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Abstract This chapter provides an overview of the authors’ previous work about

dealing with investor’s preferences in the portfolio selection problem. We propose a

fuzzy model for dealing with the vagueness of investor preferences on the expected

return and the assumed risk, and then we consider several modifications to include

additional constraints and goals.

1 Introduction

H.M. Markowitz won the 1990 Nobel Price for his work in the foundation of modern

portfolio theory (MPT) [27, 28], which has become a main tool in portfolio manage-

ment as well as in other economic theories, such as asset pricing [33]. MPT is a deep

theory which can hardly be described in a few words (see [11] for a comprehensive

account), but, roughly speaking, it aims to determine the best portfolio we can form

from a given set of possible assets on the basis of two characteristics. The first one is

the expected return. In order to measure it, the return of each asset is considered as

a random variable and the expected return is often measured by its mean, which in

practice is estimated by the arithmetical mean of the historical returns. The expected

return of a portfolio is defined as the weighted sum of the expected returns of its

assets.

Here we should face the critical question: to what extent can we trust that the

future return of a portfolio will be similar to the expected return calculated from

its past returns? This leads to the second characteristic to be considered in order to

select a portfolio to invest in: the risk. It tries to estimate the difference between the

expected return and the real future return of a portfolio.
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Whereas the theoretical relevance of MPT is not questioned, several criticisms

about its real world applicability have arisen [38]. However there are also renowned

specialists supporting it [18, 30, 33]. Assuming that the expected return and an

adequate measure of the risk are reliable, MPT establishes that a rational investor

should select an efficient portfolio, i.e., a portfolio providing the least possible risk

for a given expected return or, what is essentially the same, providing the greatest

expected return for a maximum allowable risk.

The original (classical) Markowitz model is also called the mean-variance model

since it takes as indicators of the expected return and the risk of a portfolio the mean

and the quadratic form associated to the variance-covariance matrix of the returns of

the assets, respectively, which in practice are estimated from the historical data by

standard statistical techniques assuming that they are normally distributed.

However, several alternative ways for measuring the risk of a portfolio have been

proposed. Value at Risk (VaR) is widely used (see [36] for a discussion of this con-

cept, or also [16]). Konno and Yamazaki [21] propose a linear model which dra-

matically simplifies the computational aspects of the portfolio selection problem.

Some other possibilities arose from the fact that many risk measures become high

when there is a high probability that the return will be far from the expected return,

but they do not distinguish whether the difference is positive (higher return than

expected) or negative (less return than expected). Since aversion to having more

benefits than expected is questionable, some asymmetric measures for the so-called

downside risk that take into account only the risk of having less return than expected,

have been proposed. The first downside risk measure appeared in Roy’s “safety-first”

model [31, 32]. See also [8, 9, 25, 26, 35]. Other asymmetric measures of risk take

into account higher statistical moments: skewness, kurtosis [15, 17, 20]. For more

advanced models taking into account the dynamics of the variance see for instance

[10].

2 The Classical Portfolio Selection Problem

Thus, the original Markowitz Portfolio Selection Model is formulated as

Min. 𝐱𝐭𝐕𝐱
s.a 𝐞t𝐱 ≥ r

𝟏t𝐱 = 1
𝐱 ≥ 0

(1)

where the vector 𝐱 contains the weights of the assets in the portfolio (i.e. the propor-

tion of each asset in the total invested fund), 𝐞 is the vector of expected returns, mea-

sured by the means of the historical data and 𝐕 is the variance-covariance matrix of

such data, so that R estimates the risk of the portfolio and r is the minimum expected

return specified by the investor.
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Alternatively, a dual form of the problem consists of maximizing the expected

return and imposing a maximum admissible risk:

Max. 𝐞t𝐱
s.a 𝐱t𝐕𝐱 ≤ R

𝟏t𝐱 = 1
𝐱 ≥ 0

(2)

In fact, the portfolio selection problem is better understood as a bi-objective prob-

lem aiming both maximizing the expected return and minimizing the risk. The min-

imizing formulation is the most widely used in the literature, mainly because by

being a quadratic problem it is more easily handled from a mathematical point of

view. However, we will also deal with (2) since it is more realistic to ask an investor

what risk he considers acceptable rather than forcing him to fix a minimum return

without having any reference about the risk it carries. In fact, it is the usual practice

for small investors [see for instance (http://www.santander.com)].

