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Abstract In this paper we first consider the problem of extending fuzzy (weak and

strict) preference relations, represented by fuzzy preorders on a set to a fuzzy pref-

erences on subsets, and we characterise different possibilities. Based on their prop-

erties, we then semantically define and axiomatize several two-tiered graded modal

logics to reason about the corresponding different notions of fuzzy preferences.

1 Introduction

Reasoning about preferences is a hot topic in Artificial Intelligence since many years,

see for instance [5, 17, 18]. Two main approaches for representing and handling

preferences have been developed: the relational and the logic-based approaches.
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preferences, a topic that, although it is not central on the research of Curro, is ubiquitous in
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In classical preference relations, every preorder R (and more in general every

reflexive relation) can be regarded as a preference relation by assuming that (a, b) ∈
R means that a is preferred or indifferent to b. From R we can define three disjoint

relations:

∙ the strict preference P = R ∩ Rd
,

∙ the indifference relation I = R ∩ Rt
, and

∙ the incomparability relation J = Rc ∩ Rd
.

where Rd = {(a, b) ∈ R ∶ (b, a) ∉ R}, Rc = {(a, b) ∈ R ∶ (b, a) ∈ R} and Rt =
{(a, b) ∶ (b, a) ∈ R}. It is clear that P is a strict order (irreflexive, antisymmetric

and transitive), I is an equivalence relation (reflexive, symmetric and transitive) and

J is irreflexive and symmetric. The triple (P, I, J) is called a preference structure,

where the initial weak preference relation can be recovered as R = P ∪ I.

In the fuzzy setting, preference relations can be attached degrees (usually belong-

ing to the unit interval [0, 1]) of fulfilment or strength, so they become fuzzy rela-
tions. A weak fuzzy preference relation on a set X will be now a fuzzy preorder

R ∶ X × X → [0, 1], where R(a, b) is interpreted as the degree in which b is at least as

preferred as a. Given a t-norm ⊙, a fuzzy ⊙-preorder satisfies reflexivity (R(a, a) = 1
for each a ∈ X) and ⊙-transitivity (R(a, b)⊙ R(b, c) ≤ R(a, c) for each a, b, c ∈ X).

The most influential reference is the book by Fodor and Roubens [6], that was fol-

lowed by many other works like, for example [7–11]. The problem in this setting is

how to define the corresponding strict preference, indifference and incomparability

relations from the initial fuzzy preorder. Many questions arise since it is possible to

generalise the classical case in many different ways. In particular, several works have

paid attention to how suitably interrelate a weak preference (a fuzzy preorder) with

its associated indifference relation (a indistinguishability relation) and strict pref-

erence (a strict fuzzy order). In this sense, relevant publications are, among others,

Bodenhofer’s papers [2–4]. There, the author studies⊙-E fuzzy preorders related to a

t-norm⊙ and an indistinguishability, or fuzzy equivalence, relation E (reflexive, sym-

metric and ⊙-transitive), as well as their strict associated fuzzy orders in a general

context, which is also applies to the context of preference modelling. Indeed, given

a t-norm ⊙ and an indistinguishability relation E, a ⊙-E fuzzy preorder is defined as

a fuzzy relation R ∶ X × X → [0, 1] satisfying: E-reflexivity: R(x, y) ≥ E(x, y), ⊙-E-

antisymmetry: R(x, y)⊙ R(y, x) ≤ E(x, y), ⊙-transitivity: R(x, y)⊙ R(y, z)) ≤ R(x, z).
Bodenhofer also studies how to extend such a ⊙-E fuzzy preorder to the set  ()
of fuzzy subsets of a universe X, as well as the associated indistinguishability rela-

tion and the strict fuzzy order, and discusses different possible definitions. In such

a setting, he considers both the cases of crisp and fuzzy preorders, but he does not

consider the particular case we will study in this paper, namely the interaction of a

fuzzy preferences over crisp subsets of X.

The basic assumption in logical approaches is that preferences have structural

properties that can be suitably described in a fomalized language.This is the main

goal of the so-called preference logics, see e.g. [17]. The first logical systems to rea-

son about preferences go back to Halldén [20] and to von Wright [16, 22, 23]. More

recently van Benthem et al. in [1] have presented a modal logic-based formalization
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of preferences. In that paper the authors first define a basic modal logic with two

unary modal operators◊≤
and◊<

, together with the universal and existential modal-

ities, A and E respectively, and axiomatize it. Using these primitive modalities, they

consider several (definable) binary modalities to capture different notions of prefer-

ence relations on classical propositions, and show completeness with respect to the

intended preference semantics. Finally they discuss their systems in relation with

von Wright axioms for ceteris paribus preferences [22]. On the other hand, with the

motivation of formalising a comparative notion of likelihood, Halpern studies in [15]

different ways to extend preorders on a set X to preorders on subsets of X and their

associated strict orders. He studies their properties and relations among them, and he

also provides an axiomatic system for a logic of relative likelihood, that is proved to

be complete with respect to what he calls preferential structures, i.e. Kripke models

with preorders as accessibility relations.

In this paper we begin by studying in Sect. 2 different forms to define fuzzy rela-

tions on the set (W) of subsets of W, from a fuzzy preorder on W, in a similar way

to the one followed in [1, 15] for classical preorders, and in [2, 3] for fuzzy preorders.

In Sect. 3 we characterize them and discuss which are the most appropriate from the

point of view of preference modelling, while in Sect. 4 we deal with the problem of

defining a fuzzy strict order in a set associated to a given fuzzy preorder, and how

to lift them to susbsets. Finally, in Sect. 5, and based on the previous results, we

semantically define and axiomatize several two-tiered graded modal logics to reason

about different notions of preferences.

This paper is a proper extended version of the conference paper [13].

2 Extending a Fuzzy Preorder on a Set𝐖 to a Fuzzy
Relation on Subsets of 𝐖

2.1 Precedents in the Classical Case

In the classical logic setting, van Benthem et al. define in [1] preference models
as triples  = (W,⪯,) where W is a set of states or worlds, ⪯ is a preorder

(reflexive and transitive) relation on W, and  is a standard propositional evaluation,

that is, a mapping assigning to every propositional variable p a subset (p) ⊆ W
of states where p is true.  can be extended to any propositional formula 𝜑 by

using the classical Boolean definitions. For simplicity, we will also denote (𝜑) by

[𝜑] = {w ∈ W ∶ w(𝜑) = 1}.

Then they consider the following four binary preference operators on proposi-

tions.

Definition 1 (cf. [1]) Given a preference model  = (W,⪯,), one can define the

following four binary preference operators on classical propositions:

∙  ⊧ 𝜑 ≤∃∃ 𝜓 iff there exist u ∈ [𝜑], v ∈ [𝜓] such that u ≤ v.
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∙  ⊧ 𝜑 ≤∃∀ 𝜓 iff there exists u ∈ [𝜑], such that for all v ∈ [𝜓], u ≤ v.

∙  ⊧ 𝜑 ≤∀∃ 𝜓 iff for all u ∈ [𝜑], there exists v ∈ [𝜓] such that u ≤ v.

∙  ⊧ 𝜑 ≤∀∀ 𝜓 iff for all u ∈ [𝜑] and v ∈ [𝜓], then u ≤ v.

