. Furthermore, most studies to date have focussed on 
temperate or boreal forest ecosystems while Savannah ecosystems, which are rela-
tively rich in tree species, remain understudied.

This chapter evaluates the suitability of image parameters derived from low-cost, 
UAV-borne, consumer-grade cameras for classifying tree species in a savannah eco-
system. In particular, we aim to test (a) whether savannah tree species can be dis-
criminated successfully with very high resolution UAV imagery, (b) whether RGB 
or NIR spectral indices perform better, and (c) if a canopy height model can signifi-
cantly improve the classification. Finally, we discuss the role of a species abundance 
for it´s potential to be accurately mapped.

 Background

Mapping the distribution of tree species using remote sensing means producing a 
vector or raster layer that contains the information on locations of tree species either 
at the stand-level or single-stem level. These maps or data sets are valuable in nature 
conservation, particularly in a biodiversity monitoring context. However, until 
recently, the most commonly used image data for mapping tree species were from 
hyperspectral and LiDAR sensors (Fassnacht et al. 2016) which are costly, difficult 
to preprocess, and require expert knowledge in their analysis. The recent advent of 
drones, also called Unmanned Aerial Vehicles (UAVs), provides new tools and the 
opportunity to obtain more spatial detail for tree species mapping, and the use of 
UAVs for mapping tree species is becoming increasingly popular (Singh et al. 2015; 
Lisein et al. 2015). UAVs have several advantages over satellite or airborne data. 
They are extremely flexible in usage, can be scheduled in a very short time interval 
(e.g. daily or weekly), are easily carried to diverse locations and, unlike satellites, 
are not limited by clouded skies. The main drawbacks are the limited spatial 
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coverage and a restricted carrying capacity which renders UAVs unsuitable for 
heavy hyperspectral or LiDAR sensors and thus being restricted to consumer-grade 
cameras or small multispectral cameras. Only a few studies have evaluated RGB 
spectral indices for species discrimination, e.g. Rasmussen et al. (2013), who tested 
the potential of RGB indices for site-specific weed management, Dvořák et  al. 
(2015) used RGB imagery for invasive plant detection, and Rasmussen et al. (2016) 
studied the performance of RGB indices to measure barley biomass. Hence, the 
question remains open as to whether very high spatial resolution imagery taken by 
a standard UAV can successfully discriminate tree species. If so, nature conserva-
tion could make use of a very flexible image acquisition platform for monitoring 
small areas, i.e. covering several square kilometres with a small number of flights. 
Furthermore, the question how consumer-grade cameras with RGB or a NIR-filter 
perform in such a task needs to be addressed. Is NIR really necessary or are observa-
tions in RGB sufficient?

Most of the studies reviewed by Fassnacht et al. (2016) had two things in com-
mon: they used hyperspectral imagery in combination with LiDAR data and were 
undertaken in temperate or boreal forests. Bunting and Lucas (2006) and Lucas 
et al. (2008) established the use of CASI and HYMAP hyperspectral data for dis-
criminating tree species in open woodlands and forests in Queensland, Australia, 
confirming that differences in the mean spectra from crown objects increased the 
accuracy of discrimination. However, only a few studies set out to classify savannah 
tree species in southern Africa (Naidoo et al. 2012; Cho et al. 2012; Colgan et al. 
2012). These studies classified between six and 15 tree species. Cho et al. (2015) 
also tested the suitability of very high resolution satellite imagery for this purpose, 
but only used three out of ten dominant canopy species. It seems that the abundance 
of a tree species also contributes to its capability for being mapped precisely. We are 
of the opinion that this issue has not been sufficiently highlighted in the literature 
(but see comments in Fassnacht et al. 2016).

 Study Area

The study was part of the Biodiversity Observatory S05 of the BIOTA Africa project 
(www.biota-africa.org), which is a cross-country biodiversity monitoring project 
with a standardized monitoring approach performing monitoring in southern, west-
ern, and northern Africa (Jürgens et al. 2012). The observatory is located on the 
cattle farm Erichsfelde (coordinates: 16.935° E 21.597° S) in central Namibia. The 
Biodiversity Observatory spans 1 km2 and is divided into 100 ha from which 20 
were selected in the year 2001 for permanent annual monitoring of vegetation and 
animal diversity. The vegetation monitoring was undertaken within plots of 
20 × 50 m, which were situated at the mid-point of a selected hectare. The vegeta-
tion consisted of typical Thornbush savanna sensu Giess (1998), dominated by 
Acacia mellifera subsp. detinens and Boscia albitrunca. Other Acacia species also 
occurred, in particular A. hebeclada subsp. hebeclada, A. tortilis, A. reficiens and A. 
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karroo. The vegetation structure is a typical semi-closed bushland, with a low grass 
layer, and shrubs of up to 4 m high (Fig. 1). These are interspersed by few trees, 
between 4 and 8 m in height. Erichsfelde is a private cattle farm of about 13,000 ha 
that is used extensively for meat production (cattle grazing). Game species, includ-
ing Oryx and Kudu are also present. The Observatory is not excluded from regular 
land-use.

 Methods

 UAV Imagery Acquisition

On 21.03.2016, we acquired an image mosaic with 5 cm ground resolution for the 
whole Biodiversity Observatory S05, i.e. approximately 1 km2 (Fig. 2). We covered 
the area in two flights with an eBee 3 drone (costs ca. 30.000€, SenseFly 2015, 
Cheseaux-Lausanne, Switzerland). The settings for the flight missions were 70% 
longitudinal and 60% lateral overlap, with a flying height of 115 m above take-off 
point. Each image had a width of 160 m and a length of 120 m. The first flight was 
conducted using a modified Canon S110 where the blue filter was replaced by a NIR 
filter, recording at 850 nm. This camera also recorded a green band (550 nm) and a 
red band (625 nm). The second flight was performed using a regular RGB camera 
(Canon S110), recording at 450  nm (blue), 520  nm (green) and 660  nm (red) 
(SenseFly 2014). The flights to collect the images took about 30 min each and took 
place on the same day between 10h45 and 12h00. The first flight (NIR) yielded 411 
single images; the second flight (RGB) 358 images. We then mosaicked the image 
sets into two single orthomosaics using the PiX4D software. We did not use ground 

Fig. 1 Landscape perspective of the thorn bush savannah vegetation on the private cattle-farm 
Erichsfelde. The tree layer consists mainly Acacia mellifera subsp. detinens with one larger Acacia 
tortilis in the back. Small shrubs and a dense grass layer leaving some open soil patches character-
ize the landscape. Picture taken 05. April 2016, by L. Naftal
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control points for the mosaicking procedure, so we needed to adjust the imagery by 
shifting the NIR image manually by five pixels on the x-axis and three pixels on the 
y-axis to ensure proper matching with RGB imagery. We used QGIS v.2.16 (QGIS 
Development Team 2016) to shift the image.

 Ground Truth Data

After image processing, subsections of the orthomosaics corresponding to each of 
20 permanent monitoring plots were taken to the field. Within each plot, all trees 
and shrubs in the image were compared to each tree and shrub in the vegetation plot. 
Then, for each single-stem individual, an outline for each individual was drawn onto 
the image. This was necessary as the crowns of species were commonly overlapping 
where multiple stemmed individuals occurred. In total, 16 species were recorded 
and only living individuals were considered. However, we excluded seven of these 
species from further analysis because they occurred with an abundance of less than 
ten individuals within the samples (Table 1). We then converted our paper drawings 
into polygons per species in QGIS based on the RGB orthomosaic. Although 

Fig. 2 UAV imagery of the BIOTA Observatory S05 Otjiamongombe / Erichsfelde. (a) 1 km2 
RGB image with a 5 cm resolution acquired on 21.03.2016.(b) a subset focused on hectare 46 from 
the centre of the observatory (c) photo of hectare 46 from the year 2003
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several software solutions exist that promise to segment tree crowns from point 
clouds and RGB imagery, such as the TIDA algorithm (Culvenor 2002), these algo-
rithms are difficult to handle and come with their own error. As the number of poly-
gons required was small, we preferred the manual approach of delineating tree 
crowns. In total, we drew 478 polygons to build the species dataset. The abundance 
of the observed species is described in Table 1. Note that this includes only living 
individuals.

 RGB and NIR Spectral Indices

As the aim of this study was to identify the most suitable predictors for species 
discrimination, we derived an extensive set of parameters from both the RGB and 
NIR imagery. Based on the RGB imagery, we calculated the chromatic coordinates 
(Woebbecke et al. 1995; Meyer and Neto 2008) as well as the excessive Red (exR) 
and Green (exG) indices (Table 2). Recent studies had found these to be the most 
suitable to discriminate crop species (Woebbecke et al. 1995; Meyer and Neto 2008) 
or to predict vegetation parameters based solely on RGB imagery (Zhang et  al. 
2010; Schirrmann et al. 2016; Vergara-Díaz et al. 2016). In addition, we calculated 
the normalised green-red difference index (NGRDI) and the exG–exR parameter. 

Table 1 Sampled tree and shrub species with observed and relative abundance

Nr. Species name Family Short Individuals Rel. %

1 Acacia mellifera Fabaceae AM 174 0.38
2 Grewia flava Malvaceae GF 109 0.24
3 Acacia tortilis Fabaceae AT 45 0.10
4 Lycium eenii Solanaceae LA 35 0.08
5 Acacia reficiens Fabaceae AR 17 0.04
6 Dichrostachys cinerea Fabaceae DS 16 0.03
7 Acacia hereroensis Fabaceae AHR 14 0.03
8 Boscia albitrunca Capparaceae BA 13 0.03
9 Acacia hebeclada Fabaceae AH 12 0.03
10 Phaeoptilum spinosum Nyctaginaceae PS 8 0.02
11 Acacia luederitzii Fabaceae AL 7 0.02
12 Leucosphaera bainesii Amaranthaceae LB 4 0.01
13 Ziziphus mucronata Rhamnaceae ZZ 3 0.01
14 Commiphora africana Burseraceae CA 3 0.01
15 Acacia fleckii Fabaceae AF 2 0.00
16 Acacia erubescens Fabaceae AE 1 0.00

Short = species name abbreviation, Rel.% = relative abundance in percent. Taxonomy follows A 
Checklist of Namibian Indigenous and Naturalised Plants (Klaassen and Kwembeya 2013) as 
Namibian standard. Updated names for the genus Acacia can be found in Kyalangalilwa et  al. 
(2013). Species with less than ten observed individuals were not considered in this analysis, as 
these do not provide sufficient ground truth information
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Table 2 Overview of all image parameters extracted for crown polygons

Image parameter Short Data Formular References

Normalized 
Difference 
Vegetation Index

NDVI NIR (NIR-RED)/
(NIR+RED)

Tucker (1979)

Thiam’s 
Transformed 
Vegetation Index

TTVI NIR sqrt(ABS(NDVI + 0.5)) Thiam (1998)

Transformed Soil 
Adjusted 
Vegetation Index

TSAVI NIR a(NIR-a) (R-b) /  
R + aNIR -ab

Baret et al. (1989)

Perpendicular 
Vegetation Index 1

PVI84 NIR (bNIR-R) + a / 
(sqrt(b2+1))

Perry and 
Lautenschlager (1984)

Perpendicular 
Vegetation Index 3

PVI94 NIR aNIR-bRED Qi et al. (1994)

Normalized 
Green- Red 
Difference Index

NGRDI NIR (G- R) / (G + R) Rasmussen et al. (2016)

excessive Redness exR RGB 1.4*chrR-chrG Meyer and Neto (2008)
excessive Greeness exG RGB 2*chrG-chrR- chrB Meyer and Neto (2008)
exG-exR exG-exR RGB exG-exR Meyer and Neto (2008)
excessive Greeness 2 exG2 RGB (2*G-R-B) / (G+R+B) Rasmussen et al. (2016)
chromatic 
coordinate R

chrR RGB R* / R* + G* + B* Meyer and Neto (2008)

chromatic 
coordinate G

chrG RGB G* / R* + G* + B* Meyer and Neto (2008)

chromatic 
coordinate B

chrB RGB B* / R* + G* + B* Meyer and Neto (2008)

Energy Energy Texture ∑i,jg(i,j)2 Haralick et al. (1973)
Entropy Entropy Texture −∑i,jg(i,j)log2g(i,j) Haralick et al. (1973)
Correlation CorrL Texture

∑
−( ) −( ) ( )

i j

,

,

i j g i jµ µ
σ 2

Haralick et al. (1973)

Inverse Distance 
Moment

IDM Texture
∑

+ −( )
( )

i j

g i,j
,

1

1
2

i j

Haralick et al. (1973)

Inertia Inertia Texture ∑i,j(i−j)2g(i,j) Haralick et al. (1973)
Cluster Shade ClusSha Texture ∑i,j((i−μ)+(j−μ))3g(i,j) Haralick et al. (1973)
Cluster Prominence ClustPro Texture ∑i,j((i−μ)+(j−μ))4g(i,j) Haralick et al. (1973)
Haralick‘s 
Correlation

HarrCorr Texture ∑ ( ) ( ) −i j i j g i j i

t

, , , µ

σ

2

2

McInerney and 
Kempeneers (2015)

a=intercept, b=slope of soil line, R* = normalized Red channel. μ = window average, σ = window 
variance, g(i,j) = function for pixel pair i and j
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A recent, simplified version of the excessive greenness index (Rasmussen et  al. 
2016) was also calculated, in this study called exG2.

To exploit the additional NIR information, we calculated slope and distance 
based vegetation indices (Silleos et al. 2006). Slope based vegetation indices make 
use of the difference in the slope of the red and NIR channel; the famous Normalized 
Difference Vegetation Index (NDVI, Tucker 1979) belongs here. The SAVI is a 
modified NDVI which adjusts for potential effects of bare soil (Huete 1988). 
Thiam’s vegetation index improves on the NDVI by multiplying the absolute NIR 
and Red band values with their square root (Thiam 1998). Distance based vegeta-
tion indices make use of the concept of the so-called “soil-line” (Silleos et al. 2006). 
The distances refer to the distance of samples in the two dimensional red-NIR spec-
tral space to the soil line, that describes the lower boundary of pixels in this space, 
usually aligning across a clearly visible axis. To determine the soil line parameters 
required for the calculation of the distance based vegetation indices, a set of n = 100 
bare soil pixels were selected, stratified by the hectare grid of the Biodiversity 
Observatory, and the NIR and red values were extracted. Based on these values, a 
linear regression (R2 = 0.89, p < 0.001) was used to estimate the intercept and the 
slope of the soil line. The linear regression parameters intercept (alpha = −227.29) 
and slope (beta=1.877) were used to calculate the Perpendicular Vegetation Index 
III (Qi et al. 1994; Silleos et al. 2006). All indices were calculated and image manip-
ulations were performed with the open source software SAGA-GIS (Conrad et al. 
2015). For all individual tree crown polygons, we calculated values for the mean 
and standard deviations using the zonal statistics tool in SAGA-GIS.

 Image Texture

Richards (2013) suggested that the texture of an image can be described as smooth, 
rough or repetitive in terms of the spatial arrangement of grey values. In terms of 
canopy cover this would describe whether tree crowns consist of repeating patterns 
of shadow and greenness or whether the canopy is closed and thus equal in colour. 
Often texture measures will improve remote sensing classifiers (Krefis et al. 2011). 
As our main interest was to discriminate between tree species canopies, the green-
ness (exG) of the canopy seemed to be a good parameter for a texture analysis. We 
used the Orfeo Toolbox v.5.6.1 (McInerney and Kempeneers 2015), a free open 
source software for remote sensing image analysis, to calculate eight different types 
of simple image texture measures. Haralick’s grey level occurrence matrix (GLCM, 
Haralick et al. 1973), which is a standard for describing image texture, was the basis 
for calculating all of the texture measures. We choose a constant window size of 5×5 
pixels and an offset of 1 for x and y. The number of grey levels was set to 16. We 
then loaded the calculated image texture measures into SAGA-GIS and extracted 
the texture as average and standard deviation for each individual tree crown canopy 
polygon.
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 Canopy Height Model

We generated a canopy height model (CHM) based on the overlapping single image 
tiles. We used the software Postflight Terra 3D Vs4.0.104 (SenseFly 2015) to gener-
ate dense point clouds as *.las-files. Then we imported the *.las point cloud files 
into the LAStools software (Isenburg 2016) to generate buffered tiles. Ground 
points representing bare ground were identified visually. Based on these ground 
points, we calculated the height (height normalization) for all non-ground points of 
all tiles. These tiles were then mosaicked in SAGA-GIS using a b-spline interpola-
tion with feathering to create a seamless normalized Digital Surface Model (nDSM). 
This nDSM describes the maximum heights of the point cloud. Next, we generated 
a Digital Terrain Model (DTM), that describes the minimum heights of the point 
cloud. Finally, the CHM was generated by subtracting the DTM from the DSM, 
which gave values in the range of −0.11 to 1.89 m. The lower range was adjusted to 
zero. Average canopy height and its standard deviation were extracted for each can-
opy polygon.

 Random Forest Classification

The Random Forest algorithm (Breiman Breimanx) is now a common standard non- 
parametric classifier with high performance as was found by many comparative 
studies in a remote sensing context (Pal 2005; Duro et al. 2012; Qian et al. 2014). 
Random Forest makes use of the concept of classification and regression trees 
(CART) but combines them with ensemble modelling and bagging. Random Forest 
is a non-parametric classifier that creates thousands of single decision trees and 
averages their results. Each decision tree is a subsample of the whole dataset. The 
split for each tree node is determined by the Gini criterion, which measures the 
entropy of the dataset. The best split is that parameter value that leads to the largest 
decrease in the Gini criterion. When the classifier is applied to the test dataset, the 
final class label is then based on the majority vote of all constructed decision trees 
(Immitzer et al. 2012).

A Random Forest classifier was used to predict species labels, with this achieved 
by first dividing the dataset into training and testing polygons, with an 80:20 ratio 
per class. To establish if any single set of parameters were sufficient alone, the data-
set was split into a RGB, a NIR, a texture and a complete dataset (ALL). For quan-
tifying the importance of the CHM, we added these values to each parameter dataset. 
Before classification, all parameters with Pearson correlations higher than 0.75 
were deleted to ensure that multicollinearity issues would not be an issue. Only two 
texture parameters where omitted because of multicollinearity, the Cluster 
Prominence and Haralick’s correlation. The latter was correlated with “correlation 
(corrL)” and the first with “inverse distance moment (IDM)”. Finally, in order to test 
the effect of species abundance on the classification results, the species data were 
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divided into three datasets, considering (a) all species with an abundance larger than 
10, (b) frequent species with an abundance larger than 30 and (c) infrequent species 
with abundances between 30 and 10 individuals (Table 2). These species subsets 
were all tested in combination with all parameter subsets, leading to a final number 
of 24 single datasets.

For each single dataset, a classifier was produced and its accuracy was verified 
using the test dataset. For accuracy assessment, confusion matrices were generated 
and the following accuracy measures were derived: Overall accuracy (OA), confi-
dence limits for OA based on cross-validation, and Cohen´s Kappa which takes 
class imbalance into account (Kuhn and Johnson 2013). As a null-model for the 
overall accuracy, we calculated the No-Information Rate (Kuhn and Johnson 2013), 
which is simply defined as the proportion of the largest class expressed as a percent-
age. A one-sided test of equal proportions was then conducted to provide a p-value 
for the null-model.

The relevance of the single predictors was assessed by calculating their variable 
importance. Variable importance describes the relationship between each parameter 
and the outcome of the classification or regression procedure. It is measured as the 
loss in performance when the respective parameter is not considered. Variable 
importance was measured for all parameters in the three species subsets in order to 
identify consistently important predictors across all predictors considered.

Random Forests were run with 5000 trials. The parameter mtry was set to 1/3 of 
the number of variables considered. The parameter mtry describes the number of 
parameters that are included in each single decision tree. In addition, a repeated 
cross validation was implemented using a tenfold cross validation with five repeti-
tions to be able to achieve standard errors and confidence intervals for the overall 
accuracy. Classification was performed in the free and open source software R (R 
Core Team 2016) using the packages caret (Kuhn et al. 2016), randomForest (Liaw 
and Wiener 2002) and e1071 (Meyer et al. 2015).

 Results

Only frequent species constantly exhibited significant p-values (Table  3, Fig.  3) 
meaning that OA was higher than the respective null-model. When using all species 
or only infrequent species, this was not the case. The species subsets “All” and 
“Infrequent” had always low Kappa and OA values except for infrequent species 
with the ALL and ALL+CHM (Table 3).

The highest OA and Kappa values were obtained for the combined RGB and 
CHM dataset for the frequent species, with an OA value of 0.77 and a Kappa value 
of 0.63. Globally, the “ALL” model was ranked second by Kappa for frequent spe-
cies. However, “ALL” is much more complex (42 parameters) than RGB+CHM (16 
parameters). Thus, the simpler RGB solution can be regarded as much more infor-
mative and easier to reproduce as fewer parameters have to be derived from the 
imagery (Table 3). The lower quality of the infrequent species dataset was also evi-
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dent by the large confidence intervals (Fig. 3). These are much smaller in the case 
for ALL and frequent species. This effect was attributed to the small number of 
samples within the infrequent species (72 samples spread across five classes, see 
Table 1). Models that used texture (TEXT) alone or a combination of texture and 
CHM (TEXTCHM) were never significant in any of the species sets (Table 3). Best 
results for texture models were found for the frequent species with an OA of 0.70 
and a Kappa value of 0.49.

The inclusion of the CHM led to an increase in model quality for 7 out of 12 
image parameter pairs (Table 3). The largest increase in the Kappa (0.22) was found 
for the RGB – RGB+CHM pair in the frequent species dataset. However, the second 
largest change was a decrease of 0.13 for the NIR – NIR+CHM in the infrequent 
species dataset (Table 3). Except for these two values, the average increase in Kappa 
was zero. Hence, we did not find that the CHM contributed additional information.

In the variable importance analysis (Fig.  4), none of the NIR-derived image 
parameters occurred in the top ten parameters. The RGB indices exG2, exR, exG 

Table 3 Accuracy measures of 24 random forest classification models with different combinations 
of species and UAV imagery products

Species Dataset Kappa OA OALower OAUpper OANull p-value

All ALL 0.33 0.54 0.45 0.63 0.57 0.739
ALLCHM 0.34 0.54 0.45 0.63 0.56 0.677
NIR 0.22 0.46 0.37 0.55 0.51 0.880
NIRCHM 0.25 0.48 0.39 0.58 0.53 0.841
RGB 0.36 0.56 0.47 0.65 0.57 0.609
RGBCHM 0.39 0.58 0.49 0.67 0.57 0.465
TEXT 0.31 0.53 0.43 0.62 0.56 0.794
TEXTCHM 0.28 0.51 0.42 0.60 0.56 0.882

Freq ALL 0.52 0.70 0.60 0.79 0.54 >0.001
ALLCHM 0.49 0.67 0.57 0.76 0.52 >0.01
NIR 0.43 0.64 0.54 0.73 0.53 >0.05
NIRCHM 0.49 0.68 0.58 0.77 0.55 >0.01
RGB 0.41 0.62 0.52 0.72 0.46 >0.001
RGBCHM 0.63 0.77 0.67 0.85 0.53 >0.001
TEXT 0.45 0.67 0.57 0.76 0.64 0.306
TEXTCHM 0.49 0.70 0.60 0.79 0.62 0.062

Infreq ALL 0.53 0.63 0.38 0.84 0.32 >0.01
ALLCHM 0.47 0.58 0.34 0.80 0.32 >0.05
NIR 0.27 0.42 0.20 0.67 0.37 0.399
NIRCHM 0.14 0.32 0.13 0.57 0.26 0.383
RGB 0.34 0.47 0.24 0.71 0.32 0.111
RGBCHM 0.27 0.42 0.20 0.67 0.32 0.226
TEXT 0.26 0.42 0.20 0.67 0.32 0.226
TEXTCHM 0.27 0.42 0.20 0.67 0.26 0.100

OA = Overall Accuracy (%), OANull= Null model, p-value describes whether OA is significantly 
different from OANull. Kappa is Cohen’s unweighted Kappa
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Fig. 3 Average overall accuracy with confidence limits based on tenfold cross-validation with five 
repetitions. The stars denote the overall accuracy derived by a null-model. Stars within confidence 
limits signify models that were not significantly better than the null-model and thus do not provide 
credible results. Note the very high range of confidence limits for the infrequent species data set 
(Spinfreq)

Fig. 4 Variable importance of the ten most important image parameters for the three species sub-
sets, i.e. all species (a), frequent species (b) and infrequent species (c). For full names of image 
parameters see Table 2
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and NGRDI occurred in the All and Frequent species subsets. Highest importance 
values were achieved by the RGB indices exG2 and chrR both with 32% and 20% 
for Frequent and All species subsets respectively. In the case of the infrequent spe-
cies, two texture measures appear in the ten most important variables. However, 
their variable importance did not reach values higher than five percent, rendering all 
parameters for the infrequent species redundant.

In summary, the frequent species dataset together with RGB+CHM image 
parameters provided the highest accuracy in the discrimination of tree species, used 
the lowest number of predictors and provided the smallest confidence intervals.

 Discussion

We evaluated the relevance of different parameters derived from very high resolu-
tion RGB-NIR imagery for the discrimination of savannah tree species. We could 
confirm the commonly found pattern that information based on the visual part of the 
spectrum is important for discriminating tree species (Fassnacht et al. 2016). In par-
ticular, we found that RGB-based spectral indices (Meyer and Neto 2008; Rasmussen 
et al. 2016) and simple chromatic coordinates (Woebbecke et al. 1995) in combina-
tion with a canopy height model (CHM) achieved the best results. By contrast, the 
performance of the NIR image parameters was weak and deteriorated when com-
bined with the CHM. Our overall accuracy of 77% (on average, maximum was 0.83) 
is comparable to the results of the recent review of Fassnacht (see Fig. 3 in Fassnacht 
et al. (2016)) who analysed 129 case studies on tree species mapping.

Most case studies have used a combination of hyperspectral and/or LiDAR for 
tree species mapping and have typically achieved overall accuracies of between 75 
and 90%. Of these, three were carried out in southern Africa, all in Kruger National 
Park, and all used hyperspectral image data and height information derived from 
LiDAR sensors. Naidoo et al. (2012) achieved 82% with four hyperspectral indices 
(including NDVI) and height information; whilst Cho et al. (2012) also used hyper-
spectral data but resampled them to seven World View 2 multispectral bands and 
combined them with LiDAR based height information. They achieved OA values of 
between 63 and 81%. Colgan et al. (2012) used LiDAR-based height information 
and BRDF corrected reflectance values for the VIS-NIR region. The bidirectional 
reflectance distribution function (BRDF) is a function describing the change in 
reflectance values due to view angle and sun position during image assessment. The 
BRDF correction improved the hyperspectral information and thus led to OAs of 
between 70 and 78%. Hence, our UAV based tree species discrimination approach, 
requiring only a ≈100$ RGB camera, performed equally well, when compared to 
the technically more sophisticated, and also much more expensive, hyperspectral 
and LiDAR sensors.

VIS-NIR imagery is by far the most commonly used data source for generating 
spectral indices. Pure RGB based spectral information has been used less often in 
remote sensing studies that have focused on the discrimination and mapping  species. 
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In their review on tree species mapping, Fassnacht et al. (2016) also state that the 
VIS region (350–650 nm) contains the most often selected features for tree species 
mapping, without mentioning the relation to RGB. A recent study comparing spec-
tral indices derived from RGB and NIR camera images to multispectral imagery 
(Rasmussen et al. 2016) showed that cheaper RGB / NIR cameras are equal in per-
formance for mapping barley biomass in agricultural fields. Another study (Fischer 
et al. 2012) compared an NDVI calculated from high spectral resolution field spec-
trometer (i.e. ASD Field Spec 3) with an NDVI derived from a modified Olympus 
consumer-grade camera for mapping the spatial variability of NDVI in biotic soil 
crusts; they found strong correlations with R2 of 0.91.

