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Foreword

Jose Luis Verdegay, “Curro” for his friends, has greatly influenced our academic
lives in the University of Granada, as much for his special dedication to our
Department as Director, his successful management of the research, and especially
as supervisor of our doctoral thesis.

He introduced us to the Fuzzy Sets Theory in the late 80’s, beginning of the 90’s
and its application in optimization and decision making. He taught us to be com-
mitted to our University and scientific rigor. Under his supervision, we have learned
to carry out serious research work. He has been a demanding advisor with the work
that we have developed under his supervision, but he has always motivated us to
focus on new challenges and, in such a way, we have grown scientifically and
humanly. He has taught us to work as a team and, on the other hand, he has
encouraged us to achieve scientific leadership in our academic lives.

As a result, we can say that we have got many scientific achievements and
international recognition. Today we can assure that the Department of Computer
Science and Artificial Intelligence is a reference team in our scientific community.

Special mention is made for his excellent activity in Latin America. He has been
able to connect with many researchers from different universities in countries such
as Cuba, Peru, Ecuador, etc., helping them in the development of their scientific
careers.

His dedication and recognition for his initiatives at the many institutional
positions he occupied, such as the most recent Rector’s Delegate of the University
of Granada for Information and Communication Technologies, is very well known.

He is a national and international leader in our scientific community. He has the
role of “Invited Professor” in three Cuban institutions (Instituto Superior
Politécnico “José Antonio Echeverría” from La Habana, Universidad Central
“Marta Abreu” from Las Villas and Universidad “Oscar Lucero Moya”, from
Holguín). Also, he is a fellow of the International Fuzzy Systems Association
(IFSA), he is recognized as an IEEE Senior Member, and he is a Honorary Member
of the Mathematics and Computation Academy from Cuba.

Today more than ever, our friend Curro is still working actively in our
Department and in our University.
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For us, he represents the figure of our scientific and academic father with whom
we share our scientific and academic achievements. It is always a pleasure to enjoy
a good meal and cup of wine with him in one of our favorite restaurants “Chikito”
or “Antonio Pérez”.

We want to use these brief words to thank you for everything you have done for
us and to acknowledge your laudable dedication to the Department of Computer
Science and Artificial Intelligence and the University of Granada.

Thank you very much CURRO!!!

Francisco “Paco” Herrera
Enrique Herrera-Viedma

Department of Computer Science and Artificial Intelligence
University of Granada

Spain
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Preface

Decision and optimization problems are ubiquitous in the current social and tech-
nological context. Our societies face several challenges (in health, transportation,
energy, climate, etc.) which are clearly framed either as decision or optimization
problems. Moreover, research on Soft Computing is a key aspect in paving the way
for better models and tools to solve the corresponding problems.

This commemorative book titled Soft Computing based Optimization and
Decision Models. To commemorate the 65th birthday of Professor José Luis
“Curro” Verdegay, contains 18 guest chapters addressing hot topics on soft
computing based decision and optimization models and tools. They are written by
key leading experts in the field from the USA, Brazil, UK, France, Cuba, Finland,
Italy, Spain, etc., in which the reader will find short surveys, theoretical research
and practical applications on the latest advances in the field.

The book is organized into three parts.
The first one comprises five chapters that review the main applications of Soft

Computing in different fields.
In Chapter “A Review of Soft Computing Techniques in Maritime Logistics and

Its Related Fields”, Expósito-Izquierdo et al. highlight the role and relevance of
maritime logistics and associated problems, and review the applications of soft
computing techniques in the field. Opportunities for further developments are also
explored.

J. Cadenas and M. Garrido, in Chapter “Intelligent Data Analysis, Soft
Computing and Imperfect Data”, analyze different hybridization approaches
between soft computing and intelligent data analysis, focusing on the data pre-
processing and data mining stages. They mainly focus on evaluating whether the
elements of soft computing are incorporated in the design of the method/model, or
whether they are also used to deal with imperfect information.

Chapter “Soft Computing Methods in Transport and Logistics” by J. Brito et al.
begins by providing an overview of transport and logistic problems and their
models focusing on the management of uncertainty by means of fuzzy optimization
and metaheuristics methods. Then, and given the promising results, some emerging
areas are presented and described.
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Masegosa et al. contribute with the Chapter “Applications of Soft Computing in
Intelligent Transportation Systems”. Intelligent transportation systems combine
electronic, communication and information technologies with traffic engineering to
obtain more efficient, reliable and safer transportation systems. The chapter gathers
and discusses some of the most relevant and recent advances in the application of
soft computing techniques in relevant areas of intelligent transportation systems,
namely autonomous driving, traffic state prediction, vehicle route planning and
vehicular ad hoc networks.

Finally, in Chapter “Fuzzy Cognitive Maps Based Models for Pattern
Classification: Advances and Challenges”, G. Napoles et al. focus on Fuzzy
Cognitive Maps (FCMs), a sort of recurrent neural networks that include elements
of fuzzy logic during the knowledge engineering phase. The authors observe that
many studies show how this soft computing technique (FCM) is able to model
complex and dynamic systems, but here, they explore a new approach: the use of
FCMs in solving pattern classification problems.

The second part of the book contains six contributions.
The first one is Chapter “A Proposal of On-Line Detection of New Faults and

Automatic Learning in Fault Diagnosis”, by A. Rodríguez Ramos et al. The authors
present a new approach to automatic learning for a fault diagnosis system. The
proposal includes an off-line learning stage, fuzzy clustering techniques and a
metaheuristic (differential evolution). Then a novel fault detection algorithm is
applied. This algorithm is able to determine whether an observation may constitute
a new class, probably representative of a new fault or whether it is noise. The
approach is validated using an illustrative example.

Then, two chapters deal with the portfolio selection problem. In the first one,
Chapter “Fuzzy Portfolio Selection Models for Dealing with Investor’s Preferences”,
C. Calvo et al. recall their previous works and propose a fuzzy model for dealing with
the vagueness of investor preferences on the expected return and the assumed risk,
and then consider several modifications to include additional constraints and goals. In
the second one, Chapter “On Fuzzy Convex Optimization to Portfolio Selection
Problem”, R. Coelho departs from the fact that the portfolio selection problems can be
classified as convex programming problems. Then, he presents a fuzzy set based
method that solves a class of convex programming problems with vagueness costs in
the objective functions and/or order relation in the set of constraints. The solution
approach transforms a convex programming problem under fuzzy environment into a
parametric convex multi-objective programming problem. The method is applied to a
portfolio selection problem using the data of some Brazilian securities.

C. Carlsson, in Chapter “Digital Coaching for Real Options Support”, claims
that classical management science is making the transition to analytics and that
there is a growing interest in replacing the classical net present value (NPV) with
real options theory, especially for strategic issues and uncertain, dynamic envi-
ronments. Both factors motivate the use of soft computing. As real options theory
requires rather advanced levels of analytics, the author suggests that digital
coaching is a way to guide and support users in giving them better chances for
effective and productive use of real options methods. A real-world example on the

viii Preface



development and use of fuzzy real options models for the case of closing (or not
closing or closing later) an old paper mill in the UK is shown.

Chapter “An Analysis of Decision Criteria for the Selection of Military Training
Aircrafts”, by J. Sanchez Lozano et al. also fits in the context of decision making. The
authors describe the process by which the relevance of technical criteria in determining
the quality of a military training aircraft is obtained. Experts provided the criteria
information and both qualitative and quantitative criteria are considered. A fuzzy AHP
(Analytic Hierarchy Process) methodology is proposed to extract the knowledge from
the group of experts and finally obtain a unique set of weights for the criteria.

Y. Liu and F. Gomide, in Chapter “Participatory Search in Evolutionary Fuzzy
Modeling”, focus on one of the key elements of soft computing, namely meta-
heuristics. They introduce the so-called participatory search, a class of
population-based search algorithms constructed upon the participatory learning
paradigm. To illustrate the potential of the proposal, they resort to the problem of
obtaining fuzzy rule-based models from actual data and provide comparisons with a
state-of-the-art genetic fuzzy system.

The third part contains seven chapters exploring theoretical aspects of soft
computing.

With the Chapter titled “But, What is It Actually a Fuzzy Set?”, E. Trillas states
that the idea of a fuzzy set is not yet clear enough and discusses the concept of fuzzy
set as a quantity in whatever universe of discourse, and its possible use in the
context of ‘Computing with Words’.

D. Dubois and H. Prade contributed with the Chapter “Gradual Numbers and
Fuzzy Solutions to Fuzzy Optimization Problems”. The authors start with the idea
of fuzzy elements in a fuzzy set, that is, entities that assign elements to membership
values, in contrast with fuzzy sets that assign membership values to elements. Then,
establishing a clear connection with the work of J.L. Verdegay, they observe that
the fuzzy solution to a fuzzy optimization problem is a very early example of a
fuzzy element in (or a gradual subset of) the fuzzy constraint set.

R. Yager, in Chapter “Using Fuzzy Measures to Construct Multi-criteria Decision
Functions” explores the formulation of multi-criteria decision functions based on the
use of a measure over the space of criteria, where the relationship among the criteria
is expressed using a fuzzy measure. Such a fuzzy measure is used within the Choquet
integral to construct decision functions and several specific cases are outlined.

Chapter “A Modal Account of Preference in a Fuzzy Setting”, by F. Esteva et al.
considers the problem of extending fuzzy preference relations on a set, to fuzzy
preferences on subsets, and characterize different possibilities. They then propose
several two-tiered graded modal logics to reason about the corresponding different
notions of fuzzy preferences.

R. Fuller and I.Á. Harmati, in Chapter “On Possibilistic Dependencies: A Short
Survey of Recent Developments”, present a survey of the latest work on the
extensions and developments of the notions of possibilistic mean value and vari-
ance of fuzzy numbers, possibilistic covariance, correlation ratio and correlation
coefficient and the informational coefficient of correlation.

In Chapter “Penalty Function in Optimization Problems: A Review of Recent
Developments”, H. Bustince et al. highlight the role and relevance of penalty
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functions as a tool for information fusion. They review the ideas of penalty and
penalty-based functions and discuss how such notions can be extended to deal with
data in Cartesian products of lattices.

Finally, S. Bortot et al. in Chapter “The Single Parameter Family of Gini
Bonferroni Welfare Functions and the Binomial Decomposition, Transfer
Sensitivity and Positional Transfer Sensitivity” analyze the so-called generalized
Gini welfare functions and consider their binomial decomposition. They introduce
measures of transfer sensitivity and positional transfer sensitivity and illustrate the
behaviour of the binomial welfare function with respect to these measures.

As Editors, we should highlight that it was both a challenge and a great pleasure
for us in compiling this book.

On the one hand, it was a challenge because Prof. Verdegay has many friends
and colleagues worldwide and we needed to select some of them as potential
collaborators. The task was difficult but, in the end, we have an excellent set of
topics written by top researchers, who collaborate or have collaborated with Curro.
Here we thank the researchers who immediately accepted to join this editorial
project. Readers of this book will appreciate these high-quality contributions.

In addition, we thank Profs. Enrique Herrera and Francisco Herrera for writing
the foreword of the book.

On the other hand, it was a pleasure because we have known Curro since a long
time ago. We started to work with him in 1998 (D. Pelta) and 2002 (C. Cruz) when
we began our Ph.D. studies under his direction. From that time, we have had the
opportunity to share many discussions, talks and personal situations with Curro that
make us consider him a true friend. During these years, we have come to know all of
Curro’s facets. His scientific and academic merits are very well known, but we
would like to mention here also his kindness, availability and true support for the
academics and friends mainly from developing countries (especially Latin America).
Since his work in the University Government, we have observed the huge number of
visits he receives at his office asking for guidance or suggestions. His experience as a
researcher, professor and manager (in several positions at the University
Government) is invaluable and we are lucky to have him available every day.

Thank you Curro!

Acknowledgements D. Pelta and C. Cruz acknowledge the support of projects TIN2014-55024-P
(Spanish Ministry of Economy and Competitiveness) and P11-TIC-8001 (Consejería de Economía,
Innovación y Ciencia, Junta de Andalucía). Both projects include FEDER funds from the European
Union.

Granada, Spain David A. Pelta
May, 2017 Carlos Cruz Corona
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A Review of Soft Computing Techniques
in Maritime Logistics and Its Related Fields

Christopher Expósito-Izquierdo, Belén Melián-Batista
and J. Marcos Moreno-Vega

Abstract The incessant increase in the world seaborne trade over the last few

decades has encouraged maritime logistics has become a very attractive area of study

for applying the general frameworks of soft computing. In this environment, there

is a significant lack of efficient approaches aimed at obtaining exact solutions of a

wide variety of optimization problems arisen in this field and which are classified

as hard from the perspective of the complexity theory. These optimization problems

demand increasingly new computational approaches able to report inexact solutions

by exploiting extensively uncertainty, tolerance for imprecision, and partial truth to

achieve tractability, among others. In the chapter at hand, we provide a review of

the most highlighted soft computing techniques implemented in maritime logistics

and its related fields and identify some opportunities to go further into depth on

knowledge.

Keywords Optimization ⋅ Maritime container terminal ⋅ Logistics

1 Introduction

Over the last few decades, maritime container terminals have become outstand-

ing infrastructures in global supply chains [35]. They are usually situated within

the boundaries of ports located in strategic regions with the aim of acting as eco-

nomic engines. The main purpose of these infrastructures is to carry out the efficient

exchange of freights among heterogeneous means of transportation. Traditionally,

these means have different operational and technical characteristics. Firstly, we can

C. Expósito-Izquierdo (✉) ⋅ B. Melián-Batista ⋅ J.M. Moreno-Vega

Universidad de La Laguna, Santa Cruz de Tenerife, Spain

e-mail: cexposit@ull.edu.es

B. Melián-Batista

e-mail: mbmelian@ull.edu.es

J.M. Moreno-Vega

e-mail: jmmoreno@ull.edu.es

© Springer International Publishing AG 2018

D.A. Pelta and C. Cruz Corona (eds.), Soft Computing Based Optimization
and Decision Models, Studies in Fuzziness and Soft Computing 360,

DOI 10.1007/978-3-319-64286-4_1

1



2 C. Expósito-Izquierdo et al.

find container vessels, which are aimed at moving containers among distant terminals

along a predefined maritime route within container transportation networks. Also,

land transportation means are brought together in a conventional maritime container

terminal. In most of the cases, trucks and trains arrive at a maritime container ter-

minal with the aim of picking-up and deliverying containers.

Broadly speaking, the freights are fundamentally moved along global supply

chains through the use of standard-sized metal boxes: containers. The appearence

of the container as international vehicle for the freights has constituted a true indus-

trial revolution due to the fact that it encourages to reduce transportation costs by

exploiting the benefits provided by the economies of scale, prevents cargo dam-

ages, and minimizes shipping costs. They are designed in accordance with predefined

dimensions with the aim of enabling their exchange within multi-modal transporta-

tion networks in which at least vessels, trucks, and trains are brought together. It is

worth mentioning that the standard capacity unit of measure for containers is the

Twenty-foot Equivalent Unit, which measures about 6 m long.

The relevance of maritime container terminals has progressively increased from

the time of the introduction of the containerization in the international trade trough

the present time. Nowadays, maritime container terminals are facing with the increas-

ing growth in the world merchandise trade and seaborne shipments. It must be

pointed out that the seaborne shipments and the merchandise trade have increased in

tandem over the last years. As indicative data, more than 10 billion tons of freights

have been moved around the world by shipping business during 2015, according to

the Review of Maritime Transport 2016 published by the United Nations Conference

on Trade And Development (UNCTAD).
1

This constitutes a growth of 2.5% in the

world seaborne trade. However, projections indicate that this volume of containers

is going to be largely exceeded in the course of the coming years after the financial

and economic crisis.

As previously indicated, in order to manage such a great volume of containers,

large maritime container terminals are required. The maritime container terminals

are multi-modal logistic interfaces dedicated to connect maritime and hinterland

means of transportation. In this context, the layout of a conventional maritime con-

tainer terminal consists of the following functional areas [40]:

∙ Sea-side. It is the part of the terminal in which the incoming container vessels are

berthed. The main goal of this functional area is to carry out the transshipment

of containers included into the corresponding stowage plan efficiently. For this

purpose, a set of quay cranes available at the terminal is deployed. These cranes

are aimed at unloading the containers whose destination is the terminal in which

they are available. At the same time, they are also dedicated to load containers

into the incoming vessels to be transported to other maritime container terminals.

The book [71] provides a rigurous analysis of the main logistic operations in the

sea-side.

1
http://unctad.org.

http://unctad.org
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Sea-side Yard Land-side

Fig. 1 Functional areas of a conventional maritime container terminal

∙ Yard. It is a large open-air surface aimed at storing containers temporarely until

their later retrieval. The containers are distributed among homogeneous blocks,

which are three-dimensional storages. Each block is divided into a set of parallel

bays, which are composed of a set of contiguous stacks with a maximum stacking

limit [9].

∙ Land-side. It is the interface dedicated to exchange freights between the maritime

container terminal and the hinterland means of transportation. With this goal in

mind, a set of external gates are available to monitor and control freights entering

and leaving the infrastructure [10].

These functional areas of a maritime container terminal are illustrated from left to

right in Fig. 1.

The technological advancement has given rise to the maritime container termi-

nals have become complex infrastructures to manage due to the fact that its operat-

ing efficiency must be achieved through improved productivity and performance of

analysts and transportation agents. However, the large and diverse number of logis-

tic activities brought together is a major obstacle to the effective decision-making

processes. In most of the cases, the logistic processes in this environment belong

to the N P-hard class of problems. Furthermore, practitioners must deal with the

imprecision and uncertainty regarding the arrival and retrieval of containers, chang-

ing information, etc. The existence of uncertainty, imprecision, and partial truth in

logistic processes must be explicitly taken into account as much as possible. Unfor-

tunately, the narrow scope in practice of hard computing approaches to handle these

issues in an appropriate form encourages the study and implementation of soft com-

puting proposals.

The present chapter is aimed at reviewing the main logistic processes arisen in

the context of maritime container terminals and its related fields. Specifically, we

present and illustrate the most outstanding optimization problems studied by the sci-

entific community over the last few decades and discuss the main findings associated

with the existing research of soft computing methodologies. In this regard, our main
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objective is to provide a general overview of the most relevant solving approaches

related to the logistic processes from the perspective of soft computing and identify

some opportunities to go further into depth on knowledge.

The remainder of this chapter is organized as follows. Firstly, Sect. 2 describes the

main logistic processes associated with the movement of freights at maritime con-

tainer terminals. Afterwards, Sect. 3 overviews the major contributions made by the

soft computing to maritime logistics. Finally, this chapter ends by a brief summary

and indicates several promising lines for further research in maritime logistics and

its related fields.

2 Logistic Processes

In spite of the fact that all the means of transportation can be present, maritime con-

tainer terminals play a relevant role within global supply chains due to the fact that

they are able to connect the maritime and hinterland means of transportation effi-

ciently. Their primary goal is to enable the exchange of freights between producers

and consumers with no repacking. The global supply chains in which the impli-

cated maritime container terminals are inherently complex to manage due to the

large amount of containers, technical characteristics of the loading and unloading

equipment, existing staff, and legal aspects, among others.

From a general perspective, a global supply chain is composed of multiple flows of

standardized containers in which the freights are packaged into. Before loaded with

freights, the containers are manufactured by some metal factory from weathering

steel, powder coated a color, and with the dimensions imposed by the requirements

of the carriers. The empty containers are temporarily stored on a depot until the pro-

ducers of the freights to transport request them. Once required, an empty container is

transported by road to the producer of the freights, or some infrastructure dedicated

to this goal, to move toward their consumers. The containers stuffed with the cargo

to transport are moved to some maritime container terminal to be shipped overseas

by some container vessel. In the simplest case, one truck moves each container to

the terminal. However, multiple hinterland transportation means and container ter-

minals can be involved in this process. The containers are stored on the yard of the

terminal until the target vessels that are actually at the terminal are ready to load

them onto. Similarly as in the hinterland case, the oversea transportation can involve

multiple vessel journeys. Some minor container terminals, termed hubs, are usually

used as intermediate storage infrastructures when moving containers over long dis-

tances. The target maritime container terminal is considered as the departure point of

the hinterland transportation toward the customers of the freights. Lastly, the freights

are stripped and the empty containers are stored again in a depot until another trans-

portation is requested.
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The efficient exchange of freights between heterogeneous means of transportation

in a maritime container terminal depends on having a suitable integrated planning,

coordination, execution, and control of container flows. In this scenario, the source

and destination of each container define its type. Specifically, an import container

is that unloaded from an incoming container vessel or delivered by a truck or train

and must be stored on the yard of the terminal. Similarly, an export container is that

stored on the yard of the terminal and must be included into the stowage plan of some

incoming container vessel or loaded onto a truck or train. Lastly, a transshipment

container is that unloaded from an incoming container vessel, stored on a block of

yard, and transferred to another incoming container vessel to be moved toward its

destination port.

The maritime container terminals are large engines for the economic develop-

ment because they connect production sources and end consumers. In this regard,

a maritime container terminal is responsible for serving efficiently the means of

transportation brought together. However, the high complexity associated with the

management of the container flows arisen in these infrastructures poses a continu-

ing challenge that has to be recognised and addressed by practitioners. In particular,

multitude of logistic planning problems known as N P-hard are identified in a con-

ventional maritime container terminal.

Several general classifications have been already proposed in the scientific liter-

ature to organize the logistic planning problems according to the functional area in

which they take place, the means of transportation involved in them, or the planning

horizon considered, among others. In this chapter, we use the classification of the

logistic problems proposed in [43]. In this case, the logistic problems are split into

four categories on the basis of the functional areas. These categories are termed ship
to shore, transfer, storage, and delivery. The most highlighted optimization problems

included into the previous categories are summarized in the following:

∙ Ship to shore. It involves those optimization problems associated with the load-

ing and unloading operations of containers included into the stowage plan of the

incoming vessels:

– Ship routing [54]. It seeks to determine the best journeys of a fleet of container

vessel to exchange containers among a given set of maritime container termi-

nals.

– Stowage planning [74]. Its objective is to identify the positions assigned to the

containers to carry by a vessel while taking into account the features of its ship-

ping route.

– Berth allocation [7]. It seeks to determine the berthing position and berthing

time of the incoming container vessels arrived to the maritime container termi-

nal to minimize their service times.

– Quay crane assignment [72]. This optimization problem is aimed at determining

the subset of quay cranes to assign to the incoming container vessels over a given

planning horizon to provide the best possible service.
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– Quay crane scheduling [70]. Its goal is to obtain a schedule of loading and

unloading operations of containers to perform by the quay cranes assigned to a

particular container vessel in such a way that its waiting time is minimized.

∙ Storage. It involves those optimization problems arisen from the movement and

warehousing of containers on the yard and its related facilities to be ready for

loading onto the incoming means of transportation:

– Yard crane scheduling [36]. It is aimed at determining an efficient schedule

of the storage, retrieval, and relocation of containers around the yard of the

terminal.

– Container storage [12]. It is a family of optimization problems aimed at max-

imizing the performance of the stacking cranes on the yard when storing and

retriving containers.

∙ Transfer and delivery. It comprises those optimization problems arisen from the

movement of containers between the functional areas of the terminal:

– Vehicle dispatching [3]. It is aimed at managing the internal delivery vehicles

of the terminal to maximize their performance.

– Gate operations planning [17]. It seeks to optimize the access of the trucks and

trains to the terminal to fulfill access and capacity restrictions.

In the remainder of this chapter, the focus is put on the application of soft com-

puting methodologies in maritime logistics and its related fields.

3 Soft Computing in Maritime Logistics and Related Fields

Most of the authors who have addressed planning problems in maritime container

terminals and its related fields over the last decades have assumed a very optimistic

standpoint, in which uncertainty is completely ruled out. However, despite of the

fact that the scientific literature considers the planning problems arisen in maritime

container terminals as completely static in most of the cases, multitude of uncer-

tainty sources are present in real-life scenarios. In particular, several general types

of uncertainty sources can be distinguished. The former is mainly composed of that

uncertainty derived from those elements in which an accident could happen in the

infrastructure, information resources, communication systems, machinery, staff, or

environment, among others. This is the case of a traffic accident in which a stacking

crane is directly involved. Also, a second type of uncertainty source is composed of

those elements that give rise to a change of the freight requests. Illustrative examples

of this type of uncertainty are the potential wide-ranging fluctuations in the arrival or

departure of container vessels, late retrieval of containers by external trucks, among

others.
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The existence of such a complex and dynamic environment within global sup-

ply chains forces terminal managers to be provided with efficient tools to manage it.

The reason is found in that considering uncertainties in the scenario appropriately

allows to mitigate the impact of potential disruptions, as well as the infeasibility of

the working operations over a given planning horizon. In this regard, pro-active and

reactive approaches can be considered. Obtaining robust solutions of the planning

problems under analysis is the main goal of pro-active approaches, whereas reactive

approaches are aimed at recovering the complete infrastructure when some unfore-

seen incident has already happened. A classic example of pro-active approaches is

the insertion of slack time when scheduling container requests in such a way that

the arrival of new requests can be easily assumed by the terminal with the lowest

possible impact on the overall service quality. The major drawback associated with

these approaches is the time that is not spent in effective work due to the existence

of slack time in the schedules.

Since the introduction of the worldwide accepted definition of soft computing by

Zadeh [101] in 1994, the use of soft computing methodologies has consolidated as

a relevant branch of science to be applied in maritime logistics and its related fields.

In this regard, soft computing has gained in importance due to the fact that it has

the ability to tackle optimization problems classified as complex according to the

complexity theory and in which partial truth, imprecision, and uncertainty appear

and with the aim of achieving low cost solutions, tractability, and truth. For this

reason, successful soft computing applications have attracted increased attention by

the research and practitioner communities over the last decades. However, the large

volume of research published so far encourages to make available classifications and

reviews of the most highlighted works to draw the main contributions and identify

promising lines for further research.

According to the previous discussion, in the remainder of this section we review

the main applications of soft computing methodologies in maritime container ter-

minals and its related fields. This review is organized on the basis of the main

components of the soft computing, described in [93]. These components are briefly

described in the following:

∙ Probabilistic models. It handles stochastic uncertainty. That is, the uncertainty

derived from the potential occurrence of a particular event is quantified by a certain

degree of probability. The most extended methods in this field are based on the

Bayesian calculus, which allows to consider probability statements.

∙ Fuzzy logic. It is a mathematical tool that allows to capture the tolerance to errors

and is aimed at dealing with approximate reasoning in which fuzzy truth-values

are used as adapter elements applied to fuzzy statements.

∙ Artificial neural networks. They are systems integrated by multiple simple process-

ing components that work in parallel with the goal of exhibiting some brain-like

behavior.

∙ Metaheuristic techniques. They are computational techniques designed to provide

approximate solutions of a given optimization problem and which largely fulfill

the requirements of the decision maker.
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3.1 Approximate Reasoning

3.1.1 Probabilistic Models

The probabilistic models result from the need of tackling jointly vagueness and prob-

ability associated with real-life problems. In the context of maritime container ter-

minals and its related fields, its is usual to address planning problems in which it is

required to reason in presence of uncertain information under partial knowledge. Ter-

minal manager demand to count on intelligent tools to support in the identification

of those unforeseen events that could happen and to assess their potential impact

and consequences. The probabilistic models are essential ingredients in effective

approaches aimed at minimizing their occurrence.

The resilience of a maritime container terminal is quantified through a Bayesian

network in [45]. As discussed by the authors, Bayesian networks are able to draw

relationships among different variables involved in the performance of the whole

infrastructure. Also, the container operator efficiency is assessed from the perspec-

tive of soft computing in [99]. In this case, the authors present an empirical model

that measures efficiency changes and which is estimated by means of a Bayesian

approach supported by a Markov chain Monte Carlo simulation to make inference

of the unknown parameters.

Another representative example of a probabilistic model in the scientific literature

applied to maritime logistics is presented in [1]. This paper introduces a model to

apply a failure mode and effects analysis when evaluating the performance of safety

measures integrated into the operational system of a container terminal. Specifically,

this model combines a fuzzy rule-based Bayesian network with evidential reasoning.

Their goals are to describe input failure information to identify hazardous events

and to aggregate these events while enabling dynamic risk-based decision support,

respectively. Furthermore, the container throughput forecasting in maritime termi-

nals has been a topic which has traditionally attracted the attention of the research

community. In this regard, [98] discusses the applicability of three hybrid approaches

based on least squares support vector regression model for this goal. The proposed

approaches are compared to each other and to benchmark proposals. The computa-

tional experiments indicate clearly that seasonal decomposition of the series is an

effective approach to obtain a good container throughput forecast.

Moreover, a lateness probability of the containers when moving around the differ-

ent functional areas of a terminal is studied in [88]. In this case, the authors propose

a Bayesian network designed to exploit the information recorded by the information

processing systems of the terminal in the form of event logs. This network is built

by considering the causal execution and co-occurrence between events to predict

lateness probabilities.
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3.1.2 Fuzzy Logic

Fuzzy logic is a mathematical formal multi-valued logic concept which is able to

tackle imprecision, uncertainty, lack of information, and partial truth by imitating

complex perception processes. This analytical tool has definitely played a leading

role in maritime logistics over the last years when addressing planning problems

for which hard computing methodologies have not proved successful. However, the

implementation of approaches based upon fuzzy logic has been particularly remark-

able when controlling driving-related tasks associated with technical machinery.

Some examples are the guidance system and steering control of internal delivery

vehicles, the real-time illumination stability system of stacking cranes, among oth-

ers. Input data are expressed by means of linguistic variables in control applications,

and taken together with if-then statements are used to formulate the conditional cases

and eventually to produce representations of human knowledge. In addition, the opti-

mization criteria of the planning problems arisen in maritime logistics are usually

difficult to be defined accurately due to the fact that there is a certain inherent degree

of imprecision in the way the preferences, constraints, and priorities of stakeholders

are expressed.

One of the applications of fuzzy logic with the highest impact on maritime logis-

tics is related to the control of quay and gantry cranes. The larger the cranes, the

greater the needs of controlling them while satisfying strict specifications about

payload position and swing angles, among others. A fuzzy logic-based controller

is presented in [86] to avoid payload oscillations. Other examples of fuzzy logic in

maritime logistics are related to the competitiveness of the terminals. The compet-

itiveness of any maritime container terminal is highly influenced by its capability

to attract shipping lines and retain those it is serving so far. In this regard, a large

amount of factors are behind the choice of a port by a maritime operator that must be

appropriately quantified. Some of these are the connectivity, efficiency, port charges,

and range of port services, among others. The paper [100] presents a fuzzy evidential

reasoning method to choice ports under uncertain environments from the perspec-

tive of shipping lines. The evidential reasoning is here used to values associated with

the factors involved in the port alternatives. In fact, objective and subjective data are

computed as fuzzy grades through linguistic terms based upon certain degrees of

belief. These are later combined by using evidential reasoning to obtain the assess-

ment of the alternatives. The computational experiments carried out in the paper

under analysis indicate that the proposal is able to ease the exhaustive assessment of

ports. The work [32] introduces fuzzy mathematical models aimed at determining

the berthing time of incoming container vessels in a terminal and scheduling their

transshipment operations. The arrival time of the containers and the processing time

of the transhipment operations are considered as fuzzy. Another interesting appli-

cation of fuzzy logic in maritime logistics is discussed in [39]. The authors present

a probabilistic-fuzzy method that allows to determine quantitatively the probability

of dangerous situation occurrence of a vessel manoeuvring in waterways by taking

into account scenarios in which navigational safety is threatened. Furthermore, [86]

presents a fuzzy logic-based robust feedback anti-sway control system which can be
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used either with or without a sensor of sway angle of a payload. As described by

the authors, unlike other fuzzy approaches based on linguistic rule-based strategies

and tuning of membership functions, the cited paper considers an interval analysis of

closed-loop control system characteristic polynomial coefficients to solve the fuzzy

interpolation control scheme design.

3.2 Functional Approximation and Optimization Methods

3.2.1 Artificial Neural Networks

Since the introduction of the seminal computational model inspired by the human

brain in 1943 [69], the study of artificial neural networks has consolidated itself as an

essential element in the field of soft computing. Artificial neural networks are known

to be highly efficient to simulate the learning processes of human brains by miming

the biological neurons in a nervous system. The group of interconnected artificial

neurons in a neural network is in this case considered as a combination of simple

processing elements that allows to provide advanced reasoning.

The application of artificial neural networks in the context of maritime container

terminals has expanded dramatically in recent years due to their ability for reporting

approximation to analytical functions, describing the behavior of carriers, contain-

ers, staff, among others, as well as predicting recurring phenomena derived from time

series. This ability is especially interesting in maritime logistics because mathemat-

ical descriptions of the planning problems are not always available to be addressed

and complex relations among variables are usually present. Instead, a large amount

of data is usually reported by the stakeholders, from which neural networks can learn

the underlying model and the interdependencies among parameters to support deci-

sion making processes.

Artificial neural networks have been successfully applied in maritime logistics

and its related fields in manifold ways. Some of these are container demand fore-

casting, freight control, assessment of transportation parameters, maintenance of

logistic infrastructures, among others. As an example, an artificial neural network

model is proposed in [66] to determine the wave agitation in Spanish ports in order

to provide a suitable anchorage for the incoming vessels. In particular, multilayer

feed-forward back-propagation neural networks are considered due to the general-

ization capabilities to estimate wave heights. The Levenberg-Marquardt algorithm

is here used to train the network, whereas a Bayesian regularisation is integrated

to avoid over-fitting. The proposed model uses time series of deep-water wave buoy

observations alone to obtain new knowledge and overcome the drawbacks associated

with previous physical and numerical models used traditionally for this purpose. The

computational experiments demonstrate that, unlike classic approaches, the proposal

is more simple, does not require a large amount of data, and has a more efficient per-

formance. Another application of artificial neural network to the reliability of coastal

structures is described in [47]. In this case the authors propose a model based on an

artificial neural network to estimate the armor damage sustained by a rubble-mound
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breakwater under wave action. A similar approach is presented in [50]. Specifically,

a combination of artificial neural network and a Monte Carlo simulation is used to

estimate damage of breakwater armor blocks. Other interesting examples of artificial

neural network in wind direction forecasting [89], wave forecasting [25], long-wave

prediction inside the port [67], or port tranquility [65], have been published in the

scientific literature.

3.2.2 Metaheuristic Techniques

Since the term metaheuristic was coined by Fred Glover in 1986, a wide variety

of definitions have been provided in the scientific literature. The paper [87] defines

“a metaheuristic as a high-level problem-independent algorithmic framework that

provides a set of guidelines or strategies to develop heuristic optimization algo-

rithms. The term is also used to refer to a problem-specific implementation of a

heuristic optimization algorithm according to the guidelines expressed in such a

framework.”

Most of the optimization problems that take place in maritime container termi-

nals belong to the N P-hard class of problems. Even in small-size scenarios of

some of these optimization problems, efficient exact approaches do not exist. There-

fore, metaheuristic algorithms provide high-quality solutions within short computa-

tional times. Taking into account the classification of these problems given in [43]

and described in Sect. 2, in the following, the application of metaheuristics to some

of the most highlighted optimization problems within the categories Ship-to-shore
and Storage are briefly summarized. Genetic Algorithms (GA) [44], GRASP [33],

Tabu Search (TS) [38], Variable Neighborhood Search (VNS) [73], Large Neighbor-

hood Search (LNS) [85], Adaptive Large Neighborhood Search (ALNS) [83], and

Simulated Annealing (SA) [53] are among the most effective algorithms to solve the

considered optimization problems. However, due to the very large volume of publica-

tions, the following review is limited to indicate those publications appeared over the

last years and considered as representative in the view of the authors of this chapter.

∙ Ship-to-shore.

– Ship routing and scheduling.

The goal of this class of optimization problems is to determine the best journeys

of a fleet of container vessel to exchange containers among a given set of mar-

itime container terminals. Depending on the operation mode, three kinds of ship

routing problems can be distinguished: liner, industrial, and tramp shipping.

Liners operate according to an agreed itinerary and schedule similar to a bus

line. In industrial shipping, the cargo owner or shipper controls the ships. Indus-

trial operators strive to minimize the costs of shipping their cargoes. Tramp

fleets engage in contracts to transport specified (usually large) volumes of cargo

between two ports within a period of time. They engage in contracts to make

one or several trips, each trip having specified origin and destination ports

and time windows for picking and delivering the cargo. Tramp is usually the
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operation mode selected to transport liquid and dry commodities, or cargo

involving a large number of units.

The fast growth of the containership fleet has resulted in a large number of

research papers about liner network design and related topics published in the

last decades. Recent reviews about ship routing problems can be found in works

[19, 20], where literature contributions are classified. Most papers about ship

routing and scheduling problems focus on the development of Mixed Integer

Programming (MIP) models or heuristic/metaheuristic methods to solve them.

Given the fact that the works by Christiansen et al. provide a comprehensive

survey about ship routing and scheduling problems, this review is limited to

some of the most recent literature works that present metaheuristic approaches

for solving this kind of problems.

The work [6] proposes an Adaptive Large Neighborhood Search heuristic for a

ship routing and scheduling problem with voyage separation requirements. [75]

proposes a Genetic Algorithm with Local Search to solve a ship routing prob-

lem. [84] combines a Simulated Annealing with a Genetic Algorithm, and [54]

uses a Tabu Search algorithm which allows infeasible solutions with respect to

ship capacity and time. Other works in the literature introduce specific concepts

in ship routing problems. [82] proposes a GRASP and discusses aspects related

to data gathering and updating, which are particularly difficult in the context

of ship routing. Lastly, [55] considers a cost function that depends on the wind

speed and its direction, as well as on the wave height and its direction, and solves

the problem using a Simulated Annealing algorithm.

– Stowage planning. The goal of this class of problems is to determine the position

to be occupied by each container into a vessel taking into account the shipping

route of that vessel. Notice that once a vessel arrives at a port, shifts are not

desired. Shifts are the movements that correspond to the temporarily unloading

and re-loading of containers in order to retrieve other containers that have to be

unloaded at that port. In addition, any stowage plan has to lead to a seaworthy

vessel, whose static stability is correct and all stress forces are within some

limits as stated in [18]. [78] states that there are two main approaches to solve the

ship stowage planning problem (SSPP): single-phase approaches, which tackle

the SPP as a whole, and two-phases approaches, which consider a hierarchical

decomposition of the problem - master planning, that assigns the containers to

locations of the vessel, and slot planning, that determines the exact position of

a container within a location.

Since the publication of the paper [5] in 1993, in which exact and heuristic solu-

tions were proposed for solving the SSPP in order to minimize the number of

shiftings without considering stability constraints, many variants of the stowage

planning problem using either a single-phase or a two-phase approach have been

solved by means of metaheuristics. Genetic algorithms, GRASP, Tabu Search,

and Simulated Annealing are among the most effective algorithms for the SSPP.

The work [102] presents a Genetic Algorithm based on NSGA−III combined

with a local search component to solve a multiobjective SSPP with the goals

of optimizing the ship stability and the number of re-handles. [103] presents
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a Genetic Algorithm to tackle the SSPP for 40-feet outbound containers. [80]

presents a GRASP algorithm to solve a generalization of the Slot Planning Prob-

lem, in which the explicit handling of rolled out containers and separations rules

for dangerous cargo are introduced. [4] proposes the use of the hybrid method

Pareto Clustering Search, which combines metaheuristics based on Simulated

Annealing and local searches to solve the 3D Container ship Loading Plan Prob-

lem. [74] proposes a two-step heuristic for solving the SSPP, which are both

based on the Tabu Search metaheuristic. [23] proposes a combination of meta-

heuristics, including Genetic Algorithm and Simulated Annealing, to solve the

3D container ship loading planning problem. [2] presents a three-step heuris-

tic for the Master Bay Plan Problem, making use of tabu search to look for the

global ship stability of the overall stowage plan. [49] proposes a Genetic Algo-

rithm to solve the simultaneous stowage and load planning for a container ship

with container rehandle in yard stacks with two objectives, ship stability and the

minimum number of shifts. [26] also proposes a Genetic Algorithm for solving

the SSPP with the goal of minimizing the number of container movements. The

work [97] also presents a Tabu Search algorithm to solve the SSPP.

– Berth allocation and Quay crane assignment.
Given a berth layout and a set of vessels to be served, the aim of the Berth

Allocation Problem (BAP) is to determine a berthing time and a berthing posi-

tion for each vessel in order to optimize a given objective function. The sci-

entific literature is replete with variants of this problem, which depend mainly

on the berth layout (i.e., discrete, continuous, and hybrid), the arrival times of

the vessels (i.e., static and dynamic) and the optimization level (i.e., strategic,

tactical, and operational, which is the most extended in the literature). Taking

into account the berth layout, a discrete quay is divided into several berths, in

which a single vessel at a time can be served. In a continuous quay, the vessels

can be assigned to any position as far as no space-time overlaps appear. In the

hybrid case, the quay is also divided into berths, but the vessels can share them.

Moreover, depending on the arrival times of the vessels, in the static case, all

the vessels are in port before the planning horizon, while in the dynamic case,

they can arrive at any time during the planning horizon. Finally, the optimiza-

tion level can be either operational, when it covers decisions ranging from one

up to several days, tactical, when the decisions cover operations ranging from

one week up to several months, and strategic, when the decisions range from

one up to some years. In addition, several objective functions have been con-

sidered in the literature. The main goal is to optimize the delays and waiting

times of container vessels at the operational level. At this level, some of the

goals are to optimize the transshipment flows among vessels, cycling visiting

of the vessels, fulfillment of contracts among shipping companies and terminal

managers, route design, etc. At the strategic level, the problem seeks to estab-

lish specific and dedicated berths, strategic cooperation agreements between

terminal and shipping companies, etc. Note that the Quay Crane Assignment

Problem, whose aim is to assign a set of quay cranes to a vessel to perform

the loading and unloading operations, is usually solved together with the Berth
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Allocation Problem. Therefore, it is integrated in the variants that are related in

the literature.

If attention is focused on journal papers, it can be checked that, since the pub-

lication of the paper [48], less than three papers per year related to variants

of berth allocation were published until 2006. This number rapidly increased

to reach more than fifteen papers published in 2016. Such as it is reported in

the survey [8], a large number of meta-heuristics have been effective to solve

this kind of optimization problem. Genetic Algorithms, Tabu Search, Simulated

Annealing, and GRASP are among the most widely used techniques.

Given the fact that the work [8] provides a comprehensive review about BAP,

the following is limited to cite some of the papers by the authors of this book

chapter related to different variants of BAP. The work [56] proposes a coopera-

tive search to solve the discrete dynamic BAP. In the work [59], the authors con-

sider an aditional constraint that appear in real situations, water depth and tidal

constraints. It is proposed a POPMUSIC approach (Partial Optimization Meta-

heuristic Under Special Intensification Conditions) that includes the resolution

of an appropriate mathematical programming formulation as an embedded pro-

cedure. The paper [57] proposes a Biased Random Key Genetic Algorithm for

solving the tactical Berth Allocation Problem. Finally, the work [58] presents a

hybrid Tabu Search—Path Relinking to solve the dynamic BAP.

– Quay crane scheduling.

It is an optimization problem arisen to deal with the transshipment operations

associated with each incoming container vessel arrived at a maritime container

terminal. In particular, the stowage plan of a vessel indicates the individual con-

tainers to be loaded and unloaded onto/from it after its berthing. These con-

tainers must be handled by a subset of the quay cranes available at the ter-

minal. Because crane operations are highly expensive, terminal practitioners

must determine a suitable schedule in order to deliver high quality service while

reduce operative costs.

The Quay Crane Scheduling Problem, in short QCSP, has attracted a great deal

of interest of the soft computing community due to the fact that it introduces

a set of novel and challenging constraints in comparison with other scheduling

problems tackled to date. This is the case of, for example, the well-known Job

Shop Scheduling Problem. On one hand, the movements of the quay cranes used

to perform the transshipment operations are physically restricted because these

are mounted on a system of rails. This means that the cranes can only move

horizontally along the berthing line. Also, the quay cranes cannot cross to each

other, which gives rise to their initial relative order is kept over the planning

horizon. Lastly, the cranes have to keep a safety distance between them in order

to prevent potential collisions.

Multitude of proposals belonging to the field of soft computing have appeared in

the scientific literature to address the QCSP. These approaches can be classified

on the basis of different criteria. Some of these are the level of aggregation of

the containers into the stowage plan to handle, the technichal characteristics of

the machinery and their crane drivers, level of potential interferences, and per-
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formance measure. Firstly, the containers into the stowage plan of a vessel are

usually arranged according to their destination port or physical characteristics,

among others. This way, containers with similar characteristics can be easily

loaded/unloaded in a row at a given bay of the vessel. The level of aggregation

indicates the volume of containers to handle. At the lowest level of aggregation,

individual containers are handled by the quay cranes, whereas all the contain-

ers in a bay are handled at the highest level. Representative metaheuristics for

this variants can be found in the works [41, 90], respectively. Furthermore, one

of the most complex constraints of the QCSP is associated with the operative

chracteristics of the quay cranes. In this context, some metaheuristics have been

designed to address the impact of the temporal availability of the cranes on the

overall performance of the transshipment operations. This is the case of the

work [62]. However, other authors have also proposed efficient metaheuristics

in which the movement of the quay cranes is considered as non-negligible, as

stated in the work [68]. In addition, the potential interference derived from the

presence of a rail system has been an attractive focus of research. A safety dis-

tance is considered by some metaheuristics to avoid collisions between quay

cranes. For example, this is considered in [21, 27]. Finally, a wide range of

performance measures have been already addressed in the scientific literature

so far. In particular, some high-efficient metaheuristics have been designed to

minimize the completion time of the operations [64], the finishing times of the

quay cranes [22], the movement of the quay cranes [96], and maximize the crane

utilization rate [95], among others. It is worth pointing out that a comprehen-

sive review of the proposals aimed at solving the QCSP can be found in the

survey [8].

∙ Storage.

– Yard crane scheduling
Given the fact that the shipping lines are the customers of a container terminal

and their payment depends on the time spent at the terminal, the main goal of

the berth allocation problem usually considers minimizing the berthing time of

the vessels. In order to minimize this time, the loading and unloading operations

have to be efficiently performed taking into account the available resources and

their particular efficiencies. Quay cranes, internal vehicles, and yard cranes play

then a crucial role. Although the speed of quay cranes has improved substan-

tially over the last years, their performance depends on the performance of yard

cranes, whose speed is approximately one-third of a modern quay crane. There-

fore, in order to fully utilize quay cranes, containers to be loaded or unloaded by

them are distributed over several blocks. Moreover, while retrieving and stack-

ing containers of ships, each yard crane has also to serve the landside. Then, the

goal of the Yard Crane Scheduling Problem is to determine an efficient schedule

to carry out a set of container storage, retrieval and relocation requests around

the yard of the terminal as indicated in [36].

In the following, a reduced number of the recent references related to the Yard

Crane Scheduling Problem. [42] proposes the combination of a Genetic Algo-
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rithm with Particle Swarm Optimization to solve the Yard Crane Scheduling

Problem with the aim of improving the efficiency of the terminal and mini-

mizing energy-consumption. The authors of [94] solve the problem with two

cooperating automated stacking cranes in a single block using a mathematical

model and a Simulated Annealing based heuristic. [63] tackles the Yard Crane

Scheduling Problem with inter-crane interference, fixed yard crane separation

distances, and simultaneous container storage/retrievals by means of heuris-

tics. The problem of scheduling multiple yard cranes by means of a dynamic

programming-based heuristic and of an algorithm to find lower bounds is solved

in [77]. [76] first carries out a theoretical investigation of the problem and then

proposes a branch-and-bound based enumerative method and heuristics for solv-

ing it. Most of the works that tackle the problem at hand propose mathematical

formulations to either solve it to optimality when it is possible or to obtain lower

bounds or heuristics/metaheuristics to provide high quality solutions in reason-

able computational times.

– Container storage
Container storage is a three-level problem that arises at maritime container

terminals, which involves defining the yard layout and selecting the handling

machinery to use at a strategic level, determining the storage capacity of the

yard and the handling machinery deployment at a tactical level, and moving the

containers on the yard in a short-term at an operational level. At this last level,

during a certain planning horizon, containers arrive and leave the yard at certain

arrival and retrieval times, respectively. The objective of the yard cranes is to

perform feasible movements to store and retrieve the containers on the basis of

the intrinsic Last In First Out (LIFO) structure of the stacks. Therefore, a stor-

age movement involves the placement of the next incoming container at the top

of a stack with at least one empty slot, a retrieval movement involves taking out

the next container to retrieve from its bay whenever it is currently placed at the

top of a stack, and a relocation movement involves the movement of a container

from the top of its assigned stack to the top of another one with at least one

empty slot.

In the state-of-art of container storage, the incoming and outgoing containers

in a bay give rise to the definition of the following closely-related N P-hard

optimization problems:

· Stacking Problem [28]. It is aimed at determining the shortest sequence of

movements to be performed by the crane in order to store and retrieve the con-

tainers in/from the bay. The works [24, 51] estimate the number of relocation

movements that are required to retrieve a random container from its current

location. Also, [52] proposes a decision rule to determine the storage loca-

tions of relocated containers and to determine the containers to be retrieved

among multiple containers with similar retrieval times. [79] derives formulas

to estimate the number of relocation movements to retrieve a container from

a stack using different stacking methods. [81] proposes several semi-greedy

construction heuristics that are used in conjunction with a discrete-event sim-
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ulation model to build feasible solutions for the stacking problem. Note that

these works propose heuristics for solving the problem at hand.

· Container Relocation Problem [31]. It seeks to determine the shortest

sequence of relocation movements to retrieve a subset of containers. It is

assumed that all the containers are already stored in the bay and no new

incoming containers arrive. [30] propose a heuristic algorithm aimed at solv-

ing the unrestricted blocks relocation problem considering the minimization

of the number of relocation operations. [13] presents a complete study on

the blocks relocation problem and propose an effective heuristic algorithm.

[34] provides a general classification concerning all the feasible container

relocation movements that can be performed on a given incumbent bay con-

figuration. A tree search procedure is developed and a lower bound of the

minimum number of relocation movements required to retrieve all the con-

tainers from the bay is considered to prune some branches of the tree. [16]

addresses an extension of this problem in a storage area of the container

yard where incoming and outgoing containers are arranged by a straddle car-

rier. They propose several constructive algorithms and three nature inspired

metaheuristics are studied for improving the initial solutions reported by the

heuristics. [15] presents a recursive formulation and a dynamic programming

algorithm for the restricted blocks relocation problem and a corridor method.

[61] presents a heuristic method composed of three general stages executed

one after the other to retrieve the containers from a bay and move them toward

a vessel. [11] proposes a smart binary encoding for the problem that allows to

develop optimization methods without having in-depth knowledge concern-

ing the current problem features. They design an algorithm based on the pilot

metaheuristic, in which simple heuristics are included in order to compute

the suitability of neighbor stacking configurations. [52] proposes two opti-

mization methods to be applied when a container pickup sequence is given

and use a heuristic rule to determine the number of expected future container

relocation movements.

· Pre-Marshalling Problem [29]. Its objective is to find the shortest sequence

of movements to arrange the containers within a given bay, such that any

container is placed above other container with earlier retrieval time in the

same stack. In this case, neither incoming containers nor outgoing containers

are considered. [91] solves the pre-marshaling problem to optimality using

A* and IDA*. [46] designes a biased random-key genetic algorithm. [37]

proposes a variable chromosome length genetic algorithm. [92] proposes two

metaheuristics, a Pilot method and a Max-Min Ant System, to solve the two-

dimensional pre-marshalling problem. [29] proposes a heuristic algorithm

and an instances generator for the pre-marshalling problem. [14] proposes a

metaheuristic approach based on the paradigm of the Corridor Method. [60]

designes an algorithm composed of a neighborhood search process, an integer

programming model, and three minor subroutines.
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4 Summary and Further Research

Container terminals are huge complex infrastructures located within the boundaries

of maritime ports. The complexity arises from the large number of heterogeneous

processes and multitude of stakeholders with conflicting goals that coexist in this

context. For this reason, terminal managers demand nowadays to count with effi-

cient operative strategies due to the fact that these allow to achieve the established

performance and service objectives.

Up to now, most of the computational proposals aimed at improving the overall

performance of maritime container terminals assume data is not influenced by uncer-

tainty, inconsistency, nor noise. However, for example, multitude of uncertainty

sources appear in a realistic environment. For this reason, intelligent approaches

belonging to the field of soft computing have gained much popularity over the last

decades when tackling problems in maritime logistics and its related fields. In this

regard, the chapter at hand provides a general review of the most representative con-

tributions of soft computing in this context. In particular, a brief overview of the

main applications of soft computing methodologies is here presented. This appli-

cations are organized on the basis of the main components of the soft computing:

probabilistic models, fuzzy logic, artificial neural networks, and metaheuristic tech-

niques.

Finally, it is worth mentioning that despite the efforts done so far, there is still a

large number of open promising lines for further research. One of these open lines

involves the combination of both optimization techniques with online learning. This

type of approaches are very useful to predict optimized process parameters associ-

ated with the movement of containers around the terminal. Also, hybrid proposals

have demonstrated to be very effective when tackling complex optimization prob-

lems in which analytical techniques cannot be applied. Some of these proposals are

genetic fuzzy systems and neural networks combined with evolutionary techniques,

among others. The former are usually designed to obtain a suitable accuracy tradeoff

in optimization cycles, whereas the last are able to solve multi-objective approxima-

tion.
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Intelligent Data Analysis, Soft Computing
and Imperfect Data

Jose M. Cadenas and M. Carmen Garrido

Abstract In different real problems the available information is not as precise or

as accurate as we would like. Due to possible imperfection in the data (understand-

ing that these contain data where not all the attributes are precisely known, such

as missing, imprecise, uncertain, ambiguous, etc. values), tools provided by Soft

Computing are quite adequate, and the hybridization of these tools with the Intelli-

gent Data Analysis is a field that is gaining more importance. In this paper, first we

present a brief overview of the different stages of Intelligent Data Analysis, focus-

ing on two core stages: data preprocessing and data mining. Second, we perform an

analysis of different hybridization approaches of the Intelligent Data Analysis with

the Soft Computing for these two stages. The analysis is performed from two levels:

If elements of Soft Computing are incorporated in the design of the method/model,

or if they are also incorporated to be able to deal with imperfect information. Finally,

in a third section, we present in more detail several methods which allow the use of

imperfect data both for their learning phase and for the prediction.

1 A Brief Overview of Intelligent Data Analysis

Intelligent data analysis (IDA) or knowledge discovery in databases is defined in

[23] as the “non-trivial process of identifying valid, novel, potentially useful and

understandable (if not immediately, with some kind of further processing) patterns

from the data”. As it follows from this definition, in the IDA process, the data are the

most important part of the discipline [23] and it is a complex process that includes

the obtaining of the models and also other stages.
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IDA is divided into the following stages, [23]:

∙ The “Data Integration and Collection” (selection) stage.

∙ The “Data Preprocessing” stage, related to the treatment of the data and the strate-

gies that would be used to handle the available information.

∙ The “Data Mining” stage, related to the selection and application of the appropri-

ate methods for the modeling from the available data and the obtaining of under-

standable models and high accuracy.

∙ The “Evaluation (interpretation) and Diffusion” stage.

Although all stages are fundamental to the development of the IDA process, its

core is in the data preprocessing and data mining stages.

1.1 Data Preprocessing Stage

Data preprocessing can have a great impact on the performance of the data mining

methods, [27]. One of the problems that must be faced in this stage is to understand

and analyze the nature of the data avoiding the loss of useful information during

the process. This stage includes, among others, the cleaning of data (such as the

elimination of inconsistent data, treatment of missing values, etc.), data integration

(multiple sources), data transformation (discretization, etc.) and reduction of data

(attribute/instance selection) [27].

Specifically, the “discretization of continuous attributes” plays a critical role in

IDA and has been studied in depth. Discretization consists in dividing the values

of a numerical (continuous) attribute into a set of intervals. By means of the dis-

cretization, a numerical attribute can be more concise and easier to understand. In

the general description of the discretization process, we can do the following taxon-

omy (there are other taxonomies for the different discretization methods such as that

presented in [51]):

∙ Top-down methods: The attribute domains are progressively cut to construct a set

of intervals.

∙ Bottom-up methods: They start with the individual values in the dataset that are

fused progressively until constructing a set of intervals.

Among the top-down methods we find the ones proposed in [15, 33, 34, 46,

81]. Besides, the decision trees construction methods, such as, ID3 [71] and C4.5

[72], can be interpreted as top-down discretization methods. Among the bottom-up

methods we find methods such as those proposed in [9, 44, 52]. All these methods

generate classical discretization, i.e., crisp intervals.

Also, the “attribute selection” plays an important role in the IDA process and

more specifically in the classification task. On the one hand the computational cost

is reduced and on the other hand, a model is constructed from the simplified data and

this improves the general abilities of classifiers. The first motivation is clear, since

the computation time to build models is lower with a smaller number of attributes.
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The second reason indicates that when the dimension is small, the risk of “overfit-

ting” is reduced. Removing insignificant attributes of datasets can make the model

more transparent and more comprehensible providing a better explanation of the sys-

tem [53]. Therefore, the attribute selection addresses the problem of reducing dataset

dimensionality by identifying an available attributes subset. Researchers have stud-

ied various aspects of attribute selection. One of the key aspects is to measure the

goodness of an attribute subset determining an optimal one. Depending on evalua-

tion criteria, attribute selection methods can be divided into the following categories,

[29, 75]:

∙ Filter methods: These methods select subsets of attributes as a preprocessing step,

independently of the chosen classifier.

∙ Wrapper methods: These methods use a method of data mining as a black-box to

score attribute subsets according to their predictive power.

∙ Embedded methods: These methods select attributes in the training process and

are usually specific to the given modeling method.

∙ Hybrid methods: These methods are a combination of filter and wrapper methods.

Hybrid methods use the ranking information obtained using filter methods to guide

the search in the optimization algorithms used by wrapper methods.

In literature we can find a variety of methods to carry out attribute selection, such

as the proposed in [3, 42, 52, 75].

1.2 Data Mining Stage

The data mining (DM) stage is the more characteristic stage in the IDA process.

The purpose of DM is the construction of models based on the data to produce

new knowledge that can be used by the user. The model is a description of patterns

and relationships in the data, which can be used to make predictions in a particu-

lar area, better understand the domain, improve performance or explain past situ-

ations. In practice, there are two types of models: Predictive (identify patterns to

estimate future values using predictor attributes) and Descriptive (identify patterns

that explain the data). In addition, different types of tasks are distinguished in DM.

Each task has its own requirements and obtains a type of knowledge different from

the obtained one by other tasks. Among the aimed tasks that obtain predictive mod-

els, we can find both the classification and the regression tasks; while clustering and

association are tasks aimed at obtaining descriptive models. This stage includes the

choice of the most appropriate task for the problem, the choice of the DM method,

and finally the use and adaptation to the problem of the selected method, [27, 85].

We group these methods according to the type of model obtained. Without being

exhaustive, we find models represented by discriminant functions, decision trees,

neural networks, based on rules or based on instances.
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∙ One of the most useful ways of representing a model is through a set of discrimi-

nant functions. The model in this case can be seen as a machine which computes

c discriminant functions gi(x) and which selects for x the class 𝜔i with the highest

value for the discriminant function [22, 26]. In this way the model is expressed

as gi(x) = P(𝜔i∕x), such that the maximum discriminant function is the maximum

a posteriori probability. When the discriminant functions are linear functions we

find methods such as descending gradient, Newton’s algorithm, the Perceptron cri-

terion [32, 36]. When the discriminant functions are complex density functions,

these can be approximated by a mixture of simpler density functions.

∙ The models based on instances approximate an unknown density function using

an averaged version of the density based on the probability of a specific vector’s

falling within a certain region of the attribute space [22]. The methods based on

these models have no learning phase since the model is formed by the dataset

instances. There are two common methods based on these models: Parzen method

and k neighbors method [21, 31, 58].