Notice that these definitions of the truth conditions for the four preference opera-

tors can be interpreted as defining corresponding preference relations on (W), the

power set of W (which contains the sets [𝜑]) arising from a preorder on the set of

worlds W. One can furthermore define two more preference operators on proposi-

tions:

∙  ⊧ 𝜑 ≤∃∀2 𝜓 iff there exists v ∈ [𝜓], such that for all u ∈ [𝜑], u ≤ v
∙  ⊧ 𝜑 ≤∀∃2 𝜓 iff for all v ∈ [𝜓], there exists u ∈ [𝜑] such that u ≤ v.

Therefore, from a given preorder on W we can consider six relations on subsets

of W. The basic set-inclusions between these relations are given in the following

proposition.

Proposition 1 The following inclusions hold:

≤∀∀ ⊆ ≤∀∃ ⊆ ≤∃∃, ≤∀∀ ⊆ ≤∃∀ ⊆ ≤∃∃, ≤∀∀ ⊆ ≤∀∃2 ⊆ ≤∃∃, ≤∀∀ ⊆ ≤∃∀2 ⊆ ≤∃∃

Moreover, the four intermediate relations are not comparable, except for the follow-
ing inclusions:

≤∃∀2 ⊆ ≤∀∃, ≤∃∀ ⊆ ≤∀∃2 .

Proof All the inclusion relations are easy to check. Moreover, the inclusions given

in Proposition 1 are the only ones that are valid among the four intermediate rela-

tions, as the following examples show: Take W = {u1, u2, u3, u4, u5, u6} and A =
{u1, u2, u3},B = {u4, u5, u6}. Then,

∙ If the preorder is defined by reflexivity plus u1 ≤ u4, u2 ≤ u5 and u3 ≤ u5, then

A ≤∀∃ B is the unique intermediate relation that is satisfied.

∙ If the preorder is defined by reflexivity plus u1 ≤ u4, u2 ≤ u5 and u2 ≤ u6, then

A ≤∀∃2 B is the unique intermediate relation that is satisfied.

∙ If the preorder is defined by reflexivity plus u2 ≤ u4, u2 ≤ u5 and u2 ≤ u6, then

A ≤∃∀ B and A ≤∀∃2 B are the unique intermediate relations that are satisfied.

∙ If the preorder is defined by reflexivity plus u1 ≤ u4, u2 ≤ u4 and u3 ≤ u4, then

A ≤∃∀2 B and A ≤∀∃ B are the unique intermediate relations that are satisfied.

2.2 The Fuzzy Preorder Case

Now we study the case when ≤ is a fuzzy ⊙-preorder on W, i.e., ≤∶ W ×W ⟶
[0, 1] satisfying reflexivity ([u ≤ u] = 1 for all u ∈ W) and⊙-transitivity with respect

to a given t-norm ⊙ (for all u, v,w ∈ W, ([u ≤ v]⊙ [v ≤ w]) ≤ [u ≤ w]), where

[u ≤ v] denotes the value in [0, 1] of the fuzzy relation ≤ applied to the ordered
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pair of elements u, v ∈ W. We will assume that W is a finite set, and we will denote

by 𝛿u the singleton {u}.

Generalising the classical case, we can define the following fuzzy relations on

(W) from a fuzzy preorder on W.

Definition 2 Given a fuzzy preorder ≤ on W, we can define the following six fuzzy

relations on (W). For any A,B ∈ (W) we let:

∙ [A ≤∃∃ B] = supu∈A supv∈B [u ≤ v]
∙ [A ≤∃∀ B] = supu∈A inf v∈B [u ≤ v]
∙ [A ≤∀∃ B] = infu∈A supv∈B [u ≤ v]
∙ [A ≤∀∀ B] = infu∈A inf v∈B [u ≤ v]
∙ [A ≤∀∃2 B] = inf v∈B supu∈A [u ≤ v]
∙ [A ≤∃∀2 B] = supv∈B infu∈A [u ≤ v].
where the value of A ≤◦ B is denoted by [A ≤◦ B] with ≤◦ being anyone of the six

relations.

It is clear that, since the preorder ≤ is valued on [0, 1], these relations are also

[0, 1]-valued. For each a ∈ (0, 1], we will write A ≤
a
∃∃ B when [A ≤∃∃ B] ≥ a and

analogously for the other relations.

Proposition 2 For any sets A,B ∈ (W), we have:

∙ [A ≤∀∀ B] ≤ [A ≤∀∃ B] ≤ [A ≤∃∃ B],
∙ [A ≤∀∀ B] ≤ [A ≤∀∃2 B] ≤ [A ≤∃∃ B],
∙ [A ≤∀∀ B] ≤ [A ≤∃∀ B] ≤ [A ≤∃∃ B], and
∙ [A ≤∀∀ B] ≤ [A ≤∃∀2 B] ≤ [A ≤∃∃ B].
Moreover the four intermediate relations are not comparable, except for the same
two cases (now inequalities) of Proposition 1.

Proof Analogous to the proof of Proposition 1.

Out of the above six possibilities, we will mainly focus on two of them, ≤∀∃ and

≤∀∃2, in the rest of the paper. These are well-behaved extensions of an initial fuzzy

⊙-preorder to model a weak preference relation on subsets, since in particular they

keep being ⊙-preorders. Moreover, combining them, we can capture a very natural

(preference) ordering related to orderings of intervals. Indeed, suppose (W,≤) is a

totally (classical) pre-ordered set, and we want to extend ≤ to an ordering on the set

Int(W) of intervals of W. The two most usual ways to do this are the following:

(i) [a, b] ≤1 [c, d] if a ≤ c and b ≤ d,

(ii) [a, b] ≤2 [c, d] if b ≤ c.

The relation ≤1 is considered for example in [2], and it turns out to be definable as

the intersection of the ≤∀∃ and ≤∀∃2 relations on Int(W), that is, ≤1 = ≤∀∃ ∩ ≤∀∃2,

while the second, ≤2, coincides with the (crisp) relation ≤∀∀ on Int(A). Actually, ≤∀∀
is not a preorder because it is only reflexive for singletons, but it is enough for our

purposes. In next sections, we will study in the fuzzy case these three basic relations

(≤∀∃, ≤∀∃2, ≤∀,∀) on (W) arising from a fuzzy preorder ≤ on W.
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3 Characterizing the Relations ≤∀∃,≤∀∃𝟐 and ≤∀∀

The following propositions describe the main properties satisfied by each one of

these relations. In what follows, we assume a given a fuzzy ⊙-preorder ≤ on W and

the fuzzy relations ≤∀∃,≤∀∃2 and ≤∀∀ which are defined as in Definition 2.

Proposition 3 The relation ≤∀∃ satisfies the following properties, for all A,B,C ∈
(W):

1. Inclusion: [A ≤∀∃ B] = 1, if A ⊆ B
2. ⊙-Transitivity: [A ≤∀∃ B]⊙ [B ≤∀∃ C] ≤ [A ≤∀∃ C]
3. Left-OR: [(A ∪ B) ≤∀∃ C] = min([A ≤∀∃ C], [B ≤∀∃ C])
4. Restricted Right-OR: [A ≤∀∃ (B ∪ C)]≥max([A ≤∀∃ B], [A ≤∀∃ C]). The

inequality becomes an equality if A is a singleton.

Proposition 4 The relation ≤∀∃2 satisfies the following properties, for all A,B,C ∈
(W):

1. Inclusion: [A ≤∀∃2 B] = 1, if B ⊆ A
2. ⊙-Transitivity: [A ≤∀∃2 B]⊙ [B ≤∀∃2 C] ≤ [A ≤∀∃2 C]
3. Restricted Left-OR: [(A ∪ B) ≤∀∃2 C] ≥ max([A ≤∀∃2 C], [B ≤∀∃2 C]). The

inequality becomes an equality if C is a singleton.
4. Right-OR: [A ≤∀∃2 (B ∪ C)] = min([A ≤∀∃2 B], [A ≤∀∃2 C]).