In this study, we found that RGB bands were an important predictor but the least 
important was texture. This is surprising as we thought that texture would have a 
high potential for describing crown properties related to shadow patterning or varia-
tion in greenness. Fassnacht et al. (2016) list several studies that applied texture to 
improve tree species classification by 10–15%. However, using texture also creates 
problems that make its use seem clumsy and time consuming. First of all, the idea of 
texture is a multiscale problem. The relevant scale (i.e., the size of the window in 
which a texture value is calculated) has to be identified empirically. Therefore, dif-
ferent window sizes have to be compared with these usually being 3×3, 5×5, 7×7, 
9×9 and so on. When UAV data volumes are large (>1 GB), this quickly becomes 
unwieldy. Also, with very high resolution images, larger window sizes are needed 
but these slow processing times. Other options such as the offset and the number of 
grey levels considered, provide further opportunities to optimize the results; yet 
leading to a seemingly endless endeavour in finding the right parameter settings. 
Second, different species might require different window sizes. This seems logical 
but is difficult to realize technically. Third, the large number of available texture 
measures makes it difficult to select those that are optimal or most appropriate. This 
is complicated by the typically high correlation between the different texture mea-
sures. In our study, all parameters were kept stable (i.e., a window size of 5×5, offset 
of 1×1 and 16 grey levels). Not testing different settings might explain the poor 
performance of the texture parameters. We also used only a small fraction of the 
available texture measures. Other texture measures related to tree crown shape and 
size could have been considered (Fassnacht et al. 2016). The Orfeo Toolbox provides 
around 40 different texture measures in total. Hence, texture measures derived from 
UAV imagery require more studies on selecting and optimising the best measures 
and optimal window sizes for tree species discrimination or tree crown analyses.

Tree species mapping through remote sensing data can become an efficient tool 
in biodiversity monitoring. However, the nature of biodiversity is that communities 
under study almost always consist of common and rare species (Magurran and 
McGill 2011). The occurrence of rare tree species (rare equal to less than ten indi-
viduals overall) severely affected the potential to classify the whole tree species 
pool. Out of 16 species, seven species were considered as too rare to be used in the 
classification. Another five infrequent species, i.e. with less than 30 tree crowns for 
training and testing, led to poor classification results due to the small amount of 
 training data. However, the infrequent species were impossible to classify correctly, 
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as can be seen from the non-significant or low quality models (Table 2, Fig. 3). Thus 
out of 16 species, only the four frequent species could be classified to acceptable 
levels of accuracy. The pattern that only frequent species can be mapped with suf-
ficient accuracy is confirmed by many other studies (Naidoo et al. 2012; Immitzer 
et al. 2012; Cho et al. 2012; Baldeck et al. 2015). The review of Fassnacht et al. 
(2016) reports the number of species that were classified in the analysed studies 
ranging from two to seventeen with an average of five or six. This finding has impor-
tant implications for future biodiversity monitoring that should be based on tree 
species mapping leading to a complete census. Mapping rare tree and shrub species 
becomes a challenge when too few individuals can be found for training and testing 
a classifier. Thus, in future studies, more emphasis should be put on high quality 
ground truth data gathering an equal number of ground truth tree locations per spe-
cies. In the study of Colgan et al. (2012), three species made up 30% of the land-
scape while the category “other” also had 20% of all occurring tree crowns. Thus, 
rare species can make a large fraction of tree crowns in a savannah but are repre-
sented by a small number of individuals per species. Common trees however, bear 
different challenges. For example, a high genus – species ratio (i.e. where many 
species of the same genus occur as in the genus Acacia or Combretum) means these 
species are sometimes lumped together into a single tree category at genus level 
(Naidoo et  al. 2012). The species abundances in (semi-)natural ecosystems are 
much more complex than in temperate forests and will require special consider-
ations for an operative tree species mapping based on remote sensing imagery.

Although our study was successful in discriminating selected savanna tree spe-
cies with a UAV-borne RGB camera, the limitations of UAVs in comparison to air-
borne or satellite-borne sensors requires discussion. In our case, the largest obstacle 
was the mismatch in the co-registration of NIR and RGB imagery, which had to be 
corrected manually. Better results could be achieved when using multispectral cam-
eras or even lightweight hyperspectral cameras. The spatial mismatch could have 
been the reason why the averaged tree crown parameters were worse for NIR than 
for RGB. Digitization of the tree crowns was also undertaken manually using only 
the RGB imagery. Hence, it is possible that the NIR imagery parameters contained 
a higher shadow fraction or parts of neighbouring tree crowns. Although manual 
digitization seems straightforward, it is also error prone and could be avoided by 
using specifically designed algorithms or software packages, e.g. TIDA (Culvenor, 
2002), JSEG (Kang et al. 2016) or ITCsegment (Dalponte and Coomes 2016). Other 
serious problems connected to light and shadowing effects that can occur when 
using UAV imagery are discussed by Rasmussen et al. (2016). In our study, the dif-
ferent flight directions during the drone overflight affected the brightness pattern. 
Rasmussen et al. (2016) also mentioned that BRDF effects affect the outcome of a 
study when not taken into consideration. These issues, co-registration and changing 
light conditions (including BRDF effects), seem to compromise the utility of UAV 
imagery. Ground control points should be essential for proper image co-registration, 
however, often these require expensive differential-GPS equipment. Further 
improvement of technical equipment or standardized procedures for UAV image 
acquisition should bring remedies in the future.

The Potential of UAV Derived Image Features for Discriminating Savannah Tree Species
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 Conclusions

In this study, we evaluated the relevance of RGB and NIR image products, derived 
from UAV images, for discriminating tree species in a Namibian savannah. We 
found that data acquired in the NIR wavelength region only were not sufficient or 
even necessary, although this conclusion might have been incorrectly drawn because 
of co-registration problems between the NIR and RGB imagery. Permanently 
marked, well-surveyed ground control points therefore need to be planned for future 
image acquisition campaigns. Nevertheless, the OAs achieved with RGB data and 
CHM were comparable to other studies that used more expensive hyperspectral data 
and LiDAR instruments. This indicated that UAVs have a high potential for future 
tree species mapping tasks if areas less than 1 km2 are to be monitored. However, 
the number of species that can be mapped or discriminated seems independent of 
the sensor type. The assumption is that hyperspectral data theoretically can outper-
form RGB-NIR data when a large number of species are present. However, for the 
process of training a classifier, such as a Random Forest, the number of training 
polygons needs to be at least 30 in order to achieve sufficient and acceptable accura-
cies. This seems not feasible when rare species (i.e., less than ten individuals per 
square kilometre) are present. Hence, a significant future challenge is the task of 
mapping species with low abundances.

 Practical Application for Nature Conservation

This chapter dealt with the application of UAV-borne consumer grade cameras for 
discriminating savannah tree species and has several important messages for practi-
cal applications in nature conservation. Firstly, the delta-wing UAV that we employed, 
the eBee system (SenseFly 2015), is capable of capturing an area of 1 km2 during a 
single flight when the desired resolution is a 5 cm pixel size or greater. Smaller pixel 
sizes, e.g. 2 cm, can only be achieved in several flights (four to five). However, this 
this also doubles the disk space required for storing the imagery. Affordable quad-
copter systems cannot usually cover 1 km2 in a single flight. Secondly, we showed 
that tree species discrimination based solely on RGB + Canopy Height is possible, 
suggesting that a second flight with a NIR camera is potentially unnecessary. 
However, we need more studies comparing RGB based spectral indices to NIR based 
spectral indices in order to see whether RGB can replace NIR indices in the future. 
Finally, we found that ground truthing should take the abundance or frequency of the 
species into consideration. We suggest using a minimum of 50 individuals per spe-
cies for training purposes in order to be successfully mapped. Species from the same 
genus, e.g. the different Acacia species in our study, often share similar spectral 
properties and thus are very difficult to distinguish. One alternative is to map these at 
the genus level, if it is not the users demand to produce species specific map. In con-
clusion, we have shown that using UAVs to map the individual stems of tree species 
could be a cheap and very flexible tool for nature conservation in the near future.
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Abstract Five species of large carnivore are the main focus of interest in Sweden 
when it comes to the conservation of biological diversity, ecosystem completeness, 
and the traditional herding of reindeer (Rangifer tarandus) by indigenous Sámi 
people. Successful work with the wolf (Canis lupus), brown bear (Ursus arctos), 
lynx (Lynx lynx), wolverine (Gulo gulo) and golden eagle (Aquila chrysaetos) 
necessitates good knowledge of their numbers, distribution and population dynam-
ics as well as their effects on prey species and the reindeer herding economy. 
However, large carnivores are relatively few, elusive, wide ranging and secretive, 
and therefore notoriously hard to observe. Hence, collecting standardized data of 
sufficient quality and quantity is a challenge for both research and management. In 
this chapter, we describe how this challenge is being met in Sweden.

We define remote sensing as observing and measuring from a distance, and dif-
ferent approaches for remote sensing of carnivores are used in Sweden. These 
include non-invasive methods such as DNA-sampling and snow tracking, partly 
invasive methods such as automatic cameras, and highly invasive methods such as 
tagging with biotelemetry sensors. Attitude surveys are used to monitor public opin-
ions about carnivores and their management. We also present infrastructure solu-
tions (Rovbase, UC-WRAM) for handling the wealth of data that are acquired 
through remote sensing of carnivores in Sweden.
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 Introduction

In many areas of research and conservation, remote sensing is seen as a tool for 
finding appropriate habitat and to define its extent and quality in order to make pre-
dictions on species occurrence and population size (Neumann et al. 2015). When it 
comes to carnivores, the opposite is often true, and remote sensing results on indi-
vidual distribution, movement and activity are used to infer distribution, extent and 
quality of the species’ habitat (e.g. Lande et al. 2003; Dahl et al. 2015).

Five species of large carnivore are the focus of interest in Sweden with respect to 
the conservation of biological diversity, ecosystem completeness, and the traditional 
herding of reindeer (Rangifer tarandus) by indigenous Sámi people (Schneider 
2006a). To undertake successful work with wolf (Canis lupus), brown bear (Ursus 
arctos), lynx (Lynx lynx), wolverine (Gulo gulo) and golden eagle (Aquila chrysae-
tos) requires good knowledge of their numbers, distribution and population dynam-
ics as well as their effects on prey species and the reindeer herding economy. 
However, large carnivores are relatively few, elusive, wide ranging and secretive, 
and therefore notoriously hard to observe. Catching and handling them may also be 
difficult and dangerous. Collecting standardized data of sufficient quality and quan-
tity is therefore a challenge for both research and management.

We define remote sensing as observing and measuring from a distance, where 
distance can occur both in space and time. Several approaches are used to remotely 
sense large carnivores in Sweden. These include non-invasive methods such as 
DNA-sampling and snow tracking, partly invasive methods such as automatic cam-
eras, and highly invasive methods such as tagging with biotelemetry sensors. In the 
following sections, we describe the system that is used for the surveillance and 
monitoring of the five carnivore species in Sweden. As carnivore management aims 
at a population-level management of the species in Scandinavia  (Linnell et  al. 
2008), a similar system is used in Norway.

 A Compensation System for Reindeer

In the northern half of Sweden, as in the northern parts of Norway and Finland, 
year-round free-ranging, semi-domestic reindeer are herded by Sámi pastoralists. 
During the twentieth century, the size of the reindeer population in Sweden has been 
cyclic on a 30 year basis and it has been fluctuating between ca 150,000 and 300,000 
animals. In recent years, the population size has been about 250,000 animals 
(Sametinget and Naturvårdsverket 2013).

All five species of large carnivore in Sweden predate on reindeer to some extent. 
An estimated 19,500–72,500 reindeer are killed by large carnivores each year 
(Sametinget and Naturvårdsverket 2013). Predation on reindeer by large carnivores 
can have a negative effect on the livelihood of herders (Hobbs et  al. 2012), and 
compensation payments are made to mitigate these effects. Yearly payments from 
the Swedish state to the reindeer herders averaged about 5 million Euros annually 
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for the period 2010–2014 (statistics from the Sami Parliament, Sametinget). As 
dead reindeer are hard to find in the woods and mountains and it is difficult for 
reindeer herders to prove their losses so, in 1996, a new compensation system was 
launched. Since then, County Administrations (i.e. the regional governments that 
are responsible for the management of large carnivores, among other 
things  (Sandström and Lindvall 2006)) have the obligation to count carnivores 
instead, and compensation is payed based on the number of carnivores and their 
potential effects on reindeer, rather than on proven losses (Schneider 2012).

The Swedish compensation system has been evaluated scientifically and it has 
been found to be effective in supporting the conservation of large carnivores and in 
helping to mitigate their negative effects on reindeer herding (Zabel et  al. 2010; 
Persson et  al. 2015). The Swedish system is an example of conservation perfor-
mance payments, which are a type of payment for environmental services (Zabel 
and Holm-Müller 2008; Zabel and Engel n.d.). In this case, reindeer herders are 
paid to conserve carnivores, instead of hunting them in retaliation or as precaution 
to protect reindeer. Performance payments are tied to quantitatively measureable 
indicators of conservation outcomes, here being the number of carnivores that are 
present on reindeer grazing grounds. In order to collect unbiased measures of carni-
vore numbers, County Administrations (as independent parties) do the surveillance.

The approaches to carnivore management in Sweden and Norway are quite dif-
ferent, but the two countries share common populations of the species. Consequently, 
Sweden and Norway recently launched a joint system for the monitoring of the 
trans-border populations of brown bear, wolf, wolverine and lynx. A process for 
developing a joint system for golden eagles started in 2015 and should be opera-
tional from 2019. The advantages of a joint system are many: comparable results 
between countries and between years, regular estimations of carnivore population 
sizes at regional, national and Scandinavian levels, updated maps of species distri-
bution, involvement of stakeholders in carnivore management, and a well-informed 
public due to great media interest in carnivore issues.

Each County Administration is responsible for being well-informed about carni-
vore numbers and distribution, and about problems caused by the predators. For this 
purpose, specially trained wildlife rangers are employed who mostly work in the 
field. In co-operation with reindeer herders, hunters and ornithologists, they survey 
the populations of carnivores. Large carnivores are surveyed according to the rules 
and guidelines issued by the Swedish Environmental Protection Agency and the 
Sami Parliament (links to relevant publications (in Swedish) are listed at www.
naturvardsverket.se).

 Research, Monitoring and Management

Humans have always been interested in large carnivores, primarily because these 
animals can be dangerous to them, but also because they can be a threat to livestock, 
or because the strength, agility and beauty of predators fascinates and inspires 
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human fantasy. In former times, a good knowledge of carnivores was important to 
be able to exterminate them; today, we need good knowledge in order to be able to 
protect these species, which is demanded by EU-legislation.

Research on large carnivores has a long tradition in Scandinavia. The era of 
effective and scientifically sound projects began in 1984, when the Scandinavian 
Brown Bear Research Project was started. This became one of the most successful 
long-term research projects on carnivores worldwide (www.bearproject.info). A 
Swedish research project on lynx started in 1993 and, since 2005, there has been 
formalized cooperation with Norway within Scandlynx, the Scandinavian Lynx 
Project (http://scandlynx.nina.no/). The Swedish Wolverine Project was started in 
1993 with the aim of providing a sound knowledge of wolverine ecology to facili-
tate science-based management and conservation of wolverines in Scandinavia 
(www.wolverineproject.se). The Scandinavian Wolf Research Project SKANDULV 
was established in 1999 (www.slu.se/skandulv/) and has since then increased 
our understanding of wolf ecology in Scandinavia tremendously. The youngest 
member in this suite of projects is the Swedish Golden Eagle Research Project 
(www.goldeneaglesweden.com). This was started in 2010 to investigate the effects 
of wind farms on golden eagles, but since then, the scope of the project has been 
broadened.

The management of large carnivores in Sweden is, as far as possible, based on 
scientific knowledge. Much of this knowledge originates in the five research proj-
ects mentioned above. The management authorities ask for specific information 
and, at least in part, fund research to produce it. The research projects conduct basic 
as well as applied research. Applied research often is reactive, answering the ques-
tions that management has put forward. Basic research is more pro-active, produc-
ing information and methods that management might find useful in the future. With 
respect to surveillance, research findings can enhance survey performance by mak-
ing possible higher spatial and temporal resolutions, by increasing accuracy, or by 
testing and suggesting entirely novel methods. Then, the monitoring system uses the 
results from surveillance to inform management, in order to reach the adaptive, 
continuously improving management system that is the goal (see Fig. 1).

 Methods for Surveillance

Several different methods are used for the surveillance of large carnivores in Sweden 
(Table 1). Many of them focus on family groups, i.e. females with young. As family 
groups are often more easily found than single individuals, they are more easily 
counted, and they can be used as an indicator of the dynamics of the whole popula-
tion in a given area.

Snow-tracking during winter is the main method used to follow the lynx popula-
tion and to track wolves; both packs and dispersing individuals. Also, for these two 
species, we use biotelemetry sensor tags to GPS-track individual animals to some 
extent (e.g. Liberg et al. 2012). Wolverines are surveyed by looking for and visiting 
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den sites during spring. If encountered during tracking, hair, blood and excrement 
of the three species are sampled for DNA-analysis. The bear population is censused 
by direct observations during the moose (Alces alces) hunting season in autumn and 
by DNA-analyses of droppings. The population of Golden eagles is tracked by 
annual nest surveys, though DNA-analysis is increasingly used for this species too. 
Also biotelemetry backpacks with GPS-sensors are used to track the movement of 
individual birds in near real-time. Aerial surveys are conducted to some extent. 
Finally, attitude surveys are conducted regularly to measure and to track changes in 
attitudes towards large carnivores and large carnivore management (Schneider 2012).

Monitoring

Research

Management
Surveillance

Funding
Asking questions

BasicApplied

Enhancing
survey 

performance

Informing

Fig. 1 A schematic view of the interplay of research, surveillance and monitoring, and manage-
ment with respect to large carnivores in Sweden

Table 1 Many different methods are used during the surveillance of large carnivores in Sweden 
today

Brown 
bear Wolf Wolverine Lynx Golden eagle

Snow tracking XXX XX XXX
Nest or den survey XX XXX
DNA XXX XX XX X X
Biotelemetry tags X X X X X
Automatic cameras XXX XX
Aerial surveys X X X
Reports from moose hunters XX X X
Reports from the public X X
Attitude surveys X X X X

X = used to some extent; XX = important method; XXX = very important method

A Toolbox for Remotely Monitoring Large Carnivores in Sweden



208

 Snow Tracking

Large carnivores move over huge areas almost every day and therefore, in winter, 
they leave tracks in the snow. Tracks reveal where carnivores move, what they do 
and how many they are. Often, it is also possible to determine the sex of an animal 
and, sometimes, its age (Aronson 2011).

Snow tracking is intensively used when surveying wolves, wolverines and lynx 
in northern Sweden. Bears hibernate and, therefore, they leave very few tracks in the 
snow. A pre-requisite for the method is a lasting snow cover, which makes it less 
suitable in more southerly parts of Sweden or in warmer countries.

Snow tracking is central for the monitoring of the lynx population (Fig. 2). The 
survey season for lynx lasts from October until the end of February, if snow cover 
is  sufficient. Experienced and well-trained wildlife rangers from County 
Administrations search for tracks of lynx, using snow mobiles or even helicopters 
under certain circumstances. Also, reports from reindeer herders, hunters or the 
general public are collected and followed up in the field.

In areas with reproducing lynx populations, only family groups are counted, i.e. 
females with their young from last spring, which remain together until the onset of 
the following mating season in March. Neighboring family groups are separated in 
the field by tracking, or later on by applying spatio-temporal distance rules, which 
are based on results from research on the mobility and home range usage of lynx 
(Gervasi et al. 2013). From the number of family groups found during the survey, 
the total number of individuals in the population can be inferred (Andrén et  al. 
2002). In areas where lynx do not reproduce, single individuals are also tracked and 

Fig. 2 A typical print from the right front paw of a lynx. The scale is in centimeters (Photo: 
Michael Schneider, April 2012)
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it is determined if the species occurs regularly or temporarily only. Among other 
things, this information is important for the compensation system, where reindeer 
herders get paid for the occurrence of large carnivores on their grazing grounds.

In central Sweden, where most of the Swedish wolves occur, snow tracking is an 
important method for keeping track of the wolf population. Every winter, County 
Administrations use this method to count the number of wolf packs and, if possible, 
the number of individuals in each pack, and to determine if reproduction occurred 
in any given territory the previous spring. The number of newly established territo-
rial pairs is also determined (Liberg et al. 2012).

 Nest and Den Surveys

Reproducing females are also the center of interest during wolverine surveys, which 
last from March until the snow disappears in May to July, depending on the area. 
Wolverines use dens in the snow to give birth to their young. Females can use the 
same den site year after year, and good den sites may be used by consecutive females 
under a long period of time. Wolverine surveys have been conducted since 1996 in 
northern Sweden and the County Administrations have accumulated a good knowl-
edge of important sites. This makes it possible to target these sites and to focus 
survey activities there. The objectives of survey activities at natal dens are to find 
out initially if the site is occupied and, if so, where the den is located, if there are 
young in the den, and how many. At the same time, the female should not be dis-
turbed. Snow tracking, direct observation from a distance, collection of samples for 
DNA-analysis and automatic cameras are used at den sites to accomplish this 
(Schneider 2006b). Sites where it is unclear if reproduction has occurred can even 
be visited after snowmelt, when the wolverines have left, to look for signs of repro-
duction (juvenile hair, bite marks, prey remains, well-used trails etc.). Often, heli-
copters are used to effectively reach these usually remote places.

Even more so than wolverines, golden eagles can use the same place year after 
year for rearing their young. Sites can be used by eagles for several decades and 
ornithologists accumulate knowledge of where nests are, how often they are used, 
and what quality a given site has. Each territory, in some cases with multiple nest 
sites, of golden eagles has to be visited every year to find out if birds are present, if 
they breed, and if breeding is successful, i.e. if the young survive until they leave the 
nest (Ekenstedt and Schneider 2008). Survey activities include direct observation of 
displaying birds from a distance in the beginning of the breeding season, closer- 
range nest observation during the season, as well as banding of young eagles and 
taking samples for DNA-analysis at the end of the season. In remote areas in north-
ern Sweden, helicopters can be used as an effective means to survey known eagle 
territories. Several nests can be visited within a single day and the view from above 
renders information about the number and age of the young.
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 Sampling and Analysing DNA

DNA-based methods are of ever-increasing importance for large carnivore surveys. 
For the brown bear, it is the most important method in Sweden for counting the 
numbers of individuals that are encountered in a given area, which is then used to 
estimate the total population size (Kindberg 2010). Brown bear DNA surveys are 
usually undertaken intermittently in the counties. Management authorities provide 
sampling material and ask volunteers, most of which are hunters, to collect samples 
of bear droppings that they find in the autumn and to send them in (Fig. 3). The 
results include regular estimates of bear population size at regional and national 
levels, updated maps of bear distribution, involvement of stakeholders in bear man-
agement and a well-informed public due to a multitude of media reports when scat 
sampling is started and when the outcomes are presented (Schneider 2006c).

DNA-based methods are also important for the wolf (Liberg et al. 2012; Åkesson 
2017). The Scandinavian wolf population is small and it is affected by inbreeding. 
Therefore, it is possible, and necessary for wolf management, to keep track of the 
degree of inbreeding in the different wolf packs. Also, regular sampling of material 
(droppings, urine, blood etc.) makes it possible to identify immigrant individuals 
and their offspring and to adapt wolf management in order to protect these impor-
tant individuals (e.g. Åkesson and Svensson 2015). This is especially important in 
northern Sweden, where many wolves are killed because of their possible negative 
impact on reindeer herding.

The importance of DNA-techniques has also increased during recent years with 
respect to wolverine surveillance. Accumulated results from several years make it 
possible to reconstruct the home ranges of individuals as well as the age of the animals. 

Fig. 3 Droppings from a 
brown bear, containing 
DNA which is used to 
survey bear populations 
(Photo: Michael Schneider, 
June 2006)
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They also make it possible to look at the spatial dynamics of the population and the 
dispersal of individuals and, in certain cases, to infer reproductive success where it 
could not been proven with other methods.

 DNA-Data and Wolf Monitoring: A Case Study
The genetic situation of the wolf population in Scandinavia is an important 
issue for the management of the species in Sweden. The population is inbred 
and in great need of immigrating wolves from Finland and Russia, which 
diversify the Scandinavian gene pool once they reproduce. Therefore, the col-
lection of samples for DNA-analysis is an important part in the monitoring of 
the wolf population in Sweden. However, DNA-information supports wolf 
monitoring in several ways.

Samples are collected by professional wildlife trackers mostly during 
snow tracking in winter, when they follow wolf packs, territorial pairs or, in 
the reindeer herding area, even single animals. Samples are also taken at ren-
dez-vous sites of family groups and in places where wolves have attacked 
livestock. Trackers collect faeces, urine, blood, hair and saliva when they 
encounter such material and send samples of it to Grimsö Research Station in 
central Sweden, which is part of the Swedish University of Agricultural 
Sciences. There, samples are sorted according to their priority; emergency 
samples (e.g. samples from the reindeer herding area or from possible immi-
grants) are analysed within five working days, while the analysis of samples 
of normal priority takes some weeks, and some low-priority samples are not 
processed at all. Currently, more than 2000 wolf samples are collected and 
about 1200 of them are analysed each year (e.g. Åkesson 2017). This figure 
includes even tissue samples from wolves that are found dead or that have 
been killed by anthropogenic causes (traffic, hunting, illegal killing). On aver-
age, about 50 dead wolves per year are examined by the National Veterinary 
Institute in Sweden (e.g. Meijer and Ågren 2017).

In the first step of the analysis, DNA is extracted from the sample and puri-
fied with different methods, depending on the material provided in the sam-
ple. The next step is a polymerase chain reaction (PCR) process where the 
DNA is amplified. In total, 30 autosomal microsatellites are looked at, plus 
two markers for sex determination and five markers on mitochondrial 
DNA. The different alleles of the microsatellite markers are then separated 
and visualised by electrophoresis. Different genotypes (wolf individuals) are 
defined by their individual variation of their alleles of the different markers.

Currently, a new method is being tested at the laboratory in Grimsö. Instead 
of microsatellites, this method uses markers for single nucleotid polymor-
phism (SNP- markers). The method is supposed to be faster, cheaper and less 
prone to analytical error. It has successfully been used for bears in Sweden 
and is currently being developed for golden eagles as well.

(continued)
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 Tagging with Biotelemetry Sensors

The use of biotelemetry sensors mounted on tags, e.g. neck collars or backpacks, 
sometimes also referred to as ‘radio tagging’, is not a method that is primarily used 
for the purpose of surveilling large carnivores. However, the biotelemetry tags 
incorporating GPS-sensors for tracking during research projects can produce results 
of the utmost importance for both the surveillance and management of large 
carnivores.

The objective of the analyses is to determine species, origin and sex of 
each sample and to find out if the individual already is known from other 
samples. These DNA-results are important as they help managers to assess 
the status of stationary wolves, to identify territorial individuals, to separate 
neighbouring territories and to confirm reproduction. They tell managers 
where individual wolves come from and they enable county administrations 
to follow the route of migrating wolves when their DNA is found in different 
places. Genetically important wolves that have immigrated from the east can 
be identified and subsequently protected from legal hunting or illegal activi-
ties. DNA-results have also made it possible to construct an almost complete 
pedigree of the Scandinavian wolf population, which gives us information on 
the degree of inbreeding in all wolf territories and in the population as a 
whole, telling us how severe the genetic situation is and how many immigrat-
ing wolves from the east are needed.

Currently, DNA-sampling is being intensified in order to get better back-
ground information on the structure of the wolf population. This information 
is needed to test a recently developed new conversion factor that can be used 
to translate the number of wolf packs (which are counted during the annual 
survey) to the total number of wolf individuals (single wolves are surveyed in 
northern Sweden only) in the population. Information on the number of indi-
viduals is important for understanding the population dynamics of the spe-
cies, for setting hunting quotas, for comparing population size with objectives 
that have been set, for reporting to the European Union within the framework 
of the EU Habitats Directive, and for the communication between managers, 
media and the public.