∙ The methods which model the problem through decision trees are useful for find-

ing structures in high dimensionality spaces or when the conditional densities of

the classes are unknown or are multimodal. Some basic and well-known methods

to generate decision/regression trees are ID3 [71], C4.5 [72] and CART [10].

∙ Rules based methods model a system through a base of rules (if-then) constructed

from the instances. Some methods for obtaining rules (association rules) are based

on the concept of frequent items sets and use counting and minimum support

methods [79]. Other methods obtain rules covering the instances (cover meth-

ods) such as those based on CN2 [17] and AQ algorithms [57]. Genetic algo-

rithms/programming [51, 86] have also been used to generate rules.

∙ Other type of model is the neural network. Neural networks are a very power-

ful computation paradigm allowing complex problems with possible non linear

interactions between the attributes. Among the most important neural networks

we can find the multilayer Perceptron which generates more than one boundary of

separating in the attributes space [32, 36, 74].

∙ There is a further group of methods whose aim is to generate groupings of data

and these are known as clustering. The aim of cluster analysis is to find a valid and

convenient organization for the data and an underlying structure. Within these

methods we can include Kohonen’s self-organizing maps [45], those based on

the K-means algorithms which obtain partitional cluster [62], in contrast to the

hierarchical methods which do not establish a priori the groups number [25].

2 Intelligent Data Analysis and Soft Computing

In [56] several paradigms introduced with the data analysis are identified. Among

them, the management and processing of data respecting the true nature of them

(imperfect data) are included. Therefore, by focusing on the data, and before applying

any stage of the IDA process, we must take into account the nature of these data
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to ensure the success of the process. This means that depending on the nature and

precision of these data, we must apply different methods depending on their degree

of tolerance to them. A clear example to illustrate the problem of the different nature

of the data and the importance of tolerance to different types of imperfect data is the

problem of parking a car [91], where most of the population is able to do it easily.

Therefore, we need methods that can extract knowledge and handle imperfect data,

in order to provide quality information and generate useful knowledge.

Generally, the IDA process uses and combines different methods and tools from a

variety of disciplines [5]. Due to possible imperfection in the data, tools provided by

the Fuzzy Sets theory [90] and, in general, Soft Computing (SC) [7, 82, 91] are quite

adequate. In this way, the hybridization of the SC methods with IDA is a field that is

gaining more importance. The methods proposed by SC and their applications have

been very important in recent years, and in particular, the advances in the hybridiza-

tion of SC with IDA are aimed at obtaining more flexible methods with results more

efficient compared to the classical methods [30, 61]. In this framework, we comment

on different methods proposed from two levels: In a first level, if the SC elements

are incorporated in the design of methods/models; and, in a second level, if they are

incorporated for the treatment of imperfect information, additionally.

2.1 Data Preprocessing in Soft Computing Framework

In the data preprocessing stage, SC has generally been applied to the design of flex-

ible methods for the different tasks of this stage. Although most of them use SC

in their development, to our knowledge, the methods that allow and management

imperfect data are seldom studied.

In particular, in the discretization of numerical attribute we find methods that

allow the use of membership degree to intervals (denoted by fuzzy discretization

methods). These methods are grouped according to the used algorithm.

∙ Decision tree based methods: In [40, 43, 63] different approaches for the fuzzy

discretization of numerical attributes are proposed. All of them use a fuzzy deci-

sion tree combined with some basic strategy.

∙ Clustering based methods: These methods are based on dividing a numerical

attribute domain into fuzzy partitions by using fuzzy clustering. In particular, sev-

eral methods using the fuzzy c-means method are proposed in [59, 64, 80].

∙ Genetic algorithm based methods: The genetic algorithms (GA) are combined

with existing specialized methods to create hybrid algorithm that improve the over-

all results. In particular, we can find several methods, [16, 18], using strategies of

classical/fuzzy discretization together a genetic algorithm to optimize the number

of partitions, interval limits and the degree of overlaps of these limits.

∙ Hybrid methods: In the literature we can also find methods based on combinations

of two or more methods. In [88] a cluster and a neural network (NN) are used. In
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[76] the combination of the FCM clustering algorithm and a GA are used, and in

[48, 73, 84] a kd-tree and a minimum spanning tree are used.

In attribute selection, there are a lot of methods using SC in their development

but they perform the selection from crisp data.

∙ Attribute selection methods using SC for their design can be find in [3, 16, 42]

where a neural network, a GA or an ant colony (AC) are used, respectively. There

are other methods that also use elements of the fuzzy set theory as in [53, 83]

where a fuzzy criteria or fuzzy entropy are used, or in [87] where the attribute

selection is performed using the fuzzy evidence theory.

∙ To perform the attribute selection from imperfect data we can find several pro-

posals: in [41] a method taking into account the uncertainty in the data through

fuzzy-rough sets is presented. This method employs fuzzy-rough sets to provide

a means by which discrete or real-valued noisy data (or a mixture of both) can be

effectively reduced without the need for user-supplied information. In [77, 78] a

fuzzy mutual information measure between two fuzzified numerical attributes to

handle imprecise data is used (they define a new extended version of Battiti’s filter

attribute selection method). This measure is used in combination with a genetic

optimization to define the method proposed.

Table 1 shows the summary of papers discussed.

Table 1 Hybridization of data preprocessing with Soft Computing: summary of papers

Method based on . . . SC at method

level

SC at minable view level

Allowed data

Fuzzy

discretization

Fuzzy decision trees [40, 43, 63] – –

Fuzzy clustering [59, 64, 80] – –

GA to optimize [16, 18] – –

kd tree—spanning tree [48, 73, 84] – –

Cluster—GA [76] – –

Cluster—NN [88] – –

Attribute

selection

NN, GA, AC [3, 16, 42] [77, 78] Fuzzy sets

Fuzzy criteria/entropy [53, 83] – –

Fuzzy evidence theory [87] – –

Fuzzy-rough metric – [41] Fuzzy-rough

sets
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2.2 Data Mining in Soft Computing Framework

SC has also been applied in the DM stage, and, to our knowledge, the methods that

allow and management imperfect data are seldom studied. From this, we can consider

the DM methods hybridized with SC in two levels:

∙ At the level of generated models: Methods that generate models described in the

framework of SC. These models are more interpretable and we can find elements

of SC in rule-based systems, methods based on k-nearest neighbors, decision trees,

clustering and support vector machines.

In 1971 Zadeh proposed the design of rules if-then using linguistic variables

that can be provided by a group of experts or obtained through DM methods.

So, among others, in [4] a set of fuzzy rules is obtained using a method based

on genetic programming, in [24] a set of fuzzy rules is obtained in unbalanced

problems using a genetic selection process of rules, in [37] different weights are

assigned to a set of fuzzy rules using heuristic methods, and, in [65] an initial set

of fuzzy rules is constructed by clustering and then are optimized using a neuro-

fuzzy learning algorithm.

Among the fuzzy versions of the k-nearest neighbors rule we can highlight works

that assign memberships degree of each instance to each class, use fuzzy distance

measures, use different ways of combining the votes of neighbors, etc. A complete

review of these methods is carried out in [20].

Also, fuzzy decision trees have been designed as the proposed in [66] that obtains

the best fuzzy partition of the best attribute in each node to split. Using fuzzy

decision trees, fuzzy ensembles are proposed as in [19] where an ensemble is con-

structed from a non-fuzzy tree construction algorithm that subsequently is trans-

formed to fuzzy.

With the aim to construct data partitions that allow an instance belongs to more

than one partition, fuzzy clustering algorithms have been developed such as the

fuzzy C-means proposed in [6]. Different versions of this algorithm are found

in [35] to extend it to nominal data, in [49] to deal with missing values through

intervals or in [80] to deal with fuzzy values.

Also, fuzzy versions of support vector machines have been designed. So, in [50] a

membership degree to each class is assigned to each instance, allowing that each

one contributes in a different way in the learning of the decision surface. In [1]

a method for multilabel classification is generalized. For each multilabel class,

a region with the associated membership function is defined and an instance is

classified into a multilabel class whose membership function is the largest.

∙ At minable view level: Methods that besides incorporating the SC elements, sup-

port input imperfect data. In this case, the methods allow us that the data are com-

posed of attributes described by imperfect values. This generates the following

advantages: (1) methods can interpret the imprecision/uncertainty expressed in the

data and generate robust models to these types of information without transform-

ing the true nature of them; (2) data preprocessing is simplified by not carrying out

these transformations (replacement, deleting data, . . . ); and (3) the minable view
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contains a greater number of instances because the imprecise and uncertain data

are not discarded. In general, significant efforts are being carried out to incorpo-

rate the treatment of imperfect data into DM methods using SC.

Thus we can find works that incorporate the treatment of fuzzy values. There are

fuzzy decision trees based on a fuzzy partition of numerical attributes. This par-

tition is used in the test of nodes as in [38, 47]. Fuzzy partitions of numerical

attributes are also use in the construction of fuzzy ensembles to incorporate fuzzy

values. This approach is used in [39] where to select the test of each node, the set of

the best attributes for partitioning that node is used or in [55] where a fuzzy ensem-

ble for each class value of the problem is constructed. In [60] a fuzzy version of

multilayer perceptron is presented which performs the learning from fuzzy values.

In [68] a genetic classifier based on fuzzy rules is obtained from data described

with fuzzy values. In [69, 70] Adaboost and FURIA algorithms are extended in

order to obtain fuzzy rules from this type of values. In [67] an algorithm to obtain

a set of fuzzy association rules from a fuzzy partition is proposed. As particular

cases of fuzzy values, some works deal with values expressed by intervals as in

[47, 67–70].

On the other hand, the set of methods that allow the existence of missing values is

considerable. We highlight only a few that allow the treatment of some other type

of imperfect information as [38, 39] or as in [47], where missing values are only

allowed in the classification phase.

Finally, there is a considerable set of methods that have considered the possibility

that an instance has more than one associated class value (multi-valued class),

but few extend this possibility to other nominal attributes of a problem (multi-

valued attributes). So, among the first we can find works as [68] where class may

be defined by a crisp set, or [89] where a fuzzy k-nearest neighbor method is used

to allow that an instance can belong to more than one class with several degrees.

In [54] we can find a comparison of this kind of methods.

Table 2 shows the summary of papers discussed.

Table 2 Hybridization of data mining with Soft Computing: summary of papers

Method based on . . . SC at method

level

SC at minable view level

Allowed data

Fuzzy rules [4, 24, 37, 65] [67–70] Fuzzy sets, intervals

– [68] Fuzzy sets, intervals, multivalued

class

k-nearest neighbors [20] [89] Multivalued class

Fuzzy decision trees [19, 66] [55] Fuzzy sets

[38, 39] Fuzzy sets, missing

[47] Fuzzy sets, intervals, missing

Fuzzy clustering [6, 35, 49, 80] [35, 49, 80] Nominal, fuzzy sets, intervals

Support vector m [1, 50] [1] Multivalued class

Neural network – [60] Fuzzy sets
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3 Hybridization on the Two Level of Soft Computing
and Data Preprocessing/Mining Methods

In this section we describe the characteristic elements of two methods in the data

preprocessing stage and three methods in DM stage that use SC in the two levels

commented: at model/technique level and at minable view level. Due to the high

flexibility in the design of these methods, they can easily be extended to support

new types of imperfect data.

A more detailed analysis of these methods can be found in papers [11, 13] for the

preprocessing methods and papers [8, 12, 14, 28] for the DM ones.

3.1 Notation, Types and Representation of Imperfect Values

Let us consider a set of instances E, where each instance 𝐱 is characterized by n
attributes in a vector (x1, x2,… , xn) (the n-th attribute represents the class). The

domains of each attribute, 𝛺x1 , 𝛺x2 ,… , 𝛺xn−1 , can be numerical or nominal, while

the domain of the class 𝛺xn (nominal attribute) can take the values {𝜔1, 𝜔2,… , 𝜔I}.

The numerical attributes are represented by fuzzy sets with a trapezoidal fuzzy

membership function [2] 𝜇(x) defined by a quadruple (a, b, c, d):

𝜇(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0 x < a or x ≥ d
x−a
b−a

a ≤ x < b
1 b ≤ x < c
d−x
d−c

c ≤ x < d

With this representation, the methods use the following values:

∙ Crisp values are represented by the quadruple (a, a, a, a).
∙ Interval values [a, b] are represented by the quadruple (a, a, b, b).
∙ Fuzzy values are represented by trapezoidal fuzzy membership functions.

∙ Missing values include pieces of information that are unknown. These values are

represented by the quadruple (mini,mini,maxi,maxi), where mini and maxi are,

respectively, the minimum and maximum values of 𝛺xi included in the dataset.

The nominal attributes (including the class attribute) are represented by fuzzy

subsets {𝜇(h1)∕h1,… , 𝜇(hs)∕hs}, where hj is a value into attribute domain and ∃hk ∈
𝛺i ∶ 𝜇(hk) = 1. With this representation, the methods use the following values:

∙ Crisp values are represented by the fuzzy subset {1∕hj}.

∙ Crisp subset values consider more than a possible nominal value. They are repre-

sented as {1∕h1,… , 1∕hs}.
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∙ Fuzzy subset values consider more than one nominal value with a membership

value 𝜇 ∈ [0, 1]. They are represented using the notation introduced above.

∙ Missing nominal values are represented using a fuzzy subset that contains all pos-

sible values with membership degree equals to 1.

3.2 OFP_CLASS: A Hybrid Method for Attribute
Discretization

In [13], OFP_CLASS method is proposed to data preprocessing. It is a hybrid method

for discretizing numerical (continuous) attributes by means of fuzzy sets, which con-

stitute a fuzzy partition of the domains of these attributes. The aim of this method

is to find an attribute partition so that the fuzzy classification methods obtain better

results. The OFP_CLASS method can deal with datasets with imperfect values and

it is labeled as supervised, local, top down, and incremental, using the entropy as

measure to obtain the partition.

The OFP_CLASS method is composed of two stages (Fig. 1): (a) In the first stage,

crisp intervals are defined for each attribute using a fuzzy decision tree (FDT); and

(b) in the second stage, these intervals are used as the starting point to form an opti-

mal fuzzy partition for classification. In this second stage, a genetic algorithm is used

to determine the cardinality and fuzzy boundary of these intervals.

The partition obtained for each attribute guarantees:

∙ Completeness (no point in the domain is outside the fuzzy partition), and

∙ Strong fuzzy partition (it verifies that ∀x ∈ 𝛺i,
∑Fi

f=1 𝜇Bf
(x) = 1, where B1,… ,BFi

are the Fi fuzzy sets for the partition corresponding to the i-th numerical attribute

with 𝛺i domain).

The FDT used in the first stage allows the dealing of imperfect data, and for this,

uses a specific information gain, Gi, for each attribute i in order to choose the best

attribute to divide a node. Function Gi uses the standard information associated with

the node (taking into account the membership degree of an instance to the node and
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Fig. 1 Scheme for the discretization of numerical attributes using the OFP_CLASS method
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the membership degree of example ej to each class) and a factor which represents

the standard information obtained by dividing the node using attribute i adjusted

to the existence of missing values. We must highlight that, in the second stage, the

fitness function of the genetic algorithm is defined by

∑n
i=1 Ii∑n
i=1 Hi

where Ii and Hi are the

information gain and entropy of attribute i respectively, taking into account the crisp

intervals obtained in the first stage.

OFP_CLASS method is an effective strategy and it obtains very good results when

is compared with other methods of the literature. These results have been validated

by applying statistical techniques to analyze the behavior of different methods in

each experiment.

3.3 FRF_fs: A Filter-Wrapper Method for Attribute Selection

In [11] is proposed the FRF_fs method of attribute selection to data preprocessing

which can handle imperfect data. This method is based on a Fuzzy Random For-

est ensemble (a method that supports imperfect data, [8, 12]) and is classified as a

Filter-Wrapper method with sequential forward selection on the subset of attributes

obtained by the Filter method and using a ranking obtained with these attributes.

This method consists of the following main steps (Fig. 2): (1) Scaling and discretiza-

tion process of the attribute set; and attribute pre-selection using the discretization

process (Filter); (2) Ranking process of the attribute pre-selection; and (3) Wrapper

attribute selection based on cross-validation.

Note that in each step the approach obtains information useful to the user (pre-

selected attribute subset, pre-selected attribute subset ranking and optimal attribute

subset). Some details of these steps are discussed below.

∙ Filter method for attribute pre-selection

Initially, the method carry out a scaling and discretization (in [13], a hybrid method

for the fuzzy discretization of numerical attributes is presented), and as in the

discretization process some attributes may be discretized into a single interval,

Data preprocess

Dataset
Attribute set

Attribute ranking 
process

Attribute subsets
Obtaining subset

of attributes

Pre-selection and Ranking of the
subset of pre-selected attributes

Optimal attribute
subset

Fig. 2 Framework for the attribute selection using the FRF_fs method
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these latter attributes can be removed. Thus, the method obtain a pre-selection of

the attribute set.

∙ Attribute importance (Ranking process)

From the pre-selected attribute subset and through a fuzzy random forest ensem-

ble, the method obtains a vector RANK ordered, in descending order, of this

attribute subset. This vector is obtained from the value of each attribute xi as

RANK =
∑T

t=1 W ⋅ IMPt, where the information provided by the T trees of the

fuzzy random forest ensemble is aggregated using an OWA operator. Values IMPt
are obtained from the information gain of nodes in the FDT t to each attribute xi,
and from the accuracy of FDT t classifying the OOB dataset.

∙ Wrapper for attribute final selection

Once the ranking of the pre-selected attribute subset, RANK, is obtained, the

method find an optimal subset of attributes. The process adds a single attribute

at a time following the RANK vector. The several attribute subsets obtained by

this process are evaluated by a method that supports imperfect data using a cross-

validation. In particular, and using a fuzzy random forest ensemble, an ascending

sequence of fuzzy random forest models is constructed, by invoking and testing

the stepwise attributes.

The efficiency and effectiveness of the FRF_fs method is proved through sev-

eral experiments using both high dimensional and imperfect datasets. The method

shows a good performance (not only classification accuracy, but also with respect

to the number of selected attributes) and good behavior both with high dimensional

datasets and with imperfect datasets.

3.4 EMFGN: A Method Based on Gaussian Mixture Models

Extended Mixture of Factorized Generalized Normal (EMFGN) method [28] is a

predictive DM method for performing learning and inference from imperfect data.

The method obtains an explicit expression of the model-observation joint function

of the attributes, where both the model expression and the input information are

interpreted and represented in a common framework. The Dempster-Shafer Evidence

Theory (DSET) is the framework that allows its interpretation as mass functions

defined on the domains of the single attributes.

In Fig. 3, the general scheme of the process followed by EMFGN method is

shown. From the dataset with imperfect information, the method provides a model

reflecting the joint dependence of the attributes by means of a mixture of factor-

ized normals. This model and the input available information are interpreted and

represented in the DSET in order to combine them (using the Dempster-Shafer’s

combination rule). The model provided by EMFGN method is the following:

p(z) =
∑

ir
P{Ci}𝜋r

n∏

j=1
Firj(mrj(𝛩j)⊕ mij(𝛩j))
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Fig. 3 A general scheme of

the EMFGN method

Dataset with
imperfect values

EMFGN inference

Framework 
DSET

FEEM
(extended EM)

learned
model

where:

∙ 𝛩j ∈ P(𝛺zj ) and P(𝛺zj ) is the set of parts of 𝛺zj .

∙ mrj(𝛩j) is the likelihood function of the r-th component of the input information

expressed through a mass function.

∙ mij(𝛩j) is the mass function corresponding to the i-th component of the model.

∙ Firj is a necessary normalization factor in the combination of two mass functions.

∙ P{Ci}𝜋r is the product of the likelihood function of input information in its r-th
component and the expression of the model in the i-th component.

In this framework, the EMFGN method uses the FEEM algorithm in the learn-

ing phase. This algorithm is an extended EM algorithm to allow both the imperfect

information and the model represented in DSET.

From the learned model, EMFGN method can infer both nominal and numerical

attributes. To numerical attributes, the method infers the value zj =
∑

ir 𝛼irm̄irj, and

to nominal attributes, the method infers the value zj = argmaxw
∑

ir 𝛼irmirj(𝜔), with

𝜔 ∈ 𝛺zj . The value 𝛼ir indicates the likelihood of the r-th component of the input

information having been generated by the i-th component of the mixture. mirj(⋅) is a

mass function combining the input information and the model to the attribute j, and

the value m̄irj is the average value of mirj(𝛩j).
The results obtained are very satisfactory with the advantage of having a global

model to be able to perform inference on any attribute of an instance.

3.5 FRF: A Method Based on an Ensemble of Fuzzy
Decision Trees

Fuzzy Random Forest (FRF) method [8, 12] is a multiple classifier system (ensem-

ble) to DM. FRF is a predictive method for classification and show us its ability to

handle imperfect data both in the model learning and in the inference process.

In Fig. 4, the general scheme of the process followed by FRF method is shown.

FRF obtains a model with the structure of an ensemble based on FDTs. The learning
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Fig. 4 A general scheme of

the FRF method

FDT 2FDT 1 … …

FRF inference

FDT t

Combining the information from the FDTs
Strategies 1 and 2

Dataset with
imperfect values learned

model

phase generates FDTs with the following characteristics: (a) each FDT is constructed

from a dataset obtained by bagging, (b) the FDTs are constructed without consider-

ing all the attributes to split the nodes (a random subset of the set of attributes avail-

able at each node is selected), (c) the numerical attributes are discretized by fuzzy

partitions, (d) each FDT is constructed to the maximum size and without pruning,

(e) a function (𝜒t,N(⋅)) is used to indicate the degree with which an instance sat-

isfies the conditions that lead to node N of tree t, and (f) FDTs support instances

with imperfect values (a function 𝜇simil(⋅) is used to measure the membership degree

of these types of values to the fuzzy sets forming the partition of the numerical

attributes).

From the obtained model, FRF method uses two strategies to combine the infor-

mation of several FDTs and to obtain the final decision for a target instance. Strategy

1 combines the information from the different leaves reached in each FDT to obtain

the decision of each individual FDT and then applying the same or another combina-

tion method to generate the global decision of the FRF model. Strategy 2 combines

the information from all reached leaves from all FDTs to generate the global decision

of the FRF model.

The method assigns class𝜔M to a new instance such that𝜔M = argmaxi{D_FRFi}
where D_FRF is a vector with size I that indicates the confidence assigned by the

method to each class i. The vector elements are obtained from the support for each

class in the leaves reached when applying the several strategies and combination

methods.

The results obtained by FRF method are promising concluding that by using

imperfect values instead of crisp, we capture better the nature of the underlying

information.

3.6 KNNimp: A Method Based on Instances

The kNNimp method [14] is a k-nearest neighbors classifier from datasets with imper-

fect values to DM. Figure 5 shows the general scheme followed by kNNimp method.

This method belongs to the methods with lazy learning, that is, the method does not
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Fig. 5 A general scheme of

the kNNimp method Dataset with
imperfect values

Combining the information
from the k-nearest instances

kNNimp inference

Distance/Similarity
Imperfection degree

Control:
Maximum imperfection

Similar classes

local model
(k-nearest instances)

need of an explicit learning phase. Therefore, this method requires that all dataset

instances are stored.

To classify a instance, the kNNimp method computes its “k” nearest instances

and generates a class value from them (a local model dependent on the new instance

has been constructed). By containing imperfect values the dataset, the importance of

each instance (neighbor) in the output decision is based on relative distance/similarity

dimp(⋅, ⋅) (distance/similarity measures that support imperfect data) and its degree of

imperfection. Specifically, for each instance, two weights are calculated depending

on its degree of imperfection p(⋅) and its distance/similarity q(⋅).
Furthermore, the overall degree of imperfection in “k” nearest instances is mea-

sured, if it is too high, the classification is not performed. To establish the maximum

degree of imperfection, kNNimp method uses the parameter UI .

Once the local model is obtained (k nearest instances), kNNimp method combines

the information provided for each neighbor instance (weights p(⋅) and q(⋅)) to obtain

the set of possible weighted classes. The class with the highest score is chosen as

output, together with other classes whose score is similar to the highest. To assess if

a class should be included in the final output, this method uses the threshold UD.

The method obtains a fuzzy subset {𝜇(𝜔i)∕𝜔i} as possible values to the class

attribute of the new instance where 𝜇(𝜔i) =
∑k

j 𝜇
j(𝜔i)p(xj)q(xj)

∑k
j
∑

i 𝜇
j(𝜔i)p(xj)q(xj)

and 𝜇
j(𝜔i) is the mem-

bership degree of the j-th neighbor to the class value 𝜔i. Therefore, the method

assigns to the new instance the class 𝜔M = argmaxi{𝜇(𝜔i)} or the fuzzy subset

{𝜔M , 𝜔t}, with
𝜔M−𝜔t

𝜔M
> UD.

The kNNimp classifier is robust when working with imperfect data and maintains

a good performance when is compared with other methods in the literature, applied

to datasets with or without imperfection.

4 Conclusions

In data-driven application domains, the suitable use of available information is very

important. Because of this, it becomes increasingly necessary to design methods that

support different types of information (imperfect or not) and obtain more flexible
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models with an appropriate behavior. In this framework, the hybridization of the

tools provided by Soft Computing and Intelligent Data Analysis methods is a field

that is gaining more importance. In this work, some proposals that carry out this

hybridization obtaining quite satisfactory results are commented and analyzed. For

this reason we consider that it is a field in which new proposals must be made with

the objective of approaching the Intelligent Data Analysis process from datasets that

express the true nature of the information.
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Abstract The current economic context generates in supply chain management

greater demands for flexibility and dynamism. In addition, there is an increase in

uncertainty that adds more complexity to the problems associated with planning and

management. Soft Computing offers a set of methodologies capable of responding

to these challenges. This work provides an overview of transport and logistics prob-

lems, as well as the most representative combinatorial optimization models. Specifi-

cally, it focuses on the treatment of uncertainty through fuzzy optimization and meta-

heuristics methodologies. Promising results from the use of this approach suggest

emerging areas of application, which are presented and described.

1 Introduction

Logistical, transport and distribution planning have adapted to the evolution of new

business organization models. Distribution strategies and transportation decisions

are some of the main subjects in supply chain management and play an important

role in its success because they improve service quality, reduce costs and optimize

resources [20]. Supply chain management (SCM) involves all activities related to

integration, planning and control of product and information flows that are gener-

ated between suppliers and clients. The supply chain can be broken down into three
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Fig. 1 Cycles of the supply chain procurement, production and distribution

cycles, procurement, production and distribution (Fig. 1). The distribution cycle

refers to the activities and processes associated with storage and distribution [21].

One of the basic activities in the integral management of the supply chain is

implied planning and decision making. Three levels of planning are apparent: strate-

gic, tactical and operational [33]. Each one of these three levels is associated with

different time horizons and creates a distinct set of important problems which usu-

ally correspond to optimization problems. Thus long term strategic problems include

decisions on the number, size, location and capacity of the storage units and trans-

port; tactical decisions in the medium term are the design of the distribution network,

location and assignment of distribution zones/areas and the supply rate; and finally,

operational aspects, studied in the short term, such as the establishment of pickup

and delivery routes, and/or the organization of vehicle loading/unloading [67].

Methods/methodologies found in Soft Computing offer a useful alternative to

solve problems with this type of complexity [6, 58]. The design of Intelligent Sys-

tems to aid in decision making in real settings, such as transport and logistics plan-

ning, needs to take advantage of Soft Computing methodologies [37]. The design of

Intelligent Systems to aid in decision making in real settings, such as transport and

logistics planning, needs to take advantage of Soft Computing methodologies. The

quality of information is the most common scenario, especially in real-world appli-

cations, and this incomplete or imprecise information is reflected in the parameters

and variables. Fuzzy set theory offers an appropriate methodological framework to

approach this class of uncertainty, which is not the product of absence of informa-

tion, nor of a random nature, but instead of the imprecise nature of the expression.

Some solution techniques employ exact methods but in real-world problems, these

methods do not guarantee that an optimal solution will be found. Heuristic and meta-

heuristics techniques are important tools constituent of Soft Computing [81] to tackle

complex optimization problems. They are capable of evaluating possible alternatives

and determine the preferred solution in efficient time, by means of strategies that

integrate problem knowledge.

Our discussion is centered on problems and application of the levels of tactical

and operational transportation planning. Transportation planning concerns the short-

term planning of the distribution operations and mostly deals with the planning of
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deliveries to different customers. Typical considerations at this decision level are the

details of delivery routes: that is, at what exact times, by which vehicle, and in what

sequence customers will get their products delivered. In addition, location decision

problems may have to be made on these levels.

The aim of this chapter is to analyze some relevant and emerging problems and

application in transport and distribution. The application of fuzzy optimization in

this field can be significant. In addition to providing an overview of transport and

distribution problems and their models, the purpose is to give an overview of the

fuzzy optimization and metaheuristic approach for the treatment of uncertainty in

these models, to review their use and to propose new areas of application in real

practical problems.

The remainder of this chapter is organized as follows. Section 2 introduces the

Soft Computing based approach. Section 3 then presents a review of some problems

that we have considered emerging, which are of interest for the application of Soft

Computing methodologies, fuzzy optimization and metaheuristics. The chapter ends

with some conclusions in Sect. 4.

2 Soft Computing Based Solution Approach

This section describes the use of an approximation that integrates specific techniques

from Soft Computing, such as fuzzy optimization and metaheuristics. An outline of

how these techniques are applied in the resolution of classic transport and logistics

problems is also given.

2.1 Fuzzy Optimization

Fuzzy sets and systems are used to build computing systems to solve decision and

optimization problems whose modeling is difficult to define accurately, managing

the uncertainty and the imprecision of the available information, as well as of the

formulation of preferences, restrictions and objectives expressed by decision mak-

ers. If there is imprecision in some of the formulation components of the optimiza-

tion problem and we can express it with fuzzy terms then we are faced with fuzzy

optimization problem. Discussions concerning solutions do not focus on their feasi-

bility, nor if they are optimal solutions. We, in turn, have chosen to discuss the degree

of feasibility and optimality of the solution. Bellman and Zadeh [10] are the authors

who introduced the fundamentals for fuzzy optimization problems, where objectives

and constraints can be defined in an imprecise way and characterized using member-

ship function such as fuzzy sets. This approximation requires that the formulation

and problem solutions be dealt with adequately by making use of fuzzy number rep-

resentations and their operations.
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An optimization problem is described as the search for the value of specific deci-

sion variables x so that identified objective functions f (x) attain their optimum values.

The value of the variables is subject to stated constraints g(x). In these problems the

objective functions are defined on a set of solutions that we will denote by X. Thus, an

optimization problem can be represented by: max{ f (x) ∶ g(x) ≥ 0}, ∀ x ∈ X. When

some of its components are considered fuzzy, we are facing a problem of fuzzy opti-

mization. Among all optimization problems, Linear Programming are those whose

objective function and constraints are linear. The general model of Linear Program-

ming is formulated asmax{ f (xj, cj) ∶ g(xj, aij) ≥ bi, i = 1, ...,m, j = 1, ..., n, xj ≥ 0}.

In the formulation aij ∈ ℜm×n
is the technological matrix, bi ∈ ℜm

the resources,

cj ∈ ℜn
the costs and xj ∈ ℜn

the variables. Fuzzy Linear Programming (FLP) con-

stitutes the basis for solving fuzzy optimization problems and their solution methods

have been the subject of many studies in the fuzzy context. Different FLP models can

be considered according to the fuzzy components [80]. These models can be solved

in a direct and simple way, obtaining solutions that are coherent with their fuzzy

nature.

(a) Models with fuzzy constraints. In this case there is a certain tolerance in the

fulfilment constraints and consequently the feasible region can be defined as a fuzzy

set. This is max{ f (xj, cj) ∶ g(xj, aij) ≥f bi, i = 1, ...,m, j = 1, ..., n, xj ≥ 0}. In partic-

ular, Verdegay [79], using the representation theorem for fuzzy sets, proves a solu-

tion which can be obtained from the auxiliary model: max{ f (xj, cj) ∶ g(xj, aij) ≥f
bi + 𝜏i(1 − 𝛼), i = 1, ...,m, j = 1, ..., n, xj ≥ 0}, where 𝛼 ∈ [0, 1] and 𝜏 = (𝜏1, ..., 𝜏m)
is referred to as a violation tolerance level.

(b) Models with fuzzy cost. In this case the model is represented bymax{ f (xj, c
f
j ) ∶

g(xj, aij) ≥ bi, i = 1, ...,m, j = 1, ...n, xj ≥ 0}, where cf
j is a fuzzy number described

by its corresponding membership function 𝜇j(x). [23] prove that the solution can be

obtained with the multi-objective auxiliary model. We can also used a simple method

considering fuzzy solutions that are solved with the application of an ordered func-

tion h for the constraints [35], i.e. max{ f (xj, h(cj)) ∶ g(xj, aij) ≥ bi, i = 1, ...,m, j =
1, ...n, xj ≥ 0}.

(c) Models with fuzzy coefficients in constraints. This model considers a prob-

lem of the type max{ f (xj, cj) ∶ g(xj, a
f
ij) ≥f bf

i , i = 1, ...,m, j = 1, ...n, xj ≥ 0} where

the values of the technological matrix and the coefficients are fuzzy numbers and

are described by its corresponding membership function. Delgado et al. [22] also

include imprecision in the constraints. They propose considering fuzzy solutions that

are solved with the application of an ordered function h for the constraints. The new

formulation is expressed by the auxiliary problem: max{ f (xj, cj) ∶ g(xj, a
f
ij) ≥h bf

i +
𝜏

f
i (1 − 𝛼), i = 1, ...,m, j = 1, ...n, xj ≥ 0} where the symbol ≥h stands for a compar-

ison relation between fuzzy numbers, 𝛼 ∈ [0, 1] and 𝜏

f
i is a tolerance of fuzzy nature

set by the decision maker.
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2.2 Evolutionary Heuristic and Metaheuristics

In Artificial Intelligence (AI), the qualifier Heuristic is usually applied to all those

aspects related with the use of knowledge in the dynamic realization of tasks. Heuris-

tics are used to refer to any intelligent technique, method or procedure of performing

a task that is not the product of a rigorous formal analysis, but of expert knowledge

about the task. In particular, the term heuristic is used to refer to a procedure that tries

to provide solutions of a problem with a good performance, as regards the quality of

the solutions and the resources used. Successful heuristic procedures have emerged

in solving specific problems or performing difficult tasks. It has been tried to extract

from them what was essential in their success in order to apply it to other problems or

tasks, or in larger contexts. As has clearly occurred in various fields of AI, especially

with expert systems, this line of research has contributed to the scientific develop-

ment of the field of heuristics and to extend the application of its results. In this

way, both specific computational techniques and resources have been obtained, as

well as general design strategies for problem resolution heuristic procedures. These

general strategies for constructing algorithms, which go beyond heuristics, and go

further, are called Metaheuristics. Specific and elaborated heuristics for solving a

simple problem in a narrow context have usually better performance than any algo-

rithm based on metaheuristics. However, the metaheuristics tries to exploits other

kind of advantages. They can improve while are used, are flexible and adaptable.

They get good performance with low level of knowledge. Some recent reviews and

survey show the relevance of the methods [7, 11, 68, 90].

2.3 Fuzzy Optimization in Transport and Logistics Problems

Vehicle routing, scheduling, locations and relations between them are the most

important processes and decisions in transport and logistics. From a mathematical

point of view, they can usually be modeled as a combinatorial optimization problem.

The numerous applications of these problems include, among others, movement of

goods, public transport, fresh and perishable food distributions, courier services,

solid waste collection and caterers. Each problem has its own objectives, associated

with cost, available resources or quality of service which in general is expressed in

terms of time or distance. They also have their own specific constraints that may

reflect vehicle capacity, fleet size, warehouse number and capacity, collection and/or

delivery, points of loading/unloading, distances traveled and specific time windows.

Most of the transportation and logistics models reviewed in this work are based on

well-known problems.

Routing problems have been widely addressed in the literature and among them

the Vehicle Routing Problem (VRP) is one of the most widely studied [75]. VRP is

commonly defined as the problem of designing optimal delivery or collection routes

for a vehicle fleet from one or several depots to a set of geographically scattered
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demand points, under an extensive variety of conditions. Some real-life examples,

which are variants of the classic VRP with different constraints, are presented in [1].

Location problems (LP) deal with the optimal choice of a set of points for establish-

ing certain facilities that take into account different criteria and constraints. Several

models have been proposed to address these problems such as that of the P-median,

P-center or covering [56]. A literature review of facility location models in the con-

text of supply chain management is given in [49]. The Location routing problem

(LRP) models and solves the facility location problem by taking into account simul-

taneous route planning which implies an integrated solution. Two recent surveys

have been presented that describe models and variants investigated [25, 61].

In practical real-world problems decision makers use subjective knowledge or lin-

guistic information when making decisions, measuring parameters, objectives and

constraints and even when modeling the problem. In this context, a Soft Computing

approach, specifically fuzzy optimization and metaheuristics, is useful for solving

routing and location problems because they are flexible enough to deal with com-

plex systems, provide acceptable approximate solutions and therefore add value. Our

specific interest is in problems where various components are imprecise, treated as

fuzzy and addressed with fuzzy optimization and metaheuristics.

In the literature we can find several approaches, models and solutions of the VRP

considering some fuzzy component. The most widely discussed models are the ones

that have imprecision demand, time travel and time services. The fuzzy optimiza-

tion approach described in previous subsection are applied to VRP and some of its

variants [13, 14, 74].

Several authors formulate and solve fuzzy LP, on networks [51], on networks

using p-center [53], using p-median [15] or with covering [34]. Models of the fuzzy

LRP problem have also been presented such as the capacitated model with fuzzy

demands in [48] or a realistic version with more fuzzy components [31].

3 Applications and Emergent Problems

This section analyzes some relevant and emergent problems and application in trans-

port and logistics, in which the application of fuzzy optimization can be significant.

In addition to providing a synthesis of the existing literature on the subject, we give

an overview of the problem in the context of the field to help researchers better

understand the practical motivations where to apply methodologies. Thus it iden-

tifies the challenges and the direction in which future researches could be conducted

in this field. The relevant and emergent problems and applications selected to realize

an overview in the remainder of this section are Disaster Emergency Humanitarian

Logistics, City Logistics, Green Logistics, and Tourist Trip Logistics.



Soft Computing Methods in Transport and Logistics 51

3.1 Disaster Emergency Humanitarian Logistics

The International Federation of Red Cross and Red Crescent Societies defines a dis-

aster as a sudden, calamitous event that seriously disrupts the functioning of a com-

munity or society and causes human, material, and economic or environmental losses

that exceed the community‘s or society‘s ability to cope using its own resources.

Though often caused by nature, disasters can have human origins. Disaster impacts

more than 200 million people and produce around 75,000 fatalities every year [87].

The authors in [64] define emergency logistics as a process of planning, manag-

ing and controlling the efficient flows of relief, information, and services from the

points of origin to the points of destination to meet the urgent needs of the affected

people under emergency conditions. In this context, there are many challenges in

logistics that differ from those encountered in commercial supply chains. Some of

these challenges that introduce complexity and uncertainty are listed by [9] as:

∙ High level of uncertainty of demands in terms of capacities, travel times, locations,

etc.

∙ Limited resources in large scale disasters, lack of supplies, people, technology,

transportation capacity and money.

∙ Sudden changes in terms of demand, large resource demands in short time frames.

∙ Difficulties in achieving efficient and timely delivery.

In [17], an analysis of the literature is presented, showing the main optimization

models used in emergency logistics. Facility location, location-evacuation, location

with relief distribution and pre-positioning, relief distribution and casualty trans-

portation, resource allocation, commodity flow, resource allocation and commodity

flow, and other models are others just some of the cited models.

A survey of recent advances in bio-inspired meta-heuristics, including genetic

algorithms, particle swarm optimization, ant colony optimization, etc., for solving

emergency transportation problems is also presented in [92].

Optimization problems of emergency logistic involve complex systems introduc-

ing fuzzy sets and systems. In the literature there are several papers related to fuzzy

location and routing problem, for instance, in [66], a hybrid fuzzy optimization

methodology to solve the large-scale disaster relief distribution problem is presented.

The solution approach is made up of three steps. In the first step fuzzy clustering tech-

niques are used to classify the damaged areas, while the second and third steps use

FLP to deal with lack of resources. The authors in [65] provide a hybrid fuzzy cluster-

ing optimization approach to the operation of an emergency logistics co-distribution

center responding to the urgent relief demands in the crucial rescue period.

The fuzzy LRP is a research area with several papers in emergency logistics. In

[84] a model considering fuzzy demands of relief materials, timeliness and limited

resources is proposed. The objective function of the model minimizes the total cost

and the relief time of the system.
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Other papers focus on emergency logistics transportation path optimization using

fuzzy approaches. In [89] a multi-objective optimization model for emergency logis-

tics transportation path is proposed. Factors such as transportation time, safety factor

and transportation costs are described using trapezoidal fuzzy numbers in order to

deal with the uncertainty of these factors.

3.2 City Logistics

Urban mobility plays a key role in the promotion of the sustainable urban develop-

ment of a city. In particular, an efficient freight transport system is required as it plays

a significant role in its competitiveness and represents an important element for the

local economy regarding the employment and income that it generates [63]. Logis-

tics activities and operations, especially transportation and distribution of goods,

now receive a specific treatment which is known as urban logistics or city logistics.

This concept has its origins in the 1980s, it has become in the last decades more

relevant by the development of cities, the growing demands for supply that is more

efficient and concern about the negative impacts of it. Taniguchi et al. [73] defined

city logistics as the process for totally optimizing the logistics and transport activities

by private companies with support of advanced information systems in urban areas

considering the traffic environment, the traffic congestion, the traffic safety and the

energy savings within the framework of a market economy [73].

Urban distribution and transport of goods is an important part of urban logistics.

In cities complicated problems arise related to urban freight transport: demand of

higher levels of service in terms of time, need for better services with lower costs

for customers, use of fewer vehicles, better utilization of vehicle capacity, reduc-

tion of negative environmental impacts, lower energy consumption, reduction of

noise, contribution to traffic congestion, the use of alternative energies and improv-

ing safety [26]. In the next coming years, changes from increased e-commerce and

home delivery will be apparent. This growth reinforces the general trend in logistics

towards smaller consignments, single orders and thus higher delivery frequency and

an increase in vehicle movements within cities [83].

In urban areas, goods distribution services are the most important transportation

and logistics activities and are usually called the last mile. Clear examples of these

are courier express and parcel services food delivery, perishable products, milk and

newspaper, urban solid waste collection and emergency transport. Surveys about

these problems are available in [16, 41].

Important areas in urban freight routes are concerned with reduction of fuel con-

sumption and emissions [70], and the use of night delivery schemes [18]. In contem-

porary living the travel speed between locations varies throughout the day according

to traffic conditions, especially in urban areas. Therefore, it is necessary to adapt the

models with time-dependence for routing planning [27]. The effects of e-commerce

on the urban freight transport using vehicle routing and scheduling problem model

are studied in [36, 72].



Soft Computing Methods in Transport and Logistics 53

The design and development of city logistics systems requires the availability

of the models for the location of the logistics centers. The location of warehouse,

distribution centers and/or consolidation centers should be appropriately determined

for optimal operations [54]. On the other hand, depot location and vehicle routing are

two interdependent decisions and there are many authors who consider the integrated

problem of locating distribution centers in urban areas and the corresponding freight

distribution [52]. Recently, the authors in [38] investigate the combined impact of

depot location, fleet composition and routing decisions on vehicle emissions in city

logistics. When real-time information is available, dynamic models can support the

developed systems. For example, in [29] on-line re-optimization based on current

traffic information and soft time constraints are proposed.

All of these problems are subject to the uncertainty of the environment. In some

situations logistic problems cannot exactly specify attributes as either deterministic

numbers or probabilistic random variables and it is natural and realistic to express

vagueness and ambiguity in fuzzy terms and to solve the problem with a fuzzy

approach [88]. In the literature, Soft Computing methodologies have been considered

in routing, scheduling and location. But integrating such methods into city logistics

has not been fully considered and needs to be addressed. Only a few references are

found in the literature. In [45] a postal delivery in agglomerations with a large num-

ber of customers modelled as a street routing problem is solved using fuzzy clus-

tering. Customer clustering is also used for VRP and is solved in the framework of

urban freight transport [85]. Another paper studies the dynamic operational envi-

ronment of courier service with fuzzy time windows [44]. Location models [86] and

specifically the design of e-commerce distribution systems [40] complete the papers

found in the literature.

3.3 Green Logistics

For decades, the main goal of logistics has been to improve its objectives from a

purely economic point of view. Through this period logistics professionals have per-

petuated this economic and commercial paradigm by allowing organization and man-

agement logistics to focus on maximizing economic profitability. Economic perfor-

mance did not include costs such as environmental and social impact, instead it only

considered operational economic costs.

Nowadays there is a growing demand for multi-objective metrics associated with

logistical processes, where reduced operational costs and the negative impact of the

environment are some of the most common. As regards the last objective, logistic

stakeholders are pressured from public administrations and government to reduce

the environmental impact of their logistics operations. The environmental impact of

logistics companies can be measured in different ways such as generation of noise

and vibrations, air quality and the contribution to global warming.
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Mckinnon et al. [47] present a classification of the main pillars that compose what

we call green logistics:

∙ Reducing Freight transport externalities. The largest part of the research on the

environmental impact of logistics is due to growth of freight traffic volumes. As

a consequence, the search for ways of reducing freight-related externalities is a

priority.

∙ City Logistics. The study of transport efficiency and environmental impact of

logistics in urban areas. This topic will be further developed in later sections.

∙ Reverse Logistics. The logistic associated with waste product and packaging for

reuse, is a promising area of green logistics. The logistics of waste management

help to increase the proportion of waste material that is recycled and reused.

∙ Corporate environmental strategies. Companies have adopted and improved strate-

gies to reduce environmental impact and manage a balanced relationship with

nature. These strategies generate a wide range of actions on logistics operations

of the company.

∙ Green Supply Chain Management. This pillar can be defined as the alignment and

integration of environmental management within supply chain management. This

is based on that part of the environmental impact that is extended beyond their

own structure.

It is possible to find several surveys and literature reviews related to green logis-

tics. In [93] a review of combinatorial optimization problems related with green

logistics and meta-heuristics in the swarm intelligence field is proposed. A review

of Green Logistic Vehicle Routing Problems (GVRP) and a discussion of the next

wave of research into GVRP is presented in [43].

In general, the complex infrastructure of logistics and working in a dynamic busi-

ness environment imposes a high degree of uncertainty in the logistics process that

affects its overall performance. More specifically, there is a complex system present

in green logistics with highly imprecise parameters and environmental factors with

a complexity that requires fuzzy sets to be represented.

In the literature, it has been proven that green logistics belong to a wide range

of practical application areas. In most cases, these optimization problems involve

complex systems introducing fuzzy sets and systems. A literature review and a dis-

cussion of the applications of fuzzy green logistics focus on fuzzy optimization in

green transport are provided in the remaining part of this section.

There are several papers in literature related with green logistics and fuzzy

approaches, specifically in green routing problems. A transport spatial decision sup-

port model for the optimization of green routes for city logistics centers is presented

in [57], where the solution integrates a multi-criteria method of Weighted Linear

Combination and the modified Dijkstra algorithm with a geographic information sys-

tem for processing spatial data in order to minimize the environmental impact of the

routes. In freight transportation activities, [28] puts forward the use of green logis-

tics in order to reduce the negative impact on the environment considering demand

and travel time uncertainty.
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Other papers focus on aspects such as reverse logistics and green scheduling. In

[62], a bi-objective mathematical model in the distribution of perishable products

with specified expiration date in inventory routing problem is presented. In order to

solve the model the Torabi-Hassini method based on a fuzzy approach is applied. A

green train scheduling model with a fuzzy multi-objective optimization algorithm is

presented in [42]. In order to solve the problem and obtain non-dominated solutions

which has an equally satisfactory degree on both objectives, a fuzzy mathematical

programming approach is proposed.

3.4 Tourist Trip Logistics

The Tourist Trip Design Problem, (TTDP) [78] arises when a tourist visiting a tourist

area, for one or more days, and is interested in visiting a number of points of interest

(POI). The problem more specifically deals with the choice of the POIÂt’s of the

trip and the order to follow each day. Each one of these POIs is associated with sev-

eral features that are taken into account in the selection. The main features are the

minimum time required for the visit, the days and hours of operation, the cost of the

activities within the visit and some indicators of profit or degree of satisfaction that

could be perceived by the tourist for the visit. Information regarding distance, travel

time and cost between the POIs, and between these points and the hotel or stay resi-

dence of the tourist (start and end point of the trips), must also be taken into account.

This information together with some information about the tourist, such as his/her

preferences, budget and time limitations must be used to decide the trip selected for

each day of the stay at destination. The corresponding optimization problems have

received increasing interest in the tourist management and service in order to be

incorporated to recommenders, tourist planning tools and electronic guides. Since

most of the features that have to be used are subjective or subject to some level of

imprecision and vagueness, the fuzzy techniques and points of view have been used.

The problems may be complicated and made more realistic by considering addi-

tional features and constraints. Some of them are maximum budget (daily or com-

plete stay at destination), specific requirements on the minimum and/or maximum

number of days that the tourist visits to the POIs within a certain category (restau-

rants, beaches, historic sites, nature facilities, etc.), or on the number of visits to POIs

of a category some days. Travel times that depend on traffic congestion, weather

conditions, or the time of the day when traveling. Other realistic variants arise when

some of the POIs have time window constraints and the time used to visit them have

to be taken into account in the cost or profit of the visit. Finally, in realistic cases

evaluation of the profits or interest of the POIs depend on the already visited POIs

or some additional information [5].

The literature firstly distinguishes between problems with only one tour and with

several tours. Most research considers two opposed features or criteria: the profit and

the cost. In the single tour problem, the main variants are the Profitable Tour Problem

(PTP) where the objective is to maximize the difference between the profit and the
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total cost that has been considered in [24], the Prize Collecting Travelling Salesman

Problem (PCTSP) where the objective is to minimize the travel cost subject to a

minimum profit [2], and the Orienteering Problem (OP) where the objective is to

maximize the total profit subject to a limit on the travel costs that was introduced by

[77].

Problems with multiple tours are usually known as Vehicle Routing Problems

with Profit (VRPP), and the simplest version is the well-known Team Orienteering

Problem (TOP), which is an extension of the OP in which there is a fixed number m
of routes and m also corresponds to the number of days available to tourists.

There are other problems using different objective functions, such as the Prize-

Collecting VRP (PCVRP) [71] and the Capacitated Profitable Tour Problem (CPTP)

[3]. In PCVRP, the objective function is given by the combination of three different

objectives: minimizing the travel distance, minimizing the number of vehicles used

and maximizing profits collected, while in CPTP the goal is to minimize the differ-

ence between the total harvest profit and the total trip cost.

The Team Orienteering Problem has been extensively studied in the literature [4]

and several versions, such as the Team Orienteering Problem with Time Windows

(TOPTW) [76] and Time Dependent Team Orienteering Problem with Time Win-

dows [30].

The use of metaheuristics and fuzzy approaches are quite common in wide range

of recent TTDP and other routing problems. The early work [46] considers a fuzzy

routing problem for sightseeing. A Genetic Algorithm for the VRPTW with fuzzy

demand is applied in [91]. In [55] a supplier selection model using fuzzy logic is

developed. Several multi-objective metaheuristics are used in [69] to solve VRP with

fuzzy demands. Several authors [19, 59, 60] apply a Particle Swarm Optimization for

a VRP with fuzzy demands and [8] use Genetic Algorithm. The paper [94] deal with

the CVRPTW with fuzzy travel time and demand using a hybrid between Ant Colony

and Genetic Algorithm. A fuzzy capacitated location routing problem is solved in

[32] by applying a Simulating Annealing with a mutation operator. Recently [82]

apply fuzzy optimization to the orienteering problem, [39] apply a fuzzy Ant Colony

system to solve the dynamic vehicle routing problem with uncertain service time,

and [50] uses fuzzy number comparisons to deal with VRPTW with fuzzy scores.

Finally, [12] apply a GRASP for solving the TOP with fuzzy scores and constraints.

4 Conclusions

This review has focused on two major areas of Soft Computing applied to optimiza-

tion: metaheuristics and fuzzy optimization. Works in metaheuristics are numerous

and often applied in emerging logistics areas. Relevant works with metaheuristics

outperform other methods, such as exact algorithms. Fuzzy optimization methods

are less frequent in the literature, providing additional research opportunities for Soft

Computing in a very open and promising field.
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Applications of Soft Computing in Intelligent
Transportation Systems

Antonio D. Masegosa, Enrique Onieva, Pedro Lopez-Garcia
and Eneko Osaba

Abstract Intelligent Transportation Systems emerged to meet the increasing

demand for more efficient, reliable and safer transportation systems. These systems

combine electronic, communication and information technologies with traffic engi-

neering to respond to the former challenges. The benefits of Intelligent Transporta-

tion Systems have been extensively proved in many different facets of transport and

Soft Computing has played a major role in achieving these successful results. This

book chapter aims at gathering and discussing some of the most relevant and recent

advances of the application of Soft Computing in four important areas of Intelligent

Transportation Systems as autonomous driving, traffic state prediction, vehicle route

planning and vehicular ad hoc networks.

1 Introduction

New trends in business, commerce or leisure have increased the demand for more

efficient, reliable and safer transportation systems. This fact is claimed by differ-

ent national and international institutions, such as the OECD [49] or the European

Commission [20], just to name but a few. Some of the reasons behind the increasing
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importance of improving transportation systems are the offshore outsourcing of pro-

duction, the adoption of just-in-time distribution systems, the tight scheduling of per-

sonal and freight activities, the broadening of international trade, the large number

of people living in cities or the big amount of Green House Gases emission caused

by transport.

The development of Intelligent Transportation Systems (ITS) [18] is one of the

major areas of research that work in addressing these issues nowadays. ITS is a dis-

cipline that combines telecommunication, electronics, information technologies and

traffic engineering methodologies to provide innovative services associated to dif-

ferent modes of transport as well as traffic management in order to offer the users

more information and safety and to allow a more efficient and effective use of trans-

port networks. The benefits of these systems have been successfully proved in many

different transport environments [33].

Since their beginning around 1930 with the first electric traffic signals, ITS have

coped virtually all facets of transport given rise to different types of systems to

respond to the different problems that appear in each of those facets. Some of these

types of ITS are [23]:

∙ Advanced Traffic Management Systems (ATMSs) that aim at improving traffic ser-

vice quality by collecting data, supporting decision making to operators and con-

trol traffic in real-time with different systems.

∙ Advanced Travelers Information Systems (ATISs) which are design to help travel-

ers in the different stages of their trips by providing them information in real-time

about the best route to their destiny, the most appropriate schedule or transport

media, etc.

∙ Commercial Vehicles Operation Systems whose objective is to increase safety and

efficiency in commercial vehicles fleets, by combining different ITS technologies

with the intention of improving the management and control of vehicles as well

as the information available for drivers and decision makers.

∙ Advanced Public Transportations Systems (APTSs) that pursue the enhancement

of the operation of public transportation media (subway, tram, bus, etc.) with the

joint use of technologies from ATISs and ATMSs.

∙ Advanced Vehicles Control Systems (AVCSs) aims at assisting, alerting and taking

the whole or part of vehicle driving with the aid of several in-vehicle sensors,

computers and/or communication networks.

Soft Computing (SC) [75] has played a major role in the success of ITS in recent

years, especially because of the bigger amount of data provided and collected from

several sources by the different stakeholders involved in these systems as govern-

ments, industry and citizens [92]. ITS are an environment very appropriated to

applied SC techniques because the information handle present most of the features

for which SC was designed for. For example, the sensors usually present impreci-

sion in their measures; traffic is strongly affected by factors with a high uncertainty

as weather; and the decision making should take into account drivers’ or other users’

preferences which subject to a high vagueness and subjectivity. For these reasons,
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techniques such as fuzzy sets, neural networks, metaheuristics or probabilistic rea-

soning have been widely used by the research community in ITS.

This book chapter aims at gathering some of the most relevant and recent advances

of the application of SC in ITS in order to serve as a guide for student, researchers and

practitioners interested in this field. Concretely, we focus on four important areas of

ITS as the AVCSs for autonomous driving, the ATISs for the prediction of the future

state of the traffic, the CVOSs for the planning of routes of fleets of vehicles, as well

as one of the most important key enable technologies of future ITS, vehicular ad hoc

networks.

The manuscript is organized as follows. The next four sections are devoted to

review the application of SC in each of the ITS areas aforementioned in order of

appearance. After that, in the last section of the chapter, we discuss the main con-

clusions drawn from the works reviewed.

2 Soft Computing in Autonomous Driving

Autonomous driving has been one of the most benefited fields in ITS of the appli-

cation of SC, since, until recently, autonomous driving remained like one of those

problems that humans were able to manage better than machines [13].

The European Union has an ambitious road safety target for this decade: halving

the number of road deaths between 2010 and 2020. In 2014, almost 25,700 road

fatalities were reported in the EU, this is around 1% fewer deaths than reported in

2013 and 18% fewer than in 2010 [1].

Automation, and in particular digitalization of driving will change road transport

in a way which will be viewed as a revolution in the field of mobility. As human error

is the main reason for road traffic accidents, controlling the driving by a computer

is expected to make future road transport safer and more secure. A fully automated

mobility of vehicles in roads will have incredible potential impact in the society as

known until now. Benefits from such total automation of the vehicles will derive in

evident profits for society lowering costs and increasing safety, but also will provide

deep changes in the ways people and goods move around cities.

Car sharing [8] and car pooling [82] are two examples of emerging paradigms of

mobility that can deeply impact the mobility, if come accompanied by autonomous

driving of vehicles involved in the business models. Some authors study social ten-

dency of population to owning a vehicle in property, and question about the effect

that autonomous vehicles will cause in social perception of owning a car [76]. Philo-

sophical and ethical sciences are also influenced by the emergence of autonomous

vehicle applications, and researchers try to answer if humans are ready for utilitarian

autonomous vehicles [11]. As can be seen, not only technological but also societal

and business, among other fields of research, are involved in the study of the automa-

tion of vehicles.

In one hand, both the upgrade and lowering of the sensor and equipment neces-

sary for the processing of information needed by an autonomous vehicle to take a
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decision have made this field to receive interest from research groups from the entire

world. In the other, methods and algorithms able to deal in each one of the stages

involved in the driving of a vehicle (e.g. signal processing, decision making, control,

communication or planning) are performing really well nowadays. Both equipment

and methods are making nearer the day in which a fully autonomous driving is avail-

able for society.

It is known that the techniques under the topic of Soft Computing have a strong

capability of learning and cognition, as well as a good tolerance to uncertainty and

imprecision. Due to these properties they can be applied successfully to problems

derived by the driving of a vehicle. Methods associated to the field of Soft Computing

have been naturally used by researchers to take steps through the development of

autonomous vehicles.

In the remainder part of this section, some of the most relevant applications of Soft

Computing to the field of autonomous vehicles are discussed. These applications

are structured according to the main Soft Computing technique involved, concretely,

fuzzy logic, genetic algorithms and neural networks.

2.1 Fuzzy Logic in Autonomous Driving

Due to the ability of representing expert knowledge in the form of simple and legible

rules, fuzzy logic has been broadly used in the field of autonomous vehicles, mainly

in the development of control algorithms. In this case, control of a complex non-

linear system can be expressed in the form of a set of simple fuzzy rules (e.g. if

speed is too high, then press brake). Fuzzy based methods are specially indicated

when we try to emulate human control actions, such as human car driving [59].

