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Abstract Search is one of the most useful procedures employed in numerous

situations such as optimization, machine learning, information processing and

retrieval. This chapter introduces participatory search, a class of population-based

search algorithms constructed upon the participatory learning paradigm. Participa-

tory search relies on search mechanisms that progress forming pools of compatible

individuals. The individual that is the most compatible with the best individual is

always kept in the current population. Random immigrants are added to complete

the population at each algorithm step. Different types of recombination are possible.

The first is a convex combination, arithmetic-like recombination modulated by the

compatibility between individuals. The second is a recombination mechanism based

on selective transfer. Mutation is an instance of differential variation modulated by

compatibility between selected and recombined individuals. Applications concern-

ing development of fuzzy rule-based models from actual data illustrate the potential

of the algorithms. The performance of the models produced by participatory search

algorithms are compared with a state of the art genetic fuzzy system. Experimental

results show that the participatory search algorithm with arithmetic-like recombina-

tion performs better than the remaining ones.

1 Introduction

The interest in evolutionary procedures to develop fuzzy systems from data has

gained considerable attention in the last decade. Evolutionary fuzzy systems are

fuzzy systems with added evolutionary components. An important instance of evolu-

tionary fuzzy systems is genetic fuzzy systems (GFS). GFS combine fuzzy systems
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with genetic algorithms [1] to solve complex classification, approximation, nonlinear

modeling and control problems.

As it is well known, genetic algorithm (GA) is a population-based stochastic

search procedure whose idea is to evolve a population of individuals using selec-

tion, recombination, and mutation operations working in sequence during several

steps called generations [2]. A fitness function distinguishes the ability of an indi-

vidual to remain in the next population. The better the value of the fitness function

achieved by an individual, the higher is its chance to survive. This is the survival of

the fittest saga. Individuals, candidate solutions of a problem, are points in the search

space. Differently from GA, differential evolution [3] creates new candidate solutions

combining the existing ones via mutation, recombination, and selection working in

sequence during several generations. DE keeps whichever candidate solution that

achieves the highest performance.

In [4] we read the following: In actual survival of the fittest saga, there appears
to be additional processes going on. In particular, the objective function in addition
to be determined by some external requirement is often affected by the population
itself.

An approach that has been devised mimic the effect that a population itself has

in its evolution is participatory learning [5]. The key idea of participatory learning

is to account for compatibility between observations and current state of the learner.

As it will be shown late, selection and variation operators such as recombination

and mutation can designed to account for the compatibility between the individuals

of a population. Compatibility and similarity have been shown to be effective in

evolutionary computation [6–9].

This chapter addresses a new class of population-based search algorithms based

on participatory learning. In common with other types of evolutionary algorithms,

participatory search operates with a population of solutions, rather than with a single

solution at a step, and employs procedures to combine these solutions to create new

ones. Participatory search algorithms are novel instances of evolutionary algorithms

because they do not need to assume that evolutionary approaches must necessarily

be based on randomization [10, 11] though they are compatible with randomized

implementations. Participatory search algorithms embody principles that are still

not used by other evolutionary approaches, and that prove advantageous to solve a

variety of complex optimization and design tasks.

The performance of the participatory algorithms is evaluated using actual data

and compared with a state of the art genetic fuzzy system approach developed

in [1]. Computational results show that the participatory search algorithm with

arithmetical-like recombination performs better than the GFS approach.

After this introduction the chapter proceeds as follows. Section 2 briefly reviews

genetic fuzzy systems. Section 3 reminds the concept of participatory learning.

Section 4 introduces the participatory search operators: selection, selective transfer,

arithmetic-like recombination and mutation operators. The search algorithms sum-

marized in Sect. 5. Section 6 evaluates the performance of the participatory search

algorithms against state of the art genetic fuzzy systems approaches. Section 7 con-

cludes the chapter and list issues that deserve further development.
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2 Genetic Fuzzy Systems

This section gives a brief overview of genetic fuzzy systems (GFS) and their appli-

cations. The focus is on genetic fuzzy rule-based systems (GFRBS), one of the most

important types of GFS. The structure of GFRBS is summarized in Fig. 1.

