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Abstract Fuzzy Cognitive Maps (FCMs) have proven to be a suitable methodology

for the design of knowledge-based systems. By combining both uncertainty depic-

tion and cognitive mapping, this technique represents the knowledge of systems that

are characterized by ambiguity and complexity. In short, FCMs can be defined as

recurrent neural networks that include elements of fuzzy logic during the knowledge

engineering phase. While the literature contains many studies claiming how this Soft

Computing technique is able to model complex and dynamical systems, we explore

another promising research field: the use of FCMs in solving pattern classification
problems. This is motivated by the transparency of the decision model attached to

these cognitive, neural networks. In this chapter, we revise some prominent advances

in the area of FCM-based classifiers and open challenges to be confronted.

1 Introduction

In the last years, Fuzzy Cognitive Maps (FCMs) [12] have notably increased their

popularity within the scientific community. They constitute a suitable tool for the

designing of knowledge-based systems, where one of the most relevant character-

istics is the interpretability of the network topology. Not many computer science

techniques can claim this valuable feature.

From the structural perspective, an FCM can be defined as a fuzzy digraph that

describes the underlying behavior of an intelligent system in terms of concepts
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(i.e., objects, states, variables or entities). Such concepts comprise a precise mean-

ing for the problem domain under analysis and they are connected by signed and

weighted edges that denote causal relationships.

The sign and intensity of causal relations involve the quantification of a fuzzy

linguistic variable that can be assigned by experts during a knowledge acquisition

phase [13]. These elements recurrently interact when updating the activation value

of each concept (or simply neuron). In point of fact, an FCM exploits an activation

(state) vector by using a rule similar to the standard McCulloch-Pitts scheme [15].

Therefore, the activation value of each neuron is given by the value of the trans-

formed weighted sum that this processing unit receives from connected neurons on

the causal network. This activation value actually comprises an interpretable feature

for the physical system under investigation. More explicitly, the higher the activation

value of a neuron, the stronger its influence (positive or negative) over the connected

neural entities. Of course, this influence also depends on the intensity of the causal

relations connecting the actual neuron with the other neural processing entities.

FCM-based models can be understood as a kind of recurrent neural networks
that support backward connections that sometimes form cycles in the causal graph.

These backward relations (called feedback) enable the network to handle memory

to compute the outputs of the current state and maintain a sort of recurrence to the

past processing [6]. During the inference phase, the updating rule is repeated until

the system converges to a fixed-point attractor or a maximal number of iterations is

reached. The former implies that a hidden pattern was discovered [12] while the latter

suggests that the outputs are cyclic or completely chaotic. Whichever the observed

behavior, the recurrent network will produce a response (i.e., state vector) at each

discrete-time step, which comprises the activation degree of all neurons of the model.

Although FCMs inherited many aspects from other neural models (i.e., the

reasoning rule), there are some important differences regarding to other types of

Artificial Neural Network (ANNs). Classical ANN models regularly perform like

black-boxes, where both the neurons and the connections do not have a clear mean-

ing for the problem itself, or results cannot easily be explained by the same predicting

model. However, all neurons in an FCM have a precise meaning for the physical sys-

tem being modeled and correspond to specific variables that form part of the solution.

It should be highlighted that an FCM does not comprise hidden neurons since these

entities could not be interpreted nor help at explaining why a solution is suitable for a

given problem. If this were the case, the model becomes unfriendly for many further

phases.

In the last years, FCMs have been widely studied due to its advantageous char-

acteristics for handling complex systems. Less attention has been given to the

development of FCM-based classifiers. Pattern classification [4] is one of the most

ubiquitous real-world problems and certainly one at which humans really excel. It

consists of identifying the right category (among those in a predefined set) to which

an observed pattern belongs. These patterns are often described by a set of predic-

tive attributes of numerical and/or nominal nature called features. Some successful

classifiers include: artificial neural networks [7], support vector machines [8] or ran-

dom forest [2]. Regrettably none of these black-box classifiers provides an inherent
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introspection into the reasoning process associated to the decision model. However,

in some areas where machine learning models are applied, the transparency in their

predictions is crucial.