Examples of the use of fuzzy rules for the control of the elements of an

autonomous vehicle can be found in the recent literature in large amount of exam-

ples. In [64], Rodriguez-Castao et al. used a Takagi-Sugeno-Kang fuzzy system for

GPS based autonomous navigation of heavy vehicles at high speed. Other example

can be found in [22], where Faddel et al. used a fuzzy system to manage the con-

troller for electric vehicle charging. The steering control of autonomous vehicles has

received important attention from researchers in fuzzy logic, examples of such inter-

est are [5], where the authors proposed an autonomous platooning system for trucks,

including steering control, in order to increase in traffic capacity. Motion planning

has been another topic where fuzzy logic has been applied. For instance, in [37], Kala

and Warwick implemented decision making over autonomous vehicle maneuvering.

Pedals control by fuzzy logic has been also tackled in several works, as [51] or [34].

2.2 Metaheuristics in Autonomous Driving

Metaheuristics, specially genetic and evolutionary algorithms, have been exten-

sively used, as optimization methods in the field of autonomous driving. Their main
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objective has been the tuning of control systems, decision making and improvement

of the efficiency of the overall traffic. In conjunction with fuzzy logic, as the way of

representing knowledge, these algorithms have been extensively used for optimizing

the distribution of membership functions, rule base or both, under the paradigm of

the genetic fuzzy systems.

In [19], Du et al. used a genetic algorithm to optimize a model predictive con-

troller for the simultaneous control of the steering and pedals of an autonomous

vehicle, taking the comfort of the passengers as an objective to optimize. A path

planning and scheduling method for fleets of autonomous vehicles was proposed in

[79]; in this work, Xidias et al. used a genetic algorithm to obtain a near optimum

solution for a problem resulting of combining both (planning and scheduling) ones. A

multi-objective genetic algorithm was used by Onieva et al. in [52] in order to gener-

ate speed profiles for autonomous vehicles to follow in order to cross an intersection

where no cooperation among vehicles is possible. Finally, parking trajectories have

also been candidates to be optimized by evolutionary algorithms [91].

2.3 Neural Networks in Autonomous Driving

Neural networks (NNs) provide a set of qualities that makes them extremely precise

for the representation of complex non-linear systems. They have been used in the

field of autonomous vehicles, in one hand, for the control of the actuators of the

vehicle, but also for the processing of the high amount of data received by the vehicle,

in particular under the field of computer vision.

Recently, with the explosion of deep learning paradigm [66], researchers have

defined a new framework where all the information available is used to train models,

which are increasing in accuracy as new elements are fed into the NN [15]. They have

been applied by a large number of researchers to the processing of visual information

captured by autonomous vehicles. In [36], Jia et al. used deep neural networks to

provide precise obstacle detection in front of an autonomous vehicle, as well as to

segment obstacles and infer their depths. A convolutional NN is used in [88] by Yang

et al. to classify roads signs in a hierarchical way, obtaining both the subclasses

within each superclass exposed in a picture. In combination with fuzzy logic, the

work by Barman et al. [7] presented a fuzzy-NN to guide an unmanned vehicle for

maintaining traffic rules to reach its goal and avoid obstacles. Examples of control

of actuators at a low level by means of NNs can be found in [17] for lateral, and [58]

for the longitudinal control of autonomous vehicles.

3 Soft Computing in Traffic State Prediction

According to the Eurobarometer 2014 about the quality of the transportation, the

preferred mode of transport in a typical day is the car, well above from urban public

transport. This issue, added to the fact that vehicles per capita have been increased in
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the last 10 years, has raised the efficiency of the transport to the level of fundamental

condition, especially in big cities. For these reasons, road trips are a key point inside

ITS, due to the importance in daily life not only for people but also for transportation

companies. Inside this subject, one field where different techniques are being used

during the last years with a high impact and reliable performance is the prediction

of the traffic state in freeway and urban scenarios. One of the principal challenges

in this field is to predict, with a certain level of confidence, possible traffic jams in

a short-term horizon. The principal advantage of the successful prediction of traffic

jams is the adaptation of decision making in the exact moment when different events

that may affect traffic, as for example accidents, occur. Another advantage is the

capability of calculating not only the travel time but also of planning the route to

follow before its beginning. If the user knows the probability of finding a traffic

jam in its route, he/she can avoid it by changing the route before or even during the

journey. In a general way, the successful prediction of traffic jams can lead to the

decrease of travel time, the reduction of CO2 emissions as well as fuel consumption,

or the decrease of acoustic contamination in urban and freeway environments.

Following the same guidelines of the previous section, some relevant applications

of Soft Computing in traffic state prediction are reviewed. Concretely, the application

of the three components of Soft Computing most commonly used in this topic as

neural networks, fuzzy logic and probabilistic reasoning.

3.1 Neural Networks in Traffic State Prediction

In the last years, traffic congestion prediction is one of the fields where NNs have

been widely used, as can be seen in literature. For example, in [42], Kumar et al.

applied a NN to predict traffic congestion using historical traffic data. Volume, speed,

density, and both time and day of the week were used as input variables. The model

was validated using rural highway traffic. Another case was presented in [50] by Oh

et al., where Gaussian mixture model clustering is combined with a NN to create an

urban traffic flow prediction system. The system forecasts traffic flow by combining

road geographical and environmental factors with traffic flow properties obtained by

the use of detectors. Another type of NNs, called Back Propagation NN (BPNN) is

used to forecast campus traffic congestion level in [90]. The results are compared

with a Markov model, and the BPNN achieved higher accuracy and more stable

performance.

In [41], Koesdwiady et al. used a deep belief networks to enhance prediction

accuracy using weather conditions. The study had two objectives: to investigate a

correlation between weather parameters and traffic flow, and to improve traffic flow

prediction accuracy. The data used for this paper was originated from San Francisco

Bay area of California. A Big Data-based framework was adopted in [68] by Soua et

al. to address the problem of short-term traffic flow prediction. Deep belief networks

are used to independently predict traffic flow using historical traffic flow and weather

data, and event-based data.
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3.2 Probabilistic Reasoning in Traffic State Prediction

Authors of [4] presented an hybrid approach of parametric and nonparametric meth-

ods such as an ensemble of Kalman Filter and NNs in order to improve the travel

time prediction of journeys that starts from 15 to 30 min in the future. Kalman Filter

was combined with ARIMA in [80], where the ARIMA model is built using histor-

ical traffic data. After that, the model is integrated with a Kalman Filter to construct

a road traffic state prediction algorithm. Four road segments in Beijing were adopted

for the case studies accomplished.

In [24], Fusco et al. hybridized Bayesian networks and NN to create short-term

prediction models using as data the link speeds recorded on the metropolitan area

of Rome during 7 months. Other example where Bayesian networks are applied to

short-term traffic prediction was presented in [81]. In the mentioned paper, traffic

flow is predicted using a Bayesian multivariate adaptive-regression splines model.

Data is collected from a series of observation stations along the freeway Interstate

205 in Portland, USA, and used to evaluate the performance of the model. Results

were compared with different methods, as ARIMA, seasonal ARIMA, and a Kernel

method Support Vector Regression.

3.3 Fuzzy Logic in Traffic State Prediction

As mentioned above, fuzzy logic allows to process imprecise information using IF-

THEN rules, which helps to the interpretation of the final model. One of the most

used and known types of fuzzy systems are Fuzzy Rule Based Systems (FRBS),

which can be divided into Mamdani and Takagi-Sugeno-Kang (TSK) systems.

Besides, another kind of systems, based in the previous ones, are called Hierarchi-

cal FRBS (HFRBS). This class of systems counts with several FRBSs, which are

joined in a way that the output of one of them is connected to the input of another

one. Depending of the structure of the hierarchy, those systems can be divided into

parallel, serial, and hybrid [9].

In traffic congestion prediction, those systems have been used in [93, 94] to

develop a congestion prediction system employing a large number of input vari-

ables. In these papers, a Steady-State GA is applied to tune the different parts of the

FRBSs. A related work is presented in [45], where Lopez-Garcia et al. used a hybrid

algorithm that combines GA and Cross Entropy method to tune a HFRBS in order to

predict congestion in a freeway in California with time horizons of 5, 15, and 30 min.

An extension of that work is presented in [46], where state-of-the-art techniques are

compared with the results obtained by the tuned HFRBSs in different traffic con-

gestion datasets. Finally, another interested paper in this topic was presented in [53]

Onieva et al. where the authors compare the performance of several Evolutionary

Fuzzy and Crisp Rule Based methods for traffic congestion prediction.
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4 Soft Computing in Vehicle Route Planning

Other field in which soft computing techniques have demonstrated an outstanding

performance is vehicle route planning or vehicle routing problems. Nowadays, route

planning is a widely studied field in which the most used and well-known problems

are the Traveling Salesman Problem (TSP) [43], and the Vehicle Routing Problem

(VRP) [44], being the focus of a big amount of studies in the literature.

The reasons for the importance and popularity of this kind of problems are both

scientific and social. On the one hand, most of the problems arising in this field

have a great complexity since they belong to NP-Hard class. For this reason, their

resolution supposes a major challenge for the scientific community. On the other

hand, routing problems are usually built to address real world situations related to

logistics, transportation, electronics, robotics, etc.

The first part of this section is focused on metaheuristics, whose application in the

resolution of these optimization problems has been very successful. The second part

revolves around the use of fuzzy logic in routing problems, describing some relevant

works published in the last years.

4.1 Metaheuristics in Vehicle Route Planning

Metaheuristics have been widely used for the solving of routing problems in the

last decades, becoming the state-of-the-art in the resolution of many of the vari-

ants of these problems. One of the first metaheuristics applied in this context was

Simulated Annealing (SA) [74]. For example, in [47], Malek et al. presented a ser-

ial and parallel SA for solving the TSP. Other example of the application of this

technique for route planning is the work published by Chiang and Rusell [16], in

which the VRP with Time Windows is solved using a SA. More recently, Baos et al.

developed a parallel variant of SA, called Multiple Temperature Pareto SA in [6], to

also solve the VRP with Time Windows with very successful results. Another well-

known stochastic local search, Tabu Search (TS), has been also frequently used for

solving route planning problems. A recent work on this topic is the one presented by

Escobar et al. in 2014 [21], in which they proposed a hybrid granular TS for tackling

the challenging Multi-Depot VRP. Briefly explained, the proposed method considers

different neighborhoods and diversification strategies, with the aim of improving the

initial solution obtained by a hybrid procedure. The Variable Neighborhood Search

(VNS) has also demonstrated its efficiency in this area. An interesting example is

the work presented in [14], in which Carrabs et al. proposed a VNS for solving a

multi-attribute version of the TSP: a Pickup and Delivery TSP with LIFO Loading.

More concretely, the authors of this paper introduce three new local search opera-

tors, which are then embedded within a VNS. In a more recent publication, Sarasola

et al. [65] developed a VNS for facing a stochastic and dynamic VRP. This version

of the VRP contemplates two different features. The first one is stochastic demand,
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which is only revealed when the vehicle arrives at the customer location. The second

feature is the dynamic request, meaning that new orders from previously unknown

customers can be received and scheduled over time.

Furthermore, evolutionary methods have also shown a great performance for this

sort of problems, being Genetic Algorithms (GA) one of the most successful ones.

The work presented by Vidal et al. in 2013 is an example of this fact [77]. In this

research, a hybrid genetic algorithm with adaptive diversity management is imple-

mented for tackling the VRP with time windows. Another example is the survey

paper published by Karakatič and Podgorelec in 2015 [39], which collects some of

the most important works focused on the application of the GA to the multi-depot

VRP.

Additionally, since the appearance of GA in the early 1970s, a wide variety

of nature-inspired metaheuristics have also appeared in literature. Some of these

recently proposed methods are the Firefly Algorithm (FA) and the Bat Algorithm

(BA). The FA was proposed by Yang in 2008 [84]. This meta-heuristic has been

applied to a wide range of optimization fields and problems since its proposal [87],

and it has also shown a promising performance for routing problems. In [35], for

example, Jati and Suyanto presented the first application of the FA for solving the

TSP. In order to do that, authors adapt the FA, which was firstly proposed for tack-

ling continuous problems, providing it with an evolutionary and discrete behavior.

Another interesting example of application is the one presented in [3] by Alinaghian

and Naderipour, in which a hybrid version of the FA is proposed to solve a time-

dependent VRP with multi-alternative graph, in order to reduce the fuel consump-

tion. The developed hybrid version of the FA is a Gaussian Firefly Algorithm. The

most interesting part of this paper is the real-world use case that authors presented,

focused on a distribution company, established in Esfahan, Iran. Additionally, in [56]

Osaba et al. also shown that the FA is able to face complex routing problem, such as

the asymmetric and clustered VRP with simultaneous pickup and deliveries, variable

costs and forbidden paths. Finally, in [54], the same authors presented a evolution-

ary discrete FA with a novel operator to deal with VRP with time windows with

successful results.

Regarding the other nature-inspired method mentioned above, the BA, it was pro-

posed by Yang in 2010 [85]. As can be read in several surveys [86], the BA has been

successfully applied to different optimization fields and problems since its proposal.

Focusing in routing problems, several recent papers have shown that the BA is a

promising technique in vehicle route planning. For example, in [70], Taha et al. pre-

sented an adapted version of this algorithm for solving the well-known Capacitated

VRP. The Adapted BA developed in that study allows a large diversity of the popu-

lation and a balance between global and local search. Zhou et al. addressed the same

problem in [95]. In that paper a hybrid BA with path relinking is described. This

approach is constructed based on the framework of the continuous BA, in which

the greedy randomized adaptive search procedure and path relinking are effectively

integrated. Additionally, with the aim of improving the performance of the tech-

nique, the random subsequences and single-point local search are operated with

certain probability. In [55], Osaba et al. presented an improved adaptation of the
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BA for addressing both symmetric and asymmetric TSP. The results shown that the

improved version of BA could obtain promising results, in comparison with some

reference techniques, such as an evolutionary simulated annealing, a genetic algo-

rithm, a distributed genetic algorithm or an imperialist competitive algorithm.

We want to highlight that the meta-heuristics referenced in this section form a

small part of all different approaches that can be found in current literature. We are

aware that many other interesting and efficient techniques are available in the scien-

tific community, such as the Harmony Search [27], or Gravitational Search [61, 62],

which also show a good performance when they are applied to routing problems.

Additionally, many additional classic methods have also shown a great performance

for this kind of problems, such as the Particle Swarm Optimization [89], the Ant

Colony Optimization [63] or Large Neighborhood Search [60].

4.2 Fuzzy Logic in Vehicle Route Planning

The use of fuzzy systems is also an important topic in the field of vehicle routing

problems. In real situations, these problems are susceptible to suffer imprecision

or uncertainty in their data. Many works in literature show that one of the most

successful ways to tackle with this uncertainty and imprecision in the information

available when solving vehicle route planning problems, it is the use of fuzzy logic.

In this way, we can find interesting studies in the literature, such as the one pre-

sented in [29], in which Ghannadpour et al. proposed a multi-objective dynamic

vehicle routing problem with fuzzy time windows. In this research, authors not only

describe the problem, but also the main real-world applications that it could have.

The constraints related with travel times and user satisfaction are some of the most

subject to uncertainty and imprecision. Apart from the previous work, this type of

imprecision is modelled in other studies such as the one presented by Tang et al.

in [71], in which a VRP with fuzzy time windows is proposed and solved using a

two-stage algorithm which decomposes the problem into two subproblems. An addi-

tional example of this trend is the work proposed in [28], in which a multi-objective

dynamic VRP with fuzzy travel times and customers’ satisfaction level is presented.

Specifically, the customers’ satisfaction level is considered in the route planning of

vehicles by using the concept of fuzzy time windows. Additionally, the dynamic

solving strategy proposed is based on a genetic algorithm, and its performance is

evaluated on various test problems generalized from a set of static instances in the

literature. Other interesting application of fuzzy logic for vehicle routing problems

are the works presented in [12], where Brito et al. proposed a variant of the close-

open VRP with fuzzy time windows and fuzzy vehicle capacity, and [72], where

Torres et al. solved a variant of the Truck and Trailer Routing Problem where the

imprecision in the capacity of the truck and the trailers is modeled by fuzzy logic.
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5 Soft Computing in Vehicular Ad-Hoc Networks

Vehicular Ad-Hoc Networks (VANETs) are communication networks in which the

nodes are vehicles [32]. This field has attracted the attention of the scientific com-

munity, automobile industry and institutions worldwide because of the huge number

of innovative applications they can enable [57]. Among the areas of application,

some of the most relevant are: security (warnings about emergency break, collision

at intersection, line shift, etc.); leisure and entertainment (multimedia content down-

load, nearby points of interest, etc.); traffic management (virtual traffic lights, limited

access zones, electronic tolls, etc.); and driver assistance (remote diagnosis; effi-

cient and eco-driving; etc.). The communications that take place within VANETs

can be classified in Infrastructure-to-Infrastructure (I2I), Infrastructure-to-Vehicle

(I2V), Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) depending on

which agent is the transmitter and the receptor.

VANETs are an especially complex environment because of the high dynamism

in the movement of the vehicles, communication failures, different driver profiles,

high variability of nodes and interconnections, etc. For this reason, data handled

in VANETs is subject to imprecision, uncertainty and vagueness which make it

an excellent field for the application of Soft Computing techniques. This section is

devoted to review some of these applications. Concretely, the next subsections will

show, in this order, applications in VANETs of three components of Soft Computing

as metaheuristics, fuzzy sets and neural networks.

5.1 Metaheuristics in Vehicular Ad-Hoc Networks

In the context of VANETs, several complex optimization problems appear, in which

metaheuristics have shown to be an excellent tool to solve them. One of the first

works in which metaheuristics were applied to VANETs can be found in [26]. Here,

Garcia-Nieto and co-authors proposed the used of these techniques to optimize the

File Transfer Protocol Configuration. Concretely, they optimized the parameters of

the Vehicular Data Transfer Protocol, which operate over the transport layer protocol

of VANETs, in order to allow end-to-end communications. To address this problem,

they test five different metaheuristics over two scenarios that simulated urban and

highway environments. The authors concluded that the metaheuristics reduced the

transmission time in a 19 and 25.43% in urban and highway scenarios, respectively,

when they were compared to the configuration provided by a human expert. A similar

approach was followed by the same authors in [73]. In this case, the five metaheuris-

tics mentioned before were employed to find the optimal configuration of the Open

Link State Routing protocol for VANETs. The results showed again a significant

improvement in terms of Packet Delivery Ratio (PDR), network routing load and

End-to-End Delay (E2ED) in comparison to standard and expert configurations.



74 A.D. Masegosa et al.

Another optimization problem from VANETs that has been addressed with meta-

heuristics is multi-cast routing. Souza et al. presented in [69] a tree based multi-

cast routing protocol called MAV-AODV. Here, the Ant Colony Optimization’s

pheromone mechanism is used to establish a quality measure of the stability of the

routes. The new method was tested over a simulated Manhattan scenario and com-

pared with the MAODV protocol. MAV-AODV obtained a better performance than

MAODV in terms of E2ED, overhead and PDR. Other example of routing protocol

inspired in metaheuristics was presented in [10]. This unicast and multipath pro-

tocol, called HyBR, used two types of routing procedures: a topology-based and

a geographic-based routing procedure for high and low density scenarios, respec-

tively. The first one was inspired in the working of bee swarm optimization whereas

the second one used a genetic algorithm to optimize the route between the origin

and the destiny. The experimentation was done over high density and a low density

scenarios and the performance measures considered were the average E2ED, PDR

and normalized overhead load. HyBR outperformed AODV and geography-based

routing protocol (GPSR) in the first two measures but not in the last one.

A more recent application of metaheuristics in VANETs is given by Masegosa et

al. in [48]. This work is focused on information dissemination from a central server to

vehicles by means of Virtual Infrastructures (VIs). The selection of the nodes of the

VI is modelled as a covering location problem and it is solved by means of a genetic

algorithm. The main challenge for metaheuristics in this environment was the short

response time imposed by the latency requirements of some VANET’s applications.

The experimentation over a real scenario with 45 vehicles indicated that the proposal

outperforms another state-of-art method based on a deterministic greedy strategy,

called NAVI.

5.2 Fuzzy Logic in Vehicular Ad-Hoc Networks

Fuzzy set theory has been also applied in different areas of VANETs. For example,

in [30], Abdel Hafeez et al. presented a Cluster Head (CH) selection mechanism that

made use of a fuzzy inference system. CH selection is one of the main challenges of

cluster-based medium access control protocols, whose aim is to improve the access

and capacity of the network among other aspects. The previous mechanism elected

the CHs dynamically and taking into account a stability criteria. The fuzzy inference

system was used to predict the future position and speed of all cluster members using

as input the inter-vehicle distance and speed. The procedure proposed outperforms

CMCP [31] and APROVE [67] protocols.

Another fuzzy inference system was presented in [78] to design a multi-hop

broadcast protocol, named FUZZYBR. In a more specific way, the fuzzy inference

system was employed to select the relay nodes considering variables with a high

degree of imprecision and uncertainty as the inter-vehicle distance, mobility and

signal strength. The evaluation of the methods was done over simulated freeway and

street scenarios, and the proposal was compared with other broadcast protocols as
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Flooding, Weighted persistence, MPR and Enhance MPR. The results confirmed a

significant performance advantage of FUZZYBR over the mentioned protocols in

terms of PDR, E2ED and number of messages per data package. In [25], Galaviz-

Mosqueda et al. utilized FUZZYBR and another multi-hop broadcast protocol based

on fuzzy inference systems, and called RLMB, to test the use of genetic fuzzy sys-

tems. The motivation of the authors was to adjust the membership functions of the

fuzzy rules of the two protocols by means of a genetic algorithm, in order to obtain

a better performance than the one with expert tuning. The results confirmed their

hypothesis, and the two versions of FUZZYBR and RLMB automatically tuned with

the genetic algorithm significantly improved the performance of the counterparts

heuristically configured by humans.

Fuzzy control was also applied in VANETs to adapt beaconing rate to the changes

in traffic density that usually occur along time. This mechanism, called ABR, was

proposed in [96] where the authors developed a method in which a rule-based system

adapted the frequency of beacon broadcasting taking into account the percentage of

vehicles traveling in the same direction and the emergency status of vehicles. The

simulations showed how this method reduced the beaconing load at the expense of

cooperative awareness between vehicles.

5.3 Neural Networks in VANETs

One of the first works that suggested the application of NNs to VANETs can be found

in [40]. In this paper, the authors aimed at demonstrating the benefits of VANETs

on traffic safety, and concretely for designing an Accident Prevention Application

(APA). To this end, they proposed, in a first stage, the use of a Markov Reward

Process to estimate the expected time until an accident will happen, taking into

account the traffic states observed so far; and in a second stage, the use of NNs to

make these estimations when there are unobserved traffics situation. To this end, the

NNs should have been trained with known pairs (state, expected time). The authors

claimed that, in this way, they provided the basis for the analysis of VANETs and

their impact on traffic safety.

In a more recent paper [83], Yang et al. combined ANN and VANETs to develop

a short-term average-speed forecast and adjustment approach to improve gas con-

sumption, decrease CO2 emissions and reduce travel time. In the proposed method, a

Traffic Information Center (TIC) collected average speed from vehicles and road side

sensors through VANETs. Then, the TIC trained a NN with average speed, weather

information and traffic flow to predict the average speed. The predicted speed was

then sent to the CH that adjusted the prediction according to the observed speed. The

simulations done showed an important improvement in the accuracy of the average-

speed predictions when the system was compared versus a hybrid approach.

Another important issue in VANETs handled with NNs is security and vulner-

ability, given that VANETs are even more exposed than other similar networks. A

good example of this application can be found in [2], where the authors employed
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NNs to build an Intrusion Detection System (IDS) to prevent Denial of Services

(DoS) attacks. Concretely, the aim of the NN was the real-time detection of mali-

cious vehicles in order to isolate them from the network. With this purpose in mind,

the authors generated data for normal and malicious vehicles through simulations.

From this data, they extracted relevant features and a pre-processed dataset that it

was used to train the NN. The experimentation showed that the system obtained an

error rate of 2.05%, confirming its effectiveness. Other example of the application

of NNs for security in VANETs has been recently presented in [38]. The authors of

this work developed a Deep NN (DNN) for an IDS to secure in-vehicular networks

that use the CAN protocol. Concretely, the proposed IDS considered a scenario in

which malicious data-package are injected into the in-vehicle CAN bus. The DNN

was trained with labeled (i.e. normal or attack) and preprocessed CAN packets to

extract features that model the statistical behavior of the network. In the detection

phase, each CAN packet was pre-processed and passed to the trained DNN to make

the binary decision. The experimentation demonstrated that the approach obtained

a 98% detection ratio in real-time response to attacks.

6 Discussions

In this book chapter we have presented an overview of application of SC to four

important areas of ITS: autonomous driving, traffic state prediction, vehicle route

planning and VANETs. Our overview has shown that SC techniques are an effective

and efficient framework to deal with many of the problems that arise in those areas

and therefore, to develop better performing ITS.

The main reasons behind the success of SC in the four ITS areas aforementioned

is associated with the recent trend in ITS to follow a data-driven approach; and the

inherent tolerance of SC techniques to deal with the imprecision, uncertainty and

vagueness, omnipresent in the information handled in this complex environments,

and their ability to provide cost-effective solutions.

To finish, we would like to point out that the emergence of new ITS technologies

such as autonomous cars, electric vehicles, more advance VANETs or Unmanned

Aerial Vehicles will probably boost a shift paradigm, along the next decade, in the

way in which goods and persons are transported nowadays. SC plays and will play a

major role in this shift so we augur a great future for the application and development

of SC techniques in this field.
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Abstract Fuzzy Cognitive Maps (FCMs) have proven to be a suitable methodology

for the design of knowledge-based systems. By combining both uncertainty depic-

tion and cognitive mapping, this technique represents the knowledge of systems that

are characterized by ambiguity and complexity. In short, FCMs can be defined as

recurrent neural networks that include elements of fuzzy logic during the knowledge

engineering phase. While the literature contains many studies claiming how this Soft

Computing technique is able to model complex and dynamical systems, we explore

another promising research field: the use of FCMs in solving pattern classification
problems. This is motivated by the transparency of the decision model attached to

these cognitive, neural networks. In this chapter, we revise some prominent advances

in the area of FCM-based classifiers and open challenges to be confronted.

1 Introduction

In the last years, Fuzzy Cognitive Maps (FCMs) [12] have notably increased their

popularity within the scientific community. They constitute a suitable tool for the

designing of knowledge-based systems, where one of the most relevant character-

istics is the interpretability of the network topology. Not many computer science

techniques can claim this valuable feature.

From the structural perspective, an FCM can be defined as a fuzzy digraph that

describes the underlying behavior of an intelligent system in terms of concepts
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(i.e., objects, states, variables or entities). Such concepts comprise a precise mean-

ing for the problem domain under analysis and they are connected by signed and

weighted edges that denote causal relationships.

The sign and intensity of causal relations involve the quantification of a fuzzy

linguistic variable that can be assigned by experts during a knowledge acquisition

phase [13]. These elements recurrently interact when updating the activation value

of each concept (or simply neuron). In point of fact, an FCM exploits an activation

(state) vector by using a rule similar to the standard McCulloch-Pitts scheme [15].

Therefore, the activation value of each neuron is given by the value of the trans-

formed weighted sum that this processing unit receives from connected neurons on

the causal network. This activation value actually comprises an interpretable feature

for the physical system under investigation. More explicitly, the higher the activation

value of a neuron, the stronger its influence (positive or negative) over the connected

neural entities. Of course, this influence also depends on the intensity of the causal

relations connecting the actual neuron with the other neural processing entities.

FCM-based models can be understood as a kind of recurrent neural networks
that support backward connections that sometimes form cycles in the causal graph.

These backward relations (called feedback) enable the network to handle memory

to compute the outputs of the current state and maintain a sort of recurrence to the

past processing [6]. During the inference phase, the updating rule is repeated until

the system converges to a fixed-point attractor or a maximal number of iterations is

reached. The former implies that a hidden pattern was discovered [12] while the latter

suggests that the outputs are cyclic or completely chaotic. Whichever the observed

behavior, the recurrent network will produce a response (i.e., state vector) at each

discrete-time step, which comprises the activation degree of all neurons of the model.

Although FCMs inherited many aspects from other neural models (i.e., the

reasoning rule), there are some important differences regarding to other types of

Artificial Neural Network (ANNs). Classical ANN models regularly perform like

black-boxes, where both the neurons and the connections do not have a clear mean-

ing for the problem itself, or results cannot easily be explained by the same predicting

model. However, all neurons in an FCM have a precise meaning for the physical sys-

tem being modeled and correspond to specific variables that form part of the solution.

It should be highlighted that an FCM does not comprise hidden neurons since these

entities could not be interpreted nor help at explaining why a solution is suitable for a

given problem. If this were the case, the model becomes unfriendly for many further

phases.

In the last years, FCMs have been widely studied due to its advantageous char-

acteristics for handling complex systems. Less attention has been given to the

development of FCM-based classifiers. Pattern classification [4] is one of the most

ubiquitous real-world problems and certainly one at which humans really excel. It

consists of identifying the right category (among those in a predefined set) to which

an observed pattern belongs. These patterns are often described by a set of predic-

tive attributes of numerical and/or nominal nature called features. Some successful

classifiers include: artificial neural networks [7], support vector machines [8] or ran-

dom forest [2]. Regrettably none of these black-box classifiers provides an inherent
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introspection into the reasoning process associated to the decision model. However,

in some areas where machine learning models are applied, the transparency in their

predictions is crucial.

Aiming at developing a novel classification model, Papakostas et al. [31, 32]

introduced the notion of FCM-based classifier. The most prominent challenge to

be confronted when constructing an FCM-based classifier relies on the approach to

connect input and output neurons. It should be remarked that the topology of an

FCM-based classifier must comprise a coherent and precise meaning for the physi-

cal system under investigation. This suggests that the intervention of human experts

to define the network topology is usually required.

The development of accurate learning algorithms for computing the required

parameters is another issue that deserves attention. In the literature, several unsu-

pervised and supervised learning methods have been recently proposed [29]. These

algorithms are mostly focused on computing the weight matrix that define the seman-

tic of the whole cognitive system. However, the prediction capability of an FCM-

based classifier does not exclusively depend on the weight set. Other aspects such as

the network’s capability the represent the problem domain or the convergence issues

are equally important.

In this chapter, we focus on main advances on FCM-based classification and chal-

lenges that remain open problems for the scientific community. The rest of the manu-

script is structured as follows. Section 2 briefly surveys theoretical aspects related to

FCMs. Section 3 discusses about the transparency and usability of models for under-

standing the decision process. Section 4 describes the use of FCMs in the context of

pattern classification. Section 5 describes the FCM-based models where input neu-

rons denote information granules rather low-level features. To conclude, Sects. 6 and

7 will wrap-up the paper and highlight the main points of view of this proposal.

2 Fuzzy Cognitive Maps

FCMs can be seen as recurrent neural networks with interpretability features that

have been widely used in modeling tasks [11]. They consist of a set of neural process-

ing entities called concepts (neurons) and their causal relations. The activation value

of such neurons regularly takes values in the [0, 1] interval, so the stronger the acti-

vation value of a neuron, the greater its impact on the network. Of course, connected

weights are also relevant in this scheme. The strength of the causal relation between

two neurons Ci and Cj is quantified by a numerical weight wij ∈ [−1, 1] and denoted

via a causal edge from Ci to Cj.

There are three possible types of causal relationships between neural processing

units in an FCM-based network that express the type of influence from one neuron

to the other, which are detailed as follows:
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∙ If wij > 0 then an increase (decrement) in the cause Ci produces an increment

(decrement) of the effect Cj with intensity |wij|.

∙ If wij < 0 then an increase (decrement) in the cause Ci produces an decrement

(increment) of the neuron Cj with intensity |wij|.

∙ If wij = 0 then there is no causal relation between Ci and Cj.

Equation 1 shows the Kosko’s activation rule, with A(0)
being the initial state. This

rule is iteratively repeated until a stopping condition is met. A new activation vector

is calculated at each step t and after a fixed number of iterations, the FCM will be

at one of the following states: (i) equilibrium point, (ii) limited cycle or (iii) chaotic

behavior [12]. The FCM is said to have converged if it reaches a fixed-point attractor,

otherwise the updating process terminates after a maximum number of iterations T
is reached.

A(t+1)
i = f

( M∑

j=1
wjiA

(t)
j

)

, i ≠ j (1)

The function f (⋅) in Eq. 1 denotes a monotonically non-decreasing nonlinear func-

tion used to clamp the activation value of each neuron to the allowed interval. Exam-

ples of such functions are the bivalent function, the trivalent function, and the sig-

moid variants [37].

We put emphasis in the sigmoid function since it has exhibited superior prediction

capabilities [3]. Equation 2 formalizes the non-linear transfer function used in our

conducted researches, where 𝜆 is the sigmoid slope and h denotes the offset. Several

studies reported at [1, 10, 14, 17, 27] have shown that such parameters are closely

related with the network convergence.

f (Ai) =
1

1 + e−𝜆(Ai−h)
(2)

Equation 1 shows an inference rule widely used in many FCM-based applications,

but it is not the only one. Stylios and Groumpos [36] proposed a modified inference

rule, found at Eq. 3, where neurons take into account its own past value. This rule is

preferred when updating the activation value of neurons that are not influenced by

other neural processing entities.

A(t+1)
i = f

( M∑

j=1
wjiA

(t)
j + A(t)

i

)

, i ≠ j (3)

Another modified updating rule was proposed in [28] to avoid the conflicts emerg-

ing in the case of non-active neurons. Being more explicit, the rescaled inference

depicted in Eq. 4 allows dealing with the scenarios where there is not information

about an initial neuron-state and helps preventing the saturation problem. The reader

can notice that we can obtain a similar effect by using a shifted sigmoid function with

the adequate slope.
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A(t+1)
i = f

( M∑

j=1
wji(2A

(t)
j − 1) + (2A(t)

i − 1)

)

, i ≠ j (4)

If the cognitive network is able to converge, then the system will produce the same

output towards the end, and therefore the activation degree of neurons will remain

unaltered (or subject to infinitesimal changes). On the other hand, a cyclic FCM

produces dissimilar responses with the exception of a few states that are periodically

produced. The last possible scenario is related to chaotic configurations in which the

network yields different state vectors. Formally, such situations are mathematically

defined as follows:

∙ Fixed-point (∃t
𝛼

∈ {1, 2,… , (T − 1)} ∶ A(t+1) = A(t)
,∀t ≥ t

𝛼

): the FCM produces

the same state vector after the t
𝛼

-th iteration-step. This suggests that A(t
𝛼

) =
A(t

𝛼

+1) = A(t
𝛼

+2) = · · · = A(t)
.

∙ Limit cycle (∃t
𝛼

,P ∈ {1, 2,… , (T − 1)} ∶ A(t+P) = A(t)
,∀t ≥ t

𝛼

): the FCM peri-

odically produces the same state vector after the t
𝛼

-th iteration-step. This sug-

gests that A(t
𝛼

) = A(t
𝛼

+P) = A(t
𝛼

+2P) = · · · = A(t
𝛼

+jP)
where t

𝛼

+ jP ≤ T , such that

j ∈ {1, 2,… , (T − 1)}.

∙ Chaos: the FCM continues producing different state vectors for successive cycles,

thus being impossible to make suitable decisions.

If the FCM is unable to converge, then the model will produce confusing responses

and thus a pattern cannot be derived [26], thus being impossible to arrive at suitable

conclusions. In presence of chaos or cyclic situations, the reasoning rule stops once

a maximal number of iterations T is reached. In classification scenarios, the decision

class is then calculated from the last cycle, but this output is partially unreliable due

to the lack of convergence.

3 The Reasoning Process and Its Explainability

The classification problem [4] is about building a mapping f ∶  →  that assigns

to each instance x ∈  described by the attribute set 𝛷 = {𝜙1,… , 𝜙M} a decision

classD from the N possible ones in = {D1,… ,DN}. The mapping is often learned

in a supervised fashion, i.e., by relying on an existing set of previously labeled exam-

ples used to train the model. The learning process is regularly driven by the mini-

mization of a cost/error function.

Researchers in Machine Learning are primarily focused on prediction rates.

Regrettably, most accurate classifiers do not provide any mechanism to explain how

they arrived at a particular conclusion and therefore behave like a “black-box”. Some

classifiers like Artificial Neural Networks, Support Vector Machines, Ensemble tech-
niques orRandomForests are well-known to be the most likely successful algorithms

for addressing classification problems in terms of prediction rates. However, their

lack of transparency negatively effects their usability in scenarios where understand-

ing the decision process is required.
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For example, neural computation is a widely studied research field within Arti-

ficial Intelligence. The main limitation of Artificial Neural Networks is their lack

of transparency, which means that the network cannot justify its complex reasoning

process. As a result, these models do not allow interpreting the semantic behind the

physical system under investigation since the transparency is a necessary condition

to build interpretable classifiers.

Aiming at elucidating the hidden reasoning process of black-boxes, several

post-hoc procedures have been proposed. For example, one of these explanatory

techniques used explicit IF-THEN rules for extracting knowledge from black-box

classifiers while more recent procedures use symbolic approaches to approximate

the model [9]. But whether such explanation is truly comprehensive and meaningful

in the case of large trees or rule sets is questionable.

The transparency inherent to FCMs and their underlying neural foundations have

motivated researchers to build interpretable FCM-based classifiers. In these models,

the interpretability may be achieved through causal relations between neural enti-

ties defining the modeled system. Regrettably, building accurate, truly interpretable
FCM-based classifiers involves difficult challenges.

4 Low-Level FCM-Based Classifiers

As already mentioned, FCMs have been widely studied due to their appealing proper-

ties for handling complex and dynamic systems, but the development of FCM-based

classifiers has received less attention.

One of the firsts attempt to use FCMs in the context of pattern classification was

implemented in [31, 32]. In these references, the authors defined the notion of FCM-
based classifiers and proposed some generic architectures. The most prominent chal-

lenge to be faced when constructing an FCM-based classifier lies on how to connect

input and output neurons.

It should be remarked that an FCM classifier’s topology (i.e., concepts and causal

relations) must comprise a coherent and precise meaning for the physical system

being modeled. If the input neurons represent features of the classification problem,

then we are in presence of a low-level cognitive classifier where neural processing

units can be categorized as shown below:

Definition 1 We say that a neural processing entity Ci is an independent input neu-
ron if its activation value does not depend on the other input neurons.

Definition 2 We say that a neural processing entity Ci is a dependent input neuron
if its activation value is influenced by other connected neurons.

Definition 3 We say that a neural processing entity Ci in an FCM-based classifier

is an output neuron if we can predict a decision class from its final activation value,

which only depends on the connected input neurons.
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Typically, independent and dependent input neurons are used to activate the cog-

nitive networks since they often denote problem features. Output neurons, on the

other hand, are used to compute the decision class for an initial activation vector.

In the case of independent input neurons, they can propagate their initial activation

vector and they are not influenced by any other input neurons, therefore their acti-

vation values remain static. Notice that the expert must ideally determine the role of

each neurons and the way that input neurons are connected each other. In spite of

this fact, Papakostas et al. [30] investigated three generic architectures for mapping

the decision classes:

∙ Class-per-output architecture. Each decision class is mapped to an output neu-

rons. Therefore, the predicted decision class corresponds to the label of the output

neuron having the highest activation value.

∙ Single-output architecture. Each decision class is enclosed into the activation

space of a single output neuron.

1. Using a clustering approach. Each class is associated with a cluster center. In the

testing phase, the center having the closest distance to the projected activation

value is assigned to the input instance.

2. Using a thresholding approach. Each decision class is associated with a pair of

thresholds. In the testing phase, the interval comprising the projected activation

value is then assigned to the input instance.

In these architectures, the human intervention is required during the construction

stage, and even so, the supervised learning methods will probably fail in producing

authentic causal relations since they just fit the model to the existing data. There-

fore, we are losing the interpretability features attached to the network, although the

decision process remains transparent.

On the other hand, the absence of hidden neural entities in these recurrent neural

networks may probably lead to poor prediction rates. Aiming at boosting the pre-

diction capability of FCM-based classifier, in [32] the authors put forth two hybrid

typologies. Figures 1 and 2 show these typologies that include a black-box classifier

to improve the overall prediction rates.

In the first model, the black-box produces a confidence degree per decision class.

Sequentially, this vector is used as initial configuration for the FCM model that cor-

rects the responses produced by the black-box. In the second model, the input neu-

rons are also connected to output ones, so the predictions computed by the black-box

classifier can be understood as a bias.

These hybrid models completely destroy the transparency attached to the cogni-

tive network. If this happens, then, there is no real reason to use FCMs in classi-

fication scenarios, instead we may adopt black-box models such as Support Vector

Machines, Neural Networks or Random Forests.

Another key element towards designing a low-level FCM-based classifier relies

on the learning algorithm. The chief objective behind FCM learning has been to
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Fig. 1 Hybrid FCM-based classifier type-1

Fig. 2 Hybrid FCM-based classifier type-2
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derive the weight matrix W(M×M) that minimizes the prediction error based on expert

intervention, available historical data or both. According to the their classification

scheme, existing learning algorithms can be roughly gathered into two large groups:

unsupervised and supervised.

4.1 Unsupervised Learning Algorithms

Hebbian-based learning methods are unsupervised procedures that do not require

a set of labeled historical data, i.e., data in which the value of the decision fea-

ture(s) are previously known. The aim of learning FCMs by using adaptive Hebbian-

based methods is to yield weight matrices on the basis of experts’ knowledge and to

improve the accuracy of previously set weights.

Papakostas et al. [30] thoroughly tested the performance of several Hebbian-type

algorithms in classification scenarios, and concluded that these learning procedures

regularly produce very poor classification rates.

More explicitly, Hebbian-type methods are convenient to fine-tune the weight

set with a small deviation from the initial configuration. As a result, the adjusted

causal relations partially preserve their physical meaning, which cannot be guar-

anteed when using a heuristic-based learning method. Of course, the requirement

of experts’ knowledge is a serious drawback. The flexibility on data requirements

of these algorithms is the key aspect behind their poor generalization capability.

This makes Hebbian-type algorithms unfit for solving pattern classification prob-

lems where multiple classes must be predicted.

4.2 Supervised Learning Algorithms

As an alternative to Hebbian-based methods, we can learn the network structure from

data using heuristic-based algorithms [29] in a supervised fashion. Heuristic learn-

ing approaches aim at generating weight matrices that minimize an error function,

viz. the difference between the expected responses and the map-inferred outputs.

These methods are more expensive optimization techniques given that they regu-

larly explore multiple candidate solutions. Besides, they require the definition of the

objective function to be optimized, which is the core of these learning procedure,

rather than the adopted search method.

Equation 5 formalizes an error function for pattern classification scenarios, where

X denotes the weight matrix, K is the number of training instances, 𝜓(.) is the

decision model to be used for determining the class label, while Sk represents the

expected decision class for the kth training instance. In the case of the single-output

architecture, the class is computed from the activation value of the decision neuron

at the last iteration-step.
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E(X) = 1
k

K∑

k=1

{
𝛾k, 𝜓(A(T)

Mk) = Sk
1, 𝜓(A(T)

Mk) ≠ Sk
(5)

Aiming at reducing the convergence error of the FCM-based classifier, the error

function depicted in Eq. 5 uses a penalization factor 𝛾k for those instances that have

been correctly classified. In short, the convergence error can be understood as the

overall dissimilarity between the system response at each iteration, and the activation

value at the last iteration-step.

Nápoles et al. [16, 17, 27] investigated the convergence of FCM-based classifiers

and proposed a learning method to improve the system convergence, without alter-

ing the causal weights. More recently, they introduced an extended learning algo-

rithm [26] where weights are estimated taking into account both accuracy and con-

vergence. Based on these results, we propose a generalized measure to compute the

convergence error of an FCM-based classifier.

Equation 6 shows the convergence error for the kth instance, where 𝜔t = t∕T is

the relevance of each iteration, M is the number of neurons, N < M is the number of

input-type ones, whereas A(t)
ik denotes the current activation value for the ith neuron.

Moreover, 𝜋k represents the centroid (ideal) point of the decision label associated to

the kth training instance.

𝛾k =
T∑

t=1

2𝜔t

M(T + 1)

⎛
⎜
⎜
⎝

N∑

i=1

(A(t)
ik − A(T)

ik )
2

N
+

M−N∑

i=1

(A(t)
ik − 𝜋k)

2

M − N

⎞
⎟
⎟
⎠

(6)

Let us assume an FCM-based classifier using a single-output architecture and a

thresholding approach, where the kth instance is associated with jth decision class.

Equation 7 computes the centroid, where Lkj and Uk
j denote the lower and upper deci-

sion thresholds, respectively.

𝜋k =
⎧
⎪
⎨
⎪
⎩

Lkj , Lkj = 0
Uk

j , Uk
j = 1

Lkj+U
k
j

2
, Lkj ≠ 0,Uk

j ≠ 1
(7)

This approach introduces two key contributions in regard to the algorithm pro-

posed in [26]. First, we remove the required parameters by measuring the conver-

gence error if the target instance is correctly classified. This suggests that the system

accuracy will always be favored. Second, we compute the converge error of sigmoid

neurons according to their role in the network. The convergence error of input-type

neurons is measured as the overall dissimilarity between the system response at each

cycle, and the activation value at the last iteration. However, in the case of output-

type neurons, we calculate the overall dissimilarity between each response, and the

corresponding centroid.
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Preliminary simulations using a Bioinformatic problem [21] have shown that this

algorithms is capable of producing a suitable trade-off between convergence and

accuracy. Ensuring the convergence helps in preventing the misclassifications of

boundary instances, otherwise the model becomes fragile to perturbations. How-

ever, this algorithm cannot be generalized to other domains where the experts are

unable to define the network topology.

5 High-Level Cognitive Classifiers

Cognitive mapping allows modeling different levels of interpretability, which depend

on the abstraction degree. Neurons denoting entities with high abstraction level (i.e.,

information granules or prototypes) lead to high-level interpretable networks. If the

level of abstraction is too high, then the physical system under investigation is diffi-

cult to analyze, so we are losing interpretability. On the other hand, defining attribute-

level entities allow interpreting the system behavior at a low-level. However, some-

times the domain experts are unable to define precise, authentic causal relations with

such specificity level.

High-level cognitive classifier refer to FCM-based models where input neurons

denote information granules rather than low-level features. For example, Nápoles et

al. [23, 24] introduced the notion of rough cognitive mapping in the context of pat-

tern classification. The new classification model transforms the feature space into a

granular one that is exploited using the neural inference rule present in FCM-based

models. In these so-called Rough Cognitive Networks (RCNs), the weight matrix is

automatically computed on the basis of the three-way decision rules [38] that con-

struct three rough regions [33] to perform the classification process. The RCN model

achieved competitive performance with respect to state-of-the-art methods in a real-

world classification problems [23] as well as in a network intrusion detection sce-

nario [22].

Figure 3 shows an RCN to solve any classification problem with two decision

classes, where Pk, Nk and Bk are input neurons denoting the positive, negative and

boundary regions related to the kth decision class.

More recently, two improved RCN models were introduced: Rough Cognitive
Ensembles [20] and Fuzzy-Rough Cognitive Networks [25]. The purpose of these

algorithms is to deal with the parametric requirement of rough cognitive classifiers

while preserving their global prediction capabilities. The former is a granular ensem-

ble model where each base RCN operates at a different granularity degree, whereas

the latter replaced the crisp-rough constructs with fuzzy-rough ones. Numerical

results have shown that both approaches are capable of outperforming the RCN algo-

rithm. These modified algorithms perform comparably, thus we can achieve the same

prediction rates using an ensemble composed of several networks that using a single

fuzzy-rough classifier!
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Fig. 3 RCN-based classifier for binary problems

Inspired on the RCN semantics and the approaches discussed in [34, 35], Nápoles

et al. [19] proposed a partitive granular cognitive map to solve graded multi-label

classification problems. In these machine learning problems, the goal is to predict the

degree to which each instance relates to each available decision class. Three different

FCM topologies were studied and several convergence features were included into

the supervised learning methodology. Numerical experiments confirmed the ability

of these granular classifiers to accurately estimate the degree of association between

an object and each label.

It is worth highlighting the transparency on the decision model attached to Rough

Cognitive Networks. In these models, we can interpret the physical system at a high-

level by relying on the semantics behind the information constructs. However, a low-

level reasoning is not possible, even when the classifier’s decision process remains

transparent and comprehensible.

6 Remaining Challenges

The development of accurate, truly interpretable FCM-based classifiers involves

three main challenges, that still remain open:

∙ Construction issues. FCMs are knowledge-based techniques that regularly require

the intervention of experts to define the network topology, i.e., the neurons and

causal relations connecting them. Alternatively, we can learn the network struc-

ture from data using heuristic-based algorithms in a supervised fashion. However,

these methods cannot produce authentic causal relations describing the system

under analysis since they are oriented to fit the network to the historical data,
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without considering the system semantics. This implies that we cannot interpret

the problem domain from such models, even if the FCM inference process is still

transparent. Some authors attempt overcoming this drawback using correlation

measures, which fail in capturing the underlying semantics behind causal rela-

tions. Being more explicit, it is well-known that causality does surely imply the

existence of correlation, but the opposite does not necessarily hold.

∙ Accuracy issues. Generally speaking, the prediction rates of FCM-based clas-

sifiers are poor when compared with standard black-box models, mainly due to

their limitations to represent the problem domain and the absence of theoretically

sound learning algorithms. Papakostas et al. [30] concluded that Hebbian-based

algorithms are not suitable in pattern classification environments, while the per-

formance of heuristic-based learning methods quickly deteriorates when the num-

ber of neurons scales up. Froelich [5] proposed a promising post-optimization

method to improve the prediction rates of FCM-based classifiers using a single-

output architecture. Notice however that the overall prediction rates achieved by

this method will heavily depend on the learning algorithm used to estimate the

weight set.

∙ Convergence issues. FCM-based networks are recurrent cognitive systems that

produce an output vector at each discrete-time step. This procedure is repeated

until either the map converges or a maximal number of iterations is reached. With-

out ensuring the convergence, the model becomes unreliable and decision making

becomes impossible. Regrettably, heuristic-based methods cannot ensure the FCM

convergence, which implies that the resultant models are no longer interpretable

and therefore, there is no reason to use cognitive mapping in pattern classifica-

tion environments. More recently, Nápoles and his collaborators [16, 17, 26, 27]

obtained promising results toward improving the convergence of FCM-based mod-

els without modifying the causal relations. However, analytical results reported in

[18] have shown that establishing a suitable balance between convergence and

accuracy cannot always be achieved without altering the weights.

It should be observed that the accuracy and convergence issues are mathematical

challenges that can be present in other Machine Learning approaches. After all, the

main purpose of traditional classifiers is to achieve the best possible prediction rates.

The construction issues are, however, more delicate. Defining authentic causal rela-

tions between neural entities is the key aspect towards designing truly interpretable

FCM-based systems. Otherwise, the model will produce misleading results when

performing WHAT-IF simulations.

As far as we know, there is no learning method able to discover authentic causal

structures from historical records due to the lack of well-established statistical tests

for measuring causality. Even some authors affirm that the term “causality” is a

philosophic concept that cannot possibly be measured in a numerical way without

performing controlled experiments.
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7 Conclusions

The use of FCMs for modeling real-life problems by recreating virtual scenarios have

been demonstrated and reported in literature. These knowledge-based networks have

been used as a modeling tool to analyze the behavior of complex systems, where it

is very difficult to describe the entire system by a precise mathematical model. Con-

sequently, it is easier and more practical to represent the decision-making process in

a graphical way.

This paper explored the development of FCM-based classifiers and focused on the

wide research avenues it provides. In spite of the detected shortcomings and chal-

lenges, the transparency inherent to cognitive mapping keeps motivating researchers

to build interpretable FCM-based classifiers. In these models, the interpretability is

achieved through causal relations between neurons defining the system under analy-

sis. FCM-based models also provide other set of attractive characteristics: they are

able to discover hidden patterns, are flexible, dynamic, combinable and tunable from

different perspectives.

The FCM-based modeling approach allows building the network in presence of

incomplete, conflicting or subjective information. Moreover, the inherent neural fea-

tures of cognitive mapping provide a promising research avenue towards improving

their accuracy in prediction scenarios. This suggests that FCM-based models could

be as efficient as black-box models while retaining their ability to elucidate the sys-

tem behavior through causal relations. Precisely, this conjecture, among other fac-

tors, keeps this research subject as a challenge open to the scientific community and

a lively field of research.
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Abstract In this paper a new approach of automatic learning for a fault diagnosis

system using fuzzy clustering techniques is presented. The proposal presents an off-

line learning stage, for training the classifier to diagnose the initial known faults

and the normal operation state. In this stage, the data are firstly pre-processed to

eliminate outliers and reducing the confusion in the classification process by using

the Density Objective Fuzzy C-Means (DOFCM) algorithm. Later on, the Kernel

Fuzzy C-Means (KFCM) algorithm is used to achieve greater separability among the

classes, and reducing the classification errors. Finally, a step is developed to optimize

the two parameters used in the algorithms in the training stage using the Differential

Evolution algorithm. After the training, the classifier is used on-line (recognition

stage) in order to process every new sample taken from the process. In this stage, a

novel fault detection algorithm is applied. The algorithm analyzes the observations

which are not classified in the known classes and belonging to a window of time to

determine if they constitute a new class, probably representative of a new fault or if

they are noise. If a new class is identified, a procedure is developed to incorporate

it to the known classes by the classifier. The approach proposed was validated using

an illustrative example. The results obtained indicate the feasibility of the proposal.
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1 Introduction

In current industries, there is a marked necessity to improve the processes efficiency

in order to produce with higher quality besides attending the environmental and

industrial safety regulations [18, 39]. In the industries, the faults in equipments can

have an unfavorable impact in the availability of the systems, the environment and

the safety of operators. For such reasons, the faults need to be detected and isolated,

being these tasks associated to the fault diagnosis systems [34].

Within the fault diagnosis methods there are those based on models [7, 8, 13, 32,

39, 40] and those based on the process historical data [2, 3, 15, 31, 37]. In the first

approach, the tools use models that describe the functioning of the processes. These

tools are based on the residue generation obtained from the difference between the

measurable signals from the real process and the values obtained from the model.

This entails an elevated knowledge about the characteristics of the processes, their

parameters, and operation zones. However, it is usually very difficult to achieve due

to the complexity of the industrial processes. On the other hand, the approaches based

in historical data do not need a mathematical model, and they do not require much

prior knowledge of the process parameters [41]. These characteristics constitute an

advantage for complex systems, where relationships among variables are nonlinear,

not totally known, and therefore, it is very difficult to obtain an analytical model that

describes efficiently the dynamics of the process.

The fault diagnosis systems based on historical data are trained to be able to clas-

sify the process states known by the experts. However, with the decrease of the useful

life of the automation technical devices such as sensors, actuators and pumps among

others, the probability of occurrence of new faults increases. In this situation, the

diagnostic systems will not be able to correctly classify the new faults, which will

cause an erroneous decision making. For this reason, the topic related with the auto-

matic identification of new patterns has gained a great importance in the area of fault

diagnosis, [12, 17], where the fault diagnosis systems are needed to detect the new

faults and incorporate them in their knowledge base. In this way, the fault diagnosis

systems will have an automatic learning mechanism to update their knowledge base.

By performing an analysis of the different techniques developed in the recent

years for control and fault diagnosis tasks, it is significative the increment in the use

of the fuzzy clustering methods [1, 5, 19, 33, 36].

Fuzzy clustering techniques are very important tools of unsupervised data clas-

sification [16], that can be used to organize data into groups based on similarities

among the individual data. Fuzzy clustering deals with the uncertainty and vague-

ness that can be found in a wide variety of applications, such as: image processing,

pattern recognition, object recognition, modeling and identification [20, 23, 25, 35,

38, 42, 44]. The main focus of all fuzzy clustering techniques is to improve the

clustering by avoiding the influence of the noise and outlier data.

The Fuzzy C-Means (FCM) algorithm [4], is one of the most widely used algo-

rithm for clustering due to its robust results for overlapped data. Unlike k-means

algorithm, data points in the FCM algorithm may belong to more than one cluster.
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FCM algorithm obtains very good results with noise free data but are highly sensitive

to noisy data and outliers [16].

Other similar techniques such as, Possibilistic C-Means (PCM) [24] and Possi-

bilistic Fuzzy C-Means (PFCM) [30] interpret clustering as a possibilistic partition

and work better in presence of noise in comparison with FCM. However, PCM fails

to find optimal clusters in the presence of noise [16] and PFCM does not yield satis-

factory results when data set consists of two clusters which are highly unlike in size

and outliers are present [16, 22].

Noise Clustering (NC) [10, 11], Credibility Fuzzy C-Means (CFCM) [9], and

Density Oriented Fuzzy C-Means (DOFCM) [21] algorithms were proposed specif-

ically to work efficiently with noisy data.

The clustering output depends upon various parameters such as distribution of

data points inside and outside the cluster, shape of the cluster and linear or non-linear

separability. The effectiveness of the clustering method strongly relies on the choice

of the metric distance adopted. FCM uses Euclidean distance as the distance mea-

sure, and therefore, it can only be able to detect hyper spherical clusters. Researchers

have proposed other distance measures such as, Mahalanobis distance measure, and

Kernel based distance measure in data space and in high dimensional feature space,

such that non-hyper spherical/non-linear clusters can be detected [45, 46].

Another problem usually present in fuzzy clustering methods is that their perfor-

mance depend significantly on the initialization of their parameters. In many occa-

sions, it is necessary to make multiple runs of the algorithm in order to obtain good

results which is time consuming, and not always the obtention of the best solution is

guaranteed.

In order to overcome these problems in this paper a new approach to automatic

learning and on-line detection of new faults using fuzzy clustering techniques is

proposed. The methodology presents an off-line training stage and an on-line recog-

nition stage. In the training stage the historical data of the process are used to train

a fuzzy classifier and the center of each one of known classes are calculated. In a

first step, the data are pre-processed to eliminate outliers and reducing the confusion

in the classification process. To accomplish this objective, the Density Objective

Fuzzy C-Means (DOFCM) algorithm is used. Later on, the Kernel Fuzzy C-Means

(KFCM) algorithm is used to achieve greater separability among the classes, and

reducing the classification errors. Finally, an step is used to optimize the parameters

m (factor that regulates the fuzziness of the resulting partition) and 𝜎 (bandwidth

and indicates the degree of smoothness of the Gaussian kernel function) of the algo-

rithms used in this stage, applying DE algorithm. After the training, the classifier

is used on-line (recognition) in order to process every new sample taken from the

process. In this stage, a new fault detection algorithm is applied. The algorithm ana-

lyzes the observations which are not classified in the known classes and belonging

to a window of time to determine if they constitute a new class, probably represen-

tative of a new fault or if they are noise. If a new class is identified, a procedure is

developed to incorporate it to the knowledge base of the classifier.

The principal contribution of this chapter is the obtaining of a methodology that

adequately combines fuzzy clustering algorithms to solve the drawbacks of this type
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of techniques when the data is affected by noise and outliers, to improve the classifi-

cation results by using kernel tools and to incorporate a new on-line fault detection

algorithm as part of a mechanism of automatic learning.

The organization of the chapter is as follows: in Sect. 2 are presented the general

characteristics of the tools used in the proposed methodology. In Sect. 3, a descrip-

tion of the new classification methodology using fuzzy clustering techniques is pre-

sented. The Sect. 4 presents an illustrative example used to validate the methodology

proposed. Finally, the conclusions are presented.

2 General Description of the Computational Tools

In this section, a general description of the Density Oriented Fuzzy C-Mean algo-

rithm and Kernel FCM is presented. In addition, the DE algorithm used to opti-

mize the parameters of the DOFCM and KFCM algorithms in the training stage is

described too.