GFRBS is a fuzzy rule-based system enhanced by genetic algorithms. A fuzzy

rule-based system (FRBS) is composed by a knowledge base (KB) that encodes the

knowledge of a target model. The KB contains two main components, a data base

and a fuzzy rule base. The data base (DB) stores data that characterize the linguistic

variables used by the fuzzy rules, the membership functions that define the semantics

of the linguistic labels, and the parameters of the model. The fuzzy rule base (RB)

is a collection of fuzzy if-then rules. Other three components complete fuzzy rule-

based models. The first is a fuzzification module to serve as an input interface with

the fuzzy reasoning process. The second is an inference engine that performs fuzzy

reasoning. The third is a defuzzification output interface module to convert a fuzzy

output into a representative pointwise output. An effective approach to construct the

KB of an FRBS is to simultaneously develop the DB and the RB within the same

process, but in two steps such as in embedded GFRBS learning. Embedded GFRBS

is a scheme to learn the DB using simultaneously a simple method to derive a RB

for each DB.

Embedded GFRBS does not necessarily provide simple, transparent, and com-

petitive models in terms of the generalization capability. They may not scale well in

terms of processing time and memory, two essential requirements especially in high-

dimensional, large-scale, and complex problem solving. These issues are addressed

in [1] where a way to reduce the search space in an embedded genetic DB learn-

ing framework is suggested. Lateral displacement of fuzzy partitions using a unique

parameter for all membership functions of each linguistic variable is one of the mech-

anisms adopted to reduce search space complexity. The idea is to prescreen promis-

ing partitions to avoid overfitting and to maintain coverage and semantic soundness

Fig. 1 Genetic fuzzy rule-based system
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of the fuzzy partitions. The evolutionary algorithm also includes incest prevention,

restarting, and rule-cropping in the RB generation process to improve convergence.

Despite the use of mechanisms to manage dimensionality, the algorithm does not

scale up on the number of data in datasets. A way to deal with scalability is to avoid

large percentage of samples, and to estimate errors using a reduced subset. A post-

processing step may further refine the algorithm.

Application examples of GFS are many. For example, [12] addresses a multi-

objective optimization in which a fuzzy controller regulates the selection procedure

and fitness function of genetic algorithms. Optimization is used to develop timeta-

bles of railway networks aiming at reducing passenger waiting time when switching

trains, while at the same time, minimizing the cost of new investments to improve

the necessary infrastructure. The result of the genetic optimization is a cost-benefit

curve that shows the effect of investments on the accumulated passenger waiting

time and trade-offs between both criteria. In [13] the aim is to optimize trip time

and energy consumption of a high-speed railway with fuzzy c-means clustering and

genetic algorithm. The method is used to develop a control strategy for a high-speed

train line. An economical train runs with a trip time margin of less than 7% and an

energy saving of 5% is reported. A model to relate the total length of low voltage

line installed in a rural town with the number of people in the town and the mean of

the distances from the center of the town to three furthest clients is discussed in [14].

The authors compare the training and test set error achieved by different modeling

techniques for low line value estimation.

3 Participatory Learning

Participatory learning appeared in [5] as a process of learning that depends on what

has already been learned. A central issue in the idea of participatory learning is

that data have the greatest impact in causing learning or knowledge revision when

they are compatible with the current knowledge. Learning occurs in an environ-

ment in which the current knowledge participates in the process of learning about

itself. Clearly, a fundamental factor of participatory learning is the compatibility

degree between input data and current knowledge. The current knowledge, denoted

by v(t), in addition to provide a standard against which input data z(t) is compared

with, directly affects the learning process. This is the participatory nature of learning

process. High compatibility between the current knowledge and current input data

opens the system for learning. In PL, this enhancement is expressed by the compati-

bility degree. A facility is provided to measure the confidence in the current knowl-

edge structure. If a long sequence of input data have low compatibility with current

knowledge, it may be the case that what has been learned so far is mistaken, not

the data. This is seen as a form of stimulation called arousal. Participatory learning

includes an arousal mechanism to monitor the performance of the learning process

by watching at the values of the compatibility degrees of the current knowledge with
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inputs. Monitoring information is fed back in terms of an arousal index that subse-

quently affects the learning process.

The instance of participatory learning we explore in this chapter uses the compati-

bility degree between current knowledge and current input data to update knowledge

employing the following procedure [5, 15]:

v(t + 1) = v(t) + 𝛼𝜌t(z(t) − v(t)) (1)

where v(t) and z(t) are n-dimensional vectors that denote the current knowledge and

current input data, respectively. Assume, without loss of generality, that v(t), z(t) ∈
[0, 1]n. The parameter 𝛼 ∈ [0, 1] is the basic learning rate and 𝜌t ∈ [0, 1] is the com-

patibility degree between v(t) and z(t) at step t. The product of the basic learning rate

by the compatibility degree produces the actual learning rate. If an input is far from

the current knowledge, then the value of the corresponding compatibility degree is

small and the input is filtered. The actual learning rate is lowered by the compatibility

degree. This means that if input data are too conflicting with the current knowledge,

then they are discounted [5]. Lower values of actual learning rates avoid fluctuations

due to values of input data which do not agree with current knowledge. As it will

be shown shortly, (1) induces one of the recombination operators of participatory

search algorithms.