Aiming at developing a novel classification model, Papakostas et al. [31, 32]

introduced the notion of FCM-based classifier. The most prominent challenge to

be confronted when constructing an FCM-based classifier relies on the approach to

connect input and output neurons. It should be remarked that the topology of an

FCM-based classifier must comprise a coherent and precise meaning for the physi-

cal system under investigation. This suggests that the intervention of human experts

to define the network topology is usually required.

The development of accurate learning algorithms for computing the required

parameters is another issue that deserves attention. In the literature, several unsu-

pervised and supervised learning methods have been recently proposed [29]. These

algorithms are mostly focused on computing the weight matrix that define the seman-

tic of the whole cognitive system. However, the prediction capability of an FCM-

based classifier does not exclusively depend on the weight set. Other aspects such as

the network’s capability the represent the problem domain or the convergence issues

are equally important.

In this chapter, we focus on main advances on FCM-based classification and chal-

lenges that remain open problems for the scientific community. The rest of the manu-

script is structured as follows. Section 2 briefly surveys theoretical aspects related to

FCMs. Section 3 discusses about the transparency and usability of models for under-

standing the decision process. Section 4 describes the use of FCMs in the context of

pattern classification. Section 5 describes the FCM-based models where input neu-

rons denote information granules rather low-level features. To conclude, Sects. 6 and

7 will wrap-up the paper and highlight the main points of view of this proposal.

2 Fuzzy Cognitive Maps

FCMs can be seen as recurrent neural networks with interpretability features that

have been widely used in modeling tasks [11]. They consist of a set of neural process-

ing entities called concepts (neurons) and their causal relations. The activation value

of such neurons regularly takes values in the [0, 1] interval, so the stronger the acti-

vation value of a neuron, the greater its impact on the network. Of course, connected

weights are also relevant in this scheme. The strength of the causal relation between

two neurons Ci and Cj is quantified by a numerical weight wij ∈ [−1, 1] and denoted

via a causal edge from Ci to Cj.

There are three possible types of causal relationships between neural processing

units in an FCM-based network that express the type of influence from one neuron

to the other, which are detailed as follows:
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∙ If wij > 0 then an increase (decrement) in the cause Ci produces an increment

(decrement) of the effect Cj with intensity |wij|.

∙ If wij < 0 then an increase (decrement) in the cause Ci produces an decrement

(increment) of the neuron Cj with intensity |wij|.

∙ If wij = 0 then there is no causal relation between Ci and Cj.

Equation 1 shows the Kosko’s activation rule, with A(0)
being the initial state. This

rule is iteratively repeated until a stopping condition is met. A new activation vector

is calculated at each step t and after a fixed number of iterations, the FCM will be

at one of the following states: (i) equilibrium point, (ii) limited cycle or (iii) chaotic

behavior [12]. The FCM is said to have converged if it reaches a fixed-point attractor,

otherwise the updating process terminates after a maximum number of iterations T
is reached.

A(t+1)
i = f

( M∑

j=1
wjiA

(t)
j

)

, i ≠ j (1)

The function f (⋅) in Eq. 1 denotes a monotonically non-decreasing nonlinear func-

tion used to clamp the activation value of each neuron to the allowed interval. Exam-

ples of such functions are the bivalent function, the trivalent function, and the sig-

moid variants [37].

We put emphasis in the sigmoid function since it has exhibited superior prediction

capabilities [3]. Equation 2 formalizes the non-linear transfer function used in our

conducted researches, where 𝜆 is the sigmoid slope and h denotes the offset. Several

studies reported at [1, 10, 14, 17, 27] have shown that such parameters are closely

related with the network convergence.

f (Ai) =
1

1 + e−𝜆(Ai−h)
(2)

Equation 1 shows an inference rule widely used in many FCM-based applications,

but it is not the only one. Stylios and Groumpos [36] proposed a modified inference

rule, found at Eq. 3, where neurons take into account its own past value. This rule is

preferred when updating the activation value of neurons that are not influenced by

other neural processing entities.