Proposition 5 The relation ≤∀∀ satisfies the following properties, for all A,B,C ∈
(W):

1. Restricted reflexivity: [A ≤∀∀ A] = 1 iff A is a singleton
2. ⊙-Transitivity: [A ≤∀∀ B]⊙ [B ≤∀∀ C] ≤ [A ≤∀∀ C]
3. Left-OR: [(A ∪ B) ≤∀∀ C] = min([A ≤∀∀ C], [B ≤∀∀ C])
4. Right-OR: [A ≤∀∀ (B ∪ C)] = min([A ≤∀∀ B], [A ≤∀∀ C])
5. Inclusions: [A ≤∀∀ B] ≤ [A′ ≤∀∀ B′], if A′

⊆ A,B′
⊆ B.

The proofs of the these propositions are easy and we omit them. Observe that, as

already mentioned above, ≤∀∀ is not reflexive.

Actually, the properties given above fully characterize the different relations on

(W) as showed in the next theorem.

Theorem 1 The following characterizations hold:

(i) Let ⪯AE be a relation between sets of (W) satisfying Properties 1, 2, 3 and 4
of Proposition 3. Then there exists a fuzzy ⊙-preorder ≤ on the set W such that
⪯AE coincides with ≤∀∃ as defined in Definition 2.

(ii) Let ⪯AE2 be a relation between sets of (W) satisfying Properties 1, 2, 3 and 4
of Proposition 4. Then there exists a fuzzy ⊙-preorder ≤ on the set W such that
⪯AE2 coincides with ≤∃∀2 as defined in Definition 2.

(iii) Let ⪯AA be a relation between sets of (W) satisfying Properties 1, 2, 3, 4 and
5 of Proposition 5. Then there exists a fuzzy ⊙-preorder ≤ on the set W such
that ⪯AA coincides with ≤∀∀ as defined in Definition 2.
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Proof We show the case of≤AE, the rest of cases are proved in a similar way. Define a

relation onW by [u ≤ v] = [𝛿u ⪯AE 𝛿v]. Clearly≤ is a fuzzy preorder onW. Now take

into account that, for all A ∈ (W), A =
⋃
{𝛿u ∶ u ∈ A} and, applying Properties 3

and 4, it is obvious that for all A,B ∈ W, then [A ⪯AE B] = infu∈A supv∈B[𝛿u ⪯ 𝛿v].
Thus (i) is proved. □

4 Characterizing Strict Fuzzy Orders Associated to Fuzzy
Preorders

It is well known that any crisp preorder ≤ on an universe W induces an equivalence

(or indifference) relation ≡ and an strict order <, defined as follows:

∙ x ≡ y iff x ≤ y and y ≤ x,

∙ x < y iff x ≤ y and x ≠ y or, alternatively iff x ≤ y and y ≰ x.

Observe that these relations satisfy that x ≤ y iff either x ≡ y or x < y. We will use

this condition to define an strict fuzzy order associated to a fuzzy preorder.

In the fuzzy setting (see for example [2, 14]), from a fuzzy ⊙-preorder ≤∶ W ×
W → [0, 1] we can define:

∙ the maximal indistinguishability relation v ≡ w contained in the fuzzy preorder,

defined by [x ≡ y] = [x ≤ y] ∧ [y ≤ x];
∙ the minimal strict fuzzy ⊙-order < that satisfies the following equation

[x ≤ y] = [x < y]⊕ [x ≡ y] (1)

where ⊕ is a T-conorm (for example the maximum or the bounded sum).

So defined, the relation ≡ is reflexive, symmetric and ⊙-transitive, and thus it is a

⊙-indistinguishability relation (the generalization of the crisp notion of equivalence

relation). On the other hand, the minimal solution for b of the equation a ≤ b ⊕ c
in [0, 1], is the so-called dual resituated implication, or implication associated to the

T-conorm ⊕, which is defined as, It should be:

c →⊕ a = inf{b ∣ c ⊕ b ≥ a}.

Therefore, we take as the strict fuzzy order relation < associated to ≤ for the T-

conorm ⊕ the fuzzy relation defined as

[x < y] = [x ≡ y] →⊕ [x ≤ y] = [y ≤ x] →⊕ [x ≤ y].

An easy computation shows that the strict fuzzy order relation for ⊕ = max is

defined as

[x < y] =
{

[x ≤ y], if [x ≤ y] > [y ≤ x],
0, otherwise. (2)



248 F. Esteva et al.

And for ⊕ being the bounded sum (i.e. the Łukasiewicz T-conorm) is
1

[x < y] =
{

[x ≤ y] − [y ≤ x], if [x ≤ y] > [y ≤ x],
0, otherwise.

The strict relation associated to ≤ is a irreflexive ([x < x] = 0) and antisymmetric

(min([x < y], [y < x]) = 0) but, as far as we know, it is not known whether it is ⊙-

transitive in general. Nevertheless we have the following result.

Proposition 6 Let ≤ be a min-preorder on a universe W and let < be the associated
strict relation w.r.t. ⊕ = max. Then < is min-transitive.

Proof The proof is by contradiction. Suppose the strict relation is not min-transitive.

Then there must exist elements u, v,w ∈ W such that [u < v], [v,w] > 0 and [u <

w] = 0 which is equivalent that [u ≤ v] = a > b = [v ≤ u], [v ≤ w] = c > d = [w ≤

v] and [u ≤ w] = [w ≤ u] = f . Thus we have five values a, b, c, d, f and we know that

a > b and c > d. (
∗
)

We can now reason by cases:

(1) Suppose a ≥ c and b ≥ d. Combining this assumption with (
∗
) we have that

a ≥ c > d. By transitivity, f ≥ min(a, c) = c and f ≥ min(d, b) = d by hypoth-

esis. Moreover min([w ≤ u], [u ≤ v]) = min(f , a) ≤ d = [w ≤ v]. This implies

that a ≤ d, in contradiction with the fact that d < a.

(2) Suppose a ≥ c and b < d. Combining this assumption with (
∗
) we have that

d < c ≤ a. By transitivity, f ≥ min(a, c) = c and f ≥ min(d, b) = b by hypoth-

esis. Moreover min([w ≤ u], [u ≤ v]) = min(f , a) ≤ d = [w ≤ v]. This implies

that f ≤ d, and by hypothesis f ≤ d < c, in contradiction with f ≥ c previously

proved.

(3) Suppose a ≤ c and b ≥ d. Combining this assumption with (
∗
) we have that b <

a ≤ c. By transitivity, f ≥ min(a, c) = a and f ≥ min(d, b) = d by hypothesis.

Moreover min([v ≤ w], [w ≤ u]) = min(c, f ) ≤ b = [v ≤ u]. This imply that f ≤

b and by hypothesis f ≤ b < a, in contradiction with f ≥ a previously proved.

(4) Suppose a ≤ c and b ≤ d. Combining this assumption with (
∗
) we have that

b < a ≤ c. By transitivity, f ≥ min(a, c) = a and f ≥ min(d, b) = b by hypoth-

esis. Moreover min([v ≤ w], [w ≤ u]) = min(c, f ) ≤ b = [v ≤ u]. This implies

that f ≤ b, and by hypothesis f ≤ b < a, in contradiction with f ≥ a previously

proved. □

From now on, we consider the strict fuzzy order < associated to ≤ the one defined

by taking ⊕ = max according to (2).