The mechanism to monitor compatibility degrees during learning is the arousal

index. The arousal index enters in the basic PL update formula (1) as follows

v(t + 1) = v(t) + 𝛼𝜌
1−at
t (z(t) − v(t)) (2)

where at ∈ [0, 1] is the arousal index at t.
One way to compute the compatibility degree 𝜌 at step t is

𝜌t = 1 − 1
n

n∑

k=1
|zk(t) − vk(t)|. (3)

In (3) 𝜌t is the complement of the average absolute difference between input infor-

mation z(t) and current knowledge v(t). In a more general sense, 𝜌t may be seen to be

a measure of similarity between z(t) and v(t). If 𝜌t = 0, then v(t + 1) = v(t) and the

current input z(t) is completely incompatible with the current knowledge v(t). This

condition means that the system is not open to any learning from the current informa-

tion. On the other hand, if 𝜌t = 1, then v(t + 1) = z(t). In this case input information

is in complete agreement with the current knowledge and the system is fully open to

learn.

Arousal can be seen as the complement of the confidence in the current knowl-

edge. A simple procedure is to update the arousal index a at step t is

at+1 = (1 − 𝛽)at + 𝛽(1 − 𝜌t+1) (4)
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where 𝛽 ∈ [0, 1] controls the rate of change of arousal. The higher at, the less confi-

dent is the learning system in current knowledge. If 𝜌t+1 = 1, then we have a highly

compatible input and the arousal index decreases. On the other hand, if 𝜌t+1 = 0,

then input information compatibility is low and the arousal index increases.

The notion of compatibility degree enters in participatory search algorithms dur-

ing the formation of pools of individuals for selection, recombination, and mutation.

The pools are assembled from two populations St
and St′

. The individuals of St′
are

those of St
which are the most compatibles, one to one. Selection uses compatibility

to choose those individuals from the pool that are closer to current best individ-

ual. Recombination is done pairwise between individuals of the mating pool, mod-

ulated by their compatibility degrees and arousal indexes. Mutation adds a variation

to the current best individual proportional to the difference between the selected and

recombined individuals modulated by the corresponding compatibility degrees. The

effect of compatibility is to encourage selection and recombination of similar mates

from which good offspring are likely to be produced, as indicated in [9].

4 Participatory Search Operators

The main construct elements of search algorithms are the representation, search

operators, fitness function, and initial solution. These elements are relevant for all

types of population-based algorithms. The remaining element is the search strat-

egy. Representation concerns encoding mechanisms that maps problems solutions

to strings. Representations allow definitions of search operators and of the search

space. The search strategy defines types of intensification and diversification mech-

anisms.

In what follows we assume that a populations is a finite set of strings.

4.1 Selection

Let S be a set of N strings of fixed length n, and s, s′ ∈ S be two individuals, s′
distinct

of s, such that

s′ = argmaxr∈S(𝜌(s, r)) (5)

where

𝜌(s, r) = 1 − 1
n

n∑

k=1
|sk − rk|, (6)

and s = (s1, s2, .., sN) and r = (r1, r2, .., rN). Expression (5) means that s′
is the indi-

vidual of S whose compatibility degree with s is the largest. This procedure is

repeated in sequence for each individual s of S to assemble a corresponding pool
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Fig. 2 A population and its

pool of N individuals

S′
with N individuals. Notice that construction of the pool is biased by the compati-

bility degrees between the individuals of S. Figure 2 illustrates how the populations

S and S′
are assembled.

In participatory search algorithms, selection is done by computing the compat-

ibility degrees between s ∈ S and the corresponding s′ ∈ S′
with the current best

individual best = s∗, and picking the one that is the most compatible to assemble

a population L of selected individuals, that is, the ones that are the closest to the

current best individual. Formally,

s∗ = argmins∈Sf (s), (7)

where f is the objective function.