2.1 Density Oriented Fuzzy C-Means (DOFCM)

The algorithm attempts to decrease the noise sensitivity in fuzzy clustering by iden-

tifying outliers before the clustering process. The DOFCM algorithm creates c + 1
clusters with c good clusters and one cluster of noise. This algorithm identifies out-

liers before the construction of the clusters, based on the density of data set, as is

shown in Fig. 1.

The neighborhood of a given radius of each point in a data set has to contain at

least a minimum number of other points. DOFCM defines a density factor, called the

neighborhood membership, which express the measure density of an object in rela-

tion to its neighborhood. The neighborhood membership of a point i in X is defined

as:

Mi
neighborhood =

𝜂
i
neighborhood

𝜂max
(1)

Fig. 1 Identification of

outliers with the DOFCM

algorithm
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where 𝜂
i
neighborhood is the number of points in the point neighborhood i; 𝜂max is the

maximum number of points in the neighborhood of any point in the data set.

If the point q is in the point neighborhood of the point i, q will satisfy:

q ∈ X|dist(i, q) ≤ rneighborhood (2)

where rneighborhood is the radius of neighborhood, and dist(i, q) is the distance between

points i and q. Calculation of neighborhood radius is done as per [14]. Neighborhood

membership of each point in the data set X is calculated using (1). The threshold

value 𝛼 is selected from the complete range of neighborhood membership values,

depending on the density of points in the data set. The point will be considered as

an outlier if its neighborhood membership is less than 𝛼. Let i be a point in the data

set X, then

{Mi
neighborhood < 𝛼 then i outlier

Mi
neighborhood ≥ 𝛼 then i non − outlier (3)

𝛼 can be selected from the range of Mi
neighborhood values after observing the density of

points in the data set and it should be close to zero. Ideally, a point will be outlier only

if no other point is present in its neighborhood i.e. when neighborhood membership

is zero or threshold value 𝛼 = 0. However, in this scheme, a point is considered as

an outlier when its neighborhood membership is less than 𝛼, where 𝛼 is a critical

parameter to identify outlier. Its value depends upon the nature of data set, i.e., taking

into account the density of the data set, then, its value will vary for different data sets.

After identifying the outliers, the process of clustering begins. DOFCM reformu-

lates FCM objective function as:

JDOFCM (X;U, v) =
c+1∑

i=1

N∑

k=1

(
𝜇ik

)m (
dik

)2
(4)

where, the distances are defined by,

d2ik =
(
𝐱k − 𝐯i

)T 𝐀i
(
𝐱k − 𝐯i

)
,∀k, i = 1, … , c (5)

Membership function 𝜇ik is modified as:

𝜇ik =

{ 1
∑c

j=1(dik∕djk)2∕(m−1)
if non − outlier

0 if outlier
(6)

To update the centroid, DOFCM algorithm uses Eq. (7) as FCM algorithm. For

the constraint on fuzzy membership, DOFCM algorithm uses Eq. (8). The DOFCM

algorithm is presented in Algorithm 1.
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𝐯i =
∑N

k=1
(
𝜇
m
ik𝐱k

)

∑N
k=1 𝜇

m
ik

(7)

0 ≤

c∑

i=1
𝜇ik ≤ 1, k = 1, 2,… ,N (8)

Algorithm 1 Density Oriented Fuzzy C-Means (DOFCM)

Input: data with outliers 𝐗, c, 𝜖 > 0, m > 1, 𝛼, number of iterations

Output: data without outliers 𝐗𝐩, fuzzy partition 𝐔, class centers 𝐕.

Identification of the outliers:
Calculate neighborhood radius.

Calculate 𝜂
i
neighborhood according to (2).

Select 𝜂max.

Calculate Mi
neighborhood according to (1).

With the value of 𝛼, identify outliers according to (3).

Clustering process:
Initialize 𝐔 to random fuzzy partition.

for l = 1 to l = Itr_max do
Update classes centers according to (7).

Calculate the distance dik according to (5).

Update 𝐔 according to (6).

Verify stopping criterion.

end for

2.2 Kernel Fuzzy C-Means (KFCM)

KFCM represents the kernel version of FCM. This algorithm uses a kernel function

for mapping the data points from the input space to a high dimensional space, as it

is shown in Fig. 2.

KFCM algorithm modifies the objective function of FCM using the mapping

𝚽 as:

JKFCM =
c∑

i=1

N∑

k=1

(
𝜇ik

)m ‖
‖𝚽(𝐱𝐤) −𝚽(𝐯𝐢)‖‖

2
(9)

Fig. 2 KFCM feature space

and kernel space
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subject to:
c∑

i=1
𝜇ik = 1, k = 1, 2,… ,N (10)

where ‖‖𝚽(𝐱𝐤) −𝚽(𝐯𝐢)‖‖
2

is the square of the distance between 𝚽(𝐱𝐤) and 𝚽(𝐯𝐢). The

distance in the feature space is calculated through the kernel in the input space as

follows:

‖
‖𝚽(𝐱𝐤) −𝚽(𝐯𝐢)‖‖

2 = 𝐊(𝐱𝐤, 𝐱𝐤) − 𝟐𝐊(𝐱𝐤, 𝐯𝐢)
+𝐊(𝐯𝐢, 𝐯𝐢) (11)

If the Gaussian kernel is used, then 𝐊(𝐱, 𝐱) = 𝟏 and ‖
‖𝚽(𝐱𝐤) −𝚽(𝐯𝐢)‖‖

2 =
𝟐
(
𝟏 −𝐊(𝐱𝐤, 𝐯𝐢)

)
. Thus (4) can be written as:

JKFCM = 2
c∑

i=1

N∑

k=1

(
𝜇ik

)m ‖
‖1 −𝐊(𝐱𝐤, 𝐯𝐢)‖‖

2
(12)

where,

𝐊(𝐱𝐤, 𝐯𝐢) = e−‖𝐱k−𝐯i‖
2∕𝜎2

(13)

Minimizing (9) under the constraint shown in Eq. (10), yields:

𝜇ik =
1

∑c
j=1

(
1−𝐊(𝐱𝐤,𝐯𝐢)
1−𝐊(𝐱𝐤,𝐯𝐣)

)1∕(m−1) (14)

𝐯i =
∑N

k=1
(
𝜇
m
ik𝐊(𝐱𝐤, 𝐯𝐢)𝐱𝐤

)

∑N
k=1 𝜇

m
ik𝐊(𝐱𝐤, 𝐯𝐢)

(15)

The KFCM algorithm is presented in Algorithm 2.

Algorithm 2 Kernel Fuzzy C-Means (KFCM)

Input: data 𝐗𝐩, c, 𝜖 > 0, m > 1, 𝜎, number of iterations.

Output: fuzzy partition 𝐔, class centers 𝐕.

Initialize 𝐔 to random fuzzy partition.

for l = 1 to l = Itr_max do
Update classes centers according to (15) for Gaussian kernels.

Calculate the distances according to (11).

Update 𝐔 according to (14).

Verify stopping criterion.

end for
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2.3 Differential Evolution (DE)

DE is an evolutionary algorithm based on populations, that uses methods derived

from Biology like inheritance, mutation, natural selection and crossover. The idea

behind DE is to generate a population of new feasible solutions based on perturbed

solutions belonging to the previous population of solutions obtained up to a given

time. This generation scheme is based on three operators: Mutation, Crossover

and Selection. The configuration of DE can be summarized using the following

notation:

DE∕𝕏j∕𝛾∕𝜆∗

where 𝕏j
denotes the solution to be perturbed in the j-th iteration, 𝛾 indicates the

number of pairs of solutions to be used for perturbations of the current solution 𝕏j
,

and 𝜆
∗

indicates the distribution function that will be used during the crossover. In the

present work has been considered the configurationDE∕𝕏j(best)∕1∕Bin, where𝕏j(best)

indicates the best individual of the population, Z, and Bin the Binomial Distribution

function. This mutation operator is expressed in the following way:

𝕏j+1 = 𝕏j(best) + FS(𝕏j(𝛼) −𝕏j(𝛽)) (16)

where 𝕏j+1
, 𝕏j(best)

, 𝕏j(𝛼)
, 𝕏j(𝛽) ∈ ℝn

, 𝕏j(𝛼)
and 𝕏j(𝛽)

are elements of the Z popula-

tion and FS is the escalation factor. For complementing the mutation operator, the

crossover operator is defined for each component 𝕏n of the solution vector:

𝕏j+1
n =

{
𝕏j+1

n , if R < CR
𝕏j(best)

n , otherwise
(17)

where 0 ≤ CR ≤ 1, is the crossover constant that is another control parameter in DE,

and R is a random number generated by the distribution 𝜆
∗

that in this case it is the

binomial distribution.

Finally, the selection operator results as follows:

𝕏j+1 =
{

𝕏j+1
, if F

(
𝕏j+1) ≤ F

(
𝕏j(best))

𝕏j(best)
, otherwise

(18)

The DE algorithm is presented in Algorithm 3.
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Algorithm 3 Differential Evolution (DE)

Input: Z, FS, CR, number of iterations.

Output: 𝕏best
(F(𝜃̂)=(m, 𝜎))

Generate initial population of Z solutions.

Select better solution 𝕏best
.

for l = 1 to l = Itr_max do
Apply Mutation according to (16)

Apply Crossover according to (17)

Apply Selection according to (18)

Update 𝕏best

Verify Stopping criterion

end for

3 A New Classification Methodology with Automatic
Learning Using Fuzzy Clustering

The new classification scheme with automatic learning proposed in this paper is

shown in Fig. 3. It presents an off-line learning stage and an on-line recognition

stage. In the training stage the historical data of the process are used to train (mod-

eling the functional stages through the clusters) a fuzzy classifier. After the train-

ing, the classifier is used on-line (recognition) in order to process every new sample

taken from the process. In this stage, the observations which are not classified in the

known classes and belonging to a window of time are analyzed to determine if they

Fig. 3 Classification scheme using fuzzy clustering
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constitute a new class, probably representative of a new fault or if they are noise. If

a new class is identified, the experts characterize the new fault and it is incorporated

to the knowledge base of the known faults and the classifier is trained again.

The clustering methods group the data in different classes based on a measure

of similitude. In the processes, the data are acquired by means of a SCADA system

(Supervisory Control and Data Acquisition), and the classes can be associated to

functional states. In the case of statistical classifiers, each sample is compared with

the center of each class by means of a measure of similitude to determine at which

class the sample belongs. In the case of the fuzzy classifiers, the comparison is made

to determine the membership degree of the sample to each class. In general, the

higher membership degree determines the class which the sample is assigned, as it

is showed in (19).

Ci =
{
i ∶ max

{
𝜇ik

}
,∀i, k

}
(19)

3.1 Off-Line Training

In the first step, the center of the known classes 𝐯 = 𝐯𝟏, 𝐯𝟐,… , 𝐯𝐍 is determined

by using a historical data set representative of the different operation states of the

process. In this step, a set of N observations (data points) 𝐗 = [𝐱1, 𝐱2,… , 𝐱N] are

classified into c + 1 groups or classes using the DOFCM algorithm. The c classes

represent the normal operation conditions (NOC) of the process, and the faults to

be diagnosed. They contain the information to be used in the next step. The other

remaining class contains the data points identified as outliers by the DOFCM algo-

rithm, and they are not used in the next step.

In the second step, the KFCM algorithm receives the set of observations classified

by the DOFCM algorithm in the c classes. The KFCM algorithm maps these obser-

vations into a higher dimensional space in which the classification process obtains

better results of satisfactory classifications. This step is shown in Algorithm (2). The

Fig. 4 shows the procedure described in steps 1 and 2.

Finally, a step to optimize the parameters of the algorithms used in steps 1 and

2 is implemented. In this step, the parameters m and 𝜎 are estimated to optimize a

validity index using an optimization algorithm. This will allow to obtain an improved

U partition matrix, and therefore, a better position of the centers of the classes that

characterize the different operation states of the system. Later, the estimated values

of m in Eqs. (4), (12) and 𝜎 in Eq. (13) will be used during the on-line recognition,

and it will contribute to improve the classification of the samples obtained by the

data acquisition system from the system.

The validity measures are indexes to evaluate quantitatively the result of a clus-

tering method and comparing its behavior when its parameters vary. Some indexes

evaluate the resulting U matrix, while others are focused on the geometric resulting

structure. The partition coefficient (PC) [26, 29, 43], which measures the fuzziness
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Fig. 4 Procedure performed by the DOFCM and KFCM algorithms

degree of the partition U, is used as validity measure in this case. Its expression is

shown in the Eq. (20).

PC = 1
N

c∑

i=1

N∑

k=1

(
𝜇ik

)2
(20)

If the fuzziness degree of the partition U is high, the clustering process is better.

Being analyzed in a different way, it allows to measure the degree of overlapping

among the classes. In this case, the optimum comes up when PC is maximized, i.e.,

when each pattern belongs to only one group. Likewise, minimum comes up when

each pattern belongs to each group.

Therefore, the optimization problem is defined as:

max {PC} = 1
N

c∑

i=1

N∑

k=1

(
𝜇ik

)2

subject to:

mmin < m ≤ mmax

𝜎min ≤ 𝜎 ≤ 𝜎max

Then, a range of values of m and 𝜎 should be defined. It is known that 1 < m < ∞,

but from the practical point of view in many applications the value of m does not

exceed of two [23, 25, 38, 44], therefore in this case: 1 < m ≤ 2. The parameter 𝜎

is called bandwidth, and it indicates the degree of smoothness of the function. In

the case of 𝜎 if it is overestimated, the function tends to show a linear behavior and
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its projection in high-dimensional space loses its ability to separate non-linear data.

Meanwhile, if 𝜎 is underestimated, the result will be highly sensitive to the noise

presents in the data. Then, the search space of the algorithm must be large, so that

during the exploration small and large values will be considered. In this chapter, a

group of experiments were developed and it was found that an appropriate range

was: 0.25 ≤ 𝜎 ≤ 20.

In many scientific areas, and in particular in the fault diagnosis field, bio-inspired

algorithms have been widely used with excellent results [6, 27, 28] to solve optimiza-

tion problems. They can efficiently locate the neighborhood of the global optimum

in most occasions with an acceptable computational time. There is a large number of

bio-inspired algorithms, in their original and improved versions. Some examples are

Genetic Algorithm (GA), Differential Evolution (DE), Particle Swarm Optimization

(PSO) and Ant Colony Optimization (ACO) among others. In this proposal, the DE

algorithm, as described in Sect. 2.3 will be used to obtain the optimum values of the

parameters m and 𝜎 due to its easy implementation and excellent outcomes.

3.2 On-Line Recognition

In this stage, a window of time with k observations and the parameter Th are estab-

lished by the experts in this stage. The value of k is related with the characteristics of

process. Th represents the percent of observations established by the experts to ana-

lyze if the observations classified as noise constitute a new class. If the observation

is classified as a good sample the KFCM algorithm identifies to which of the known

classes Ci belongs the observation. However, if the observation is classified as noise

it is stored and a counter of noise observations (NO) is incremented. This procedure

is repeated until the windows of time of k observations is completed.

After the k observations were classified, the percent of them classified as noise

(NOP) is determined. If NOP < Th the noise observations are not considered and

the NO counter is restarted to begin a new cycle. If NOP > Th the NO observations

are analyzed to determine if their constitute a new class, probably representative of

a new fault or they are outliers.

To analyze the noise observations, the DOFCM algorithm is used. It is based on

the fact that the outliers are dispersed data with low density and do not form a cluster.

However, when a new fault occurs the data will be concentrated (high density) by

forming a cluster which characterize a new state.

The DOFCM algorithm is applied to the noise observations to determine based

on the density of the data if they are outliers or represent the pattern of a new class.

If the noise observations constitute a new class, the experts should identify whether

the pattern corresponds to a single fault or the pattern is the result of several single

faults by acting simultaneously (multiple fault). After identifying the pattern, it will

be stored, if correspond, in the historical database used in the training stage. Later

on, the classifier should be trained again and the procedure of online recognition will

be repeated systematically.
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The procedure explained for the on line stage represents a mechanism of online

detection of novel faults with automatic learning for a fault diagnosis system. It is

described in Algorithm 4.

Algorithm 4 Recognition

Input: data Xk, class centers 𝐕, rneighborhood , nmax, 𝛼, m, 𝜎.

Output: Current State.

Select k
Select Th
Initialize Ocounter = 0
Initialize NOcounter = 0
for j = 1 to j = k do

Ocounter = Ocounter + 1
Calculate 𝜂

i
neighborhood according to (2).

Calculate Mi
neighborhood according to (1).

if k ∉ Coutlier then
Calculate the distances from the observation k to class centers according to (11).

Calculate the membership degree of the observation k to the c good classes according to

(14).

Determine to which class belongs the observation k using (19).

else
Store observation k in Cnoise
NO counter = NOcounter + 1

end if
end for
Calculate NOP =

NOcounter
O counter

if NOP > Th then
Apply DOFCM algorithm for Cnoise considering only classes CNF and Coutlier
if Cnoise ∉ Coutlier then

Create a new fault: CNF
Store in the historical database.

else
Delete Cnoise
NO counter = 0

end if
else

Delete Cnoise
NO counter = 0

end if

4 Illustrative Examples with the Diamond Data Set

The diamond data set is used to present three illustrative examples of the proposed

new fault diagnosis system with automatic learning using fuzzy clustering tools. This

data set presents two classes with 5 observations each one, and each class has two

variables: x1 and x2 [22, 30]. Figure 5 shows the diamond data set.
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Fig. 5 Diamond data set
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4.1 Off-Line Training

Four new observations were added to the original data in order to represent the pos-

sible outliers. Figure 6 shows the diamond data set modified for the training stage.

To estimate the parameters mentioned in Sect. 3.1, DE algorithm was used due

to its simple structure, and robustness [6]. The control parameters in DE are the size

of the population Z, the crossover constant CR and the scaling factor FS. The values

of the parameters for the DE algorithm considering a search space 1 < m ≤ 2 and

0.25 ≤ 𝜎 ≤ 20 were: CR = 0.5, FS = 0.1 and Z = 10.

For the implementation of the DE algorithm the following stopping criteria are

considered:

∙ Criterion 1: Maximum number of iterations.

∙ Criterion 2: Value of the objective function.

The behavior of the objective function (PC) is shown in Fig. 7 where it can be

seen how its the value converges rapidly to one. Since the iteration number 4 the

best parameters were obtained: m = 1.0150 and 𝜎 = 15.3556.
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Fig. 7 Value of the

objective function (PC)
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Fig. 8 Results of the

training stage
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Figure 8 shows the result of the clustering performed by the Algorithms 1 and

2 in the training stage. The values of the parameters used in these algorithms were:

Number of iterations = 100, 𝜖 = 10−5 and 𝛼 = 0.05.
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4.2 On-Line Recognition

Three examples were analyzed in order to test the recognition stage proposed in this

chapter. Five observations were considered in all examples to simulate the observa-

tions sequentially obtained on-line. The numbers assigned to the added observations

indicate the order of arrival of them. In the three examples, the value of the window

of time of observations was k = 5, and a decision threshold of Th = 50% was used.

In Example 1, 5 observations are used, 4 belonging to class 1 and the other is an

outlier. The objective is to evaluate the ability of a correct classification.

In Example 2, 2 observations belonging to class 2 and 3 outliers that did not form

a class are used. The objective is to evaluate the correct classification and the ability

to detect that the outliers do not conform a new class.

In Example 3, 5 observations belonging to a new class are used. The objective

is to evaluate the correct classification of outliers and the ability to detect that these

outliers conformed a new class.

Example 1 Four observations were classified in class 1 (in blue) and the other one

was classified as outlier (in black) as it is shown in Fig. 9a. In this case k = 5, NO = 1,

and NOP = 20%, then, the analyzes of the noise observations was not done. The final

result of the on-line recognition is shown in Fig. 9b.

Example 2 Two observations were classified in class 2 (in red) and three observa-

tions were classified as outliers (in black) as is shown in Fig. 10a. In this case k = 5,

NO = 3, and NOP = 60%, then, the analyzes of the noise observations was done.

After the analysis of the three observations classified as outliers the diagnosis sys-

tem decided that they did not represent a new class. The final result of the on-line

recognition is shown in Fig. 10b.
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(a) Results of the on-line 
classification after applying 
DOFCM algorithm in the 
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(b) Results after applying 
KFCM algorithm in the 
example 1.

Fig. 9 Results of the recognition stage (Example 1)
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DOFCM algorithm in the 
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Fig. 10 Results of the recognition stage (Example 2)
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DOFCM algorithm in the
example 3
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Fig. 11 Results of the recognition stage (Example 3)

Example 3 The five observations were classified as outliers (in black) as is shown in

Fig. 11a. In this case k = 5, NO = 5, and NOP = 100%, then, the analysis of the noise

observations was done. After the analyzes four observations were classified in a new

class (in purple) and the other was classified as outlier and it was not considered.

The final result of the on-line recognition is shown in Fig. 11b.

5 Conclusions

In the present chapter a new classification scheme for on-line detection of new

faults and automatic learning using fuzzy clustering techniques is proposed. In the

proposal, the DOFCM algorithm is used in the first step of the training stage for
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preprocessing the data with the objective to remove the outliers. The KFCM

algorithm is used in the second step of the training step for the data classification

to make use of the advantages introduced by the kernel function in the separability

of the classes, in order to obtain better classification outcomes. The algorithm DE is

used to optimize the parameters of the DOFCM and KFCM algorithms. These para-

meters are used in the on-line recognition stage, where the classifier incorporates

a new fault detection algorithm. In the on-line recognition stage, the proposed new

algorithm analyzes the observations belonging to a window of time which are not

classified in the known classes and determines if they constitute a new class, prob-

ably representative of a new fault or if they are noise. If a new class is identified,

a procedure is developed to incorporate it to the base of knowledge of the classi-

fier. The excellent results obtained show the feasibility of the proposal. For future

research, an interesting idea is to design a fault diagnosis system with the ability to

detect multiple new faults in the on-line recognition stage.
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Fuzzy Portfolio Selection Models
for Dealing with Investor’s Preferences

Clara Calvo, Carlos Ivorra and Vicente Liern

Abstract This chapter provides an overview of the authors’ previous work about

dealing with investor’s preferences in the portfolio selection problem. We propose a

fuzzy model for dealing with the vagueness of investor preferences on the expected

return and the assumed risk, and then we consider several modifications to include

additional constraints and goals.

1 Introduction

H.M. Markowitz won the 1990 Nobel Price for his work in the foundation of modern

portfolio theory (MPT) [27, 28], which has become a main tool in portfolio manage-

ment as well as in other economic theories, such as asset pricing [33]. MPT is a deep

theory which can hardly be described in a few words (see [11] for a comprehensive

account), but, roughly speaking, it aims to determine the best portfolio we can form

from a given set of possible assets on the basis of two characteristics. The first one is

the expected return. In order to measure it, the return of each asset is considered as

a random variable and the expected return is often measured by its mean, which in

practice is estimated by the arithmetical mean of the historical returns. The expected

return of a portfolio is defined as the weighted sum of the expected returns of its

assets.

Here we should face the critical question: to what extent can we trust that the

future return of a portfolio will be similar to the expected return calculated from

its past returns? This leads to the second characteristic to be considered in order to

select a portfolio to invest in: the risk. It tries to estimate the difference between the

expected return and the real future return of a portfolio.
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Whereas the theoretical relevance of MPT is not questioned, several criticisms

about its real world applicability have arisen [38]. However there are also renowned

specialists supporting it [18, 30, 33]. Assuming that the expected return and an

adequate measure of the risk are reliable, MPT establishes that a rational investor

should select an efficient portfolio, i.e., a portfolio providing the least possible risk

for a given expected return or, what is essentially the same, providing the greatest

expected return for a maximum allowable risk.

The original (classical) Markowitz model is also called the mean-variance model

since it takes as indicators of the expected return and the risk of a portfolio the mean

and the quadratic form associated to the variance-covariance matrix of the returns of

the assets, respectively, which in practice are estimated from the historical data by

standard statistical techniques assuming that they are normally distributed.

However, several alternative ways for measuring the risk of a portfolio have been

proposed. Value at Risk (VaR) is widely used (see [36] for a discussion of this con-

cept, or also [16]). Konno and Yamazaki [21] propose a linear model which dra-

matically simplifies the computational aspects of the portfolio selection problem.

Some other possibilities arose from the fact that many risk measures become high

when there is a high probability that the return will be far from the expected return,

but they do not distinguish whether the difference is positive (higher return than

expected) or negative (less return than expected). Since aversion to having more

benefits than expected is questionable, some asymmetric measures for the so-called

downside risk that take into account only the risk of having less return than expected,

have been proposed. The first downside risk measure appeared in Roy’s “safety-first”

model [31, 32]. See also [8, 9, 25, 26, 35]. Other asymmetric measures of risk take

into account higher statistical moments: skewness, kurtosis [15, 17, 20]. For more

advanced models taking into account the dynamics of the variance see for instance

[10].

2 The Classical Portfolio Selection Problem

Thus, the original Markowitz Portfolio Selection Model is formulated as

Min. 𝐱𝐭𝐕𝐱
s.a 𝐞t𝐱 ≥ r

𝟏t𝐱 = 1
𝐱 ≥ 0

(1)

where the vector 𝐱 contains the weights of the assets in the portfolio (i.e. the propor-

tion of each asset in the total invested fund), 𝐞 is the vector of expected returns, mea-

sured by the means of the historical data and 𝐕 is the variance-covariance matrix of

such data, so that R estimates the risk of the portfolio and r is the minimum expected

return specified by the investor.
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Alternatively, a dual form of the problem consists of maximizing the expected

return and imposing a maximum admissible risk:

Max. 𝐞t𝐱
s.a 𝐱t𝐕𝐱 ≤ R

𝟏t𝐱 = 1
𝐱 ≥ 0

(2)

In fact, the portfolio selection problem is better understood as a bi-objective prob-

lem aiming both maximizing the expected return and minimizing the risk. The min-

imizing formulation is the most widely used in the literature, mainly because by

being a quadratic problem it is more easily handled from a mathematical point of

view. However, we will also deal with (2) since it is more realistic to ask an investor

what risk he considers acceptable rather than forcing him to fix a minimum return

without having any reference about the risk it carries. In fact, it is the usual practice

for small investors [see for instance (http://www.santander.com)].

The original Markowitz Portfolio Selection Model included just linear constraints,

mainly because computers could not handle more difficult instances. However,

nowadays the available computational power is much greater and hence more sophis-

ticated models can be dealt with, looking for efficient portfolios satisfying also

additional constraints. There are many contexts in which such constraints become

necessary. Some of them are related to the mutual fund management. Fund man-

agers must comply contractual requirements determined by the prospectus as well

as legal requirements, such as the 5–10–40-constraint imposed by the §60(1) of the

German investment law [2], which establishes that securities of the same issuer are

allowed to amount to up to 5% of the net asset value of the mutual fund, but they are

allowed to 10% if the total of all of these assets is less than 40% of the net asset value.

It is also usual to include buy-in thresholds to reduce transaction costs. This means

not allowing the stocks of a mutual fund in a given asset to be less than a certain

amount. A third typical example is that managers often impose upper bounds to the

total number of assets in a mutual fund also to reduce transaction costs, as well as

lower bounds in order to diversificate the investment. See [13] for the computational

aspects associated to these additional constraints. This leads to the model

Min. 𝐱t𝐕𝐱
s.t. 𝐞t𝐱 ≥ r

𝟏t𝐱 = 1
𝐥 ≤ 𝐱 ≤ 𝐮,

(3)

where 𝐥 and 𝐮 are the vectors of lower and upper bounds for each weight. However,

in many cases the investor does not really wish to force each asset to have a min-

imum weight in the portfolio but, in order to avoid an artificially imposed excess

of diversification in the optimal portfolio, he may just wish to require a minimum

http://www.santander.com
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weight only for those assets actually appearing in it. This leads to the incorporation

of semicontinuous variable constraints into the model, which means that each vari-

able xi is allowed either to be 0 or to vary in the rank [li, ui]. Such constraints can

be expressed with the help of binary variables yi taking the value 1 if the i-th asset

appears in the portfolio and 0 otherwise. The resulting model is:

Min. R = 𝐱t𝐕𝐱
s.t. 𝐞t𝐱 ≥ r

𝟏t𝐱 = 1
liyi ≤ xi ≤ uiyi, 1 ≤ i ≤ n,
yi ∈ {0, 1}.

(4)

In any portfolio selection problem, the set of optimal pairs (r,R) consisting of the

minimal risk R providing a given expected return r, or, equivalently, the maximum

expected return provided by a portfolio that does not exceed a maximum level of

risk R, is known as the efficient frontier of the problem. In the simplest case where

even the sign constraints are removed, it consists just of a branch of parabola [6, 11].

However, in the last decades, computation techniques have been developed to solve

large and more sophisticated instances of the portfolio selection problem including

many different kinds of constraints, making it more realistic (see [12, 37]).

3 A Fuzzy Formulation of the Portfolio Selection
Problem

Obviously, the portfolio selection, like most financial problems, is related with uncer-

tainty because it consists of taking a decision about future events. Moreover, it is

not easy to model the investor’s preferences. After the seminal work by Markowitz,

attention has been given to the study of alternative models [22, 25] which try to deal

more efficiently with the uncertainty of the data. Most of these models are based on

probability distributions, which are used to characterize risk and return. However,

another way of dealing with uncertainty is to work with models based on soft com-

puting. Watada [41] solves this problem by using imprecise aspiration levels for an

expected biobjective approach, where the membership functions of the goals are of

a logistic-type. In 2000, Tanaka et. al. [39] propose using possibility distributions

to model uncertainty on the expected returns and to incorporate the knowledge of

financial experts by means of a possibility degree of similarity between the future

state of financial markets and the state in previous periods [14]. Multiobjective pro-

gramming has also been used to design fuzzy models of portfolio selection, either

for compromise solutions [29] or by introducing multi-indices [1]. Specific meth-

ods have even been proposed for dealing with the unfeasibility provoked by conflict

between the expected return and the investor’s diversification requirements [23, 24].
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However, in this section we will consider a very different class of vagueness

related to the portfolio problem, namely the vagueness of the invertor’s criteria for

selecting a satisfactory trade off between the risk he considers acceptable and the

return he wishes to obtain. In other words, the investor must choose a point at the

efficient frontier of the problem. From a theoretical point of view, the investor’s pref-

erences are usually formalized by means of utility functions, so that the final choice

is that efficient portfolio maximizing a given utility function, but when we try to

reflect the preferences of a real specific investor we must ask him directly for a point

in the efficient frontier. Nevertheless, it is obvious that the investor’s preferences are

essentially vague, so that it is unnatural to force him to choose a specific point. In

practice, he could only determine a zone or a fuzzy point on it.

This leads to the fuzzy model proposed by the authors in [5]. The main idea is to

consider partially feasible solutions involving slightly greater risk than that fixed by

the decision-maker, and to study the possibilities that they offer in order to improve

the expected return.

A fuzzy set ̃S, of partially feasible solutions, is defined so that the membership

degree of a given portfolio depends on how much its risk exceeds the risk R0 fixed by

the investor. On the other hand, a second fuzzy set ̃G is defined, whose membership

function reflects the improvement on the return provided by a partially feasible solu-

tion with respect to the optimal crisp return z∗. In practice, we consider piecewise

linear membership functions

𝜇
̃S(x) =

⎧
⎪
⎨
⎪
⎩

1 if r ≤ R0,

1 − r−R0
pf

if R0 < r < R0 + pf ,

0 if r ≥ R0 + pf ,

𝜇
̃G(x) =

⎧
⎪
⎨
⎪
⎩

0 if z ≤ z∗,
z−z∗

pg
if z∗ < z < z∗ + pg,

1 if z ≥ z∗ + pg,

where r and z are the risk and the return provided by the portfolio x (which is assumed

to satisfy the constraints of (MV), except the second one); the parameter pf is the

maximum increment in the risk that the decision-maker can accept, and pg is the

increment on the return that the decision-maker would consider completely satisfac-

tory. From this, we can define a global degree of satisfaction

𝜆(x) = min{𝜇
̃G(x), 𝜇̃S(x)},

which is the membership degree for the fuzzy intersection of ̃S ∩ ̃G. The fuzzy port-

folio model becomes
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Table 1 Returns on five assets

Year AmT ATT USS GM ATS

1937 −0.305 −0.173 −0.318 −0.477 −0.457

1938 0.513 0.098 0.285 0.714 0.107

1940 0.055 0.2 −0.047 0.165 −0.424

1941 −0.126 0.03 0.104 −0.043 −0.189

1942 −0.003 0.067 −0.039 0.476 0.865

1943 0.428 0.3 0.149 0.225 0.313

1944 0.192 0.103 0.26 0.29 0.637

1945 0.446 0.216 0.419 0.216 0.373

1946 −0.088 −0.046 −0.078 −0.272 −0.037

(FMV) Max. 𝜆(x)
s.t. x ∈ ̃S.

(5)

In [3] exact and heuristic procedures for solving this problem are described. In

order to illustrate the main idea on which the model is based we consider five assets

from the historical data introduced by Markowitz [28]. Table 1 shows the returns

of American Tobacco, AT&T, United States Steel, General Motors and Atcheson &

Topeka & Santa Fe.

We have fixed a risk level R = 0.03. The optimal crisp portfolio is formed by

assets AmT, ATT, GM, ATS and provides an optimal return z∗ = 0.103926. For the

fuzzy model, we have fixed pf = 0.02, pg = 0.02. By explicitly solving the Kuhn-

Tucker conditions associated to the model, we can calculate the optimal return for a

given risk R, which happens to be

F(R) =
−0.02355 + 52.6832R + 2.6136

√
−0.77841 + 52.6832R

9.09494 × 10−13R + 33.84051
√
−0.77841 + 52.6832R

Computations are valid for risks in the interval I = [0.025826, 0.083341]. The

functions 𝜇f (R) and 𝜇g(R) are shown in Fig. 1. They intersect at R∗ = 0.041381, cor-

responding to 𝜆 = 0.430977. The return on the fuzzy portfolio is 0.112545, whereas

the crisp return was 0.103926.

We observe that the global degree of satisfaction is low. This means that the risk

is increased much more than the return of the asset. The higher value of 𝜆, the more

preferable the alternative fuzzy portfolio is. High fuzzy satisfaction levels are more

usual when additional constraints are considered making the efficient frontier more

irregular, as we will see in the next section.
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4 Portfolio Selection with Semi-continuous Variable
and Cardinality Constraints

As we have already noticed, real world investments require incorporating many addi-

tional constraints into the portfolio selection model, many of which can be expressed

as mathematically simple linear constraints, but some others are more complex from

a mathematical point of view since they transform the model into a mixed integer

one. To illustrate this fact we will consider semicontinuous variable and cardinality

constraints, although any set of linear constraints could be considered in addition.

Hence, our starting point is now the model (4).

Let us call X the set defined by the constraints imposed on the problem when the

minimum return constraint is relaxed, which will be handled separately. The con-

straint and goal set will be fuzzy subsets of the (crisp) universe set X. The fuzzy

constraint set ̃C must be such that the value 𝜇
̃C(𝐱) is high when the expected return

on the portfolio 𝐱 ∈ X is not much less than r0 and the risk is not much greater than

R0. This means that ̃C can be defined as the fuzzy intersection of two fuzzy sets

̃Cr and ̃CR, such that the degree of membership of each portfolio 𝐱 ∈ X is given by

𝜇
̃Cr
(𝐱) ∶= f1(r(𝐱)) and 𝜇

̃CR
(𝐱) ∶= g1(R(𝐱)), where r(𝐱) and R(𝐱) are the expected

return and risk of the portfolio 𝐱, f1 ∶ IR ⟶ [0, 1] is a non-decreasing function

such that f1(r0) = 1 and g1 ∶ IR ⟶ [0, 1] is a non-increasing function such that

g1(R0) = 1. The specific choice of f1 and g1 will depend on the available information

about the investor’s preferences regarding risk and return. Hence the membership

function to the fuzzy feasible set ̃C ∶= ̃Cr ∩ ̃CR is given by the membership function

𝜇
̃C(𝐱) ∶= min{𝜇

̃Cr
(𝐱), 𝜇

̃CR
(𝐱)}, which is of the form 𝜇

̃C(𝐱) = h1(r(𝐱),R(𝐱)), where

h1(r,R) ∶= min{f1(r), g1(R)} generally has the shape shown in Fig. 2a.

On the other hand, the degree of membership of the goal set ̃G of the fuzzy

problem must be high for portfolios whose expected return is much greater than

r0 or the risk is much less than R0. Hence, ̃G is the fuzzy union of the fuzzy sets

̃Gr and ̃GR whose membership functions are of the form 𝜇
̃Gr
(𝐱) ∶= f2(r(𝐱)) and

𝜇
̃GR
(𝐱) ∶= g2(R(𝐱)), where f2 ∶ IR ⟶ [0, 1] is a non-decreasing function such that
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f2(r0) = 0 and g2 ∶ IR ⟶ [0, 1] is a non-increasing function such that g2(R0) = 0.

Notice that in this case ̃G is a fuzzy union and not a fuzzy intersection, since improv-

ing the crisp optimal portfolio means improving the risk or improving the expected

return, but both cases cannot occur simultaneously. The fuzzy intersection would be

the empty set.

Thus, the membership function of the fuzzy goal set ̃G = ̃Gr ∪ ̃GR (which can be

called the degree of improvement of the goal) is given by

𝜇
̃G(𝐱) ∶= max{𝜇

̃Gr
(𝐱), 𝜇

̃GR
(𝐱)} = h2(r(𝐱),R(𝐱)),

where h2(r,R) ∶= max{f2(r), g2(R)} has the shape shown in Fig. 2b.

Now, following Delgado et al. [7], we consider the fuzzy decision set of our prob-

lem, defined as the fuzzy intersection ̃D ∶= ̃C ∩ ̃G, which has the shape shown in

Fig. 3. The degree of membership of a portfolio 𝐱 to ̃D is called its degree of global

satisfaction: 𝜆(𝐱) ∶= min{𝜇
̃C(𝐱), 𝜇 ̃G(𝐱)}. In Fig. 3 we have represented a possible

(simplified) efficient frontier of the crisp problem (SCP) and the pair (r0,R0) chosen

by the investor as the starting point for the fuzzy model. We see that its degree of
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feasibility is 1 but its degree of improvement of the goal is 0, and so the degree of

global satisfaction is 0. We can also see the lifting of the efficient frontier to the graph

of the degree of global satisfaction. In order to choose a specific solution from the

fuzzy decision set ̃D we maximize its degree of global satisfaction, i.e. we find the

optimal fuzzy portfolio by solving the program:

(FSC) Max. 𝜆(𝐱)
s.t. 𝐱 ∈ X

In Fig. 3 we can see that the degree of global satisfaction has two local maxima

on the efficient frontier, the best of which is the optimal solution of the fuzzy model

we are introducing.

The problem of choosing membership functions suitable for modelling a real

uncertain situation is a very subtle issue in fuzzy set theory. Here, in the absence

of specific preferences, we will consider the simplest case. Notice that we intend

to compare possible variations of the expected return with possible variations of

the risk, and what is really comparable with a variation of the expected return is

not a variation of its variance but a variation of its typical deviation. The difference

between the variance and the typical deviation is just a square root, which is irrel-

evant when minimizing the risk, but it must be incorporated into our membership

functions. In other words, the natural way to express the investor’s preferences on

the trade-off between variations in the expected return and variations in the risk is in

terms of the mean and the typical deviation instead of the mean and the variance. In

the absence of more specific criteria, we will assume a piecewise linear dependence

on r and

√
R; namely, we take

f1(r) ∶=
⎧
⎪
⎨
⎪
⎩

0 if r < r0 − pf1 ,

1 − r0−r
pf1

if r0 − pf1 ≤ r ≤ r0,
1 if r0 < r,

g1(R) ∶=
⎧
⎪
⎨
⎪
⎩

1 if
√

R<
√

R0 ,

1 −
√

R−
√

R0

pg1
if

√
R0≤

√
R≤

√
R0+pg1

,

0 if
√

R>
√

R0+pg1
,

f2(r) ∶=
⎧
⎪
⎨
⎪
⎩

0 if r < r0,r−r0
pf2

if r0 ≤ r ≤ r0 + pf2 ,

1 if r0 + pf2 < r,
g2(R) ∶=

⎧
⎪
⎨
⎪
⎩

1 if
√

R<
√

R0−pg2
,

√
R0−

√
R

pg2
if

√
R0−pg2

≤

√
R≤

√
R0 ,

0 if
√

R0<
√

R.

In [5] we show how to handle this fuzzy model. As an illustration, we con-

sider the same data set considered in the previous section, but now we incorpo-

rate semicontinuous variables with vectors of bounds 𝐥 = (0.2, 0.3, 0.2, 0.3, 0.2) and

𝐮 = (0.6, 0.6, 0.6, 0.6, 0.6), as well as a cardinality constraint with m = 2 and M = 5.

Let us consider an investor that has chosen an expected return r0 = 0.125, whose

corresponding risk is R0 = 0.0742. In order to interpret this variance, we will calcu-

late the standard deviation

√
R0 = 0.272. We can consider the later as a quite high

risk, and so we assume that the investor would be interested in reducing it. In this

sense, a reduction of pg2 = 0.06 would be considered as totally satisfactory. On the

other hand, an increment greater than pg1 = 0.01 would not be acceptable in any

case. We assume that the investor would accept variations on the expected return

with tolerances pf1 = pf2 = 0.02.
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Fig. 4 Left Membership function to the feasible set and to the goal set as functions of the expected

return. Right The efficient frontier around the crisp expected return

Table 2 Comparison between the crisp and the fuzzy solutions of Example 1

x1 x2 x3 x4 x5 r
√

R
Crisp 0.31486 0 0.2 0.486 0 0.125 0.273
FzL 0.244 0.354 0 0.40 0 0.1192 0.23
FzR 0.5 0 0 0.3 0.2 0.1313 0.281

𝜆 𝛥r 𝛥R
Fuzzy left 0.71 -0.0058 -0.013
Fuzzy right 0.12 0.0063 0.008

Figure 4 left shows the degrees of membership to the feasible and the goal sets

as functions of the expected return on a given efficient portfolio. We can compare it

with the piece of the efficient frontier around r0 within the tolerance levels, which is

shown at the right.

There we can see that near r0 there are two horizontal jumps below and a vertical

one above. In Fig. 4 we have highlighted the two local maxima of the degree of

global satisfaction. Specifically, they correspond to the efficient portfolios described

in Table 2, which also includes the crisp efficient portfolio. Both in the figure and in

the table we can see that the fuzzy optimal solution is the left-hand one with a degree

of global satisfaction 𝜆 = 0.71. Notice that the three portfolios shown in Table 2 have

different compositions.



Fuzzy Portfolio Selection Models for Dealing . . . 129

In Table 2 we can also appreciate the interest of the fuzzy alternative: by changing

from the crisp portfolio to the fuzzy one, we reduce the risk of the investment by a

bit more than 1% at the cost of reducing the expected return by just 0.0058. The sig-

nificantly lower degree of global satisfaction of the right fuzzy solution is reasonable

since the increment on the expected return is far less than the increment on the risk.

5 Portfolio Selection with Non-financial Goals

The Social Investment Forum in its new 2012 Trends Report in US [40] finds that

11.23% of all assets under professional management in the United States at the end

of 2011 applied various environmental social, governance and ethical criteria in

their investment analysis. Investors practicing Socially Responsible Investment (SRI)

strategies held $3.74 trillion out of $33.3 trillion of investment assets. This represents

an increase of 22% since 2009 and reflects the “growing investors’ interest in con-

sidering environmental, community, other societal or corporate governance (ESG)

issues to refine how they make decisions as they select and manage their portfolios

or raise their voices as shareholders” [40].

This growth of SRI strategies all around the world has stimulated in turn the rise of

many entities working in the rating of assets with regard to their social responsibility.

This poses two mathematical problems: how to evaluate assets’ social responsibility

which is by its nature a vague an imprecise concept and how to aggregate in a final

rating a great amount of relevant but imprecise information about firms and/or funds.

Nevertheless, and although investors could be provided with highly processed

non-financial information from the experts, in order to select a portfolio, they must

elicit their preferences. The simplest way would be to restrict the feasible set of

investments to those being “acceptable” for the investor from a SRI point of view.

However this would mean to completely subordinate the financial goals to the non-

financial ones and in fact, in practice most of the SRI assets first apply financial

screens and then social screens. This clearly reflects that actually most of socially

responsible investors consider SRI as a secondary goal with regard to maximizing

the financial return and minimizing the financial risk.

In this section a fuzzy portfolio selection problem is proposed in which a sec-

ondary goal besides the financial ones is considered in such a way that no poten-

tially interesting solution with regard to the risk and the return is discarded by the

constraints. Specifically, the constraints of the model do not mention the secondary

goal, which appears just in the objective function, in such a way that all the feasi-

ble portfolios within given ranges of risk and return are taken into consideration.

Thus, the investor can be aware of what is being exactly missed as a result of the

improvement of the additional non-financial goal.

Our starting point is again the model (4), and hence each portfolio is determined

by a pair (𝐱, 𝐲) of weights and binary variables. We measure the Social Responsibility

of a portfolio as the degree of membership of a fuzzy set ̃S, say 𝜇
̃S(𝐱, 𝐲). See [4] for

a way of defining such a fuzzy set.
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Now we take as fuzzy feasible set the fuzzy subset of the set of all portfo-

lios satisfying the hard constraints of (4) (i.e., all but the first one), defined as

̃C = ̃Cr ∩ ̃CR, where the membership functions of the fuzzy sets ̃Cr and ̃CR are given

by:

𝜇
̃Cr
(x, y) =

⎧
⎪
⎨
⎪
⎩

1 if r ≥ r0,
r−r0+sr

sr
if r0 − sr < r < r0,

0 if r ≤ r0 − sr,

𝜇
̃CR
(x, y) =

⎧
⎪
⎨
⎪
⎩

1 if R ≤ R0,
R0+sR−R

sR
if R0 < R < R0 + sR,

0 if R ≥ R0 + sR,

where r y R are respectively the expected return and the risk of the portfolio (x, y)
and the values r0, R0, sr and sR are determined from the investor’s preferences. This

means that r0 and R0 are an expected return and a risk that the investor considers

as completely acceptable, but he would accept worse values until reaching the toler-

ances sr and sR if this provides better results for the secondary goal.

Next we define a fuzzy goal set ̃G from two auxiliary fuzzy sets ̃E and ̃S, the first

one defining the “efficient enough” portfolios and the second one defining the “good

enough” ones with regard to the secondary goal (always according to the investor’s

preferences). The set ̃E will express what we are loosing by accepting a non-efficient

portfolio, and so efficient portfolios will be now the totally efficient portfolios, i.e.

those having degree of membership of ̃E equal to 1.

First we define efficiency with regard to the expected return and then, the effi-

ciency with regard to the risk by means of two fuzzy sets ̃Er and ̃ER. The membership

of ̃Er is:

𝜇
̃Er
(x, y) =

{
1 − ref (R)−r

tr
if r ≥ ref (R) − tr,

0 otherwise,

where tr is a tolerance determined from the investor’s preferences and ref (R) is the

efficient expected return corresponding to the risk R of the portfolio (x, y). This

means that the degree of efficiency with regard to the expected return reaches the

value 0 when the difference between the expected return r of the portfolio and ref (R)
exceeds a tolerance fixed by the investor.

Analogously, we define the membership function of ̃ER as

𝜇
̃ER
(x, y) =

{
1 − R−Ref (r)

tR
if R ≤ Ref (r) + tR,

0 otherwise,

which means that the degree of efficiency of a portfolio with regard to the risk is 1 for

efficient portfolios and reaches the value 0 when the difference between the risk R of

the portfolio and the efficient risk Ref (r) for its return r exceeds a given tolerance tR.
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Now we define ̃E = ̃Er ∩ ̃ER, where the membership function of the fuzzy inter-

section is defined as the minimum of the previously defined membership functions.

Hence the set ̃E allows us to speak about partially efficient portfolios in such a way

that efficient portfolios in the usual sense are now the totally efficient ones, but a

portfolio close enough to the efficient frontier is considered as “almost efficient” in

the fuzzy sense.

Finally, we define our fuzzy goal set ̃G by means of the membership function as

a weighted sum

𝜇
̃G(x, y) = w𝜇

̃S(x, y) + (1 − w)𝜇
̃E(x, y),

where the weight w expresses the importance of the secondary goal for the investor

with regard to efficiency. So, a high value for w means that the investor is willing

to go relatively far from the efficient frontier in order to obtain higher values of 𝜇
̃S,

whereas a small value of w means that the investor wishes to stay near the efficient

frontier. In any case, recall we have defined the feasible set in such a way that only

good enough solutions with regard to the financial goals are under consideration, and

so the financial goals are always the main goals of the problem. More specifically,

a large value for w means that, among the acceptable solutions with regard to the

financial goals, those best with regard to ̃S are preferred, and only for similar values

with regard to ̃S the degree of efficiency becomes relevant.

All in all, the degree of membership of the decision set is given by

𝜇
̃D(x, y) = min{𝜇

̃C(x, y),w𝜇̃S(x, y) + (1 − w)𝜇
̃E(x, y)}

and the fuzzy problem (6) is the problem determined by this decision set, whose

optimal solutions are those with maximum degree of membership of ̃D:

Max.min{𝜇
̃C(x, y),w𝜇̃S(x, y) + (1 − w)𝜇

̃E(x, y)}
s.t.1x = 1

m ≤

∑

i
yi ≤ M

liyi ≤ xi ≤ uiyi, i = 1,… , n
xi ≥ 0, yi ∈ {0, 1} i = 1,… , n

(6)

In order to illustrate this model, we consider the 10 mutual funds listed in Table 3.

The first five have positive SRI degree, whereas the last five are conventional funds

with null SRI degree. The variance-covariance matrix and the vector of expected

returns are calculated from the weekly data from 31-12-2006 to 31-12-2007 provided

by Morningstar Ltd. Assume we wish to select a portfolio consisting of a minimum

of 3 and of a maximum of 6 funds in such a way that each non-zero weight is at

least 0.05. As upper bounds for the weights, we fix 0.25 for the first five (the socially

responsible ones) and 0.15 for the conventional ones. These weights allow up to a

75% of conventional funds and up to a 100% of socially responsible funds in each

feasible portfolio.
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Table 3 Selected funds

# Name # Name

F1 Calvert Large Cap

Growth A

F6 BlackRock Index

Equity Inv A

F2 Calvert Social

Investment Equity A

F7 Dreyfus Appreciation

F3 Domini Social Equity

Inv

F8 JPMorgan Equity

Index Select

F4 Green Century Equity F9 Legg Mason Cap

Mgmt All Cap B

F5 MMA Praxis Core

Stock A

F10 MFS Blended Res.

Core Equity A

By observing the efficient frontier, the investor can choose the zone of the plane

risk-return he is interested in. Formally, this means to determine the fuzzy set ̃C. For

this, we fix (r0,R0) = (0.26, 1.98) with tolerances (sr, sR) = (0.01, 0.02).
To determine an instance of the problem (6), we need to fix the weight w for the

social responsibility degree in the goal function. Let us set a quite high value, namely

w = 0.8 to favor those portfolios being quite far from the efficient frontier if they are

good with regard to SRI.

The optimal solution of (6) is the portfolio N1 in Table 4, whose degree of mem-

bership of the decision set is 0.6262. With this solution, the investor gets an expected

return r = 0.258, with a risk R = 1.98 and a social responsibility degree s = 0.3808.

It is interesting to compare this optimal solution with other alternatives, and therefore

Table 4 contains the six best portfolios that are optimal with regard to the portfolios

with the same composition. Notice that this does not mean that portfolio N2 is the

second best solution of (FP), since there are infinitely many portfolios near to N1

that are better than N2. What we can say is that, if we look for a portfolio with a

composition different from that of N1, the best possibility is N2, and so on.

Figure 5 shows the position of the portfolios appearing in Table 4 in the risk-return

plane. We see that N2 is completely efficient. When compared to N1, it has a similar

expected return, a substantially better risk, but a significantly lower social responsi-

bility degree. By contrast, portfolio N3 is again a good solution with regard to social

responsibility (it has the second best SRD), but it is worse than N1 because of its

SRD, and worse than N2 because of its significantly lower degree of efficiency.

In general, when applying a heuristical procedure for solving a larger instance

of (6), it is useful to save not only the best portfolio along the search process, but

the best portfolio found for each composition. Hence, in the end we can present the

investor not only the optimal portfolio, but a list of alternatives for different compo-

sitions. These alternatives are ordered a priori according to his own preferences. In

this way the investor is given a last chance to decide which portfolio suits better his

preferences with regard to the trade off between risk, return and social responsibility.
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Fig. 5 Location on the plane risk-return of the best solutions

With this proposal, the investor knows exactly what he is missing with respect to

the financial goals by accepting the solution of (6), and if he considers the financial

cost excessive, he has the possibility of choosing a more conservative alternative

among the proposed list or even solving again (FP) with a lower value for the weight

of the social responsibility degree.

6 Conclusion

In this chapter we have seen how fuzzy techniques can be applied to the portfolio

selection problem in order to deal with different issues related to the subjectivity

of the investor’s preferences: on one hand, the integrality constraints considered in

Sect. 4 make the problem very sensitive to small changes of the risk and return pref-

erences, and our proposed model look for the best solution taking into account that

those preferences are soft ones and, hence, the investor will accept slight variations

if they provide a reasonable improvement of the solution. On the other hand, when

considering non-financial goals as in Sect. 5, our model provides a precise way of

prioritizing the financial behavior of the selected portfolio without disregarding its

non-financial properties. Of course, it would not be reasonable to expect that a single

model would be suitable for reflecting the preferences of every investor (even if it

has some adjustable parameters to this end), and hence any other investor’s profiles

will need essentially different models involving new ideas, and this leaves a rich field

for future research.
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On Fuzzy Convex Optimization to Portfolio
Selection Problem

Ricardo Coelho

Abstract The goal of an investor is to maximize the required return in an investment

by minimizing its risk. With this in mind, a set of securities are chosen according to

the experience and knowledge of the investor, which subjective evaluations. Select-

ing these securities is defined as the portfolio selection problem and it can be classi-

fied as convex programming problems. These problems are of utmost importance in

a variety of relevant practical fields. In addition, since ambiguity and vagueness are

natural and ever-present in real-life situations requiring solutions, it makes perfect

sense to attempt to address them using fuzzy convex programming technique. This

work presents a fuzzy set based method that solves a class of convex programming

problems with vagueness costs in the objective functions and/or order relation in the

set of constraints. This method transforms a convex programming problem under

fuzzy environment into a parametric convex multi-objective programming problem.

The obtained efficient solutions to the transformed problem by satisfying an aspira-

tion level defined by a decision maker. This proposed method is applied in a port-

folio selection numerical example by using BM&FBOVESPA data of some Brazilian

securities.

1 Introduction

Due to desire of maximizing the expected income over a given time horizon, the

investors make portfolio and investment decisions. These decisions are supported by

the subjective evaluations of income expectations over the chosen time horizon and

the risk preferences of the profile of each investor. In this context, we can identify two

important problems in achieving the desired objective. The first is the uncertainty in
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the subjective evaluation for each scenario because there exist a number of decisions

according to the expert’s knowledge. The second is the actual decision-making on

feasible solutions.

The two problems described in the previous paragraph involve to develop an inter-

face between two close areas, Fuzzy Sets and Systems and Decision Support Sys-

tems. On the one hand, in the early sixties, based on the fact that classical logic does

not reflect, to the extent that it should, the omnipresent imprecision in the real world,

L.A. Zadeh proposed the Theory of Fuzzy Sets and Fuzzy Logic. Nowadays Fuzzy

Logic, or rather Soft Computing, is employed with great success in the conception,

design, construction and utilization of a wide range of products and systems whose

functioning is directly based on the human beings reason ways. On the other hand,

the term Decision Support System (DSS) was coined at the beginning of the 70’s to

feature the computer programs that could support a user in making decisions when

facing ill-structured problems. Nowadays, software for supporting decision-making

is available for almost any management and optimization problem, that involve mini-

mization (or maximization) of one or various objective functions in a domain that can

be constrained or not. If all the functions are linear, we obviously have a linear pro-

gram. Otherwise, the problem is called a nonlinear program. Nowadays we can use

highly efficient and robust algorithms and software for linear programming, which

are important tools for solving problems in diverse fields. However, many realistic

problems cannot be enough represented or approximated as a linear program owing

to the nature of the non-linearity of the objective function and/or the non-linearity

of any of the constraints.

As it is well known, convex programming represents a special class of nonlinear

programming in which the objective is a convex function or are various convex func-

tions over a convex feasible set. Thus, it is clear that convex programming encom-

passes all linear problems, including applications in scheduling, planning and flow

computations, and they may be used to solve some interesting combinatorial opti-

mization problems. There are several classes of problems that are naturally expressed

as convex problems. Examples of such problems can be found in game theory, engi-

neering modeling, design and control, problems involving economies of scale, facil-

ity allocation and location problems, problems in microeconomics among others.

Several applications and test problems for quadratic programming can be found in

[10, 16]. For instance, the risk investment analysis, first introduced by Markowitz

[15], is an important research field in the modern finance by modeling this problem

as a convex optimization problem.

The paper is organized as follows: Sect. 2 introduces the proposed method to solve

convex programming problems under a fuzzy environment. This fuzzy environment

can be in the costs of the objective function(s) and/or in the set of constraints. The

approach described in this work uses two phases: the first one transforms the prob-

lem to be optimized into a parametric convex multi-objective programming problem

while in the second part the parametric problem is solved for a satisfaction level given
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by means of classical optimization techniques. To illustrate the approach Sect. 3

offers a general portfolio selection problem formulated as a fuzzy convex multi-

objective programming. Section 4 presents numerical simulations and an analysis

of the results obtained. Finally, in Sect. 5, some conclusions are pointed out.

2 Parametric Convex Programming Approach

There are several approaches that solve fuzzy mathematical programming problems,

see [1] and [13], which use some defuzzification index, represent the fuzzy coeffi-

cients by intervals or transform this fuzzy problem into a parametric mathematical

programming problem. The main goal is to transform this imprecise problem into

a classical problem and using classical techniques to solve the equivalent problem.

In this work, we will focus on the parametric approach in order to transform fuzzy

problems into many classical problems with a parameter representing the satisfac-

tion level which belongs to the interval [0,1]. Another way would be defining a new

parameter as a new decision variable and to find out the optimal satisfaction level.

However, due to space limitations we will not consider this approach.

The parametric approach is divided into two parts: to transform a fuzzy prob-

lem into a classical parametric problem; a mathematical formulation of the classical

parametric problem which is equivalent to the original fuzzy problem.

2.1 Parametric Approach to Solve Convex Programming
Problems Under Fuzzy Environment

The imprecise costs in the objective function(s) of programming problems are rep-

resented by fuzzy numbers. These imprecise costs can be defined by the decision

maker and they permit some violations that it is not possible in the classical case.

Thus, a programming problem with fuzzy costs in the objective function(s) can be

formulated in the following way:

̃min F(𝐜̃; 𝐱)
s.t. 𝐱 ∈ 𝛺

(1)

where F = (f1,… , fm)(m ≥ 1) is an m vector of objective function(s), 𝐜̃ ∈ F

(Rn×m) represents a vector of fuzzy costs, and 𝛺 ⊂ Rn
.

A set of membership functions defines the satisfaction level of a feasible solution

𝐱 ∈ Rn
. These membership functions can be formulated as follows:

𝜇i ∶ R → (0, 1], i ∈ I
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where 𝜇 is a membership function and I is the set that contains all imprecise costs.

A fuzzy number can be represented by a classical one in several ways by using

some techniques as the Yager’s index [2], the mass center, among many others which

are indexes of defuzzification.

In this work, the fuzzy number is transformed into an interval that is defined by

lower and upper bounds of the fuzzy number for a determined 𝛼-cut level.