The original Markowitz Portfolio Selection Model included just linear constraints,

mainly because computers could not handle more difficult instances. However,

nowadays the available computational power is much greater and hence more sophis-

ticated models can be dealt with, looking for efficient portfolios satisfying also

additional constraints. There are many contexts in which such constraints become

necessary. Some of them are related to the mutual fund management. Fund man-

agers must comply contractual requirements determined by the prospectus as well

as legal requirements, such as the 5–10–40-constraint imposed by the §60(1) of the

German investment law [2], which establishes that securities of the same issuer are

allowed to amount to up to 5% of the net asset value of the mutual fund, but they are

allowed to 10% if the total of all of these assets is less than 40% of the net asset value.

It is also usual to include buy-in thresholds to reduce transaction costs. This means

not allowing the stocks of a mutual fund in a given asset to be less than a certain

amount. A third typical example is that managers often impose upper bounds to the

total number of assets in a mutual fund also to reduce transaction costs, as well as

lower bounds in order to diversificate the investment. See [13] for the computational

aspects associated to these additional constraints. This leads to the model

Min. 𝐱t𝐕𝐱
s.t. 𝐞t𝐱 ≥ r

𝟏t𝐱 = 1
𝐥 ≤ 𝐱 ≤ 𝐮,

(3)

where 𝐥 and 𝐮 are the vectors of lower and upper bounds for each weight. However,

in many cases the investor does not really wish to force each asset to have a min-

imum weight in the portfolio but, in order to avoid an artificially imposed excess

of diversification in the optimal portfolio, he may just wish to require a minimum

http://www.santander.com
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weight only for those assets actually appearing in it. This leads to the incorporation

of semicontinuous variable constraints into the model, which means that each vari-

able xi is allowed either to be 0 or to vary in the rank [li, ui]. Such constraints can

be expressed with the help of binary variables yi taking the value 1 if the i-th asset

appears in the portfolio and 0 otherwise. The resulting model is:

Min. R = 𝐱t𝐕𝐱
s.t. 𝐞t𝐱 ≥ r

𝟏t𝐱 = 1
liyi ≤ xi ≤ uiyi, 1 ≤ i ≤ n,
yi ∈ {0, 1}.

(4)

In any portfolio selection problem, the set of optimal pairs (r,R) consisting of the

minimal risk R providing a given expected return r, or, equivalently, the maximum

expected return provided by a portfolio that does not exceed a maximum level of

risk R, is known as the efficient frontier of the problem. In the simplest case where

even the sign constraints are removed, it consists just of a branch of parabola [6, 11].

However, in the last decades, computation techniques have been developed to solve

large and more sophisticated instances of the portfolio selection problem including

many different kinds of constraints, making it more realistic (see [12, 37]).

3 A Fuzzy Formulation of the Portfolio Selection
Problem

Obviously, the portfolio selection, like most financial problems, is related with uncer-

tainty because it consists of taking a decision about future events. Moreover, it is

not easy to model the investor’s preferences. After the seminal work by Markowitz,

attention has been given to the study of alternative models [22, 25] which try to deal

more efficiently with the uncertainty of the data. Most of these models are based on

probability distributions, which are used to characterize risk and return. However,

another way of dealing with uncertainty is to work with models based on soft com-

puting. Watada [41] solves this problem by using imprecise aspiration levels for an

expected biobjective approach, where the membership functions of the goals are of

a logistic-type. In 2000, Tanaka et. al. [39] propose using possibility distributions

to model uncertainty on the expected returns and to incorporate the knowledge of

financial experts by means of a possibility degree of similarity between the future

state of financial markets and the state in previous periods [14]. Multiobjective pro-

gramming has also been used to design fuzzy models of portfolio selection, either

for compromise solutions [29] or by introducing multi-indices [1]. Specific meth-

ods have even been proposed for dealing with the unfeasibility provoked by conflict

between the expected return and the investor’s diversification requirements [23, 24].
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However, in this section we will consider a very different class of vagueness