More specifically, selection computes the compatibility degrees 𝜌
s(s, s∗) and

𝜌
s′ (s′

, s∗) using

𝜌
s = 1 − 1

n

n∑

k=1
|sk − s∗k | (8)

and

𝜌
s′ = 1 − 1

n

n∑

k=1
|s′

k − s∗k |, (9)

and the individual whose compatibility degree is the largest, denoted by pselected, is

selected. That is, participatory selection proceeds according to the following rule

if 𝜌
s
≥ 𝜌

s′
then pselected = s else pselected = s′

. (10)

Fig. 3 illustrates the process of selection.

Selection depends on the objective function f (s), which identifies current best s∗,

and on 𝜌
s(s, s∗) and 𝜌

s′ (s′
, s∗) which measure the compatibility between s∗ and the

corresponding pair of individuals s and s′
of the current pool. Jointly, f, 𝜌s

and 𝜌
s′

decide if an individual will be selected or not.
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Fig. 3 Selection

4.2 Selective Transfer

During the last few years, we have witnessed a growing interest to use economic

principles and models of learning in genetic algorithms. For instance, evolutionary

processes have been used to model the adaptive behavior of a population of economic

agents [16]. Here agents develop models of fitness to their environment in conjunc-

tion with the corresponding economic activities. Economists believe that behavior

acquired through individual experience can be transmitted to future generations, and

that learning changes the way to search the space in which evolution operates. This

is an argument in favor of the interaction between the processes of evolution and

learning. Since technical knowledge is distributed across the economic population,

technological change can be viewed as a process of distributed learning. Here, the

term learning is used in a broad sense, that is, there is no distinction between learn-

ing as propagation of knowledge through the population and the process of inno-

vation, creation, and discovery. The distributed learning perspective helps to under-

stand technological change and focus on the population suggests that an evolutionary

perspective may be appropriate.

Birchenhall and Lin [16] claim that our knowledge and technology are modu-

lar, i.e., they can be decomposed into several components or modules. From the

evolutionary computation point of view, they suggest that the crossover operator of

genetic algorithms could be seen as a representative of modular imitation. To bring
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Fig. 4 Selective transfer

these ideas together, they advocate an algorithm that replaces selection and crossover

operators by an operator based on selective transfer. Essentially, selective transfer is

a filtered replacement of substrings from one string to another, without excluding

the possibility that the entire sequence is copied [17]. Clearly, the selective transfer

is similar to Holland crossover, but it is one-way transfer of strings, not on exchange

of strings. The behavior selective transfer is likely to be very different from the com-

bination of selection and crossover.

Assume that an individual pselected is selected using the objective function and

compatibility. Two positions h ≤ k in the pselected string are chosen randomly, and

a fair coin is tossed. If the coin turns head, then the substrings from pselected(h) to

pselected(k) of pselected is replaced by the corresponding substrings from s∗(h) to s∗(k)
of s∗. If the coin turns up tail, then the substrings from pselected(1) to pselected(h − 1)
and from pselected(k + 1) to pselected(n) are replaced by the corresponding substrings

of s∗. These steps are repeated for all individuals of L. Figure 4 illustrates the idea of

selective transfer.

Despite similarity with crossover of the standard genetic algorithms, there are

some differences. The most important one is that selective transfer uses one-way

relocation of substrings, from the best individual to the one selected, and hence it is

not a crossover. This is important because selective transfer is much more schemata

destructive than the standard crossover [17].

4.3 Arithmetic Recombination

Arithmetic recombination emerges from the participatory learning update formula

(2). To see this, notice that (2) can be rewritten as

v(t + 1) = v(t) + 𝛼𝜌
(1−at)
t (z(t) − v(t))

= (1 − 𝛼𝜌
(1−at)
t )v(t) + 𝛼𝜌

(1−at)
t z(t). (11)
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Fig. 5 Recombination

Let 𝛾 = 𝛼𝜌
(1−at)
t . Thus (11) becomes

v(t + 1) = (1 − 𝛾)v(t) + 𝛾z(t). (12)

Expression (12) is of the following type

sv(t + 1) = (1 − 𝛿)sv(t) + 𝛿sz(t) (13)

where 𝛿 ∈ [0, 1]. Notice that (13) is a convex combination of sv(t) and sz(t) whose

result is the offspring sv(t + 1). Interestingly (12) is similar to (13) and hence (12)

is an arithmetic-like recombination. While parameter 𝛿 of (13) is either a constant

or variable, depending on the age of population, the value 𝛾 of (12) is variable and

modulated by compatibility and arousal.