Therefore, Problem (1) can be rewritten as:

̃min
{
F([𝐜𝐋, 𝐜𝐔]

𝛼

; 𝐱) | 𝐱 ∈ 𝛺

}

Thus, the fuzzy feasible solution to the original fuzzy problem is a set of optimal

solutions for each 𝛼 ∈ (0, 1]. It can be defined in the following way:

S(𝛼) = min
{
F(𝐜

𝛼

; 𝐱) | 𝐱 ∈ 𝛺

}
(2)

where c
𝛼

∈ [cL, cU]
𝛼

is a real value obtained by a linear combination of bounds of

the interval formed by the 𝛼-cut level with 𝛼 ∈ (0, 1].
This fuzzy optimal solution can be found, 𝛼-cut by 𝛼-cut, by solving the equivalent

parametric multi-objective programming problem.

Hence, the fuzzy multi-objective programming problem was parametrized in the

end of first part. In the second one the parametric problem is solved for each one of

different 𝛼 values by using conventional multi-objective programming techniques.

Thus, the optimal solution achieved by each 𝛼 of the parametric problem satisfies

the Karush-Kuhn-Tucker sufficient optimality conditions to the multi-objective case

[4]. This point is described as an efficient solution of original fuzzy problem.

The results for each 𝛼 value generate a set of satisfaction solutions S(𝛼) and, there-

fore, according to Representation Theorem to fuzzy numbers, it can be defined as

̃S =
⋃

𝛼

(1 − 𝛼)S(𝛼),

where it can be used to associate all these 𝛼-optimal solutions. Hence, it is shown

that the feasible solutions are attained by the parametric approach. It determines a

fuzzy optimal solution ̃S which solves the original fuzzy multi-objective program-

ming problem.

2.2 Mathematical Formulation of Parametric Approach to
Fuzzy Costs in the Objective Function

A multi-objective approach that solves a fuzzy linear programming problem with

imprecise costs in the objective functions is presented in [8, 9]. This approach can

be extended to solve nonlinear programming problems with one or several objec-

tives. In [11], another multi-objective approach is developed that solves nonlinear



On Fuzzy Convex Optimization to Portfolio Selection Problem 141

programming problems with only one objective with imprecise coefficients in the

objective function and in the set of constraints. But it can be extended to solve fuzzy

multi-objective problems too.

In this work, multi-objective programming problems with fuzzy costs in the

objective functions are formulated in the following way:

min
[
f1(𝐜̃1; 𝐱),… , fm(𝐜̃m; 𝐱)

]

s.t. 𝐱 ∈ 𝛺

(3)

where 𝐱 is an n vector of real numbers, 𝐜̃i is a vector of fuzzy numbers with pi compo-

nents, i = {1,… ,m}. The fuzzy numbers are characterized by the membership func-

tions that are defined by the decision maker. The membership functions are defined

as

𝜇j ∶ R → [0, 1], j ∈ J = {1, 2,… ,m}

In particular, these membership functions are described by:

𝜇j(y) =
⎧
⎪
⎨
⎪
⎩

0 if cUj < y or y < cLj
Lj(y) if cLj ≤ y ≤ c1j j ∈ J

Rj(y) if c2j ≤ y ≤ cUj
(4)

where 𝐋(⋅) and 𝐑(⋅) are strictly increasing and decreasing continuous functions,

respectively, Lj(c1j ) = Rj(c2j ) = 1, j ∈ J.

The problem considered in Verdegay [8] presents trapezoidal membership func-

tions to describe the fuzzy numbers. In this work, we consider it as defined in (4).

By considering the (1 − 𝛼)-cut level of all the costs, for 𝛼 ∈ [0, 1], ∀ x ∈ R

𝜇j(x) ≥ 1 − 𝛼 ⇔ L−1j (1 − 𝛼) ≤ x ≤ R−1
j (1 − 𝛼), j ∈ J

Thus, according to the parametric transformations shown above, a fuzzy solution

to (1) can be obtained from a parametric solution of a equivalent parametric multi-

objective programming problem which is formulated as:

min
[
f1(𝐜𝟏𝟏; 𝐱), f1(𝐜

𝟐
𝟏; 𝐱),… , f1(𝐜𝟐

𝐩𝟏
𝟏 ; 𝐱),… ,

fm(𝐜𝟏𝐦; 𝐱), fm(𝐜
𝟐
𝐦; 𝐱),… , fm(𝐜𝟐

𝐩𝐦
𝐦 ; 𝐱)

]

s.t. 𝐱 ∈ 𝛺, 𝐜𝐤 ∈ E(1 − 𝛼),
𝛼 ∈ [0, 1], k = 1, 2,… , 2pj ,

(5)

where E(1 − 𝛼), for each 𝛼 ∈ [0, 1], is the set of vectors in Rpj , such that pj informs

the amount of fuzzy numbers that represent the imprecise costs in each objective

function, for j ∈ {1, 2,… ,m}.
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Each (1 − 𝛼)-cut level element of this set is in the lower bound, L−1j (1 − 𝛼), or in

the upper bound, R−1
j (1 − 𝛼), i.e., ∀ k = 1, 2,… , 2pj ,

𝐜𝐤 = (ck1, c
k
2,… , ckm) ∈ E(1 − 𝛼)

where ckj is equal to L−1j (1 − 𝛼) or R−1
j (1 − 𝛼), for all j = 1,… ,m

It is clear that a parametric optimal solution to (5) is part of the fuzzy optimal solu-

tion to (3). This approach was developed to the convex case with one only objective,

as described in [5, 18, 20], and here is extended to the convex case with several

objectives. The parametric optimal solutions can be obtained by using any optimiza-

tion method to solve classical multi-objective programming problems.

2.3 Mathematical Formulation of Parametric Approach to
Fuzzy Order Relation in the Set of Constraints

As in [6, 17, 19], the constraints of a convex problem are defined as having a fuzzy

nature, that is, some violations in the accomplishment of such restrictions are per-

mitted. Thus, the convex problem can be addressed as follows

min F([𝐜𝐋, 𝐜𝐔]
𝛼

; 𝐱)
s.t. gi(𝐱) ≤f bi, i = 1,… ,m

xj ≥ 0, j = 1,… , n
(6)

where gi, for each i = 1,… ,m, is a convex function by building a convex constraint

set. Besides, the membership functions

𝜇i ∶ Rn → [0, 1], i = 1,… ,m

on the fuzzy constraints are to be determined by the decision maker. It is clear

that each membership function will give the membership (satisfaction) degree such

that any x ∈ Rn
accomplishes the corresponding fuzzy constraint upon which it is

defined. These membership functions can be formulated as follows

𝜇i(𝐱(𝜆)) =
⎧
⎪
⎨
⎪
⎩

1 gi(𝐱) ≤ bi
1 −

gi(𝐱) − bi
di

bi ≤ gi(𝐱) ≤ bi + di
0 gi(𝐱) > bi + di

with i = 1,… ,m. In order to solve this problem in a two-phase method, first let us

define for each fuzzy constraint,

Xi =
{
𝐱 ∈ Rn | gi(𝐱) ≤f bi, 𝐱 ≥ 0

}
.
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If𝐗 =
⋂

Xi(i = 1,… ,m) then the former fuzzy quadratic problem can be addressed

in a compact form as

min
{
F([𝐜𝐋, 𝐜𝐔]

𝛼

; 𝐱) | 𝐱 ∈ 𝐗
}
.

It is clear that ∀𝜆 ∈ (0, 1], an 𝜆-cut of the fuzzy constraint set will be the classical

set

X(𝜆) =
{
𝐱 ∈ Rn | 𝜇X(𝐱) ≥ 𝜆

}

where ∀𝐱 ∈ Rn
,

𝜇X(𝐱) = min𝜇i(𝐱(𝜆)), i = 1,… ,m

Hence an 𝜆-cut of the i-th constraint will be denoted by Xi(𝜆). Therefore, if ∀𝜆 ∈
(0, 1],

S(𝜆) =
{
𝐱 ∈ Rn | F([𝐜𝐋, 𝐜𝐔]

𝛼

; 𝐱) = min F([𝐜𝐋, 𝐜𝐔]
𝛼

; 𝐲), 𝐲 ∈ X(𝜆)
}

the fuzzy solution to the problem will therefore be the fuzzy set defined by the fol-

lowing membership function

S(𝐱) =
{

sup{𝜆 ∶ 𝐱 ∈ S(𝜆)} 𝐱 ∈
⋃

𝜆

S(𝜆)
0 otherwise.

Provided that ∀𝜆 ∈ (0, 1],

X(𝜆) =
⋂

i=1,…,m
{𝐱 ∈ Rn | gi(𝐱) ≤ ri(𝜆), 𝐱 ≥ 0, 𝐱 ∈ Rn}

with ri(𝜆) = bi + di(1 − 𝜆). The operative solution to the former problem can be

found, 𝜆-cut by 𝜆-cut, by means of the following auxiliary parametric convex pro-

gramming model,

min F([𝐜𝐋, 𝐜𝐔]
𝛼

; 𝐱)
s.t. gi(𝐱) ≤ bi + di(1 − 𝜆), i = 1,… ,m

xj ≥ 0, j = 1,… , n, 𝜆 ∈ [0, 1].
(7)

Thus, the fuzzy convex programming problem was parameterized at the end of

the first phase.

In the second phase the parametric quadratic programming problem is solved for

each of the different 𝜆 values using the technique described in previous subsection.
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3 Portfolio Selection Problem

In order to illustrate the above described parametric method to solve fuzzy convex

programming problems, we are going to focus on general portfolio problems. It is

important to emphasize that, at the present time, we do not try to improve other solu-

tion methods for this kind of important problems, but only to show how our solution

approach performs. In [15], a description of a classical portfolio selection problem

is given that was formulated by Markowitz as a convex programming problem.

Markowitz’s model combines probability and optimization techniques to model

the behavior of investment under uncertainty. The investors are assumed to strike a

balance between minimizing the risk and maximizing the return of their investment.

The risk is characterized by the variance, and the return is quantified by the mean,

of a portfolio of assets. The two objectives of an investor are thus to minimize the

variance of a portfolio and to maximize the expected value of return.

Markowitz model for portfolio selection can be formulated mathematically in two

ways: minimizing risk when a level of return is given and maximizing return when

a level of risk is given. Hence, assume that there are n securities denoted by Sj (j =
1,… , n), the former problem is formulated on the following way:

min 𝐱𝐭𝐐𝐱
s.t. 𝐱𝐭𝐄(𝐑) ≥ 𝜌

𝟏𝐱 = 1
𝐱 ≥ 𝟎

(8)

where 𝐱 is an n vector that represents the percentage of money invested in asset,

i.e., the proportion of total investment funds devoted to each security; 𝐄(𝐑) is the

average vector of returns over m periods because 𝐑 = [rij] is an m × n matrix that

represents the random variables of the returns of asset varying in m discrete times;

𝜌 is a parameter representing the minimal rate of return required by an investor;

and 𝐐 = [𝜎2
ij] is a covariance n × n matrix between returns of asset which can be

written as

𝜎

2
ij =

m∑

k=1

(
rki − E(ri)

) (
rkj − E(rj)

)

m − 1
. (9)

On the other hand, the latter problem is formulated as

min 𝐱𝐭𝐄(𝐑)
s.t. 𝐱𝐭𝐐𝐱 ≤ 𝛾

𝟏𝐱 = 1
𝐱 ≥ 𝟎.

(10)

where 𝛾 is the maximum risk level the investor would bear.
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The expected return rate, 𝜌, and the maximum risk level, 𝛾 , are decision maker’s

values that represent an expert’s knowledge. These two formulations of portfolio

selection problems can be mixed and formulated as a bi-objective convex program-

ming problem. Moreover, uncertainty and multiple objectives are the important fac-

tors in decision making. From a practical viewpoint, it is usually difficult to deter-

mine exactly the coefficients in mathematical programming problems due to various

kinds of uncertainties. However, it is sometimes possible to estimate the perturba-

tions of coefficients by intervals, fuzzy numbers or possibilistic distributions.

The portfolio problem is a typical decision making problem under uncertainty

which has received considerably attention in the literature recently. This problem

addresses the dilemma that each investor faces the conflicting objectives of high

profit versus low risk. In this work, the uncertainties in the objective functions are

represented by fuzzy costs and the order relation in the set of constraints is fuzzy

too. So, portfolio selection problem can be formulated in the following way

min 𝐱𝐭𝐄( ̃𝐑)
s.t. 𝐱𝐭𝐐𝐱 ≤f

𝛾

𝟏𝐱 = 1
𝐱 ≥ 𝟎.

(11)

There are many formulations to describe a portfolio selection problem that are

more realistic than one was presented in this work. One of them is to put another

objective function called “Value at Risk”, as described in [12]. It is defined as a

threshold value, which is a given probability level of the worse loss on the portfolio

over the given time horizon. However, we choose this convex formulation to show

the efficiency of our approach, and we will extend it to apply in other formulations

in the next step.

4 Numerical Experiments

In this section, a portfolio selection problem with fuzzy costs and fuzzy order relation

in the set of constraints are analyzed. In Sect. 4.1 we will show the used data to

formulate the fuzzy portfolio problems. Then in Sect. 4.2 the computational results

and a comparative analysis of the classic and parametric approaches responses will

be presented.

The tests were all performed on a PC with 2.7 GHZ Intel
Ⓡ

Core
TM

i7, 16 GB RAM

running MacOS Sierra operational system. All the problems presented in this work

were resolved using fmincon function to solve constraint programming problems

of ToolBox Optimization of MATLAB
Ⓡ

R2015a program. The evolutionary algo-

rithm parameter are 100 generations and 100 individuals in the population, while

the crossover and mutation index are 0.6 and 0.1, respectively.



146 R. Coelho

4.1 Formulation of the Numerical Examples

In order to show the performance of our method, we used the set of historical data

shown in Table 1 took by BM&FBOVESPA which is an important market for Brazilian

securities. It was chosen ten Brazilian securities and the columns 2–11 represent

Cemig, Cesp, Copel, Eletrobras, Embraer, Light, Petrobras, Unipar, Usiminas, and

Vale securities data, respectively. The returns on the ten securities, during the period

of 1994 up to 2016, are presented in Table 1.

The vagueness was inserted into the set of constraints in the form around 40%

variation in the modal value of each constraint function. Besides, each component

of the vector of imprecise costs is a fuzzy number and they are transformed into a

interval.

This example will consider performance of portfolios with respect to “return” and

“risk”. This assumes that a euro of realized or unrealized capital gains is exactly

equivalent to an euro of dividends, no better and no worse. This assumption is

appropriate for certain investors, for example, some types of tax-free institutions.

Other ways of handling capital gains and dividends, which are appropriate for other

investors, can be viewed in [15].

4.2 Results and Analysis

Here we show two results obtained for the portfolio selection problem with uncer-

tainties by the fuzzy convex programming method introduced in Sect. 2. The prob-

lems described in this work were solved by using the equivalent parametric multi-

objective problem as presented by Problems (5) and (7). The data from BM&FBOVESPA

shown in Table 1 was used on two ways of the Problem (11): (i) only order relation in

the set of constraints is uncertain; and (ii) the linear objective function which max-

imizes the return has imprecise costs and the order relation in the set of constraints

is uncertain.

Table 2 presents the solutions of the parametric portfolio selection problem with

ten securities and this same problem with imprecise order relation in the set of con-

straints. It is clear to see that the investor should choose only four securities of them

for any satisfaction level. With this choice, the expected value of return of this invest-

ment is between 22% up to 26%. To highlight, the maximum risk allowance is 18%

and the maximum tolerance is 7%.

Figure 1 presents the solutions of the parametric portfolio selection problem with

ten securities and this same problem with imprecise order relation in the set of con-

straints. The line represents the interpolation of the obtained points for each satis-

faction level.

Figure 2 presents the solutions of the parametric multi-objective portfolio selec-

tion problem with ten securities and this same problem with imprecise costs in the

linear objective function. Besides, the order relation in the set of constraints is impre-
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Fig. 1 The fuzzy solution applied in the linear objective function
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Fig. 2 The fuzzy solution applied in the linear objective function with fuzzy costs
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cise too. In this case it is clear to identify the belt that represents the fuzzy efficient

solutions and the classical efficient solutions are inside of this belt.

5 Conclusion

Convex Programming problems are very important in a variety of both theoreti-

cal and practical areas. When real-world applications are considered, the vagueness

appears in a natural way, and hence it makes perfect sense to think in Fuzzy Convex

Programming problems. In contrast to what happens with Fuzzy Linear Program-

ming problems, unfortunately until now no solution method has been found for this

important class of problems. In this context this paper has presented an operative

and novel method for solving Fuzzy Convex Multi-Objective Programming prob-

lems which is carried out by performing two phases which finally provide the user

with a fuzzy solution. The method has been validated by solving a portfolio selec-

tion problem. The obtained solutions allow the author to follow along this research

line trying to solve real problems in practice, in such a way that oriented Decision

Support Systems involving Fuzzy Convex Programming problems can be built.

An evolutionary algorithm called NSGA-II was used and it produces a sequence

of points according to a prescribed set of instructions, together with a termination

criterion. Usually we look for a sequence that converges to a set of efficient solutions,

but in many cases however we have to be satisfied with less favorable solutions. Then

the procedure may stop either (1) if a point belonging to a prefixed set (the solution

set) is reached, or (2) if some prefixed condition for satisfaction is verified. In any

case, assuming that a solution set is prefixed, the algorithm would stop if a point

in that solution set is reached. Frequently, however, the convergence to a point in

the solution set is not easy because, for example, of the existence of local optimum

points. Hence we must redefine some rules to finish the iterative procedure.

Hence the control rules of the algorithms solving convex programming problems

could be associated to the solution set, and to the criteria for terminating the algo-

rithm. As it is clear, fuzziness could be introduced in both points, not assuming it as

inherent in the problem, but as help for obtaining, in a more effective way, some solu-

tion for satisfying the decision-maker’s wishes. This mean that the decision maker

might be more comfortable obtaining a solution expressed in terms of satisfaction

instead of optimization, as it is the case when fuzzy control rules are applied to the

processes.
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Digital Coaching for Real Options Support

Christer Carlsson

Abstract Classical management science is making the transition to analytics,
which has the same agenda to support managerial planning, problem solving and
decision making in industrial and business contexts but is combining the classical
models and algorithms with modern, advanced technology for handling data,
information and knowledge. In work with managers in the forest industry, we found
out that there is a growing interest to replace the classical net present value
(NPV) with real options theory, especially for strategic issues and uncertain,
dynamic environments. Uncertainty and dynamics motivate the use of soft com-
puting, i.e. versions of the real options methods that use fuzzy numbers (intervals),
macro heuristics, approximate reasoning and evolutionary algorithms. In general,
managers can follow the logic of the real options theory but the methods require
rather advanced levels of analytics; when the methods are implemented, they will
be used by growing numbers of people with more of a business than analytics
background. They find themselves in trouble pretty quickly as they need to master
methods, they do not fully understand and details of which they forget from time to
time. We propose that digital coaching is a way to guide and support users to give
them better chances for effective and productive use of real options methods.

Keywords Digital coaching ⋅ Analytics ⋅ Fuzzy real options

1 Introduction

This chapter has a history and a reason that bridges the past, the present and the
future. The history is a paper I wrote called On the Relevance of Fuzzy Sets in
Management Science Methodology in 1984 [4]. This was a time when we tried to
make the case for fuzzy sets in management science and as a support theory for
managers who plan the future, and solve problems and make decisions in their daily
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activities. This is an activity where Professor Jose Luis “Curro” Verdegay has made
significant contributions over many years and where he is a much sought-after
collaborator for many researchers.

If we continue the history a bit, a first version of the paper had been presented
and discussed at the 11th meeting of the EURO Working Group on Fuzzy Sets (in
which Curro was an active collaborator) at the European Institute for Advanced
Studies in Management in Brussels on February 19–20, 1981. The EIASM is the
centre for serious research on management in Europe and getting an invitation to
run a workshop on fuzzy sets took some negotiation; I was chairing the EURO WG
in that period and had to do the negotiating.

Management science methodology—and especially operations research that
applied the same methodology for engineering problems and theory development—
had already in 1981 been under attack for more than a decade for failing to deal
with the real world problems managers have to tackle, for oversimplifying problems
and for spending too much time with mathematically interesting but practically
irrelevant problems and solutions. The message was simply that management sci-
ence methodology produced theory and methods that were irrelevant for handling
actual management problems. The paper in 1984 argued that fuzzy sets when
properly worked into management science methodology would make the models,
the algorithms and the theory more relevant and better suited to deal with man-
agement problems in practice.

Now, more than 30 years later, we have to admit that we were not successful in
bringing it about, that fuzzy sets remained a marginal development in management
science and that we have been able to get fuzzy sets based methods accepted only
for some limited applications, such as multiple criteria optimisation, real options
valuation, logistics optimisation, etc. for which there have been algorithmic benefits
of allowing the use of fuzzy numbers.

Management science and operations research have also changed over the dec-
ades; two major organisations in the field—TIMS and ORSA—merged and became
INFORMS to combine the applications oriented research (TIMS) with the algo-
rithms and theory oriented research (ORSA); now the annual INFORMS confer-
ences collect 2–3000 participants; in Europe the EURO Association is a sister
organisation to INFORMS and the annual EURO conferences also collect 2–3000
participants. Both organisations run major, well-established journals with high
impact factors and there are dozens of journals publishing material produced under
guidance of management science methodology. The field is alive and well and
promotes lively research that activates thousands of researchers. The context is
there; what is needed for fuzzy sets to be relevant (again) for the research that is
carried out—a question and a goal we have had in the International Fuzzy Systems
Association (IFSA) for the last decade? Or to be more focused and specific—is
there any management science problem area where fuzzy sets theory could be vital
for breakthrough research (cf. [15])?
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1.1 Analytics

Operations Research and Management Science are now in the process of being
transformed by (Business) Analytics which is getting the attention of major cor-
porations and senior management. On our part, in our work with complex, difficult
problems for large industrial corporations, we have for a number of years been
promoting Soft Computing to the same audience instead of trying to explain fuzzy
sets theory and fuzzy logic in the way it was originally done. The experience we
have—summarized in a few words—is that analytics methods which implement
soft computing theory and algorithms are turning out to be very effective and useful
for planning, problem solving and decision making in “big data” environments; the
“big data” is one of the challenges of the modern digital economy and for which we
propose that fuzzy sets would offer instruments for breakthrough research [15].

Analytics adds value to management; it promotes data-driven and analytical
decision making, which was somehow “reinvented” as being important and useful for
management that had relied on other schools of thought for a couple of decades.
Analytics builds on recent software improvements in information systems that has
made data, information and knowledge available in real time in ways that were not
possible for managers only a few years ago [18]. INFORMS gradually found out that
the new movement represents both “potential opportunities” and “challenges” to
management science and operations research professionals [25]. The methods and the
application cases worked out in the Davenport-Harris book [18] are very close to
traditional management science methodology, actually so close that a manager
probably fails to see any differences, which is why INFORMS finds “challenges”.

Soft Computing (introduced by Lotfi Zadeh in 1991) builds on fuzzy sets theory
[31], fuzzy logic, optimisation, neural nets, evolutionary algorithms, macro heuristics
and approximate reasoning. Soft Computing is focused on the design of intelligent
systems to process uncertain, imprecise and incomplete information; soft computing
methods applied to real-world problems offer more robust, tractable and less costly
solutions than those obtained by more conventional mathematical techniques.

Liberatore and Luo [25] list four factors that drive the analytics movement:
(i) availability of data (ii) improved analytical software (iii) the adoption of a
process orientation by organisations, and (iv) managers and executives who are
skilled users of information and communication technology. Compared to the
experience of the 1980s the last factor is probably the most important driver—there
is a new generation of managers and executives in charge of the corporations that
are using information technology as part of their daily routines. They work with
data, information and knowledge on a real time basis and they continuously hunt for
improved analytical tools to help give them competitive advantages. They do not
necessarily recognize the analytical tools as classical management science algo-
rithms; analytical software (cf. (ii)) has become user-friendly with graphical user
interfaces and visualisation of results; users typically do not have the mathematical
background to get into details with the algorithms. Information technology has
made data available on a real time basis which allows online planning, problem

Digital Coaching for Real Options Support 155



solving and decision making. Maybe “allow” is not the right verb as online man-
agement work in real time is more of a necessity to keep up with the competition.
The same driver also explains the adoption of a process orientation (cf. (iii)) as
management work typically is group—and teamwork online and in real time.
Davenport and Harris [18] describe analytics as “the extensive use of data, statis-
tical and quantitative analysis, explanatory and predictive models and fact-based
management to drive decisions and actions”. Liberatore and Luo [25] identify three
levels of modelling—descriptive, predictive and prescriptive—and state that man-
agement science and operations research typically would focus on advanced ana-
lytics, i.e. prescriptive modelling. They also point out that analytics would focus on
the transformation of data into actions through analysis and insight, which in their
discussion contributes to the application cases of management science.

The modern movement of analytics appears to offer interesting possibilities and
opportunities for soft computing; the movement is data-driven which will require
tools for handling imprecision; the movement is focused on managers who need to
deal with real world problems, for which available data, information and knowledge
are incomplete, imprecise and uncertain and should allow for fast, often intuitive
conclusions; the movement builds on improved analytical software that offers
platforms for a multitude of algorithms, intelligent technologies, soft computing,
computational intelligence, etc. Modern analytics offers platforms and environments
for digital coaching of managers in planning, problem solving and decision making.

There are benefits of having worked with management science for a few decades
(like myself and my contemporaries)—there has been hundreds of innovative ideas
and some successful solutions from which it has been possible to extract working
principles and growing understanding of how good science can guide and con-
tribute to successful planning, problem solving and decision making. In the context
of the digital economy these processes—not surprisingly—offer new challenges:
real-time management challenged by “big data” and relying on fast processing by
advanced analytics methods would best be carried out by postdoc-qualified man-
agers—these are rather scarce and would most often be filtered out by corporate
career qualifying processes much before they reach senior management positions.
Thus there will be a need to reinstate “coaching” functions with the advanced
analytics methods to tell/explain to the users what can/should be done, how it
should be carried out, what the results are and what they mean, and how they
should be applied (with explanations of what could/should not be done).

My storyline is worked out in the context of analytics and soft computing and the
history that has formed that context over the last few decades. I will work with fuzzy
real options modelling, that is one of the more advanced analytics methods with a
theory that is not easily introduced to managerial decision makers but which shows
results that represent insight that can offer sustainable competitive advantages. The
fuzzy real options modelling is introduced in Sect. 2 and the principles and the state
of the art of digital coaching in Sect. 3; then we will use the methods in Sect. 4 to find
out how users of real options models could be given coaching support for strategic
planning and effective decisionmaking. The chapter will finish with a summary of the
main points and with some linking to insight developed by Kahneman [24].
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2 Fuzzy Real Options Modelling

Black and Scholes (cf. [17]) introduced the options theory to decide the price for
options on financial assets that would be effective in the financial market; Merton
(cf. [17]) then proved that similar options modelling also could be applied to real
assets and used to work out the pricing of investment alternatives based on future
cash flows for the alternatives. Merton’s method—named real options analysis—
became popular among professionals as it offered more flexibility than the classical
NPV methods and the options represented alternative foresight scenarios for
development that could not be worked out with the NPV methods. At IAMSR the
real options analysis has been applied to (i) so-called giga investments which are
large enough to change the dynamics of the markets on which the investment object
operates [17]; (ii) mergers and acquisitions where the strategic positions of the new,
merged company offer new and different options [1]; (iii) portfolios of R&D pro-
jects where combinations of projects (some successful, others not) offer options to
proceed with investments for own production, investments combined with licensing
of technology or production capacity, licensing of patents, disinvestment and sales
of patents, or with discontinuing the project as unsuccessful (Heikkilä [22]);
(iv) portfolios of patents with options to apply/not apply for patents (national, EU,
USA or global), to continue/discontinue the patents, to exclusively use the patents,
to license the patents, to sell the rights to the patents and collect royalty, to sell the
rights outright and to discontinue the patents; all these options have different pro-
files of expected revenue, risk and cash flows (Wang [30]).

In the following, we will use experience from a real world case—the strategic
decision on the closing/not closing of a paper mill in the UK owned by a Finnish
forest corporation. We worked with the management team during an 18 month
period and followed the processes they went through and tried to support them with
good analytical tools as best we could. In this way we gained a fairly good
understanding of how management works with analytics tools, how they can for-
mulate their insight with the elements of real options models, what compromises
and simplifications they are ready to accept and how they understand and apply the
results (cf. [21, 22]). This is now more than digital coaching for the managers, it is
actually practical real world coaching.

2.1 A Paper Mill Case

The paper mill has had an unsatisfactory profitability development for a number of
reasons: (i) fine paper prices have been going down for 6 years (ii) costs are going
up (raw material, energy, chemicals) (iii) demand is either declining or growing
slowly depending on the markets (iv) production capacity cannot be used optimally,
and (v) the £/USD exchange rate is unfavourable (sales invoiced in USD, costs paid
in £). The standard solution for most forest industry corporations is to try to close
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any old, small and not cost-effective production plants (like the UK plant); the
common wisdom is that modern, large production plants will always be more
profitable. The UK paper mill is producing fine paper products, it is rather aged, the
paper machines were built a while ago, the raw material is not available close by,
energy costs are reasonable but are increasing in the near future, key domestic
markets are close by and export markets (with better sales prices) will require
investments in the logistics network.

The intuitive conclusion, based on the facts, is—a sunset case and senior
management should close the plant. On the other hand we have the UK trade
unions, which are strong, and we have pension funds commitments for many more
years which are very strict, and we have long-term power contracts which are
expensive to get out of. Finally, by closing the plant we will invite competitors to
fight us in the UK markets we have served for more than 50 years and which we
cannot serve from other plants at any reasonable cost.

It is clear that the decision problem is more complex than standard routine
formulations and that a number of factors that will decide the outcome will not be
easily handled with algorithms.

There were a number of conditions which were more or less predefined. The first
one was that no capital could/should be invested as the plant was regarded as a
sunset plant. The second condition was that we should in fact consider five sce-
narios: the current production setup with only maintenance of current resources and
four options to switch to setups that save costs and have an effect on production
capacity used. The third condition is that the plant together with another unit should
carry sizeable administrative costs of the sales organization which should be cov-
ered in some way (but not clear how) if the plant is closed. The fourth condition is
the pension scheme that needs to be financed for several more years. The fifth
condition is given by the power contracts that are also running for several more
years. These specific conditions have consequences on the cost structure and the
risks that various scenarios involve. It is not known if the conditions are truly
non-negotiable. The management team should decide if the plant will (i) be closed
as soon as possible (ii) not be closed, or (iii) be closed at some later point of time
(and then at what point of time).

The first step to decide on the best decision is typically to carry out a profitability
analysis. Modern profitability analysis works with methods that originate in neo-
classical finance theory. The models are by nature normative and offer general
decision support for the long run but may not be helpful for real life decisions in a
real industry setting where data is neither well-structured nor complete. In prof-
itability planning a good enough solution is many times both efficient, in the sense
of smooth management processes, and effective, in the sense of finding the best way
to act, as compared to theoretically optimal outcomes.

Economic feasibility and profitability are key factors but more issues are at stake.
Management decisions will be scrutinized and questioned regardless of what the
close/not close decision is going to be. The shareholders will react negatively if they
find out that share value will decrease (closing a profitable plant, closing a plant
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which may turn profitable, or not closing a plant which is not profitable, or which
may turn unprofitable) and the trade unions, local and regional politicians, the press,
etc. will always react negatively to a decision to close a plant almost regardless of
the reasons.

Only very few decisions are of the type now-or-never—often it is possible to
postpone, modify or split up a complex decision in strategic components, which can
generate important learning effects and therefore essentially reduce uncertainty. If
we close a plant we lose all alternative development paths which could be possible
under changing conditions. These aspects are widely known—they are part of
managerial common wisdom—but they are hard to work out unless we have the
analytical tools to work them out and unless we have the necessary skills to work
with these tools.

The intention here is to demonstrate that in industrial cases the focus of the
standard NPV based methods is too narrow; the net present value of estimated
future revenues and costs gives an over-simplistic view and comparison of the
decision alternatives; nevertheless, this approach is used as better tools are not
readily known.

2.2 Real Options Modelling

We chose to work with real options models as our analytical tools for the paper
mill. The rule we worked out, is that we should only close the plant now if the net
present value of this action is high enough to compensate for giving up the value of
the option to wait. Because the value of the option to wait vanishes right after we
decide to close the plant, this loss in value is actually the opportunity cost of our
decision (cf. Alcaraz [1], Borgonovo and Peccati [3], Carlsson and Fullér [6, 9],
Heikkilä [22]). This is a principle based in theory but it turned out that it was well
understood by the management team and the managers we worked with were
interested in learning to use the real options methods. We worked out the rather
advanced mathematics in a series of workshops in which we also introduced and
demonstrated the software (actually Excel models) we were using—the key turned
out to be that we used the management team’s own data to explain the models step
by step. They could identify the numbers and fit them to their own understanding of
the close/no close alternatives and their consequences and the possible problem
solving paths shown by the real options models. This is a good example of how
coaching can be built to work in practice—managers have lots of experience, ideas,
advice from various sources and influence from stakeholders that all could inter-
vene, sometimes unintentionally, to make the decisions for them; systematic
modelling will not get time and space even if it is found out that the results may be
vital for the actual decision making.
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The value of a real option is computed by (cf. Carlsson et al. [9, 10], Collan et al.
[16], Collan [17]),

ROV= S0e− δTNðd1Þ−Xe− rTNðd2Þ,

where

d1 =
ln S0 ̸Xð Þ+ r− δ+ σ2 ̸2ð ÞT

σ
ffiffiffiffi
T

p ,

d2 = d1 − σ
ffiffiffiffi
T

p

Here, S0 denotes the present value of the expected cash flows, X stands for the
nominal value of the fixed costs, r is the annualized continuously compounded rate
on a safe asset, δ is the value lost over the duration of the option, σ denotes the
uncertainty of the expected cash flows, and T is the time to maturity of the option
(in years). The interpretation is that we have the difference between two streams of
cash flow: the S0 is the revenue flow from the plant and the X is the cost generated
by the plant; both streams are continuously discounted with a chosen period of time
T and the streams are assumed to show random variations, which is why we use
normal distributions N. In the first stream we are uncertain about how much value δ
we will lose if we postpone the decision and in the second stream we have
uncertainty on the costs σ.

The function N (d) gives the probability that a random draw from a standard
normal distribution will be less than d, i.e. we want to fix the normal distribution,

NðdÞ= 1
ffiffiffiffiffi
2π

p
Z d

−∞
e− x2 ̸2dx.

Facing a deferrable decision, the main question that a manager primarily needs
to answer is the following: how long should we postpone the decision—up to T time
periods—before (if at all) making it? In a managerial context that is normally not
decided by any algorithm but by experience, advice from people—or (in the present
context) from impressions gained in negotiations.

With the model for real option valuation we can find an answer and develop the
following natural decision rule for an optimal decision strategy (cf. Carlsson and
Fullér [5, 8–10]).

Let us assume that we have a deferrable decision opportunity P of length L years
with expected cash flows {cf0, cf1, …, cfL}, where cfi is the cash inflows that the
plant is expected to generate in year i (i = 0, …, L). We note that cfi is the
anticipated net income (revenue—costs) of decision P year i. In these circum-
stances, if the maximum deferral time is T, we can make the decision to postpone
for t′ periods (which is to exercise the option at time t′, 0 < t′ < T) for which the
value of the option, ROVt′ is positive and gets its maximum value; namely (cf.
Carlsson and Fullér [9] for details),
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ROVt0 = max
t=0, 1, ...,T

ROVt = max
t=0, 1, ...,T

Vte− δTNðd1Þ−Xe− rTNðd2Þ>0,

If we make the decision now without waiting, then we will have

ROV0 =V0 −X = ∑
L

i=0

cfi
ð1+ βPÞi

−X.

That is, this decision rule also incorporates the net present valuation of the
assumed cash flows; βP is the risk-adjusted discount rate of the decision. This is the
rule for how long we can postpone the decision; this is anchored in solid economic
theory which is a rational motivation for the decision. The real option model
actually gives a value for the deferral which makes it possible to find the optimal
deferral time. The management team gets an instrument for the decision to be made.

2.3 Real Options and Real World Decisions

Having got this far we will have to face another problem: the difference between
management science modelling and what is possible in the real world case. Real
options theory requires rather rich data with a good level of precision on the
expected future cash flows. This is possible for financial options and the stock
market (following the effective market hypothesis) for which we can use models
that build on stochastic processes and which have well known mathematical
properties. The data we could collect on expected future cash flows were not precise
and were incomplete; the management team was rather reluctant to offer any firm
estimates (for very understandable reasons, these estimates can be severely ques-
tioned with the benefit of hindsight). It turns out that we could work out the real
options valuation also with imprecise and incomplete data.

Let us now work out the case that expected cash flows of the close/not close
decision cannot be characterized with single numbers. With the help of possibility
theory (cf. Carlsson and Fullér [7, 9] for details) we can estimate the expected
incoming cash flows at each year of the project by using a trapezoidal possibility
distribution of the form

Vi = ðsLi , sRi , αi, βiÞ, i=0, 1, . . . , L,

that is, the most possible values of the expected incoming cash flows lie in the
interval [si

L, si
R] (which is the core of the trapezoidal fuzzy number describing the

cash flows at year i of the paper mill); (si
R + βt) is the upward potential and (si

L
– αt)

is the downward potential at year i, (i = 0, 1, …, L). In a similar manner, we can
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estimate the expected costs by using a trapezoidal possibility distribution of the
form

X = ðxL, xR, α′, β′Þ,

i.e. the most possible values of the costs lie in the interval [xL, xR]; (xR + β′) is the
upward potential and (xL − α′) is the downward potential (there should actually be
different costs for each year, but the management team stated that they do not
change much and that the trouble of estimating them does not have a good trade-off
with the accuracy of the model).

By using possibility distributions we can extend the classical probabilistic
decision rules for an optimal decision strategy to the case with imprecise data.

Let P be a deferrable decision opportunity with incoming cash flows and costs
that are characterized by the trapezoidal possibility distributions given above.
Furthermore, let us assume that the maximum deferral time of the decision is T, and
the required rate of return on this project is βP. In these circumstances, we should
make the decision (exercise the real option) at time t′, 0 < t′ < T, for which the
value of the option, Ct′ is positive and reaches its maximum value. That is,

FROVt0 = max
t=0, 1, ...,T

FROVt = max
t=0, 1, ...,T

Vte− δtNðdðtÞ1 Þ−Xe− rtNðdðtÞ2 Þ>0,

where

dðtÞ1 =
ln EðVtÞ ̸EðXÞ� �

+ r− δ+ σ2 ̸2ð Þt
σ

ffiffi
t

p ,

dðtÞ2 = dðtÞ1 − σ
ffiffi
t

p
=

ln EðVtÞ ̸EðXÞ� �
+ r− δ− σ2 ̸2ð Þt

σ
ffiffi
t

p .

Here, E denotes the possibilistic mean value operator and

σ = σðVtÞ ̸EðVtÞ

shows the annualized possibilistic variance of the aggregate expected cash flows
relative to its possibilistic mean. Furthermore,

Vt =PV(cf0, cf1, . . . , cfL; βPÞ− PV(cf0, cf1, . . . , cft− 1; βPÞ=PV(cft, . . . , cfL; βPÞ= ∑
L

i= t

cfi
ð1+ βPÞi

computes the present value of the aggregate (fuzzy) cash flows of the project if this
has been postponed t years before being undertaken.
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To find a maximizing element from the set

FROV0,FROV1, . . . ,FROVT
� �

we need a method for the ordering of trapezoidal fuzzy numbers. This is one of the
partially unsolved problems for fuzzy numbers as we do not have any complete
model for ranking intervals (cf. Carlsson and Fullér [7, 9] for details), which is why
we have to resort to various ad hoc methods to find a ranking. Basically, we can
simply apply some value function to order fuzzy real option values of trapezoidal
forms

FROVt = ðcLt , cRt , α
0
t, β

0
tÞ, t=0, 1, . . . ,T .

νðFROVtÞ= cLt + cRt
2

+ rA ⋅
β

0
t − α

0
t

6
,

where rA ∃ 0 denotes the degree of risk aversion. If rA = 1 then trapezoidal fuzzy
numbers are compared by their pure possibilistic means (cf. Carlsson and Fullér
[6]). Furthermore, in the case rA = 0, we are risk neutral and fuzzy real option
values are compared by the centre of their cores.

Thus we can work out the best time for making a close/not close decision on the
paper mill also with imprecise and incomplete data, that is—if we can work out the
mathematics. If this is not the case and our knowledge and expertise is to be found
in business operations (the mathematics is basically known but details are distant
memories) we would benefit from coaching. We have worked with managers in a
number of real option cases (cf. [8]) and have found out that they could benefit from
the following types of coaches, which now are at the analytics level and in the
domain of models and algorithms:

• Coach 1: collects and guides estimates of imprecise incoming cash flows and
costs, shows FROV with guides to meaning, and shows the T periods for
optimal postponement of the decision with guides to explanation (net present
value of action vs. option value of postponement)

• Coach 2: collects, guides market estimates for r (compound rate), δ (value lost
over the option) and σ (uncertainty of expected cash flows); guides estimates of
α′ and β′, the downward and upward potentials

• Coach 3: guides to explanations of FROV, possibilistic mean, possibilistic
variance, present value of aggregate fuzzy cash flows

• Coach 4: guides to explanations of ranking of FROV (ranking of fuzzy
numbers)

• Coach 5: works out trade off variations between net present value of action vs.
option value of postponement with variations of parameters

The immediate reaction is of course that this coaching could be carried out by a
senior expert with knowledge and experience of real options and the key factors in
decisions to close an old paper mill.

Digital Coaching for Real Options Support 163



Experience from real life cases shows that this is both expensive and impractical
and that online digital coaching would be both less expensive and more practical;
the remaining problems are to find some effective methods to build and implement
digital coaches. In the actual case we were able to use Excel to implement the
FROV models; Coach 1 would guide estimates of the cash flows for the Excel
model and explain the optimal solutions; Coaches 2–4 would guide parameter
estimates and explain the real options and fuzzy theory parts of the model; Coach 5
would guide simulations with the models and offer explanations of the results.

In the next section we will find out how digital coaches could be constructed to
offer the described functionality without supervision of personal coaches.

3 Digital Coaching

The digital coaching systems got started a few years ago as an answer to the
demand on human operators to master advanced automated systems that are used to
monitor and control often complex and very large industrial process systems.
Digital coaching will work on and with data, information and knowledge that is
collected from digital devices, instruments, tools, monitoring systems, sensor sys-
tems, software systems, data and knowledge bases, data warehouses, etc. and then
processed to be usable for the digital systems that will guide and support users. The
processing is done with digital fusion which operates in three phases: data, infor-
mation and knowledge fusion.

Data fusion is the first step; a function that combines multiple tuples into one is
called a fusion function and the standard, rather simple operation is a fusion of data
attributes. The traditional way is to define some ordering relation a priori and then
to keep it updated for continuous use; maintenance is challenging for big, fast data
which is why we want automatic support in modern industrial applications. A better
than the traditional way is to construct order relations automatically when data
attributes to be fused are inspected.

Data fusion builds data sets (or families of data sets). The next step is to extract
process information from the (often big) data sets with analytics methods such as
data mining, statistical analysis, machine learning, computational intelligence,
visualization, etc. The process is continued with analytical techniques to fuse sets of
information to more meaningful summary information—information fusion (cf.
Carlsson et al. [11, 12, 14, 15]). Some early research results show that information
fusion reduces the uncertainty in (social) big data by extracting key (valid, relevant)
factors, cleaning out outliers, high-lighting illogical assumptions, etc. (cf.
Morente-Molinera et al. [28, 29]).

Knowledge fusion builds on first data fusion, then information fusion. Knowl-
edge fusion applies taxonomies or ontologies—in the D2I program (funded by
Tekes 340/12) fuzzy ontology was developed and used to detect, identify and deal
with recurring problems in pump valve packages (Carlsson et al. [13–15]). Auto-
mated knowledge builds on natural (or near-natural) language processing,
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information extraction with analytics tools, information integration (or federation),
computational intelligence (soft computing, evolutionary computation, swarm
intelligence, intelligent agents, etc.) (cf. Morente-Molinera et al. [28, 29]).

With the proposed basis in digital fusion we can then look for theory and
technology constructs that could be used for the digital coaches.

One of the approaches to virtual coaches builds on the emerging technology of
embodied conversational agents (ECA’s). ECA’s are animated virtual characters,
displayed on a computer or a mobile device screen. ECA’s play the roles of
teachers, mentors, advisors, social companions, and, increasingly, of virtual coaches
(cf. Hudlicka [23]). The ECA’s engage in natural interaction with humans through
dialogue and non-verbal expression which requires minimal or no training; we will
probably not be aided by animated virtual characters but the core agent constructs
may be useful for the digital coaching when working on data and information
fusion material. With some quick sketching we could work with the following setup
and functionality: Coachi will (i) collect incoming cash flows (data fusion);
(ii) carry out estimates of incoming cash flows (information fusion), and (iii) build
explanations of NPV of action versus option value of postponement (knowledge
fusion).

The virtual trainer systems are becoming popular as supporting services to
fitness and wellness applications; they are typically identified as three classes
(i) smart phone applications (ii) sensor devices, and (iii) image processing devices.
Sensor data and images are collected and processed through data fusion, which can
be a low level implementation that builds on fast, efficient process monitoring. In
our present context this could be used for working out the parameters needed for the
Markov processes. The “trainer” gives feedback on the progress of the exercise and
offers summary post exercise data for learning and for motivation to keep up the
exercises. This basic functionality appears to be generic and we should bear it in
mind for the digital coaches.

3.1 Coaching with Markov Decision Processes

Fern et al. [19] work out a theory base for personalised AI systems that work as
personal assistants to support human users with tasks they do not fully know how to
carry out. This type of technology has gained much attention in the last 10 years
because of the growing use of automated systems with intelligent functions. Fern
et al. [19] work out a model where the assistant (an AI system) observes the user
(represented as a goal-oriented agent) and must select assistive actions from a
closed set of actions in order to best help the user achieve his goals.

The context studied is a physical environment in which the assistant helps a user
to navigate, follows up on the progress, adjusts the behaviour towards some chosen
goal and continues with sequential adjustments until the user is satisfied with the
goal attainment. The functionality is close to the one we have in mind for the
Coaches 1–5. The interesting thing is that this functionality builds on a
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decision-theoretic model, which is worked out with partially observable Markov
decision processes (POMDPs). Fern et al. [19] work out variations of these Markov
processes to get a formal basis for designing intelligent assistants. A specific case is
the hidden goal Markov decision processes (HGMDP) that are designed to cover
the application environment and the user’s policy and hidden goals. The HGMDP is
a tuple <S, G, A, A′, T, R, π, IS, IG> where S is a set of states, G is a finite set of
possible user goals, A is a set of user actions, A′ is the corresponding set of assistant
actions, T is a transition function that decides the transition from s to s′ (element of
S) after the user takes action a (element of A) towards a goal g (element of G); R is
a reward function for both the user and the assistant, π is the user’s (optimal) policy
mapping to the context, and IS the initial and IG the goal states. Markov processes
are generic constructs that can be used to describe complex processes in a fairly
compact form. The digital coaching, we want to build, appears not to be neither a
POMDP nor an HGMDP because (A, A′) are not stochastic but decided by the
ROV model, the transition function T is a function of the ROV and the R could be a
(fuzzy) distance function.

Nevertheless, there are some useful constructs that build on the Fern et al. [19]
theoretical framework. The first is a special case where the assistant’s policy is
deterministic for each specific goal. This opens up for the use of an optimal tra-
jectory tree (OTT) where the nodes represent the states of the MDP reached by the
prefixes of optimal action sequences for different goals starting from the initial state.
Each node in the tree represents a state and a set of goals for which it is on the
optimal path from the initial state. The size of the optimal trajectory tree, which we
need to be reasonably compact for computational purposes, is bounded by the
number of goals times the maximum length of any trajectory, which is at most the
size of the state space in deterministic domains. This gives some hints at what
constructs to look for when trying to work out the Coaches 1–2 that decide the
parameter values for the ROV model.

Another interesting result is the approach to solve the problem of selecting an
assistive action. For an HGMDP Fern et al. [19] work out a combination of
bounded look-ahead search and myopic heuristic computations (selecting an action
that has the highest probability of being accepted). By increasing the amount of
look-ahead search the actions returned will be closer to optimal at the cost of more
computation; for many HGMDPs the useful assistant actions can be computed with
relatively little or no search.

We will need some constructs to learn (e.g.) an HGMDP while interacting with
the context, i.e. the assistant should follow how the user interacts with the context
and learn the user’s policy and goal distributions. These constructs would be useful
when the assistant is called upon many times for the same construct (quite often at
irregular intervals) by the same user; a further extension would be for the assistant
to start from basic constructs obtained with one user and then to learn another user’s
policy and goal distributions. The classical approach is to use Maximum Likelihood
estimates of the user’s policy distributions from continuous follow-ups and com-
bine that with estimates of the goal attainment (e.g. as fuzzy distances). Another
approach that Fern et al. [19] propose is to use an MDP model of the context and
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bootstrap the learning of the user policy. This would be useful if the user is near
optimal in his policy choices and will likely select actions that are near-optimal for a
selected goal and an actual context.

3.2 Coaching with Virtual Environments

Fricoteaux et al. [20] work out the use of virtual environments for fluvial naviga-
tion; these environments offer training in easily modifiable environmental condi-
tions (wind, current, etc.), which have impacts on the behaviour of a ship; fluvial
navigation would in our context be applied to rapidly and randomly changing
market conditions. The main difficulty in fluvial navigation is to anticipate
manoeuvres and the variability of the conditions of the environment. It is interesting
to note that the formal framework to represent and support the decision-making
system builds on classical Dempster-Shafer theory in order to take account of
uncertainty. Unlike the theory of probability, the DS-theory allows for explicit
modelling of ignorance. This can be combined with directed graphs to represent
influences between variables; if the inference is probabilistic, Bayesian networks
(BNs) can be used; with belief functions there are evidential networks with con-
ditional belief functions (ENCs). Then in turn ENCs have been generalised by
evidential networks with conditional belief functions (DEVNs), etc.—thus there
appears to be constructs available to apply to the building of digital coaches. The
remaining challenge appears to get it done.

Bloksmal and Struik [2] work out a program for coaching farmers using human
health as a metaphor for farm health, which helps both them and the farmers to gain
an understanding of the issues that are crucial for improving the processes and the
productivity of a farm. The coach and the farmer together work out the course of
life of the farm, they learn from what has happened in the history of the farm and
translate images of possible futures into the current state of the farm. The
shorter-term issues, making work more rewarding, improving work efficiency and
effectiveness, farm productivity and profit are worked out in this context and
longer-term issues such as organisational and spatial redesign of the farm are
worked on against this background. The coach operates like a physician—“alter-
natingly observing the diseased part and the whole being of an ill person”—and by
referring to this metaphor, opens up similar mechanisms for what may be wrong
with the farm. If we do this skilfully, it will show to what extent the farm resembles
a living and healthy entity and the farmer will get new ideas on how to improve “the
living farm organism”; the use of metaphors takes out the blame from the narrative,
the farmer will not feel that the coach blames him for having done something
wrong.

Bloksmal and Struik [2] show that the process to find and describe the identity
and key processes of a farm is not easy; they use a narrative method—the coach
listens to discover the drama behind the facts. This approach could work for our
digital coaching of real options modelling and planning—i.e. the real options
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models could be good representations of the “drama behind the facts” and would
show the key relations to decide the optimal interval for the postponement of a
decision with explanations that a manger could understand and make use of.

4 Real Options Support for Decisions on a Paper Mill

The fuzzy real options models were used to make a decision on the old paper mill in
the United Kingdom. The decision had two parts (i) to decide if the paper mill
should be closed or not, and if (i) is positive, then (ii) the optimal point in time
when to close the mill (actually the optimal number of periods to postpone the
closing from present time, cf. [21, 22] for details).

The implementation of the real options theory for a practical case entails sim-
plifications, mostly due to lack of either data, information or knowledge, or in order
to be able to build the actual real options model. This is a typical trade-off we have
to make in order to use a theory, but if we simplify too much we will stray too far
from the core of the theory which makes the results questionable (cf. [26, 27]).

We built scenarios in order to outline possible developments with the infor-
mation and knowledge we could get about the plant, the product lines, the cus-
tomers, the competition, the markets and the country context offered by the UK.
This produced data for us to work on but data came from different sources and
related to different periods, which gave somewhat inconsistent and heterogeneous
scenarios. As we could not be very precise, the managers argued that simplifications
would not add much to the uncertainty of the views of the future worlds.

Each scenario assumes a match between sales and production, which is a sim-
plification; in reality there are significant, stochastic variations in sales which cannot
be matched by the production. Since the planning assumed no capital investments,
there will be no costs in switching between the scenarios (which is another sim-
plification). We worked out some exercises on the possibilities to switch in the
future as (real) options for senior management; the opportunity to switch to another
scenario is a call option. The option values build on the estimates of future cash
flows, which are the basis for the upward/downward potentials.

Senior management (reluctantly) adopted the view that options can exist and that
there is a not-to-decide-today possibility for the close/not-close decision. The
motives to include options into the decision process built on the following logic:

• New information changes the decision situation (“good or bad news”)
• Consequently, new information has a value and it increases the flexibility of the

management decisions
• The value of the new information can be analysed to enable the management to

make better informed decisions

In the discussion, we were able to show that companies fail to invest in valuable
projects because planners overlook and leave out the options embedded in a project
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from the profitability analysis. The real options approach shows the importance of
timing as the real option value is the opportunity cost of the decision to wait in
contrast with the decision to act immediately.

We were then able to give the following practical description of how to form the
option value:

Option value=Discounted cash flow

× Value of uncertainty usually standard deviationð Þ− Investment

× Risk free interest

If we compare this sketch with the decision to close/not-close the production
plant with the FROV models we introduced we cannot avoid the conclusion that
things are much simplified. The substance of the decision is not the same, which we
could not describe very well without getting into the stochastic processes at the core
of the real options theory—and this was beyond what we could reasonably expect
the managers to follow. Then we run into another, more serious problem—senior
management will distrust results of an analysis they cannot evaluate and verify with
numbers they recognize or can verify as “about right”.

We found out—somewhat unexpectedly—that we could build the fuzzy real
options models using Excel; this solved part of the problem, as the managers we
worked with were semi-professional Excel users and could figure out how the
models work by experimenting with Excel. Another part of the solution was that we
could include actual numbers from the plant in the scenarios and the managers
could judge from the outcome that they were “about right”, “reasonable” and
“verifiable”. Then we (of course) added NPV to the Excel models to allow the
managers to test their intuitive understanding with verifications carried out through
familiar NPV calculations.

We found out that the added functionality of Coach 1 and Coach 2 would have
simplified the implementation and use of the real options models; senior decision
makers want to know how the key factors work and interact, what the outcome is
going to be and then what consequences can be expected from the outcome (Fig. 1).

In the same way, the combined use of Coach 1 and Coach 5 will be helpful to
work out and explain the scenario combinations over time; Coach 5 will show the
trade-off between the net present value of action now (closing the paper mill now)
and the option value of postponing the decision (option value = 0 if action now)
(Fig. 2).

The detailed reports are for the managers so that they could check how rea-
sonable and verifiable the outcome could be (the numbers are modified and the
timeframe is altered as the data was highly confidential). Coach 3 explains what the
possibilistic (fuzzy) values are, explains the FROV and shows and explains
the assumptions underlying the NPV of cash flows (which are fuzzy numbers).
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Coach 4 works out and explains the ranking of the FROV values, which actually is
a ranking of fuzzy numbers (cf. [12, 13]). The functionality of the last two coaches
show issues that were questioned and tested in order to get at the core of the models
and the results (Fig. 3).

5 Summary and Future Scenarios

The theory framework built by and for the classical Operations Research and
Management Science since the early 1950s is now in the process of being trans-
formed by (Business) Analytics, which is getting the attention of major corporations
and senior management. The research groups working at IAMSR have been part of
this process and have specialised in working out and using analytics methods,
which implement soft computing theory and algorithms (cf. [17, 22, 26, 27]). This
has turned out to be very effective and useful for planning, problem solving and
decision making in “big data” environments; the “big data” is one of the challenges

Fig. 1 Scenario alternatives included estimated cash flows, compound rate, option value of a
postponement, uncertainty of incoming cash flows, calculated FROV and optimal postponement T
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of the modern digital economy and for which we propose that fuzzy sets would
offer instruments for breakthrough research.

Analytics adds value to management; it promotes data-driven and analytical
decision-making and “reinvented” fact-driven management. Analytics builds on
recent software improvements in information systems that has made data, infor-
mation and knowledge available in real time in ways that were not possible for
managers only a few years ago (Davenport and Harris, [18]).

In the context of the digital economy common wisdom finds that real-time
management is a necessity as operations should be planned and carried out in a fast
changing and complex environment where careful and thoughtful management will
be bypassed by fast, innovative approaches (which may turn out to be of inferior
quality, but have then already established sustainable competitive positions).
Real-time management is challenged by “big data” and the necessity for fast pro-
cessing using advanced analytics methods. The advanced analytics would require
postdoc-qualified managers—these are rather scarce in senior management posi-
tions. Thus there will be a need to reinstate “coaching” functions with the advanced
analytics methods to tell/explain to the users what can/should be done, how it

Fig. 2 Outcome of scenario alternatives worked out as FROV (flexibility), NPV and a binomial
process value
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should be carried out, what the results are and what they mean, and how they
should be applied (with explanations of what could/should not be done).

We have worked out a context and a scenario for digital coaching with the help
of real options modelling. Black and Scholes introduced the options theory to
decide the price for options on financial assets; Merton proved that similar options
modelling could be applied to real assets and used to work out the pricing of
investment alternatives based on future cash flows for the alternatives. Merton’s
method—named real options analysis—became popular among professionals as it
offered more flexibility than the classical NPV methods.

We illustrated the development and use of fuzzy real options models with the
case of closing (or not closing or closing later) an old paper mill in the UK. The rule
we worked out was that we should only close the plant now if the net present value
of this action is high enough to compensate for giving up the value of the option to
wait. Because the value of the option to wait vanishes right after we decide to close
the plant, this loss in value is actually the opportunity cost of our decision. This is a
principle based in theory but it turned out that the management team could well
accept the principle—and then wanted to find out how to use it.

We discussed the need for coaching, but have found through experience from
real life cases that it would be both expensive and impractical to try to find and use
experienced human coaches. The alternative is online digital coaching and we only
need to find some effective methods to build and implement digital coaches. We
found out that there are not many useful approaches offered in the literature, the
closest we could get was an elaborate framework built around Markov decision
processes, which was not actually up to the task. In order to outline what the

Fig. 3 Numerical outcome reports on the scenario alternatives
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coaches should do we worked out the processes in terms of the models we
developed for the old paper mill in the UK. We were able to use Excel to implement
the FROV models in the actual case, which was a bit of a surprise. We could then
describe that Coach 1 would guide estimates of the cash flows for the Excel model
and explain the optimal solutions; Coaches 2–4 would guide parameter estimates
and explain the real options and fuzzy theory parts of the model; Coach 5 would
guide simulations with the models and explain the results. We will work out some
possible theoretical frameworks for the digital coaches in a coming series of papers.