A(t+1)
i = f

( M∑

j=1
wjiA

(t)
j + A(t)

i

)

, i ≠ j (3)

Another modified updating rule was proposed in [28] to avoid the conflicts emerg-

ing in the case of non-active neurons. Being more explicit, the rescaled inference

depicted in Eq. 4 allows dealing with the scenarios where there is not information

about an initial neuron-state and helps preventing the saturation problem. The reader

can notice that we can obtain a similar effect by using a shifted sigmoid function with

the adequate slope.
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A(t+1)
i = f

( M∑

j=1
wji(2A

(t)
j − 1) + (2A(t)

i − 1)

)

, i ≠ j (4)

If the cognitive network is able to converge, then the system will produce the same

output towards the end, and therefore the activation degree of neurons will remain

unaltered (or subject to infinitesimal changes). On the other hand, a cyclic FCM

produces dissimilar responses with the exception of a few states that are periodically

produced. The last possible scenario is related to chaotic configurations in which the

network yields different state vectors. Formally, such situations are mathematically

defined as follows:

∙ Fixed-point (∃t
𝛼

∈ {1, 2,… , (T − 1)} ∶ A(t+1) = A(t)
,∀t ≥ t

𝛼

): the FCM produces

the same state vector after the t
𝛼

-th iteration-step. This suggests that A(t
𝛼

) =
A(t

𝛼

+1) = A(t
𝛼

+2) = · · · = A(t)
.

∙ Limit cycle (∃t
𝛼

,P ∈ {1, 2,… , (T − 1)} ∶ A(t+P) = A(t)
,∀t ≥ t

𝛼

): the FCM peri-

odically produces the same state vector after the t
𝛼

-th iteration-step. This sug-

gests that A(t
𝛼

) = A(t
𝛼

+P) = A(t
𝛼

+2P) = · · · = A(t
𝛼

+jP)
where t

𝛼

+ jP ≤ T , such that

j ∈ {1, 2,… , (T − 1)}.

∙ Chaos: the FCM continues producing different state vectors for successive cycles,

thus being impossible to make suitable decisions.

If the FCM is unable to converge, then the model will produce confusing responses

and thus a pattern cannot be derived [26], thus being impossible to arrive at suitable

conclusions. In presence of chaos or cyclic situations, the reasoning rule stops once

a maximal number of iterations T is reached. In classification scenarios, the decision

class is then calculated from the last cycle, but this output is partially unreliable due

to the lack of convergence.

3 The Reasoning Process and Its Explainability

The classification problem [4] is about building a mapping f ∶  →  that assigns

to each instance x ∈  described by the attribute set 𝛷 = {𝜙1,… , 𝜙M} a decision

classD from the N possible ones in = {D1,… ,DN}. The mapping is often learned

in a supervised fashion, i.e., by relying on an existing set of previously labeled exam-

ples used to train the model. The learning process is regularly driven by the mini-

mization of a cost/error function.

Researchers in Machine Learning are primarily focused on prediction rates.

Regrettably, most accurate classifiers do not provide any mechanism to explain how

they arrived at a particular conclusion and therefore behave like a “black-box”. Some

classifiers like Artificial Neural Networks, Support Vector Machines, Ensemble tech-
niques orRandomForests are well-known to be the most likely successful algorithms

for addressing classification problems in terms of prediction rates. However, their

lack of transparency negatively effects their usability in scenarios where understand-

ing the decision process is required.
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For example, neural computation is a widely studied research field within Arti-

ficial Intelligence. The main limitation of Artificial Neural Networks is their lack

of transparency, which means that the network cannot justify its complex reasoning

process. As a result, these models do not allow interpreting the semantic behind the

physical system under investigation since the transparency is a necessary condition

to build interpretable classifiers.

Aiming at elucidating the hidden reasoning process of black-boxes, several

post-hoc procedures have been proposed. For example, one of these explanatory

techniques used explicit IF-THEN rules for extracting knowledge from black-box

classifiers while more recent procedures use symbolic approaches to approximate

the model [9]. But whether such explanation is truly comprehensive and meaningful

in the case of large trees or rule sets is questionable.