related to the portfolio problem, namely the vagueness of the invertor’s criteria for

selecting a satisfactory trade off between the risk he considers acceptable and the

return he wishes to obtain. In other words, the investor must choose a point at the

efficient frontier of the problem. From a theoretical point of view, the investor’s pref-

erences are usually formalized by means of utility functions, so that the final choice

is that efficient portfolio maximizing a given utility function, but when we try to

reflect the preferences of a real specific investor we must ask him directly for a point

in the efficient frontier. Nevertheless, it is obvious that the investor’s preferences are

essentially vague, so that it is unnatural to force him to choose a specific point. In

practice, he could only determine a zone or a fuzzy point on it.

This leads to the fuzzy model proposed by the authors in [5]. The main idea is to

consider partially feasible solutions involving slightly greater risk than that fixed by

the decision-maker, and to study the possibilities that they offer in order to improve

the expected return.

A fuzzy set ̃S, of partially feasible solutions, is defined so that the membership

degree of a given portfolio depends on how much its risk exceeds the risk R0 fixed by

the investor. On the other hand, a second fuzzy set ̃G is defined, whose membership

function reflects the improvement on the return provided by a partially feasible solu-

tion with respect to the optimal crisp return z∗. In practice, we consider piecewise

linear membership functions

𝜇
̃S(x) =

⎧
⎪
⎨
⎪
⎩

1 if r ≤ R0,

1 − r−R0
pf

if R0 < r < R0 + pf ,

0 if r ≥ R0 + pf ,

𝜇
̃G(x) =

⎧
⎪
⎨
⎪
⎩

0 if z ≤ z∗,
z−z∗

pg
if z∗ < z < z∗ + pg,

1 if z ≥ z∗ + pg,

where r and z are the risk and the return provided by the portfolio x (which is assumed

to satisfy the constraints of (MV), except the second one); the parameter pf is the

maximum increment in the risk that the decision-maker can accept, and pg is the

increment on the return that the decision-maker would consider completely satisfac-

tory. From this, we can define a global degree of satisfaction

𝜆(x) = min{𝜇
̃G(x), 𝜇̃S(x)},

which is the membership degree for the fuzzy intersection of ̃S ∩ ̃G. The fuzzy port-

folio model becomes
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Table 1 Returns on five assets

Year AmT ATT USS GM ATS

1937 −0.305 −0.173 −0.318 −0.477 −0.457

1938 0.513 0.098 0.285 0.714 0.107

1940 0.055 0.2 −0.047 0.165 −0.424

1941 −0.126 0.03 0.104 −0.043 −0.189

1942 −0.003 0.067 −0.039 0.476 0.865

1943 0.428 0.3 0.149 0.225 0.313

1944 0.192 0.103 0.26 0.29 0.637

1945 0.446 0.216 0.419 0.216 0.373

1946 −0.088 −0.046 −0.078 −0.272 −0.037

(FMV) Max. 𝜆(x)
s.t. x ∈ ̃S.

(5)

In [3] exact and heuristic procedures for solving this problem are described. In

order to illustrate the main idea on which the model is based we consider five assets

from the historical data introduced by Markowitz [28]. Table 1 shows the returns

of American Tobacco, AT&T, United States Steel, General Motors and Atcheson &

Topeka & Santa Fe.

We have fixed a risk level R = 0.03. The optimal crisp portfolio is formed by

assets AmT, ATT, GM, ATS and provides an optimal return z∗ = 0.103926. For the

fuzzy model, we have fixed pf = 0.02, pg = 0.02. By explicitly solving the Kuhn-

Tucker conditions associated to the model, we can calculate the optimal return for a

given risk R, which happens to be

F(R) =
−0.02355 + 52.6832R + 2.6136

√
−0.77841 + 52.6832R

9.09494 × 10−13R + 33.84051
√
−0.77841 + 52.6832R

Computations are valid for risks in the interval I = [0.025826, 0.083341]. The

functions 𝜇f (R) and 𝜇g(R) are shown in Fig. 1. They intersect at R∗ = 0.041381, cor-

responding to 𝜆 = 0.430977. The return on the fuzzy portfolio is 0.112545, whereas

the crisp return was 0.103926.