We will conclude with some arguments for why it will make sense to work with
analytical models even in a context, which is not recognized as a domain for
analytics. Kahneman [24] relates the case of Orley Ashenfelter, a Princeton econ-
omist and wine lover, who wanted to find a way to predict the future value of fine
Bordeaux wines from information available in the year they are made (cf. [24]). He
was of course well aware that he was stepping on the sensitive toes of
world-renowned experts who claimed that they could predict the value development
for individual wines over years to come and also in which year the wines will reach
their peak quality and highest price. The experts built their judgement on tasting the
wines and decades of experience of and insight in the wine markets; Ashenfelter
built his predictions on regression analysis and an effective use of statistics tools—
he had no possibility to actually taste the wines. Ashenfelter collected statistics on
London auction prices for select mature red Bordeaux wines 1990–91 (sold in lots
of a dozen bottles); mature red Bordeaux were defined as vintages 1960–1969 and
the wines selected came from six Bordeaux chateaux which are large producers
with a reputation to have produced high quality wine for decades—or centuries in
some cases. Ashenfelter found out that the quality of the Bourdeaux wines is
decided by (i) the age of the vintage (ii) the average temperature over the growing
season (April–September) (iii) the amount of rain in September and August (less
rain gives better wine), and (iv) the amount of rain preceding the vintage (October–
March). These four factors are all measurable and built on published and easily
verifiable facts; Aschenfelter collected data on the vintages 1952–1980 and built a
regression model with the four factors which turned out to explain about 80% of the
variation in the average price of Bordeaux wine vintages. His point is that the future
quality of Bordeaux wines can be worked out without tasting the wines or intro-
ducing any kind of subjective judgements. He used his models to predict the price
development for new vintages of Bordeaux (the correlation between prediction and
actual prices is above 0.90) which he has shared with a crowd of followers that are
investing in promising, good vintages. Through his models he has also found a few
very good vintages that are under-priced in the market and which he and his friends
have bought and much enjoyed.

First we can notice that Aschenfelter made sure that he had observations on large
selections of wine over 10 years from six large chateaux—but only in Bordeaux in
order to reduce the number of external factors that influence the wine production
but are not relevant for the key issues of his study. Second, his models forecast
future prices (years, and even decades into the future) more accurately than the
current market prices of young wines do that build on expert estimates;
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this challenges economics theory that claims that market prices (in effective mar-
kets) will reflect all information on the products. Third, experts make judgements
that are inferior to algorithms; Kahneman (cf. [24] p. 224) argues that some reasons
for this is that experts try to be clever, to think outside the box and to work with
(too) complex combinations of features to make their predictions. Complexity may
work in specific cases but will reduce validity in most cases. There is a second point
to be made—analytics, when the proper methods are developed and used, will give
insight that intuition and experience will not be able to produce. This is a lesson
learned for the digital economy where it is claimed that the dynamics of the market
and the need to make (almost) real time decisions in order to stay competitive
makes it necessary to forego analytics and rely on the intuition and experience of
visionary managers and executives.
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An Analysis of Decision Criteria
for the Selection of Military Training
Aircrafts

Juan M. Sánchez-Lozano, M.A. Socorro García-Cascales
and María T. Lamata

Abstract The Spanish Minister of Defense needs to replace the current military
training aircrafts by other models to meet current training needs in the Spanish Air
Force Academy. In order to know the main features that the candidate aircrafts
should have, there is a need to take into account the knowledge and experience of
experts in this specific field, such as trained test pilots and flight instructors. In this
way, it will be possible to recognize the main technical criteria to consider. This
study shows a case study that allowed obtaining not only the preferences of an
expert’s group, but also the importance of the considered criteria. Given that the
criteria information provided by the experts has different nature, with qualitative
criteria (human factors, flying and handling qualities, etc.) coexisting with quan-
titative criteria (service ceiling, stalling speed, endurance, etc.), the joint use of
linguistic labels and numerical values is needed. Therefore, a survey focused on the
fuzzy AHP (Analytic Hierarchy Process) methodology is proposed to extract the
knowledge from the experts group and finally obtain a unique set of weights for
the criteria.
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1 Introduction

Nowadays, the Air Force Academy uses two training aircrafts: the model
ENAER T.35C Tamiz for elementary basic education and the model CASA C-101
Aviojet for advanced basic education. These aircraft have been operating from the
1980s so that, as a result of the continuous advancement of aviation technology and
the high number of flight hours that they have seen, in the near future it will be
necessary to replace them by other models to meet current training needs.

From the point of view of training aircrafts and, as occurs in the subsequent
stages of design [1, 2], decision-making is an intellectual activity which is neces-
sary and essential to face. Before taking any decisions, facts, knowledge and
experience should be gathered to assess the context of the problem. In this type of
decision-making process, a large number of essential criteria is involved. To resolve
them, it is therefore advisable to employ tools such as Multi-Criteria Decision
Making (MCDM), a process whose use is widespread today, not only in the military
field [3–5], but also in many research fields [6–8].

In addition, when selecting the best training aircraft a number of criteria of
different nature should be taken into account, such as quantitative criteria (service
ceiling, stall speed, fuel range, etc.), and qualitative criteria (cockpit ergonomics,
feelings of instructor, etc.). In order to model and evaluate the latter type of criteria,
fuzzy logic techniques [9–13] are a good alternative, not only to operate in an
isolated way but also combined with pseudo-Delphi techniques and MCDM
methods (AHP [14]; TOPSIS [15]; ELECTRE [16], etc.). Although some of the
aforementioned multi-criteria methods are able to apply fuzzy logic and evaluate
the potential alternatives, the AHP methodology also allows obtaining the weight of
the criteria. That is the main reason why in this study case a pseudo-Delphi tech-
nique has been combined with fuzzy AHP methodology.

From the point of view of the Spanish Air Force, the Air Staff and the Logistics
Support Command of this force are the main decision-makers. Nevertheless, it is
advisable to make a preliminary assessment taking into account the most significant
technical criteria which also reflect the experience of important expert groups such
as trained test pilots and flight instructors of the Spanish Air Force.

Therefore, our aim here is to determine the relative importance of the main
technical criteria and then, to transform such importance into weights that should be
later used in a MCDM scheme. The problem will be solved using the AHP
methodology to obtain the weights of the criteria that influence the decision. Fur-
thermore, given that the criteria are both qualitative and quantitative, both methods
will be combined with fuzzy logic through the design and development of a survey
to experts in the field of military training aircraft.

This chapter is divided into four sections: Sect. 2 will define the criteria that
influence the decision-making, in Sect. 3 the fundamentals of fuzzy sets and the
AHP methodology will be described. Section 4 will explain the way in which the
weights of the considered criteria are obtained and the results. The final section will
detail the conclusions of this study.
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2 Decision Criteria for Evaluating Military Training
Aircraft

The mission of the Spanish Air Force Academy is to train future officers of the
Spanish Air Force by providing them with academic, military and aeronautical
teaching. Although today there are many aircraft, they are usually classified
according to their use [17]. In the case of the Spanish Air Force Academy, these
aircrafts should have specific features that allow the future officers to carry out their
basic and advanced education [18]. Due to that, it is highly advisable to identify the
main technical criteria that influence the decision; these data have been obtained
from [17, 19–22] and an advisory group composed by instructors and flight per-
sonnel of the Air Force Academy. The chosen criteria are the following:

• C1: Service ceiling (ft), the highest operating altitude at which the maximum
achievable rate of climb is 100 ft/min and the aircraft can bear the atmosphere
and operate efficiently.

• C2: Cruising speed (kt), the constant and uniform speed in which an aircraft is
able to fly with normal conditions of pressure and temperature.

• C3: Stalling speed (kt), the minimum speed in which the wings maintain lift at
flameout.

• C4: Endurance (minutes), the maximum time in which an aircraft can remain in
the air until all fuel has expired.

• C5: Positive Limit Load Factor (+ G), the maximum value of positive accel-
eration forces which can withstand the airframe.

• C6: Negative Limit Load Factor (− G), the minimum value of positive accel-
eration forces which it can withstand the airframe.

• C7: Take-off distance (ft), the minimum distance required by the aircraft to
accelerate along the runway until it reaches a speed at which it can generate
sufficient aerodynamic lift to overcome its weight (in standard sea level
conditions).

• C8: Landing distance (ft), the minimum distance required by the airplane to land
(in standard sea level conditions).

• C9: Human factors: the comfort conditions inside the cockpit (beginner pilot and
instructor positions)

• C10: Flying and handling qualities, confidence that the instructor or beginner
pilot on the plane to perform complex training exercises.

• C11: Security systems, devices of the aircraft for responding face with setbacks
or unexpected situations (ejection systems, sensors, etc.)

• C12: Maneuvering Capability, software tools capable of being configured and
adapted to several models of education (elementary and advanced stage)

In order to determine the relative importance of these technical criteria, we have
access to a group of experts (trained test pilots and flight instructors of the Spanish
Air Force) who will answer a survey based on the application of the methodology
described.
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3 Methodology

Fuzzy Sets

The fuzzy set theory, introduced by Zadeh [9] to deal with vague, imprecise and
uncertain problems has been used as a modelling tool for complex systems that can
be controlled by humans but are hard to define precisely. Examples of fuzzy sets are
classes of objects (entities) characterized by such adjectives as large, small, serious,
simple, approximate, etc. The main reason for this is that in a real world, there are
not crisp or real boundaries which separate those objects which belong to the
classes in question from those which do not [23]. A collection of objects (universe
of discourse) X has a fuzzy set A described by a membership function fA with
values in the interval [0,1] [24].

In this chapter, we only make reference to the operations on a triangular
membership function through the fuzzy number sets that will be used in the study
case. The basic theory regarding Triangular Fuzzy Numbers (TFN) is described in
detail in [9]. Herein, we only make reference to the operations on fuzzy sets that we
will use in the application.

Definition 1.- A1 and A2 are two TFN defined by the triplets (a1, b1, c1) and (a2,
b2, c2), respectively. For this case, the necessary arithmetic operations with positive
fuzzy numbers are:

(a) Addition:

A1⊕A2 = a1 + a2, b1 + b2, c1 + c2½ � ð1Þ

(b) Subtraction:

A1ΘA2 =A1 + −A2ð Þ= a1 − c2, b1 − b2, c1 − a2½ � ð2Þ

(c) Multiplication:

A1⊗A2 = a1 × a2, b1 × b2, c1 × c2½ � ð3Þ

(d) Division:

A1ϕA2 = a1, b1, c1ð Þ ⋅ 1 ̸c2, 1 ̸b2, 1 ̸a2ð Þ½ � ð4Þ
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When 0≠ a2, b2, c2½ �
(e) Scalar Multiplication:

k◦T1 = k◦a1, k◦b1, k◦c1ð Þ ð5Þ

(f) Root:

T1 ̸2
1 = a1 ̸2

1 , b1 ̸2
1 , b1 ̸2

1

� � ð6Þ

Analytic Hierarchy Process (AHP)

The AHP methodology, proposed by Saaty [14], has been accepted by the
international scientific community as a robust and flexible MCDM tool to deal with
complex decision problems. Basically, AHP has three underlying concepts:

• Structuring the complex decision as a hierarchy of goal, criteria and alternatives.
• Pair-wise comparison of elements at each level of the hierarchy with respect to

each criterion on the preceding level, and finally
• Vertically synthesizing the judgements over the different levels of the hierarchy.

AHP attempts to estimate the impact of each one of the alternatives on the
overall objective of the hierarchy. In this case, we shall only apply the method to
obtain the criteria weights.

We assume that the quantified judgements provided by the decision-maker on
pairs of criteria (Ci, Cj) are contained in an n x n matrix as follows:

C=

C1

C2

⋮
Cm

C1 C2 ⋯ Cn
c11 c12 ⋯ c1n
c21 c22 ⋯ c2n
⋮ ⋮ ⋱ ⋮
cm1 cm2 ⋯ cmn

0
BB@

1
CCA

For instance, the c12 value represents an approximation of the relative impor-
tance of C1 to C2, i.e., c12 ≈ (w1/w2). This can be generalized and the statements
below can be concluded:

∙ cij≈ wi ̸wj
� �

, i, j=1, 2, . . . , n

∙ cii≈ wi ̸wið Þ=1, i=1, 2, . . . , n

• If cij = α, α≠ 0, then cji =1 ̸α, i=1, 2, . . . , n
• If Ci is more important than Cj, then cij ≅ wi ̸wj

� �
>1
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This implies that the matrix C should be a positive and reciprocal matrix with 1’s
on the main diagonal. Hence, the decision maker only needs to provide value
judgments in the upper triangle of the matrix. The values assigned to cij according
to the Saaty scale usually lie in the interval of 1-9 or their reciprocals.

It can be shown that the number of judgments (L) needed in the upper triangle of
the matrix is:

L= n n− 1ð Þ ̸2 ð7Þ

where n is the size of the matrix C.
As the reader can observe, there are both qualitative and quantitative criteria, so

it is necessary to transform the Saaty’s scale to fuzzy numbers. Therefore, Table 1
presents the decision-maker’s linguistic preferences in the fuzzy pairwise com-
parison process.

The vector of weights is the eigenvector corresponding to the maximum
eigenvalue “λmax” of the matrix C. The traditional eigenvector method of estimating
weights in AHP yields a way of measuring the consistency of the referee’s pref-
erences arranged in the comparison matrix.

In AHP problems, where the values are fuzzy not crisp, instead of λ using the
eigenvector as an estimator of the weight, we will use the geometric normalized
average, expressed by the following expression:

wi =
∏n

j=1 aij, bij, cij
� �� �1 ̸n

∑m
i=1 ∏n

j=1 aij, bij, cij
� �� �1 ̸n ð8Þ

where, (aij, bij, cij) is a fuzzy number.
Additionally, to obtain the weight vector, the normalizing operation must be

used; this will be achieved through expression (9).

wcia ,wcib ,wcicð Þ= cia
∑n

i=1 cic
,

cib
∑n

i=1 cib
,

cic
∑n

i=1 cia

� 	
ð9Þ

Table 1 Fuzzy Scale of valuation in the pair-wise comparison process [25]

Labels Verbal judgments of preferences between
criterion i and criterion j

Triangular fuzzy scale and
reciprocals

(II) Ci and Cj are equally important (1, 1, 1)/(1,1,1)
(M + I) Ci is slightly more important than Cj (2, 3, 4)/(1/4,1/3,1/2)
(+I) Ci is strongly more important than Cj (4, 5, 6)/(1/6,1/5,1/4)
(Mu + I) Ci is very strongly more important than Cj (6, 7, 8)/(1/8,1/7,1/6)
(Ex + I) Ci is extremely more important than Cj (8, 9, 9)/(1/9,1/9,1/8)
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4 Determining the Criteria Importance

Not all the criteria which have influence in this kind of decision problems have the
same importance. Besides, although there are decision problems that could be
similar, the selection of the criteria depend of the specific necessities of each
country. Therefore, not only it is important to carry out an appropriate selection of
criteria, but also to choose the way of obtaining their weights. For instance, pre-
vious studies [22, 26] have determined the weights of criteria via direct assignment.
However, in this study, the way of obtaining these weights has been through
preferences of an experts group.

The group of experts involved in the decision process consisted of six experts
specialized in this specific field (three trained test pilots and three flight instructors
of the Spanish Air Force).

According to expression (7), 66 questions should be answered by each one of the
experts. Despite the huge amount of work needed, it is possible that some incon-
sistent matrices can be generated. In order to decrease the inconsistency in this
specific case study and to reduce the amount of work required for each expert, we
reduced the number of questions in such a way that no loss of relevant information
is produced [27, 28]. Therefore, we propose an alternative method, which only
requires making (n − 1) comparisons. For that purpose, a questionnaire similar to
[29] was carried out. This questionnaire also allow us to reduce the uncertainty and
imprecision in the proposed problem.

4.1 Fuzzy-Delphi-AHP Survey

The methodology used for the extraction of the experts’ knowledge is a
pseudo-Delphi technique, since the members who are part of the decision-making
do not interact at any time. In order to do this, a series of questionnaires were
distributed among the six participants in this process so that they could choose the
answers they considered most appropriate, in order to reduce the uncertainty and
vagueness involved with the problem presented.

The questionnaire designed has two clearly different parts. The first one consists
of the presentation of the decision problem where the variables employed and the
work methods to carry out are detailed. The experts were asked if the approach
made to solve the problem was suitable and if they agreed with it. The six experts
gave an affirmative answer and therefore it was possible to carry on with the survey
(second part of the questionnaire).

It is known that if one criterion is more important than another, it should be
considered that said criterion has a greater weight than the other. Therefore, the rest
of the survey was focused on the following group of questions:
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a. Do you think that the twelve criteria considered have the same importance?

If the answer is affirmative, the weight associated with criterion Cj is wj = 1/m,
j = 1,2,…,m. If on the contrary, experts consider that not all the criteria have the
same importance, then it is appropriate to proceed to the next question of the
survey.

The next step will be to find the extent to which one criterion is more important
than another, this degree of importance will be analyzed to be able to assign a
weight to each criterion. For example, when indicating that a particular criterion has
a higher weight than the rest of the criteria, it is declared that this is the most
important criterion. Forthwith, the weights of the criteria will be used to quantify
their importance.

The six experts have considered that certain criteria should have a greater weight
than others. Therefore, those weights need to be determined.

b. Write the order of importance among the twelve criteria (Table 2).

As can be seen in Table 2, the six experts believe the importance of the criteria
to be different, although they differ in the order of importance of the criteria.
Analyzing the above table, experts indicate that criteria C9, C10 and C11 are the
most important criteria. Due to that, these criteria will have larger weights.

Once the expert has indicated the order of importance, the next question would
be considered:

c. Compare the criterion chosen in first place with respect to that considered
secondly and successively, using the following labels, {(II), (M +), (+I),
(Mu + I), (Ex + I)} according to the meanings in Table 1.

To determine the weights of the criteria, as has been discussed, a pair-wise
comparison has been made. Using Expert 1 as an example, in Fig. 1 his appreci-
ation by pair-wise comparison is shown.

The meaning is as follows: criterion C11 is extremely more important than C4, C5

and C6, with respect to C2, C3, C7 and C8 it is very strongly more important,

Table 2 Order of importance of criteria for each of the experts

E1 C11 = C10 > C9 > C12 = C1 > C2 = C3 = C7 = C8 > C4 = C5 = C6

E2 C9 = C10 = C11 > C3 = C7 = C8 > C4 = C1 = C2 = C5 = C6 > C12

E3 C11 > C10 = C9 = C12 > C4 > C3 = C5 = C2 = C7 > C6 = C1 = C8

E4 C11 > C12 = C7 = C9 > C10 = C8 = C2 > C1 = C3 = C4 > C5 = C6

E5 C11 > C9 = C10 > C1 = C2 = C3 = C4 = C5 = C6 = C7 = C8 = C12

E6 C11 > C9 = C10 = C12 = C2 = C3 > C7 = C8 = C5 > C6 = C4 = C1

Fig. 1 Valuations given by E1
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with respect to C12 and C1 it is strongly more important, with respect to C9 it is
slightly more important and with respect to C10 is equally important.

This, translated to the fuzzy numbers according to Table 1, gives the results
shown in Fig. 2.

Taking into account [30] and operation (9), the weights of the considered criteria
are obtained (Fig. 3).

The information detailed above for E1 would also be carried out for the other
experts. The normalized weights associated with the corresponding criterion Cj,
j = 1,2,…,12 given by each of the experts can be seen in Table 3.

Analyzing the above table, criterion C11 (security systems) has the maximum
score for each of the experts; this criterion is equally important to criterion C10

(flying and handling qualities) for expert 1, and equally important to criteria C10 and
C9 (human factors) for expert 2. This expert also considers as the second most
important criteria C3 (stalling speed), C7 (take-off distance) and C8 (landing dis-
tance). Conversely, the least important criterion for this expert is C12 (tactical
capability).

The weights of the criteria for expert 3 are similar. According to this expert,
criterion C11 is also the highest rated, with the second most important criteria being
C9, C10 and C12. The least important criteria are C1 (service ceiling), C6 (negative
limit load factor) and C8.

Fig. 2 Matrix of decision making for E1

Fig. 3 Criteria weight for E1
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Apart from criteria C9 and C12, expert 4 also considers C7 as the second most
important criterion. The least important criteria for this expert are C5 and C6

(positive and negative limit load factors).
According to expert 5, criteria C9 and C10 are the second most important criteria,

while for that expert the remaining criteria have the same importance.
Expert 6 estimates that there is a criteria group consisting of C2 (cruising speed),

C3, C9, C10 and C12 which have the following score after that of the highest
criterion (C11). The least important criteria are C1, C4 (endurance) and C6.

In order to unify the weights of the obtained criteria and to stablish a specific
weight for each one of the criteria, a homogeneous aggregation will be carried out.
i.e., all experts are equally important in the decision, as a measure of aggregation
the arithmetic average will be used (expression 10).

Table 3 Weights of criteria for the six experts (heterogeneous aggregations)

Normalized (Expert 1) Normalized (Expert 2) Normalized (Expert 3)

C1 [0.041 0.055 0.073] [0.023 0.030 0.037] [0.029 0.036 0.045]
C2 [0.031 0.039 0.049] [0.023 0.030 0.037] [0.033 0.046 0.061]
C3 [0.031 0.039 0.049] [0.046 0.069 0.111] [0.033 0.046 0.061]
C4 [0.027 0.031 0.037] [0.023 0.030 0.037] [0.044 0.064 0.091]
C5 [0.027 0.031 0.037] [0.023 0.030 0.037] [0.033 0.046 0.061]
C6 [0.027 0.031 0.037] [0.023 0.030 0.037] [0.029 0.036 0.045]
C7 [0.031 0.039 0.049] [0.046 0.069 0.111] [0.033 0.046 0.061]
C8 [0.031 0.039 0.049] [0.046 0.069 0.111] [0.029 0.036 0.045]
C9 [0.062 0.092 0.146] [0.183 0.207 0.223] [0.066 0.107 0.182]
C10 [0.247 0.275 0.293] [0.183 0.207 0.223] [0.066 0.107 0.182]
C11 [0.247 0.275 0.293] [0.183 0.207 0.223] [0.264 0.322 0.364]
C12 [0.041 0.055 0.073] [0.020 0.023 0.028] [0.066 0.107 0.182]

Normalized (Expert 4) Normalized (Expert 5) Normalized (Expert 6)
C1 [0.031 0.044 0.059] [0.039 0.058 0.083] [0.036 0.040 0.049]
C2 [0.042 0.062 0.088] [0.039 0.058 0.083] [0.053 0.072 0.098]
C3 [0.031 0.044 0.059] [0.039 0.058 0.083] [0.053 0.072 0.098]
C4 [0.031 0.044 0.059] [0.039 0.058 0.083] [0.036 0.040 0.049]
C5 [0.028 0.034 0.044] [0.039 0.058 0.083] [0.040 0.052 0.066]
C6 [0.028 0.034 0.044] [0.039 0.058 0.083] [0.036 0.040 0.049]
C7 [0.063 0.103 0.176] [0.039 0.058 0.083] [0.040 0.052 0.066]
C8 [0.042 0.062 0.088] [0.039 0.058 0.083] [0.040 0.052 0.066]
C9 [0.063 0.103 0.176] [0.059 0.096 0.167] [0.053 0.072 0.098]
C10 [0.042 0.062 0.088] [0.059 0.096 0.167] [0.053 0.072 0.098]
C11 [0.250 0.308 0.351] [0.235 0.288 0.333] [0.320 0.362 0.393]
C12 [0.063 0.103 0.176] [0.039 0.058 0.083] [0.053 0.072 0.098]
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By the homogeneous aggregations indicated, the weights of the criteria will be
obtained, taking into account the entire decision-making group. Therefore, the
values obtained for the selection problem of the best military training aircraft are
those indicated in Table 4 and Fig. 4.

Table 4 Weights of criteria
through experts’
homogeneous aggregation

Experts’ homogeneous aggregation

C1 [0.0332 0.0437 0.0578]
C2 [0.0368 0.0511 0.0693]
C3 [0.0389 0.0547 0.0768]
C4 [0.0334 0.0444 0.0593]
C5 [0.0317 0.0416 0.0545]
C6 [0.0304 0.0380 0.0493]
C7 [0.0419 0.0611 0.0909]
C8 [0.0378 0.0525 0.0737]
C9 [0.0809 0.1129 0.1653]
C10 [0.1084 0.1366 0.1750]
C11 [0.2499 0.2937 0.3262]
C12 [0.0471 0.0697 0.1067]

Fig. 4 Graphic representation (experts’ homogeneous aggregation)
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Through homogeneous aggregation it is observed that the most important criteria
are C11 (security systems), C10 (flying and handling qualities) and C9 (human
factors). According to experts 1, 2, 3, 5 and 6 these criteria are also the most
important criteria. The only expert who lightly differs of the rest of experts is expert
4. This expert indicates as the second criteria in importance order the criteria C7

(take-off distance), C9 and C12 (tactical capability) while criterion C10 is moved to
the third position.

The following criteria group in importance is comprised of two criteria; C7

(take-off distance), and C12 (tactical capability) which are the criteria that expert 4
located in the second position. Whereas the least important criteria are C5 and C6

(positive and negative limit load factors).

5 Conclusions

With respect to the applied methodology, it is worth highlighting that, carrying out
the extraction of knowledge from an experts group in this specific field (trained test
pilots and flight instructors of the Spanish Air Force) has allowed to combine the
Delphi method and the fuzzy logic techniques with a well-known decision making
tool like AHP methodology.

Furthermore, it has not only been possible to select and define a list of criteria
which influence the selection problem, but also to obtain their coefficients of
importance through the AHP methodology.

Through the homogeneous aggregation, it is observed that the most important
criteria when selecting the best military training aircraft are C11 (security systems),
C10 (flying and handling qualities) and C9 (human factors).

Finally, it should be emphasized that the aforementioned criteria constitute the
group of relevant criteria which should be taken into account in order to preserve
the security or decrease of risk during the training, to extend this work, a further
study regarding additional relevant criteria, such as economic aspects or even
institutional factors, should be carried out.
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Participatory Search in Evolutionary Fuzzy
Modeling

Yi Ling Liu and Fernando Gomide

Abstract Search is one of the most useful procedures employed in numerous

situations such as optimization, machine learning, information processing and

retrieval. This chapter introduces participatory search, a class of population-based

search algorithms constructed upon the participatory learning paradigm. Participa-

tory search relies on search mechanisms that progress forming pools of compatible

individuals. The individual that is the most compatible with the best individual is

always kept in the current population. Random immigrants are added to complete

the population at each algorithm step. Different types of recombination are possible.

The first is a convex combination, arithmetic-like recombination modulated by the

compatibility between individuals. The second is a recombination mechanism based

on selective transfer. Mutation is an instance of differential variation modulated by

compatibility between selected and recombined individuals. Applications concern-

ing development of fuzzy rule-based models from actual data illustrate the potential

of the algorithms. The performance of the models produced by participatory search

algorithms are compared with a state of the art genetic fuzzy system. Experimental

results show that the participatory search algorithm with arithmetic-like recombina-

tion performs better than the remaining ones.

1 Introduction

The interest in evolutionary procedures to develop fuzzy systems from data has

gained considerable attention in the last decade. Evolutionary fuzzy systems are

fuzzy systems with added evolutionary components. An important instance of evolu-

tionary fuzzy systems is genetic fuzzy systems (GFS). GFS combine fuzzy systems
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with genetic algorithms [1] to solve complex classification, approximation, nonlinear

modeling and control problems.

As it is well known, genetic algorithm (GA) is a population-based stochastic

search procedure whose idea is to evolve a population of individuals using selec-

tion, recombination, and mutation operations working in sequence during several

steps called generations [2]. A fitness function distinguishes the ability of an indi-

vidual to remain in the next population. The better the value of the fitness function

achieved by an individual, the higher is its chance to survive. This is the survival of

the fittest saga. Individuals, candidate solutions of a problem, are points in the search

space. Differently from GA, differential evolution [3] creates new candidate solutions

combining the existing ones via mutation, recombination, and selection working in

sequence during several generations. DE keeps whichever candidate solution that

achieves the highest performance.

In [4] we read the following: In actual survival of the fittest saga, there appears
to be additional processes going on. In particular, the objective function in addition
to be determined by some external requirement is often affected by the population
itself.

An approach that has been devised mimic the effect that a population itself has

in its evolution is participatory learning [5]. The key idea of participatory learning

is to account for compatibility between observations and current state of the learner.

As it will be shown late, selection and variation operators such as recombination

and mutation can designed to account for the compatibility between the individuals

of a population. Compatibility and similarity have been shown to be effective in

evolutionary computation [6–9].

This chapter addresses a new class of population-based search algorithms based

on participatory learning. In common with other types of evolutionary algorithms,

participatory search operates with a population of solutions, rather than with a single

solution at a step, and employs procedures to combine these solutions to create new

ones. Participatory search algorithms are novel instances of evolutionary algorithms

because they do not need to assume that evolutionary approaches must necessarily

be based on randomization [10, 11] though they are compatible with randomized

implementations. Participatory search algorithms embody principles that are still

not used by other evolutionary approaches, and that prove advantageous to solve a

variety of complex optimization and design tasks.

The performance of the participatory algorithms is evaluated using actual data

and compared with a state of the art genetic fuzzy system approach developed

in [1]. Computational results show that the participatory search algorithm with

arithmetical-like recombination performs better than the GFS approach.

After this introduction the chapter proceeds as follows. Section 2 briefly reviews

genetic fuzzy systems. Section 3 reminds the concept of participatory learning.

Section 4 introduces the participatory search operators: selection, selective transfer,

arithmetic-like recombination and mutation operators. The search algorithms sum-

marized in Sect. 5. Section 6 evaluates the performance of the participatory search

algorithms against state of the art genetic fuzzy systems approaches. Section 7 con-

cludes the chapter and list issues that deserve further development.
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2 Genetic Fuzzy Systems

This section gives a brief overview of genetic fuzzy systems (GFS) and their appli-

cations. The focus is on genetic fuzzy rule-based systems (GFRBS), one of the most

important types of GFS. The structure of GFRBS is summarized in Fig. 1.

GFRBS is a fuzzy rule-based system enhanced by genetic algorithms. A fuzzy

rule-based system (FRBS) is composed by a knowledge base (KB) that encodes the

knowledge of a target model. The KB contains two main components, a data base

and a fuzzy rule base. The data base (DB) stores data that characterize the linguistic

variables used by the fuzzy rules, the membership functions that define the semantics

of the linguistic labels, and the parameters of the model. The fuzzy rule base (RB)

is a collection of fuzzy if-then rules. Other three components complete fuzzy rule-

based models. The first is a fuzzification module to serve as an input interface with

the fuzzy reasoning process. The second is an inference engine that performs fuzzy

reasoning. The third is a defuzzification output interface module to convert a fuzzy

output into a representative pointwise output. An effective approach to construct the

KB of an FRBS is to simultaneously develop the DB and the RB within the same

process, but in two steps such as in embedded GFRBS learning. Embedded GFRBS

is a scheme to learn the DB using simultaneously a simple method to derive a RB

for each DB.

Embedded GFRBS does not necessarily provide simple, transparent, and com-

petitive models in terms of the generalization capability. They may not scale well in

terms of processing time and memory, two essential requirements especially in high-

dimensional, large-scale, and complex problem solving. These issues are addressed

in [1] where a way to reduce the search space in an embedded genetic DB learn-

ing framework is suggested. Lateral displacement of fuzzy partitions using a unique

parameter for all membership functions of each linguistic variable is one of the mech-

anisms adopted to reduce search space complexity. The idea is to prescreen promis-

ing partitions to avoid overfitting and to maintain coverage and semantic soundness

Fig. 1 Genetic fuzzy rule-based system
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of the fuzzy partitions. The evolutionary algorithm also includes incest prevention,

restarting, and rule-cropping in the RB generation process to improve convergence.

Despite the use of mechanisms to manage dimensionality, the algorithm does not

scale up on the number of data in datasets. A way to deal with scalability is to avoid

large percentage of samples, and to estimate errors using a reduced subset. A post-

processing step may further refine the algorithm.

Application examples of GFS are many. For example, [12] addresses a multi-

objective optimization in which a fuzzy controller regulates the selection procedure

and fitness function of genetic algorithms. Optimization is used to develop timeta-

bles of railway networks aiming at reducing passenger waiting time when switching

trains, while at the same time, minimizing the cost of new investments to improve

the necessary infrastructure. The result of the genetic optimization is a cost-benefit

curve that shows the effect of investments on the accumulated passenger waiting

time and trade-offs between both criteria. In [13] the aim is to optimize trip time

and energy consumption of a high-speed railway with fuzzy c-means clustering and

genetic algorithm. The method is used to develop a control strategy for a high-speed

train line. An economical train runs with a trip time margin of less than 7% and an

energy saving of 5% is reported. A model to relate the total length of low voltage

line installed in a rural town with the number of people in the town and the mean of

the distances from the center of the town to three furthest clients is discussed in [14].

The authors compare the training and test set error achieved by different modeling

techniques for low line value estimation.

3 Participatory Learning

Participatory learning appeared in [5] as a process of learning that depends on what

has already been learned. A central issue in the idea of participatory learning is

that data have the greatest impact in causing learning or knowledge revision when

they are compatible with the current knowledge. Learning occurs in an environ-

ment in which the current knowledge participates in the process of learning about

itself. Clearly, a fundamental factor of participatory learning is the compatibility

degree between input data and current knowledge. The current knowledge, denoted

by v(t), in addition to provide a standard against which input data z(t) is compared

with, directly affects the learning process. This is the participatory nature of learning

process. High compatibility between the current knowledge and current input data

opens the system for learning. In PL, this enhancement is expressed by the compati-

bility degree. A facility is provided to measure the confidence in the current knowl-

edge structure. If a long sequence of input data have low compatibility with current

knowledge, it may be the case that what has been learned so far is mistaken, not

the data. This is seen as a form of stimulation called arousal. Participatory learning

includes an arousal mechanism to monitor the performance of the learning process

by watching at the values of the compatibility degrees of the current knowledge with
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inputs. Monitoring information is fed back in terms of an arousal index that subse-

quently affects the learning process.

The instance of participatory learning we explore in this chapter uses the compati-

bility degree between current knowledge and current input data to update knowledge

employing the following procedure [5, 15]:

v(t + 1) = v(t) + 𝛼𝜌t(z(t) − v(t)) (1)

where v(t) and z(t) are n-dimensional vectors that denote the current knowledge and

current input data, respectively. Assume, without loss of generality, that v(t), z(t) ∈
[0, 1]n. The parameter 𝛼 ∈ [0, 1] is the basic learning rate and 𝜌t ∈ [0, 1] is the com-

patibility degree between v(t) and z(t) at step t. The product of the basic learning rate

by the compatibility degree produces the actual learning rate. If an input is far from

the current knowledge, then the value of the corresponding compatibility degree is

small and the input is filtered. The actual learning rate is lowered by the compatibility

degree. This means that if input data are too conflicting with the current knowledge,

then they are discounted [5]. Lower values of actual learning rates avoid fluctuations

due to values of input data which do not agree with current knowledge. As it will

be shown shortly, (1) induces one of the recombination operators of participatory

search algorithms.

The mechanism to monitor compatibility degrees during learning is the arousal

index. The arousal index enters in the basic PL update formula (1) as follows

v(t + 1) = v(t) + 𝛼𝜌
1−at
t (z(t) − v(t)) (2)

where at ∈ [0, 1] is the arousal index at t.
One way to compute the compatibility degree 𝜌 at step t is

𝜌t = 1 − 1
n

n∑

k=1
|zk(t) − vk(t)|. (3)

In (3) 𝜌t is the complement of the average absolute difference between input infor-

mation z(t) and current knowledge v(t). In a more general sense, 𝜌t may be seen to be

a measure of similarity between z(t) and v(t). If 𝜌t = 0, then v(t + 1) = v(t) and the

current input z(t) is completely incompatible with the current knowledge v(t). This

condition means that the system is not open to any learning from the current informa-

tion. On the other hand, if 𝜌t = 1, then v(t + 1) = z(t). In this case input information

is in complete agreement with the current knowledge and the system is fully open to

learn.

Arousal can be seen as the complement of the confidence in the current knowl-

edge. A simple procedure is to update the arousal index a at step t is

at+1 = (1 − 𝛽)at + 𝛽(1 − 𝜌t+1) (4)
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where 𝛽 ∈ [0, 1] controls the rate of change of arousal. The higher at, the less confi-

dent is the learning system in current knowledge. If 𝜌t+1 = 1, then we have a highly

compatible input and the arousal index decreases. On the other hand, if 𝜌t+1 = 0,

then input information compatibility is low and the arousal index increases.

The notion of compatibility degree enters in participatory search algorithms dur-

ing the formation of pools of individuals for selection, recombination, and mutation.

The pools are assembled from two populations St
and St′

. The individuals of St′
are

those of St
which are the most compatibles, one to one. Selection uses compatibility

to choose those individuals from the pool that are closer to current best individ-

ual. Recombination is done pairwise between individuals of the mating pool, mod-

ulated by their compatibility degrees and arousal indexes. Mutation adds a variation

to the current best individual proportional to the difference between the selected and

recombined individuals modulated by the corresponding compatibility degrees. The

effect of compatibility is to encourage selection and recombination of similar mates

from which good offspring are likely to be produced, as indicated in [9].

4 Participatory Search Operators

The main construct elements of search algorithms are the representation, search

operators, fitness function, and initial solution. These elements are relevant for all

types of population-based algorithms. The remaining element is the search strat-

egy. Representation concerns encoding mechanisms that maps problems solutions

to strings. Representations allow definitions of search operators and of the search

space. The search strategy defines types of intensification and diversification mech-

anisms.

In what follows we assume that a populations is a finite set of strings.

4.1 Selection

Let S be a set of N strings of fixed length n, and s, s′ ∈ S be two individuals, s′
distinct

of s, such that

s′ = argmaxr∈S(𝜌(s, r)) (5)

where

𝜌(s, r) = 1 − 1
n

n∑

k=1
|sk − rk|, (6)

and s = (s1, s2, .., sN) and r = (r1, r2, .., rN). Expression (5) means that s′
is the indi-

vidual of S whose compatibility degree with s is the largest. This procedure is

repeated in sequence for each individual s of S to assemble a corresponding pool
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Fig. 2 A population and its

pool of N individuals

S′
with N individuals. Notice that construction of the pool is biased by the compati-

bility degrees between the individuals of S. Figure 2 illustrates how the populations

S and S′
are assembled.

In participatory search algorithms, selection is done by computing the compat-

ibility degrees between s ∈ S and the corresponding s′ ∈ S′
with the current best

individual best = s∗, and picking the one that is the most compatible to assemble

a population L of selected individuals, that is, the ones that are the closest to the

current best individual. Formally,

s∗ = argmins∈Sf (s), (7)

where f is the objective function.

More specifically, selection computes the compatibility degrees 𝜌
s(s, s∗) and

𝜌
s′ (s′

, s∗) using

𝜌
s = 1 − 1

n

n∑

k=1
|sk − s∗k | (8)

and

𝜌
s′ = 1 − 1

n

n∑

k=1
|s′

k − s∗k |, (9)

and the individual whose compatibility degree is the largest, denoted by pselected, is

selected. That is, participatory selection proceeds according to the following rule

if 𝜌
s
≥ 𝜌

s′
then pselected = s else pselected = s′

. (10)

Fig. 3 illustrates the process of selection.

Selection depends on the objective function f (s), which identifies current best s∗,

and on 𝜌
s(s, s∗) and 𝜌

s′ (s′
, s∗) which measure the compatibility between s∗ and the

corresponding pair of individuals s and s′
of the current pool. Jointly, f, 𝜌s

and 𝜌
s′

decide if an individual will be selected or not.
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Fig. 3 Selection

4.2 Selective Transfer

During the last few years, we have witnessed a growing interest to use economic

principles and models of learning in genetic algorithms. For instance, evolutionary

processes have been used to model the adaptive behavior of a population of economic

agents [16]. Here agents develop models of fitness to their environment in conjunc-

tion with the corresponding economic activities. Economists believe that behavior

acquired through individual experience can be transmitted to future generations, and

that learning changes the way to search the space in which evolution operates. This

is an argument in favor of the interaction between the processes of evolution and

learning. Since technical knowledge is distributed across the economic population,

technological change can be viewed as a process of distributed learning. Here, the

term learning is used in a broad sense, that is, there is no distinction between learn-

ing as propagation of knowledge through the population and the process of inno-

vation, creation, and discovery. The distributed learning perspective helps to under-

stand technological change and focus on the population suggests that an evolutionary

perspective may be appropriate.

Birchenhall and Lin [16] claim that our knowledge and technology are modu-

lar, i.e., they can be decomposed into several components or modules. From the

evolutionary computation point of view, they suggest that the crossover operator of

genetic algorithms could be seen as a representative of modular imitation. To bring
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Fig. 4 Selective transfer

these ideas together, they advocate an algorithm that replaces selection and crossover

operators by an operator based on selective transfer. Essentially, selective transfer is

a filtered replacement of substrings from one string to another, without excluding

the possibility that the entire sequence is copied [17]. Clearly, the selective transfer

is similar to Holland crossover, but it is one-way transfer of strings, not on exchange

of strings. The behavior selective transfer is likely to be very different from the com-

bination of selection and crossover.

Assume that an individual pselected is selected using the objective function and

compatibility. Two positions h ≤ k in the pselected string are chosen randomly, and

a fair coin is tossed. If the coin turns head, then the substrings from pselected(h) to

pselected(k) of pselected is replaced by the corresponding substrings from s∗(h) to s∗(k)
of s∗. If the coin turns up tail, then the substrings from pselected(1) to pselected(h − 1)
and from pselected(k + 1) to pselected(n) are replaced by the corresponding substrings

of s∗. These steps are repeated for all individuals of L. Figure 4 illustrates the idea of

selective transfer.

Despite similarity with crossover of the standard genetic algorithms, there are

some differences. The most important one is that selective transfer uses one-way

relocation of substrings, from the best individual to the one selected, and hence it is

not a crossover. This is important because selective transfer is much more schemata

destructive than the standard crossover [17].

4.3 Arithmetic Recombination

Arithmetic recombination emerges from the participatory learning update formula

(2). To see this, notice that (2) can be rewritten as

v(t + 1) = v(t) + 𝛼𝜌
(1−at)
t (z(t) − v(t))

= (1 − 𝛼𝜌
(1−at)
t )v(t) + 𝛼𝜌

(1−at)
t z(t). (11)
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Fig. 5 Recombination

Let 𝛾 = 𝛼𝜌
(1−at)
t . Thus (11) becomes

v(t + 1) = (1 − 𝛾)v(t) + 𝛾z(t). (12)

Expression (12) is of the following type

sv(t + 1) = (1 − 𝛿)sv(t) + 𝛿sz(t) (13)

where 𝛿 ∈ [0, 1]. Notice that (13) is a convex combination of sv(t) and sz(t) whose

result is the offspring sv(t + 1). Interestingly (12) is similar to (13) and hence (12)

is an arithmetic-like recombination. While parameter 𝛿 of (13) is either a constant

or variable, depending on the age of population, the value 𝛾 of (12) is variable and

modulated by compatibility and arousal.

Participatory recombination proceeds as in (12) to produce offspring pr from indi-

viduals s and s′
of pools S and S′

, respectively, as follows

pr = (1 − 𝛼𝜌
(1−a)
r )s + 𝛼𝜌

(1−a)
r s′

. (14)

Figure 5 illustrates the process of participatory recombination. Sums in the figure

are done on an individual basis, and should be understood from the point of view of

the operation (14).

4.4 Mutation

There are many ways to do mutation in search algorithms. For example, consider a

population of N individuals represented by n-dimensional vectors denoted by sri,t at

generation t. Differential evolution, for instance, produces new individuals by adding

the weighted differences between distinct vectors to a third vector [3]. For each vector

sri,t, i = 1, 2, ...,N, a mutated vector is generated using
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Fig. 6 Mutation

si,t+1 = sr1,t + 𝜙 ⋅ (sr2,t − sr3,t) (15)

where r1, r2, r3 ∈ {1, 2, ...,N} are random indexes, and 𝜙 > 0 is a parameter which

controls the amount of the differential variation (sr2,t − sr3,t).
Mutation in participatory search is similar to differential evolution mutation. It

produces a mutated individual pm as follows

pm = best + 𝜌
1−a
m (pselected − pr). (16)

Fig. 6 illustrates the process of mutation.

In participatory mutation, the amount of the variation of the best individual

best = s∗ is controlled by compatibility between the selected and recombined indi-

viduals, and the arousal index.

5 Participatory Search Algorithms

Let St
be the set of N with strings of length n at step t. The participatory search algo-

rithms (PSA) start with a population St
at t = 0 with N randomly chosen individuals

and, for each individual of St
, the most compatible individual amongst the remaining

ones is chosen to assemble the population St′
with N individuals. St

and St′
form the

mating pool. Next, the best individual s∗ in the current population St
, denoted by

best, is chosen. For instance, for minimization problems best is such that

best = argmins∈St f (s). (17)

Selection chooses, by looking at each individual of St
and the corresponding mate

in St′
, the one which is the closest to best. Recombination is done pairwise between

the individuals of the mating pool, weighted by their values of compatibility and

arousal. Mutation uses the selected and recombined individuals to produce variations

whose amount is weighted by compatibility and arousal as well. If a offspring is

better than the current best individual, then it replaces the current best. Otherwise,

if a mutated individual is better than current best individual, then it replaces the
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Fig. 7 Participatory search algorithms

current best. A new iteration starts with a new population St+1
composed by the

current best individual, with the remaining (N − 1) individuals chosen randomly.

We should remark that participatory search algorithms are elitist: the best individual

encountered is always kept in a population. The directive last(St) ← best means that

the best individual found up to generation t, denoted by best, is kept at the position

that corresponds to the last individual of the population at step t + 1.

There are four instances of PSA, respectively, participatory search with selec-

tive transfer (PSST), participatory search with arithmetic recombination (PSAR),

differential participatory search with selective transfer (DPST), and differential par-

ticipatory search with arithmetic recombination (DPSA). They are distinguished by

the nature of the recombination, and the order in which the operations of selection,

recombination, and mutation are processed in each generation. They also differ from

similar evolutionary approaches developed in [6, 7, 18] in the way the mating pool

is constructed to produce the new population. A class of participatory search algo-

rithms that incorporates participatory learning is shown in Fig. 7.

PSST is similar to the algorithm discussed in [6] in the sense that both algorithms

use participatory selective transfer and mutation. PSAR uses participatory arithmetic

recombination and mutation, processed in a different order than PSST. DPST is sim-

ilar to the algorithm of [7] because it also uses selective transfer and participatory
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mutation. Likewise, DPSA is similar to the algorithm of [18] and uses participatory

arithmetic recombination and mutation. DPSA proceeds similarly as DPST except

that it uses arithmetic recombination instead of selective transfer. PSST, PSAR,

DPST and DPSA differ from all previous approaches because selection is done indi-

vidually for each of the N individuals of the current population. Participatory recom-

bination and mutation are performed likewise. Recall that PSST, PSAR, DPST and

DPSA are all elitist: the best individual is always kept in the current population.

As an illustration, the procedure PSAR is detailed below. The remaining algorithms,

except for their nature, have similar format. A in-depth description, characterization,

and convergence analysis of the PSA can found in [19].

1: procedure PSAR

2: f an objective function

3: s ∈ St
and s′ ∈ St′

4: set best randomly

5: set a0 ← 0; t ← 0
6: while t ≤ tmax do
7: generate population St

randomly

8: last(St) ← best
9: St′ ← s′ = argmaxr∈St (𝜌(s, r))

10: find best in St

11: Selection:

12: compute 𝜌
s(s, best) and 𝜌

s′ (s′
, best)

13: if 𝜌s ≥ 𝜌
s′ then

14: pselected ← s
15: else
16: pselected ← s′

17: end if
18: Recombination:

19: choose 𝛼, 𝛽 ∈ [0, 1] randomly

20: compute 𝜌r = 𝜌(s, s′ )
21: compute at+1 = at + 𝛽((1 − 𝜌r) − at)
22: pr = (1 − 𝛼𝜌

1−at
r )s + 𝛼𝜌

1−at
r s′

23: Mutation:

24: compute 𝜌m = 𝜌(pselected , pr)
25: pm = best + 𝜌

1−at+1
m (pselected − pr)

26: if f (pr) better than f (best) then
27: best ← pr
28: end if
29: if f (pm) better than f (best) then
30: best ← pm
31: end if
32: t ← t + 1
33: end while
34: return best
35: end procedure
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6 Participatory Search Algorithms in Fuzzy Modeling

This section concerns the use of participatory search algorithms in fuzzy rule-based

system modeling. The aim is to illustrate potential applications of PSA and to eval-

uate and compare the performance of PSST, PSAR, DPST and DPSA algorithms

using actual data and results reported in the literature.

The problem of interest here is to develop linguistic fuzzy models using actual

data sets available in KEEL (http://www.keel.es/). The KEEL (Knowledge Extrac-

tion based on Evolutionary Learning) is a software tool to assess evolutionary algo-

rithms for data mining problems including regression, classification, clustering, and

pattern mining. KEEL provides a complete set of statistical procedures for multiple

comparisons. The features of the data sets are summarized in Table 1. These data are

the same used in [1], a state of the art representative GFS reported in the literature

[20]. The representation and encoding schemes of PSAR are also the same of the

one adopted in [1]. They are as follows:

1. Database encoding: (C = C1,C2) a double-encoding scheme.

First, equidistant strong fuzzy partitions are identified considering the granularity

(labels) specified in C1. Second, the membership functions of each variable are

uniformly rearranged to a new position considering lateral displacement values

specified in C2.

∙ Number of labels C1: this is a vector of integers of size n representing the

number of linguistic variables.

C1 = (L1
, ...,Ln). (18)

Gene Li
is the number of labels of the ith linguistic variable, Li ∈ {2, ..., 7}.

∙ Lateral displacements C2: this is a vector of real numbers of size n that encodes

displacements 𝛼
i

of the different variables, 𝛼
i ∈ [−0.1, 0.1]. A detailed

description of the linguistic 2-tuple representation is given in [21, 22].

Table 1 Summary of the datasets

Problem Abbr. Variables Samples

Electrical maintenance ELE 4 1056

Auto MPG6 MPG6 5 398

Analact ANA 7 4052

Abalone ABA 8 4177

Stock prices STK 9 950

Forest fires FOR 12 517

Treasury TRE 15 1049

Baseball salaries BAS 16 337

http://www.keel.es/
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Fig. 8 A double-encoding

scheme C1 and C2

Fig. 9 Lateral displacement

of the linguistic variable V
values V1,V2, and V3

C2 = (𝛼1
, ..., 𝛼

n). (19)

An example of the encoding scheme is given in Fig. 8.

Figure 9 illustrates the lateral displacement of V for 𝛼 = −0.05.

2. Rule base: constructed using the Wang and Mendel algorithm (WM) [23, 24] as

follows:

a. granulate the input and output spaces;

b. generate fuzzy rules using the given data;

c. assign a certainty degree to each rule generated to resolve conflicts;

d. create a fuzzy rule base combining the rules generated and rules provided

by experts (if available);

e. determine the input-output mapping using the combined fuzzy rule base and

a defuzzification procedure.

An example of a fuzzy rule-base developed for ELE is shown in Fig. 10.

Example of rules of the rule base of Fig. 10 include:

rule 1: IF X1 is 1 and X2 is 1 and x3 is 1 and x4 is 1 THEN Y is 1

rule 2: IF X1 is 2 and X2 is 1 and x3 is 1 and x4 is 2 THEN Y is 3

rule 3: IF X1 is 3 and X2 is 3 and x3 is 2 and x4 is 3 THEN Y is 4

3. Objective function: the mean-squared error (MSE)

MSE = 1
2|D|

|D|∑

l=1
(F(xl) − yl)2 (20)
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Fig. 10 Rule base

constructed using WM

algorithm

where |D| is the size of the dataset, F(x) is the output of the FRBS model, and y
the actual value of the output. Fuzzy inference uses the max-min procedure with

center of gravity deffuzification.

4. Initial population: each chromosome has the same number of linguistic labels,

from two to seven labels for each input variable. For each label of the inputs, all

possible combinations are assigned to the respective rules consequents. More-

over, for each combination, two copies are added with different values in the C2
part. The first has values randomly chosen in [−0.1, 0] and the second random

values chosen in [0, 0.1].
5. Recombination: pr ← floor(pr) for C1.

If a gene g of pr in C1 is lower than 2, then Lg = 2, else if a gene g is higher than

7, then Lg = 7.

6. Mutation: pm ← floor(pm) for C1.

If a gene g of pm in C1 is lower than 2, then Lg = 2, else if a gene g is higher than

7, then Lg = 7.

The electric maintenance model has four input variables and one output variable.

The ELE dataset contains electrical maintenance data and has 1056 samples. This is

an instance in which we expect learning methods to develop large number of rules.

ELE modeling involves a large search space [1]. The MPG data concerns city-cycle

fuel consumption in miles per gallon (mpg), to be predicted in terms of one multival-

ued discrete and five continuous attributes. The MPG6 dataset has 398 samples. The

categorical data (ANA) is one of the data sets used in the book Analyzing Categor-
ical Data by Jeffrey S. Simonoff. It contains information about the decisions taken

by a supreme court. The ANA dataset concerns seven variables and 4052 samples.

Abalone age data come from physical measurements. The abalone model has eight

input variables and one output variable. The abalone dataset (ABA) contains 4177
samples. The STK data provided are daily stock prices from January 1988 through

October 1991, for ten aerospace companies. The task is to approximate the price
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Table 2 Methods considered by the computational experiments [1]

Method Type of learning

WM(3) Rule base produced by WM, 3 linguistic labels for each variable

WM(5) Rule base produced by WM, 5 labels for each variable

WM(7) Rule base produced by WM, 7 labels for each variable

FSMOGFS Gr. Lateral partition parameters, and rule base produced by WM

FSMOGFS+TUN FSMOGFS + Tuning of MF parameters and rule selection by SPEA2

FSMOGFS
e
+TUN

e
FSMOGFS+TUN including fast error estimation

of the 10th company given the prices of the rest. The STK has nine input variables

and 950 samples. The FOR dataset has 12 variables and 517 samples. The aim is to

predict the burned area of forest fires, in the northeast region of Portugal. The TRE

contains the economic data information of USA and has 15 variables input and 1049
samples. The goal is to predict 1-Month Rate. The BAS contains the salaries of the

set of Major League Baseball players and has 16 variables input and 337 samples.

The task is to approximate the salary of each player. The datasets are available at

http://sci2s.ugr.es/keel/index.php. The methods considered in [1] are summarized in

Table 2. The method of Wang and Mendel (WM) is also a reference because all PSA

and the GFS use it as a rule generation procedure during evolution. The participatory

search algorithms were run using the datasets to compare their results with the ones

produced by PSAR and results reported in the literature [1]. The processing times of

the different methods in [1] were obtained using an Intel Core 2 Quad Q9550 2.83-

GHz, 8 GB RAM. The processing times of participatory search algorithms reported

here were obtained using an Intel Core 2 Quad Q8400 2.66GHz, 4 GB RAM.

The input parameters used by participatory search algorithms in the experiments

reported in this section are: population size of 60, and maximum number of function

evaluations of 1000. Data sets were randomly split into five folds, each partition

containing 20% of the dataset. Four of these partitions are used for training and the

remaining one is used for testing. The algorithms are run six times for each data

partition using six distinct seeds.

The results show that the average mean-squared error for the test data achieved

by the fuzzy models developed by PSAR, Table 6, is lower than the average mean-

squared error of test data achieved by the FSMOGFS
e
+TUN

e
, except for ANA data.

Also, the average mean-squared error for the test data achieved by DPSA is lower

than the FSMOGFS
e
+TUN

e
. For the test data of ANA, FSMOGFS

e
+TUN

e
achieves

the lowest MSE value. Considering the test data PSAR, with WM using different

number of labels for each linguistic variable, is more accurate than when the num-

ber of linguistic labels for each linguistic variable is kept fixed, WM(3),WM(5) and

WM(7), respectively. Thus, PSAR performs better than FSMOGFS
e
+TUN

e
from

the point of view of the test data of MSE. Also, the standard deviation (SD) of test

data for PSAR and FSMOGFS
e
+TUN

e
is better than WM(3),WM(5) and WM(7).

http://sci2s.ugr.es/keel/index.php
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Table 3 Average rank of the algorithms

Algorithm Friedman rank p-value H0

WM(3) 7.3125

WM(5) 6.25

WM(7) 6

FSMOGFS
e
+TUN

e
3.75 1.38E-7 Rejected

PSAR 2.125

PSST 4

DPSA 2.3125

DPST 4.25

Table 4 Holm’s Post-Hoc for 𝜀 = 0.05.
Control algorithm: PSAR

i Algorithm z value p-value 𝜀∕i H0

7 WM(3) 4.2355 2.3E-5 0.0071 Rejected

6 WM(5) 3.368 0.0007 0.0083 Rejected

5 WM(7) 3.1639 0.0015 0.01 Rejected

4 DPST 1.735 0.08273 0.0125 Rejected

3 PSST 1.5309 0.1257 0.0166 Rejected

2 FSMOGFS
e
+TUN

e
1.3268 0.184573 0.025 Accepted

1 DPSA 0.153 0.8783 0.05 Accepted

Further analysis is pursued as suggested in [25, 26] to verify if there exist statisti-

cal differences among the performance of the algorithms. Recall that the confidence

level is 𝜀 = 0.05. Table 3 shows how PSAR and GFS are ranked. PSAR achieves the

highest rank with 1.375. Also, recall that the null hypothesis H0 is that PSAR and

GFS algorithms are equivalent, that is, H0 means that the rank of all algorithms are

equal. If the hypothesis is rejected, then we conclude that the algorithms perform

differently.

Iman-Davenport’s test suggests that there are significant differences among the

algorithms in all datasets once the null hypothesis is rejected (p-value = 1.38E−7).

Thus the Holm post-hoc test is conducted with PSAR as the control algorithm.

Table 4 shows that the Holm post-hoc test rejects the hypothesis concerning WM(3),

WM(5), WM(7), DPST and PSST, but do not reject FSMOGFS
e
+TUN

e
and DPSA.

Therefore, PSAR outperforms WM(3), WM(5), WM(7), DPST and PSST because

the rank pf PSAR is the highest and rejects the hypothesis in the Holm test. We

notice that the difference of the performance of FSMOGFS
e
+TUN

e
and DPSA is

not statistically relevant because the null hypothesis is accepted.

Table 5 highlights, that for each dataset, the average processing time of

FSMOGFS
e
+TUN

e
and PSAR in minutes and seconds. We notice the different

complexity of the solutions generated during the evolutionary process. The com-
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Table 5 Average runtime of the algorithms (minutes:seconds M:S)

Dataset FSMOGFS
e
+TUN

e
PSAR

ELE 00:42 00:45

MPG6 1:00 00:53

ANA 5:17 5:05

ABA 3:54 4:25

STK 1:31 1:12

FOR 1:07 00:40

TRE 00:46 1:02

BAS 00:58 1:01

Fig. 11 MSE performance of the algorithms versus the number of rules: MPG6 data

putational cost of the fitness evaluation depends of the number of rules and con-

ditions in rules antecedents. In the case of ANA, the PSAR needs less time than

FSMOGFS
e
+TUN

e
because the number of rules is small. On the other hand, it is

higher than 3 min in ANA and ABA because the large number of samples.

In sum, the performance of PSAR in developing fuzzy rule-based models with

actual data illustrates its potential to solve complex problems. Overall, the results

suggest that PSAR performs better than current state of the art genetic fuzzy system

approaches from the point of view of the average mean square error with test data.

Figure 11 summarizes the MSE performance of the algorithms versus the number

of rules for MPG6 data set. More importantly, participatory search algorithms are
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simpler, have high computational performance, and require few parameters to run. In

particular, PSAR is a highly competitive population-based search approach (Table 6).