With respect to golden eagles, methods for surveillance based on DNA are cur-
rently being tested and new methods have been developed. In the future, DNA- 
based results will give us insights into the turnover of individuals at breeding sites 
and parenthood of the birds present, as well as the size of the home range and shape 
of the territory. All of this will contribute to a better understanding of the golden 
eagle population size and dynamics as well as habitat quality and the frequency of 
illegal killing.
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Results from GPS-tracked lynx have very much increased our understanding of 
home range sizes and the animals’ movement within their ranges in different parts 
of Scandinavia. These results are reflected in the spatio-temporal distance rules that 
are applied when the number of family groups is determined during annual lynx 
surveys (Gervasi et al. 2013).

Results from GPS-telemetry collars on wolves are regularly used to determine 
which parts of the reindeer herding area these wolves have visited and for how long 
they stayed in each part (Fig. 4). This is important information for the compensation 
system. Also, an early warning system for hunters and reindeer herders 
(‘Vargwebben’) has been developed (Schneider 2008a), where near-real-time GPS- 
locations from collars on wolves are automatically transferred to a site on the 
Internet (http://webmap.slu.se/website/vargwebb). On this site, each 10 × 10 km2 
which contains the latest position of one or more collared wolves is highlighted on 
the map, so that people can avoid the actual area or so that herders can take care of 
their livestock when a wolf approaches. In order to avoid illegal killing, the location 
of the 10 × 10 km2 containing the wolves is provided rather than the actual location 
of the animals. The date and time of the observation is also provided. This system, 
of course, depends on the presence of wolves with radio collars. In recent years, the 
number of tagged wolves has been decreasing, due to a shortage of funding for wolf 
research: currently there are very few wolves with radio collars.

A project on the predation of reindeer calves by brown bears has produced 
results that are important for a future compensation system that better reflects the 
damage done by bears. A sophisticated system consisting of biotelemetry collars 

Fig. 4 The wolf Bullmarksvargen, who was the catalyst for the development of Vargwebben. See 
text for further explanations (Photo: Michael Schneider, March 2007)
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on bears and female reindeer that communicated with each other made this possible 
(Karlsson et al. 2012).

GPS-equipped biotelemetry backpacks on golden eagles have also given impor-
tant insights into home range sizes, home range use over time, dispersal of juve-
niles, and adult seasonal migrations. They also have supplied information on the 
birds’ susceptibility to wind power plants and the mortality of eagles in general 
(Singh et al. 2017).

 Automatic Cameras

Today, automatic cameras are used widely, both in research and wildlife manage-
ment as well as by the public. In wolverine surveillance, automatic cameras are 
employed by County Administrations in Sweden to determine the occurrence and 
number of young animals at the dens in a relatively non-invasive way (Fig. 5). These 
cameras are also used to take photographs of the bellies of wolverines at feedings 
stations, in order to identify lactating females, which are the focus of the surveys.

In the surveillance of golden eagles, automatic cameras are used to get back-
ground information regarding the development of the plumage of young birds and 
to aid age determination. Cameras have also given interesting insights into prey 
choice and predation rates of the birds. They have also contributed to the under-
standing of breeding success and illegal activities of humans at nest sites.

Winters are getting increasingly warmer in Scandinavia and the snow cover is 
becoming more unpredictable. Therefore, in many areas, snow tracking can no 
longer be used as the main method for surveying lynx. Currently, a method is being 

Fig. 5 A female wolverine moving her cub out of the den (Photo: One of the County 
Administration’s automatic cameras in Västerbotten County, March 2015)
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developed where automatic cameras are used instead (Odden 2015). Whole family 
groups can be captured by the cameras and, due to individual color patterns, indi-
viduals can be identified on photographs. In this way, the number of family groups 
and total population size can be inferred from photographs.

 Aerial Surveys

When conditions are right in northern Sweden (sunny, calm weather and lots of 
snow on the ground), helicopters are sometimes used to search for tracks of lynx 
and wolverines. The results from these aerial surveys are then used as a starting 
point for a more thorough, ground-based work. Helicopters are also used as an 
effective means of transportation, when remote den sites of wolverines have to be 
visited after the snowmelt and when the animals have left. These visits have to be 
made when it is unclear at the end of the survey season if reproduction has occurred 
at a site.

In remote areas in northern Sweden where golden eagles are abundant but roads 
are scarce, helicopters can be used as an effective means to survey known eagle ter-
ritories. However, new territories and nests cannot effectively be searched for from 
helicopters, which is why airborne surveys have to be augmented by ground-based 
activities. In Finland, the use of helicopters is the main method for surveying golden 
eagles and in 2016 almost 500 territories were visited in this way (Ollila 2016).

There have been ideas of using drones in the surveillance of both golden eagles 
and wolverines. However, the current legislation surrounding the usage of drones, 
and filming and photographing from the air, is very restrictive in Sweden. 
Furthermore, territorial golden eagles can show aggressive behavior towards 
approaching flying objects, which may result in collisions (Ahlgren 2015). 
Therefore, currently drones are not used when surveying large carnivores in Sweden.

 Reports from Moose Hunters

Every autumn, thousands of hunters spend days and weeks in the Swedish forests to 
participate in moose hunting. Around 100,000 moose are killed in Sweden during 
the hunting season each year. For many people, moose hunting is an important rec-
reational activity, and a means of acquiring most of the meat for their domestic 
cooking during the year to come. Most of the hunters are organized in hunting par-
ties, i.e. groups of people hunting together in an area which they own or lease 
(Schneider 2012).

Hunting parties are asked to keep track of bear sightings during moose hunting 
and to report their results to the Swedish Hunters’ Association (Kindberg et  al. 
2009). There, the results are compiled for the whole country and an annual index of 
bear sightings per observation effort is published for every bear county. The ‘sight-
ability’ of bears is different in different areas and at different times. Therefore, this 
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bear observation index in itself does not tell us very much about the exact number 
of bears in the woods, but it indicates the dynamics of the bear population in a given 
area over time. Together with results from dropping surveys, trends from observa-
tion indices can be used to estimate bear population size in the counties in different 
years (Kindberg 2010).

 Reports from the Public

Citizen science, the collection of scientific data by members of the public on a vol-
untary basis, has many advantages. Data collection is relatively cheap, interested 
individuals have the possibility to participate in what they feel is important, and 
science and the public get a common knowledge base. It is a goal of the large carni-
vore management system in both Norway and Sweden to include the public in the 
survey of large carnivores.

In Sweden, the importance of the general public as rapporteurs increases from 
the north to the south. In the north, there are fewer reports from the public as fewer 
people live there. However, as there is snow cover for longer in the north it is pos-
sible for professional trackers to work effectively and successfully. Furthermore, the 
compensation system for reindeer herders demands that any observation of large 
carnivores has to be checked and verified by County Administration field personal 
in order for compensation payments to be made. Also in the north, public reports of 
lynx family groups and of wolves play an important part in the surveillance of these 
species.

The public, at least the part interested in hunting, is an important player when it 
comes to the surveillance of brown bears. Bear dropping surveys depend largely on 
samples collected by the public and bear observation indices are similarly based on 
bear sightings reported by the public.

Most golden eagle surveillance is undertaken by ornithologists. It is debatable if 
these people still can be looked upon as “the public”, as many of them are specially 
trained and have huge experience in the field. However, most of their work is carried 
out on a voluntary basis.

In order to make it easier for the public to report their sightings of carnivores, an 
internet site has been launched where observations can be reported (www.skandobs.se). 
Also, an application has been developed for mobile phones, which can be used for 
reporting directly in the field.

 Attitude Surveys

Among other things, human attitudes depend on the levels of predator damage to 
dogs, livestock, reindeer and game animals, on actual or perceived threats to 
humans, and on local levels of involvement during decision making. Many people 
have strong feelings towards large carnivores. These feelings may be positive or 
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negative and may encompass anything from hatred to love, from deep fear to enthu-
siastic sympathy. Often, it is not the predators per se that are the problem, more an 
underlying conflict between a central administrative institution and the countryside 
community, a conflict that may exist at several scales. All of these feelings and atti-
tudes have to be taken seriously when managing large carnivores (Schneider 2008b).

A multitude of attitude surveys regarding large carnivores has been conducted in 
Sweden. Since 2004, these surveys are carried out at a large scale every 5 years, 
encompassing the northern half of the country and treating all species of large car-
nivore except golden eagles (Ericsson and Sandström 2005; Ericsson et al. 2010). 
Although the results from these surveys show that an overwhelming majority of the 
people is supportive of both carnivores and their current management, many of 
those who live closest to the carnivores have a more negative attitude. Over time, 
people’s support for large carnivores and large carnivore management has been 
decreasing. This is true especially for wolves and bears (Sandström and Ericsson 
2009; Sandström et  al. 2014). These are important findings for the management 
system, as negative attitudes may be implemented in an illegal killing, which not 
only threatens carnivore survival but also threatens the fulfillment of regional and 
national objectives as well as international treaties and directives.

 Handling Loads of Data

 The Scandinavian Carnivore Database Rovbase

Surveillance data on large carnivores are collected by many different players in 
many places and in many different ways. In Sweden, the data collectors include 
wildlife rangers and ornithologists in the field, indoor-personnel at County 
Administrations, DNA-laboratories, the Swedish Veterinary Institute, and the 
Swedish Wildlife Damage Centre. The internet-based database ‘Rovbase’ is used to 
help smooth the reporting of all these data.

Rovbase was developed by the Norwegian Environment Agency 
(Miljødirektoratet). Initially it was restricted to Norway, whereas today Rovbase is 
used in both Norway and Sweden and increasingly in Denmark. Currently (February 
2017), Rovbase has about 200,000 records from Sweden, and approximately 20,000 
new data points are added each year. Rovbase is also used to store, to visualize, and 
to make large carnivore data available for inspection, for completion if necessary, 
and for further analysis.

As parts of the data in Rovbase are classified information (nests of golden eagles, 
dens of wolverines etc.), access to the database is restricted. Only personnel actively 
involved with the monitoring or management of large carnivores is granted access. 
However, to satisfy the broader interest of the public, an open version of the data-
base (www.rovbase.se) is available for anyone interested in carnivores. This open 
version of Rovbase is also used to give feedback to people who have reported obser-
vations of carnivores or who have participated in bear dropping surveys and col-
lected fecal samples (Schneider 2015).
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Bear observations that are made by moose hunters in the autumn are not reported 
in Rovbase: the Swedish Hunters’ Association has its own routines and methods for 
processing and publishing these data. Similarly, Rovbase is not used to store data 
from carnivore research. Rovbase data can, however, be used for subsequent research.

 The Wireless Remote Animal Monitoring Database 
E-Infrastructure

Data from research projects and data from large carnivores that are acquired by 
using biotelemetry sensors are not stored in Rovbase. The wealth of data that origi-
nates from these sources is handled in another e-infrastructure solution, the Wireless 
Remote Animal Monitoring (WRAM), which is an instrument for automatic recep-
tion, long-time storage, sharing and analyzing of biotelemetry sensor data from ani-
mals (Dettki et al. 2014). It has been developed and operated as the national Swedish 
e-infrastructure for biotelemetry data from both research and environmental moni-
toring programs by the Umeå Center for Wireless Remote Animal Monitoring 
(UC-WRAM) at the Swedish University of Agricultural Sciences (SLU) in Umeå.

During the last 40 years, in Sweden and other countries, radio collars, fish tags, 
and other telemetry equipment have been used to track fish and wildlife. The equip-
ment used most often relied on traditional radio-telemetry techniques using 
‘Very High Frequency’ (VHF) or ‘Ultra High Frequency’ (UHF) radio collars. 
These techniques are labor intensive and result in a relatively low numbers of 
positions per individual.

In recent years, Global Positioning System (GPS) telemetry collars and auto-
mated telemetry equipment have been used to an ever increasing extent. Due to the 
automated fashion of data gathering and storage as well as improved battery life-
time of the equipment, the average cost per position is shrinking, resulting in large 
datasets being collected per animal studied. Furthermore, additional biosensors can 
be integrated in the same collar, measuring, for example, activity of the animal, 
body temperature, heart beat or proximity to other sensors.

Due to the huge amount of data available, single research groups are often no 
longer able to analyze their data in a timely fashion and they want to share their data 
with similar research projects to obtain synergy effects and to open up for new fields 
of research. Thus, the WRAM database e-infrastructure has been developed to 
enable present and future national and international cooperation by connecting 
together WRAMs own database with similar national and international data reposi-
tories for biotelemetry data, as e.g. German-US ‘Movebank’, Italian ‘EuroDeer’, or 
Norwegian ‘Dyreposisjoner’. The objective is to provide an open database network 
which is independent of location or the platform used, and which is used to store, 
share, secure and analyze data from wireless remote animal monitoring. The data-
base is accessible to all participating researchers and research groups and features 
a web portal used to select, visualize, and access raw data, together with simple 
spatial analysis tools and statistical tools. Currently (May 2017) the database 
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contains approximately 186 million records from real-time biotelemetry sensors 
and is used to date by 38 user groups from eight countries, monitoring more than 24 
species and 2892 individual animals (www.slu.se/wram). One recent user is the 
Sami Parliament, who decided to use WRAM for handling biotelemetry data col-
lected from reindeer in Sweden.

 Geodata and Their Integration with Tracking Data

In Sweden, most geodata are easily available to anyone who wants to use them. 
These open geodata may be accessed, used and published free of charge and they 
are available in a machine-readable interface. Lantmäteriet (www.lantmateriet.se), 
the National Land Survey of Sweden, carries out aerial photography and airborne 
laser scanning as well as land surveys. They also ensure that companies, authorities 
and the public have access to the information, e.g. in the form of maps and images. 
When it comes to carnivore monitoring, useful information on e.g. topography, 
elevation and vegetation cover can be downloaded from their site (Lantmäteriet 2017).

The satellite database Saccess contains satellite images of Sweden that cover 
every decade from the 1970s onwards, and every year since 2007. The nationwide 
data sets consist of optical multispectral data from satellites with a spatial resolution 
of 10–30 m (except MSS data from 1970 that have 80-meter resolution). The infor-
mation is easily accessible via the Internet and is available free of charge, due to 
special government funding. Different satellites and different sensors have been 
used through the decades. For 2015 e.g., satellite information is available based on 
IRS-P6 (© ANTRIX, SI, Euromap Neustrelitz) and Landsat 8 (USGS/NASA Landsat, 
Processing Metria AB) (Lantmäteriet 2017).

Users of Rovbase usually do not have to care very much about geodata, as these 
are automatically included when maps are produced. The database contains cached 
maps (images) that are activated depending on the level of zooming. These images 
are supplied by Metria (www.metria.se) and they build on vector-data from 
Lantmäteriet, who also deliver the Swedish aerial photographs that are available in 
Rovbase. The map of Scandinavia in Rovbase is delivered by Statens Kartverk 
(www.statenskartverk.no), the Norwegian Mapping Authority, which also supplies 
maps and aerial photos for Norwegian users.

The Wireless Remote Animal Monitoring (WRAM) database e-infrastructure 
includes a web portal which can be used to select, visualize, and access raw data, 
together with simple spatial analysis tools and statistical tools. Currently, this portal 
uses geodata information from Lantmäteriet for its background maps, as e.g. in 
Vargwebben, but a transition to Google Maps is currently contemplated. In many 
cases, users of WRAM will apply their own GIS-solution within their research proj-
ects for further analyses. How an integration of GPS tracking data and remotely 
acquired environmental data can be accomplished in order to look at habitat usage, 
has been presented by e.g. Rauset et  al. (2012) for lynx and wolverine and by 
Nellemann et al. (2007) for brown bears.

A Toolbox for Remotely Monitoring Large Carnivores in Sweden
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 Summarizing Conclusions

Sweden has an elaborate system for the surveillance, monitoring and management 
of large carnivores, in part because it is demanded by the compensation system for 
reindeer herding. As Sweden has five different species of carnivores to deal with in 
landscapes which differ in climate, topography, vegetation, human population 
density and infrastructure, a whole battery of different methods has to be used. 
Cooperation with Norway is essential, as large carnivore populations are cross- 
boundary and Scandinavian rather than Swedish or Norwegian. The surveillance 
system is expensive and costs about 5 million Euros in Sweden annually, but the 
results obtained are of high quality. Tight cooperation between management and 
research contributes to the up-dated quality and effectiveness of the system.
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Coupling Field Sampling with Earth 
Observation Increases Understanding  
of Tiger Movement and Behaviour
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Abstract Tigers (Panthera tigris) are critically endangered worldwide, with the 
geographical range of native populations reduced to less than 7% in the last hundred 
years. Currently, there are only 6 subspecies residing in thirteen range countries. 
The main causes of their decline are habitat loss and fragmentation, prey depletion 
and poaching for the illegal wildlife trade. Addressing these issues has been severely 
constrained by inadequate spatial information on tiger distributions, movements, 
habitat preferences and behaviour. Focusing on the Indo-Bhutan Manas Tiger 
Conservation Landscape (IBMTCL) in the Indian subcontinent (India and Bhutan), 
this study sought to demonstrate the use of field-based camera traps for providing 
ground-based observations of tigers and other large cats, namely leopards (Panthera 
pardus) and clouded leopards (Neofelis nebulosa), and their prey. These observa-
tions were also coupled with classifications of land cover, elevation data and  fire 
observations from Landsat TM and the Terra ASTER and MODIS respectively. The 
study indicated a large but variable range for individual tigers, a preference of tigers 
for forest cover and proximity to burned areas (attributed to greater access to prey), 
and a spatial separation from populations of other large cats. The study illustrates 
how earth observation data can provide some of the elements needed to better 
understand how large cats utilise the landscapes they inhabit thereby contributing to 
efforts aimed at  long-term conservation of these endanged species across their 
range.
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 Introduction

The tiger (Panthera tigris) is the largest and one of the most charismatic and endan-
gered cat species in the world. It is a flagship icon for wildlife conservation, being 
at the apex of the food chain in the majority of the eco-regions in Asia (Sunquist 
et al. 1999; Jhala et al. 2008, 2015). The tiger has been held in mythical reverence 
across the world, is worshipped in certain faiths and religions and is the national 
animal for India, Bangladesh, Nepal, Malaysia and both North and South Korea. 
Until the early nineteenth century, nine subspecies (Luo et al. 2004) of tiger were 
found across Asia, from the Caucasus and the Caspian Sea to Siberia and Indonesia. 
Three of these subspecies are now extinct; the Bali Tiger (Panthera tigris balica), 
Javan Tiger (P.t.sondaica) and Caspian Tiger (P.t.virgata). The remaining six occur 
as fragmented populations in the Russian Far East, northeast China and the Asian 
subcontinent.

India supports about 70% of the World’s tiger population and one of the key 
areas of importance is the Indo-Bhutan Manas  Tiger Conservation Landscape 
(IBMTCL), which offers a contiguous protected landscape of over 6000 sq km and 
constitutes the core area of Manas National Park (NP) in India and Royal Manas NP 
in Bhutan. Between November 2010 and February 2011, a large camera trap survey 
was conducted in Manas NP and the southern section of Royal Manaus NP by 
organisations in both India and Bhutan. This survey was undertaken to locate, iden-
tify and track the movements of individual Royal Bengal tigers (Panthera tigris 
tigris) and two other sympatric species, the leopard (Panthera pardus) and clouded 
leopard (Neofelis nebulosa). Landsat-derived classifications of land cover, historical 
MODIS fire records and spatial information on human development of the land-
scape were then used in combination with the survey results to provide a better 
understanding of niche separation as well as influences on the movement and range 
of these large cat species over the period of observation. Through this approach, the 
potential contribution of integrated field campaigns and earth observation to sup-
porting management of Tiger Conservation Landscapes (TCLs) was assessed.

 Background

 Why Are Tigers Endangered?

Whilst once widespread, the range of tigers has been reduced to a mere 7% (less 
than 1,184,911 km2) of their former geographical range, and approximately 55% of 
the inhabited landscape is essentially non-tiger habitat (Sanderson et al. 2006). A 
general compilation of national estimates suggests a global population of approxi-
mately 4240 tigers remaining in the wild (Goodrich et al. 2015). The causes for their 
decline has largely been habitat loss and poaching and the pressures continue to 
escalate (Sanderson et al. 2006; Dinerstein et al. 2007). They are also vulnerable to 
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extinction because of their low densities (relative to other mammals, including their 
prey species) and relatively low recruitment rates (where few animals raise off-
spring that survive to join the breeding population) (Kerley et al. 2003). Tigers also 
require large undisturbed landscapes with ample prey to raise young and maintain 
long term genetic and demographic viability (Seidensticker and McDougal 1993; 
Karanth and Sunquist 1995; Carbone et al. 1999; Jhala et al. 2008). However, such 
areas are contracting or becoming increasingly fragmented because of high anthro-
pogenic pressures on natural resources. Whilst India has the world’s largest popula-
tion of wild tigers, it has also suffered the highest range contraction for the species. 
Poaching is mainly for the supply of organs, bones and hides that are smuggled for 
use in traditional medicine, mainly into China and south-east Asia (Gratwicke et al. 
2008; Nowell 2009).

Efforts to save the tiger started rather late. For example, Project Tiger was initi-
ated in India in 1973 (GOI 2005). However, the strategies used were not time-tested 
and were also often weak on scientific rigor, partly because of a general lack of 
baseline information on tiger distributions (ibid). Conservation strategies for tigers 
had previously focused only on protecting the species in pristine wilderness areas 
and were based on the premise that estimates of tiger densities derived from sign- 
based indices (e.g., pugmark census techniques) were adequate to provide informa-
tion on the survival status of the species. However, detecting tigers through 
traditional field survey methods is a challenging task. Tigers require sufficient num-
bers of large-bodied prey and therefore roam across large that may exceed 100s of 
kilometres. They also occur in low densities and often as lone individuals, particu-
larly in closed forests (Gittleman and Harvey 1982; Carbone et al. 2001), are cryptic 
by nature and are rarely seen. As a consequence, records relating to tiger distribu-
tions and their use of habitats have been inadequate and this has severely impeded 
the formulation and implementation of appropriate conservation measures (Blake 
and Hedges 2004; Sanderson et al. 2006).

For these reasons, there has been an increasing and now urgent need to devise 
rapid yet rigorous population analysis and viability methods with spatial and tem-
poral observations that are repeatable across the varied landscapes that tigers occupy 
(Linkie et al. 2006). It is also widely accepted that a landscape approach to tiger 
conservation that takes into account the distribution and condition of habitat also 
fares better than those that focus only on protecting the species. Although breeding 
populations are currently found in eight Asian range states, there are few regular 
empirical studies to indicate trends on a countrywide basis (Goodrich et al. 2015). 
Sanderson et al. (2006) put forward the concept of establishing Tiger Conservation 
Landscapes (TCLs) and estimating tiger populations across their entire range using 
multiple methods; from expert opinion to land cover (e.g., vegetation) and change 
assessments based on satellite sensor data. The study also highlighted that 76 TCLs 
held the major tiger subpopulations in the world. An additional 543 fragments were 
also identified, but they were considered too small to support long-term viable pop-
ulations. 491 areas were designated as Tiger Survey Landscapes (TSL; total area of 
1.1 million km2), where the current tiger status was unknown but the area was con-
sidered sufficiently large to support at least five tigers. The study highlighted that it 
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would be a major challenge to survey and monitor these TCLs on a regular basis 
unless new options for mapping and monitoring their state, condition and dynamics 
were developed and implemented.

 Determining the Distribution and Abundance of Tigers

Whilst the ecology of wild tigers has been studied in depth (Sanderson et al. 2006), 
information on their present status is limited and scattered over a number of publi-
cations, with many in the grey literature. In a review conducted in support of this 
study, 35 papers were identified that provided information relating specifically to 
assessing tiger populations and their habitat, with these based largely on primary 
data collection. Approximately half of these studies used capture-recapture methods 
with a lesser proportion focusing on sign-based indices (such as tracks, visual esti-
mates, scat DNA analysis; 25%), and satellite tracking (7%). Only one paper (Imam 
et al. 2009) explicitly used remote sensing data to assess tiger habitat suitability in 
the landscape. The review highlighted the general paucity of information, with only 
a few local-scale studies, but also the varied and often inconsistent approaches for 
estimating population distributions and sizes. Furthermore, many population esti-
mates were found to be based on single-studies, typically field-based surveys, with 
these relying primarily on pugmark census, camera traps, satellite telemetry, scent- 
matching using dogs, fecal genetics and large scale occupancy surveys. Most stud-
ies also relied on capture-recapture techniques conducted over a specified period 
(Table 1).

From the 1970s to 2005, the pugmark census technique has been widely used and 
has relied on sign-based abundance estimates. The census is based on intensive 
monitoring of tigers within areas, identifying individual tigers by visual inspection 
of the pugmark tracings/plaster casts, measuring pug mark variables (e.g., for toe to 
pad distance, pad length and width etc.) and subsequently using statistical tech-
niques to identify individuals and numbers (Choudhury 1970; Sharma et al. 2005). 

Table 1 Advancement of methods for estimating tiger populations

>1970a 1970b 1992–2005c 2005–2010d 2010-(proposed)

Hunting and 
man-animal 
conflict 
records.

Pugmark 
census

Camera-traps, 
Prey-predator 
models, 
Landscape level 
habitat analysis.

Large-scale 
occupancy and 
Population 
modelling, faecal 
genetics and digital 
pugmarks

Integration of 
ground-based surveys 
and satellite-based 
observations

aRangarajan (2001)
bChoudhary (1970), Karanth (1995)
cWikramanayake et al. (1998), Mackenzie et al. (2002)
dSharma et al. (2005), Caroll and Miquelle (2006), Sanderson et al. (2006), Samrat et al. (2009)
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Satellite telemetry allows animals with radio collars to be tracked from the ground 
or air. Animal locations are plotted on base maps from which  their home range can 
be approximated. This method is particularly useful for detecting the movement of 
individuals and understanding tiger ecology and behaviour (Smith et al. 1998).

Camera trapping has long been used to estimate populations of faunal species 
(Otis et al. 1978; Balme et al. 2009; Carbone et al. 2001; Harihar et al. 2009) and is 
currently the most accepted technique for studying tiger populations in the Indian 
Subcontinent (Karanth and Sunquist 1995; Karanth et al. 2002; Karanth et al. 2006; 
Royle et al. 2009; Wegge and Storaas 2009). This method works on the a priori 
premise that individual tigers have unique biometrics, such as stripe patterns or tail 
to body ratios, that can be captured by placing automated camera traps in optimal 
field locations. The biometric information can then be analyzed within a robust 
capture-recapture statistical framework to arrive at estimates of numbers. The tech-
nique has been used for determining the spatial location and movements of carni-
vores such as tigers (Karanth et al. 2006; O’Brian et al. 2003; Linkie et al. 2006), 
leopards (Harihar et al. 2011), pumas (Kelly et al. 2008), jaguars (Davis et al. 2010) 
and other large predators. New techniques that have been used in conjunction with 
camera traps include the use of scent-matching dogs for Amur tigers (Kerley and 
Salkina 2007), fecal genetics to prepare DNA profiles of individual tigers (Samrat 
et al. 2009) and large-scale occupancy surveys for tigers and their prey (Jhala et al. 
2008).

 Use of Remote Sensing Data for Tiger Habitat Mapping

To address the mapping of tigers distributions, a handful of studies (e.g., Sanderson 
et al. 2006; Imam et al. 2009) have used thematic or continuous layers (e.g., repre-
senting vegetation, land use and elevation data) derived from remote sensing data as 
input to Species Distribution Models (SDM) (e.g., occupancy) or population mod-
els. Most have focused on using freely available pre-processed optical satellite sen-
sor data, pixel-based image classifications and geometry-based geospatial analysis 
(Karanth et al. 2009; Ranganathan et al. 2008; Jhala et al. 2008). However, their 
generation and use has often been compromised by uncertainty and errors (posi-
tional and thematic) related to geometric correction accuracy, poor atmospheric and 
topographic correction (particularly in the mountainous areas that tigers commonly 
occupy), and inconsistent use of classification and accuracy assessment techniques. 
There is, however, considerable interest in the use of remote sensing data, including 
as input to SDMs and population models, and the increased quality, diversity, avail-
ability and accessibility of data and derived products is contributing to greater 
uptake. A summary of information that can be obtained from remotely sensed data 
and which is relevant to understanding and/or modelling tiger distributions, move-
ment and behaviour is provided in Table 2.
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 The Indo-Bhutan Manas Tiger Conservation Landscape 
(IBMTCL) and Its Conservation Significance

The IBMTCL lies at the critical juncture of the Indo-Malayan and the Indo-Gangetic 
bio-geographical pathways and has been lauded for its outstanding natural beauty 
and unparalleled diversity as a UNESCO World Heritage site (UNESCO 2008). The 
IBMTCL forms an important connecting link between the Buxa, Nameri and Pakke 
Tiger Reserves in India and the Hukaung Valley Tiger Reserve in Myanmar. Within 

Table 2 Habitat suitability parameters that can be derived from satellite sensor data

Factor Relevance Systems (Examples)

Elevation, slope, 
and aspect

Tigers prefer shallow to moderate slopes and, in 
winter, southerly facing aspects are often 
visited.