We observe that the global degree of satisfaction is low. This means that the risk

is increased much more than the return of the asset. The higher value of 𝜆, the more

preferable the alternative fuzzy portfolio is. High fuzzy satisfaction levels are more

usual when additional constraints are considered making the efficient frontier more

irregular, as we will see in the next section.



Fuzzy Portfolio Selection Models for Dealing . . . 125
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4 Portfolio Selection with Semi-continuous Variable
and Cardinality Constraints

As we have already noticed, real world investments require incorporating many addi-

tional constraints into the portfolio selection model, many of which can be expressed

as mathematically simple linear constraints, but some others are more complex from

a mathematical point of view since they transform the model into a mixed integer

one. To illustrate this fact we will consider semicontinuous variable and cardinality

constraints, although any set of linear constraints could be considered in addition.

Hence, our starting point is now the model (4).

Let us call X the set defined by the constraints imposed on the problem when the

minimum return constraint is relaxed, which will be handled separately. The con-

straint and goal set will be fuzzy subsets of the (crisp) universe set X. The fuzzy

constraint set ̃C must be such that the value 𝜇
̃C(𝐱) is high when the expected return

on the portfolio 𝐱 ∈ X is not much less than r0 and the risk is not much greater than

R0. This means that ̃C can be defined as the fuzzy intersection of two fuzzy sets

̃Cr and ̃CR, such that the degree of membership of each portfolio 𝐱 ∈ X is given by

𝜇
̃Cr
(𝐱) ∶= f1(r(𝐱)) and 𝜇

̃CR
(𝐱) ∶= g1(R(𝐱)), where r(𝐱) and R(𝐱) are the expected

return and risk of the portfolio 𝐱, f1 ∶ IR ⟶ [0, 1] is a non-decreasing function

such that f1(r0) = 1 and g1 ∶ IR ⟶ [0, 1] is a non-increasing function such that

g1(R0) = 1. The specific choice of f1 and g1 will depend on the available information

about the investor’s preferences regarding risk and return. Hence the membership

function to the fuzzy feasible set ̃C ∶= ̃Cr ∩ ̃CR is given by the membership function

𝜇
̃C(𝐱) ∶= min{𝜇

̃Cr
(𝐱), 𝜇

̃CR
(𝐱)}, which is of the form 𝜇

̃C(𝐱) = h1(r(𝐱),R(𝐱)), where

h1(r,R) ∶= min{f1(r), g1(R)} generally has the shape shown in Fig. 2a.

On the other hand, the degree of membership of the goal set ̃G of the fuzzy

problem must be high for portfolios whose expected return is much greater than

r0 or the risk is much less than R0. Hence, ̃G is the fuzzy union of the fuzzy sets

̃Gr and ̃GR whose membership functions are of the form 𝜇
̃Gr
(𝐱) ∶= f2(r(𝐱)) and

𝜇
̃GR
(𝐱) ∶= g2(R(𝐱)), where f2 ∶ IR ⟶ [0, 1] is a non-decreasing function such that
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f2(r0) = 0 and g2 ∶ IR ⟶ [0, 1] is a non-increasing function such that g2(R0) = 0.

Notice that in this case ̃G is a fuzzy union and not a fuzzy intersection, since improv-

ing the crisp optimal portfolio means improving the risk or improving the expected

return, but both cases cannot occur simultaneously. The fuzzy intersection would be

the empty set.

Thus, the membership function of the fuzzy goal set ̃G = ̃Gr ∪ ̃GR (which can be

called the degree of improvement of the goal) is given by

𝜇
̃G(𝐱) ∶= max{𝜇

̃Gr
(𝐱), 𝜇

̃GR
(𝐱)} = h2(r(𝐱),R(𝐱)),

where h2(r,R) ∶= max{f2(r), g2(R)} has the shape shown in Fig. 2b.