Now we can come back to the topic of how to define a strict fuzzy order relation

on sets of (W) corresponding to a fuzzy preorder in W. Halpern notices in [15] that

1
This is the strict order companion defined and studied in [7].
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there are two different ways to define (in the crisp case) a strict relation on(W) from

a preorder on W. The same idea applied to the fuzzy case gives rise to the following

two possible definitions for the strict relations:

∙ The standard method, that amounts to define

[A <◦ B] =

{
[A ≤◦ B], if [A ≤◦ B] > [B ≤◦ A]
0, otherwise.

This means in fact to use (2) to define [A <◦ B] as the value of the strict order

associated to the preorder ≤◦, where ≤◦ is either ≤∀∃, ≤∀∃2 or ≤∀∀.

∙ The alternative method, that first considers the strict order < on companion of ≤

in W according to (2), and then defines <∀∃, <∀∃2 and <∀∀ on (W) according to

Definition 2, but replacing ≤ by <.

In general, these two methods give rise to two different irreflexive and (restricted)

antisymmetric strict relations as the following examples show:

Example 1 Consider the ∀∃ extension. Notice first that the alternative method gives

[A <∀∃ B] = inf
u∈A

sup
v∈B

[u < v].

The counterexample is the following. Take the four element set W = {u1, u2, u3, u4},

with the following fuzzy preorder: reflexivity ([x ≤ x] = 1) plus [u1 ≤ u3] = [u3 ≤
u1] = a and [u2 ≤ u4] = b, with a, b ≠ 0. The associated strict relation on W is the

one having only one pair of elements with value different from 0. Indeed an easy

computation shows that [u2 < u4] = b. Let A = {u1, u2} and let B = {u3, u4}. Then:

∙ To compute the value of [A <∀∃ B] according to the standard method, we have

to compute first: [A ≤∀∃ B] = ([u1 ≤ u3] ∨ [u1 ≤ u4]) ∧ ([u2 ≤ u3] ∨ [u2 ≤ u4]) =
a ∧ b ≠ 0, [B ≤∀∃ A] = ([u3 ≤ u1] ∨ [u3 ≤ u2]) ∧ ([u4 ≤ u1] ∨ [u4 ≤ u2]) = a ∧
0 = 0. Then, by definition, we have [A <∀∃ B] = a ∧ b ≠ 0.

∙ With the alternative method, the value of [A <∀∃ B] is computed as [A <∀∃ B] =
infu∈A supv∈B[u < v] = 0.

Therefore the obtained strict relations are different. □

Example 2 Consider now the ∀∀ extension. Take W = {w1,w2} with the preorder

[w1 ≤ w1] = [w2 ≤ w2] = [w1 ≤ w2] = 1 and [w2 ≤ w1] = 0. Further, take A = {w1}
and B = W. Then it is obvious that [A ≤∀∀ B] = 1 and [B ≤∀∀ A] = 0. Therefore,

according to the standard method, we have [A <∀∀ B] = 1, while according to the

alternative method, we have [A <∀∀ B] = infu∈A inf v∈B[u < v] = 0. □

Notice that strict relations obtained by the alternative method are ⊙-transitive (so

they are strict orders), but this is not clear for strict relations obtained by the standard

method. In fact we have the following open problems:
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∙ Let ≤ be a strictly monotonic fuzzy preorder on W and let ≤◦ be one of the fuzzy

preorders defined on(W) considered in the previous sections. Is the strict relation

obtained by the standard method ⊙-transitive?

∙ Is there some order relation between the strict orders obtained by the standard and

the alternative methods?

∙ It is obvious that the strict order < on W and the strict order on (W) obtained

from the preorder by the standard method satisfy the following anti-symmetry

property: for all A,B ∈ (W), min([A <◦ B], [B <◦ A]) = 0). It is clear that for

singletons the strict order obtained by the alternative method satisfies the same

anti-symmetry property but, is this true for the strict order obtained by the alter-

native method in general? Otherwise, what type of anti-symmetry property does

it satisfy?

Therefore, taking into account that we are interested in obtaining strict fuzzy orders

(irreflexive and ⊙-transitive relations), in the rest of the paper we will consider the

strict relations obtained by the alternative method and its characteristics properties.

Next theorem provides a characterization result for these strict orders.

Theorem 2 The following characterizations hold:

(i) Let ≺AE be a relation between sets of (W) satisfying Properties 2, 3 and 4 of
Proposition 3 plus irreflexivity ([A ≺AE A] = 0) and restricted anti-symmetry
(min([A ≺AE B], [B ≺AE A]) = 0 for all singletons A,B ∈ (W)). Then there
exists a fuzzy ⊙-preorder ≤ on the set W such that ≺AE =<∀∃.

(ii) Let ≺AE2 be a relation between sets of (W) satisfying Properties 2, 3 and 4 of
Proposition 4 plus irreflexivity and restricted anti-symmetry. Then there exists
a fuzzy ⊙-preorder ≤ on the set W such that ≺AE2 =<∃∀2.

(iii) Let ≺AA be a relations between sets of (W) satisfying Properties 2, 3, 4 and
5 of Proposition 5 plus irreflexivity and anti-symmetry. Then there exists a
fuzzy ⊙-preorder ≤ on the set W such that ≺AA =<∀∀.

At the end of Sect. 2.2 we mentioned that one of the preorders we were inter-

ested in was the (crisp) relation ≤1, whose fuzzy counterpart can be defined by

[x ≤1 y] = min([x ≤∀∃ y], [x ≤∀∃2 y]). Consequently, in Sect. 3 we separately char-

acterized the fuzzy preorders ≤∀∃ and ≤∀∃2, and the same is applicable to the corre-

sponding strict orders studied in this section. We will move now to a logical approach

to preference relations and to the previously studied fuzzy relations. In particular, in

the next section we study a logical setting to reason about fuzzy preferences on clas-

sical propositions by means of several two-tiered modal logics, with binary modal

operators corresponding to fuzzy preorders and strict orders separately, and after we

show the desired preorder and strict order are definable in a yet another modal logic

combining the previous ones.
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5 A Modal Logic to Reason About Preferences

In this section three logics to reason about conditional (syntactic) objects captur-

ing the idea of the preference relations ≤◦ (for ◦ ∈ {∀∃,∀∃2,∀∀}) are defined and

studied, using similar techniques from [12].

Throughout this section, in order to simplify matters, rather than defining the logic

relative to preference degrees in [0, 1] and a t-norm, we will restrict ourselves to deal

with a totally ordered finite set V of preference degrees (with 1 and 0 as its top and

bottom elements), and we will fix a finite t-norm ⊙ (see e.g. [19]) on V .

On these grounds, we define, model-theoretically, a common framework for sev-

eral logics of preference relations, 𝖫𝖠𝖯 for short, as follows.

Definition 3 The language of 𝖫𝖠𝖯 is two levelled:

∙ The first level (0 language) contains propositional formulas of 𝖫𝖠𝖯 that are built

up from a finite set of variables Var = {p1,… , pN} and the constants ⊥,⊤ by

means of the binary operators ∧ and ∨ and the unary operator ¬. The set of propo-

sitional formulas is denoted by  .

∙ The second level (1 language) contains:

– Atomic graded preference formulas of 𝖫𝖠𝖯 that are triples

𝜑 ⪯a
𝜓

consisting of two propositional formulas 𝜑 and 𝜓 from 0, and a value a ∈
V ⧵ {0}.

– (General) preference formulas of 𝖫𝖠𝖯 are built up from atomic graded prefer-

ences and the constants ⊥, ⊤ by means of the binary connectives ∧ and ∨ and

the unary connective ¬.