SRTM, ASTER, 
Tandem-X, PRISM

Water bodies Water supply for tigers (primarily for drinking). Optical, radar
Climate Long term impacts on tiger distributions, 

movements and breeding.
TRMMa, MODISb

Grassland 
productivity

Associated with fluctuations in ungulate 
numbers. During periods of low productivity, 
prey are often found close to water bodies

MODIS, Landsat, 
Sentinel-2

Biomass Easier movement for tigers within higher 
biomass forests because of greater openness of 
the ground layer.

ALOS PALSAR

Canopy height Taller trees are typically associated with a more 
open understorey, which eases movement for 
tigers

ICESAT GLAS

Canopy cover Tigers prefer vegetation with a higher 
percentage canopy cover

Optical

Settlements Tigers avoid extensively urbanized areas but can 
occur near villages and isolated houses

SPOT-5, ASTER

Infrastructure Roads limit the movement of tigers High resolution data 
including Worldview and 
RapidEye

Logging roads Indicate intrusion into the forest, which can 
restrict or limit tiger movements and 
occupation.

Land cover Tigers prefer areas of woody vegetation but will 
venture into grassland areas when hunting or 
moving between patches.

Optical and/or radar data

Land cover 
change

Losses and degradation of habitats occurs over 
time and the replacement habitats are often 
unsuitable. Regeneration of forests may favour 
movement of tigers through the landscape.

Time-series of optical and 
radar data

Fire history Fire can initially disturb tigers but growth of 
ground vegetation can increase prey numbers 
and hence tigers

Fire hotspots mapped 
from MODIS and fire 
scars mapped from optical 
data.

aFor rainfall and bsnow cover
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this region, a number of Park Areas (PAs) exist, including Jigme Singye National 
Park (NP), Royal Manas NP, Phibsoo Wildlife Sanctuary (WLS), Khaling WLS in 
Bhutan and the Manas Tiger Reserve (MTR) in India. Together, these form the 
single- largest TCL for tigers (Panthera tigris tigris) in the world (Dorji and 
Santiapillai 1989; Sanderson et al. 2006).

The IBMTCL is of historical evolutionary significance as tigers here share the 
connecting gene pool with the south eastern tiger population and the area represents 
the entry point of tigers into the Indian sub-continent (Jhala et  al. 2011). 
Administratively, the IBMTCL is comprised of six Protected Areas (PAs; Table 3) 
but there are several potential landscapes which do not have PA status but neverthe-
less are able to support tigers (e.g., the Ripu-Chirang Forest complexes in India).

 Data Collected

 Mammal Surveys

Various organizations, including NGOs such as WWF-India, Aaranyak and the 
Wildlife Trust of India, assisted the Manas NP Authority in India to lay camera traps 
between November 2010 and February 2011. This was part of a nation-wide tiger 
sampling exercise carried out within most of the tiger reserves in India (Jhala 
et  al. 2011). The infrared-triggered camera-traps used within the two ranges of 
Manas NP (Bansbari and Bhuyanpara) were the Cuddeback (Non Typical Inc. 
Wisconsin), TrailMaster (Goodson and Associates, Kansas, USA) and Panthera 
Camera Trap V3 (Panthera, USA). A pair of camera traps was placed within indi-
vidual 2  ×  2  km sized cells and the total area covered by all camera traps 

Table 3 PAs supporting tiger populations and methods for their estimation in IBMTCL

Name of protected area
Area 
(km2) Forest type

Previous methods for 
estimating populations 
of tigers

Manas Tiger Reserve, India 2837 Subtropical forests 
interspersed with savannah 
grasslands

Camera trap studies 
undertaken since 2009

Royal Manas National Park, 
Bhutan

1057 Subtropical forests Camera trap studies 
undertaken since 2009

Jigme Singye National Park 1730 Temperate and upland 
broadleaf forests

Single camera-trap 
study

Phibsoo Wildlife sanctuary 269 Subtropical landscapes Not available
Khaling Wildlife Sanctuary 335 Subtropical Not available
Bornadi Wildlife Sanctuary 26 Subtropical Not available
TOTAL AREA 6254
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approximated 300 km2 (in India) (Table 4). In a separate but simultaneous exercise 
in Royal Manas NP, camera trapping was undertaken by the Department of 
Agriculture, Royal Government of Bhutan (RGoB) in collaboration with the Ugyen 
Wangchuk Institute for Conservation and Environment (UWICE) and the Bhutan 
Foundation, specifically to monitor the tiger population (Fig. 1). This study focused 
only on the camera trapping undertaken in Manas NP.

Table 4 Summary of camera trapping in IBMTCL

Total number of camera traps 102a

Sampling occasion 64 days
Sampling effort (number of traps × sampling occasion) 5955
Camera trap polygon area 436.37 km2

Estimated buffer width (HMMDM) 4.2 km
Effective sampled area 789.2 (±50.98) km2

a78 in or near the border of Manas NP

Fig. 1 The location of camera traps placed at IBMTCL between November 2010 and February 
2011
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 Remote Sensing and Other Spatial Data

For the 21 and 30 January and 6 and 7 February 2010, relatively cloud free Landsat 
Enhanced Thematic Mapper (ETM+) data were downloaded from the Glovis (http://
glovis.usgs.gov/) and Land Processes Distributed Active Archive Centre (https://
lpdaac.usgs.gov/get_data/data_pool). These data were converted to surface reflec-
tance (%) using the 6S atmospheric correction software. Radiometric normalization 
between scenes was also undertaken using the approach outlined by Homer et al. 
(1997). All images were geo-referenced by first establishing ground control points 
between locations identified from existing maps and the most cloud free Landsat 
sensor data, warping these images and then generating a mosaic covering the study 
area. Control points were then established subsequently between the remaining 
Landsat sensor data and this reference mosaic. The processing of the Landsat sensor 
data was undertaken using the open source software RSGISLib (www.rsgislib.org; 
Bunting et al. 2013).

The history of burning with the IBMTCL over the period 2000–2012 was docu-
mented by referencing the MODIS product MOD 14 (Thermal Anomalies – Fires 
and Biomass Burning). This product includes fire occurrence (day/night) and loca-
tion, the logical criteria used for the fire selection and an energy calculation for each 
fire. 8-day and monthly day-and-night composite fire occurrence (full resolution) 
and gridded 10-km and 0.5° summaries (including counts) per fire class (daily/8- 
day/monthly) are also available. The Level 2  products include various fire related 
parameters including the occurrence of day and night time thermal anomalies, 
flagged and grouped into different temperature classes associated with different lev-
els of emitted energy from the fire. These parameters are retrieved daily at 1 km 
spatial resolution.

An ASTER Global Digital Elevation Model (GDEM) was used (http://asterweb.
jpl.nasa.gov/gdem-wist.asp) to establish the topography of the two national parks, 
with this released at 30 m resolution and available for 1 × 1 tiles (geographic projec-
tion). Other data layers were also available to support understanding the movement 
of large cats, including continuous distance from roads and the locations of anti- 
poaching camps and settlements. The park boundary, roads and rivers were digi-
tized from topographic sheets and Google Earth images, although the boundary 
location was revised using the Landsat sensor data available for 2010.

 Methods of Data Analysis

 Analysis of Camera Trap Data

Each day (24 h) was defined as one sampling occasion (Otis et al. 1978) and this 
was repeated over a period of 57 days (Otis et al. 1978; Karanth 1995). Individual 
tigers were identified with reference to their documented stripe pattern, with this 
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undertaken by carefully examining the position and shape of stripes on the flanks, 
limbs, forequarters and sometimes the tail (Schaller 1967; Karanth and Nichols 
1998). Each tiger captured in a photograph was then assigned a unique identifica-
tion number (e.g. TM1M, TM2F for the first and second tiger of male and female 
gender). Similar procedures were undertaken for leopard and clouded leopard. 
Individual capture histories for tigers, leopards and clouded leopards were devel-
oped in a standard ‘X-matrix format’ (Otis et al. 1978) and these were analyzed 
using models developed for closed populations within the programs CAPTURE 
(Rexstad and Burnham 1991) and MARK (White 2008). The abundance of all three 
species for the effective sampled area was estimated by using a buffer around the 
locations, determined using half the mean of the maximum distance moved 
(HMMDM) model, and the area associated also with a trapping grid polygon 
(Karanth and Nichols 1998). A habitat mask was also used to remove non- tiger 
habitat (e.g., deep water, human settlements; Karanth and Nicols 2002). The density 
(per 100 km2) was then estimated by dividing this area by the population size (num-
ber of individuals). The density of individual prey species, which were also recorded 
through the camera traps, was estimated using the program DISTANCE (Thomas 
et al. 2010). This online software works by using detection functions that model the 
probability of detecting an animal given its distance from the transect. Further 
details of both methods can be found in Jhala et al. (2010).

 Spatial Analysis of Field Data

The spatial configuration of home ranges of individual cats is an important property 
of their social systems  and has been defined as an area traversed by individuals dur-
ing normal activities of food gathering, mating and caring for young (Dillon and 
Kelly 2007). For this study, the GPS locations for each capture event and for identi-
fied individuals were extracted and plotted spatially. Where an animal was photo-
graphed, the distance from the camera trap was determined and a minimal-bounding 
polygon was constructed around each of the individual point locations where the 
same individual was sighted and also for all species of the same type. The resulting 
spatial datasets were then used to quantify ranging behavior, niche overlap and 
movement in relation to observed land cover types and landscape dynamics. Home 
range size is considered an important predictable aspect of an animal’s feeding 
strategy and has been related to food density, metabolic needs and the efficiency of 
movement. The metric also indicates the degree of overlap as a function of territory 
and can reflect the variation in population and community characteristics. For 
example, home-range size is frequently correlated inversely with population density 
and home-range exclusiveness can indicate significant inter and intra-specific com-
petition (ibid). To calculate the ranging patterns of tigers and sympatric carnivores 
within the habitat, a point density tool was used which calculates a magnitude per 
unit area from point features falling within a neighborhood around each cell. In 
addition, a minimum boundary geometry tool was used, which represents a 
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specified minimum bounding geometry enclosing each input feature for each group 
of input features.

 Land Cover Classification

To classify land cover and associated changes between the different years, 150 
training areas representing 14 land cover categories (see Table 5) were established, 
with a further 150 collected to subsequently assess the accuracy of the classifica-
tion. A hybrid supervised classification of the Landsat ETM+ data (all spectral 
bands) was then undertaken within Erdas Imagine 9.3.

Table 5 Description of land cover types within the IBMTCL

LULC type Description Suitability for tigers

1 Sub-tropical 
semi-evergreen 
forest

Occurs between 500 and 2000 m asl; 
dominated by a variety of trees and 
shrub species forming a multi-storey 
structure. The forests extend along the 
northern boundary of Manas NP and 
into Royal Manas NP, which has a 
wetter moisture regime and lower 
anthropogenic disturbance.

An ideal habitat for 
tigers, although supports 
lower densities of prey 
and predators

2 Temperate 
broadleaf forest

Occurs between 2000 and 2500 m asl; 
dominated by oak and laurel species 
although pine species are frequent in 
the inner dry valleys. Typical to Jigme 
Singye Dorji NP.

Tigers reported in Jigme 
Singye Wancgchuk NP.

3 Temperate conifer 
forest

Occurs between 2500 and 3000 m asl. 
Dominated mainly by conifer species 
(spruce and fir) and often has 
understory communities of deciduous 
broad-leaved and evergreen species 
(Wangda and Ohsawa 2006). Dominant 
forest type in the north of Jigme Singye 
Dorji NP.

Not suitable for tigers, 
although some reports of 
tigers present 

4 Sub-alpine conifer 
forest

Occurs up to 4000 m asl. Dominated by 
cold-adapted and widespread conifer 
species such as spruce and juniper.

Not suitable for tigers, 
but other large predators 
(snow leopards) occur.

5 Alpine scrub Occurs above 4000 m asl; the limit of 
tree growth and start of the alpine zone. 
Scattered shrubs (dwarf junipers and 
rhododendrons) can occur as high as 
4932 m asl.

More suited to snow 
leopards

(continued)
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Table 5 (continued)

LULC type Description Suitability for tigers

6 Closed moist 
mixed deciduous 
forest

Occurs up to 700 m asl. Dominated by 
a single dipterocarp species (Shorea 
robusta) in drier areas. A mix of 
sub-tropical semi-evergreen tree species 
also occurs in the moister areas Canopy 
cover often exceeds 40%. Occurs along 
the Himalayan foothills and the 
northern boundary of the MTR.

Suitable for tigers.

7 Open moist mixed 
Deciduous forest

Occurs up to 700 m. The reduced 
canopy cover (to <40%) is, in part, the 
result of selective removal of 
dipterocarp and other timber species. 
Dominates much of the MTR buffer.

Not suitable for tigers as 
highly fragmented and 
disturbed disturbance.

8 Alluvial short 
grasslands

Occurs up to 200 m. Soil-climax habitat 
type dominated by annual grass species 
that occur over seasonal wetlands. Now 
confined to patches within Manus NP 
and highly regulated by fires and annual 
flooding.

Highly suitable for prey 
and supports one of the 
highest densities of tigers 
in the world (Ahmed 
et al. 2010). 4.5% of the 
total habitat in Manas NP.

9 Savannah tall 
grasslands

Occurs up to 200 m. Soil-climax habitat 
type dominated by perennial grass 
species interspersed with colonizing 
tree species (characteristic of 
savannahs). Highly regulated by forest 
fires and flooding with patchy 
distribution within Manas NP.

Highly suitable for prey 
with very high densities 
of tigers (similar to class 
8; Ahmed et al. 2010). 
10% of the total habitat in 
Manas NP.

10 Riverine/sandy 
vegetation

Occur along the fringe of rivers that are 
characterized by sand and boulders 
(largely debris carried downstream by 
Himalayan streams); colonized by 
lichens and grasses.

Suitable for a range of 
prey and large cats as 
adjacent to water sources.

11 Waterbody All major and minor rivers; typically 
narrow and fast flowing in the upper 
reaches but less water in the middle 
stream area; seasonal flow regulated by 
rainfall and silt load is variable.

Essential for all wild 
animals as the primary 
source of natural water.

12 Cultivation All non-forest areas that are cultivated 
(primarily for paddy) during the 
monsoon season.

Not suitable for tigers.

13 Plantation Monoculture plantation of tea bushes 
interspersed with deciduous tree 
species. Some tea gardens declared as 
forest reserves. Rubber is the main 
plantation crop and is typically 
managed by private growers. Plantation 
developments often lead to forest 
encroachment and fragmentation.

Not suitable for tigers.

14 Snow Only in the higher elevations of Bhutan. Not applicable
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 Carnivore Distribution in Relation to Anthropogenic 
Disturbance

Fires, roads and settlements were considered to be the main anthropogenic distur-
bances likely to influence the distribution and movement of large cats within the 
landscape. The point distances tool available in the ArcGIS Geospatial Modelling 
Environment (GSM; http://www.spatialecology.com/gme and previously known as 
Hawths tools) was used to calculate the distances from tiger observations to fire 
locations over the observation period. This tool, which was designed to produce 
flexible distance matrix outputs, calculates distances between points. The output of 
distance between each fire location and species capture point was then categorized 
into 500 m intervals and analyzed using simple regression analysis. The null hypoth-
esis that there was no link between fire and carnivore occurrence was rejected where 
p > 0.05.

 Results

 Camera Trap Sightings

A total of 14 tigers (8 males and 6 females) were identified from the camera trap 
photographs (Table 6, Fig. 2). Other top carnivores sighted during the same survey 
period included 27 leopards (Panthera pardus; 11 males, 13 females, 3 unidentified) 
and 16 clouded leopards (Neofelis nebulosa; 4 males, 5 females, 7 unidentified) 
(Fig. 3). Others species that were photographed included the marbled cat (Pardofelis 
marmorata), Leopard Cat (Prionailurus bengalensis), Jungle Cat (Felis chaus), 
Dhole (Cuon alpinus), Himalayan Black Bear (Ursus thibetanus), Sloth Bear 
(Melursus ursinus), Jackal (Canis aureus) and Civet species. Herbivore prey species 
photo captured included gaur (Bos gaurus), wild pig (Sus scrofa), sambar (Rusa 
unicolor), hog deer (Hyelaphus porcinus) and barking deer (Muntiacus muntjac) 
(Borah et al. 2012).

Table 6 Camera trap sightings of tigers

Number of individual tigers captured 14
Estimated numbers of tigers in the sample area using model Mb 15 (95% CI: 15–29)
Estimated tiger density in sampled area using HMMDMa 1.9 (±0.36) tigers 100 km−2

Estimated tiger density using MLSECRb 0.75 (±0.21) tigers 100 km−2

aHalf Mean Maximum Distance Moved
bMaximum Likelihood Spatially explicit Capture Recapture based on Half normal method
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 Ranging Pattern and Seasonal Home Range

Within Manas NP, tigers were found to be highly territorial (Fig. 2), with males 
sharing their territory with only 1 or 2 females. However, one adult male tiger (Tiger 
1; and possibly the dominant) shared its territory with almost all the other individu-
als. The range of one female was significantly greater than that of others (Table 7), 
which may be attributed to the sub-optimal habitats in her territory. During the 
observation period, all tigers were moving to the areas of higher elevation to the 
north (i.e., towards Bhutan). No tigers were observed near the boundary of Manas 
NP, with most occurring towards the central area.

Leopards and Clouded Leopards shared much of their territory with tigers, 
although their movement was more restricted to the fringe areas. This also corrobo-
rates with studies elsewhere (e.g., Harihar et  al. 2011) that sympatric species of 
carnivores co-exist in sub-optimal habitats (Fig. 4).

Fig. 2 Camera trap pictures of individual tigers in the IBMTCL (Nov 2010–Feb 2011; Source: 
Forest Department, Manas and Borah et al. 2012)
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Fig. 3 Camera trap pictures of some Leopards and Clouded Leopards in the IBMTCL (Nov 2010–
Feb 2011; Source: Forest Department, Manas and Borah et al. 2012)

Table 7 Summary of the dispersal of tigers in Manas NP (Nov 2010–Feb 2011)

ID Sex DOFC DOLC
No of traps 
captured

Ranging pattern 
(km2)

Area of overlap 
(km2)

Tiger 1 Male 27 Nov 19 Jan 28 232
Tiger 2 Female 27 Nov 28 Dec 4 14 Tiger 1 (5.9)
Tiger 3 Female 17 Dec 19 Dec 2 –
Tiger 4 Female 14 Dec 16 Jan 9 91 Tiger 1 (85.4)
Tiger 5 Female 31 Dec 1 Jan 2 –
Tiger 6 Male 12 Dec 8 Jan 2 –
Tiger 7 Male 18 Jan 18 Jan 1 –
Tiger 8 Female 12 Jan 30 Jan 2 –
Tiger 9 Male 31 Dec 19 Jan 2 –

DOFC Date of First Capture, DOLC Date of Last Capture
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 Land Cover Classifications and Carnivore Preferences

The classification of land covers for the IBMTCL is illustrated in Fig. 5. The major-
ity of the lowland was occupied by closed moist mixed deciduous forests, with sub-
tropical evergreen forest dominating the lower slopes and progressing into temperate 
broadleaved and coniferous forests and then subalpine vegetation with increasing 
elevation. Grasslands were found primarily in the south of the IBMTCL and riverine 
vegetation and unconsolidated deposits occurred along the wide river channels. 
Based on standard confusion matrices, the overall accuracy in the classification of 
land covers was 81.5% (kappa coefficient of 0.78), with the majority of users’ or 
producers’ accuracies exceeding 80% but being as low as 40% for some classes 
(e.g., user’s accuracy 60% for cultivation and scrub, 56.7% for closed moist mixed 
forests). Manas NP supported many of the habitats suitable for tigers including the 
moist mixed deciduous forests (36.5%), semi-evergreen forest (19.1%), riverine 
sandy areas (15.1%) and moist alluvial grassland (8.4%). During the observation 
period, female tigers were most commonly recorded in the closed moist deciduous 
forests, whereas males were also recorded in sandy riverine areas close to forests. 
Although considered suitable because of the large numbers of prey, both sexes were 
not recorded within the tall savanna grasslands but rather remained on the periphery. 
Leopards and clouded leopards were observed primarily in the riverine areas.

Fig. 4 Ranging pattern of female tigers in relation to the movement of the dominant male  
v(Tiger 1) in IBMTCL (Camera trap Area = 300 km2)
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 Distributions of Tigers in Relation to Fires and Anthropogenic 
Disturbance

The Manas NP section of the IBMTCL landscape experienced repeated and exten-
sive burning between 2000 and 2012, with 1749 fire events recorded in the MOD 14 
product. The greatest number of fires was in 2011, with 271 recorded (Fig. 6a). In 
all years, there was considerable intra-annual variability, with the period December 
to March associated with the highest frequency of fires. The transition period before 
and after the monsoon season (May to September) (i.e., the first and last 2 months 
of the dry season) experienced fewer fires. Manas NP is divided into three ranges; 
the western range (Panbari), central (Bansbari) and eastern (Bhuyanpara), and the 
density of fires (5.13 km−2) was greatest in the grassland areas of the Bansbari range, 
with those in the Kuribeel and Pahu field areas repeatedly burnt. The incidence of 
fires was greatest in the more open moist mixed deciduous forests (Fig. 6b; Table 8), 
with this attributed largely to human activities. Over the period of the camera trap-
ping, 32 fires were detected in the areas within which camera traps were placed. 
Reference to the tiger data indicated that the highest number of counts (indicating 
presence) was at a distance of 5–10 km from fires and often around the margins of 
burnt areas (Fig. 7). In general, tigers were recorded away from roads and village 
settlements, with this indicating their sensitivity to human activity, including vehic-
ular movements.

Fig. 5 Land cover classification of the IBMTCL generated from 2010 Landsat TM data
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 Discussion

 The Role of Earth Observation

The main benefit of using earth observation data was the ability to provide a land 
cover classification for a similar period as the camera trap surveys. The overall 
accuracy of the land cover classification for the IBMTCL was relatively high, but 
there was confusion  between a number of classes, largely because of the high sea-
sonal variation in the phenology of vegetation but also fires and flooding. In some 
areas, dry areas became inundated during the wet season, but as the waters receded, 
extensive areas of highly productive grassland established. These became senescent 
as the dry season progressed and many were then subject to extensive burning. 
Hence, the spectral signatures of the same area of ground varied considerably 

Fig. 6 The frequency of fires in the IBMTCL between 2000 and 2012 as determined from MODIS 
data

Table 8 Summary of fire distribution in land-cover types in Manas NP, India

Forest type Area (km2) Area (%) Total Fires (%) Fires # km−2

Semi evergreen forest 104.1 19.1 112 6 1.08
Riverine/sandy areas 82.1 15.1 321 18 3.91
Moist mixed deciduous forest 197.9 36.5 569 33 2.88
Moist alluvial grassland 45.6 8.4 434 25 9.51
Degraded/scrub Forest 35.8 6.6 173 10 4.83
Tall savannah grassland 77.3 14.3 140 8 1.81
TOTAL 542.8 100.00 1749
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(senescent and productive grassland, water and burnt ground). For this reason, the 
use of dense time-series of optical remote sensing data would provide a better over-
view of the changing states of vegetated and non-vegetated environments within the 
IBMTCL.  Whilst atmospheric correction of the Landsat sensor data was under-
taken, smoke haze and cloud still limited reliable retrieval of surface reflectance for 
some areas.

A further limitation of the land cover maps was that insufficient information on 
the structural characteristics of forests that might influence tiger movements was 
obtained, particularly in relation to the tree canopy density and canopy height. A 
common approach to estimating canopy cover is to establish relationships between 
ground based measurements and combinations of reflectance data. However, the 
lack of ground data and seasonal changes in leaf cover prevented the generation of 
reliable retrieval algorithms or use of those that are existing. Information on canopy 
height was also not obtained although there is potential to retrieve this using NASA’s 
Ice, Cloud, and land Elevation (ICESat) satellite Geoscience Laser Altimeter System 
(GLAS). Future mapping could therefore focus on developing these products and 
applying classification schemes that consider their inclusion such as the Food and 
Agricultural Organisation’s (FAO) Land Cover Classification System (LCCS; see 

Fig. 7 The distribution of tiger observations in relation to fire density in the Manas NP section of 
the IBMTCL
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Lucas and Mitchell (2017; this book). The MODIS data provided invaluable insights 
into the frequency and distribution of fires, identifying that the majority occurred in 
the moist mixed deciduous forests and alluvial grasslands.

 Distribution and Movement of Tigers

Although camera trapping occurred over a relatively short period, 52 tiger sightings 
were obtained. The resulting photographs allowed 14 different individuals to be 
distinguished and their gender determined. The movement of tigers was variable but 
several individuals moved large distances (tens of kilometers), with one male hav-
ing a substantive range (232 km2). A general movement of tigers towards forested 
areas in the northern sections (of slightly higher elevation) may be attributable to the 
comparatively low availability of prey in the grassland areas during the winter 
months.

Reference to the land cover classification generated from Landsat sensor data 
indicated that the majority of tigers remained within the forest areas, although some 
males ventured into the riverine areas. Whilst recognizing that the observation 
period was relatively short, it was evident that some tigers remained in forest areas 
in proximity to the fires but were also sufficiently far away (typically 5–10 km) from 
the last known burn. It is hypothesized that tigers may stay close to areas that are 
burning (or may be susceptible to burning) in order to take advantage of prey spe-
cies fleeing from the fire. They may also anticipate or take advantage of the prey 
species returning to graze on new growth in the periods following the fires. The 
influence of fires on the distribution of large cats and their prey has also been noted 
by Sarma et al. (2008) and Takahata et al. (2010) but further studies are need to 
specifically link occurrence and movements with fire activity. Avoidance of areas 
occupied or influenced by humans was noticeable, with many individuals located 
towards the less disturbed central areas where human activity and vehicular move-
ments were minimal and prey was more abundant.

A practical outcome from the study is that information generated on individual 
movement of tigers can assist future surveillance, especially as the likelihood of 
tiger movements can be communicated to the forest camps. Training in the use of 
camera traps and photographic interpretation allows frontline staff to identify indi-
vidual tigers and contribute to a better understanding of their ranging behaviour in 
this landscape. Whilst tigers may benefit from fires, they may also be disturbed from 
those that are human-induced and therefore the establishment of camps in close 
proximity to fire prone areas may lead to prevention of many and hence less overall 
disturbance of habitats.

The tigers showed minimal overlap with leopards and clouded leopards and 
some studies (e.g., Rabinowitz et al. 1987) have suggested that the clouded leopard 
may alter its range or become less nocturnal when larger competitive species occur. 
Further research on the movement of tigers and other large cats based on camera 
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trap surveys is nevertheless advocated in order to better determine their interactions 
and the distribution of their prey. The camera traps also provide a basis for better 
estimating the abundance and density of large cats and to therefore monitor changes 
and trends in populations and their behaviour.

When used in combination with camera trapping and other monitoring tech-
niques, earth observation data can play a role in understanding how large carnivores 
utilize the IBMTCL during different times of the year. These data can also be used 
to address connectivity issues within and between landscapes. Several new initia-
tives have included the development of software (e.g., MIST, SMART, M-STrIPES) 
that facilitate spatial monitoring of tiger populations including through the integra-
tion of field observations. Within such systems, there is considerable opportunity to 
make better use of the large, extensive and publically available archives of satellite 
sensor data.