Now, following Delgado et al. [7], we consider the fuzzy decision set of our prob-

lem, defined as the fuzzy intersection ̃D ∶= ̃C ∩ ̃G, which has the shape shown in

Fig. 3. The degree of membership of a portfolio 𝐱 to ̃D is called its degree of global

satisfaction: 𝜆(𝐱) ∶= min{𝜇
̃C(𝐱), 𝜇 ̃G(𝐱)}. In Fig. 3 we have represented a possible

(simplified) efficient frontier of the crisp problem (SCP) and the pair (r0,R0) chosen

by the investor as the starting point for the fuzzy model. We see that its degree of
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feasibility is 1 but its degree of improvement of the goal is 0, and so the degree of

global satisfaction is 0. We can also see the lifting of the efficient frontier to the graph

of the degree of global satisfaction. In order to choose a specific solution from the

fuzzy decision set ̃D we maximize its degree of global satisfaction, i.e. we find the

optimal fuzzy portfolio by solving the program:

(FSC) Max. 𝜆(𝐱)
s.t. 𝐱 ∈ X

In Fig. 3 we can see that the degree of global satisfaction has two local maxima

on the efficient frontier, the best of which is the optimal solution of the fuzzy model

we are introducing.

The problem of choosing membership functions suitable for modelling a real

uncertain situation is a very subtle issue in fuzzy set theory. Here, in the absence

of specific preferences, we will consider the simplest case. Notice that we intend

to compare possible variations of the expected return with possible variations of

the risk, and what is really comparable with a variation of the expected return is

not a variation of its variance but a variation of its typical deviation. The difference

between the variance and the typical deviation is just a square root, which is irrel-

evant when minimizing the risk, but it must be incorporated into our membership

functions. In other words, the natural way to express the investor’s preferences on

the trade-off between variations in the expected return and variations in the risk is in

terms of the mean and the typical deviation instead of the mean and the variance. In

the absence of more specific criteria, we will assume a piecewise linear dependence

on r and

√
R; namely, we take

f1(r) ∶=
⎧
⎪
⎨
⎪
⎩

0 if r < r0 − pf1 ,

1 − r0−r
pf1

if r0 − pf1 ≤ r ≤ r0,
1 if r0 < r,

g1(R) ∶=
⎧
⎪
⎨
⎪
⎩

1 if
√

R<
√

R0 ,

1 −
√

R−
√

R0

pg1
if

√
R0≤

√
R≤

√
R0+pg1

,

0 if
√

R>
√

R0+pg1
,

f2(r) ∶=
⎧
⎪
⎨
⎪
⎩

0 if r < r0,r−r0
pf2

if r0 ≤ r ≤ r0 + pf2 ,

1 if r0 + pf2 < r,
g2(R) ∶=

⎧
⎪
⎨
⎪
⎩

1 if
√

R<
√

R0−pg2
,

√
R0−

√
R

pg2
if

√
R0−pg2

≤

√
R≤

√
R0 ,

0 if
√

R0<
√

R.

In [5] we show how to handle this fuzzy model. As an illustration, we con-

sider the same data set considered in the previous section, but now we incorpo-

rate semicontinuous variables with vectors of bounds 𝐥 = (0.2, 0.3, 0.2, 0.3, 0.2) and

𝐮 = (0.6, 0.6, 0.6, 0.6, 0.6), as well as a cardinality constraint with m = 2 and M = 5.

Let us consider an investor that has chosen an expected return r0 = 0.125, whose

corresponding risk is R0 = 0.0742. In order to interpret this variance, we will calcu-

late the standard deviation

√
R0 = 0.272. We can consider the later as a quite high

risk, and so we assume that the investor would be interested in reducing it. In this

sense, a reduction of pg2 = 0.06 would be considered as totally satisfactory. On the

other hand, an increment greater than pg1 = 0.01 would not be acceptable in any

case. We assume that the investor would accept variations on the expected return

with tolerances pf1 = pf2 = 0.02.
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Fig. 4 Left Membership function to the feasible set and to the goal set as functions of the expected

return. Right The efficient frontier around the crisp expected return

Table 2 Comparison between the crisp and the fuzzy solutions of Example 1

x1 x2 x3 x4 x5 r
√

R
Crisp 0.31486 0 0.2 0.486 0 0.125 0.273
FzL 0.244 0.354 0 0.40 0 0.1192 0.23
FzR 0.5 0 0 0.3 0.2 0.1313 0.281

𝜆 𝛥r 𝛥R
Fuzzy left 0.71 -0.0058 -0.013
Fuzzy right 0.12 0.0063 0.008

Figure 4 left shows the degrees of membership to the feasible and the goal sets

as functions of the expected return on a given efficient portfolio. We can compare it

with the piece of the efficient frontier around r0 within the tolerance levels, which is

shown at the right.