Participatory recombination proceeds as in (12) to produce offspring pr from indi-

viduals s and s′
of pools S and S′

, respectively, as follows

pr = (1 − 𝛼𝜌
(1−a)
r )s + 𝛼𝜌

(1−a)
r s′

. (14)

Figure 5 illustrates the process of participatory recombination. Sums in the figure

are done on an individual basis, and should be understood from the point of view of

the operation (14).

4.4 Mutation

There are many ways to do mutation in search algorithms. For example, consider a

population of N individuals represented by n-dimensional vectors denoted by sri,t at

generation t. Differential evolution, for instance, produces new individuals by adding

the weighted differences between distinct vectors to a third vector [3]. For each vector

sri,t, i = 1, 2, ...,N, a mutated vector is generated using
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Fig. 6 Mutation

si,t+1 = sr1,t + 𝜙 ⋅ (sr2,t − sr3,t) (15)

where r1, r2, r3 ∈ {1, 2, ...,N} are random indexes, and 𝜙 > 0 is a parameter which

controls the amount of the differential variation (sr2,t − sr3,t).
Mutation in participatory search is similar to differential evolution mutation. It

produces a mutated individual pm as follows

pm = best + 𝜌
1−a
m (pselected − pr). (16)

Fig. 6 illustrates the process of mutation.

In participatory mutation, the amount of the variation of the best individual

best = s∗ is controlled by compatibility between the selected and recombined indi-

viduals, and the arousal index.

5 Participatory Search Algorithms

Let St
be the set of N with strings of length n at step t. The participatory search algo-

rithms (PSA) start with a population St
at t = 0 with N randomly chosen individuals

and, for each individual of St
, the most compatible individual amongst the remaining

ones is chosen to assemble the population St′
with N individuals. St

and St′
form the

mating pool. Next, the best individual s∗ in the current population St
, denoted by

best, is chosen. For instance, for minimization problems best is such that

best = argmins∈St f (s). (17)

Selection chooses, by looking at each individual of St
and the corresponding mate

in St′
, the one which is the closest to best. Recombination is done pairwise between

the individuals of the mating pool, weighted by their values of compatibility and

arousal. Mutation uses the selected and recombined individuals to produce variations

whose amount is weighted by compatibility and arousal as well. If a offspring is

better than the current best individual, then it replaces the current best. Otherwise,

if a mutated individual is better than current best individual, then it replaces the
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Fig. 7 Participatory search algorithms

current best. A new iteration starts with a new population St+1
composed by the

current best individual, with the remaining (N − 1) individuals chosen randomly.

We should remark that participatory search algorithms are elitist: the best individual

encountered is always kept in a population. The directive last(St) ← best means that

the best individual found up to generation t, denoted by best, is kept at the position

that corresponds to the last individual of the population at step t + 1.

There are four instances of PSA, respectively, participatory search with selec-

tive transfer (PSST), participatory search with arithmetic recombination (PSAR),

differential participatory search with selective transfer (DPST), and differential par-

ticipatory search with arithmetic recombination (DPSA). They are distinguished by

the nature of the recombination, and the order in which the operations of selection,

recombination, and mutation are processed in each generation. They also differ from

similar evolutionary approaches developed in [6, 7, 18] in the way the mating pool

is constructed to produce the new population. A class of participatory search algo-

rithms that incorporates participatory learning is shown in Fig. 7.

PSST is similar to the algorithm discussed in [6] in the sense that both algorithms

use participatory selective transfer and mutation. PSAR uses participatory arithmetic

recombination and mutation, processed in a different order than PSST. DPST is sim-

ilar to the algorithm of [7] because it also uses selective transfer and participatory
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mutation. Likewise, DPSA is similar to the algorithm of [18] and uses participatory

arithmetic recombination and mutation. DPSA proceeds similarly as DPST except

that it uses arithmetic recombination instead of selective transfer. PSST, PSAR,

DPST and DPSA differ from all previous approaches because selection is done indi-

vidually for each of the N individuals of the current population. Participatory recom-

bination and mutation are performed likewise. Recall that PSST, PSAR, DPST and

DPSA are all elitist: the best individual is always kept in the current population.

As an illustration, the procedure PSAR is detailed below. The remaining algorithms,

except for their nature, have similar format. A in-depth description, characterization,

and convergence analysis of the PSA can found in [19].