The transparency inherent to FCMs and their underlying neural foundations have

motivated researchers to build interpretable FCM-based classifiers. In these models,

the interpretability may be achieved through causal relations between neural enti-

ties defining the modeled system. Regrettably, building accurate, truly interpretable
FCM-based classifiers involves difficult challenges.

4 Low-Level FCM-Based Classifiers

As already mentioned, FCMs have been widely studied due to their appealing proper-

ties for handling complex and dynamic systems, but the development of FCM-based

classifiers has received less attention.

One of the firsts attempt to use FCMs in the context of pattern classification was

implemented in [31, 32]. In these references, the authors defined the notion of FCM-
based classifiers and proposed some generic architectures. The most prominent chal-

lenge to be faced when constructing an FCM-based classifier lies on how to connect

input and output neurons.

It should be remarked that an FCM classifier’s topology (i.e., concepts and causal

relations) must comprise a coherent and precise meaning for the physical system

being modeled. If the input neurons represent features of the classification problem,

then we are in presence of a low-level cognitive classifier where neural processing

units can be categorized as shown below:

Definition 1 We say that a neural processing entity Ci is an independent input neu-
ron if its activation value does not depend on the other input neurons.

Definition 2 We say that a neural processing entity Ci is a dependent input neuron
if its activation value is influenced by other connected neurons.

Definition 3 We say that a neural processing entity Ci in an FCM-based classifier

is an output neuron if we can predict a decision class from its final activation value,

which only depends on the connected input neurons.
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Typically, independent and dependent input neurons are used to activate the cog-

nitive networks since they often denote problem features. Output neurons, on the

other hand, are used to compute the decision class for an initial activation vector.

In the case of independent input neurons, they can propagate their initial activation

vector and they are not influenced by any other input neurons, therefore their acti-

vation values remain static. Notice that the expert must ideally determine the role of

each neurons and the way that input neurons are connected each other. In spite of

this fact, Papakostas et al. [30] investigated three generic architectures for mapping

the decision classes:

∙ Class-per-output architecture. Each decision class is mapped to an output neu-

rons. Therefore, the predicted decision class corresponds to the label of the output

neuron having the highest activation value.

∙ Single-output architecture. Each decision class is enclosed into the activation

space of a single output neuron.

1. Using a clustering approach. Each class is associated with a cluster center. In the

testing phase, the center having the closest distance to the projected activation

value is assigned to the input instance.

2. Using a thresholding approach. Each decision class is associated with a pair of

thresholds. In the testing phase, the interval comprising the projected activation

value is then assigned to the input instance.

In these architectures, the human intervention is required during the construction

stage, and even so, the supervised learning methods will probably fail in producing

authentic causal relations since they just fit the model to the existing data. There-

fore, we are losing the interpretability features attached to the network, although the

decision process remains transparent.

On the other hand, the absence of hidden neural entities in these recurrent neural

networks may probably lead to poor prediction rates. Aiming at boosting the pre-

diction capability of FCM-based classifier, in [32] the authors put forth two hybrid

typologies. Figures 1 and 2 show these typologies that include a black-box classifier

to improve the overall prediction rates.

In the first model, the black-box produces a confidence degree per decision class.

Sequentially, this vector is used as initial configuration for the FCM model that cor-

rects the responses produced by the black-box. In the second model, the input neu-

rons are also connected to output ones, so the predictions computed by the black-box

classifier can be understood as a bias.

These hybrid models completely destroy the transparency attached to the cogni-

tive network. If this happens, then, there is no real reason to use FCMs in classi-

fication scenarios, instead we may adopt black-box models such as Support Vector

Machines, Neural Networks or Random Forests.