There we can see that near r0 there are two horizontal jumps below and a vertical

one above. In Fig. 4 we have highlighted the two local maxima of the degree of

global satisfaction. Specifically, they correspond to the efficient portfolios described

in Table 2, which also includes the crisp efficient portfolio. Both in the figure and in

the table we can see that the fuzzy optimal solution is the left-hand one with a degree

of global satisfaction 𝜆 = 0.71. Notice that the three portfolios shown in Table 2 have

different compositions.



Fuzzy Portfolio Selection Models for Dealing . . . 129

In Table 2 we can also appreciate the interest of the fuzzy alternative: by changing

from the crisp portfolio to the fuzzy one, we reduce the risk of the investment by a

bit more than 1% at the cost of reducing the expected return by just 0.0058. The sig-

nificantly lower degree of global satisfaction of the right fuzzy solution is reasonable

since the increment on the expected return is far less than the increment on the risk.

5 Portfolio Selection with Non-financial Goals

The Social Investment Forum in its new 2012 Trends Report in US [40] finds that

11.23% of all assets under professional management in the United States at the end

of 2011 applied various environmental social, governance and ethical criteria in

their investment analysis. Investors practicing Socially Responsible Investment (SRI)

strategies held $3.74 trillion out of $33.3 trillion of investment assets. This represents

an increase of 22% since 2009 and reflects the “growing investors’ interest in con-

sidering environmental, community, other societal or corporate governance (ESG)

issues to refine how they make decisions as they select and manage their portfolios

or raise their voices as shareholders” [40].

This growth of SRI strategies all around the world has stimulated in turn the rise of

many entities working in the rating of assets with regard to their social responsibility.

This poses two mathematical problems: how to evaluate assets’ social responsibility

which is by its nature a vague an imprecise concept and how to aggregate in a final

rating a great amount of relevant but imprecise information about firms and/or funds.

Nevertheless, and although investors could be provided with highly processed

non-financial information from the experts, in order to select a portfolio, they must

elicit their preferences. The simplest way would be to restrict the feasible set of

investments to those being “acceptable” for the investor from a SRI point of view.

However this would mean to completely subordinate the financial goals to the non-

financial ones and in fact, in practice most of the SRI assets first apply financial

screens and then social screens. This clearly reflects that actually most of socially

responsible investors consider SRI as a secondary goal with regard to maximizing

the financial return and minimizing the financial risk.

In this section a fuzzy portfolio selection problem is proposed in which a sec-

ondary goal besides the financial ones is considered in such a way that no poten-

tially interesting solution with regard to the risk and the return is discarded by the

constraints. Specifically, the constraints of the model do not mention the secondary

goal, which appears just in the objective function, in such a way that all the feasi-

ble portfolios within given ranges of risk and return are taken into consideration.

Thus, the investor can be aware of what is being exactly missed as a result of the

improvement of the additional non-financial goal.

Our starting point is again the model (4), and hence each portfolio is determined

by a pair (𝐱, 𝐲) of weights and binary variables. We measure the Social Responsibility

of a portfolio as the degree of membership of a fuzzy set ̃S, say 𝜇
̃S(𝐱, 𝐲). See [4] for

a way of defining such a fuzzy set.
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Now we take as fuzzy feasible set the fuzzy subset of the set of all portfo-

lios satisfying the hard constraints of (4) (i.e., all but the first one), defined as

̃C = ̃Cr ∩ ̃CR, where the membership functions of the fuzzy sets ̃Cr and ̃CR are given

by:

𝜇
̃Cr
(x, y) =

⎧
⎪
⎨
⎪
⎩

1 if r ≥ r0,
r−r0+sr

sr
if r0 − sr < r < r0,

0 if r ≤ r0 − sr,

𝜇
̃CR
(x, y) =

⎧
⎪
⎨
⎪
⎩

1 if R ≤ R0,
R0+sR−R

sR
if R0 < R < R0 + sR,

0 if R ≥ R0 + sR,

where r y R are respectively the expected return and the risk of the portfolio (x, y)
and the values r0, R0, sr and sR are determined from the investor’s preferences. This

means that r0 and R0 are an expected return and a risk that the investor considers

as completely acceptable, but he would accept worse values until reaching the toler-

ances sr and sR if this provides better results for the secondary goal.