 Final Conclusions

In 1998, the global tiger population was estimated at 5000–7000 individuals 
(Seidensticker and McDougal 1993). By 2014, however, the global tiger population 
was at an historic low of approximately 3500 individuals, having declined by more 
than 50% of what they were just a few decades earlier (Goodrich et al. 2015). Given 
this situation, there is an urgent need to prioritize efforts to protect the remaining  
tiger populations (Stokes 2010; Walston et al. 2010). For the most part, these are 
found in PAs (Chapron et al. 2008; Rabinowitz 2009; Clements et al. 2010; Walston 
et al. 2010) but there are considerable opportunities to expand their range, including 
by connecting areas where they occur. This study has highlighted the potential of 
using earth observation data in conjunction with ground-based (including camera 
trap) surveys for better understanding the distribution, movement and preferences of 
tigers and a recommendation is to develop what is termed a Tiger Observation 
System (TOS) to maximize  these opportunities. Whereas past use of earth observa-
tion data has been limited by availability and cost, the release of the Landsat sensor 
archive and the provision of freely available Sentinel-1 and -2 radar and optical 
sensor data respectively gives tiger conservation efforts additional impetus to 
achieve their long term conservation and expansion of populations.
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Improving the Accuracy of Bird Counts Using 
Manual and Automated Counts in ImageJ: 
An Open-Source Image Processing Program

Clive Hurford

Abstract Bird counts estimated ‘by eye’ are subject to high levels of observer vari-
ation. Comparison of bird numbers estimated by experienced ornithologists and 
through manual counting in Image J indicated that observers typically underesti-
mate by more than 30 %, with the median ranging from −13% to −57%. Image J is 
an open source software package that provides both manual and automated options 
for counting birds, whether on the ground or in flight. The manual approach has the 
least preparation time, and will generate accurate counts of 1000 birds in only  
c. 20 min. This technique is particularly useful for counting birds in breeding colo-
nies, where the complexity of the background in an image will compromise the 
accuracy of automated approaches. The manual counter provides markers for count-
ing up to eight species simultaneously and is the preferred option for images con-
taining up to 3000 birds. The automated counter is best suited for estimating bird 
numbers when large groups occur against relatively plain backgrounds. However, 
the automated counter will not differentiate between species and will typically 
underestimate the number of birds in an image, as it is object-based and overlapping 
individuals will count as one bird. Conversely, birds with strongly contrasting plum-
age patterns will be overestimated.”
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 Introduction

Birdwatchers spend a lot of time counting birds, mostly to collect information for 
their personal, regional and national archives, but also to contribute to nationally 
organised surveillance schemes, such as the Wetland Bird Survey in the UK. Count 
data can also feed back into conservation management (Rowell 2006), perhaps as 
part of a monitoring project to trigger management change: this type of project 
aligns well with Habitats Directive (European Commission 1992) obligations to 
achieve favourable conservation status for internationally rare and declining 
species.

 The Levels of Observer Variation Associated with Bird Counts

Bird counts are often carried out by field observers in sub-optimal counting condi-
tions, i.e. with oblique viewpoints of large numbers of birds and in adverse weather 
conditions (Fig. 1). Birds in flight can be even more difficult to count as the shape 
of the flock is constantly changing and there is less time to make an accurate esti-
mate. To illustrate the levels of observer variation associated with bird counts, 50 
experienced ornithologists were invited to participate in an exercise to estimate the 
number of birds in images of bird flocks in flight. Of these, 35 responded positively 
and contributed flock-size estimates. However, five of the respondents made it 
known that they did not consider themselves to be experienced bird counters, so 
their counts were omitted from the results presented here.

Each participant received four images of bird flocks in flight: the images used to 
demonstrate the automatic and manual counts in this chapter, i.e. Figs. 2, 3, 4 and 5. 

Fig. 1 UAVs or light aircraft are the best options for capturing images of large concentrations of 
birds feeding over low-lying land or water. A vertical image would reveal the personal feeding 
spaces between these Whooper Swans (Cygnus cygnus) and Greylag Geese (Anser anser): these 
spaces are less visible in oblique images
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The participants were asked to spend no more than 30 seconds estimating the num-
ber of birds in each image (and not to confer with other observers) before returning 
their estimates for collation. The 30 second limit replicates the limited time that an 
observer has to estimate the size of mobile bird flocks in the field. In reality, how-
ever, estimating the size of a flock of birds as it flies past presents a more difficult 

Fig. 2 An image of Greater Flamingos in flight over Doñana NP in Andalucia, Spain taken from 
a Cessna in March 2014. The automatic count carried out in ImageJ generated a total of 871 birds. 
A manual count undertaken for validation purposes generated a total of 969 birds. Camera model 
Canon EOS 600D Lens Canon 35 mm ISO 100 F-stop f/9 Exposure time 1/250 s

Fig. 3 Starlings Sturnus vulgaris performing aerial displays near their roost on Aberystwyth Pier, 
Ceredigion, UK. ImageJ generated an automatic count of 9380 birds. A validation exercise added 
1737 birds, bringing the estimated total to 11,117. Camera  – Canon EOS 7D, Lens  – Canon 
35 mm, ISO – 400, F-stop – f/6.3, Exposure time – 1/640 s
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Fig. 4 A flock of Linnets (Carduelis cannabina) and at least one Goldfinch (Carduelis carduelis) 
in flight near West Angle, Pembrokeshire, UK. An automatic count of this image generated a total 
of 377 birds while a manual count, carried out for validation, gave a total of 458 birds. Camera 
model – Canon EOS 7D, Lens – Canon 35 mm, ISO – 400, F-stop – f/8, Exposure time – 1/500 s

Fig. 5 A flock of Golden Plovers in flight near Castlemartin, Pembrokeshire, UK. An automatic 
count of this image carried out in ImageJ generated a total of 832 birds, while a validation exercise, 
based the on the number of pixels allocated to each individual in the Excel file, generated a total of 
848 birds. A manual count generated a total of 842 birds. Camera model – Canon EOS 7D, Lens – 
Tamron 150–600 mm, Focal length – 150 mm, ISO – 200, F-stop – f/5.6, Exposure time – 1/250 s
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challenge as, (a) we often have less than 30 seconds to make an estimate, (b) the 
birds do not remain static for 30 seconds and (c) the dimensions of the flock are 
constantly changing.

The charts in Figs. 6, 7, 8 and 9 show the results from the observer variation 
exercise.

Fig. 6 The range of observer variation recorded for Fig. 3: an image of a Starling murmuration. 
Observation 26, the hollow bar, is the best estimate (11,117) provided by a validated automatic 
count in ImageJ

Fig. 7 The range of observer variation recorded for Fig. 2, an image of Greater Flamingos in 
flight. Observation 24, the hollow bar, is the true total (969) provided by a manual count in ImageJ
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Fig. 8 The range of observer variation recorded for Fig.  4, an image of Linnets in flight. 
Observation 22, the hollow bar, is the true total (458) provided by a manual count in 
ImageJ. Observation 31, an estimate of 3258, has been excluded from the chart for interpretation 
purposes

Fig. 9 The range of observer variation recorded for Fig. 5, an image of Golden Plovers in flight. 
Observation 24, the hollow bar, is the true total (842) provided by a manual count in ImageJ
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Table 1 The range of variation and the median values recorded for each image used in the observer 
variation exercise

Species in image Actual total Lowest estimate Highest estimate Median

Greater Flamingo 969 200 1700 680 (−30%)
Golden Plover 842 100 1100 575 (−32%)
Linnet 458 150 3258 400 (−13%)
Starling 11,117a 500 47,800 4750 (−57%)

aBest estimate based on a validated automatic count in ImageJ

In all, 30 experienced bird recorders submitted 120 flock estimates, equating to 
30 estimates for each of four images. Of these, 95 (79%) were underestimates and 
25 (21%) overestimates, suggesting that four out of five counts of bird flocks are 
likely to be underestimates. These results reflect those recorded by other research-
ers, e.g. Škorpíková (2006), Grahn (2007).

Because of the uneven balance between the underestimates and the overesti-
mates, they were analysed separately. The mean level of underestimation ranged 
from −29% in the Linnet image (Fig. 9) to −62% in the Starling image (Fig. 3). The 
mean level of overestimation ranged from +36% in the Linnet image to +134% in 
the Starling image. Table 1 shows the range of variation and median value for the 
estimates in each image.

There is no doubt that these levels of observer variation could mask significant 
increases or declines in actual bird populations.

Consequently, in recent years, researchers have started to look at ways to use 
technology to improve the quality and efficiency of bird counts e.g. Chabot and 
Francis (2016), Groom et al. (2013), Merkel et al. (2016), though these methods 
have yet to be adopted by mainstream ornithologists. Estimates made in the field 
remain the main source of bird count data underpinning all of the major bird surveys 
in the UK. However, given the wide range of observer variation associated with field 
estimates made by eye (see Results section below), it is clear that any practical and 
cost efficient method that improves the accuracy of bird counts should be embraced 
and developed.

The rest of this chapter demonstrates the how ‘ImageJ’, an open-source image 
processing program, can be used to improve the accuracy of flock and population 
size estimates.

 ImageJ Software

Originally, ImageJ was developed for medical purposes, and the program is particu-
larly well adapted for counting blood cells in blood samples. However, using suit-
able images and the appropriate settings, the program is equally well adapted for 
providing accurate estimates of large aggregations of birds, whether in flight, at 
breeding grounds or feeding grounds. Essentially, for the purpose of mainstream 
application, it is straightforward to use and is freely available to download on the 
internet.
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ImageJ can be downloaded from the ‘Downloads’ page at https://imagej.net, 
though you may also need to download the ‘cell counter’ plug-in for manual counts. 
Alternatively, if you download ‘Imagej Fuji’, this comes with a wide range of plug- 
ins already incorporated, including the cell counter. ImageJ Fuji can be downloaded 
at https://imagej.net/Fiji/Downloads. A user guide is also freely available (Ferreira 
and Rasband 2012).

 Case Study and Image Locations

The species and locations selected for case studies were those illustrated in Figs. 2, 
3, 4 and 5, namely:

• Guillemots (Uria aalge) at their Elegug Stacks breeding colony in Pembrokeshire, 
UK;

• Greater Flamingos (Phoenicopteris roseus) on their wintering grounds at Doñana 
National Park in Andalucia, Spain;

• Golden Plovers (Pluvialis apricaria) and Linnet (Carduelis cannabina) flocks on 
farmland in the Angle Peninsula in Pembrokeshire, UK; and

• Starlings (Sturnus vulgaris) murmurating near a roost on the pier at Aberystwyth 
in Ceredigion, UK.

These case studies illustrate the potential of ImageJ for providing accurate esti-
mates of bird numbers from images taken in a variety of different situations.

 Methods

ImageJ can carry out either manual or automatic counts as appropriate, depending 
on the number and density of the birds in the image and on the complexity of the 
background. The sections below detail the key stages in the process, namely:

 1. Image collection;
 2. Deciding whether to carry out a manual or automatic bird count in ImageJ;
 3. The process for carrying out counts in ImageJ;
 4. Validating the counts.

 Image Collection

Three key components of the image collection process combine to provide suitable 
images for carrying out bird counts in ImageJ: these are the camera equipment, the 
camera settings and the method of image capture.
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 Camera Equipment

A Digital Single Lens Reflex (DSLR) camera and a either a 35 mm or 100 mm lens 
is the preferred option for collecting images of bird flocks, depending on the size of 
the flock and how far away it is. If the flock is close, then a 35 mm lens is probably 
the best, with the 100 mm lens better for distant flocks. A good quality zoom lens, 
such as 24 mm–70 mm, offers a more versatile option: this would avoid the incon-
venience of deciding which lens to use and possibly having to change lenses.

A good quality bridge camera or compact zoom could also suffice, as long as the 
images are sufficiently clear and detailed. The captions for Figs. 2, 3, 4, 5, 10a, b 
include the equipment and settings used to take the images.

 Camera Settings

The key camera settings centre on the ISO, the f-stop and the shutter speed. The 
balance of these three settings will determine the sharpness of the image, the expo-
sure of the image and the amount of movement in the image. Ideally, the image will 
not be too grainy, will be well exposed, i.e. not too bright or too dark, and the birds 
in the image will be sharply defined and not blurred. The sections below outline the 
general recommendations for these settings.

ISO Settings

The ISO setting will determine the ‘graininess’ of the image, where lower ISO set-
tings deliver finer grained, higher quality, images. During summer months, with a 
reasonable quality camera, you can use ISO 200 in good light conditions. At other 
times of year, as the light quality declines, ISO 400 should suffice in all but very 
poor light conditions. Avoid using settings greater than ISO 800, as these will nega-
tively impact on image quality.

The f-stop

The f-stop relates to how wide the aperture is at the time of image capture: this 
determines the depth of field in the image, which is a factor if the main subject of 
the image is close to the camera and you want the background to be sharp too. High 
f-stops of f22 or f32 provide the greatest depth of field. However, large flocks of 
birds are rarely close enough to need to use these settings. If the birds are all at a 
fixed distance from the camera, e.g. in photographs of feeding birds taken from a 
light aircraft or UAV, then an f-stop of f8 should be fine. Similarly, even if the birds 
are in flight and at various distances from the camera, an f-stop of f11 should ensure 
all of the birds in the flock are visible.
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Shutter Speed

The shutter speed determines whether there is blurring as a consequence of ‘hand-
shake’ and whether the birds in the flock are sharply defined. Generally, a shutter 
speed of 1/50th s will be sufficient to eliminate handshake if you are using a 50 mm 

Fig. 10 (a) An image of a Guillemot colony at Elegug Stacks in Pembrokeshire UK. A manual 
count of the birds in ImageJ revealed that there are 1626 Guillemots, 1 Razorbill (Alca torda) and 
2 Great Black-backed Gulls (Larus marinus) in the image. (b) is an inset from Fig. 10a but after a 
manual count in ImageJ. This shows the marker that has been left on each bird to indicate that the 
bird has been counted and which species it is (indicated by the marker number – 2 in this case). 
These markers make it possible to avoid double counting and to avoid losing your place in the 
image during the count. Camera model – Canon EOS 7D, Lens – Canon 35 mm lens, ISO 800, 
F-stop – f/10, Exposure time – 1/800 s
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lens or smaller. However, the risk of handshake increases with the focal length of 
the lens, so if you are using a 100 mm lens then you would need a shutter speed of 
1/100th s to eliminate the risk of handshake, and a shutter speed of 1/500th s to 
eliminate handshake using a 500 mm lens etc. We must also attempt to freeze the 
movement of the birds which, in flight, can be more demanding. As a general rule, 
setting the shutter speed at 1/500th s will be fast enough to still the movement in 
most flocks of birds: only the Starling murmuration in the case studies below used 
a higher shutter speed than this, at 1/640th s.

In summary, if you set the camera at ISO 400, with the f-stop at f11 and the shut-
ter speed at 1/500th s, this should suffice to capture well-lit, well-defined images 
with a good depth of field: images with these characteristics are ideal for carrying 
out counts in ImageJ.

 Capturing the Images

There are two basic alternatives for capturing images of bird flocks:

• Vertical images of feeding or breeding birds taken from light aircraft or 
Unmanned Aerial Vehicles (UAVs); and

• Oblique images of cliff-based breeding colonies or flocks of birds in flight, typi-
cally taken from the ground, but also potentially by UAV.

Capturing Vertical Images of Feeding or Breeding Birds

Until recently, the only practical option for collecting vertical images of birds was 
by light aircraft, similar to the four-seat Cessna used to capture the flamingo images 
in Case Studies 3 and 4. This is no longer the case and the potential for using UAVs 
to capture vertical images of birds is increasing rapidly. Although there are limita-
tions to the area that UAVs can cover during one flight, which is often in the region 
of 1 square km, this would be sufficient to capture images of many feeding hotspots 
or breeding colonies. Furthermore, there is always the option of using more than 
one UAV or carrying out more than one flight.

Vertical images of birds feeding on the ground or in water offer the best chance 
for accurate counts, because the birds are all the same distance from the camera: 
making it possible to differentiate different species by size as well as plumage. It 
also means that we do not need to set a large depth of field on the camera, so an 
f-stop of f8, or even f5.6, might be sufficient to provide adequate images for counts. 
Another advantage of vertical images is that, whether breeding or feeding, birds 
often prefer to have their own personal space: this space can be clearly visible on 
vertical images but is less obvious on oblique images (see Fig.1).
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Capturing Images of Flocks of Birds in Flight

Most of the case studies in this chapter focus on flocks of birds in flight: this is 
because these present the greatest challenge to a bird counter. Often, however, flying 
birds also offer the best opportunity of obtaining an accurate count of how many 
birds are present. This is particularly true of gregarious estuarine waders such as 
Dunlin and Knot, and of small and sociable ground-feeding birds, such as sparrows, 
finches, larks and buntings.

As with feeding birds, birds in flight also like their own space: this would be 
obvious in a 3D image but is much less evident in 2D images, where the birds will 
overlap. This presents a problem for any automatic counter program that simply 
counts the number of discrete objects in an image. There are ways to minimise the 
error caused by overlapping birds in an image and these are covered both in the 
section on validation below and in the individual case studies. However, life is 
 generally a lot easier if we can minimise the number of overlapping birds in images 
at the time of capture. We can do this by following a few general rules:

 (a) Identify the best vantage point to take the images, for example, as Starlings 
arrive to roost or as waders arrive to feed on a falling tide;

 (b) Try to capture the entire flock in a single image or, if the flock breaks up, then 
take separate images of the component parts of it: large flocks of Starlings or 
waders, for example, often aggregate and disaggregate during aerial displays;

 (c) If the birds are in a tight flock, try to get an image of the flock as it banks to one 
side or the other, this often reveals the spaces between the birds and reduces the 
amount of overlap in the image; and

 (d) If birds tend to arrive in sequence, e.g. Cranes or Geese, have a system for 
 recognising when one flock ends and the next one starts – perhaps by taking an 
image of a tree or a building, something obvious that is in your field of view, to 
form a break between the end of one flock and the start of the next.

 Carrying Out Counts in ImageJ

There are two basic types of count available in ImageJ: a manual count and an auto-
matic count. In general, a manual count is by far the best option if the image con-
tains less than c. 3000 birds, and might be the only option if the image has a noisy 
or complex background. Alternatively, if an image contains several thousands of 
birds set against a relatively plain background, e.g. sky, water, mud or sand, then an 
automatic count may be the more practical option. Both count types offer a more 
reliable alternative to ‘by eye’ counts in the field.
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 Manual Counts

In most cases, except when dealing with exceptionally large flocks of birds, a man-
ual count is the most efficient and accurate option, and this will always be the case 
if there is a complex background to the image, such as vegetation or rock. For this 
reason, manual counts are likely to be the only feasible option for counting seabird 
colonies on cliff-faces, for example. A manual count is also the only option if the 
birds in the image have a strongly contrasting plumage pattern, such as Avocets 
(Recurvirostra avosetta) or Shelducks (Tadorna tadorna) as, in this situation, the 
automatic counter will typically count each black section (or white section in an 
inverted image) as a separate object/bird.

Manual counts are the default option because they need virtually no preparation. 
ImageJ keeps running totals for up to eight species (I have yet to come across a situ-
ation where I needed all eight) until the count is complete, at which point there is an 
option to save totals to an Excel file. Manual counts in ImageJ have a number of 
advantages over carrying out counts in the field and over automatic counts in 
ImageJ, including the ability to:

• Zoom into the image and systematically count all of the bird in your own time.
• Pick up the count where you left it if you are disturbed or distracted: this is not 

an option if you are disturbed while counting birds in the field.
• Stop to rest your eyes, or for a comfort break, and carry on later when you are 

rested and refreshed.
• Decide what should count as one bird, what is part of a bird, what is several 

overlapping birds etc.: overlapping birds are counted as ‘one’ in automatic 
counts.

• Keep running totals for several species at the same time.
• Commit only one person to the task: it would usually take at least two people to 

carry out a seabird population count in the field.

As a general guide, a manual count of c. 1000 birds in ImageJ will take 10–15 min: 
Case Study 1 provides a worked example of how to do this.

Manual Count Validation

There is no need for validation of manual counts in ImageJ as you can export images 
with markers showing (a) which birds were counted and (b) which birds were allo-
cated to which species (Fig. 10b). If validation is necessary, an independent expert 
could check the ‘marked’ image for missed birds or mistaken identification.
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Automatic counts

Automatic counts are best suited to situations where, for practical purposes at least, 
there are simply too many birds in the image to consider counting manually. These 
situations tend to arise in only a few circumsances in the UK, typically at winter 
roosts of waders and Starlings. However, the image will need a plain background 
and validation is essential.

Automatic Count Validation

Automatic counts come with three options for validation:

• A drawing showing the numbered outlines of objects that contributed to the 
count;

• An Excel file documenting the pixel size of every numbered object in the  
drawing; and

• The option of carrying out a manual count of all or part of the image.

Validation is an essential source of confidence when applying the automatic 
counter and the case studies provide examples of each validation option.

 Results

The six case studies focus on situations where it would be difficult to carry out an 
accurate count in the field. In the case of automated counts, the accuracy depends 
not only on having a suitable image but also on selecting the most appropriate set-
tings for threshold and object size. The case studies below illustrate how to adjust 
these settings to best effect for different image types.

 A Manual Count of Guillemots at a Breeding Colony at Elegug 
Stacks, Pembrokeshire, UK

Counting seabirds at breeding colonies is fraught with difficulties and frustrations. 
The number and density of birds being counted is typically high, the birds are con-
stantly coming and going, the birds engage in a lot of territorial disputes, and there 
are occasional incursions by predators causing unrest or, even worse, dreads when 
many birds will leave the colony etc.

A big advantage of carrying out photographic counts is that you can wait until most 
of the birds are present on the colony, take the photo and go home to do the count, safe 
in the knowledge that the birds are not going to be disturbed or flushed by predators 
part of the way through the count. Text Box 1 details the process used to carry out a 
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manual count of the Guillemot colony in ImageJ: this process was the same for the 
manual counts carried out for validation purposes in Case Studies 3, 4, 5 and 6. In the 
‘automatic count’ mode, ImageJ will generate a relatively accurate count of several 
thousands of birds in seconds, a task that could take many hours, if not days, to carry 
out manually. However, the accuracy of the count will depend entirely on a) the ability 
of the program to isolate the birds from their background, b) the threshold settings 
applied to the image and c) the pixel range settings applied to the image.

To deliver a near-accurate automatic count, ImageJ needs an image that shows 
clearly defined bird outlines against a clean and high contrast background: each bird 
needs to be a separate entity, i.e. something that the program can equate to a blood 
cell. Case Study 2 below outlines the process for carrying out an automatic count in 
ImageJ and the subsequent case studies illustrate how to adjust the automatic count 
settings to different situations. 

Text Box 1: The Process and Settings Used for Carrying Out the ImageJ 
Manual Count of the Guillemots at the Elegug Stacks Colony in 
Pembrokeshire, UK
Open ImageJ, select File ➾ Open – and choose the image that you want to 
analyse

When the image is open in ImageJ select Plugins ➾ Analyze ➾ Cell 
counter

This will open a table showing the cell counter options, click on ‘Initialize’
Next, choose your ‘Counter Type’ for the species that you want to count – 

some of the markers colours are brighter than others, so you might want to test 
them before deciding which to use. If there is more than one species in the 
image, select a different ‘Counter Type’ for species that you want to count.

After selecting the Counter Type, just left-click on each individual that you 
want to count and ImageJ will leave a marker on the bird to show that it has 
been counted and will add one to the total for that marker type, so you do not 
need to count and cannot lose your place in the image. Note that you can 
zoom into the image using the ‘zoom’ option under the ‘Image’ heading in the 
main menu and you can move about the image while counting by toggling 
between the ‘hand’ scrolling tool and the point selection tool on the main 
menu.

When you have finished counting, click on ‘Results’ in the cell counter 
table and an Excel spreadsheet will pop up showing how many species of each 
type you have counted, click on ‘File’➾‘Save’ to save these results in your 
chosen location

Click on ‘Export’ and your image will pop up with the markers on it
In the main ImageJ menu select ‘File’ ➾‘Save as’ – then choose the image 

type from the drop-down menu, e.g. Tiff or Jpeg etc
Finally, choose a file name and location and click on ‘Save’
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 An Automatic Count of a Starling Murmuration at Aberystwyth, 
Ceredigion, UK

One of the most difficult challenges for any bird counter is to assess the number of 
Starlings participating in aerial displays (murmurating) before going to roost.

The intricate formations witnessed during Starling murmurations are spellbind-
ing and can involve tens of thousands of birds. Reliably estimating the number of 
birds involved in these displays by eye is impossible. However, if we can capture an 
image of a flock of birds against a plain sky background, there is a good chance that 
it will be suitable for an automatic count in ImageJ. In images with a plain back-
ground, the factor most likely to influence the accuracy of the count will be the 
degree of overlap between individual birds. In images of dense flocks, there will 
always be some individuals overlapping, and in dense flocks comprising a large 
number of birds, this could equate to thousands. This will pose a problem for any 
program that bases its counts on the number of objects in an image, because ten 
overlapping birds could form a single object and contribute only a single bird to the 
total. The impact of this problem can be minimised, however, because ImageJ pro-
vides two options for validating the counts: a drawing showing the numbered objects 
that contributed to the count and an Excel file stating the pixel size of every object 
that contributed to the count. In practice, the drawing is an excellent source of con-
fidence that the objects counted by the program actually equate to the birds in the 
original image. If this is not the case, then the settings for image threshold and 
object pixel size will need adjusting. Text Box 2 describes the process involved in 
carrying out the automatic count of the Starling murmuration shown in Fig. 3, while 
Fig. 11 shows an inset from the drawing showing the numbered objects that were 
counted, this indicated that all of the objects counted were birds.

 Starling Case Study Results and Validation

The total generated by the automatic count in ImageJ was 9380 birds, but this 
included a considerable number of overlapping birds. The validation process 
described below improved the accuracy of this estimate.

 Validation

The automatic count details in the Excel table (Table 2) suggested that the area of 
most individuals in the Starling flock was in the 35–80 pixel range, depending on 
the position of the bird in the flock (closer or further from the camera) and whether 
the wings were outstretched or close to the body at the time. However, because there 
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Text Box 2: The Process and Settings Used for Carrying Out the 
Automatic Count of a Starling Murmuration (Fig. 3) in ImageJ
Open ImageJ, select ‘File’ ➾ ‘Open’ – and choose the image that you want to 
analyse

When the image is open select ‘Image’ ➾‘Type’ ➾‘8-bit’
Then, again under the ‘Image’ menu, select ‘Adjust’ ➾‘Threshold’ – this 

will open a box containing the Threshold settings
Then select the appropriate Threshold settings which, in the case of the 

image of the Starling murmuration, were as follows:

Top slider – 0
Bottom slider – 119
Default B&W
Don’t tick ‘Dark background’

Click on the apply button
Then go back to the main ImageJ toolbar and select ‘Analyze’ ➾‘Analyze 

particles’ – this opens another box and the following settings were selected:

Size (pixel) 10-infinity
Circularity 0.00–1.00
Show Outlines
Tick Display results
Click on OK

This will generate an Excel spreadsheet with the count details and an 
image labeled ‘Drawing of + file name’ this shows the Starling outlines (num-
bered) that contributed to the count total.

is a drawing showing the numbered outlines of every object counted and a table 
showing the area (in pixels) for each object, you can cross-reference between the 
two to confirm this and to check whether the objects with a larger pixel area com-
prised more than one bird. Cross-referencing between the drawing and Excel table 
for the Starling image revealed that objects of 100–199 pixels comprised at least 
two birds. Therefore, as many objects in the spreadsheet had an area of >100 pixels, 
it was clear that the automatic count of 9380 birds must have been an underestimate, 
and quite possibly a substantial one.