1: procedure PSAR

2: f an objective function

3: s ∈ St
and s′ ∈ St′

4: set best randomly

5: set a0 ← 0; t ← 0
6: while t ≤ tmax do
7: generate population St

randomly

8: last(St) ← best
9: St′ ← s′ = argmaxr∈St (𝜌(s, r))

10: find best in St

11: Selection:

12: compute 𝜌
s(s, best) and 𝜌

s′ (s′
, best)

13: if 𝜌s ≥ 𝜌
s′ then

14: pselected ← s
15: else
16: pselected ← s′

17: end if
18: Recombination:

19: choose 𝛼, 𝛽 ∈ [0, 1] randomly

20: compute 𝜌r = 𝜌(s, s′ )
21: compute at+1 = at + 𝛽((1 − 𝜌r) − at)
22: pr = (1 − 𝛼𝜌

1−at
r )s + 𝛼𝜌

1−at
r s′

23: Mutation:

24: compute 𝜌m = 𝜌(pselected , pr)
25: pm = best + 𝜌

1−at+1
m (pselected − pr)

26: if f (pr) better than f (best) then
27: best ← pr
28: end if
29: if f (pm) better than f (best) then
30: best ← pm
31: end if
32: t ← t + 1
33: end while
34: return best
35: end procedure
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6 Participatory Search Algorithms in Fuzzy Modeling

This section concerns the use of participatory search algorithms in fuzzy rule-based

system modeling. The aim is to illustrate potential applications of PSA and to eval-

uate and compare the performance of PSST, PSAR, DPST and DPSA algorithms

using actual data and results reported in the literature.

The problem of interest here is to develop linguistic fuzzy models using actual

data sets available in KEEL (http://www.keel.es/). The KEEL (Knowledge Extrac-

tion based on Evolutionary Learning) is a software tool to assess evolutionary algo-

rithms for data mining problems including regression, classification, clustering, and

pattern mining. KEEL provides a complete set of statistical procedures for multiple

comparisons. The features of the data sets are summarized in Table 1. These data are

the same used in [1], a state of the art representative GFS reported in the literature

[20]. The representation and encoding schemes of PSAR are also the same of the

one adopted in [1]. They are as follows:

1. Database encoding: (C = C1,C2) a double-encoding scheme.

First, equidistant strong fuzzy partitions are identified considering the granularity

(labels) specified in C1. Second, the membership functions of each variable are

uniformly rearranged to a new position considering lateral displacement values

specified in C2.

∙ Number of labels C1: this is a vector of integers of size n representing the

number of linguistic variables.

C1 = (L1
, ...,Ln). (18)

Gene Li
is the number of labels of the ith linguistic variable, Li ∈ {2, ..., 7}.

∙ Lateral displacements C2: this is a vector of real numbers of size n that encodes

displacements 𝛼
i

of the different variables, 𝛼
i ∈ [−0.1, 0.1]. A detailed

description of the linguistic 2-tuple representation is given in [21, 22].

Table 1 Summary of the datasets

Problem Abbr. Variables Samples

Electrical maintenance ELE 4 1056

Auto MPG6 MPG6 5 398

Analact ANA 7 4052

Abalone ABA 8 4177

Stock prices STK 9 950

Forest fires FOR 12 517

Treasury TRE 15 1049

Baseball salaries BAS 16 337

http://www.keel.es/
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Fig. 8 A double-encoding

scheme C1 and C2

Fig. 9 Lateral displacement

of the linguistic variable V
values V1,V2, and V3

C2 = (𝛼1
, ..., 𝛼

n). (19)

An example of the encoding scheme is given in Fig. 8.

Figure 9 illustrates the lateral displacement of V for 𝛼 = −0.05.

2. Rule base: constructed using the Wang and Mendel algorithm (WM) [23, 24] as

follows:

a. granulate the input and output spaces;

b. generate fuzzy rules using the given data;

c. assign a certainty degree to each rule generated to resolve conflicts;

d. create a fuzzy rule base combining the rules generated and rules provided

by experts (if available);

e. determine the input-output mapping using the combined fuzzy rule base and

a defuzzification procedure.

An example of a fuzzy rule-base developed for ELE is shown in Fig. 10.

Example of rules of the rule base of Fig. 10 include:

rule 1: IF X1 is 1 and X2 is 1 and x3 is 1 and x4 is 1 THEN Y is 1

rule 2: IF X1 is 2 and X2 is 1 and x3 is 1 and x4 is 2 THEN Y is 3

rule 3: IF X1 is 3 and X2 is 3 and x3 is 2 and x4 is 3 THEN Y is 4

3. Objective function: the mean-squared error (MSE)

MSE = 1
2|D|

|D|∑

l=1
(F(xl) − yl)2 (20)
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Fig. 10 Rule base

constructed using WM

algorithm

where |D| is the size of the dataset, F(x) is the output of the FRBS model, and y
the actual value of the output. Fuzzy inference uses the max-min procedure with

center of gravity deffuzification.