Next we define a fuzzy goal set ̃G from two auxiliary fuzzy sets ̃E and ̃S, the first

one defining the “efficient enough” portfolios and the second one defining the “good

enough” ones with regard to the secondary goal (always according to the investor’s

preferences). The set ̃E will express what we are loosing by accepting a non-efficient

portfolio, and so efficient portfolios will be now the totally efficient portfolios, i.e.

those having degree of membership of ̃E equal to 1.

First we define efficiency with regard to the expected return and then, the effi-

ciency with regard to the risk by means of two fuzzy sets ̃Er and ̃ER. The membership

of ̃Er is:

𝜇
̃Er
(x, y) =

{
1 − ref (R)−r

tr
if r ≥ ref (R) − tr,

0 otherwise,

where tr is a tolerance determined from the investor’s preferences and ref (R) is the

efficient expected return corresponding to the risk R of the portfolio (x, y). This

means that the degree of efficiency with regard to the expected return reaches the

value 0 when the difference between the expected return r of the portfolio and ref (R)
exceeds a tolerance fixed by the investor.

Analogously, we define the membership function of ̃ER as

𝜇
̃ER
(x, y) =

{
1 − R−Ref (r)

tR
if R ≤ Ref (r) + tR,

0 otherwise,

which means that the degree of efficiency of a portfolio with regard to the risk is 1 for

efficient portfolios and reaches the value 0 when the difference between the risk R of

the portfolio and the efficient risk Ref (r) for its return r exceeds a given tolerance tR.
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Now we define ̃E = ̃Er ∩ ̃ER, where the membership function of the fuzzy inter-

section is defined as the minimum of the previously defined membership functions.

Hence the set ̃E allows us to speak about partially efficient portfolios in such a way

that efficient portfolios in the usual sense are now the totally efficient ones, but a

portfolio close enough to the efficient frontier is considered as “almost efficient” in

the fuzzy sense.

Finally, we define our fuzzy goal set ̃G by means of the membership function as

a weighted sum

𝜇
̃G(x, y) = w𝜇

̃S(x, y) + (1 − w)𝜇
̃E(x, y),

where the weight w expresses the importance of the secondary goal for the investor

with regard to efficiency. So, a high value for w means that the investor is willing

to go relatively far from the efficient frontier in order to obtain higher values of 𝜇
̃S,

whereas a small value of w means that the investor wishes to stay near the efficient

frontier. In any case, recall we have defined the feasible set in such a way that only

good enough solutions with regard to the financial goals are under consideration, and

so the financial goals are always the main goals of the problem. More specifically,

a large value for w means that, among the acceptable solutions with regard to the

financial goals, those best with regard to ̃S are preferred, and only for similar values

with regard to ̃S the degree of efficiency becomes relevant.

All in all, the degree of membership of the decision set is given by

𝜇
̃D(x, y) = min{𝜇

̃C(x, y),w𝜇̃S(x, y) + (1 − w)𝜇
̃E(x, y)}

and the fuzzy problem (6) is the problem determined by this decision set, whose

optimal solutions are those with maximum degree of membership of ̃D:

Max.min{𝜇
̃C(x, y),w𝜇̃S(x, y) + (1 − w)𝜇

̃E(x, y)}
s.t.1x = 1

m ≤

∑

i
yi ≤ M

liyi ≤ xi ≤ uiyi, i = 1,… , n
xi ≥ 0, yi ∈ {0, 1} i = 1,… , n

(6)

In order to illustrate this model, we consider the 10 mutual funds listed in Table 3.