Another key element towards designing a low-level FCM-based classifier relies

on the learning algorithm. The chief objective behind FCM learning has been to
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Fig. 1 Hybrid FCM-based classifier type-1

Fig. 2 Hybrid FCM-based classifier type-2
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derive the weight matrix W(M×M) that minimizes the prediction error based on expert

intervention, available historical data or both. According to the their classification

scheme, existing learning algorithms can be roughly gathered into two large groups:

unsupervised and supervised.

4.1 Unsupervised Learning Algorithms

Hebbian-based learning methods are unsupervised procedures that do not require

a set of labeled historical data, i.e., data in which the value of the decision fea-

ture(s) are previously known. The aim of learning FCMs by using adaptive Hebbian-

based methods is to yield weight matrices on the basis of experts’ knowledge and to

improve the accuracy of previously set weights.

Papakostas et al. [30] thoroughly tested the performance of several Hebbian-type

algorithms in classification scenarios, and concluded that these learning procedures

regularly produce very poor classification rates.

More explicitly, Hebbian-type methods are convenient to fine-tune the weight

set with a small deviation from the initial configuration. As a result, the adjusted

causal relations partially preserve their physical meaning, which cannot be guar-

anteed when using a heuristic-based learning method. Of course, the requirement

of experts’ knowledge is a serious drawback. The flexibility on data requirements

of these algorithms is the key aspect behind their poor generalization capability.

This makes Hebbian-type algorithms unfit for solving pattern classification prob-

lems where multiple classes must be predicted.

4.2 Supervised Learning Algorithms

As an alternative to Hebbian-based methods, we can learn the network structure from

data using heuristic-based algorithms [29] in a supervised fashion. Heuristic learn-

ing approaches aim at generating weight matrices that minimize an error function,

viz. the difference between the expected responses and the map-inferred outputs.

These methods are more expensive optimization techniques given that they regu-

larly explore multiple candidate solutions. Besides, they require the definition of the

objective function to be optimized, which is the core of these learning procedure,

rather than the adopted search method.

Equation 5 formalizes an error function for pattern classification scenarios, where

X denotes the weight matrix, K is the number of training instances, 𝜓(.) is the

decision model to be used for determining the class label, while Sk represents the

expected decision class for the kth training instance. In the case of the single-output

architecture, the class is computed from the activation value of the decision neuron

at the last iteration-step.
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E(X) = 1
k

K∑

k=1

{
𝛾k, 𝜓(A(T)

Mk) = Sk
1, 𝜓(A(T)

Mk) ≠ Sk
(5)

Aiming at reducing the convergence error of the FCM-based classifier, the error

function depicted in Eq. 5 uses a penalization factor 𝛾k for those instances that have

been correctly classified. In short, the convergence error can be understood as the

overall dissimilarity between the system response at each iteration, and the activation

value at the last iteration-step.

Nápoles et al. [16, 17, 27] investigated the convergence of FCM-based classifiers

and proposed a learning method to improve the system convergence, without alter-

ing the causal weights. More recently, they introduced an extended learning algo-

rithm [26] where weights are estimated taking into account both accuracy and con-

vergence. Based on these results, we propose a generalized measure to compute the

convergence error of an FCM-based classifier.

Equation 6 shows the convergence error for the kth instance, where 𝜔t = t∕T is

the relevance of each iteration, M is the number of neurons, N < M is the number of

input-type ones, whereas A(t)
ik denotes the current activation value for the ith neuron.

Moreover, 𝜋k represents the centroid (ideal) point of the decision label associated to

the kth training instance.

𝛾k =
T∑

t=1

2𝜔t

M(T + 1)

⎛
⎜
⎜
⎝

N∑

i=1

(A(t)
ik − A(T)

ik )
2

N
+

M−N∑

i=1

(A(t)
ik − 𝜋k)

2

M − N

⎞
⎟
⎟
⎠

(6)

Let us assume an FCM-based classifier using a single-output architecture and a

thresholding approach, where the kth instance is associated with jth decision class.

Equation 7 computes the centroid, where Lkj and Uk
j denote the lower and upper deci-

sion thresholds, respectively.