The semantics is given by ⊙-preference Kripke models  = (W,≤, e) where W
is a finite set of worlds, ≤∶ W ×W → V is a ⊙-fuzzy preorder relation, and e ∶
W × Var ↦ {0, 1} is a Boolean evaluation of propositional variables in every world,

which is extended to propositions of 0 in the usual way for classical propositions.

For each 0-proposition 𝜑, we will denote by [𝜑]


the set {w ∈ W ∶ e(w, 𝜑) = 1}
of worlds satisfying 𝜑.

For each ◦ ∈ {∀∃,∀∃2,∀∀}, each Kripke model = (W, S, e) induces a Boolean

truth-evaluation of 1-formulas e◦


∶ 1 → {0, 1} defined as follows:

∙ for atomic preference formulas: e◦

(𝜑 ⪯a

𝜓) = 1 if [[𝜑]


≤◦ [𝜓]

] ≥ a, and

e

(𝜑 ⪯a

𝜓) = 0 otherwise.

∙ for compound formulas, use the usual Boolean truth functions.

From there, we can define the notion of logical consequence in the logic LAP for

preference formulas.

Definition 4 Let ◦ ∈ {∀∃,∀∃2,∀∀}. Let T ∪ {𝛷} be a set of preference formulas.

We say that 𝛷 logically follows from T under the ≤◦ semantics, written T ⊧

◦
LAP



252 F. Esteva et al.

𝛷, if for every Kripke model  = (W,≤, e), if e◦

(𝛹 ) = 1 for every 𝛹 ∈ T , then

e◦

(𝛷) = 1 as well.

In the following, for every Boolean evaluation 𝜔 of the propositional variables Var,

we will denote by 𝜔 the maximally elementary conjunction (m.e.c. for short) of all

the N literals made true by 𝜔. Obviously, every proposition is logically equivalent to

a disjunction of m.e.c.’s.

Next subsections are devoted to the axiomatization of the particular logics for

≤∀∃,≤∀∃2 and ≤∀∀.

5.1 The Logic LAP∀∃ Corresponding to the ≤∀∃ Preference
Relation

Recall that, when ◦ = ∀∃, the semantics we have in each Kripke model  is:

e

(𝜑 ⪯a

𝜓) = 1 iff [[𝜑]


≤∀∃ [𝜓]

] = ( inf

u∈[𝜑]
sup

w∈[𝜓]
[u ≤ w]) ≥ a.

Building on this intended semantics, we propose the following axiomatization of

LAP∀∃.

Definition 5 The following are the axioms for LAP∀∃:

(A1) Axioms of classical propositional calculus (CPC) for 1-formulas

(A2) 𝜑 ⪯1
𝜓 , where 𝜑 → 𝜓 is a tautology of CPC

(A3) (𝜑 ⪯a
𝜓) ∧ (𝜓 ⪯b

𝜒) → (𝜑 ⪯a⊙b
𝜒) (transitivity)

(A4) (𝜑 ⪯a
𝜓) → (𝜑 ⪯b

𝜓), where a ≤ b (nestedness)

(A5) (𝜑 ∨ 𝜓 ⪯a
𝜒) ↔ (𝜑 ⪯a

𝜒) ∧ (𝜓 ⪯a
𝜒) (Left-OR)

(A6) (𝜔 ⪯a
𝜑 ∨ 𝜓) ↔ (𝜔 ⪯a

𝜑) ∨ (𝜔 ⪯a
𝜓) (restricted Right-OR)

The only rule of 𝖫𝖠𝖯∀∃ is Modus Ponens.

We will denote by ⊢

∀∃
𝖫𝖠𝖯

the notion of deduction relative to the axiomatic system just

defined.

Theorem 3 For any set T ∪ {𝛷} of 1-formulas, it holds that T ⊧

∀∃
𝖫𝖠𝖯

𝛷 if, and only
if, T ⊢

∀∃
𝖫𝖠𝖯

𝛷.

Proof One direction is soundness, and it is an easy computation, see Proposition

3. As for the other direction, assume T ⊬

∀∃
𝖫𝖠𝖯

𝛷. The idea is to consider the graded

expressions𝜑 ⪯a
𝜓 as propositional (Boolean) variables that are ruled by the axioms

together with the laws of classical propositional logic CPC. Let 𝛤 be the set of all

possible instantiations of axioms (A1)–(A6). Then it holds that 𝛷 does not follow

from T ∪ 𝛤 using CPC reasoning, i.e. T ∪ 𝛤 ⊬CPC 𝛷. By completeness of CPC,

there exists a Boolean interpretation v such that v(𝛹 ) = 1 for all 𝛹 ∈ T ∪ 𝛤 and
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v(𝛷) = 0. Now we will build a ⊙-preference Kripke model  such that e

(𝛹 ) = 1

for all 𝛹 ∈ T and e

(𝛷) = 0. To do that, we take 𝛺 = {𝜔 ∶ Var ⟶ {0, 1}}, i.e.

the set of interpretations of propositional language, and define ≤∶ 𝛺 ×𝛺 → V by

[𝜔 ≤ 𝜔

′] = max{a ∈ V ∣ v(𝜔 ⪯a
𝜔
′) = 1}.

By axioms (A2), (A3), ≤ is a ⊙-preorder. Consider the model  = (𝛺,≤, e), where

for each 𝜔 ∈ 𝛺 and p ∈ Var, e(𝜔, p) = 𝜔(p). What remains to check is that e

(𝛹 ) =

v(𝛹 ) for every LAP∀∃-formula 𝛹 . In order to prove this equality it suffices to show

that, for every 𝜑,𝜓 ∈ 0 and a ∈ [0, 1], we have e

(𝜑 ⪯a

𝜓) = v(𝜑 ⪯a
𝜓), that is,

to prove that

v(𝜑 ⪯a
𝜓) = 1 iff inf

𝜔∈[𝜑]
sup

𝜔
′∈[𝜓]

[𝜔 ≤ 𝜔

′] ≥ a.

By axioms (A5) and (A6), we have that 𝖫𝖠𝖯∀∃ proves

𝜑 ⪯a
𝜓 ↔

⋀

𝜔∈𝛺∶𝜔(𝜑)=1

⋁

𝜔
′∈𝛺∶𝜔′(𝜓)=1

𝜔 ≤
a
𝜔
′
.

Therefore, v(𝜑 ⪯a
𝜓) = 1 iff for all 𝜔 ∈ 𝛺 such that 𝜔(𝜑) = 1, there exists w′ ∈

𝛺 such that 𝜔
′(𝜓) = 1 and v(𝜔 ⪯a

𝜔
′) = 1. But, as we have previously observed,

v(𝜔 ⪯a
𝜔
′) = 1 holds iff [𝜔 ≤ 𝜔

′] ≥ a. In other words, we actually have v(𝜑 ⪯a
𝜓) =

1 iff min
𝜔∈[𝜑] max

𝜔
′∈[𝜓] [𝜔 ≤ 𝜔

′] ≥ a. This concludes the proof. □

5.2 The Logics LAP∀∃𝟐 and LAP∀∀ Corresponding to the
≤∀∃𝟐 and ≤∀∀ Preference Relations

In a very similar way, with the obvious changes, we can define axiomatic systems for

the logics of LAP∀∃2 and LAP∀∀. We do not include the completeness proofs since

they are analogous to the one for LAP∀∃.