The first five have positive SRI degree, whereas the last five are conventional funds

with null SRI degree. The variance-covariance matrix and the vector of expected

returns are calculated from the weekly data from 31-12-2006 to 31-12-2007 provided

by Morningstar Ltd. Assume we wish to select a portfolio consisting of a minimum

of 3 and of a maximum of 6 funds in such a way that each non-zero weight is at

least 0.05. As upper bounds for the weights, we fix 0.25 for the first five (the socially

responsible ones) and 0.15 for the conventional ones. These weights allow up to a

75% of conventional funds and up to a 100% of socially responsible funds in each

feasible portfolio.
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Table 3 Selected funds

# Name # Name

F1 Calvert Large Cap

Growth A

F6 BlackRock Index

Equity Inv A

F2 Calvert Social

Investment Equity A

F7 Dreyfus Appreciation

F3 Domini Social Equity

Inv

F8 JPMorgan Equity

Index Select

F4 Green Century Equity F9 Legg Mason Cap

Mgmt All Cap B

F5 MMA Praxis Core

Stock A

F10 MFS Blended Res.

Core Equity A

By observing the efficient frontier, the investor can choose the zone of the plane

risk-return he is interested in. Formally, this means to determine the fuzzy set ̃C. For

this, we fix (r0,R0) = (0.26, 1.98) with tolerances (sr, sR) = (0.01, 0.02).
To determine an instance of the problem (6), we need to fix the weight w for the

social responsibility degree in the goal function. Let us set a quite high value, namely

w = 0.8 to favor those portfolios being quite far from the efficient frontier if they are

good with regard to SRI.

The optimal solution of (6) is the portfolio N1 in Table 4, whose degree of mem-

bership of the decision set is 0.6262. With this solution, the investor gets an expected

return r = 0.258, with a risk R = 1.98 and a social responsibility degree s = 0.3808.

It is interesting to compare this optimal solution with other alternatives, and therefore

Table 4 contains the six best portfolios that are optimal with regard to the portfolios

with the same composition. Notice that this does not mean that portfolio N2 is the

second best solution of (FP), since there are infinitely many portfolios near to N1

that are better than N2. What we can say is that, if we look for a portfolio with a

composition different from that of N1, the best possibility is N2, and so on.

Figure 5 shows the position of the portfolios appearing in Table 4 in the risk-return

plane. We see that N2 is completely efficient. When compared to N1, it has a similar

expected return, a substantially better risk, but a significantly lower social responsi-

bility degree. By contrast, portfolio N3 is again a good solution with regard to social

responsibility (it has the second best SRD), but it is worse than N1 because of its

SRD, and worse than N2 because of its significantly lower degree of efficiency.

In general, when applying a heuristical procedure for solving a larger instance

of (6), it is useful to save not only the best portfolio along the search process, but

the best portfolio found for each composition. Hence, in the end we can present the

investor not only the optimal portfolio, but a list of alternatives for different compo-

sitions. These alternatives are ordered a priori according to his own preferences. In

this way the investor is given a last chance to decide which portfolio suits better his

preferences with regard to the trade off between risk, return and social responsibility.
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Fig. 5 Location on the plane risk-return of the best solutions

With this proposal, the investor knows exactly what he is missing with respect to

the financial goals by accepting the solution of (6), and if he considers the financial

cost excessive, he has the possibility of choosing a more conservative alternative

among the proposed list or even solving again (FP) with a lower value for the weight

of the social responsibility degree.

6 Conclusion

In this chapter we have seen how fuzzy techniques can be applied to the portfolio

selection problem in order to deal with different issues related to the subjectivity

of the investor’s preferences: on one hand, the integrality constraints considered in

Sect. 4 make the problem very sensitive to small changes of the risk and return pref-

erences, and our proposed model look for the best solution taking into account that

those preferences are soft ones and, hence, the investor will accept slight variations

if they provide a reasonable improvement of the solution. On the other hand, when

considering non-financial goals as in Sect. 5, our model provides a precise way of

prioritizing the financial behavior of the selected portfolio without disregarding its

non-financial properties. Of course, it would not be reasonable to expect that a single

model would be suitable for reflecting the preferences of every investor (even if it

has some adjustable parameters to this end), and hence any other investor’s profiles

will need essentially different models involving new ideas, and this leaves a rich field

for future research.
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