𝜋k =
⎧
⎪
⎨
⎪
⎩

Lkj , Lkj = 0
Uk

j , Uk
j = 1

Lkj+U
k
j

2
, Lkj ≠ 0,Uk

j ≠ 1
(7)

This approach introduces two key contributions in regard to the algorithm pro-

posed in [26]. First, we remove the required parameters by measuring the conver-

gence error if the target instance is correctly classified. This suggests that the system

accuracy will always be favored. Second, we compute the converge error of sigmoid

neurons according to their role in the network. The convergence error of input-type

neurons is measured as the overall dissimilarity between the system response at each

cycle, and the activation value at the last iteration. However, in the case of output-

type neurons, we calculate the overall dissimilarity between each response, and the

corresponding centroid.
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Preliminary simulations using a Bioinformatic problem [21] have shown that this

algorithms is capable of producing a suitable trade-off between convergence and

accuracy. Ensuring the convergence helps in preventing the misclassifications of

boundary instances, otherwise the model becomes fragile to perturbations. How-

ever, this algorithm cannot be generalized to other domains where the experts are

unable to define the network topology.

5 High-Level Cognitive Classifiers

Cognitive mapping allows modeling different levels of interpretability, which depend

on the abstraction degree. Neurons denoting entities with high abstraction level (i.e.,

information granules or prototypes) lead to high-level interpretable networks. If the

level of abstraction is too high, then the physical system under investigation is diffi-

cult to analyze, so we are losing interpretability. On the other hand, defining attribute-

level entities allow interpreting the system behavior at a low-level. However, some-

times the domain experts are unable to define precise, authentic causal relations with

such specificity level.

High-level cognitive classifier refer to FCM-based models where input neurons

denote information granules rather than low-level features. For example, Nápoles et

al. [23, 24] introduced the notion of rough cognitive mapping in the context of pat-

tern classification. The new classification model transforms the feature space into a

granular one that is exploited using the neural inference rule present in FCM-based

models. In these so-called Rough Cognitive Networks (RCNs), the weight matrix is

automatically computed on the basis of the three-way decision rules [38] that con-

struct three rough regions [33] to perform the classification process. The RCN model

achieved competitive performance with respect to state-of-the-art methods in a real-

world classification problems [23] as well as in a network intrusion detection sce-

nario [22].

Figure 3 shows an RCN to solve any classification problem with two decision

classes, where Pk, Nk and Bk are input neurons denoting the positive, negative and

boundary regions related to the kth decision class.

More recently, two improved RCN models were introduced: Rough Cognitive
Ensembles [20] and Fuzzy-Rough Cognitive Networks [25]. The purpose of these

algorithms is to deal with the parametric requirement of rough cognitive classifiers

while preserving their global prediction capabilities. The former is a granular ensem-

ble model where each base RCN operates at a different granularity degree, whereas

the latter replaced the crisp-rough constructs with fuzzy-rough ones. Numerical

results have shown that both approaches are capable of outperforming the RCN algo-

rithm. These modified algorithms perform comparably, thus we can achieve the same

prediction rates using an ensemble composed of several networks that using a single

fuzzy-rough classifier!
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Fig. 3 RCN-based classifier for binary problems

Inspired on the RCN semantics and the approaches discussed in [34, 35], Nápoles

et al. [19] proposed a partitive granular cognitive map to solve graded multi-label

classification problems. In these machine learning problems, the goal is to predict the

degree to which each instance relates to each available decision class. Three different

FCM topologies were studied and several convergence features were included into

the supervised learning methodology. Numerical experiments confirmed the ability

of these granular classifiers to accurately estimate the degree of association between

an object and each label.

It is worth highlighting the transparency on the decision model attached to Rough

Cognitive Networks. In these models, we can interpret the physical system at a high-

level by relying on the semantics behind the information constructs. However, a low-

level reasoning is not possible, even when the classifier’s decision process remains

transparent and comprehensible.