To improve the accuracy of the Starling estimate, I scrolled through the spread-
sheet and for every object with an area of 100–199 pixels I added one bird to the 
total, and for every object with an area of 200–299 pixels I added two birds etc., etc. 
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Table 2 These are the first 
entries in the Excel results 
table generated by the 
automatic count of the 
Starling flock: the pixel area 
counts of >100 pixels 
referred to objects comprising 
more than one bird

Object/bird number Pixel area

1 39
2 39
3 65
4 22
5 155
6 46
7 26
8 146
9 179
10 171
11 45
12 67
13 40
14 49
15 77
16 63
17 79
18 54
19 42

Fig. 11 An enlarged inset from the ‘drawing’ of Fig. 3. This drawing, generated during an auto-
matic count of a Starling flock in ImageJ, shows the numbered outline of each bird that contributed 
to the total: the larger objects (e.g. no. 1512) comprise at least two overlapping birds
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This exercise generated an additional 1737 birds, bringing the estimated total in the 
image to 11,117. This means that the automatic count underestimated the number of 
birds in the flock by at least 18.5%, though this still compares favourably with the 
median of −57% recorded by experienced ornithologists. In reality, the revised total 
of 11,117 birds is also likely to be an underestimate, but a less significant one and 
probably by fewer than 500 birds.

It is possible, of course, to undertake a full validation of the number of birds in 
the image by carrying out a manual count, but this would be a demanding and time 
consuming process that would render the automatic count pointless.

 An Automatic Count of Wintering Greater Flamingos 
(Phoenicopterus roseus) in Flight over Doñana NP  
in South- West Spain

The image used in this case study was taken from a light aircraft (a four-seater 
Cessna) in March 2014. The image shows a flock of Greater Flamingos in flight 
over Doñana NP in south-west Spain. Despite the different tones in the background 
of the image, it was possible to neutralise these using the threshold settings given in 
the Text Box 3.

Although the image in Fig. 2 shows spacing between many of the flamingos in 
flight, the estimate generated by the automatic count was 871 birds: an underesti-
mate of c. 10% compared to the manual count of 969. This suggests that c. 10% of 
the birds in the image were overlapping, though probably more because of the verti-
cal perspective of the image than because the birds were particularly close together.

In practice, a manual count in ImageJ is most appropriate for this type of bird 
flock, as it would take only c. 20 min to complete and should be c. 99–100% accu-
rate (Figs. 12 and 13).

 An Automatic Count of Wintering Greater Flamingos 
(Phoenicopterus roseus) Feeding in a Lagoon at Doñana NP 
in Andalucia, Spain

The image of Greater Flamingos feeding in a lagoon at Doñana NP (Fig. 14) was 
taken in from a light aircraft (a four-seat Cessna) in March 2014. Text Box 4 out-
lines the process and settings used to carry out an automatic count of the feeding 
flamingos in Fig. 14.

The relatively plain background of standing water and the feeding spaces 
between individual birds made this image equally suitable for an automatic or 
manual count. This was reflected in the results from the two counts, with the auto-
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Fig. 12 The drawing generated during the automatic count of the flamingos in flight shows that 
the counted objects correspond very closely with the distribution of birds in the original image 
(Fig. 2)

Text Box 3: The Process and Settings Used to Carry Out an Automatic 
Count of a Flock of Wintering Greater Flamingos in Flight over Doñana 
in South-West Spain (Fig. 2)
Open ImageJ, select File ➾ Open – and choose the image that you want to 
analyse

When the image is open select Image’ ➾Type ➾8-bit
Then, again under the’Image’ menu select ‘Adjust’ ➾Threshold – this will 

open a box containing the Threshold settings
Then select the appropriate Threshold settings, which, in the case of the 

image of the Flamingos in flight, were as follows:

Top slider – 121
Bottom slider – 255
Default – Red
Tick – Dark background’

Click on the apply button
Then go back to the main ImageJ toolbar and select ‘Analyze’ ➾Analyze 

particles – this opens another box and the following settings were selected:

Size (pixel) – 60 to infinity
Circularity – 0.00–1.00
Show – Outlines
Tick – Display results
Click on OK

This will generate an Excel spreadsheet with the count details and an 
image labeled ‘Drawing of + file name’ this shows the Greater Flamingo out-
lines (numbered) that contributed to the count total. Save both.
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Fig. 13 An enlarged inset from the drawing generated during an automatic count in ImageJ 
(Fig. 12). This shows the numbered outlines of birds that contributed to the count, including some 
overlapping birds in the lower right quarter

Fig. 14 An aerial image of wintering Greater Flamingos feeding in a lagoon at Doñana NP. An 
automatic count of these birds in ImageJ indicated that 215 birds were present in the image, a 
manual count for validation purposes revealed 214 Greater Flamingos. Camera model – Canon 
EOS 7D, Lens – Canon 35 mm, ISO 400, F-stop f/8, Exposure time 1/500 s

matic count generating an estimate of 215 birds, compared to the manual count of 
214 birds.

In practice, a manual count is the most appropriate for this type of image, as this 
would be 99%–100% accurate and take no more than 10 min to complete (Fig. 15).
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Fig. 15 An enlarged inset from the drawing of Fig. 14: this drawing was generated during an 
automatic count in ImageJ. This shows the numbered outlines of the Greater Flamingos that con-
tributed to the count total.

Text Box 4: The Process and Settings Used for Carrying Out an 
Automatic Count of Wintering Greater Flamingos Feeding in a Laguna 
at Doñana in South-West Spain (Fig. 14)
Open ImageJ, select ‘File’ ➾ ‘Open’ – and choose the image that you want to 
analyse

When the image is open select ‘Image’ ➾‘Type’ ➾‘8-bit’
Then, again under the ‘Image’ menu select ‘Adjust’ ➾‘Threshold’ – this 

will open a box containing the Threshold settings
Then select the appropriate Threshold settings, which, in the case of the 

image of the feeding flamingos, were as follows:

Top slider – 91
Bottom slider – 233
Default – Red.
Leave ‘Dark background’ clear, do not tick

Click on the apply button twice – so that you are seeing black birds on a 
white background

Then go back to the main ImageJ toolbar and select ‘Analyze’ ➾‘Analyze 
particles’ – this opens another box and the following settings were selected:

Size (pixel) 300 – infinity
Circularity 0.00–1.00
Show Outlines
Tick Display results
Click on OK

This will generate an Excel spreadsheet with the count details and an 
image labeled ‘Drawing of + file name’ this shows the Greater Flamingo out-
lines (numbered) that contributed to the count total.
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 An Automatic Count of a Flock of Linnets (Carduelis 
cannabina) in Flight over Stubble Fields at Angle, 
Pembrokeshire, Wales

In autumn and winter, sizeable flocks of farmland birds present a challenge for bird 
recorders. These flocks, which often comprise several hundreds of small, ground- 
feeding birds, are typically difficult to see or count while feeding on the ground. 
These flocks are dense, very mobile and easily disturbed. Furthermore, the flocks 
often comprise several different species, typically involving larks, sparrows, finches 
and buntings. In flight, if there is a mixed flock of several similarly sized species, a 
manual count is will be the most appropriate option. However, an automatic count 
is also possible if it is a single-species flock and the birds are not too densely packed.

Text Box 5 outlines the process and settings used to carry out an automatic count 
of the birds in Fig. 4 in ImageJ. This automatic count generated a total of 377 birds, 

Text Box 5: The Process and Settings Used for Carrying Out an 
Automatic Count of a Flock of Linnets in Flight over Farmland (Fig. 4)
Open ImageJ, select ‘File’ ➾ ‘Open’ – and choose the image that you want to 
analyse

When the image is open select ‘Image’ ➾ ‘Type’ ➾ ‘8-bit’
Then, again under the ‘Image’ menu select ‘Adjust’ ➾ ‘Threshold’ – this 

will open a box containing the Threshold settings
Then select the appropriate Threshold settings, which, in the case of the 

image of the Linnets in flight, were as follows:

Top slider – 92
Bottom slider – 255
Default – Red.
Tick Dark background’

Click on the apply button twice
Then go back to the main ImageJ toolbar and select ‘Analyze’ ➾ ‘Analyze 

particles’ – this opens another box and the following settings were selected:

Size (pixel) 500- infinity
Circularity 0.00–1.00
Show Outlines
Tick Display results
Click on OK

This will generate an Excel spreadsheet with the count details and an 
image labelled ‘Drawing of + file name’ this shows the outlines (numbered) 
of the Linnets that contributed to the count total.
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compared to the manual count total of 458, so the automatic count underestimated 
the number of birds in the flock by c.18%. This disparity between the two counts was 
primarily a consequence of overlapping birds counting as a single object during the 
automatic count process. However, it is also likely that the lower 500 pixel size 
threshold for the automatic count excluded some of the birds partially represented on 
the edge of the image. These birds would have contributed to the manual count total.

In the case of larger flocks, it would also be possible to look through the pixel 
sizes in the Excel results spreadsheet and generate a more accurate estimate of how 
many birds were present in the image, as illustrated for the Starling murmuration in 
Case Study 2 (Fig. 16).

 An Automatic Count of Golden Plovers (Pluvialis apricaria) 
in Flight over Farmland Near Castlemartin, Pembrokeshire, UK

The Golden Plover is a sociable species that can form large flocks and favours farm-
land for winter feeding. The birds are typically well spaced when moving between 
feeding sites, or drifting over a favoured feeding area after being disturbed, though 
overlapping birds are common in images of birds taking to flight. Figs. 5 and 17 
show a large, well-spaced, single-species flock of Golden Plovers set against a plain 
sky background: this ticks all of the boxes for an accurate automatic count in 
ImageJ. Text Box 6 outlines the process and settings used to generate an automatic 
count of the Golden Plovers in Fig. 5.

Fig. 16 An enlarged inset from the drawing of the image shown in Fig. 4, generated during an 
automatic count in ImageJ. This shows the numbered outlines of the Linnets that contributed to the 
count total. Note that overlapping birds, e.g. the four birds in the top right of the drawing, are 
counted as one
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Fig. 17 An inset from the ‘drawing’ of Fig. 5: this shows the numbered outline of each Golden 
Plover contributing to the count total

Text Box 6: The Process and Settings Used to Carry Out an Automatic 
Count of a Golden Plover Flock in Flight (Fig. 5)
Open ImageJ, select ‘File’ ➾ ‘Open’ – and choose the image that you want to 
analyse

When the image is open select ‘Image’ ➾ ‘Type’ ➾ ‘8-bit’
Then, again under the ‘Image’ menu select ‘Adjust’ ➾ ‘Threshold’ – this 

will open a box containing the Threshold settings
Then select the appropriate Threshold settings, which, in the case of the 

image of the Golden Plovers in flight, were as follows:

Top slider – 122
Bottom slider – 255
Default Red.
Tick Dark background’

Click on the apply button twice
Then go back to the main ImageJ toolbar and select ‘Analyze’ ➾ ‘Analyze 

particles’ – this opens another box and the following settings were selected:

Size (pixel) 50 to infinity
Circularity 0.00–1.00
Show Outlines
Tick Display results
Click on OK

This will generate an Excel spreadsheet with the count details and an 
image labelled ‘Drawing of + file name’ this shows the outlines (numbered) 
of the Golden Plovers that contributed to the count total.
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The total generated by the automatic count was 832: this was revised to 848 birds 
after using the pixel sizes in the Excel file to validate the count. A manual count 
revealed 842 birds in the image. Therefore, the automatic count of 832 was an 
underestimate of almost 1% and the validation of the automatic count of 848 was an 
overestimate of c.0.7%.

 Discussion

The results of the exercises described in  this chapter suggest that the range of 
observer variation associated with ‘by eye’ bird counts is considerably greater than 
any real change we would tolerate without some form of political or conservation 
management response. The results of these exercises should be a concern for any 
ornithologist or researcher using ‘by eye’ count estimates for scientific purposes. In 
contrast, we can expect the results of careful manual counts in ImageJ to be 99–100% 
accurate, with the accuracy of automatic counts also likely to exceed 90% accuracy, 
particularly after being revised through validation.

The results from the case studies suggest that technology has a significant role to 
play in improving the accuracy of bird counts, particularly on breeding grounds, in 
wintering areas and at staging sites during migration periods. This is particularly 
true where counts involve gregarious species which, in western Europe, include 
Common Scoters (Melanitta nigra), Cranes (Grus grus), Whooper Swans (Cygnus 
cygnus), White Storks (Ciconia ciconia), Greater Flamingos, Guillemots, Golden 
Plovers, Lapwings, Dunlins (Calidris alpina), Knots (Calidris canutus), Starlings, 
and many other species of geese, wader, wildfowl, lark, pipit, finch and bunting.

There are a small number of examples in the literature of researchers experi-
menting with remote counts using segmentation analysis methods (e.g. Chabot and 
Francis 2016, Merkel et al. 2016, Delord et al. 2015, and Groom et al. 2013) but the 
recommendations have not yet penetrated mainstream thinking in ornithological 
circles. Some of these segmentation exercises have been carried out in eCognition 
software (Nussbaum and Menz 2008), but this software is both specialised and 
expensive and would not be readily available or accessible to most birdwatchers, in 
direct contrast to ImageJ software.

Given suitable images to process, ImageJ can carry out relatively accurate auto-
matic counts of large aggregations of birds. These automatic counts take seconds to 
complete and come with three options for validation, (a) a numbered drawing of the 
objects contributing to the count, (b) an Excel file listing the pixel sizes of each object 
in the drawing and (c) partial or complete manual counts of the birds in the image.
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 The Opportunities for Counting Birds in the Future

The true potential of ImageJ will be realised when used in conjunction with images 
collected by light aircraft or drones, particularly in relation to inaccessible, or dif-
ficult to see, feeding or breeding grounds (see Chapt. 15). Furthermore, thermal 
imaging cameras mounted on drones will offer the option of carrying out low dis-
turbance night surveys of ground-nesting bird colonies, again providing images 
suitable for processing in ImageJ.

The manual counter in ImageJ is a deceptively powerful tool and there is no 
doubt that it has the potential to revolutionise how we collect and process bird count 
data.

 Conclusions

Bird surveillance schemes are among the most heavily subscribed citizen science 
projects in the UK. Several of these are long-running national schemes such as the 
Bird Atlas 2007–2011 (Balmer et al. 2013a, b), the Wetland Birds Survey (e.g. Frost 
et al. 2016) and the Seabird Monitoring Programme (e.g. JNCC 2015). The BTO 
coordinates the Wetland Bird Survey (WeBS), which has been operational since 
1947, while the Seabird Monitoring Survey is organised by JNCC and has been 
operational since 1986.

All of these rely heavily on untrained volunteers to collect data on large numbers 
of birds, including wildfowl, waders, seabirds and farmland birds, yet there is noth-
ing in the literature to suggest that the data provided by the volunteers is subject to 
any form of validation. There is also nothing to suggest that photographic counts 
have contributed to the data collection process, despite the longevity of the schemes.

The results of the observer variation exercises in this chapter suggest not only 
that some validation of ‘by eye’ counts is essential, but also that the ornithological 
community would benefit from embracing new technologies to improve both the 
accuracy and precision of bird counts in the future.
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Using UAVs to Map Aquatic Bird Colonies
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Abstract In this chapter, we present the results of several flight campaigns carried 
out in 2015 and 2016 using multirotor Unmanned Airborne Vehicles (UAVs) over 
Slender-billed Gull (Chroicocephalus genei) colonies in the Doñana Nature Space, 
south west Spain. The images were taken at different times during the breeding 
season. The requirements for the flight campaigns were to acquire sufficient visible 
and nadir pictures at 5 cm pixel resolution and to cover the entire nesting colony 
with maximum overlap. Although we carried out the flights under clear skies, low 
wind speed was not always possible, causing a few blurred pictures. After georefer-
encing and mosaicking the set of raw pictures, we adopted photo-interpretation as 
the first technique to identify and delineate birds, either lying, standing or flying. A 
nest position was assigned when the clear pattern of a lying birds was recognised. 
We then selected a set of breeding individuals (nests) to train a supervised classifica-
tion in semi-automatic nest delineation. We applied two different algorithms and 
tested their accuracy in identifying gulls with an independent set of manually 
delineated individuals. We chose the best method according to the accuracy results 
and applied it to the whole colony. We found major issues for nest identification and 
delineation for nests under tree and shrub canopies. The different campaigns and 
flight characteristics were useful to improve bird identification accuracy. As a result, 
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we provided estimates of the number of breeding pairs per year to managers and 
cross-checked these with estimates from the ground monitoring and colony sam-
pling. As an added value, the spatial coordinates of nests can be used for spatial 
analysis and investigate nest aggregation, density and distribution in order to reveal 
spatial relationships with environmental factors such as distance to colony edges, 
distance to colony centroid, distance to predators, etc.

Keywords UAVs • Slender-billed Gull • Orthomosaic • Bird delineation • 
Photointerpretation • Supervised classification • Colony monitoring

 Overview

• UAVs are increasingly helpful and accessible for nature conservation and 
management;

• Picturing bird colonies with UAVs has proved to be a very efficient procedure for 
estimating colony size with low or no disturbances;

• Ground and manned aerial surveys of bird colonies are time-consuming and have 
different constraints in retrieving accurate colony size estimates;

• Most of the studies have identified birds and other animals by visual 
photo-interpretation;

• Automatic supervised classification provides acceptable results for delineating 
ground nesting birds unless under a canopy;

• Some added-values arise from the use of UAV images in bird colony surveys, 
such as the spatial distribution of nests, their attributes and digital surface models 
of the colony;

This study compares automatic versus manual approaches to delineating lying 
and standing gulls on UAV images of a breeding colony at Doñana Natural Space.

 Introduction

In this chapter, we evaluate the use of Unmanned Aerial Vehicles (UAVs) for auto-
mated mapping of Slender-billed gulls (Chroicocephalus genei) inside the Doñana 
Natural Space, southwest Spain. Particular focus was on monitoring bird colony 
size (number of breeding birds or lying individuals) and productivity (clutch size, 
total number of chicks). Ground validation of colony size estimates was achieved 
through concurrent visual surveys.

Unlike previous studies using UAVs to retrieve bird colony information, we used 
two different automatic methods to estimate colony size in addition to visual photo-
interpretation. The selected automatic classification procedures were: (a) Support 
Vector Machine algorithm and (b) Random Forests machine learning methodology. 
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Both algorithms have proven to be very efficient in delineating and targeting fea-
tures in digital image analysis (Foody and Mathur 2004; Pal 2005). These approaches 
can be used for any other colonial species to provide quick status assessment and 
colony size estimates. Automatic techniques based on pattern recognition and image 
classification have been previously applied for bird detection in flocks (Abd-
Elrahman 2005; Grenzdörffer 2013) showing acceptable results.

Additionally, visual assessment allowed us to identify standing birds from lying 
birds and, for a few cases, count eggs lying exposed on the ground. We were also 
able to identify other species breeding in the colony, such as the Black-headed Gull 
(Chroicocephalus ridibundus) and Yellow-legged Gull (Larus michahellis), the 
latter being an active chick predator of the other two species.

 Background

Two of the most critical factors in assessing the conservation status of a bird popula-
tion are the number of breeding pairs and annual breeding success. Usually, manag-
ers and scientists estimate changing population sizes by counting nesting pairs and 
fledging chicks throughout the breeding season and from year to year. Additional 
research or monitoring activities are however needed to obtain ancillary information 
over the course of the breeding season, such as clutch size and the number of born 
and fledging chicks per nesting colony. This information requires very intensive 
sampling but generally involves entering the breeding colonies. This usually leads 
to significant disturbances (Anderson and Gaston 2013), to which Slender-billed 
Gulls are particularly sensitive. (Oro and Tavecchia 2008).

As an alternative to ground sampling, manned aerial surveys have been used 
widely to reduce disturbances in deriving counts while also providing synoptic 
information (Frederick et al. 1996; McEvoy et al. 2016). This is the case in Doñana 
Natural Space, where aquatic bird populations are estimated on a monthly basis by 
manned flights over wetlands (Fig. 1). In addition to these observations, photos are 
usually taken during the flight for after-flight assessment. However, these images 
are not usually acquired with adequate planimetric planning (zenithal view, appro-
priate overlapping and pixel size) or illumination conditions, making them an 
unsuitable source for mapping – shadowed and overlapping individuals are usually 
the main constraints.

In recent years, many studies have shown the usefulness of UAVs for deriving 
counts of colony-nesting birds (Chabot et  al. 2015; Hodgson et  al. 2016; Sardà- 
Palomera et  al. 2012). The recent increase in the availability and ease of use of 
UAVs has also motivated scientists to use them for ecological studies (Anderson 
and Gaston 2013). Professional UAV campaigns may resolve these kinds of issues 
since proper mission planning can provide accurate and spatially explicit informa-
tion. UAVs have also proven efficient in overflying bird colonies and providing 
valuable scientific information (Jones et  al. 2006; Sardà-Palomera et  al. 2012). 
However, in the context of bird surveys, the use of UAVs has not been sufficiently 
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evaluated in terms of their cost efficiency or their precision in retrieving population 
data of sufficient accuracy (Hodgson et al. 2016). Several studies have indicated this 
technology can be used to support bird observations and sampling but few have 
proposed automated counting of either individuals or nests.

 Targeted Species: The Slender-billed Gull

The Slender-billed Gull is a medium size Laridae (42–44 cm long and 220–350 g 
weight) species that breeds widely at isolated, scattered localities, from Senegal to 
Mauritania, and from the south and east of the Iberian Peninsula, through the 
Mediterranean, Black Sea, Minor Asia and the Middle East to east Kazakhstan, 
Afghanistan, Pakistan and north-west India (del-Hoyo et al. 1996). Least Concern 
is their current IUCN Red List category (BirdLife International 2016).

The Spanish population is very small and sparsely distributed and therefore is 
labelled as “vulnerable” by the Red Book on Spanish Birds (Madroño et al. 2004).

It usually breeds in marshes and saltpans with a typical laying period between 
late April and late May (exceptionally till July). The nests, formed of scat and feathers, 
are hardly visible as they are built on the ground or on low halophytic vegetation. It 
is a very social species that forms colonies together with other gulls, terns and 
shorebirds. However, the species is very sensitive to human disturbances and shows 
a distinctive breeding biology. Colonies are typically very dense and chicks cluster 
into nurseries just after birth. Such characteristics make the estimation of breeding 
pairs from the ground very challenging, often leading to overlooked individuals and 
chicks (Oro and Tavecchia 2008). Ideally, the colony should be visited at the end of 
the incubation period only once, which should be enough as the species shows a 
tight synchronicity during the egg-laying period (Oro and Tavecchia 2008).

Fig. 1 Examples of (a) inappropriate and (b) adequate pictures, taken during manned aerial 
 surveys over the Doñana Slender-billed Gull colonies in different years. Notice the differences in 
illumination in the left picture and the effects of shadowing and overlapping (Source: H. Garrido. 
Doñana Natural Processes Monitoring Team)
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 Study Area: The Doñana Colonies

Since 2002, the Slender-billed Gull colonies in Doñana Natural Space have usually 
been inside the Veta la Palma fisheries area, where the birds lay their eggs on the 
islands inside the fish ponds (Fig. 2). This area, transformed to aquaculture ponds 
from original marsh, combines conservation with fish farming. The availability of 
islands in the middle of flooded pools offers protection against terrestrial predators, 
and the abundant food supply makes it a suitable habitat for nesting. However, in the 
case of island colonies, such as the one in Veta la Palma, the disturbance times asso-
ciated with visiting the colony to ring chicks and count nests are increased due to the 
time needed to reach the colony: extended disturbances of this kind should be 
avoided. A much better estimation is gained by counting chicks while enclosing 
them. However, this, again, is not a recommended practice.

The species also breeds in the marshes of the Doñana Natural Space and on the 
Salinas de Sanlúcar  saltpans located on the other side of the Guadalquivir River 
(Fig. 2).

The number of Slender-billed Gull breeding pairs has fluctuated in the last 15 
years from 216 in 2008 to 766 in 2014, with an annual average of 500 pairs (Fig. 3). 
In the natural marshes of Doñana, the species also suffers from intense wild boar 

Fig. 2 Location of the Slender-billed Gull colonies in Doñana Natural Space, composed by the 
National Park (red line) and the Natural Park (yellow line)
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predation and the National Park administration fenced the area in 2004 in order to 
reduce the impacts of these ground-based predators as well as trampling by cattle. 
Black Kites (Milvus migrans) also predate on the eggs and chicks.

 Methods

 UAVs Flight Campaigns

The first flight campaigns were carried out in 2015 as part of the research project 
RECUPERA2020 funded by the European Regional Development Fund. The main 
goal of the project was to transfer research knowledge on the topic of environmen-
tal sustainability to regional farmers. The specific goal of this study was to assess 
the use of UAV technology for monitoring environmental integrity. The UAV sys-
tem provided by the Center for Advanced Aerospace Technologies (Fada-Catec) 
was an electric multirotor equiped with a camera Sony Alpha-5100, with 24 
Megapixels and a focal distance of 22 mm. Table 1 shows the characteristics of every 
flight campaign. Flight height and speed were selected following Vas et al. (2015). 
Missions were planned to collect as many pictures as possible instead of having just 
one frame for the whole colony. Flights were designed to retrieve a minimum pixel 
size of 6 cm in order to be able to identify gulls in the captured pictures (Table 1).
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In 2016, two more flight campaigns were carried out with a MD4-1000 electric 
multicopter from Microdrones GmbH equipped with a Olympus EPM2, 16 Mpix 
and a focal distance of 17 mm. The colony traditionally occupied one island, but in 
2016 a new island located 1 km away was occupied to breed and hence it was 
surveyed.

During every flight, the photograph overlap was maximized to 80% longitudinal 
and 60% lateral. In every flight, the take-off and landings were carried out 500 m 
away from the colony where the UAVs base station was established. There were no 
signs of disturbance observed at the Slender-billed gull colonies during the flights, 
with the exception of flight #5, where a flock of Spoonbill was flushed by the UAV 
and a black kite attacked the colony.

 Geometric Processing

Images were mosaicked with different photogrammetrical software. Orthomosaics 
and Digital Surface Models (DSMs) were derived from the processing. For the 2015 
campaigns, there was no preparatory field work on the site and no Ground Control 
Points (GCPs) were located in the island. Therefore, the orthomosaics were georefer-
enced using 40 common GCPs identified on the available Bing Maps image. The 
geometric correction used a splines model a Root Mean Square (RMS) error lower 
than 2 pixels.

Before the start of the breeding season in 2016, we accessed the island and delin-
eated, with centimetric precision, the perimeter with a differential GPS Leica 1200 
(horizontal position error < 30  cm). In addition, eight large stones found on the 
island were geolocated to provide more features to be used as GCPs for future UAVs 
flights. After the flight, we used 80% of the GCPs to produce the orthomosaic and 
20% as Check Points to assess the geometric correction. The final 2016  orthomosaics 
also had RMS error lower than 2 pixels.

Table 1 Characteristics of the flight campaigns

Flight 
#

Date (DD/MM/YYYY)-Time 
(HH:MM) Flight Height (m)

Pixel size 
(mm) N of images

1 18/05/2015-11:26 80 8 60
2 18/05/2015-12:00 50 5 90
3 17/06/2015-11:26 50 5 90
4 30/05/2016-14:30 48 49 11
5 06/06/2016-12:09 51 58 70
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 Methods for Identifying Birds From UAV Imagery

 Photointerpretation

Photointerpretation of the orthomosaics was based on simple eye identification of 
birds, either lying, standing or flying. A point vector file was created while on- 
screen digitizing at 1:50 scale. Clutches, whenever visible (temporarily uncovered 
by the parent), were also located in the image. Nest position was assigned by the 
same observer when the clear pattern of a lying bird was recognized (lower shad-
owed area surrounding the body as shown in Fig. 4). Labels were assigned to every 
delineated bird.

 Supervised Classification

Supervised classification relies on the definition of homogeneous training areas for 
the different thematic classes present in the image, and an algorithm assigns every 
pixel a probability of belonging to one of these classes (Richards 2013). The algo-
rithms use mainly the spectral information from the pixels of the training areas to 
estimate the similarity of any pixel to them. We used two different algorithms:

Support Vector Machines: They are originally binary classifiers and separate the 
classes with a decision surface that maximizes the margin between the classes. 
SVM provide good classification results from complex and noisy data (Camp-Valls 
and Bruzzone 2009).