4. Initial population: each chromosome has the same number of linguistic labels,

from two to seven labels for each input variable. For each label of the inputs, all

possible combinations are assigned to the respective rules consequents. More-

over, for each combination, two copies are added with different values in the C2
part. The first has values randomly chosen in [−0.1, 0] and the second random

values chosen in [0, 0.1].
5. Recombination: pr ← floor(pr) for C1.

If a gene g of pr in C1 is lower than 2, then Lg = 2, else if a gene g is higher than

7, then Lg = 7.

6. Mutation: pm ← floor(pm) for C1.

If a gene g of pm in C1 is lower than 2, then Lg = 2, else if a gene g is higher than

7, then Lg = 7.

The electric maintenance model has four input variables and one output variable.

The ELE dataset contains electrical maintenance data and has 1056 samples. This is

an instance in which we expect learning methods to develop large number of rules.

ELE modeling involves a large search space [1]. The MPG data concerns city-cycle

fuel consumption in miles per gallon (mpg), to be predicted in terms of one multival-

ued discrete and five continuous attributes. The MPG6 dataset has 398 samples. The

categorical data (ANA) is one of the data sets used in the book Analyzing Categor-
ical Data by Jeffrey S. Simonoff. It contains information about the decisions taken

by a supreme court. The ANA dataset concerns seven variables and 4052 samples.

Abalone age data come from physical measurements. The abalone model has eight

input variables and one output variable. The abalone dataset (ABA) contains 4177
samples. The STK data provided are daily stock prices from January 1988 through

October 1991, for ten aerospace companies. The task is to approximate the price
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Table 2 Methods considered by the computational experiments [1]

Method Type of learning

WM(3) Rule base produced by WM, 3 linguistic labels for each variable

WM(5) Rule base produced by WM, 5 labels for each variable

WM(7) Rule base produced by WM, 7 labels for each variable

FSMOGFS Gr. Lateral partition parameters, and rule base produced by WM

FSMOGFS+TUN FSMOGFS + Tuning of MF parameters and rule selection by SPEA2

FSMOGFS
e
+TUN

e
FSMOGFS+TUN including fast error estimation

of the 10th company given the prices of the rest. The STK has nine input variables

and 950 samples. The FOR dataset has 12 variables and 517 samples. The aim is to

predict the burned area of forest fires, in the northeast region of Portugal. The TRE

contains the economic data information of USA and has 15 variables input and 1049
samples. The goal is to predict 1-Month Rate. The BAS contains the salaries of the

set of Major League Baseball players and has 16 variables input and 337 samples.

The task is to approximate the salary of each player. The datasets are available at

http://sci2s.ugr.es/keel/index.php. The methods considered in [1] are summarized in

Table 2. The method of Wang and Mendel (WM) is also a reference because all PSA

and the GFS use it as a rule generation procedure during evolution. The participatory

search algorithms were run using the datasets to compare their results with the ones

produced by PSAR and results reported in the literature [1]. The processing times of

the different methods in [1] were obtained using an Intel Core 2 Quad Q9550 2.83-

GHz, 8 GB RAM. The processing times of participatory search algorithms reported

here were obtained using an Intel Core 2 Quad Q8400 2.66GHz, 4 GB RAM.

The input parameters used by participatory search algorithms in the experiments

reported in this section are: population size of 60, and maximum number of function

evaluations of 1000. Data sets were randomly split into five folds, each partition

containing 20% of the dataset. Four of these partitions are used for training and the

remaining one is used for testing. The algorithms are run six times for each data

partition using six distinct seeds.

The results show that the average mean-squared error for the test data achieved

by the fuzzy models developed by PSAR, Table 6, is lower than the average mean-

squared error of test data achieved by the FSMOGFS
e
+TUN

e
, except for ANA data.