7 Conclusion

Participatory search is a population-based instance of the participatory learning

paradigm. Compatibility degrees and arousal indexes account for the effect of the

population individuals during search. Recombination arises from an instance of

participatory learning formula. The participatory search algorithms are elitist and

employ compatibility and arousal information in selection, recombination and muta-

tion. Applications concerned the use of participatory search algorithms to develop

fuzzy linguistic models of actual data. The performance of the models produced by

the participatory search algorithms were evaluated and compared with a state of the

art genetic fuzzy system approach. The results suggest that the participatory search

algorithm with arithmetical-like recombination performs best.
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But, What Is It Actually a Fuzzy Set?

Enric Trillas

Abstract Supported in a new view of meaning as a quantity in whatever universe
of discourse, and for its possible use concerning plain language and ordinary rea-
soning in ‘Computing with Words’, the paper deals with the basic concept of a
fuzzy set. That is, not only with the collective a linguistic label generates in lan-
guage, but also with what membership functions reflect on it once ideally seen as
measures of meaning.

1 Introduction

More than fifty years after its introduction [1], the idea of a fuzzy set is not yet clear
enough, and although no ‘if and only if’ definition of it exists, too often fuzzy sets
are seen as if they were mathematical entities in themselves instead of linguistic
entities.

The identification of a fuzzy set with a single one of its possible membership
functions is something very bizarre, since the question that should be immediately
posed is, ‘But, which one of them?’. Paraphrasing Quine’s words [2], it does not
seem possible to describe an entity without some criteria of identity; and the cor-
respondence between fuzzy sets and membership functions is one-to-many.

In addition, identifying the fuzzy sets in a universe of discourse X with all the
functions in [0, 1]X is still another oddity, since no general criteria are known for
assigning to each one of these this enormous amount of functions a linguistic label
of which it can be a membership function. In front of the unknown multiplicity of
predicative words acting on X, it is the aleph-one cardinality of the functions in
[0, 1]X. Furthermore, an important characteristic usually required of membership
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functions is their continuity, for which a topology in X is necessary; when X can be
seen as a subset of the real line such topology is automatically given, but, in general
its existence is unknown. In plain language, words do act in whatsoever universe of
discourse.

Nevertheless, most books on fuzzy set theory and fuzzy logic usually begin
under these presumptions that, although sometimes not explicit but implicitly
present in them, not even can be sustained as simple ‘working hypothesis’. Hence
both theories usually appear as based on moving grounds; trying to find, at least, a
more solid and suitable basement for the idea of fuzzy set is the only goal of this
paper.

2 Language and Fuzzy Sets

2.1 What does not seem to be debatable is that a fuzzy set in a universe of discourse
X comes from a linguistic label, that is, a predicative word P whose behavior in X is
manifested through the elemental statements ′x is P′, and generates the ‘fuzzy set
labeled P′. Each one of these statements reflects that a property p, with name P, not
only holds up to some extent for the elements in X, but is exhibited by them and is
externally recognized.

For instance, in the universe of the London inhabitants, the word ‘young’ is so
well anchored in plain language that it allows to speak on the ‘young Londoners’;
something that is understood by everybody. In the universe of the positive integers,
the word ‘odd’ is also so well anchored in the language of Arithmetic, that it allows
to speak on the ‘odd numbers’. In a universe of trains, the word ‘large’ is so well
anchored in plain language that it allows to speak on the ‘large trains’. At each part
of language, its speakers perfectly understand these statements. Often, in plain
language, recognizing p in the elements in X has an empirical character.

There are predicative words generating ‘linguistic collectives’, that is, words that
‘collectivize’ in language [3]. When such language is an artificial one, like it is that
of Arithmetic, those words whose behavior is defined by ‘if and only if’ conditions,
are the precisely used words that, of course, also exist in plain language. For
instance, and in a universe of discourse constituted by two people, John and Sarah,
the word ‘young’ can be undoubtedly applied to Sarah provided it is known that she
is 18 years old, but John is 67. Notwithstanding, the same word ‘young’ does not
admit a precise use in a universe with a very big number of elements like it is that of
London inhabitants; for instance, provided it were accepted that ′x is young’ if and
only if x is no more than thirty years old, is that a Londoner of thirty years and a
few days old, should cease to be qualified as young? Obviously, it is not in plain
language where its speakers see linguistic collectives as a single entity.

It can be said that the use of precisely used words is rigid, but that of the not
precisely used is flexible. Hence, the first are those words that collectivize in just a
subset of the universe of discourse; they perfectly classify the universe in those
elements fulfilling the property p, and those not fulfilling p. It just corresponds to
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the ‘axiom of specification’ in the Naïve Set Theory [4], stating that a bi-valued
property p generates in X a perfect classification of its elements in two subsets, that
with those x fully verifying p, and that with those not verifying p at all. A repre-
sentation of a precisely used word P in X, is done by the set P stated by the axiom
of specification; its use is rigid, and the Boolean algebra of the subsets in X is the
non debatable structure for representing these linguistic labels; it is a mathematical
model perfectly mimicking how precise words are used when all the necessary
information on their use is, at least, potentially known.

The words not precisely used, and as it is shown by a ‘Sorites’ type argument [5]
applied to each one of them, cannot collectivize in a subset. The, well anchored in
plain language, linguistic collectives they generate are like gaseous, or cloudy,
entities; but, anyway, gas volumes and clouds do actually exist, and are scientifi-
cally studied. Indeed, linguistic collectives are rooted in plain language, and
founding a mathematical model for them is imperative; at least for symbolically
representing the ordinary reasoning that is greatly permeated by imprecision.

2.2 It seems that the study of the collectives generated by not precisely used
words deserve to be approached by not considering them as pure mathematical
entities characterized by an ‘if and only if’ definition, but in a scientific-like style.
Such entities should be seen in a different way than sets, but, in any case, they can,
and will, be identified with the fuzzy sets; that is, naïvely renaming them as fuzzy
sets. The fuzzy set in X labeled P is just the linguistic collective P generates in X,
the collective named ‘the Ps of X′, and it allows to see a fuzzy set as a single,
although not precise, entity. In this way, the linguistic collective generated by a
precisely used word is just a subset of X; subsets represent but degenerate,
bi-valued, collectives; a non-degenerated collective is a purely linguistic concept.

In this line of thought, the fuzzy set labeled P can be seen as a single, although
cloudy, linguistic entity rooted in X. But it still lacks to answer the question: How a
fuzzy set can be specified in such a way that the axiom of specification for the
precisely used words can follow from it? A possible answer for this question lies in
‘meaning’; it is a semantic topic.

3 Words with Measurable Meaning

3.1 The meaning of a word is not independent of the context of its use; for instance,
‘odd’ does not mean the same in a universe of positive integer numbers than in one
of people. Sometimes the meaning of words can even change depending on the
purpose for its use, as it is with ‘odd’ when used to qualify people either with a
joking, or a hilarious, or an insulting purpose. It suffices to look for words in a
dictionary to check all this by seeing how their uses are described.

Hence, no realistic theory of meaning can assign to words a single and universal
meaning, since it depends on the universe of discourse, and on the particular
context of its use; the meaning of words is context-dependent and purpose-driven.
Thus, and in addition, for arriving at a theory of meaning it should be considered

But, What Is It Actually a Fuzzy Set? 215



how P ‘behaves’, or ‘acts’ in X. Language is not static, but dynamic; almost always,
time intervenes in language.

Once a pair (X, P) is given, how the ‘behavior’ of the word P in the universe X
can be described? It only can come from considering the action of P for the x in X;
that is, from the elemental statements ′x is P′, that constitute a different entity X [P]
than X; the second can be physical or virtual, but the first is always virtual. Nev-
ertheless, to capture the ‘behavior’ of P in X, it should be recognized not only the
action of P on the elements x, but the context on which the statements ′x is P′ are
used. To capture how P behaves, or acts, in X, it not suffices to statically capture
what indicate the statements ′x is P′, it is also necessary to know how such action
varies along X; its internal dynamism. That is, recognizing the linguistic relation-
ship [6],

0x is less P than y0, equivalent to 0y ismore P than x';

in other words, that x verifies p, less than y does. Such recognition is, in the case of
plain language, often of an empirical character not immediately allowing the
assignation of a degree to the verification of p.

Let’s, symbolically, denote it by x < P y, and by x = P y the case in which both
x < P y and y < P x, or x < P

−1 y, hold; obviously, = P = < P ∩ < P
−1.

To avoid the possibility < P = Ø, let’s state that

x < P x holds for all x inX, that < P is a reflexive relation,

although no reason for stating other properties like symmetry, or transitivity, etc.,
can really, and generally, exist. In general, < P is not a partial order in X; less again
it is a total, or linear, relation since usually non comparable elements will exist, that
is, pairs x, y for which it is neither x < P y, nor y < P x.

In the case the word P is precisely used in X, the relation < P collapses in the
relation = P; that is, < P = < P ∩ < P

−1
⟺ < P = < P

−1. For instance, there is no
way to directly stating that ‘7 is less odd than 517′; all odd numbers are equally
odd; analogously, no way of directly establishing that ‘7 is less prime than 17′
exists, all prime numbers are equally prime. The word ‘directly’ refers to doing it
without a previous new definition of ‘less than’ for the corresponding word, but
only under the old definitions of ‘odd’ and ‘prime’. Numbers are perfectly classified
in ‘odd’ and ‘not odd’, ‘prime’ and ‘not prime’, etc.

Once the relation < P is known, the graph (X, < P) reflects the ‘semantic
organization’ the use of P introduces in X; the graph is a qualitative meaning of P in
X. It should be pointed out that the universe X cannot be always supposed to be
mathematically structured; in plain language, words act in universes whatsoever.
For instance, the Kolmogorov’s theory of probability concerns ‘probable’ events in
a Boolean algebra, but, in plain language, the same word ‘probable’ is not only
applied to such kind of rigid events. A theory of linguistic meaning cannot presume
that the universe of discourse is directly endowed with a particular mathematical
structure.
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Notice that such a definition remembers the intuitive idea that, when (intelli-
gently) talking on some subject, some ‘ordering’ between the statements that are
uttered, gestured, or written at the respect and for the corresponding reasoning’s
argumentation, is tried to be introduced among them. Additionally, the former
definition also seems to be in agreement with the famous Ludwig Wittgenstein’s
statement [7], ‘The meaning of a word is its use in language’.

3.2. Once a graph (X, < P) is known, the possibility of measuring to which
extent x verifies p is open. A measure on such graph is a mapping mP: X → [0, 1],
such that [8]:

(1) If x < P y, then mP (x) ≤ mP (y),
(2) If x is maximal in the graph, that is, no other y verifying x < P y does exist,

then mP (x) = 1,
(3) If y is minimal in the graph, that is, no other x verifying x < P y does exist, then

mP (x) = 0.

Notice that the closed unit interval could be substituted by any closed interval
[a, b] in the real line, by just a playing the character of 0, and b that of 1 in the
former definition. Notice also that no additive law is presumed for mP; its definition
is free from considering ‘and’, ‘or’, and either the concepts of incompatibility or
contradiction that are only indistinguishable in the framework of Boolean algebras.

The additive law is deeply involved with a ‘rigid form’ of classifying elements,
and, in plain language contradiction is independent of incompatibility, contrarily,
for instance to the case of Ortho-lattices where the first implies the second (p ≤ q
′ => p ⋅ q = 0), with the reciprocal only holding provided the Ortho-lattice is a
Boolean algebra, that is, it is distributive and consequently verifies the law of
‘perfect repartition’, p = p ⋅ q + p ⋅ q′, for all pair p, q. In this case, p ⋅ q = 0
implies p = p ⋅ q′⇔ p ≤ q′, and the reciprocal also holds. A lot of structural laws
is necessary for the equivalence between contradiction and incompatibility;
something that cannot be presumed in plain language.

The former general definition of a measure is inspired on that of a ‘fuzzy
measure’ introduced by Michio Sugeno [9], but liberated from the constraints
imposed by just measuring subsets; it is free from any mathematical structure in X
further than that of graph. An antecedent of it can be found in the concept of a
‘fuzzy entropy’, introduced by Aldo de Luca, and Settimo Termini [10], where
P = fuzzy and < fuzzy coincides with the so called ‘sharpened order’ between
functions in [0, 1]X.

Like, for instance, in the case with probabilities, with Sugeno’s λ-measures, or
with de Luca-Termini fuzzy entropies, all of them measures, the three axioms of a
measure are not sufficient for individuating a single mP, and additional suppositions
should be added for each one of them. Anyway, each triplet (X, < P, mP) facilitates
a quantity reflecting a quantitative meaning of P in X, and, in this way, each ‘full
meaning’ can be seen as a quantity.
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By paraphrasing Lord Kelvin’s words [11], ‘If you cannot measure it, it is not
Science’, viewing meaning as a quantity can open the door towards a scientific-like
study of collectives. Let’s show a toy-example to illustrate what has been said.

Consider X = [0, 10], and P = big, generating the linguistic collective, or fuzzy
set ‘big numbers between 0 and 10′. This collective is not a set, provided ‘big’ is
not rigidly but flexibly used; for instance, provided it can be stated that ‘8 is big’,
also ‘7.99 is big’ can be stated. A ‘Sorites’ argument [5] shows that, not being the
‘collective big’ empty since 10 is always considered big, it is not a subset of [0, 10].
The qualitative use of big in [0, 10] can be described by:

x < bigy⇔ x ≤ y,

that is, by the qualitative meaning ([0, 10], ≤ ), a graph that is but a linearly ordered
interval with maximum 10 (the only maximal), and minimum 0 (the only minimal).
Hence, the measures of big in [0, 10] are the mappings mbig: [0, 10] → [0, 1], such
that,

(1) x ≤ y = > mbig xð Þ ≤ mbig yð Þ
(2) mbig 10ð Þ=1
(3) mbig 0ð Þ=0,

to which, adding the condition of ‘usual flexibility’,

(4) If x can be qualified as big, it exists ε (x) > 0 such that those y in the interval
(x – ε (x), x] can be also qualified as big,

that could be translated into mbig, as
(4*) mbig is continuous in [0, 10].
Hence, the measures of big are the mappings between [0, 10] and [0, 1] that are

strictly non-decreasing, and verify the border conditions (2) and (3). There is an
enormous amount of them.

Consequently, to specify a measure for the meaning of big, it is necessary to add
some additional information on the behavior of big, like it can be on its shape. For
instance, provided it is known, or can be reasonably presumed, that the measure
should be linear, mbig (x) = ax + b, it follows that the only possible linear measure
is x/10, but provided the information on its shape were that it is quadratic, mbig

(x) = ax2 + bx + c, several possibilities for the values of a and b are possible,
since by (3) it follows c = 0, and from (2) that 100 a + 10 b = 1; for instance, a
quadratic measure is x2/100 (with a = 1/100 and b = 0), but, obviously, it is not the
only quadratic measure that is possible for ‘big’.

In conclusion, the graphs ([0, 10], ≤ , mbig), with mbig verifying the axioms
(1)–(4), plus some additional information or additional reasonable hypotheses, are
the quantities that specify a full meaning of ‘big’ in [0, 10]. These quantities require
the ‘design’ of the corresponding measures.

Notice that axioms (4) and (4*) exclude to interpret the use of big as a precise
one, since it will be specified by a subset of [0, 10] whose measure cannot be
continuous but with jumps; notwithstanding, such rigid interpretation is possible by
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avoiding (4), by renouncing to flexibility. That is by ‘making precise’ the meaning
of ‘big’; something that means, indeed, changing the ordinary and often usual, use
of ‘big’ in plain language.

In some cases, the designer should add to the axioms, some hypotheses, rea-
sonable for the current situation he is faced with, and like it is the former linear
hypothesis. In this way, the linguistic collective P generates is qualitatively
described by the graph (X, < P) once it is known, and shows different ‘informa-
tional states’ each one given once a quantity (X, < P, mP) is specified.

3.3. The former interpretation of meaning as a quantity, actually preserves what
has been said for the precisely used words, and it can be proven as follows.

If P is precisely used in X, the graph is (X, = P), and then if x = P y⇔x < P y &
y < P x. It implies mP (x) ≤ mP (y) & mP (y) ≤ mP (x), or mP (x) = mP (y). Thus,
only the values 0 and 1 can be taken by the measure, since there are no other
elements than the maximal (those verifying P), and the minimal (those not verifying
P). Hence, the subset mP

−1(1) consists in the maximal (or prototypical) elements, and
is the set P specified by P in X; obviously, it is mP

−1(0) = Pc that contains the
minimal or anti-prototypical elements.

4 Membership Functions

Is there any difference between the former measures of the linguistic label ‘big’, and
the membership functions assigned to it in any book on Fuzzy Logic? There is no
one. Thus, it can be stated that a membership function is, ideally, but a measure of
the qualitative meaning of its linguistic label; is a quantitative ‘informational state’
of the fuzzy set.

Nevertheless, as the word ‘ideally’ tries to remark, this statement should be
submitted to caution since a membership function is designed with the information
available to its designer; an information not always consisting in all the relation
‘less than’, nor in knowing all its maximal and minimal elements but only some of
them. There is some similarity with what happens when saying that the probability
of obtaining each one of the six faces in throwing a die is 1/6, but without knowing
if the die has some imperfection, or it is a tricky one, or the landing surface is not
perfectly plane. An ‘ideal’ die is supposed to have a probability of 1/6 for each one
of its faces; but often, ideal dice, those who throw them, and the landing surfaces,
are not perfect. To say nothing when the die is tricky, for instance, having inside
and in front of a face, a very small piece of plumb, or when it is thrown into sand.
Throwing a die is a real situation, and often real situations are not ‘ideal’; analo-
gously, the design of a membership function departs from some real situation in
plain language. No doubt that the measures are membership functions, but, are
membership functions always measures?

In addition, once the designer arrives at a membership function μP, a new
relation is automatically established in X:
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x ≤ μ y⇔ μP xð Þ ≤ μP yð Þ,

that is a linear one and, consequently, not always coincidental with < P. Thus,
provided ≤ μ substitutes < P, the new ‘qualitative meaning after design’ is not
already the original one. Provided μP were a measure, since

x < P y = > μP xð Þ ≤ μP yð Þ⇔x ≤ μ y, or < P ⊆ ≤ μ,

the design enlarges the qualitative meaning. Hence, the original qualitative meaning
could be changed by the larger one coming from design; design could modify
meaning. This is certainly risky, since practitioners usually look at the behavior of P
in X after counting with a membership function and just through its shape; with it,
they can easily appreciate a larger qualitative meaning than the real one.

In conclusion, in most practical cases, the membership function cannot be
exactly a measure, but an often unknown approximation to one of them. Thus, to
well representing the meaning of a linguistic label, it is important to know when a
membership function can be seen as a good enough approximation to a measure.
Working with a membership function not well reflecting the meaning of its lin-
guistic label, can conduct to wrong results coming, for instance, from the fact that
the membership function actually represents a different linguistic label.

5 Searching for a Definition and a Theorem

Fuzzy Control counts with a theorem stating on which conditions the computed
output universally approaches the real one [12], but it lacks a similar theorem for
assuming that a membership function truly approaches a measure. That is, a the-
orem from whose antecedent it can follow that, given a measure mP of a qualitative
meaning (X, < P) of P in X, a designed membership function μP is ‘good enough’
provided it exists a measure mP such that either

(1) For all ε > 0 is ImP xð Þ− μP xð ÞI ≤ ε, for all x inX,

or

(2) It is minimized the function Supx ∈ X ImP (x) – μP (x)I.

Instead of a system of rules and a defuzzification’s method, what here is initially
known are the relation < P, or a part of it (both can be seen as a system of rules),
and the axioms mP should verify.

Both (1) and (2) could be considered as suitable definitions for stating that μP
approaches mP. Nevertheless, to prove them as a theorem’s conclusion, some
reasonable hypotheses, or some additional contextual information on the behavior
of P in X, should be taken into account. But it depends on each particular case, and,
for example, on how the designer did build up the membership function, that is, on
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the information available to s/he on the behavior of P in X. It remains an open
question that, perhaps, should be posed from a different point of view as it is, for
instance, beginning by modifying up to some limits the relation < P, or the mea-
sure, or by just considering some type of measures.

I mention such possibility under the conviction that a generally accepted defi-
nition concerning the relation a designed membership function should keep with
measures, as well as to proving on which conditions it can hold, is an important
topic. Of course, were μP a measure, both the definition and the theorem are
unnecessary. Anyway, and at least, some sufficient condition for knowing if the
membership function approaches a measure will be interesting. Up to when
something similar will be found, the design of linguistically described systems will
continue being done in a not standardized and blind form.

6 Conclusion

This paper is just a first trial to penetrate on what the idea of a fuzzy set is, and on
what its description by membership functions means. That the topic is just open, but
not fully achieved, is manifested by the final call towards clarifying which mem-
bership functions can be actually considered as a good enough approximation to the
fuzzy sets informational states.

What does not seem dubious is that fuzzy sets are linguistic, not mathematical,
entities, that rooted in plain language belong to its domain, and that their mem-
bership functions should come from a process of design. In themselves, fuzzy sets
seem to need a scientific-like study instead of a purely mathematical one. In
addition, it yet lacks to count with a standardization of the corresponding design’s
processes for what concerns the approximate character of membership functions.

Since plain language is full of imprecise words, to mathematically mimicking
ordinary reasoning, that is, to establish mathematical models for the not fully
deductive types of reasoning, it is strictly necessary to consider imprecision, and,
hence managing fuzzy sets for its symbolic representation. Thus, clarifying the idea
of ‘linguistic collectivization’ is relevant.

There are still several problems that remain open for counting with good enough
theoretical foundations of Zadeh’s ‘Computing with Words and Perceptions’,
whose ground lies in plain language and ordinary reasoning. For instance, ambi-
guity also permeates plain language and no mathematical model for scientifically
managing ambiguity is currently known.

Notwithstanding, what can be asserted is that only one kind of fuzzy set actually
exists, and that names like ‘type-two fuzzy set’ only can refer to the range in which
the membership function takes its values.
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Gradual Numbers and Fuzzy Solutions
to Fuzzy Optimization Problems

Didier Dubois and Henri Prade

Abstract This short paper indicates that early examples of fuzzy elements in a fuzzy

set, that is, entities that assign elements to membership values, in contrast with fuzzy

sets that assign membership values to elements, can be found in papers by Verdegay

in the early 1980, following a line of thought opened by Orlovsky. They are so-called

fuzzy solutions to fuzzy optimization problems. The notion of fuzzy element, and

more specifically gradual number sheds some light on the ambiguous notion of fuzzy

number often viewed as generalizing a number while it generalizes intervals. The

notion of fuzzy solution is in fact a parameterized solution, in the style of parametric

programming. These considerations show the pioneering contributions of Verdegay

to the development of fuzzy optimization.

1 Introduction

In the literature of fuzzy optimisation, initiated by Bellman and Zadeh [1], the stan-

dard formulation of optimizing an objective function under some rigidly defined

constraints is replaced by the search for a solution with maximal membership grade

in a fuzzy set defined by intersecting the fuzzy sets of feasible solutions accord-

ing to several constraints, and the fuzzy sets of good solutions according to one or

several objectives. It is clear that under this relaxed form of optimization problem,

constraints and objective functions play the same role and because of the use of the

minimum operator to aggregate the various fuzzy sets, there is no compensation

allowed between local satisfaction degrees. In some sense, as argued in [5], Bell-

man and Zadeh’s formulation is a pioneering generalization of constraint satisfaction

problems, understood as flexible or soft constraint satisfaction problems [10] where
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the satisfaction of constraints is a matter of degree. This formulation of fuzzy opti-

mization problems, including multiobjective ones, was extensively applied to linear

programming, especially by Tanaka et al. [15], Zimmermann [19] and Chanas [3],

and further on used by many scholars.

This formulation of fuzzy optimization now belongs to history as almost every

possible development of this formulation has been studied. However, what is strik-

ing with this approach is that the difference between constraints and objectives is

blurred. Once changed into fuzzy sets, they play the same role (of flexible con-

straints) in the mathematical formulation. Yet quite early, some scholars in the late

1970s such as Orlovsky [13] and in the early 1980s, especially our colleague and

friend Curro Verdegay [16, 17] envisaged the fuzzy optimization problem in a dif-

ferent way, acknowledging the specific role of the objective function as opposed

to fuzzy constraints, and proposed the idea of fuzzy solution to fuzzy optimisation

problems.

More recently, and in a totally different context, the authors of this note pointed

out the ambiguity of the terminology “fuzzy number” [7, 8], often viewed as the

fuzzy extension of a number while it generalizes intervals, and the questionable

understanding of the notion of defuzzification of a fuzzy set that is often supposed to

yield a precise element rather than a crisp set. These considerations led us to consider

the concept of fuzzy (or yet gradual) element in a fuzzy set, for which the notion of

membership function is in some sense taken the other way around.

The aim of this note is to indicate the close connection between Verdegay’s pro-

posal of fuzzy solution, and the notion of fuzzy element in a fuzzy set: a fuzzy solu-

tion is a fuzzy element in the fuzzy set of feasible solutions to the fuzzy optimization

problem.

2 Fuzzy Solutions to Fuzzy Mathematical Programming
Problems

At the origin, the introduction of fuzzy sets in optimization problems led to the

maximisation of an objective function f (x) under fuzzy constraints on a set X
of potential solutions x [13, 15]. Typically, the objective function is a mapping

x ∈ ℝn ↦ f (x) ∈ ℝ, and the constraints form a fuzzy set of feasible solutions in ℝn
.

The fuzzy constraint set is built by considering first a set of crisp constraints defin-

ing a set of feasible solutions U ⊂ X , and a set of fuzzy constraints C̃i, i = 1,…m.

Let C̃ be the intersection of the C̃i’s and U obtained using the intersection operation

minimum.

Then we have to make sense of an optimal solution over the set of feasible solu-

tions C̃ when the latter is fuzzy.

Following Bellman and Zadeh [1], one way is to build a fuzzy set from f and

combine it with the fuzzy constraint set C̃ using again the intersection operation

minimum. The simple way of constructing a fuzzy set is to consider the optimal
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value z∗ of f (x) in the support of the fuzzy constraint set {x ∶ 𝜇C̃(x) > 0}, and let

the fuzzy optimizing set F be defined as 𝜇F(x) =
f (x)
z∗

. Then we can define the fuzzy

set of optimal solutions as F∩ C̃, an optimal solution x∗ being the one with maximal

membership grade in F ∩ C̃, a path initiated by the late Tanaka and colleagues [15].

However this is just one way of defining the fuzzy optimizing set as there can be

many increasing functions 𝜙 ∶ ℝ → ℝ with which we can define 𝜇F as
𝜙(f (x))
𝜙(z∗)

. So in

order to properly define the fuzzy setF∩C̃, we need to define a scaling function𝜙 that

makes the objective function and the membership function of the fuzzy constraint set

commensurable. Clearly, the choice of function 𝜙 affects the choice of the optimal

solution, which can be written x∗
𝜙

. Zimmermann [19] found the way to choose a

scaling function that makes sense, using a fuzzy expectation level on the objective

function, hence giving up the idea of optimizing f . Namely, suppose the user can

find thresholds z and z such that f (x) ≥ z is judged sufficient for a solution x to

be good enough, and completely insufficient if f (x) ≤ z. Then 𝜇F is often chosen

as a linear increasing membership function such that 𝜇F(x) = 0 if f (x) ≤ z, and 1

if f (x) ≥ z. In this case, if the fuzzy constraints are defined by linear membership

functions, maximizing min(𝜇F(x), 𝜇C̃(x)) becomes a reasonable approach, whereby

the objective function is handled as another fuzzy constraint. It readily extends to

the case of several objective functions.

An alternative approach which dispenses with the choice of a scaling function was

proposed by Verdegay [16], after Orlovsky [13], and sticks to the idea that objective

functions and constraints, be they fuzzy, do not play the same role [16, 17]. Namely

consider a feasibility threshold 𝛼 and the crisp feasible set C
𝛼
= {x ∶ 𝜇C̃(x) ≥ 𝛼}.

It is then clear that we can get a standard optimization problem of maximizing f (x)
over C

𝛼
. The set of optimal solutions to this problem is defined by S(𝛼) = {x∗ ∶

f (x∗) = supx∈C
𝛼

f (x)}. Verdegay noticed that this is a form of parametric mathemati-

cal programming (MP) problem, in the sense that each choice of threshold 𝛼 yields a

different set S(𝛼) of optimal solutions. The fuzzy set S̃ of optimal solutions to a fuzzy

mathematical programming problem is then defined by Verdegay [16] by applying

Zadeh’s result for reconstructing a fuzzy set from its alpha-cuts:

𝜇S̃(x) = sup{𝛼 ∶ x ∈ S(𝛼)}.

It is known since Orlovsky [13] (see also [6], pp. 102–103) that if S = ∪
𝛼>0S(𝛼) then

S̃ = S∩ C̃. In contrast with the fuzzy set of solutions based on rescaling the objective

function, this definition of a fuzzy solution to a fuzzy MP problem does not depend

on any scaling function. It is up to the decision maker to choose the decision x̂ that

maximizes 𝜇S̃(x), or to choose some solution in the set S(𝛼) for a suitable choice of

𝛼. This view is also very close to the parametric programming approach to fuzzy

linear programming first proposed by the late Stefan Chanas [3] (see also [2]).

Verdegay [16] also showed that the two paradigms of fuzzy MP can be related if

it is noticed that we can solve the fixed point problem 𝜓(𝛼) = supx∈C
𝛼

𝜇F(x) = 𝛼,

which has a solution under continuity conditions since 𝜓 is decreasing with 𝛼. The

fixed point solution 𝛼
∗

yields a set of solutions to the fuzzy MP x∗ ∈ S(𝛼∗) that do
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maximize min(𝜇F(x), 𝜇C̃(x)), i.e., correspond to the optimal solutions in the other

paradigm.

The fuzzy solution of Verdegay is a fuzzy set constructed from crisp sets S(𝛼) that

are not necessarily nested. Indeed we do not have that if 𝛼 > 𝛽 then S(𝛼) ⊆ S(𝛽).
This is because the optimal solutions in C

𝛽
may fail to lie in its subset C

𝛼
. So we can

make two observations:

∙ The sets S(𝛼)’s are not nested. In fact, if 𝛼 > 𝛽, either S(𝛼) ⊆ S(𝛽) or S(𝛼)∩S(𝛽) =
∅, i.e., either S(𝛼) = C

𝛼
∩ S(𝛽) or S(𝛼) ∩ S(𝛽) = ∅. Moreover, the S(𝛼)’s can be

singletons if the optimal solutions are unique.

∙ The definition of a fuzzy optimal set in the sense of Verdegay is given by the

mapping 𝛼 ∈ (0, 1] ↦ S(𝛼) ⊂ X , not originally a membership function X →
[0, 1].

This type of layered representation has been studied in the literature since Negoita

and Ralescu [12] in the nested case, but the non-nested one has been more recently

studied under the names of gradual sets [7], or RL-representations by Sanchez et al.

[14] and by Martin and Azvine [9] in the so-called X𝜇 approach. When S(𝛼)’s are

singletons, the fuzzy solution corresponds to a fuzzy element whose definition is now

recalled.

3 Fuzzy Elements and Gradual Numbers

Given a distributive lattice L with top 1 and bottom 0, and a set S, a fuzzy element s̃
is defined by a mapping As̃ ∶ L+ → S, where L+ = L⧵{0} [7]. L is called a relevance

scale, and As̃ an assignment function. The idea is that the choice of elements in S is

parameterized by elements in L that are ordered in terms of relevance (e.g., quality,

excellence, plausibility etc.): an element s is determined by 𝛼 ∈ L+ in the sense that

As̃(𝛼) = s; we may write s
𝛼
∈ S for simplicity.

Note that an assignment function does not always determine a fuzzy set. How-

ever, given a fuzzy set F on S, with values in L, the inverse function 𝜇
−1
F exists and is

an assignment function if this membership function 𝜇F is bijective. So, some fuzzy

sets can be viewed as fuzzy elements of the universe where the fuzzy set lies, for-

mally. However, it is clear that beyond their possible mathematical identity, the two

notions are distinct and will not be processed identically, e.g., fuzzy elements cannot

be intersected like fuzzy sets do.

It is possible to view a fuzzy set as a fuzzy element of the power set ℘(S) using

alpha-cuts, namely, the mapping 𝛼 ↦ F
𝛼
= {s ∶ 𝜇F(s) ≥ 𝛼} defines what can be

called a gradual set, which is another description of a fuzzy set. However, there is no

monotony constraint for a fuzzy element G̃ in ℘(S), namely 𝛼 ≥ 𝛼
′

does not imply

G̃(𝛼) ⊆ G̃(𝛼′) like for fuzzy sets. Gradual sets are akin to so-called soft sets [11]

(although the domain of a soft set is not supposed to be ordered, so that it is just the

well-known notion of a relation), but they have been studied by other researchers, as

pointed out in the previous section [9, 14].
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A fuzzy set F can be viewed as a crisp set of fuzzy elements. Indeed, fuzzy ele-

ments are obtained by picking one element s
𝛼

in each cut F
𝛼
, namely F = {s̃ ∶ s

𝛼
∈

F
𝛼
, 𝛼 ∈ L+}, and we can show that the fuzzy set F is the set of its fuzzy elements

via the reconstruction formula

𝜇F(s) = max{𝛼 ∶ s
𝛼
= s}.

A gradual real number r̃ is a fuzzy element of the reals, letting S = ℝ and L =
[0, 1] [8]. Contrary to numbers, gradual real numbers are not totally ordered, and a

partial order on gradual numbers can be naturally defined as follows: Let r̃ and s̃ be

two gradual numbers. A gradual real number r̃ pointwisely dominates a gradual real

number s̃ (written r̃ ≥ s̃) if and only if ∀𝛼 ∈ (0, 1] r
𝛼
≥ s

𝛼
.

Given a fuzzy interval M, that is a fuzzy set of reals whose alpha-cuts are closed

intervals [m
𝛼
,m

𝛼
], we have that M = {r̃ ∶ m

𝛼
≤ r

𝛼
≤ m

𝛼
, 𝛼 ∈ L+}. As suggested in

the introduction, the term fuzzy number, often used in place of fuzzy interval, may be

misleading. Note that the difference between a gradual number and a fuzzy number

in the usual acception is that the latter is a parametrized interval (depending on the

choice of 𝛼) while a gradual number is a parameterized number, again controlled

by 𝛼.

Consider two bijective functions

𝜇M−(r) =

{
𝜇M(r) if r ≤ m1;
1 otherwise.

and

𝜇M+(r) =

{
𝜇M(r) if r ≥ m1;
1 otherwise.

A fuzzy interval can be viewed as a crisp interval bounded by gradual numbers m̃
and ̃m defined by assignment functions Am̃(r) = 𝜇

−1
M−(r) and A ̃m(r) = 𝜇

−1
M+(r).

Then we can view a fuzzy interval M as the interval [m̃, ̃m] = {r̃ ∶ m̃ ≤ r̃ ∶≤ ̃m}.

These gradual numbers have the shape of cumulative (m̃) or survival ( ̃m) probability

functions, but can be considered as fuzzy thresholds offering a gradual transition

from one half of the reals to the other half.

Operations on gradual numbers are defined in [8] as standard pointwise operations

on assignment functions. For instance:

∙ The sum of two gradual numbers r̃ and s̃ is defined by summing their assignment

functions. It is r̃ + s̃ such that ∀𝛼 ∈ (0, 1]Ar̃+s̃(𝛼) = Ar̃(𝛼) + As̃(𝛼). For simplicity,

we write ∀𝛼 ∈ (0, 1], (r̃ + s̃)(𝛼) = r̃(𝛼) + s̃(𝛼) = r
𝛼
+ s

𝛼
.

∙ The set of gradual numbers equipped with the addition operation forms a com-

mutative group with identity 0̃ such that A0̃(𝛼) = 0 ∀𝛼 ∈ (0, 1]. The gradual

number r̃ has the inverse −r̃ under the addition ∀𝛼 ∈ (0, 1]A−r̃(𝛼) = −Ar̃(𝛼) and

r̃ + (−(r̃)) = 0̃.
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∙ From the group structure, the subtraction operation is defined byAr̃−s̃ = Ar̃+A−s̃ =
Ar̃ − As̃.

Any algebraic operation on real numbers can be straightforwardly extended to grad-

ual numbers. For details see [8]. Note that since gradual numbers are a fuzzy exten-

sion of numbers, not intervals, the algebraic structure of numbers is for the most part

inherited by gradual numbers. This fact sheds useful light in the issue of confus-

ing a fuzzy number understood as a fuzzy interval and a fuzzy number understood

as a gradual number. For instance, a monotonic gradual number r̃ in the form of a

cumulative distribution function (a form of fuzzy threshold used in fuzzy linear pro-

gramming [19]) can be viewed as the gradual extension of a crisp number r ∈ ℝ, and

the fuzzy extension of a semi-open interval [r,+∞). Under the first view it is natural

to have that the difference Ar̃−s̃(𝛼) = r
𝛼
− s

𝛼
, which is the gradual number extending

r − s. In contrast, the result of the fuzzy subtraction r̃ ⊖ s̃ based on the extension

principle, where we regard the monotonic gradual numbers as fuzzy intervals, is not

obtained by computing r
𝛼
− s

𝛼
as it is most of the time the whole real line. Namely,

the interval subtraction

[r,+∞) − [s,+∞) = {x − y ∶ x ≥ r, y ≥ s} = ℝ.

At this point it should be clear that the fuzzy solution to a fuzzy MP problem

in the sense of Verdegay [16] is a very early example of a fuzzy element in (or a

gradual subset of) the fuzzy constraint set, since we do have, by construction, that

S(𝛼) ⊂ C
𝛼
,∀𝛼 ∈ (0, 1]. This is just one example of gradual set or fuzzy element that

can be found in the literature. In this case, it turns out that the specific features of

such a fuzzy solution (any two sets in the family are nested or disjoint) allow us to

view it as a fuzzy set from which we can recompute the gradual set via alpha-cutting.

Other more recent examples of fuzzy elements and non-nested gradual sets are for

instance the relative fuzzy cardinality of a fuzzy set [4], the fuzzy probability of a

fuzzy event, the midpoint of a fuzzy interval [8], or the Haussdorf distance between

fuzzy sets (see [7] for discussions).

4 Conclusion

This note has the only ambition to demonstrate the pioneering role of our colleague

and friend J.L. Verdegay in the early times of fuzzy optimization, showing that he

developed an alternative view to a fuzzy solution set, that he recalled in his recent

retrospective position paper [18] and that would perhaps deserve to be studied fur-

ther, as opposed to the popular max-min approach to fuzzy MP. It seems that recent

research from Granada university focused on so-called SL-representations [4, 14].

The necessity to properly formalize fuzzy set related notions,such as fuzzy solutions

to fuzzy optimization problems, led to define fuzzy elements in fuzzy sets and the

like, where counterparts to alpha-cuts are no longer nested. Moreover, the connec-
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tion to parametric programming also makes it clear that, just as a fuzzy solution is

also a parametric solution driven by membership grades, a fuzzy set can be defined

by letting a set depend on a parameter ranging on an ordered scale, and any scalar

evaluation of this set defines a gradual element.
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Using Fuzzy Measures to Construct
Multi-criteria Decision Functions

Ronald R. Yager

Abstract We are interested in the formulation of multi-criteria decision functions
based on the use of a measure over the space of criteria. Specifically the relationship
between the criteria is expressed using a fuzzy measure. We then use the Choquet
integral to construct decision functions based on the measure. We look at a number
of different decision functions generated from specific classes of measures.

1 Introduction

One approach to multi-criteria decision-making is to construct decision function by
aggregating an alternative’s satisfaction to the individual criteria and then selecting
the alternative with the largest aggregated value of the individual criteria [1]. Our
focus here is on the formulation of multi-criteria decision functions where our
aggregation method is based on the use of a fuzzy measure (monotonic set measure)
and the Choquet integral [2–5]. In this framework the measure is used to convey
information about criteria importance’s and relationships between the constituent
criteria. We first describe the general approach to the formulation of decision
functions using this framework. We look at the types of aggregation functions that
are generated from various classes of measures. We show to how to aggregate the
underlying measures to enable the modeling of more complex relationships
between the criteria from simple relationships.

R.R. Yager (✉)
Machine Intelligence Institute, Iona College, New Rochelle, NY 10801, USA
e-mail: yager@panix.com

© Springer International Publishing AG 2018
D.A. Pelta and C. Cruz Corona (eds.), Soft Computing Based Optimization
and Decision Models, Studies in Fuzziness and Soft Computing 360,
DOI 10.1007/978-3-319-64286-4_14

231



2 Measure Based Approach to Multi-criteria
Decision Making

Assume we have a collection C = {C1, ⋅ ⋅ ⋅ , Cn} of criteria of interest in a decision
problem. Let X be a set of alternatives from among which we must select the one
that best satisfies the criteria. Here for each alternative x we let Ci(x) ∈ [0, 1]
indicate the degree to which criteria Ci is satisfied by alternative x. In order to select
the alternative that best satisfies the collection C we must provide some function F
that indicates the degree to which each x satisfies the collection of criteria. We shall
denote this as F(x) = Agg(C1(x), C2(x), ⋅ ⋅ ⋅ , Cn(x)).

A very general formulation for Agg can be obtained with the aid of a fuzzy
measure on the space of criteria and the use of an appropriate integral [3]. In this
approach the fuzzy measure is used to express the structural relationship between
the criteria. A fuzzy measure on the space C of criteria is a mapping μ: 2C → [0, 1]
such that

μðCÞ=1, 2.μð∅Þ=0 and 3.μ Að Þ≥ μ Bð Þ if A⊇B ð1Þ

An interpretation of μ in this environment of multi-criteria decision-making is
that for any subset A in C, μ(A) is the importance associated with the subset of
criteria in A.

As we indicated we shall use the fuzzy measure to guide the construction of the
aggregation function F(x) = Agg(C1(x), ⋅ ⋅ ⋅ , Cn(x)). One general approach for
obtaining a decision function F that makes use of this fuzzy measure on the col-
lection of criteria is the Choquet integral, F(x) = Chμ(C1(x), C2(x), ⋅ ⋅ ⋅ , Cn(x))
[2–5]. In anticipation of introducing the Choquet integral we provide some for-
malism. For a given alternative x we let id(j) be the index of the jth most satisfied
criteria. Thus Cid(j)(x) is the degree of satisfaction of the jth most satisfied criteria.
We now let Hj = {C id(k)| k = 1 to j}, it is the collection of the j most satisfied
criteria. Here we see Hn = C. We shall let H0 = ∅ by convention. We see here that
Hk ⊆ Hj for j ≥ k. We further see from the monotonicity of μ that μ(Hj) is a
monotonically non-decreasing function of j, μ(Hi) ≥ μ(Hk) if i ≥ k. Using the
μ(Hj) we can obtain a collection of weights, wj = μ(Hj) − μ(Hj−1), for j = 1 to n. It
is easily to show that wj ≥ 0 for all j and ∑n

j = 1 wj = 1. Using this we get
F xð Þ= Chμ C1 xð Þ, C2 xð Þ, ⋯, Cn xð Þð Þ= ∑n

j = 1 wjCid jð Þ xð Þ.
It is easy to show that this type of aggregation function is a mean. In particular it

is known that F(x) is bounded, Mini[Ci(x)] ≤ F(x) ≤ Maxi[Ci(x)], and monotonic,
if Ci(x) ≥ Ci(y) for all i then F(x) ≥ F(y). Another property we can show is that if
μ1(A) ≥ μ2(A) for all A then for x, F1(x) ≥ F2(x).
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3 Combining Measures

We shall make some general observations about fuzzy measures. First we recall the
definition of an aggregation function [5]. A mapping Agg: In → I is called an
aggregation function if it satisfies the three conditions. (1) Agg(0, 0, ⋅ ⋅ ⋅ , 0) = 0,
(2) Agg(1, ⋅ ⋅ ⋅ , 1) = 1 and (3) Agg(a1, ⋅ ⋅ ⋅ , an) ≥ Agg(b1, ⋅ ⋅ ⋅ , bn) if ai ≥ bi for
all i.

We note that there are many aggregation functions [5], among the more notable
of these are the Max, the Min and the average. We also note that product is an
aggregation function. All mean operators are aggregation functions as are t-norms
and t-conorms [5].

In the following we note a fundamental theorem of fuzzy measures [6].
Theorem: Assume μ1, …, μq are a collection of fuzzy measures on the space Z.

If Agg is an aggregation function then the set function μ defined such that
μ(A) = Agg(μ1(A), ⋅ ⋅ ⋅ , μn(A)) for all subsets A of Z is itself a fuzzy measure.

We shall refer to this as FTAM, the Fundamental Theorem on Aggregation of
Measures. The FTAM provides a very general approach to constructing set mea-
sures from other measures. We shall use the notation μ = Agg(μ1, …, μn) to
indicate that μ is defined so that μ(A) = Agg(μ(A), …, μ(A)) for all subsets A.

Since product is an aggregation function then μ = μ1μ2, …, μn is a measure.
Also we note that μ = Max(μ1, …, μn) is a measure as well as Min(μ1, …, μn).
Furthermore if wj for j = 1 to j are such that wj ∈ [0, 1] and Σ wj = 1 then
μ= ∑n

j = 1 wjμj is a measure. Here μ Að Þ= ∑n
j = 1 wjμjðAÞ for all subsets A of Z.

We now recall that the Choquet integral generates an aggregation function. Thus
this can provide a methodology for constructing new measures. Let C = {C1, ⋅ ⋅ ⋅ ,
Cq} be a collection of criteria. Let R = {μ1, …, μr} be a collection of measures on
the space C of criteria. Let m be a measure on the space R. We now use this to form
a compound measure μ on C defined so that for any subset A of the criteria C we
have

μ Að Þ=Choqmðμ1 Að Þ, μ2 Að Þ, ⋯, μr Að ÞÞ

Here μ(A) is the Choquet integral with respect to m with arguments μj(A). We
now show how this measure μ can be used to determine the overall satisfaction of
alternative x, F(x).

Assume Ci(x) = a1, is the satisfaction of criteria Ci by alternative x. Without loss
of generality we shall assume the indexing has done so that ai ≥ ak if i < k. In this
case Hj = {C1, C2, ⋅ ⋅ ⋅ , Cj}.

Using the Choquet integral we have F xð Þ= F a1, ⋯, anð Þ= ∑n
j = 1 wjaj where

wj = μ(Hj) − μ(Hj−1). However here μ(Hj) = Choqm(μ1(Hj), μ2(Hj), ⋅ ⋅ ⋅ , μr(Hj).
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4 Basic Weighted Average Aggregation

In the following we shall look at the types of multi-criteria decision functions we
get using the Choquet integral under some notable examples of fuzzy measures. The
most basic example is the additive measure. For this measure we define μ as
follows. For each Ci we associate a value αi such αi ∈ [0, 1] and ∑q

i = 1 αi = 1. Here
for any subset A ⊆ C we have μ Að Þ= ∑k, Ck ∈A αk. Here if A(Ck) is the mem-
bership grade of Ck in A, A(Ck) = 1 if Ck ∈ A and (Ck) = 0 if Ck ∉ A then
μ Að Þ= ∑q

k= 1 αkAðCkÞ
Let us now obtain the Choquet integral in this case. If Ci(x) is the satisfaction of

Ci by x then F(x) = Choqμ[C1(x), ⋅ ⋅ ⋅ , Cq(x)]. Let id(j) be the index of jth largest
of the Ci(x) using this we have Hj = {Cid(k)/k = 1 to j}. In this case
F xð Þ= ∑q

j = 1 ðμðHjÞ− μðHj− 1ÞÞCid jð Þ xð Þ. Since μ Hj
� �

= ∑j
k = 1 αidðkÞ and μ Hj

� �
=

∑j− 1
k= 1 αidðkÞ then μ(Hj) − μ(Hj−1) = αid(j) and hence F xð Þ= ∑q

j = 1 αid ðjÞCid jð Þ xð Þ=
∑q

i = 1 αiCiðx). It is the simple weighted average of the satisfactions where the
weight associated with criteria Ci is αi. Here we have the notable feature that for a
given criteria, Ci, no matter what position it appears in the ordering id its associated
weight is always αi. Thus in this case it appears justifiable to refer to αI as the
importance associated with Ci.

5 Cardinality Based Measures and OWA Aggregation

An important class of measures studied by Yager [7] are the cardinality based
measures. A fuzzy measure μ is called a cardinality based measure if μ(A) = V|A|.
Here the measure of a subset just depends upon the number of elements in it. It is
understood here if A = ∅, μ(∅) = 0 and hence V0 = 0 and since μ(C) = 1 we have
Vn = 1. Thus we see that a cardinality based measure is defined by a set of values
0 = V0 ≤ V1 ≤ V2 ≤ ⋅ ⋅ ⋅ ≤ Vn = 1 such that μ(A) = V|A|.

Let us see the Choquet integral in the case of a cardinality-based measure. Since

Fμ xð Þ= ∑
n

J = 1
ðμðHjÞ− μ Hj − 1

� �ÞCid jð Þ xð Þ

where Hj is the set of the j criteria with the largest satisfaction to x. We note that
since the cardinality of Hj is j thus Fμ xð Þ= ∑n

J = 1 ðVj −Vj− 1ÞCid jð Þ xð Þ. If we denote
Vj − Vj−1 = wj we have Fμ xð Þ= ∑n

J = 1 wjCid jð Þ xð Þ where each wj ≥ 0 and
∑n

J = 1 wj = 1. We see here that this is the OWA aggregation operator introduced by
Yager [8].
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A number of important examples of this case are (1) μ* where V0 = 0 and
Vj = 1 for j > 1, (2) μ* where Vn = 1 and Vj = 0 for j < n and (3) μS where
Vj = j/n for all j. We easily see that

(1) μ* ⇒ Fμ* xð Þ=Maxi Ci xð Þ½ �
(2) μ* ⇒ Fμ* xð Þ=Mini Ci xð Þ½ �
(3) μS ⇒ FμS xð Þ= 1

n∑
n
i = 1 Ciðx)

In [9] Yager suggested we can obtain the parameters for this the type of car-
dinality based measure using a function called a weight generating function g: [0, 1]
→ [0, 1] having the properties: (1) g(0) = 0, (2) g(1) = 1 and (3) g(x) ≥ g(y) if
x > y (monotonicity). Using this weight generating function we can obtain

Vj = g
j
n

� �
andwj = g

j
n

� �
− g

j− 1
n

� �
.

We note a special case of g is linear, g(x) = x. Here we get Vj = j/n and
wj = 1/n.

In [9] Yager discussed various semantics that can be associated with g. One
particularly notable semantics is where g is a quantifier indicating the proportion of
criteria that must be satisfied.

Earlier we showed that if μ1 and μ2 are two measures such that μ1(A) ≥ μ2(A)
for all A then if F1(x) and F2(x) are the respectively Choquet integrals obtained
using these measures then F1(x) ≥ F2(x) for all x. Let us look at the implication of
this for the case of cardinality-based measures and the related OWA operator. If μ1
and μ2 are two cardinality based measures such that V1k and V2k are their respected
parameters then μ1(A) = V1|A| and μ2(A) = V2|A| and if V1k ≥ V2k for k = 1 to n
we have F1(x) ≥ F2(x) for all x.

Consider now an OWA operator defined in terms of a collection of weights w1,
…, wn. From the preceding we see that this is equal to a cardinality-based for-
mulation in which Vj = ∑j

k = 1 wk. From this we can conclude the following.
Assume wik and w2k are two collections of OWA weights. Let OWA1(C1(x), ⋅ ⋅ ⋅ ,
Cn(x)) and OWA2(C1(x), ⋅ ⋅ ⋅ , Cn(x)) be the OWA aggregations under these
respective weights. Then we see that if for all j we have that ∑j

k = 1 w1k ≥ ∑j
k = 1 w2k

then OWA1(C1(x), ⋅ ⋅ ⋅ , Cn(x)) ≥ OWA2(C1(x), ⋅ ⋅ ⋅ , Cn(x)). Furthermore if g1
and g2 are two weight generating functions such that g1(y) ≥ g2(y) for all y ∈ [0,
1] then the aggregation obtained using g1 will always be at least as large as that
obtained using g2.

A related class of measures can be obtained using a function g and a set of
weights, αj, associated with each Cj such that αj ∈ [0, 1] and Σjαj = 1. Here αj is
seen as some kind of importance associated with criterion j. Using this information

we define μ Að Þ =g ∑Ci ∈A αi
� �

. We see in this case μ Hj
� �

=g ∑i, Ci ∈Hj
αi

� �
and

hence
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wj = g ∑
i∈Hj

αi

 !
− g ∑

i∈Hj− 1

αi

 !
.

If we let id(j) denote the index of the jth most satisfied criteria then

μ Hj
� �

=g= ∑k= 1 to j αidðkÞ
� �

where αid(k) is the importance weight associated for

kth most satisfied criteria. Using this notation we see that

F xð Þ= ∑
n

j = 1
g ∑

j

k = 1
αidðkÞ

� �
− g ∑

j− 1

k= 1
αidðkÞ

� �� �
CidðkÞðxÞ.

In the special case when g is linear, g(x) = x, then we see that F xð Þ=
∑n

k= 1 αidðkÞCidðkÞðxÞ= ∑n
i = 1 αiCiðxÞ. It is simply the importance weighted average.

6 Prioritized Multi-criteria Aggregation

An important type of relationship between criteria is illustrated by the following
example. Consider we are choosing a bicycle for a child and we have two criteria of
interest, safety and price. Assume the decision maker’s preference is that the safety
is of utmost importance. In particular, he is not willing to let high satisfaction to the
criteria of price compensate for poor satisfaction to the criteria of safety. Here we
say that safety has a priority over cost and denote this Safety > Cost.

In [10] we suggested a formulation for a fuzzy measure that can be used to
implement a priority relationship between the criteria. Assume C = {C1, ⋅ ⋅ ⋅ , Cn}
are prioritized so that C1 > C2 > ⋅ ⋅ ⋅ > Cn. As noted above our basic idea of
prioritization is that lack of satisfaction to higher priority criteria is not easily
compensated by satisfaction to lesser priority criteria. In the following we introduce
a measure to implement this type of imperative. We first define Lj = {Ck | k = 1 to
j} for j = 1 to n and L0 = ∅. We now associate with each subset Lj a value
Vj = j/n. Using this we define the measure μ such that μ Að Þ= Maxj= 1 to n VjGjðA)

� 	
where Gj(A) = 1 if Lj ⊆ A and Gj(A) = 0 if Lj ⊄ A. We see that μ(A) = j/n where
Lj is the largest Lj that is contained in A. We easily see that μ(∅) = 0, μ(C) = 1 and
μ(A) ≥ μ(B) if A ⊇ B. Thus μ is a fuzzy measure.

Let us look at μ for some subsets of C. Consider the case of singleton sets
μ({Ck}). We see that μ({C1}) = 1/q while μ({Ck}) = 0 for k ≠ 1. Thus only the
singleton set consisting of C1, the highest priority element, has a non-zero measure.
In the case of subsets A consisting of two criteria:

μ fAgð Þ=2 ̸q if A∩ C1, C2f gÞ= C1, C2f g

μ fAgð Þ=1 ̸q if A∩ fC1, C2Þ= C1f g
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μ Að Þ=0 if A∩ fC1Þ=∅.

Additionally we see

μ fC1, C2gð Þ=2 ̸q

μ C1, CkÞf g=1 ̸q for Ck ≠C2

μfCi, CkÞ=∅ if neither i or k is 1

We observe that for any subset A such that C1 ∉A then Gj(A) = 0 for all j and
μ(A) = 0, for any other subset A, μ(A) is equal to Vj where Lj is the maximum Lk

contained in A.
We now shall investigate the use of the Choquet integral to obtain an

aggregation function using this prioritization type measure. Here F xð Þ=
Agg C1 xð Þ, . . . , Cn xð Þð Þ= ∑n

j = 1 ðμðHjÞ− μ Hj− 1
� �ÞCid jð Þ xð Þ where Cid(j) is the jth

most satisfied criteria and Hj = {Cid(k) | k = 1 to j}, the collection of the j criteria
with the largest satisfactions. Letting wj = μ(Hj) − μ(Hj−1) we have
F xð Þ= ∑n

j = 1 wjCid jð Þ xð Þ. We note that since μ is monotonic then F(x) is monotonic
in the Ci(x) and also we have Mini[Ci(x)] ≤ F(x) ≤ Maxi[Ci(x)].

Consider the case where the highest priority criteria, C1, is the least satisfied
criteria. Here we have that C1 ∉ Hj for j = 1 to n − 1 and only C1 ∉ Hn. In this case
μ(Hj) = 0 for j = 1 to n − 1 and μ(Hn) = 1. Here then Agg(C1(x), ⋅ ⋅ ⋅ ,
Cn(x)) = C1(1). Since C1(x) = Mini[Ci(x)]) then here we have Agg(C1(x), ⋅ ⋅ ⋅ ,
Cn(x) = Minj[Cj(x)]. It is the smallest value and there is no compensation by any
other criteria.

Consider now the more general case where C1(x) is the pth largest of the
satisfactions. Here C1 ∉ Hj for j = 1 to p − 1 and thus μ(Hj) = 0 for j = 1 to p − 1.
From this we conclude F xð Þ= ∑n

j = 1 wjCid jð Þ xð Þ= ∑n
j = P wjCid jð Þ xð Þ. Furthermore

since for j = p + 1 to n we have that Cid(j)(x) ≤ C1(x) combining this with the fact
that∑n

j = 1 wj = 1 then we have F xð Þ= ∑n
j = 1 wiCid jð Þ xð Þ≤ ∑n

j = P wjCid jð Þ xð Þ≤C1 xð Þ.
We see that it is always the case in this priority aggregation that Agg(C1(x), ⋅ ⋅ ⋅ ,
Cn(x)) ≤ C1(x).

Consider the case where ind(j) = j, the satisfactions are ordered the same as the
priority. In this case Hj = {C1, .., Cj} = Lj and therefore wj = μ Hj

� �
−

μ Hj − 1
� �

= μ Lj
� �

− μ Lj − 1
� �

= 1
n. Thus here we have F xð Þ= 1

n∑
n
j = 1 CjðxÞ. It is

the average of all the criteria satisfactions.
A slightly more general formulation of this prioritized aggregation can be had.

Again assume C1 > C2 > ⋅ ⋅ ⋅ > Cn and let Lj = {Ck | k = 1 to j} and L0 = ∅.
Here we associate with each Lj a value λj ≥ 0 such that λi ≥ λk for i > k and
λn = 1. We now define our measure μ such that μ Að Þ= Maxjj=1 to n [λjGj(A)] where
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Gj Að Þ = 1 if Lj⊆A
Gj Að Þ = 0 if Lj6⊂A

So here we have a priority allowing different weights. In this case using the
Choquet integral we again get F(x) = ∑n

j = 1 ðμðHjÞ− μðHj− 1ÞÞCidðjÞðxÞ with Hj =
{Cid(k)/k = 1 to j). An interesting special case is where λj = 0 for j = 1 to n − 1
and λn = 1. In this case we get F(x) = Mini[Ci(x)].

We now briefly consider a situation closely related to a prioritization of criteria.
Assume C1 and C2 are two criteria such that for C1 to be of any use we must satisfy
criteria C2. Here we say criterion C1 requires criterion C2. We can represent this
using a measure μ by specifying for that any subset A if A ∩ {C2} = ∅ then μ(A
∪ {C1}) = μ(A). Consider now the case where C1(x) > C2(x). Here then if id
(j) = 1 then id(k) = 2 for k > j. Here we see that C2 ⊄ Hj and C2 ⊄ Hj−1 where C1

⊆ Hj and Cj ⊄ Hj−1. Furthermore the weight associated with C1, Cid(j),
wj = μ(Hj) −μ(Hj−1). Since {C2} ∩ Hj -1 = ∅ then μ(Hj) = μ(Hj−1 ∪ {C1}) =
(Hj−1) and hence wj = 0. Thus we see for the case C1(x) > C2(x) the weight
associated with C1 is zero, it makes no contribution.