Fig. 4 A photographic example of the visual identification of lying Slender-billed gulls (purple 
circle), standing individuals (red circle) and eggs (blue circle). Yellow circles highlight Black- 
headed gulls. The black square shows an example of a flying gull

R. Díaz-Delgado et al.
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Random Forests. A random forest is a collection of classification trees trained on a 
subsample of the training data (Chen 2007). Random Forests are currently one of the 
top performing algorithms for data classification and regression. They are widely used 
because of their ability to classify large amounts of data with high accuracy.

In both cases, we used chicks and adult gulls from the orthomosaic as training 
areas for the class “bird” by selecting body pixels as in Grenzdörffer (2013). The 
rest of the training classes represented open water, vegetation and bare soil. Finally, 
where the number of pixels associated with a bird was less than a certain threshold, 
these were removed from the classification. We carried out an accuracy assessment 
against the photo-interpretation results for the whole orthomosaic. Swimming birds 
were excluded.

 Colony Monitoring

Ground-based monitoring surveys comprised periodic visits to the colony during 
the breeding season and the estimation of pairs using binoculars and telescopes 
from the closest position to the island to avoid disturbance. In a separate one-off 
visit during the breeding season, the monitoring team entered the colony to estimate 
the number of nests and to ring the chicks brought offshore. The date on which the 
colony was accessed was determined and informed by the continuous observations 
of the breeding birds.

 Results

 Visual Identification of Birds

Visual identification of the birds took about three days of work for each orthomosaic 
(Fig. 5). An experienced ornithologist used one working day to identify birds and a 
second day to label them according to their activity (flying, lying, standing up, etc.). 
Finally, on the third day, the supervisor assessed the identification and labelled the 
individuals. As C. genei nests are not visible, we assigned nests to lying birds. 
Table 2 shows the results for UAV flight #2. That was the flight-date when most of 
the colony was lying: we selected this flight as the reference for 2015. A total of 915 
individuals of Slender-billed Gull were identified together with 149 individuals of 
Black-headed Gull. Another 27 birds were geolocated in the orthomosaic, cor-
responding to several individuals of White-headed Duck (Oxyura leucocephala) 
and Yellow-legged Gull (Larus michahellis). In addition, 97 visible eggs from 47 
nests (up to 4 eggs per nest) were identified and labelled. UAV flight #3 took place 
late in the season and, by this time, many chicks were already grouped in nurseries. 
Therefore, for this flight and in addition to adults, we also identified chicks that were 
either alive or dead (Table 3).
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According to photo-interpretation, 718 Slender-billed Gulls were identified as 
laying and subsequently producing 47 clutches, which compares with an estimate of 
757 laying birds from a preliminary visual count.

Fig. 5 The location of the different features visually identified and geolocated on the orthomosa-
ics of UAV flights #2 and #3 from 18th May and 17th June 2015

Table 2 Number of 
individuals identified by 
photointerpretation on the 
orthomosaic of UAV flight #2 
on 18th May 2015

Species Attitude Number

Slender-billed Gull Laying 718
Standing 144
Clutches 47
Swimming 6

Black-headed Gull Laying 74
Swimming 39
Standing 33
Flying 3

Other species All attitudes 27
Total 1091
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 Image Automatic Classification

The process of delineating training classes and applying classification procedures 
took less than 2 hours. Random forests were slightly lower than SVM according to 
the Percent of Overall Agreement (OA). Both classifiers performed well and pro-
vided an accurate classification of birds (Table 4). Patches associated with the class 
“bird” were grouped and individuals were identified where these were discrete and 
their size exceeded 24 cm2. No automatic discrimination was possible between C. 
ridibundus and C. genei. Neither eggs nor clutches were classified with the auto-
matic classification. A few individuals were overlapping, which prevented an auto-
matic single individual classification. Most of the delineated polygons corresponded 
to an actual bird shape. However, several resulting polygons just delineated a part of 
the bird’s body. Chicks, when present, were also considered as birds in the accuracy 
assessment.

Table 3 Number of 
individuals identified by 
photointerpretation on the 
orthomosaic of UAV flight #3 
on 6th June 2015

Species Age Number

Slender-billed 
Gull

Adult 418
Alive chicks 575
Dead chicks 63

Black-headed Gull Adult 47
Chick 28

Other species All 9

Table 4 Overall agreement (OA), commission and omission errors for bird automatic classification 
for the different UAV flights and classifiers.

Flight 
Number Classifier

Overall Agreement 
(%)

Commission Error 
(%)

Omission Error 
(%)

Flight #2 SVM 82 7 0.7
Random 
Forests

98 5.5 1

Flight #3 SVM 85 10 1.3
Random 
Forests

96 6 2

Flight #4 SVM 89 3 0.5
Flight #5 SVM 87 5 0.9
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 Colony Monitoring

The estimates of colony size and total chick numbers from the ground surveys and 
preliminary visual estimates were also used to assess the accuracy of those esti-
mated by photo-interpretation and for the total number of lying gulls (OA between 
85 and 95%). Ground surveys and visual estimates were, in all cases, higher than the 
automatic counts on images from UAVs.

 Discussion

In this study, we were able to provide quick and accurate estimates of colony size 
(lying birds) and productivity (number of chicks). One of the most challenging tasks 
in estimating breeding pairs in a bird colony from the ground is the limited horizon-
tal visibility (Sardà-Palomera et  al. 2012). Zenithal views from UAVs definitely 
contribute to improving colony size estimates. However, birds are often fully or 
partially obscured by trees or shrubs, with causes difficulty in their detection and 
counting through photointerpretation. This occurs frequently for Ardeids since nests 
are often settled in the middle of reed beds or stands of other tall graminoids (Prosper 
and Hafner 1996). This constraint has also been found relevant in ungulate surveys 
with UAVs (Chrétien et al. 2016). Given these kind of difficulties, only a complete 
capture of chicks can eventually provide accurate estimates of productivity, though 
these disturbances might also cause chick abandonment (Oro and Tavecchia 2008).

No disturbances were observed for gulls during the UAV flights, suggesting that 
our methodology was appropriate for colony monitoring, which agrees with the 
results from previous studies (McEvoy et al. 2016; Ratcliffe et al. 2015; Vas et al. 
2015). In addition, we employed only three persons to supervise a single whole mis-
sion, two of them for flight operations and one for a ground survey of the colony.

Two big challenges arise when working with photographs taken from UAVs . On 
the one hand, images are not always acquired in the best conditions. Firstly, wind 
gusts can yield blurred images making it difficult to delineate the target features 
although it might be avoided by setting a high shutter speed on the camera. Moving 
birds also appeared distorted. Secondly, the mosaicking process can randomly select 
the image without the bird that was present in the overlapping discarded image, as 
reported by Bakó et al. (2014). We experienced both situations in our study, which 
increased the omission error.

Although visual photo-interpretation ensures high accuracy in bird delineation, 
automatic classification takes less time and produces satisfactory results (Abd- 
Elrahman 2005; Grenzdörffer 2013). However, we had to use a size criterion to 
discard small classified patches. Other approaches using pattern recognition such as 
Object Based Image Analysis (OBIA) may be able to provide better results (see 
chapter by Hurford).
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Finally, UAV flights provide added-value to the classical colony survey methods 
by producing, as the main output, a map including the location of the target species. 
Thus, for instance, one can investigate the relationship between nest density and 
clutch as a possible factor driving breeding success. On the other hand, 3D points 
derived from stereocorrelation may also enhance the automatic bird delineation by 
adding the subtle differences in height between birds and the ground (Anderson and 
Gaston 2013).

 Conclusions

 – We could provide accurate estimates of Slender-billed Gull colony size (lying 
birds) and productivity (number of chicks) by using UAVs flights.

 – Flights did not cause any disturbance to the gull colony.
 – Visual photo-interpretation always performed better than automatic supervised 

classification.
 – Although automatic classification produced satisfactory estimates, minimum 

class patch size had to be defined to discard features other than birds.
 – Monitoring bird colonies with UAVs in comparison to ground surveys resulted in 

faster procedures and in sufficiently accurate colony size and productivity 
estimates.

Practical Lessons for Nature Conservation 

• Estimating the number of breeding pairs and/or the number of chicks in 
bird colonies is an essential monitoring activity to inform on the conserva-
tion of protected species.

• Ground surveys usually require costly procedures and often generate dis-
turbances to the colonies.

• Nowadays, UAVs flights can be easily carried out to map any interesting 
feature for nature conservation

• Image geometric processing is also easily and successfully achieved by 
using both commercial and free software.

• Visual identification of ground nesting birds in the orthomosaics is an 
affordable task for any user and can be cross-checked by several users.

• Automatic classification is also available in open source software. This 
provides quick and reliable estimates but does not easily distinguish 
between bird species.

Using UAVs to Map Aquatic Bird Colonies
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Integrated Land Cover and Change 
Classifications                                      

Richard Lucas and Anthea Mitchell

Abstract For nature conservation, regular provision of consistent, timely and use-
able classifications of land covers and change is highly beneficial but is rarely 
achieved. This chapter outlines the concepts behind the Earth Observation Data for 
Ecosystem Monitoring (EODESM) system, which facilitates the description and 
classification of any site worldwide according to the Food and Agriculture 
Organisations (FAO) Land Cover Classification System (LCCS; Version 2) and with 
reference to environmental variables retrieved from earth observation. Changes in 
land cover, as well as causes and consequences, are described through the accumu-
lation of evidence and the system recognises these to be numerous, highly variable 
and specific to different elements of the landscapes. Hence, they can be captured by 
considering information provided by a range of sensors operating in different modes 
and over different temporal frequencies and scales. The EODESM system is avail-
able at no cost and its ease of use makes it well suited to supporting nature 
conservation.

Keywords Land cover • Land cover change • Environmental variables • Earth 
observation • Classification • Ecopotential

 Introduction

Imagine you are driving through a landscape and you are able to select any area of 
ground and go back in time, seeing all its transitions and freezing the frame as and 
when you liked. Was it covered in snow last winter, and was this deep or just a light 
covering; or when did the spring leaves start to appear and then fall? Or, you want 
to know whether the road you are now driving along is flooded or clear  given there 
had been intense rainfall in the mountains the night before? What kind of landscape 
might this be in 50 years time and what might determine how it got there?

Within decades or less, the ability to routinely look back in time, assess current 
situations and perhaps predict the future will most likely be a reality, particularly 
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given progress towards high resolution digital and multi-spectral temporal images 
(the equivalent of videos) from space. In the next few years, people will be able to 
look back in time to see how whole landscapes have changed over their lifetimes. 
Linked with equivalent advances in ground-based observations, this will provide an 
unprecedented view of our planet and the opportunity to tell stories of what we have 
done and how things might change over our lifetimes.

The ability to  observe the events and processes that have shaped our landscape 
over the past 32 years (at least since 1985) has, to some extent, already been achieved 
through time-lapses of Landsat sensor imagery provided by the Google Earth 
Engine. Within this system, we can observe erupting volcanoes, surging glaciers, 
large floods, shifting coastlines, clearing of forests and expanding cities. We have a 
record of man’s impact on the planet in the recent past and some of it makes for 
uneasy viewing.

The public release of the Landsat archive allowed us to have this unique perspec-
tive and many scientists have subsequently provided detailed temporal classifica-
tions of land cover. These have included forest losses and gains (Hansen et al. 2013), 
tree canopy density (Hansen et al. 2013; Sexton et al. 2013), hydro-periods (Pekel 
et al. 2016), open water (Feng et al. 2016), bare ground (Hansen et al. 2013), imper-
vious surfaces (Langanke et  al. 2013) and ecosystem extent and dynamics (e.g., 
mangroves; Giri et al. 2011). Using coarser spatial resolution (typically 0.25–1 km) 
sensors, such as the NOAA AVHRR and MODIS, an extensive  historical archive of 
other features of the Earth’s surface, including snow cover (Hall and Riggs 2016) 
and land and sea surface temperature (Merchant et al. 2008), has been generated 
over past decades, giving us a unique insight into recent global change.

The amounts of data that have currently been acquired and will be provided in 
the future are vast. However, our ability to handle large amounts of, what is often 
termed big data, is being addressed through cloud and other high performance com-
puting, with these providing substantive storage and processing capability. 
Furthermore, image data can be downloaded and distributed to users rapidly and, in 
some cases, in real or near real time (as in the case of the Planet Lab’s CubeSat 
data). This new capability provides opportunities to understand the changes that 
have happened, both over past decades and more recently, and to monitor and plan 
into the future. If used effectively, these systems can be used  to prevent or reverse 
some of the damage that is being or has been  inflicted on the planet and to conserve 
what is remaining.

In this chapter, we describe the Earth Observation Data for Ecosystem Monitoring 
(EODESM) system, which  uses retrieved environmental variables and specified 
classifications from earth observation data to characterise and map land covers. 
Changes are identified by considering evidence obtained from earth observation 
data and from other sources. The system provides insight into the causes and conse-
quence of change and redistribution of physical elements (e.g., water, sediments and 
carbon). The system can also be used to recommend where and how to restore or 
protect ecosystems. The approach we describe is easy to understand, simple to oper-
ate and revise, and provides a wealth of information that can be used for a wide 
range of purposes, including for the conservation of nature.
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 Recognizing User Needs

Individuals, groups or organisations charged with managing, conserving, protecting 
and/or restoring environments desire both historical, recent and, often, real time 
spatial information on landscapes. Whilst the satellite and aircraft images them-
selves provide a pictorial (and also digital) overview, the information extracted or 
derived from these is often far more useful, particularly if this is: consistent over 
time and within and between areas of interest; includes environmental variables 
(e.g., biomass, soil moisture, salinity and water flows) or thematic classifications of 
land cover, and changes in these; considers historical contexts, present situations 
and future prospects; is provided at scales that are appropriate to the questions being 
asked; and accurately reflects the state and dynamics of landscapes over varying 
time frames. Accessibility of information is also critical, whether provided as prod-
ucts (e.g., tree cover density) or as software or processes that allow the users to 
extract the required information by themselves based on their own requirements or 
those of others. These requirements have been considered during the design and 
development phases of the EODESM system.

 The EODESM System

The EODESM System was developed through the EU Horizon 2020 Project, 
ECOPOTENTIAL and was designed to provide consistent classifications of land 
covers and change at multiple scales. The EODESM System was a later iteration of 
the Earth Observation for Dynamic Habitat Monitoring (EODHaM; Lucas et  al. 
2014), which was conceptualised through the FP7 Biodiversity Multi-SOurce 
Monitoring System (BIOSOS) project.

Both the EODHaM and EODESM system use the Food and Agricultural 
Organisation’s (FAO’s) Land Cover Classification System (LCCS; Version 2; Di 
Gregorio 2005) taxonomy to classify land covers within protected areas and their 
immediate surrounds. However, for classification, the earlier  EODHaM system 
applied a rule-based classification to very high resolution (VHR) Worldview-2 
(acquired in the pre- and peak-vegetation flush periods) and (if available) airborne 
LIDAR to extract the components of the LCCS classes. These included life form 
(i.e. shrubs, trees, grasses, forbs, lichens or mosses), leaf type (broadleaved, needle- 
leaved or aphyllous), phenology (e.g., evergreen or deciduous), water movement 
(standing or flowing) and sediment loads in water (turbid or clear). These extracted 
components were then combined to generate a string of codes (e.g., A3.A10.B2.C1.
D1.E1), which were translated subsequently and automatically to descriptive text 
(in this case, trees of closed canopy (>70–60%) that are tall (14–30 m), continuous, 
broadleaved and evergreen). The classifications of each of the layers within the 
EODHaM system were conducted by defining and adjusting thresholds of spectral 
bands or indices, including the Normalised Difference Vegetation Index (NDVI), 
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Plant Senescence Reflectance Index (PSRI), Water Band Index (WBI) and (where 
available) Canopy Height Models (CHMs) derived from LIDAR. Whilst providing 
highly detailed classifications, the main limitation was the consistency in the use of 
spectrally-based rules as these had to be adjusted regularly to allow for differences 
in atmospheric, illumination and environmental (e.g. phenological) conditions prev-
alent at the time of the Worldview-2 overpasses. For this reason, a new concept was 
developed for the EODESM system.

 Our Unchanging World

Whilst there are significant changes in land cover arising from both natural and 
human-induced events and processes, the basic building blocks of landscapes (e.g., 
foliage, wood, rocks, water in various states) generally do not change and neither do 
the quantitative measures that are used to  describe these (e.g.  biomass, canopy 
cover, amounts of dead or senescent material, species type, temperature, water 
flows). The measures that satellite sensors record are largely consistent, with these 
including spectral reflectance (%), radar backscatter (e.g., γ°), surface heights and 
dimensions (m) and temperature (°C). Therefore, regardless of what happens in the 
future, descriptors of the building blocks of our environment will largely be the 
same, as will the data and measures obtained from satellite, airborne and ground- 
based systems. The challenge is to define the best algorithms and combinations of 
data to describe these building blocks in a way that is consistent, reliable over time, 
accurate and understandable. In effect, what is needed is a system with longevity 
that will allow classifications of landscapes in, for example, 2100 to be compared to 
those of the 1970s, when the Landsat sensors first acquired spectral  data, and even 
before then.

The FAO LCCS-2 is a taxonomy that is fundamentally well suited for providing 
consistent classifications of land covers in the long term as many of its inputs are 
derived from well-defined and established environmental descriptors and variables. 
For example, for natural and semi-natural vegetation, key descriptors are life form, 
canopy cover, the vertical and horizontal distribution of plant material, leaf type and 
phenology, all of which can be derived from earth observation data acquired in differ-
ent or similar modes. For this reason, rather than focusing on providing the best clas-
sification algorithm, the EODESM system places emphasis on retrieving continuous 
environmental variables as well as generating thematic classifications (e.g., of life 
form or leaf type), which are combined subsequently to form the LCCS-2 classes. For 
purposes of nature conservation, an additional and essential descriptor is plant spe-
cies or genus type (that is not considered in the LCCS classification but is derived 
independently), which can be mapped remotely although is often restricted to those 
that are spectrally distinct. An overview of the main layers that are required as direct 
input to the LCCS-2 scheme are outlined in Table 1, with these relating to essential 
variables associated with the broad categories of agriculture, biodiversity and ecosys-
tems, human settlements, bare surfaces and water/renewable energy/climate.
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Knowledge of the state and dynamics of environments requires additional infor-
mation on variables that are not relevant or appropriate for land cover classification 
(Table 2). These relate to the primary uses and components of the landscape, namely 
agriculture and forestry (e.g., crop and timber yields), vegetation (e.g., biomass, leaf 
area index), human settlements (populations), bare surfaces (e.g., soil moisture con-
tent) and water (e.g., pH, nutrient content, snow grain size or moisture content). As 
such, information on the magnitudes and changes in these variables can be included 
as attributes of the land cover classification and inform on current states and past 
changes. Furthermore, many of these variables, as well as those used as direct input 
to the LCCS-2 classification, can be modelled, which gives the capacity to generate 
predicted land cover maps (and associated variables).

Whilst the concept of using environmental variables as the basis for classification 
and description of land covers is logical, an issue is the practicality of obtaining 
these. It is unrealistic to expect nature conservation practitioners to generate this 
information themselves in order to produce land cover maps and so these need to be 
made available or capacity provided to generate these. Fortunately, because of the 
past and current efforts of a large number of engineers and scientists, environmental 
variables are now being routinely retrieved from satellite and airborne data and 
made freely available. Notable examples include those generated at the global level 
from Landsat sensor 30 m data, including tree canopy cover (2000 and 2010; Hansen 
et al. 2013; Sexton et al. (2013)), bare ground proportions (2010; Hansen et al. 2013), 

Table 1 Variables retrieved from earth observation data and used as direct input to the LCCS 
classification

Theme Description FAO LCCS-2 categories

Agriculture Crop area Cultivated area and spatial size
Crop management and 
agricultural practices

Crop combinations, sequences, cultural 
irrigation, cultural practices (time 
factors) and water seasonality.

Crop phenology Evergreen and deciduous
Biodiversity and 
ecosystems

Phenology (Species traits) Evergreen, deciduous, leaf type
Vegetation structure Vegetation height and cover (all layers)
Fragmentation Spatial distribution

Human settlements Urbanization Built up or not built up
Linear/non-linear structures and density
Urban vegetation

Bare surfaces Extent and type Bare surface macro-pattern and 
materials

Water/renewable  
energy/climate

Snow and ice cover, glaciers, 
ice caps and sheets

Water state (water, ice or snow)

Tidal (min, max, sea surface 
elevation)

Daily variations in water

Hydro-period Hydro-periods, waterlogged
Water discharge and lakes Standing or flowing water
Water quality and suspended 
particulates

Water sediment loads

Integrated Land Cover and Change Classifications



300

hydro-period (1987–2015; Pekel et  al. 2016), and MODIS 500  m derived data  
(e.g. 8-day snow cover from 2000; Hall and Riggs 2016). For Europe, 20 m resolu-
tion maps of tree cover density (2012), forest leaf type (2012), permanent water 
(2006–2012) and impervious surfaces (2011–2012) have been generated through 
the Copernicus project from optical satellite sensor data from 2001 and 2011 
(Langanke et al. 2013). At local levels, more detailed retrieval has occurred using 
VHR resolution and LIDAR as well as spaceborne optical and radar sensors, includ-
ing ocean wind speeds (Rana et al. 2016), soil moisture (Pasolli et al. 2015) and 
snow moisture content (Nagler and Rott 2000). In each case, specialist algorithms 
for retrieving environmental variables have been developed through years or even 
decades of research and the resulting datasets are often well suited to support the 
classification and attribution of land cover classes and change according to the 
LCCS-2 taxonomy. The algorithms used for the generation of environmental vari-
ables are also being made available with associated software and these can be used 
for self-generation of the required data layers, though calibration and/or validation 
is essential in some cases. The outputs from the EODESM system can also be used 
to describe additional variables (Table 3), with these relating to, for example, distur-
bance regimes.

 Classification of Land Covers

The FAO LCCS-2 taxonomy used in the EODESM system (Fig. 1) is hierarchical 
and allows for the progressive classification of a comprehensive range of land cov-
ers from earth observation data with these corresponding to those observed at 

Table 2 Examples of retrieved from EO data that provide additional descriptions of land cover

Variable Variable

AGRICULTURE CLIMATE (continued)
Crop type Leaf Area Index (LAI) (Land)
BIODIVERSITY Ocean colour (Ocean surface)
Net primary productivity (ecosystem function) Permafrost (Land)
Population structure by age class and species Phytoplankton (Ocean surface)
OTHERS Precipitation (Atmosphere surface)
Elevation, Orography Sea ice (Ocean surface)
Land surface temperature Sea level (Ocean surface).
Ocean bathymetry Sea state (Ocean surface)
Wave, height, direction, period Sea-surface temperature (Ocean surface)
CLIMATE Soil moisture (Land)
Above ground biomass (Land) Surface current (Ocean surface)
Albedo (Land) Wind speed and direction (Atmosphere surface)
FAPARa (Land)

aFraction of absorbed photosynthetically active radiation
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Table 3 Variables that can be derived from the EODESM system

Theme Description

Biodiversity Disturbance regime (Ecosystem function)
Ecosystem composition by functional type (Ecosystem structure)
Ecosystem extent and fragmentation (Ecosystem structure)
Habitat structure (Ecosystem structure)
Primary and secondary productivity (Ecosystem function)
Population structure by age/size class (Species populations)
Species distribution (Species populations)
Species interactions (Community composition)

Climate and Water Fire disturbance (Land)
Land cover, including vegetation type (Land)
River discharge (Land)
Water use (Land)

Ocean Mangrove, saltmarsh and sea grass area (Biology and Ecosystems)
Urban Land use and land cover in relation to urban development and change
Health Famine early warning, short term forecasting of communicative diseases

Fig. 1 The FAO Land Cover Classification System (LCCS) Taxonomy

ground level (Kosmidou et al. 2013; Tomaselli et al. 2013). The LCCS system has 
been used as the basis for EO-based classifications in many studies but the typical 
approach has been to establish training areas for the ‘end classes’ of the taxonomy 
(such as broadleaved evergreen forests; see Yang et al. (2017) for a review of the 
LCCS and other commonly used taxonomies). The EODESM takes a different view 
in that it follows the sequences of classifications through the hierarchy using derived 
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products from EO data, with these including environmental variables but also  other 
ancillary spatial information such as cadastral and urban maps, process models 
(e.g., hydrological) and knowledge. The EODESM system accepts 30 primary inputs 
(e.g., relating to crop sequences, leaf type, cadastral information), with thematic 
layers requiring specific class codes (e.g., 1 for woody, 2 for herbaceous vegeta-
tion). Continuous layers (e.g., canopy cover and hydro-period) are automatically 
translated to pre-set thematic classes within the EODESM system. Once entered, 
the system automatically translates each input to LCCS component codes, which 
are then combined subsequently to generate a class description. Each class is then 
coloured according to a standardized scheme, as illustrated in Fig. 2. The advantage 
of the classification approach is that it is relevant and applicable to any site globally 
and can be applied independent of scale. The accuracies of both classification and 
change maps are assessed by referencing ground-based classifications, generated 
using the LCCS taxonomy (e.g., by exploiting  mobile applications), or measures of 
uncertainty associated with retrieved environmental variables.

Fig. 2 EODESM classification of land covers in the Camargue, southern France. Over 200 classes 
are represented with each associated with a detailed description according to the LCCS taxonomy. 
These broadly relate to water (blue), bare ground (brown), urban areas (grey), agriculture (light 
greens) and natural vegetation (darker greens)
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 Classification of Change

Within any landscape, changes are often the result of specific events that are either 
natural (e.g., fires, floods or storms) or the result of human activities (e.g., deforesta-
tion, mine excavation and cultivation). However, changes may be the result of 
longer- term processes, which again are also natural (e.g., vegetation growth, 
increased tidal inundation) or human induced (e.g., urban expansion, agricultural 
homogenisation). Climatic fluctuation may lead to changes in the frequency and 
intensity of events or alterations of long-term processes (e.g., mangrove extent 
because of progressive rises in sea level). Changes across a landscape also occur at 
different times, rates and frequencies and across different scales. For this reason, 
detection and classification from earth observation data has proved difficult as the 
acquisition dates and frequencies often do not match those associated with events 
and processes occurring at the ground level. Indeed, many studies focusing on 
change detection have typically dealt with only one type of change, with notable 
examples being deforestation monitoring and flood mapping, and little or no consid-
eration is given to changes occurring within adjacent or proximal classes or at dif-
ferent times and rates. Furthermore, change is often detected on the basis of the 
differences in only one or a few remotely sensed variables, whether they are spectral 
reflectance or radar backscatter, indices or retrieved environmental variables.

Within the EODESM system, events and processes are detected when changes in 
the components of LCCS classes are observed. As an example, the annual period of 
inundation within a wetland may decline from 292 to 182 days, with this corre-
sponding to a reduction in annual hydro-period from B1 (>9  months) to B8 
(4–6 months). However, there may be additional evidence that supports the interpre-
tation that such a change might be the result of drying of the landscape. This might 
include a change from flowing to standing water and/or turbid to clear water over a 
similar time frame, which are both thematic categories, but also in environmental 
variables such as an increase in salinity or algal amounts. By referencing this addi-
tional information, the probability of this change being attributed to long-term dry-
ing is increased. A further example is given in Table 4, which illustrates a change in 
both life form and canopy cover (Case A; associated with selective logging) and 
water state (snow to water) and flow rates (standing to flowing) (Case B; snow melt 

Table 4 Examples of change detected by comparisons of LCCS component codes and 
environmental variables

Thematic Continuous
LCCS code  
(Period 1; P1)

Component 
code (P1)

Component 
code (P2)

Biophysical 
change

A Life form 
(Codes of 
1–9)

Canopy Cover) 
(0–100%)

A12.A4.A10.
B4.C1.D1.E2

A4 (Trees) A3 (Shrubs) Cover of 80% 
to >40%

B Water State 
(1,2,3)

Water 
movement 
(m3 s−1)

B28.A1.B4.
C1.D2

A2 (Snow) A1 (Water) Velocity of 0 
to >20 m3 s−1
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and increased river discharge). The accumulation of evidence to support the inter-
pretation of the change event or process provides the user with information to facili-
tate a response and manage change effectively.