Recall that, under the ∀∃2 semantics, the evaluation of atomic preference formu-

las in a preference Kripke model  is as follows:

e

(𝜑 ⪯a

𝜓) = 1 iff [[𝜑]


≤∀∃2 [𝜓]

] = ( inf

w∈[𝜓]
sup

u∈[𝜑]
[u ≤ w]) ≥ a.

Theorem 4 Let 𝖫𝖠𝖯∀∃2 be the axiomatic system whose axioms are:

(A1) Axioms of CPC for 1-formulas
(A2) 𝜑 ⪯1

𝜓 , where 𝜓 → 𝜑 is a tautology of CPC
(A3) (𝜑 ⪯a

𝜓) ∧ (𝜓 ⪯b
𝜒) → (𝜑 ⪯a⊙b

𝜒) (transitivity)
(A4) (𝜑 ⪯a

𝜓) → (𝜑 ⪯b
𝜓), for all a ≤ b (nestedness)

(A5) (𝜑 ⪯a
𝜓 ∨ 𝜒) ↔ (𝜑 ⪯a

𝜓) ∧ (𝜑 ⪯a
𝜒) (Right-OR)
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(A6) (𝜑 ∨ 𝜓 ⪯a
𝜔) ↔ (𝜑 ⪯a

𝜔) ∨ (⪯a
𝜓 ⪯a

𝜔) (restricted Left-OR)

and whose only inference rule is modus ponens. Then 𝖫𝖠𝖯∀∃2 is sound and complete
with respect to the class of ⊙-preference Kripke models under the ∀∃2 semantics.

As for the ∀∀ semantics, the evaluation of atomic preference formulas in a pref-

erence Kripke model  is:

e

(𝜑 ⪯a

𝜓) = 1 iff [[𝜑]


≤∀∀ [𝜓]

] = ( inf

u∈[𝜑]
inf

w∈[𝜓]
[u ≤ w]) ≥ a.

Theorem 5 Let 𝖫𝖠𝖯∀∀ be the axiomatic system whose axioms are:

(A1) Axioms of CPC for 1-formulas
(A2) (𝜑 ⪯a

𝜓) → (𝜑′ ⪯a
𝜓

′), where 𝜑

′ → 𝜑,𝜓

′ → 𝜓 are tautologies of CPC
(A3) 𝜔 ⪯1

𝜔 (restricted reflexivity)
(A4) (𝜑 ⪯a

𝜓) ∧ (𝜓 ⪯b
𝜒) → (𝜑 ⪯a⊙b

𝜒) (transitivity)
(A5) (𝜑 ⪯a

𝜓) → (𝜑 ⪯b
𝜓), for all a ≤ b (nestedness)

(A6) (𝜑 ∨ 𝜓 ⪯a
𝜒) ↔ (𝜑 ⪯a

𝜒) ∧ (𝜓 ⪯a
𝜒) (Left-OR)

(A7) (𝜓 ⪯a
𝜑 ∨ 𝜓) ↔ (𝜓 ⪯a

𝜑) ∧ (𝜓 ⪯a
𝜓) (Right-OR)

and whose only inference rule is modus ponens. Then 𝖫𝖠𝖯∀∀ is sound and complete
with respect to the class of ⊙-preference Kripke models under the ∀∀ semantics.

Moreover, in the same way, we could axiomatize the logics LAPs
∀∃, LAPs

∀∃2 and

LAPs
∀∀ corresponding to the associated strict preference orders.

Nevertheless our goal is to axiomatize the logic modeling preference triples

⟨≤, <,≡⟩ corresponding to the preference relations ≤1 = ≤∀∃ ∧ ≤∀∃2 and ≤2 = ≤∀∀.

The axiomatizations of these logics are given in the next section.

5.3 The Logic LAP𝟏

In this subsection we define and study the logic corresponding to the fuzzy preorder

≤1 = ≤∀∃ ∧ ≤∀∃2.

The language of LAP1
is as the one for LAP with the difference that now we have

four kinds of atomic preference formulas:

𝜑 ⪯a
𝛼

𝜓, 𝜑 ⪯a
𝛽

𝜓, 𝜑 ≺

a
𝛼

𝜓, 𝜑 ≺

a
𝛽

𝜓,

where a ∈ V ⧵ {0}. The semantics is still given by ⊙-preference Kripke models

 = (W,≤, e), where e


evaluates the above kinds of atomic preference formu-

las in the expected way:

∙ e

(𝜑 ⪯a

𝛼

𝜓) = 1 if [[𝜑]


≤∀∃ [𝜓]

] = (infu∈[𝜑] supw∈[𝜓][u ≤ w]) ≥ a

∙ e

(𝜑 ⪯a

𝛽

𝜓) = 1 if [[𝜑]


≤∀∃2 [𝜓]

] = (infw∈[𝜓] supu∈[𝜑] [u ≤ w]) ≥ a

∙ e

(𝜑 ≺

a
𝛼

𝜓) = 1 if [[𝜑]


<∀∃ [𝜓]

] = (infu∈[𝜑] supw∈[𝜓][u < w]) ≥ a
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∙ e

(𝜑 ≺

a
𝛽

𝜓) = 1 if [[𝜑]


<∀∃2 [𝜓]

] = (infw∈[𝜓] supu∈[𝜑] [u < w]) ≥ a.

The notion of logical consequence is defined as usual, and will be denoted by ⊧𝖫𝖠𝖯1 .

Next we propose an axiomatic system for 𝖫𝖠𝖯1.

Definition 6 The axioms for 𝖫𝖠𝖯1 are:

∙ Axioms of 𝖫𝖠𝖯∀∃ for the ⪯a
𝛼

operators.

∙ Axioms of 𝖫𝖠𝖯∀∃2 for the ⪯a
𝛽

operators.

∙ Axioms for the ≺

a
𝛼

operators:

(AS1) ¬(𝜑 ≺

a
𝛼

𝜑) (irreflexivity)

(AS2) ¬((𝜔 ≺

a
𝛼

𝜔
′) ∧ (𝜔′

≺

b
𝛼

𝜔)) (restricted anti-symmetry)

(AS3) (𝜑 ≺

a
𝛼

𝜓) ∧ (𝜓 ≺

b
𝛼

𝜒) → (𝜑 ≺

a∗b
𝛼

𝜒) (⊙-transitivity)

(AS4) (𝜑 ≺

a
𝛼

𝜓) → (𝜑 ≺

b
𝛼

𝜓), for all a ≤ b (nestedness)

(AS5) (𝜑 ≺

a
𝛼

𝜔) ∧ (𝜓 ≺

a
𝛼

𝜔) ↔ (𝜑 ∨ 𝜓 ≺

a
𝛼

𝜔) (Left-OR)

(AS6) (𝜒 ≺

a
𝛼

𝜑 ∨ 𝜓) ↔ (𝜒 ≺

a
𝛼

𝜑) ∨ (𝜒 ≺

a
𝛼

𝜓) (Restricted Right-OR)

∙ Axioms for the ≺

a
𝛽

operators:

(BS1) ¬(𝜑 ≺

a
𝛽

𝜑) (irreflexivity)

(BS2) ¬((𝜔 ≺

a
𝛽

𝜔
′) ∧ (𝜔′

≺

b
𝛽

𝜔)) (restricted anti-symmetry)

(BS3) (𝜑 ≺

a
𝛽

𝜓) ∧ (𝜓 ≺

b
𝛽

𝜒) → (𝜑 ≺

a∗b
𝛽

𝜒) (⊙-transitivity)

(BS4) (𝜑 ≺

a
𝛽

𝜓) → (𝜑 ≺

b
𝛽

𝜓), for all a ≤ b (nestedness)