Also, the average mean-squared error for the test data achieved by DPSA is lower

than the FSMOGFS
e
+TUN

e
. For the test data of ANA, FSMOGFS

e
+TUN

e
achieves

the lowest MSE value. Considering the test data PSAR, with WM using different

number of labels for each linguistic variable, is more accurate than when the num-

ber of linguistic labels for each linguistic variable is kept fixed, WM(3),WM(5) and

WM(7), respectively. Thus, PSAR performs better than FSMOGFS
e
+TUN

e
from

the point of view of the test data of MSE. Also, the standard deviation (SD) of test

data for PSAR and FSMOGFS
e
+TUN

e
is better than WM(3),WM(5) and WM(7).

http://sci2s.ugr.es/keel/index.php
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Table 3 Average rank of the algorithms

Algorithm Friedman rank p-value H0

WM(3) 7.3125

WM(5) 6.25

WM(7) 6

FSMOGFS
e
+TUN

e
3.75 1.38E-7 Rejected

PSAR 2.125

PSST 4

DPSA 2.3125

DPST 4.25

Table 4 Holm’s Post-Hoc for 𝜀 = 0.05.
Control algorithm: PSAR

i Algorithm z value p-value 𝜀∕i H0

7 WM(3) 4.2355 2.3E-5 0.0071 Rejected

6 WM(5) 3.368 0.0007 0.0083 Rejected

5 WM(7) 3.1639 0.0015 0.01 Rejected

4 DPST 1.735 0.08273 0.0125 Rejected

3 PSST 1.5309 0.1257 0.0166 Rejected

2 FSMOGFS
e
+TUN

e
1.3268 0.184573 0.025 Accepted

1 DPSA 0.153 0.8783 0.05 Accepted

Further analysis is pursued as suggested in [25, 26] to verify if there exist statisti-

cal differences among the performance of the algorithms. Recall that the confidence

level is 𝜀 = 0.05. Table 3 shows how PSAR and GFS are ranked. PSAR achieves the

highest rank with 1.375. Also, recall that the null hypothesis H0 is that PSAR and

GFS algorithms are equivalent, that is, H0 means that the rank of all algorithms are

equal. If the hypothesis is rejected, then we conclude that the algorithms perform

differently.

Iman-Davenport’s test suggests that there are significant differences among the

algorithms in all datasets once the null hypothesis is rejected (p-value = 1.38E−7).

Thus the Holm post-hoc test is conducted with PSAR as the control algorithm.

Table 4 shows that the Holm post-hoc test rejects the hypothesis concerning WM(3),

WM(5), WM(7), DPST and PSST, but do not reject FSMOGFS
e
+TUN

e
and DPSA.

Therefore, PSAR outperforms WM(3), WM(5), WM(7), DPST and PSST because

the rank pf PSAR is the highest and rejects the hypothesis in the Holm test. We

notice that the difference of the performance of FSMOGFS
e
+TUN

e
and DPSA is

not statistically relevant because the null hypothesis is accepted.

Table 5 highlights, that for each dataset, the average processing time of

FSMOGFS
e
+TUN

e
and PSAR in minutes and seconds. We notice the different

complexity of the solutions generated during the evolutionary process. The com-
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Table 5 Average runtime of the algorithms (minutes:seconds M:S)

Dataset FSMOGFS
e
+TUN

e
PSAR

ELE 00:42 00:45

MPG6 1:00 00:53

ANA 5:17 5:05

ABA 3:54 4:25

STK 1:31 1:12

FOR 1:07 00:40

TRE 00:46 1:02

BAS 00:58 1:01

Fig. 11 MSE performance of the algorithms versus the number of rules: MPG6 data

putational cost of the fitness evaluation depends of the number of rules and con-

ditions in rules antecedents. In the case of ANA, the PSAR needs less time than

FSMOGFS
e
+TUN

e
because the number of rules is small. On the other hand, it is

higher than 3 min in ANA and ABA because the large number of samples.

In sum, the performance of PSAR in developing fuzzy rule-based models with

actual data illustrates its potential to solve complex problems. Overall, the results

suggest that PSAR performs better than current state of the art genetic fuzzy system

approaches from the point of view of the average mean square error with test data.

Figure 11 summarizes the MSE performance of the algorithms versus the number

of rules for MPG6 data set. More importantly, participatory search algorithms are
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simpler, have high computational performance, and require few parameters to run. In

particular, PSAR is a highly competitive population-based search approach (Table 6).

7 Conclusion

Participatory search is a population-based instance of the participatory learning

paradigm. Compatibility degrees and arousal indexes account for the effect of the

population individuals during search. Recombination arises from an instance of

participatory learning formula. The participatory search algorithms are elitist and

employ compatibility and arousal information in selection, recombination and muta-

tion. Applications concerned the use of participatory search algorithms to develop

fuzzy linguistic models of actual data. The performance of the models produced by

the participatory search algorithms were evaluated and compared with a state of the

art genetic fuzzy system approach. The results suggest that the participatory search

algorithm with arithmetical-like recombination performs best.
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