Whilst the LCCS-2 provides a means to describe land covers, few taxonomies 
are available for describing and documenting change. However, a review of transi-
tion events and processes conducted in support of the EODESM change detection 
modules identified 80 change categories, with these associated primarily with natu-
ral vegetation, agriculture, urban areas, water and bare ground (Table 5). In each 
case, possible transitions from one LCCS component class to another that are rele-
vant for each of the 80 change categories have been documented, as have changes 

Table 5 Main categories of change considered within the EODESM system

Natural 
vegetation Agriculture Urban Water Bare ground

Deforestation Herbicide spraying Road abandonment Flooding Lava flows
Degradation Burning Greening Inundation Sedimentation
Selective 
logging

Cutting Browning Drying event Erosion

Defoliation Grazing Planning Long term 
drying

Dune change

Thinning Growth Urban densification Snow 
accumulation

Dieback Stubble formation Urban renewal Snow loss
Growth Agri. expansion Waste dumps or 

extraction
SnowFall

Thickening Agri. water supply Communication 
installation and 
abandonment.

SnowMelt

Encroachment Agri. time factor Rail conversion Waterlogging
Abandonment Tillage Rail construction Water OutBurst
Hedgerow loss Pasture degradation Urban expansion Dam creation

Pasture replanting Road conversion Land drainage
Crop change Road construction Freezing
Crop growth Road improvement Thawing
Crop sequence change Industrialisation Glacial flow
Agri. homogenisation Infilling/levelling Sea level rise
Agri. division Water pollution
Plantation 
establishment

Tidal loss

Plantation growth
Grass fertilization
Orchard planting
Slurry or sediment 
spreading
Liming
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in retrieved environmental variables (including spectral indices). By considering 
these transitions, the EODESM system allows for automated detection of these 
changes based on evidence and can highlight those change events or processes that 
are adverse or beneficial, although opinion varies depending upon the nature of the 
environment being affected. For example, the establishment and growth of pine 
plantations may be beneficial in terms of biomass accumulation and carbon seques-
tration and storage but may have adverse impacts on the abundance and diversity of 
faunal species.

The automated detection and description of changes over varying periods of time 
and based on the accumulation of evidence often results in a large number of events 
and processes being identified over the period of a time-series. However, more tar-
geted detection and description of change may be achieved by identifying breaks 
(e.g., using the BFAST algorithm; Verbesselt et al. 2010) or longer-term trends in 
the time series of, for example, Normalized Difference Vegetation Index (NDVI) 
data obtained from Landsat or Sentinel-2A/B data. Where an event is identified, 
imagery acquired just prior to and following the date of change can be accessed. A 
LCCS-2 class is then assigned and changes in the components of this class are 
reviewed. When used in combination with time-series of retrieved environmental 
variables, a better assessment of the change event can be provided. In the case of 
longer-term processes, the transitions in component classes over the change period 
(e.g., from trees to grasslands, to shrubs and back to trees in the case of regeneration 
following deforestation) can be used to track the nature of change in land cover. 
Changes in environmental variables can similarly be tracked. A particular advantage 
of this approach is that changes can be automatically highlighted depending upon 
their severity or benefit.

 Causes and Consequences of Change

Often when we detect a change, there are clear drivers and consequences of this. For 
example, dieback of trees may occur because of a prolonged flooding event, with 
this evidenced primarily by a decrease in canopy cover. There are only a few likely 
causes of the flooding, with these including those that are natural (e.g., increased 
rainfall over an extended period or an intense rainfall event) or human-induced (the 
creation of a dam and reservoir). The immediate consequence of the flooding is the 
loss of foliage cover followed by full or partial mortality of all or some of the trees. 
Follow-on consequences that would be considered negative include the loss of ter-
restrial elements of biodiversity and carbon in vegetation, with these occurring over 
variable periods, whilst positive benefits might include an increase in aquatic biodi-
versity and long-term storage of carbon. The consequences may be relevant to the 
specific area of ground that is affected or experienced in areas that are proximal or 
even far removed. For all areas (or objects within a scene), the causes and conse-
quences of change can often be pre-determined and hence mapped alongside the 
change. The causes and, more often, the consequences of change also relate to the 
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movement of materials within a landscape. For example, a deforestation event 
within a catchment can result in the loss of carbon to the atmosphere, reduced 
uptake of carbon dioxide (CO2), the increased movement of water through the 
catchment and the transfer of sediment down slope, into water courses and ulti-
mately to coastal regions. This movement of material can be modelled but can also 
often be observed within earth observation data or quantified within derived prod-
ucts (e.g., temporal vegetation biomass maps reflecting the accumulation of 
carbon).

The EODESM system has been designed to associate a change (described 
through the accumulation of evidence) with a number of causes and consequences 
(including movements of materials), which the most likely determined through con-
sideration of evidence. As such, the system provides a range of users (e.g., scien-
tists, nature conservation managers, politicians) with knowledge that can be used to 
make informed decisions on many aspects of the landscape relating to, for example, 
emergency response to adverse events, land management over varying time frames, 
the impacts of past and current policies and planning future landscapes.

 Concluding Remarks

Using the vast archives of historical earth observation data and new concepts, such 
as those developed through the EODESM system, we can already place ourselves 
within a landscape, both currently and at specific points over the past 30 or so years, 
and describe the key elements relating to vegetation, water, bare areas and artificial 
and cultivated environments. This capacity has been enhanced considerably through 
the recent provision of near daily  data from multiple sensors on board satellites 
including the RapidEye, Planetscope and Sentinel-1/2 and viewing platforms such 
as Google Earth, Google Earth Engine and Planet Lab's Explorer. Through knowl-
edge of past landscapes, we can now better understand the reasons for their compo-
sition today and plan for future landscapes that balance human use of the land with 
the requirements of its flora and fauna, with this ultimately leading to societal and 
economical benefits. This capacity is set to increase significantly with advances in 
computing technology and engineering. This will also raise our understanding of 
the environment and how it functions and adapts in response to change. The ability 
to observe changes now and back in time and into the future is therefore becoming 
possible and the path is open for this to occur routinely and on demand.

These new advances create significant opportunities for nature conservation as 
events and processes within the landscape can now be observed in near real time and 
historically. Much of the perceived complexity in obtaining and pre-processing 
imagery, and extracting information that is of practical use, has been overcome by 
the provision of analysis ready datasets and classification and change detection sys-
tems such as EODESM. Many of the algorithms used for the retrieval of environ-
mental variables and classifications of landscape, as well as local to global products, 
are becoming openly and freely available and transparent, with these generated by 
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scientists with decades of experience in earth observation. As illustration, the soft-
ware used in the development and implementation of the EODESM system is open 
source and freely available and is based primarily on python scripts and the 
RSGISLib (Bunting et al. 2013; Clewley et al. 2014). Numerous options are becom-
ing available for routinely evaluating the accuracy and reliability of these products, 
giving confidence to many users. For these reasons, earth observation datasets can 
now be better used to transform the way that our environment is managed and con-
served. No longer are procedures and products remaining within the realms of the 
scientific community; they now can transition into being used to support nature 
conservation in a more practical sense. For this, we give credit to many individuals, 
groups and organisations (e.g., space agencies, governments and businesses such as 
Google) for facilitating free and public distribution.
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Abstract Rapid changes in the global environment, including those associated 
with climatic fluctuation, are necessitating new approaches to nature conservation, 
which are being facilitated and partly driven by the introduction and advancement 
of earth observation technologies. These include ground, airborne and spaceborne 
platforms and sensors as well as advanced computing hardware and software. A key 
development in recent years has been the provision of free and open earth observa-
tion data and derived datasets as well as methods used for their processing and 
analysis. Many organisations (e.g., space agencies, governments) are increasingly 
recognising the need to provide relevant information to a wide range of users, 
including those charged with nature conservation, but there is still a need to ensure 
that requirements are conveyed and adequately addressed. Furthermore, practitio-
ners should ensure that they obtain the capacity, knowledge and skills necessary to 
ensure correct and informed use of these data, particularly in relation to manage-
ment of protected and also unprotected areas. Systems that effectively integrate data 
from a wide range of sources also need to be developed, particularly for 
monitoring.
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 Global Driving Forces Over Protected Areas

Compared to today, nature conservation could have been regarded as relatively 
straightforward, although that was never really the case. The main focus historically 
had been on the establishment of protected areas where nature would thrive and 
sustain itself whilst those areas outside, although  still supporting varying types of 
habitats and wildlife, would primarily be available for exploitation by humans. 
Whilst conservation reserves are vital, and have played an important role in species, 
habitat and ecosystem protection, this view has had to change, largely because of a 
human population that has doubled in the past 40 years from 3 to over 7 billion, 
through expansion at an average rate of 80 million people per year, and which is 
anticipated to increase to over 9 billion by 2038. A major consequence of this 
increase has been and continues to be a rapid rise in levels of greenhouse gases in 
the atmosphere, primarily because of fossil fuel consumption since the industrial 
revolution but also losses of natural vegetation, including carbon rich forests. The 
resulting net increase in global temperatures has contributed to the loss of ice sheets 
and glaciers, greater frequencies and intensities of fires across the globe and the 
melting of permafrost, with these further exacerbating changes in climate through 
positive feedbacks. The result now is that protected areas are no longer protected, as 
the majority of ecosystems are now vulnerable to the global phenomenon of climate 
change as well as  other changes such as increased  atmospheric nitrogen 
depositions.

The sheer magnitude of environmental change across the world has only been 
fully realized because of regular observations by satellites, which really only started 
from the 1960s onwards. These early sensors provided insights and warnings of 
what was to come, including the initial signs of deforestation and associated burn-
ing in the Amazon (from NOAA AVHRR data; Setzer and Pereira 1991), the exis-
tence of the ozone hole (Farman et  al. 1985) and the losses of ice in the Arctic 
(Strove et al. 2007). As the value of Earth observations became greater, more and 
more sensors were launched, with these providing different views of the Earth’s 
surface and sub-surface and progressively documenting the changes that have been 
occurring over the past 60 years. The development of algorithms for describing and 
quantifying features of the landscapes has also resulted in new insights into the 
functioning of natural systems, with examples being retrieval of glacial velocities 
(Rignot and Kanagaratnam 2006), the three-dimensional structure and biomass of 
vegetation (Lefsky 2010; Saatchi et al. 2011) and the frequencies and durations of 
water inundation (Pekel et al. 2016; Díaz-Delgado et al. 2016). By providing new 
information of the environment from these earth observation data, we have been 
able to gain a better understanding of how our world has changed and the causes and 
consequences. Such knowledge is vital if we are to address nature conservation over 
the coming years and decades.
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 Where to From Here? The Nature Conservation Perspective

For nature conservation, a key message is to embrace and adopt the new technolo-
gies that are becoming available and to ensure that decisions are based on a sound 
and up-to-date understanding of changes occurring from local to global scales and 
the interactions between these. This is particularly important as local-scale changes 
may be the direct or indirect result of, for example, national policies (e.g., relating 
to agriculture or forestry), regional processes (e.g., urbanization and people migra-
tion or wars) or global climate change. Earth observation data provides an essential 
framework that can be used to address many of the changes that are occurring or 
may take place in the future.

As highlighted in this book, a major issue is which data to use and how. The num-
ber of Earth observing sensors is substantial and increasing, as are the products arising 
from these; and this can be overwhelming. However, major steps have been taken to 
ensure that many of the previous limitations to using these data are overcome. There 
is no longer reliance on just one or two satellite scenes; entire archives are publically 
available and the software and algorithms needed to process these data are increas-
ingly being provided at no cost. Open source GIS, image processing and statistical 
software for desktop usage are also now available, with notable examples being QGIS, 
Image-J and the R statistical package. The release of satellite archives has further 
allowed changes to be observed and placed in context, particularly as time-lapses of 
change superbly convey the processes of change whether it be substantive deforesta-
tion in tropical regions, loss of water bodies (such as the Aral Sea) or retreating gla-
ciers in high mountain regions. There has also been an increased drive to provide 
analysis ready satellite data and also products that are being made available across a 
range of scales and temporal frequencies. However, despite these efforts, there are still 
the age-old limitations of time, finances, resources, knowledge and skills.

A common assumption is that conservation practitioners have the time, man-
power and other resources (e.g., computing) to make maximum use of Earth obser-
vation data and so why are these not yet being used to their full potential? Many 
organizations simply do not have the time, staff or the skills to undertake the essen-
tial search, download and processing of satellite data or products. To address this, 
some focus needs to be placed on establishing and reviewing the nature of the over-
all savings or other benefits associated with investing in Earth observation data and 
to then balance these against a 'business as usual' scenario; and the following might 
be useful to consider.

 (a) Better targeting of field campaigns, surveys or compliances, including of fauna 
surveys, that link to mapped habitats and their different states and dynamics.

 (b) Establishing reference datasets (e.g., regional or national airborne LiDAR 
 coverages or phenology) that can be used to determine  whether changes within 
protected areas and surrounds are out of the ordinary.

 (c) Collating and augmenting information that can be used to gauge the impact of 
management activities, assist with conservation planning and enforcement, and 
ensure the integrity of protected areas.
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When Earth observation data are obtained, there is often a lack of confidence in 
what individuals or groups produce from these and how this stands up when 
reviewed, particularly if they are not experts in the field. This often arises from a 
lack of training as many conservation managers have greater expertise in fields 
other than Earth observation, such as ecology and water management. Similarly, 
Earth observation scientists may not have expertise in these areas. Understanding 
the theory and concepts behind Earth observation takes time and effort. In order to 
address this, the following approach may be useful.

 (a) Identify and nurture staff in the organization who show a keen interest in Earth 
observation for nature conservation.

 (b) Identify the key skills that exist or are needed.
 (c) Seek or provide funding that allows individuals or groups to be trained, with 

clear objectives and outcomes that benefit protected areas and ensure long-term 
engagement of staff and continuity in effort. These might include, for example, 
pilot training for drones, basic remote sensing image processing and GIS analy-
ses, or computer programming in common languages.

 (d) Collaborating (ideally long-term) with individuals or institutions with existing 
skills, expertise and knowledge in the processing and analysis of Earth observa-
tion data.

A large number of short to long-term training opportunities are available, with 
these including those that are online, provided as short courses or conducted through 
formal tuition (e.g., Masters  or Ph.D. programmes). Linking a series of training 
courses with qualifications or accreditations is often beneficial and motivating for 
staff, including volunteers, and allows them to advance careers and increase capac-
ity to achieve nature conservation goals.

 Where to From Here? A Remote Sensing Perspective

At the time of writing, we have already entered a new era in Earth observation with 
the launch of the Sentinel-1/2 satellites providing free radar and optical data at spa-
tial resolutions as high as 10 m and with observations at least every 5 days across 
multiple wavelength regions. The Landsat-8 sensor data are also available at no cost 
to the user. In both cases, analysis ready data (i.e., orthorectified and corrected to 
surface reflectance or with radar calibrations and topographic corrections) are being 
delivered as well as pre-processing and analysis software. Argentina’s and the 
USA’s forthcoming SAOCOM and NiSAR, will be providing L-band Synthetic 
Aperture Radar (SAR) data at no cost, with this complementing the freely available 
annual 25 m mosaics of Japanese L-band SAR data, archives of which extend back 
to the mid 1990s. NASA’s Ice, Cloud and land Elevation Satellite (ICESat) 
Geoscience Laser Altimeter System (GLAS; 2003–2009) is to be superseded by the 
Global Ecosystem Dynamics Investigation (GEDI) LiDAR, with both providing the 
capacity to retrieve information on the vertical distribution of plant material with 
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canopy volumes. Open source software, including Sen2Cor and ARCSI (Bunting 
2017; this book), are increasingly being provided to support refined correction of 
satellite sensor data, allowing compensation for differences in topographic illumi-
nation and cloud and cloud shadow detection and removal.

Whilst vast amounts of satellite sensor data are being provided, a major issue that 
is widely acknowledged by Earth observation scientists is where and how to store 
and process these data. It is unfeasible that users individually download these data 
to their own computing systems. For this reason, there has been an increasing move 
towards the use of data cubes whereby algorithms for pre-processing and analysing 
Earth observation   data are submitted to centralized storage facilities, with these 
allowing targeted access to and analysis of the full time-series of satellite sensor 
(e.g., Landsat) data. Using such a facility, the Australian Geoscience Data Cube 
(AGDC) Water Observations from Space (WOfS) has generated maps of water 
inundation for Australia between 1987 and 2014 using all available Landsat sensor 
data (Mueller et al. 2016). Other products that are being generated include intertidal 
mudflats and mangrove dynamics over similar time frames. Data from optical sen-
sors can also be interrogated to retrieve data profiles (e.g., of NDVI) extending back 
in time and informing on both rapid and gradual changes across the Australian land-
scape. Similar work has been produced using the Google Earth Engine, including a 
decadal survey of global tree cover extent, loss and gain (Hansen et al. 2013). The 
capacity to store these data and conduct analysis has been achieved by rapid 
advancements in computing storage and parallel processing technologies (e.g., 
within high performance computing environments). Access to these facilitates has 
also widened with the provision of web-based services such as the Amazon Cloud 
and Microsoft Analytic Platform System (APS). Whilst users are charged for these 
systems and some knowledge of data processing is needed, these are providing the 
capacity for a greater number of users to access and process data and generate use-
able products. Many of these products are also being made publicly available, which 
presents the opportunity for these to be used in support of nature conservation.

One of the major advances in Earth observation that is likely to significantly 
benefit nature conservation is the development of CubeSat technologies (e.g., 
PlanetLabs and Surrey Satellite Technology Ltd.), with these providing small, micro 
and nano satellites (defined on the basis of their weight and size) that currently 
observe the Earth’s surface on a daily basis in different wavelength combinations 
(e.g., red, green, blue (RGB), red edge and/or near infrared). These data can be used 
in combination with the more moderate resolution sensors (e.g., Sentinel and 
Landsat) to determine, in more detail, the nature and extent of changes. As exam-
ples, these allow seasonal variations in vegetation phenology to be captured or the 
patterns of inundation to be mapped at high (typically <3  m) spatial resolution. 
Perhaps of greatest importance to nature conservation is that these sensors provide 
early evidence of changes (e.g., deforestation, ploughing of species-rich pastures, 
pollution events), giving time for enforcement and/or management teams to prevent 
further damage including loss of habitats and associated species. The increased 
future use of targeted (e.g., red edge)  channels on these satellites will also allow 
better discrimination of, for example,  plant species, particularly given the capacity 
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to analyze seasonal trajectories. Increasingly, a greater number and diversity of 
spectral bands (e.g., coastal, red edge and short wave infrared) are being provided 
by other spaceborne VHR sensors, with the Worldview-2 and 3 sensors being nota-
ble examples.

Alongside the release of satellite data archives, algorithms and software for pro-
cessing dense time series of remote sensing data has also been developed, with these 
including those that identify breakpoints and trends associated with change events 
or processes (e.g., the TIMESAT program for analyzing time-series of satellite sen-
sor data (Jönsson and Eklundh 2004) or Breaks For Additive Season and Trend or 
BFAST (Verbesselt et al. 2010)). Others use past data to establish typical trends, 
deviations from which can indicate a change in land cover (e.g., Zhu et al. 2012). 
The benefit of these algorithms is that they can be used to better describe and target 
analysis of change, which allows greater responsiveness to and management of 
adverse events and processes.

Airborne observations have proved to be highly beneficial, if not essential, in the 
interpretation of data acquired by spaceborne sensors and derived products and as 
standalone sources of information, and key amongst these has been airborne 
LiDAR. Whilst discrete return LiDAR have been available for over two decades, 
many LiDAR today are operating using full waveform technology (Lim et al. 2003) 
and there is a drive towards the use of multi-spectral LiDAR (Morsdorf et al. 2009). 
These sensors now have the potential to provide highly detailed information on the 
three-dimensional structure of vegetation but also facilitate the discrimination of 
plant species as well as component materials (leaves and wood) and the generation 
of Digital Surface Models (DSMs). Time-series of these data are also being exploited 
to better understand the dynamics of plant communities, with notable successes 
being in savanna woodlands (Cho et  al. 2012). Digital Terrain Models (DTMs) 
 generated from these data also provide new opportunities to understand ecological 
processes, including loss of sediments through erosion and water flows.

Drone technology has also revolutionized the capacity to obtain very high (cen-
timeter) resolution information that supports the interpretation, calibration and vali-
dation of products from spaceborne but also airborne sensors (Colomina and Molina 
2014). The data from these sensors fill a significant gap in terms of scaling ground- 
based measurements to larger areas, with these including distributions of plant spe-
cies (through classification of RGB or multi-spectral data) or canopy height maps 
from point clouds derived through stereo imaging (photogrammetry). Nowadays, 
drones (either with fixed or rotatory wings) are available at affordable prices, and 
can support a range of sensor types (e.g., RGB and multispectral cameras). As the 
weight of hyperspectral and LiDAR sensors decreases, these are also being deployed 
on drones allowing, for example, better discrimination of plant species and interro-
gation of land covers in multiple dimensions. Accordingly, many applications 
addressed by spaceborne or airborne images can also exploit drones, with a major 
advantage  being the possibility to obtain images à la carte. Other new applications 
beyond pixel mapping are emerging in relation to fauna detection, surveying and 
censoring (e.g. counting nests in bird colonies; Díaz-Delgado’s et al. (2017 - this 
book)).
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Other ground-based sensors are also highly beneficial to nature conservation, 
notable amongst which are Terrestrial Laser Scanners (TLS; Mass et  al. 2008; 
Telling et al. 2017), phenocams (Brown et al. 2016) and, as mentioned in earlier 
chapters, camera traps. TLS provide millimeter resolution point clouds of surfaces 
(e.g., the terrain) and structures (e.g., vegetation), albeit for areas often covering less 
than 1 ha. For vegetation, they can be used to locate and extract  the dimensions of 
individual plants, from which biophysical measures such as component (branch and 
trunk) biomass and height can be obtained. They can provide a permanent record of 
the distribution of plants and plant material and also change when taken in a time- 
series, with this made possible through high precision in georeferencing. These 
datasets can therefore provide viable substitutes for or can complement permanent 
plots, which have traditionally been recorded through more intensive ground-based 
location and measurement of plants. Phenocams are also well suited to monitoring 
changes in leaf flush and fall and other metrics describing leaf phenology, and pro-
vide useful interpretation of Earth observation data. Finally, we need to mention the 
use of mobile devices that allow collection (including in near real time) of informa-
tion on the environment, such as land cover and habitat types, biophysical variables 
and biodiversity distributions. This capability provides a new opportunity to link 
observations from airborne and spaceborne sensors to those on the ground.

Accessing and using these technologies can be a significant obstacle to uptake 
and the best advice is to decide in advance what is needed to support nature conser-
vation and then to select the tools that are best suited for the specific job. This will 
inevitably involve extra effort in terms of research capabilities and the processing 
that is needed, as well as increased training requirements (as mentioned ear-
lier). However,  the development of a longer-term strategy for planning the use of 
these data and technologies should result in their progressive adoption  and integra-
tion and ultimately lead to more effective and efficient management of protected 
areas and surrounds.

 Realistic Expectations

Whilst the potential contribution from Earth observation and related technologies is 
enormous, there is a need to ensure that expectations are not raised to unrealistic 
levels. Earth observations cannot provide the answers to many of the questions 
posed by conservation practitioners for a multitude of reasons. As examples, many 
plant species, particularly if small, rare, or occuring in mosaics or the  lower strata, 
cannot be observed let alone discriminated from Earth observation data. The timing 
and frequency of observations is also often sub-optimal and the georeferencing 
inadequate to allow exact matching with ground data. Nevertheless, Earth observa-
tion data provide information that can be used in parallel with ground data, includ-
ing the extent of different land cover and habitat types and environmental measures 
of relevance to conservation (e.g., phenology and water supply). These data also 
provide information on how dominant species or genera are responding to pressures 
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and threats and allow targeting of effort, particularly where unexpected changes are 
detected. Of importance is that these data provide a historical record of the states 
and dynamics of habitats over areas that are far larger than those that can be sur-
veyed from the ground alone. So, the overall message is to find ways to integrate 
both approaches, where appropriate, to maximize and optimize the provision of 
information in support of nature conservation.

A common approach to demonstrate and convey the benefits of advances in Earth 
observation for nature conservation has been to undertake joint studies between 
scientists and conservation practitioners, focusing on one or only a few sites. Whilst 
successes have been obtained, a better approach would be to develop Earth observa-
tion techniques that are more widely applicable beyond these sites or support 
national or international efforts. An example of this is the EODESM system (Lucas 
and Mitchell (2017), this book), which provides scalable classifications across pro-
tected areas using the consistent and globally recognized FAO LCCS taxonomy 
and, at the same time, attributes classes with universally recognized environmental 
variables. However, when encouraging the use of a specific taxonomy, it is impor-
tant to convey or demonstrate also how this can be translated to other taxonomies 
that may be more familiar or relevant. Examples might be the Ramsar Classification 
System for Wetlands, which can be reproduced from the LCCS but requires addi-
tional information on context (e.g., marine, estuarine, tundra, alpine). Recognition 
of taxonomies used commonly by ecologists is also important when developing or 
designing approaches to classification from Earth observation data.

A further criticism of Earth observation products is that these are not fit for pur-
pose or are of insufficient accuracy. As an example, grassland maps may not con-
sider soil acidity measures in their taxonomy. The accuracy of grassland maps may 
also be stated as exceeding a value that is often considered acceptable (80% correct 
80% of the time), but that of grassland habitats of conservation importance may be 
far lower. Hence, there is a need for remote sensing scientists to consider the char-
acteristics of these more specific and critical habitats and how these might be better 
discriminated, described and mapped; and also provide realistic measures of accu-
racy. Perhaps more importantly, there needs to be a dialogue between remote sens-
ing and conservation practitioners in terms of the taxonomies used for classification 
to ensure that these meet the needs on the ground, with this occurring before the 
commencement of projects. Communication of ideas and methods and collabora-
tions between all parties is essential to ensure that funding and resources are effec-
tively and efficiently utilized.

When more detailed classifications are generated for sites, acknowledgement of 
both the actual and potential presence of plant species is needed. As an example, the 
training of a classification of Australian open woodland tree species from airborne 
hyperspectral data relied on a set of tree species defined through ground observa-
tions (Lucas et al. 2008). However, when conducting an independent ground-based 
validation of the classifications in other areas, rare tree species that had not been 
previously observed in the area were found. These were therefore not mapped as 
their spectral characteristics and statistics were not integrated in the training dataset. 
This is also the case where plant species are associated with habitat types or struc-
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tures but many may have been lost from sites as a consequence of historic manage-
ment practices (e.g. neglect, over-grazing, burning or catastrophic management). In 
these cases, species may be mapped where they no longer exist. These two cases 
demonstrate the need for timely and comprehensive ground observations to inform 
on the classifications of Earth observation data.

 Concluding Remarks: What Has Remote Sensing Done 
for Us?

Over the past 60 years or so, Earth observation data have progressively infiltrated 
many aspects of society, economy and environment, with this achieved through 
step-change and often parallel developments in Global Positioning Systems (GPS), 
communications and navigation technologies, Google Earth and other web-based 
delivery platforms, Geographic Information Systems and services, mobile technol-
ogies and devices, drone capability, hyperspectral and LiDAR remote sensing, new 
sensor designs, constructions and operations, cloud and high performance comput-
ing, and the provision of free and open analysis ready data to name a few. Often 
without our knowledge, these data have played, and will continue to play, a major 
role in all of our activities, whether it be weather forecasting, assessing the impact 
of climate change, monitoring deforestation, controlling wildfires or responding to 
adverse events such as flooding, oil spills or storms. Remote sensing has already 
made an enormous but often understated contribution to how we view, manage and 
respond to our environment. Indeed, without Earth observations, we might not have 
been aware of the scale of the changes that are occurring across the world and 
instead we would be at a point where we no longer  have choices in how we can 
respond. However, there is no room for complacency and it is now more important 
than ever to ensure that these technologies make a significant contribution to ensur-
ing that plant and animal species continue to form and inhabit our environment for 
the benefit of today’s and tomorrow’s populations.
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