(BS5) (𝜑 ∨ 𝜓 ≺

a
𝛽

𝜒) ↔ (𝜑 ≺

a
𝛽

𝜒) ∧ (𝜓 ≺

a
𝛽

𝜒) (Restricted Left-OR)

(BS6) (𝜔 ≺

a
𝛽

𝜑 ∨ 𝜓) ↔ (𝜔 ≺

a
𝛽

𝜑) ∨ (𝜔 ≺

a
𝛽

𝜓) (Right-OR)

∙ Connecting axioms:

(AB) 𝜔 ⪯a
𝛼

𝜔
′ ↔ 𝜔 ⪯a

𝛽

𝜔
′

(ABS) 𝜔 ≺

a
𝛼

𝜔
′ ↔ 𝜔 ≺

a
𝛽

𝜔
′

(SA1)
⋀(

(𝜔 ⪯a
𝛼

𝜔
′) → (𝜔′ ⪯a

𝛼

𝜔) ∶ a > 0
)
→ ¬(𝜔 ≺

a0
𝛼

𝜔
′), where a0 is the

minimum element of V ⧵ {0}.

(SA2) ¬
⋀(

(𝜔 ⪯a
𝛼

𝜔
′) → (𝜔′ ⪯a

𝛼

𝜔) ∶ a > 0
)
→

(
(𝜔 ≺

b
𝛼

𝜔
′) ↔ (𝜔 ⪯b

𝛼

𝜔
′)
)

The only inference rule for 𝖫𝖠𝖯1 is Modus Ponens.

Observe that axiom (AB) is related to the fact that (semantically), over m.e.c.’s,

the weak relations ⪯
𝛼

and ⪯
𝛽

coincide, and the same for axiom (ABS) regarding

the strict relations ≺
𝛼

and ≺
𝛽

. Finally, axioms (SA1) and (SA2) are for ≺
𝛼

a logical

translation of the definition of strict order < from the preorder ≤ on W according to

Eq. (2). Note that analogous axioms for ≺
𝛽

can be derived using axiom (AB).

Denoting by ⊢LAP1 the notion of proof in 𝖫𝖠𝖯1, we have the following complete-

ness result.

Theorem 6 For any set T ∪ {𝛷} of 1-formulas, it holds that T ⊧𝖫𝖠𝖯1 𝛷 if, and only
if, T ⊢𝖫𝖠𝖯1 𝛷.
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Proof One direction is soundness. Let M = (W,≤, e) a ⊙-preference Kripke model.

Axiom (AB) holds in M since both preorders ≤∀∃ and ≤∀∃2 are defined from the same

preorder ≤ on W, and thus they coincide over the singletons. The same argument

is valid for (ABS), exchanging preorder by strict order. Axioms (SA1) and (SA2)

correspond to the definition of the strict order < on W from the preorder ≤. The

interpretation of (AS1) roughly says that, for elements of W, if [u ≤ v] ≤ [v ≤ u]
then [u < v] = 0 and (AS2) says that if [u ≤ v] > [v ≤ u] then [u < v] = [u ≤ v].

As for the converse direction, assume T ⊬LAP1 𝛷. The construction of the coun-

termodel is very similar to that of Theorem 3, and the idea is again to consider

all atomic preference formulas 𝜑 ⊲

a
𝜓 (with ⊲ ∈ {⪯

𝛼

,⪯
𝛽

, ≺
𝛼

, ≺
𝛽

}) as propositional

(Boolean) variables that are ruled by the laws of classical propositional logic CPC.

Let 𝛤 be the set of all possible instantiations of axioms of LAP
1
. Then it follows

that 𝛷 does not follow from T ∪ 𝛤 using CPC reasoning, i.e. T ∪ 𝛤 ⊬CPC 𝛷. By

completeness of CPC, there exists a Boolean interpretation v such that v(𝛹 ) = 1
for all 𝛹 ∈ T ∪ 𝛤 and v(𝛷) = 0. Now we will build a ⊙-preference Kripke model

 = (𝛺,≤, e) such that e

(𝛹 ) = 1 for all 𝛹 ∈ T and e


(𝛷) = 0. We take 𝛺 =

{𝜔 ∶ Var ⟶ {0, 1}}, i.e. the set of Boolean interpretations of propositional vari-

ables, and define ≤∶ 𝛺 ×𝛺 → [0, 1] by

[𝜔 ≤ 𝜔

′] = max{a ∈ V ∣ v(𝜔 ⪯a
𝛼

𝜔
′) = 1}.

Notice that, by axiom(AB), this value is equal to max{a ∈ V ∣ v(𝜔 ⪯a
𝛽

𝜔
′) = 1}.

Based on ≤, we can define the corresponding strict order <, and from we can

define the strict relations on subsets of W, <∀∃ and <∀∃2, that coincide on the sin-

gletons by axiom (ABS). By the transitivity axioms of 𝖫𝖠𝖯∀∃ and 𝖫𝖠𝖯∀∃2, ≤ is a

⊙-preorder. We define now the evaluation function e, where for each w ∈ 𝛺 and

p ∈ Var, e(w, p) = w(p). What remains to be checked is that e

(𝛹 ) = v(𝛹 ) for every

𝖫𝖠𝖯1-formula 𝛹 . In order to prove this equality it suffices to show that, for every

𝜑,𝜓 ∈ 0 and a ∈ V ⧵ {0}, we have e

(𝜑 ⊲

a
𝜓) = v(𝜑 ⊲

a
𝜓). As mentioned above

the proof is very similar to the one in Theorem 3 for all the atomic preference for-

mulas, but specially when ⊲ ∈ {⪯
𝛼

,⪯
𝛽

}. Therefore we only prove the equality for

atomic preference formulas of type 𝜑 ≺

a
𝛽

𝜓 . By the semantics of 𝖫𝖠𝖯1,

e

(𝜑 ≺

a
𝛽

𝜓) = 1 iff inf
𝜔
′∈[𝜓]

sup
𝜔∈[𝜑]

[𝜔 < 𝜔

′] ≥ a.

By axioms (BS5) and (BS6), we have that LAP1
proves

𝜑 ≺

a
𝛽

𝜓 ↔
⋀

𝜔
′∈𝛺∶𝜔′(𝜓)=1

⋁

𝜔∈𝛺∶𝜔(𝜑)=1
𝜔 ≤

a
𝜔
′
.

Therefore, v(𝜑 ≺

a
𝛽

𝜓) = 1 iff for all 𝜔
′ ∈ 𝛺 such that 𝜔

′(𝜓) = 1, there exists 𝜔 ∈ 𝛺

such that 𝜔(𝜑) = 1 and v(𝜔 ≺

a
𝛽

𝜔
′) = 1. But v(𝜔 ≺

a
𝛽

𝜔
′) = 1 holds iff [𝜔 < 𝜔

′] ≥ a.
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In other words, we actually have v(𝜑 ≺

a
𝛽

𝜓) = 1 iffmin
𝜔
′∈[𝜓] max

𝜔∈[𝜑][𝜔 ≤ 𝜔

′] ≥
a. This concludes the proof. □

In the logic LAP1
we can define the following modal operators for the indifference

relations corresponding to the preference modalities ⪯a
𝛼

and ⪯a
𝛼

:

∙ 𝜑 ≡a
𝛼

𝜓 as (𝜑 ⪯a
𝛼

𝜓) ∧ (𝜓 ⪯a
𝛼

𝜑),
∙ 𝜑 ≡

a
𝛽

𝜓 as (𝜑 ⪯a
𝛽

𝜓) ∧ (𝜓 ⪯a
𝛽

𝜑),

and, from them, we can in turn define the modalities

∙ 𝜑 ⪯a
1 𝜓 as (𝜑 ⪯a

𝛼

𝜓) ∧ (𝜑 ⪯a
𝛽

𝜓),
∙ 𝜑 ≡

a
1 𝜓 as (𝜑 ≡a

𝛼

𝜓) ∧ (𝜑 ≡
a
𝛽

𝜓),
∙ 𝜑 ≺

a
1 𝜓 as ((𝜑 ≡a

𝛼

𝜓) ∧ (𝜑 ≺

a
𝛽

𝜓))∨
((𝜑 ≡

a
𝛽

𝜓) ∧ (𝜑 ≺

a
𝛼

𝜓)) ∨ ((𝜑 ≺

a
𝛼

𝜓) ∧ (𝜑 ≺

a
𝛽

𝜓)).

that eventually determine ⟨⪯1,≡1, ≺1⟩ as the preference structure of the logic 𝖫𝖠𝖯1.
We finish this section with one remark justifying the above definition of ≺

a
1.

Observe that given a preorder ≤ on W, the preorder ≤1 on (W) satisfies the fol-

lowing equation:

[A ≤1 B] = min([A ≤∀∃ B], [A ≤∀∃2 B]),

that, by Eq. (1), is equal to

min(max([A ≡∀∃ B], [A <∀∃ B]),max([A ≡∀∃2 B], [A <∀∃2 B])),

and hence, also equal to

max( min([A ≡∀∃ B], [A ≡∀∃2 B]),min([A ≡∀∃ B], [A <∀∃2 B]),
min([A <∀∃ B], [A ≡∀∃2 B]),min([A <∀∃ B], [A <∀∃2 B]) ).

Thus, once we define [A ≡1 B] = min([A ≡∀∃ B], [A ≡∀∃2 B])i, then, again according

to Eq. (1), it seems very reasonable to define the strict order value [A <1 B] by the

maximum of the three remaining terms above, that is:

[A <1 B] = max( min([A ≡∀∃ B], [A <∀∃2 B]),
min([A <∀∃ B], [A ≡∀∃2 B]),min([A <∀∃ B], [A <∀∃2 B]) ).

This motivates the definition of 𝜑 ≺

a
1 𝜓 above.

5.4 The Logic LAP𝟐

In this subsection we define and study the logic corresponding to the fuzzy preorder

≤2 = ≤∀∀.
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The logic LAP2
is defined as the expansion of LAP∀∀ with modal operators for the

strict preference ≺
a
, for each a ∈ V ⧵ {0}. We just need to take into account that the

semantics for the ≺
a

operators is as expected: given a Kripke model  = (W,≤, e),

∙ e

(𝜑 ≺

a
𝜓) = 1 if [[𝜑]


<∀∀ [𝜓]


] = (infu∈[𝜑] infw∈[𝜓][u < w]) ≥ a.

Definition 7 The axioms for 𝖫𝖠𝖯2 are the ones of 𝖫𝖠𝖯∀∀ for the ⪯a
operators plus:

(AS1) (𝜑 ≺

a
𝜓) → (𝜑′

≺

a
𝜓

′), where 𝜑

′ → 𝜑,𝜓

′ → 𝜓 are tautologies of CPC

(AS2) ¬(𝜑 ≺

a
𝜑) (irreflexivity)

(AS3) (𝜑 ≺

a
𝜓) ∧ (𝜓 ≺

b
𝜒) → (𝜑 ≺

a⊙b
𝜒) (⊙-transitivity)

(AS4) (𝜑 ≺

a
𝜓) → (𝜑 ≺

b
𝜓), for all a ≤ b (nestedness)

(AS5) (𝜑 ∨ 𝜓 ≺

a
𝜒) ↔ (𝜑 ≺

a
𝜒) ∧ (𝜓 ≺

a
𝜒) (Left-OR)

(AS6) (𝜓 ≺

a
𝜑 ∨ 𝜒) ↔ (𝜓 ≺

a
𝜒)∧(𝜓 ≺

a
𝜒) (Right-OR)

(SA1)
⋀(

(𝜔 ⪯a
𝜔
′) → (𝜔′ ⪯a

𝜔) ∶ a > 0
)
→ ¬(𝜔 ≺

a0
𝜔
′), where a0 is the min-

imum element of V ⧵ {0}.

(SA2) ¬
⋀(

(𝜔 ⪯a
𝜔
′) → (𝜔′ ⪯a

𝜔) ∶ a > 0
)
→

(
(𝜔 ≺

b
𝜔
′) ↔ (𝜔 ⪯b

𝜔
′)
)

The only rule of LAP2
is modus ponens.

Note that axioms (SA1) and (SA2) above are analogous to the ones in LAP1
, and

the remark after the definition LAP1
justifying them applies here as well.

The completeness theorem is ready and the proof is also analogous to previous

ones, thus we omit it.

Theorem 7 For any set T ∪ {𝛷} of1-formulas, it holds that T ⊧LAP1 𝛷 if, and only
if, T ⊢LAP1 𝛷.

Finally, let us observe that in LAP2
we can also define now the preference structure

⟨⪯2,≡2, ≺2⟩ in the obvious way:

∙ The weak preference statement 𝜑 ⪯2 𝜓 is defined as 𝜑 ⪯a
𝜓 ,

∙ The equivalence statement 𝜑 ≡2 𝜓 is defined as (𝜑 ⪯a
𝜓) ∧ (𝜓 ⪯a

𝜑),
∙ The strict preference statement 𝜑 ≺2 𝜓 is defined by (𝜑 ≺

a
𝜓).

Notice however that, strictly speaking, 𝜑 ⪯2 𝜓 is not a fuzzy preorder and ≡2 is not

a fuzzy similarity since they are not reflexive.

6 Conclusions and Future Work

In this paper we have studied preference structures on classical sets arising from

fuzzy preference relations, a topic that, as far as we know, has not been very studied

in the literature. We have approached the question both from a relational and logical

points of view. In the relational approach we have studied and characterized possi-

ble extensions of fuzzy preorders on a crisp set W (interpreted as fuzzy preferences
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between the elements of W) to crisp subsets of W (fuzzy preferences on crisps sub-

sets). Within the logical approach, we have defined and studied several two-tiered

modal logics capturing, at the syntactical level, the corresponding preference struc-

tures. The same scheme can be generalized to fuzzy preference relations on fuzzy

sets. Given a fuzzy preorder ≤ on a universe W, we can define corresponding exten-

sions to fuzzy relations on the set  (W) of fuzzy subsets of W. For example, for all

A,B ∈  (W), corresponding extensions for ∀∃ and ∀∀ could be defined as

(A ≤∀∃ B) = [ inf
u∈W

((𝜇A(u)) → (sup
v∈W

([u ≤ v]⊙ 𝜇B(v))))]

(A ≤∀∀ B) = [ inf
u∈W

((𝜇A(u)) → ( inf
v∈W

([u ≤ v] → 𝜇B(v))))].

As future work we plan to study and characterize these type of fuzzy preference rela-

tions taking into account the works by Bodenhofer et al. [2–4], where the authors

study some of these relations in the purely fuzzy relational setting. Finally we plan

to connect the corresponding fuzzy preference structures with a modal many-valued

logic framework, with necessity, possibility, universal and existential modal opera-

tors (see [21] for a first approach) in a similar way that it is done in [1] in the classical

setting.
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