6 Remaining Challenges

The development of accurate, truly interpretable FCM-based classifiers involves

three main challenges, that still remain open:

∙ Construction issues. FCMs are knowledge-based techniques that regularly require

the intervention of experts to define the network topology, i.e., the neurons and

causal relations connecting them. Alternatively, we can learn the network struc-

ture from data using heuristic-based algorithms in a supervised fashion. However,

these methods cannot produce authentic causal relations describing the system

under analysis since they are oriented to fit the network to the historical data,
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without considering the system semantics. This implies that we cannot interpret

the problem domain from such models, even if the FCM inference process is still

transparent. Some authors attempt overcoming this drawback using correlation

measures, which fail in capturing the underlying semantics behind causal rela-

tions. Being more explicit, it is well-known that causality does surely imply the

existence of correlation, but the opposite does not necessarily hold.

∙ Accuracy issues. Generally speaking, the prediction rates of FCM-based clas-

sifiers are poor when compared with standard black-box models, mainly due to

their limitations to represent the problem domain and the absence of theoretically

sound learning algorithms. Papakostas et al. [30] concluded that Hebbian-based

algorithms are not suitable in pattern classification environments, while the per-

formance of heuristic-based learning methods quickly deteriorates when the num-

ber of neurons scales up. Froelich [5] proposed a promising post-optimization

method to improve the prediction rates of FCM-based classifiers using a single-

output architecture. Notice however that the overall prediction rates achieved by

this method will heavily depend on the learning algorithm used to estimate the

weight set.

∙ Convergence issues. FCM-based networks are recurrent cognitive systems that

produce an output vector at each discrete-time step. This procedure is repeated

until either the map converges or a maximal number of iterations is reached. With-

out ensuring the convergence, the model becomes unreliable and decision making

becomes impossible. Regrettably, heuristic-based methods cannot ensure the FCM

convergence, which implies that the resultant models are no longer interpretable

and therefore, there is no reason to use cognitive mapping in pattern classifica-

tion environments. More recently, Nápoles and his collaborators [16, 17, 26, 27]

obtained promising results toward improving the convergence of FCM-based mod-

els without modifying the causal relations. However, analytical results reported in

[18] have shown that establishing a suitable balance between convergence and

accuracy cannot always be achieved without altering the weights.

It should be observed that the accuracy and convergence issues are mathematical

challenges that can be present in other Machine Learning approaches. After all, the

main purpose of traditional classifiers is to achieve the best possible prediction rates.

The construction issues are, however, more delicate. Defining authentic causal rela-

tions between neural entities is the key aspect towards designing truly interpretable

FCM-based systems. Otherwise, the model will produce misleading results when

performing WHAT-IF simulations.

As far as we know, there is no learning method able to discover authentic causal

structures from historical records due to the lack of well-established statistical tests

for measuring causality. Even some authors affirm that the term “causality” is a

philosophic concept that cannot possibly be measured in a numerical way without

performing controlled experiments.
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7 Conclusions

The use of FCMs for modeling real-life problems by recreating virtual scenarios have

been demonstrated and reported in literature. These knowledge-based networks have

been used as a modeling tool to analyze the behavior of complex systems, where it

is very difficult to describe the entire system by a precise mathematical model. Con-

sequently, it is easier and more practical to represent the decision-making process in

a graphical way.

This paper explored the development of FCM-based classifiers and focused on the

wide research avenues it provides. In spite of the detected shortcomings and chal-

lenges, the transparency inherent to cognitive mapping keeps motivating researchers

to build interpretable FCM-based classifiers. In these models, the interpretability is

achieved through causal relations between neurons defining the system under analy-

sis. FCM-based models also provide other set of attractive characteristics: they are

able to discover hidden patterns, are flexible, dynamic, combinable and tunable from

different perspectives.

The FCM-based modeling approach allows building the network in presence of

incomplete, conflicting or subjective information. Moreover, the inherent neural fea-

tures of cognitive mapping provide a promising research avenue towards improving

their accuracy in prediction scenarios. This suggests that FCM-based models could

be as efficient as black-box models while retaining their ability to elucidate the sys-

tem behavior through causal relations. Precisely, this conjecture, among other fac-

tors, keeps this research subject as a challenge open to the scientific community and

a lively field of research.
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