7 Multi-criteria Aggregation Based on Quasi-additive
Measures

Another class of measures useful for modeling multi-criteria decision function are
the “quasi-additive” measures. Here we associate with the space C of criteria a
collection S1, .., Sr of subsets. We note that these subsets need not be disjoint or that
their union covers C We further associate with each Sj a value αj ∈ [0, 1] such
that ∑r

j = 1 αj = 1. Using this we define the measure μS on C such that

μS Að Þ= ∑r
j = 1 Rj Að Þαj where

Rj Að Þ=1 if A∩Sj ≠∅ andRj Að Þ=0 if A∩ Sj =∅

Here we are giving an importance weight of αj to getting satisfaction to any
criteria in Sj. This called a plausibility measure.

Let us consider the aggregation of criteria satisfactions under μS using the
Choquet integral. Again we have

F xð Þ= ∑r
j = 1 ðμSðHjÞ− μS Hj − 1

� �ÞCid jð Þ xð Þ= ∑r
j = 1 wjCid jð Þ xð Þ,

Consider now the special case where Sj = {Cj} for j = 1 to n. Here with
Hj = {Cid(k)/k = 1 to j} we have μS Hj

� �
= ∑j

k = 1 αidðjÞ and with Hj − 1 = {Cid(k)/ k =

1 to j − 1} we have μS Hj− 1
� �

= ∑j− 1
k= 1 αidðjÞ. Here wj = α id(j) and we get
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F(x) = ∑n
j = 1 αidðjÞCidðjÞðxÞ= ∑n

i = 1 αiCi xð Þ. Thus in this case we get the simple
importance weighted criteria satisfaction as a special case.

Another special case is where r = 1 and α1 = 1. Here we just have one subset
S1. Here we see μS(Hj) = 1 if S1 ∩ Hj ≠ ∅ and μS(Hj) = 0 if S1 ∩ Hj = ∅. We
see that in this case μS(Hj) = 1 the first time we get an element from S1 in Hj. Thus
here F xð Þ= Max

j∈ S1
Cj xð Þ� 	

. Thus it is the value of the maximally satisfied criteria

in S1.
Another special case is where S1 = C and S2 some arbitrary subset. Here we can

show that

F xð Þ= α1Maxi Ci xð Þ½ � + ð1 − α1 Max
j∈ S2

Ci xð Þ½ �

A related measure can be obtained if we define Rj(A) = 1 if Sj ⊆ A and
Rj(A) = 0 if Sj ⊄ A and we define μS such that μS Að Þ= ∑r

j = 1 RjðA)αj. Here we are
giving an importance weigh αj for satisfying all the criteria in Sj.

We can show in this case that if Sj = {Cj} for j = 1 to n then this also reduces
F xð Þ= ∑n

j = 1 αiCiðx). We also can show that in the case where α1 = 1 then
F xð Þ= MinCj ∈ S1 Cj xð Þ�.
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AModal Account of Preference
in a Fuzzy Setting
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Abstract In this paper we first consider the problem of extending fuzzy (weak and

strict) preference relations, represented by fuzzy preorders on a set to a fuzzy pref-

erences on subsets, and we characterise different possibilities. Based on their prop-

erties, we then semantically define and axiomatize several two-tiered graded modal

logics to reason about the corresponding different notions of fuzzy preferences.

1 Introduction

Reasoning about preferences is a hot topic in Artificial Intelligence since many years,

see for instance [5, 17, 18]. Two main approaches for representing and handling

preferences have been developed: the relational and the logic-based approaches.
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In classical preference relations, every preorder R (and more in general every

reflexive relation) can be regarded as a preference relation by assuming that (a, b) ∈
R means that a is preferred or indifferent to b. From R we can define three disjoint

relations:

∙ the strict preference P = R ∩ Rd
,

∙ the indifference relation I = R ∩ Rt
, and

∙ the incomparability relation J = Rc ∩ Rd
.

where Rd = {(a, b) ∈ R ∶ (b, a) ∉ R}, Rc = {(a, b) ∈ R ∶ (b, a) ∈ R} and Rt =
{(a, b) ∶ (b, a) ∈ R}. It is clear that P is a strict order (irreflexive, antisymmetric

and transitive), I is an equivalence relation (reflexive, symmetric and transitive) and

J is irreflexive and symmetric. The triple (P, I, J) is called a preference structure,

where the initial weak preference relation can be recovered as R = P ∪ I.

In the fuzzy setting, preference relations can be attached degrees (usually belong-

ing to the unit interval [0, 1]) of fulfilment or strength, so they become fuzzy rela-
tions. A weak fuzzy preference relation on a set X will be now a fuzzy preorder

R ∶ X × X → [0, 1], where R(a, b) is interpreted as the degree in which b is at least as

preferred as a. Given a t-norm ⊙, a fuzzy ⊙-preorder satisfies reflexivity (R(a, a) = 1
for each a ∈ X) and ⊙-transitivity (R(a, b)⊙ R(b, c) ≤ R(a, c) for each a, b, c ∈ X).

The most influential reference is the book by Fodor and Roubens [6], that was fol-

lowed by many other works like, for example [7–11]. The problem in this setting is

how to define the corresponding strict preference, indifference and incomparability

relations from the initial fuzzy preorder. Many questions arise since it is possible to

generalise the classical case in many different ways. In particular, several works have

paid attention to how suitably interrelate a weak preference (a fuzzy preorder) with

its associated indifference relation (a indistinguishability relation) and strict pref-

erence (a strict fuzzy order). In this sense, relevant publications are, among others,

Bodenhofer’s papers [2–4]. There, the author studies⊙-E fuzzy preorders related to a

t-norm⊙ and an indistinguishability, or fuzzy equivalence, relation E (reflexive, sym-

metric and ⊙-transitive), as well as their strict associated fuzzy orders in a general

context, which is also applies to the context of preference modelling. Indeed, given

a t-norm ⊙ and an indistinguishability relation E, a ⊙-E fuzzy preorder is defined as

a fuzzy relation R ∶ X × X → [0, 1] satisfying: E-reflexivity: R(x, y) ≥ E(x, y), ⊙-E-

antisymmetry: R(x, y)⊙ R(y, x) ≤ E(x, y), ⊙-transitivity: R(x, y)⊙ R(y, z)) ≤ R(x, z).
Bodenhofer also studies how to extend such a ⊙-E fuzzy preorder to the set  ()
of fuzzy subsets of a universe X, as well as the associated indistinguishability rela-

tion and the strict fuzzy order, and discusses different possible definitions. In such

a setting, he considers both the cases of crisp and fuzzy preorders, but he does not

consider the particular case we will study in this paper, namely the interaction of a

fuzzy preferences over crisp subsets of X.

The basic assumption in logical approaches is that preferences have structural

properties that can be suitably described in a fomalized language.This is the main

goal of the so-called preference logics, see e.g. [17]. The first logical systems to rea-

son about preferences go back to Halldén [20] and to von Wright [16, 22, 23]. More

recently van Benthem et al. in [1] have presented a modal logic-based formalization
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of preferences. In that paper the authors first define a basic modal logic with two

unary modal operators◊≤
and◊<

, together with the universal and existential modal-

ities, A and E respectively, and axiomatize it. Using these primitive modalities, they

consider several (definable) binary modalities to capture different notions of prefer-

ence relations on classical propositions, and show completeness with respect to the

intended preference semantics. Finally they discuss their systems in relation with

von Wright axioms for ceteris paribus preferences [22]. On the other hand, with the

motivation of formalising a comparative notion of likelihood, Halpern studies in [15]

different ways to extend preorders on a set X to preorders on subsets of X and their

associated strict orders. He studies their properties and relations among them, and he

also provides an axiomatic system for a logic of relative likelihood, that is proved to

be complete with respect to what he calls preferential structures, i.e. Kripke models

with preorders as accessibility relations.

In this paper we begin by studying in Sect. 2 different forms to define fuzzy rela-

tions on the set (W) of subsets of W, from a fuzzy preorder on W, in a similar way

to the one followed in [1, 15] for classical preorders, and in [2, 3] for fuzzy preorders.

In Sect. 3 we characterize them and discuss which are the most appropriate from the

point of view of preference modelling, while in Sect. 4 we deal with the problem of

defining a fuzzy strict order in a set associated to a given fuzzy preorder, and how

to lift them to susbsets. Finally, in Sect. 5, and based on the previous results, we

semantically define and axiomatize several two-tiered graded modal logics to reason

about different notions of preferences.

This paper is a proper extended version of the conference paper [13].

2 Extending a Fuzzy Preorder on a Set𝐖 to a Fuzzy
Relation on Subsets of 𝐖

2.1 Precedents in the Classical Case

In the classical logic setting, van Benthem et al. define in [1] preference models
as triples  = (W,⪯,) where W is a set of states or worlds, ⪯ is a preorder

(reflexive and transitive) relation on W, and  is a standard propositional evaluation,

that is, a mapping assigning to every propositional variable p a subset (p) ⊆ W
of states where p is true.  can be extended to any propositional formula 𝜑 by

using the classical Boolean definitions. For simplicity, we will also denote (𝜑) by

[𝜑] = {w ∈ W ∶ w(𝜑) = 1}.

Then they consider the following four binary preference operators on proposi-

tions.

Definition 1 (cf. [1]) Given a preference model  = (W,⪯,), one can define the

following four binary preference operators on classical propositions:

∙  ⊧ 𝜑 ≤∃∃ 𝜓 iff there exist u ∈ [𝜑], v ∈ [𝜓] such that u ≤ v.
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∙  ⊧ 𝜑 ≤∃∀ 𝜓 iff there exists u ∈ [𝜑], such that for all v ∈ [𝜓], u ≤ v.

∙  ⊧ 𝜑 ≤∀∃ 𝜓 iff for all u ∈ [𝜑], there exists v ∈ [𝜓] such that u ≤ v.

∙  ⊧ 𝜑 ≤∀∀ 𝜓 iff for all u ∈ [𝜑] and v ∈ [𝜓], then u ≤ v.

Notice that these definitions of the truth conditions for the four preference opera-

tors can be interpreted as defining corresponding preference relations on (W), the

power set of W (which contains the sets [𝜑]) arising from a preorder on the set of

worlds W. One can furthermore define two more preference operators on proposi-

tions:

∙  ⊧ 𝜑 ≤∃∀2 𝜓 iff there exists v ∈ [𝜓], such that for all u ∈ [𝜑], u ≤ v
∙  ⊧ 𝜑 ≤∀∃2 𝜓 iff for all v ∈ [𝜓], there exists u ∈ [𝜑] such that u ≤ v.

Therefore, from a given preorder on W we can consider six relations on subsets

of W. The basic set-inclusions between these relations are given in the following

proposition.

Proposition 1 The following inclusions hold:

≤∀∀ ⊆ ≤∀∃ ⊆ ≤∃∃, ≤∀∀ ⊆ ≤∃∀ ⊆ ≤∃∃, ≤∀∀ ⊆ ≤∀∃2 ⊆ ≤∃∃, ≤∀∀ ⊆ ≤∃∀2 ⊆ ≤∃∃

Moreover, the four intermediate relations are not comparable, except for the follow-
ing inclusions:

≤∃∀2 ⊆ ≤∀∃, ≤∃∀ ⊆ ≤∀∃2 .

Proof All the inclusion relations are easy to check. Moreover, the inclusions given

in Proposition 1 are the only ones that are valid among the four intermediate rela-

tions, as the following examples show: Take W = {u1, u2, u3, u4, u5, u6} and A =
{u1, u2, u3},B = {u4, u5, u6}. Then,

∙ If the preorder is defined by reflexivity plus u1 ≤ u4, u2 ≤ u5 and u3 ≤ u5, then

A ≤∀∃ B is the unique intermediate relation that is satisfied.

∙ If the preorder is defined by reflexivity plus u1 ≤ u4, u2 ≤ u5 and u2 ≤ u6, then

A ≤∀∃2 B is the unique intermediate relation that is satisfied.

∙ If the preorder is defined by reflexivity plus u2 ≤ u4, u2 ≤ u5 and u2 ≤ u6, then

A ≤∃∀ B and A ≤∀∃2 B are the unique intermediate relations that are satisfied.

∙ If the preorder is defined by reflexivity plus u1 ≤ u4, u2 ≤ u4 and u3 ≤ u4, then

A ≤∃∀2 B and A ≤∀∃ B are the unique intermediate relations that are satisfied.

2.2 The Fuzzy Preorder Case

Now we study the case when ≤ is a fuzzy ⊙-preorder on W, i.e., ≤∶ W ×W ⟶
[0, 1] satisfying reflexivity ([u ≤ u] = 1 for all u ∈ W) and⊙-transitivity with respect

to a given t-norm ⊙ (for all u, v,w ∈ W, ([u ≤ v]⊙ [v ≤ w]) ≤ [u ≤ w]), where

[u ≤ v] denotes the value in [0, 1] of the fuzzy relation ≤ applied to the ordered
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pair of elements u, v ∈ W. We will assume that W is a finite set, and we will denote

by 𝛿u the singleton {u}.

Generalising the classical case, we can define the following fuzzy relations on

(W) from a fuzzy preorder on W.

Definition 2 Given a fuzzy preorder ≤ on W, we can define the following six fuzzy

relations on (W). For any A,B ∈ (W) we let:

∙ [A ≤∃∃ B] = supu∈A supv∈B [u ≤ v]
∙ [A ≤∃∀ B] = supu∈A inf v∈B [u ≤ v]
∙ [A ≤∀∃ B] = infu∈A supv∈B [u ≤ v]
∙ [A ≤∀∀ B] = infu∈A inf v∈B [u ≤ v]
∙ [A ≤∀∃2 B] = inf v∈B supu∈A [u ≤ v]
∙ [A ≤∃∀2 B] = supv∈B infu∈A [u ≤ v].
where the value of A ≤◦ B is denoted by [A ≤◦ B] with ≤◦ being anyone of the six

relations.

It is clear that, since the preorder ≤ is valued on [0, 1], these relations are also

[0, 1]-valued. For each a ∈ (0, 1], we will write A ≤
a
∃∃ B when [A ≤∃∃ B] ≥ a and

analogously for the other relations.

Proposition 2 For any sets A,B ∈ (W), we have:

∙ [A ≤∀∀ B] ≤ [A ≤∀∃ B] ≤ [A ≤∃∃ B],
∙ [A ≤∀∀ B] ≤ [A ≤∀∃2 B] ≤ [A ≤∃∃ B],
∙ [A ≤∀∀ B] ≤ [A ≤∃∀ B] ≤ [A ≤∃∃ B], and
∙ [A ≤∀∀ B] ≤ [A ≤∃∀2 B] ≤ [A ≤∃∃ B].
Moreover the four intermediate relations are not comparable, except for the same
two cases (now inequalities) of Proposition 1.

Proof Analogous to the proof of Proposition 1.

Out of the above six possibilities, we will mainly focus on two of them, ≤∀∃ and

≤∀∃2, in the rest of the paper. These are well-behaved extensions of an initial fuzzy

⊙-preorder to model a weak preference relation on subsets, since in particular they

keep being ⊙-preorders. Moreover, combining them, we can capture a very natural

(preference) ordering related to orderings of intervals. Indeed, suppose (W,≤) is a

totally (classical) pre-ordered set, and we want to extend ≤ to an ordering on the set

Int(W) of intervals of W. The two most usual ways to do this are the following:

(i) [a, b] ≤1 [c, d] if a ≤ c and b ≤ d,

(ii) [a, b] ≤2 [c, d] if b ≤ c.

The relation ≤1 is considered for example in [2], and it turns out to be definable as

the intersection of the ≤∀∃ and ≤∀∃2 relations on Int(W), that is, ≤1 = ≤∀∃ ∩ ≤∀∃2,

while the second, ≤2, coincides with the (crisp) relation ≤∀∀ on Int(A). Actually, ≤∀∀
is not a preorder because it is only reflexive for singletons, but it is enough for our

purposes. In next sections, we will study in the fuzzy case these three basic relations

(≤∀∃, ≤∀∃2, ≤∀,∀) on (W) arising from a fuzzy preorder ≤ on W.
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3 Characterizing the Relations ≤∀∃,≤∀∃𝟐 and ≤∀∀

The following propositions describe the main properties satisfied by each one of

these relations. In what follows, we assume a given a fuzzy ⊙-preorder ≤ on W and

the fuzzy relations ≤∀∃,≤∀∃2 and ≤∀∀ which are defined as in Definition 2.

Proposition 3 The relation ≤∀∃ satisfies the following properties, for all A,B,C ∈
(W):

1. Inclusion: [A ≤∀∃ B] = 1, if A ⊆ B
2. ⊙-Transitivity: [A ≤∀∃ B]⊙ [B ≤∀∃ C] ≤ [A ≤∀∃ C]
3. Left-OR: [(A ∪ B) ≤∀∃ C] = min([A ≤∀∃ C], [B ≤∀∃ C])
4. Restricted Right-OR: [A ≤∀∃ (B ∪ C)]≥max([A ≤∀∃ B], [A ≤∀∃ C]). The

inequality becomes an equality if A is a singleton.

Proposition 4 The relation ≤∀∃2 satisfies the following properties, for all A,B,C ∈
(W):

1. Inclusion: [A ≤∀∃2 B] = 1, if B ⊆ A
2. ⊙-Transitivity: [A ≤∀∃2 B]⊙ [B ≤∀∃2 C] ≤ [A ≤∀∃2 C]
3. Restricted Left-OR: [(A ∪ B) ≤∀∃2 C] ≥ max([A ≤∀∃2 C], [B ≤∀∃2 C]). The

inequality becomes an equality if C is a singleton.
4. Right-OR: [A ≤∀∃2 (B ∪ C)] = min([A ≤∀∃2 B], [A ≤∀∃2 C]).

Proposition 5 The relation ≤∀∀ satisfies the following properties, for all A,B,C ∈
(W):

1. Restricted reflexivity: [A ≤∀∀ A] = 1 iff A is a singleton
2. ⊙-Transitivity: [A ≤∀∀ B]⊙ [B ≤∀∀ C] ≤ [A ≤∀∀ C]
3. Left-OR: [(A ∪ B) ≤∀∀ C] = min([A ≤∀∀ C], [B ≤∀∀ C])
4. Right-OR: [A ≤∀∀ (B ∪ C)] = min([A ≤∀∀ B], [A ≤∀∀ C])
5. Inclusions: [A ≤∀∀ B] ≤ [A′ ≤∀∀ B′], if A′

⊆ A,B′
⊆ B.

The proofs of the these propositions are easy and we omit them. Observe that, as

already mentioned above, ≤∀∀ is not reflexive.

Actually, the properties given above fully characterize the different relations on

(W) as showed in the next theorem.

Theorem 1 The following characterizations hold:

(i) Let ⪯AE be a relation between sets of (W) satisfying Properties 1, 2, 3 and 4
of Proposition 3. Then there exists a fuzzy ⊙-preorder ≤ on the set W such that
⪯AE coincides with ≤∀∃ as defined in Definition 2.

(ii) Let ⪯AE2 be a relation between sets of (W) satisfying Properties 1, 2, 3 and 4
of Proposition 4. Then there exists a fuzzy ⊙-preorder ≤ on the set W such that
⪯AE2 coincides with ≤∃∀2 as defined in Definition 2.

(iii) Let ⪯AA be a relation between sets of (W) satisfying Properties 1, 2, 3, 4 and
5 of Proposition 5. Then there exists a fuzzy ⊙-preorder ≤ on the set W such
that ⪯AA coincides with ≤∀∀ as defined in Definition 2.
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Proof We show the case of≤AE, the rest of cases are proved in a similar way. Define a

relation onW by [u ≤ v] = [𝛿u ⪯AE 𝛿v]. Clearly≤ is a fuzzy preorder onW. Now take

into account that, for all A ∈ (W), A =
⋃
{𝛿u ∶ u ∈ A} and, applying Properties 3

and 4, it is obvious that for all A,B ∈ W, then [A ⪯AE B] = infu∈A supv∈B[𝛿u ⪯ 𝛿v].
Thus (i) is proved. □

4 Characterizing Strict Fuzzy Orders Associated to Fuzzy
Preorders

It is well known that any crisp preorder ≤ on an universe W induces an equivalence

(or indifference) relation ≡ and an strict order <, defined as follows:

∙ x ≡ y iff x ≤ y and y ≤ x,

∙ x < y iff x ≤ y and x ≠ y or, alternatively iff x ≤ y and y ≰ x.

Observe that these relations satisfy that x ≤ y iff either x ≡ y or x < y. We will use

this condition to define an strict fuzzy order associated to a fuzzy preorder.

In the fuzzy setting (see for example [2, 14]), from a fuzzy ⊙-preorder ≤∶ W ×
W → [0, 1] we can define:

∙ the maximal indistinguishability relation v ≡ w contained in the fuzzy preorder,

defined by [x ≡ y] = [x ≤ y] ∧ [y ≤ x];
∙ the minimal strict fuzzy ⊙-order < that satisfies the following equation

[x ≤ y] = [x < y]⊕ [x ≡ y] (1)

where ⊕ is a T-conorm (for example the maximum or the bounded sum).

So defined, the relation ≡ is reflexive, symmetric and ⊙-transitive, and thus it is a

⊙-indistinguishability relation (the generalization of the crisp notion of equivalence

relation). On the other hand, the minimal solution for b of the equation a ≤ b ⊕ c
in [0, 1], is the so-called dual resituated implication, or implication associated to the

T-conorm ⊕, which is defined as, It should be:

c →⊕ a = inf{b ∣ c ⊕ b ≥ a}.

Therefore, we take as the strict fuzzy order relation < associated to ≤ for the T-

conorm ⊕ the fuzzy relation defined as

[x < y] = [x ≡ y] →⊕ [x ≤ y] = [y ≤ x] →⊕ [x ≤ y].

An easy computation shows that the strict fuzzy order relation for ⊕ = max is

defined as

[x < y] =
{

[x ≤ y], if [x ≤ y] > [y ≤ x],
0, otherwise. (2)
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And for ⊕ being the bounded sum (i.e. the Łukasiewicz T-conorm) is
1

[x < y] =
{

[x ≤ y] − [y ≤ x], if [x ≤ y] > [y ≤ x],
0, otherwise.

The strict relation associated to ≤ is a irreflexive ([x < x] = 0) and antisymmetric

(min([x < y], [y < x]) = 0) but, as far as we know, it is not known whether it is ⊙-

transitive in general. Nevertheless we have the following result.

Proposition 6 Let ≤ be a min-preorder on a universe W and let < be the associated
strict relation w.r.t. ⊕ = max. Then < is min-transitive.

Proof The proof is by contradiction. Suppose the strict relation is not min-transitive.

Then there must exist elements u, v,w ∈ W such that [u < v], [v,w] > 0 and [u <

w] = 0 which is equivalent that [u ≤ v] = a > b = [v ≤ u], [v ≤ w] = c > d = [w ≤

v] and [u ≤ w] = [w ≤ u] = f . Thus we have five values a, b, c, d, f and we know that

a > b and c > d. (
∗
)

We can now reason by cases:

(1) Suppose a ≥ c and b ≥ d. Combining this assumption with (
∗
) we have that

a ≥ c > d. By transitivity, f ≥ min(a, c) = c and f ≥ min(d, b) = d by hypoth-

esis. Moreover min([w ≤ u], [u ≤ v]) = min(f , a) ≤ d = [w ≤ v]. This implies

that a ≤ d, in contradiction with the fact that d < a.

(2) Suppose a ≥ c and b < d. Combining this assumption with (
∗
) we have that

d < c ≤ a. By transitivity, f ≥ min(a, c) = c and f ≥ min(d, b) = b by hypoth-

esis. Moreover min([w ≤ u], [u ≤ v]) = min(f , a) ≤ d = [w ≤ v]. This implies

that f ≤ d, and by hypothesis f ≤ d < c, in contradiction with f ≥ c previously

proved.

(3) Suppose a ≤ c and b ≥ d. Combining this assumption with (
∗
) we have that b <

a ≤ c. By transitivity, f ≥ min(a, c) = a and f ≥ min(d, b) = d by hypothesis.

Moreover min([v ≤ w], [w ≤ u]) = min(c, f ) ≤ b = [v ≤ u]. This imply that f ≤

b and by hypothesis f ≤ b < a, in contradiction with f ≥ a previously proved.

(4) Suppose a ≤ c and b ≤ d. Combining this assumption with (
∗
) we have that

b < a ≤ c. By transitivity, f ≥ min(a, c) = a and f ≥ min(d, b) = b by hypoth-

esis. Moreover min([v ≤ w], [w ≤ u]) = min(c, f ) ≤ b = [v ≤ u]. This implies

that f ≤ b, and by hypothesis f ≤ b < a, in contradiction with f ≥ a previously

proved. □

From now on, we consider the strict fuzzy order < associated to ≤ the one defined

by taking ⊕ = max according to (2).

Now we can come back to the topic of how to define a strict fuzzy order relation

on sets of (W) corresponding to a fuzzy preorder in W. Halpern notices in [15] that

1
This is the strict order companion defined and studied in [7].
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there are two different ways to define (in the crisp case) a strict relation on(W) from

a preorder on W. The same idea applied to the fuzzy case gives rise to the following

two possible definitions for the strict relations:

∙ The standard method, that amounts to define

[A <◦ B] =

{
[A ≤◦ B], if [A ≤◦ B] > [B ≤◦ A]
0, otherwise.

This means in fact to use (2) to define [A <◦ B] as the value of the strict order

associated to the preorder ≤◦, where ≤◦ is either ≤∀∃, ≤∀∃2 or ≤∀∀.

∙ The alternative method, that first considers the strict order < on companion of ≤

in W according to (2), and then defines <∀∃, <∀∃2 and <∀∀ on (W) according to

Definition 2, but replacing ≤ by <.

In general, these two methods give rise to two different irreflexive and (restricted)

antisymmetric strict relations as the following examples show:

Example 1 Consider the ∀∃ extension. Notice first that the alternative method gives

[A <∀∃ B] = inf
u∈A

sup
v∈B

[u < v].

The counterexample is the following. Take the four element set W = {u1, u2, u3, u4},

with the following fuzzy preorder: reflexivity ([x ≤ x] = 1) plus [u1 ≤ u3] = [u3 ≤
u1] = a and [u2 ≤ u4] = b, with a, b ≠ 0. The associated strict relation on W is the

one having only one pair of elements with value different from 0. Indeed an easy

computation shows that [u2 < u4] = b. Let A = {u1, u2} and let B = {u3, u4}. Then:

∙ To compute the value of [A <∀∃ B] according to the standard method, we have

to compute first: [A ≤∀∃ B] = ([u1 ≤ u3] ∨ [u1 ≤ u4]) ∧ ([u2 ≤ u3] ∨ [u2 ≤ u4]) =
a ∧ b ≠ 0, [B ≤∀∃ A] = ([u3 ≤ u1] ∨ [u3 ≤ u2]) ∧ ([u4 ≤ u1] ∨ [u4 ≤ u2]) = a ∧
0 = 0. Then, by definition, we have [A <∀∃ B] = a ∧ b ≠ 0.

∙ With the alternative method, the value of [A <∀∃ B] is computed as [A <∀∃ B] =
infu∈A supv∈B[u < v] = 0.

Therefore the obtained strict relations are different. □

Example 2 Consider now the ∀∀ extension. Take W = {w1,w2} with the preorder

[w1 ≤ w1] = [w2 ≤ w2] = [w1 ≤ w2] = 1 and [w2 ≤ w1] = 0. Further, take A = {w1}
and B = W. Then it is obvious that [A ≤∀∀ B] = 1 and [B ≤∀∀ A] = 0. Therefore,

according to the standard method, we have [A <∀∀ B] = 1, while according to the

alternative method, we have [A <∀∀ B] = infu∈A inf v∈B[u < v] = 0. □

Notice that strict relations obtained by the alternative method are ⊙-transitive (so

they are strict orders), but this is not clear for strict relations obtained by the standard

method. In fact we have the following open problems:
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∙ Let ≤ be a strictly monotonic fuzzy preorder on W and let ≤◦ be one of the fuzzy

preorders defined on(W) considered in the previous sections. Is the strict relation

obtained by the standard method ⊙-transitive?

∙ Is there some order relation between the strict orders obtained by the standard and

the alternative methods?

∙ It is obvious that the strict order < on W and the strict order on (W) obtained

from the preorder by the standard method satisfy the following anti-symmetry

property: for all A,B ∈ (W), min([A <◦ B], [B <◦ A]) = 0). It is clear that for

singletons the strict order obtained by the alternative method satisfies the same

anti-symmetry property but, is this true for the strict order obtained by the alter-

native method in general? Otherwise, what type of anti-symmetry property does

it satisfy?

Therefore, taking into account that we are interested in obtaining strict fuzzy orders

(irreflexive and ⊙-transitive relations), in the rest of the paper we will consider the

strict relations obtained by the alternative method and its characteristics properties.

Next theorem provides a characterization result for these strict orders.

Theorem 2 The following characterizations hold:

(i) Let ≺AE be a relation between sets of (W) satisfying Properties 2, 3 and 4 of
Proposition 3 plus irreflexivity ([A ≺AE A] = 0) and restricted anti-symmetry
(min([A ≺AE B], [B ≺AE A]) = 0 for all singletons A,B ∈ (W)). Then there
exists a fuzzy ⊙-preorder ≤ on the set W such that ≺AE =<∀∃.

(ii) Let ≺AE2 be a relation between sets of (W) satisfying Properties 2, 3 and 4 of
Proposition 4 plus irreflexivity and restricted anti-symmetry. Then there exists
a fuzzy ⊙-preorder ≤ on the set W such that ≺AE2 =<∃∀2.

(iii) Let ≺AA be a relations between sets of (W) satisfying Properties 2, 3, 4 and
5 of Proposition 5 plus irreflexivity and anti-symmetry. Then there exists a
fuzzy ⊙-preorder ≤ on the set W such that ≺AA =<∀∀.

At the end of Sect. 2.2 we mentioned that one of the preorders we were inter-

ested in was the (crisp) relation ≤1, whose fuzzy counterpart can be defined by

[x ≤1 y] = min([x ≤∀∃ y], [x ≤∀∃2 y]). Consequently, in Sect. 3 we separately char-

acterized the fuzzy preorders ≤∀∃ and ≤∀∃2, and the same is applicable to the corre-

sponding strict orders studied in this section. We will move now to a logical approach

to preference relations and to the previously studied fuzzy relations. In particular, in

the next section we study a logical setting to reason about fuzzy preferences on clas-

sical propositions by means of several two-tiered modal logics, with binary modal

operators corresponding to fuzzy preorders and strict orders separately, and after we

show the desired preorder and strict order are definable in a yet another modal logic

combining the previous ones.
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5 A Modal Logic to Reason About Preferences

In this section three logics to reason about conditional (syntactic) objects captur-

ing the idea of the preference relations ≤◦ (for ◦ ∈ {∀∃,∀∃2,∀∀}) are defined and

studied, using similar techniques from [12].

Throughout this section, in order to simplify matters, rather than defining the logic

relative to preference degrees in [0, 1] and a t-norm, we will restrict ourselves to deal

with a totally ordered finite set V of preference degrees (with 1 and 0 as its top and

bottom elements), and we will fix a finite t-norm ⊙ (see e.g. [19]) on V .

On these grounds, we define, model-theoretically, a common framework for sev-

eral logics of preference relations, 𝖫𝖠𝖯 for short, as follows.

Definition 3 The language of 𝖫𝖠𝖯 is two levelled:

∙ The first level (0 language) contains propositional formulas of 𝖫𝖠𝖯 that are built

up from a finite set of variables Var = {p1,… , pN} and the constants ⊥,⊤ by

means of the binary operators ∧ and ∨ and the unary operator ¬. The set of propo-

sitional formulas is denoted by  .

∙ The second level (1 language) contains:

– Atomic graded preference formulas of 𝖫𝖠𝖯 that are triples

𝜑 ⪯a
𝜓

consisting of two propositional formulas 𝜑 and 𝜓 from 0, and a value a ∈
V ⧵ {0}.

– (General) preference formulas of 𝖫𝖠𝖯 are built up from atomic graded prefer-

ences and the constants ⊥, ⊤ by means of the binary connectives ∧ and ∨ and

the unary connective ¬.

The semantics is given by ⊙-preference Kripke models  = (W,≤, e) where W
is a finite set of worlds, ≤∶ W ×W → V is a ⊙-fuzzy preorder relation, and e ∶
W × Var ↦ {0, 1} is a Boolean evaluation of propositional variables in every world,

which is extended to propositions of 0 in the usual way for classical propositions.

For each 0-proposition 𝜑, we will denote by [𝜑]


the set {w ∈ W ∶ e(w, 𝜑) = 1}
of worlds satisfying 𝜑.

For each ◦ ∈ {∀∃,∀∃2,∀∀}, each Kripke model = (W, S, e) induces a Boolean

truth-evaluation of 1-formulas e◦


∶ 1 → {0, 1} defined as follows:

∙ for atomic preference formulas: e◦

(𝜑 ⪯a

𝜓) = 1 if [[𝜑]


≤◦ [𝜓]

] ≥ a, and

e

(𝜑 ⪯a

𝜓) = 0 otherwise.

∙ for compound formulas, use the usual Boolean truth functions.

From there, we can define the notion of logical consequence in the logic LAP for

preference formulas.

Definition 4 Let ◦ ∈ {∀∃,∀∃2,∀∀}. Let T ∪ {𝛷} be a set of preference formulas.

We say that 𝛷 logically follows from T under the ≤◦ semantics, written T ⊧

◦
LAP
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𝛷, if for every Kripke model  = (W,≤, e), if e◦

(𝛹 ) = 1 for every 𝛹 ∈ T , then

e◦

(𝛷) = 1 as well.

In the following, for every Boolean evaluation 𝜔 of the propositional variables Var,

we will denote by 𝜔 the maximally elementary conjunction (m.e.c. for short) of all

the N literals made true by 𝜔. Obviously, every proposition is logically equivalent to

a disjunction of m.e.c.’s.

Next subsections are devoted to the axiomatization of the particular logics for

≤∀∃,≤∀∃2 and ≤∀∀.

5.1 The Logic LAP∀∃ Corresponding to the ≤∀∃ Preference
Relation

Recall that, when ◦ = ∀∃, the semantics we have in each Kripke model  is:

e

(𝜑 ⪯a

𝜓) = 1 iff [[𝜑]


≤∀∃ [𝜓]

] = ( inf

u∈[𝜑]
sup

w∈[𝜓]
[u ≤ w]) ≥ a.

Building on this intended semantics, we propose the following axiomatization of

LAP∀∃.

Definition 5 The following are the axioms for LAP∀∃:

(A1) Axioms of classical propositional calculus (CPC) for 1-formulas

(A2) 𝜑 ⪯1
𝜓 , where 𝜑 → 𝜓 is a tautology of CPC

(A3) (𝜑 ⪯a
𝜓) ∧ (𝜓 ⪯b

𝜒) → (𝜑 ⪯a⊙b
𝜒) (transitivity)

(A4) (𝜑 ⪯a
𝜓) → (𝜑 ⪯b

𝜓), where a ≤ b (nestedness)

(A5) (𝜑 ∨ 𝜓 ⪯a
𝜒) ↔ (𝜑 ⪯a

𝜒) ∧ (𝜓 ⪯a
𝜒) (Left-OR)

(A6) (𝜔 ⪯a
𝜑 ∨ 𝜓) ↔ (𝜔 ⪯a

𝜑) ∨ (𝜔 ⪯a
𝜓) (restricted Right-OR)

The only rule of 𝖫𝖠𝖯∀∃ is Modus Ponens.

We will denote by ⊢

∀∃
𝖫𝖠𝖯

the notion of deduction relative to the axiomatic system just

defined.

Theorem 3 For any set T ∪ {𝛷} of 1-formulas, it holds that T ⊧

∀∃
𝖫𝖠𝖯

𝛷 if, and only
if, T ⊢

∀∃
𝖫𝖠𝖯

𝛷.

Proof One direction is soundness, and it is an easy computation, see Proposition

3. As for the other direction, assume T ⊬

∀∃
𝖫𝖠𝖯

𝛷. The idea is to consider the graded

expressions𝜑 ⪯a
𝜓 as propositional (Boolean) variables that are ruled by the axioms

together with the laws of classical propositional logic CPC. Let 𝛤 be the set of all

possible instantiations of axioms (A1)–(A6). Then it holds that 𝛷 does not follow

from T ∪ 𝛤 using CPC reasoning, i.e. T ∪ 𝛤 ⊬CPC 𝛷. By completeness of CPC,

there exists a Boolean interpretation v such that v(𝛹 ) = 1 for all 𝛹 ∈ T ∪ 𝛤 and
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v(𝛷) = 0. Now we will build a ⊙-preference Kripke model  such that e

(𝛹 ) = 1

for all 𝛹 ∈ T and e

(𝛷) = 0. To do that, we take 𝛺 = {𝜔 ∶ Var ⟶ {0, 1}}, i.e.

the set of interpretations of propositional language, and define ≤∶ 𝛺 ×𝛺 → V by

[𝜔 ≤ 𝜔

′] = max{a ∈ V ∣ v(𝜔 ⪯a
𝜔
′) = 1}.

By axioms (A2), (A3), ≤ is a ⊙-preorder. Consider the model  = (𝛺,≤, e), where

for each 𝜔 ∈ 𝛺 and p ∈ Var, e(𝜔, p) = 𝜔(p). What remains to check is that e

(𝛹 ) =

v(𝛹 ) for every LAP∀∃-formula 𝛹 . In order to prove this equality it suffices to show

that, for every 𝜑,𝜓 ∈ 0 and a ∈ [0, 1], we have e

(𝜑 ⪯a

𝜓) = v(𝜑 ⪯a
𝜓), that is,

to prove that

v(𝜑 ⪯a
𝜓) = 1 iff inf

𝜔∈[𝜑]
sup

𝜔
′∈[𝜓]

[𝜔 ≤ 𝜔

′] ≥ a.

By axioms (A5) and (A6), we have that 𝖫𝖠𝖯∀∃ proves

𝜑 ⪯a
𝜓 ↔

⋀

𝜔∈𝛺∶𝜔(𝜑)=1

⋁

𝜔
′∈𝛺∶𝜔′(𝜓)=1

𝜔 ≤
a
𝜔
′
.

Therefore, v(𝜑 ⪯a
𝜓) = 1 iff for all 𝜔 ∈ 𝛺 such that 𝜔(𝜑) = 1, there exists w′ ∈

𝛺 such that 𝜔
′(𝜓) = 1 and v(𝜔 ⪯a

𝜔
′) = 1. But, as we have previously observed,

v(𝜔 ⪯a
𝜔
′) = 1 holds iff [𝜔 ≤ 𝜔

′] ≥ a. In other words, we actually have v(𝜑 ⪯a
𝜓) =

1 iff min
𝜔∈[𝜑] max

𝜔
′∈[𝜓] [𝜔 ≤ 𝜔

′] ≥ a. This concludes the proof. □

5.2 The Logics LAP∀∃𝟐 and LAP∀∀ Corresponding to the
≤∀∃𝟐 and ≤∀∀ Preference Relations

In a very similar way, with the obvious changes, we can define axiomatic systems for

the logics of LAP∀∃2 and LAP∀∀. We do not include the completeness proofs since

they are analogous to the one for LAP∀∃.

Recall that, under the ∀∃2 semantics, the evaluation of atomic preference formu-

las in a preference Kripke model  is as follows:

e

(𝜑 ⪯a

𝜓) = 1 iff [[𝜑]


≤∀∃2 [𝜓]

] = ( inf

w∈[𝜓]
sup

u∈[𝜑]
[u ≤ w]) ≥ a.

Theorem 4 Let 𝖫𝖠𝖯∀∃2 be the axiomatic system whose axioms are:

(A1) Axioms of CPC for 1-formulas
(A2) 𝜑 ⪯1

𝜓 , where 𝜓 → 𝜑 is a tautology of CPC
(A3) (𝜑 ⪯a

𝜓) ∧ (𝜓 ⪯b
𝜒) → (𝜑 ⪯a⊙b

𝜒) (transitivity)
(A4) (𝜑 ⪯a

𝜓) → (𝜑 ⪯b
𝜓), for all a ≤ b (nestedness)

(A5) (𝜑 ⪯a
𝜓 ∨ 𝜒) ↔ (𝜑 ⪯a

𝜓) ∧ (𝜑 ⪯a
𝜒) (Right-OR)
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(A6) (𝜑 ∨ 𝜓 ⪯a
𝜔) ↔ (𝜑 ⪯a

𝜔) ∨ (⪯a
𝜓 ⪯a

𝜔) (restricted Left-OR)

and whose only inference rule is modus ponens. Then 𝖫𝖠𝖯∀∃2 is sound and complete
with respect to the class of ⊙-preference Kripke models under the ∀∃2 semantics.

As for the ∀∀ semantics, the evaluation of atomic preference formulas in a pref-

erence Kripke model  is:

e

(𝜑 ⪯a

𝜓) = 1 iff [[𝜑]


≤∀∀ [𝜓]

] = ( inf

u∈[𝜑]
inf

w∈[𝜓]
[u ≤ w]) ≥ a.

Theorem 5 Let 𝖫𝖠𝖯∀∀ be the axiomatic system whose axioms are:

(A1) Axioms of CPC for 1-formulas
(A2) (𝜑 ⪯a

𝜓) → (𝜑′ ⪯a
𝜓

′), where 𝜑

′ → 𝜑,𝜓

′ → 𝜓 are tautologies of CPC
(A3) 𝜔 ⪯1

𝜔 (restricted reflexivity)
(A4) (𝜑 ⪯a

𝜓) ∧ (𝜓 ⪯b
𝜒) → (𝜑 ⪯a⊙b

𝜒) (transitivity)
(A5) (𝜑 ⪯a

𝜓) → (𝜑 ⪯b
𝜓), for all a ≤ b (nestedness)

(A6) (𝜑 ∨ 𝜓 ⪯a
𝜒) ↔ (𝜑 ⪯a

𝜒) ∧ (𝜓 ⪯a
𝜒) (Left-OR)

(A7) (𝜓 ⪯a
𝜑 ∨ 𝜓) ↔ (𝜓 ⪯a

𝜑) ∧ (𝜓 ⪯a
𝜓) (Right-OR)

and whose only inference rule is modus ponens. Then 𝖫𝖠𝖯∀∀ is sound and complete
with respect to the class of ⊙-preference Kripke models under the ∀∀ semantics.

Moreover, in the same way, we could axiomatize the logics LAPs
∀∃, LAPs

∀∃2 and

LAPs
∀∀ corresponding to the associated strict preference orders.

Nevertheless our goal is to axiomatize the logic modeling preference triples

⟨≤, <,≡⟩ corresponding to the preference relations ≤1 = ≤∀∃ ∧ ≤∀∃2 and ≤2 = ≤∀∀.

The axiomatizations of these logics are given in the next section.

5.3 The Logic LAP𝟏

In this subsection we define and study the logic corresponding to the fuzzy preorder

≤1 = ≤∀∃ ∧ ≤∀∃2.

The language of LAP1
is as the one for LAP with the difference that now we have

four kinds of atomic preference formulas:

𝜑 ⪯a
𝛼

𝜓, 𝜑 ⪯a
𝛽

𝜓, 𝜑 ≺

a
𝛼

𝜓, 𝜑 ≺

a
𝛽

𝜓,

where a ∈ V ⧵ {0}. The semantics is still given by ⊙-preference Kripke models

 = (W,≤, e), where e


evaluates the above kinds of atomic preference formu-

las in the expected way:

∙ e

(𝜑 ⪯a

𝛼

𝜓) = 1 if [[𝜑]


≤∀∃ [𝜓]

] = (infu∈[𝜑] supw∈[𝜓][u ≤ w]) ≥ a

∙ e

(𝜑 ⪯a

𝛽

𝜓) = 1 if [[𝜑]


≤∀∃2 [𝜓]

] = (infw∈[𝜓] supu∈[𝜑] [u ≤ w]) ≥ a

∙ e

(𝜑 ≺

a
𝛼

𝜓) = 1 if [[𝜑]


<∀∃ [𝜓]

] = (infu∈[𝜑] supw∈[𝜓][u < w]) ≥ a
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∙ e

(𝜑 ≺

a
𝛽

𝜓) = 1 if [[𝜑]


<∀∃2 [𝜓]

] = (infw∈[𝜓] supu∈[𝜑] [u < w]) ≥ a.

The notion of logical consequence is defined as usual, and will be denoted by ⊧𝖫𝖠𝖯1 .

Next we propose an axiomatic system for 𝖫𝖠𝖯1.

Definition 6 The axioms for 𝖫𝖠𝖯1 are:

∙ Axioms of 𝖫𝖠𝖯∀∃ for the ⪯a
𝛼

operators.

∙ Axioms of 𝖫𝖠𝖯∀∃2 for the ⪯a
𝛽

operators.

∙ Axioms for the ≺

a
𝛼

operators:

(AS1) ¬(𝜑 ≺

a
𝛼

𝜑) (irreflexivity)

(AS2) ¬((𝜔 ≺

a
𝛼

𝜔
′) ∧ (𝜔′

≺

b
𝛼

𝜔)) (restricted anti-symmetry)

(AS3) (𝜑 ≺

a
𝛼

𝜓) ∧ (𝜓 ≺

b
𝛼

𝜒) → (𝜑 ≺

a∗b
𝛼

𝜒) (⊙-transitivity)

(AS4) (𝜑 ≺

a
𝛼

𝜓) → (𝜑 ≺

b
𝛼

𝜓), for all a ≤ b (nestedness)

(AS5) (𝜑 ≺

a
𝛼

𝜔) ∧ (𝜓 ≺

a
𝛼

𝜔) ↔ (𝜑 ∨ 𝜓 ≺

a
𝛼

𝜔) (Left-OR)

(AS6) (𝜒 ≺

a
𝛼

𝜑 ∨ 𝜓) ↔ (𝜒 ≺

a
𝛼

𝜑) ∨ (𝜒 ≺

a
𝛼

𝜓) (Restricted Right-OR)

∙ Axioms for the ≺

a
𝛽

operators:

(BS1) ¬(𝜑 ≺

a
𝛽

𝜑) (irreflexivity)

(BS2) ¬((𝜔 ≺

a
𝛽

𝜔
′) ∧ (𝜔′

≺

b
𝛽

𝜔)) (restricted anti-symmetry)

(BS3) (𝜑 ≺

a
𝛽

𝜓) ∧ (𝜓 ≺

b
𝛽

𝜒) → (𝜑 ≺

a∗b
𝛽

𝜒) (⊙-transitivity)

(BS4) (𝜑 ≺

a
𝛽

𝜓) → (𝜑 ≺

b
𝛽

𝜓), for all a ≤ b (nestedness)

(BS5) (𝜑 ∨ 𝜓 ≺

a
𝛽

𝜒) ↔ (𝜑 ≺

a
𝛽

𝜒) ∧ (𝜓 ≺

a
𝛽

𝜒) (Restricted Left-OR)

(BS6) (𝜔 ≺

a
𝛽

𝜑 ∨ 𝜓) ↔ (𝜔 ≺

a
𝛽

𝜑) ∨ (𝜔 ≺

a
𝛽

𝜓) (Right-OR)

∙ Connecting axioms:

(AB) 𝜔 ⪯a
𝛼

𝜔
′ ↔ 𝜔 ⪯a

𝛽

𝜔
′

(ABS) 𝜔 ≺

a
𝛼

𝜔
′ ↔ 𝜔 ≺

a
𝛽

𝜔
′

(SA1)
⋀(

(𝜔 ⪯a
𝛼

𝜔
′) → (𝜔′ ⪯a

𝛼

𝜔) ∶ a > 0
)
→ ¬(𝜔 ≺

a0
𝛼

𝜔
′), where a0 is the

minimum element of V ⧵ {0}.

(SA2) ¬
⋀(

(𝜔 ⪯a
𝛼

𝜔
′) → (𝜔′ ⪯a

𝛼

𝜔) ∶ a > 0
)
→

(
(𝜔 ≺

b
𝛼

𝜔
′) ↔ (𝜔 ⪯b

𝛼

𝜔
′)
)

The only inference rule for 𝖫𝖠𝖯1 is Modus Ponens.

Observe that axiom (AB) is related to the fact that (semantically), over m.e.c.’s,

the weak relations ⪯
𝛼

and ⪯
𝛽

coincide, and the same for axiom (ABS) regarding

the strict relations ≺
𝛼

and ≺
𝛽

. Finally, axioms (SA1) and (SA2) are for ≺
𝛼

a logical

translation of the definition of strict order < from the preorder ≤ on W according to

Eq. (2). Note that analogous axioms for ≺
𝛽

can be derived using axiom (AB).

Denoting by ⊢LAP1 the notion of proof in 𝖫𝖠𝖯1, we have the following complete-

ness result.

Theorem 6 For any set T ∪ {𝛷} of 1-formulas, it holds that T ⊧𝖫𝖠𝖯1 𝛷 if, and only
if, T ⊢𝖫𝖠𝖯1 𝛷.
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Proof One direction is soundness. Let M = (W,≤, e) a ⊙-preference Kripke model.

Axiom (AB) holds in M since both preorders ≤∀∃ and ≤∀∃2 are defined from the same

preorder ≤ on W, and thus they coincide over the singletons. The same argument

is valid for (ABS), exchanging preorder by strict order. Axioms (SA1) and (SA2)

correspond to the definition of the strict order < on W from the preorder ≤. The

interpretation of (AS1) roughly says that, for elements of W, if [u ≤ v] ≤ [v ≤ u]
then [u < v] = 0 and (AS2) says that if [u ≤ v] > [v ≤ u] then [u < v] = [u ≤ v].

As for the converse direction, assume T ⊬LAP1 𝛷. The construction of the coun-

termodel is very similar to that of Theorem 3, and the idea is again to consider

all atomic preference formulas 𝜑 ⊲

a
𝜓 (with ⊲ ∈ {⪯

𝛼

,⪯
𝛽

, ≺
𝛼

, ≺
𝛽

}) as propositional

(Boolean) variables that are ruled by the laws of classical propositional logic CPC.

Let 𝛤 be the set of all possible instantiations of axioms of LAP
1
. Then it follows

that 𝛷 does not follow from T ∪ 𝛤 using CPC reasoning, i.e. T ∪ 𝛤 ⊬CPC 𝛷. By

completeness of CPC, there exists a Boolean interpretation v such that v(𝛹 ) = 1
for all 𝛹 ∈ T ∪ 𝛤 and v(𝛷) = 0. Now we will build a ⊙-preference Kripke model

 = (𝛺,≤, e) such that e

(𝛹 ) = 1 for all 𝛹 ∈ T and e


(𝛷) = 0. We take 𝛺 =

{𝜔 ∶ Var ⟶ {0, 1}}, i.e. the set of Boolean interpretations of propositional vari-

ables, and define ≤∶ 𝛺 ×𝛺 → [0, 1] by

[𝜔 ≤ 𝜔

′] = max{a ∈ V ∣ v(𝜔 ⪯a
𝛼

𝜔
′) = 1}.

Notice that, by axiom(AB), this value is equal to max{a ∈ V ∣ v(𝜔 ⪯a
𝛽

𝜔
′) = 1}.

Based on ≤, we can define the corresponding strict order <, and from we can

define the strict relations on subsets of W, <∀∃ and <∀∃2, that coincide on the sin-

gletons by axiom (ABS). By the transitivity axioms of 𝖫𝖠𝖯∀∃ and 𝖫𝖠𝖯∀∃2, ≤ is a

⊙-preorder. We define now the evaluation function e, where for each w ∈ 𝛺 and

p ∈ Var, e(w, p) = w(p). What remains to be checked is that e

(𝛹 ) = v(𝛹 ) for every

𝖫𝖠𝖯1-formula 𝛹 . In order to prove this equality it suffices to show that, for every

𝜑,𝜓 ∈ 0 and a ∈ V ⧵ {0}, we have e

(𝜑 ⊲

a
𝜓) = v(𝜑 ⊲

a
𝜓). As mentioned above

the proof is very similar to the one in Theorem 3 for all the atomic preference for-

mulas, but specially when ⊲ ∈ {⪯
𝛼

,⪯
𝛽

}. Therefore we only prove the equality for

atomic preference formulas of type 𝜑 ≺

a
𝛽

𝜓 . By the semantics of 𝖫𝖠𝖯1,

e

(𝜑 ≺

a
𝛽

𝜓) = 1 iff inf
𝜔
′∈[𝜓]

sup
𝜔∈[𝜑]

[𝜔 < 𝜔

′] ≥ a.

By axioms (BS5) and (BS6), we have that LAP1
proves

𝜑 ≺

a
𝛽

𝜓 ↔
⋀

𝜔
′∈𝛺∶𝜔′(𝜓)=1

⋁

𝜔∈𝛺∶𝜔(𝜑)=1
𝜔 ≤

a
𝜔
′
.

Therefore, v(𝜑 ≺

a
𝛽

𝜓) = 1 iff for all 𝜔
′ ∈ 𝛺 such that 𝜔

′(𝜓) = 1, there exists 𝜔 ∈ 𝛺

such that 𝜔(𝜑) = 1 and v(𝜔 ≺

a
𝛽

𝜔
′) = 1. But v(𝜔 ≺

a
𝛽

𝜔
′) = 1 holds iff [𝜔 < 𝜔

′] ≥ a.
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In other words, we actually have v(𝜑 ≺

a
𝛽

𝜓) = 1 iffmin
𝜔
′∈[𝜓] max

𝜔∈[𝜑][𝜔 ≤ 𝜔

′] ≥
a. This concludes the proof. □

In the logic LAP1
we can define the following modal operators for the indifference

relations corresponding to the preference modalities ⪯a
𝛼

and ⪯a
𝛼

:

∙ 𝜑 ≡a
𝛼

𝜓 as (𝜑 ⪯a
𝛼

𝜓) ∧ (𝜓 ⪯a
𝛼

𝜑),
∙ 𝜑 ≡

a
𝛽

𝜓 as (𝜑 ⪯a
𝛽

𝜓) ∧ (𝜓 ⪯a
𝛽

𝜑),

and, from them, we can in turn define the modalities

∙ 𝜑 ⪯a
1 𝜓 as (𝜑 ⪯a

𝛼

𝜓) ∧ (𝜑 ⪯a
𝛽

𝜓),
∙ 𝜑 ≡

a
1 𝜓 as (𝜑 ≡a

𝛼

𝜓) ∧ (𝜑 ≡
a
𝛽

𝜓),
∙ 𝜑 ≺

a
1 𝜓 as ((𝜑 ≡a

𝛼

𝜓) ∧ (𝜑 ≺

a
𝛽

𝜓))∨
((𝜑 ≡

a
𝛽

𝜓) ∧ (𝜑 ≺

a
𝛼

𝜓)) ∨ ((𝜑 ≺

a
𝛼

𝜓) ∧ (𝜑 ≺

a
𝛽

𝜓)).

that eventually determine ⟨⪯1,≡1, ≺1⟩ as the preference structure of the logic 𝖫𝖠𝖯1.
We finish this section with one remark justifying the above definition of ≺

a
1.

Observe that given a preorder ≤ on W, the preorder ≤1 on (W) satisfies the fol-

lowing equation:

[A ≤1 B] = min([A ≤∀∃ B], [A ≤∀∃2 B]),

that, by Eq. (1), is equal to

min(max([A ≡∀∃ B], [A <∀∃ B]),max([A ≡∀∃2 B], [A <∀∃2 B])),

and hence, also equal to

max( min([A ≡∀∃ B], [A ≡∀∃2 B]),min([A ≡∀∃ B], [A <∀∃2 B]),
min([A <∀∃ B], [A ≡∀∃2 B]),min([A <∀∃ B], [A <∀∃2 B]) ).

Thus, once we define [A ≡1 B] = min([A ≡∀∃ B], [A ≡∀∃2 B])i, then, again according

to Eq. (1), it seems very reasonable to define the strict order value [A <1 B] by the

maximum of the three remaining terms above, that is:

[A <1 B] = max( min([A ≡∀∃ B], [A <∀∃2 B]),
min([A <∀∃ B], [A ≡∀∃2 B]),min([A <∀∃ B], [A <∀∃2 B]) ).

This motivates the definition of 𝜑 ≺

a
1 𝜓 above.

5.4 The Logic LAP𝟐

In this subsection we define and study the logic corresponding to the fuzzy preorder

≤2 = ≤∀∀.
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The logic LAP2
is defined as the expansion of LAP∀∀ with modal operators for the

strict preference ≺
a
, for each a ∈ V ⧵ {0}. We just need to take into account that the

semantics for the ≺
a

operators is as expected: given a Kripke model  = (W,≤, e),

∙ e

(𝜑 ≺

a
𝜓) = 1 if [[𝜑]


<∀∀ [𝜓]


] = (infu∈[𝜑] infw∈[𝜓][u < w]) ≥ a.

Definition 7 The axioms for 𝖫𝖠𝖯2 are the ones of 𝖫𝖠𝖯∀∀ for the ⪯a
operators plus:

(AS1) (𝜑 ≺

a
𝜓) → (𝜑′

≺

a
𝜓

′), where 𝜑

′ → 𝜑,𝜓

′ → 𝜓 are tautologies of CPC

(AS2) ¬(𝜑 ≺

a
𝜑) (irreflexivity)

(AS3) (𝜑 ≺

a
𝜓) ∧ (𝜓 ≺

b
𝜒) → (𝜑 ≺

a⊙b
𝜒) (⊙-transitivity)

(AS4) (𝜑 ≺

a
𝜓) → (𝜑 ≺

b
𝜓), for all a ≤ b (nestedness)

(AS5) (𝜑 ∨ 𝜓 ≺

a
𝜒) ↔ (𝜑 ≺

a
𝜒) ∧ (𝜓 ≺

a
𝜒) (Left-OR)

(AS6) (𝜓 ≺

a
𝜑 ∨ 𝜒) ↔ (𝜓 ≺

a
𝜒)∧(𝜓 ≺

a
𝜒) (Right-OR)

(SA1)
⋀(

(𝜔 ⪯a
𝜔
′) → (𝜔′ ⪯a

𝜔) ∶ a > 0
)
→ ¬(𝜔 ≺

a0
𝜔
′), where a0 is the min-

imum element of V ⧵ {0}.

(SA2) ¬
⋀(

(𝜔 ⪯a
𝜔
′) → (𝜔′ ⪯a

𝜔) ∶ a > 0
)
→

(
(𝜔 ≺

b
𝜔
′) ↔ (𝜔 ⪯b

𝜔
′)
)

The only rule of LAP2
is modus ponens.

Note that axioms (SA1) and (SA2) above are analogous to the ones in LAP1
, and

the remark after the definition LAP1
justifying them applies here as well.

The completeness theorem is ready and the proof is also analogous to previous

ones, thus we omit it.

Theorem 7 For any set T ∪ {𝛷} of1-formulas, it holds that T ⊧LAP1 𝛷 if, and only
if, T ⊢LAP1 𝛷.

Finally, let us observe that in LAP2
we can also define now the preference structure

⟨⪯2,≡2, ≺2⟩ in the obvious way:

∙ The weak preference statement 𝜑 ⪯2 𝜓 is defined as 𝜑 ⪯a
𝜓 ,

∙ The equivalence statement 𝜑 ≡2 𝜓 is defined as (𝜑 ⪯a
𝜓) ∧ (𝜓 ⪯a

𝜑),
∙ The strict preference statement 𝜑 ≺2 𝜓 is defined by (𝜑 ≺

a
𝜓).

Notice however that, strictly speaking, 𝜑 ⪯2 𝜓 is not a fuzzy preorder and ≡2 is not

a fuzzy similarity since they are not reflexive.

6 Conclusions and Future Work

In this paper we have studied preference structures on classical sets arising from

fuzzy preference relations, a topic that, as far as we know, has not been very studied

in the literature. We have approached the question both from a relational and logical

points of view. In the relational approach we have studied and characterized possi-

ble extensions of fuzzy preorders on a crisp set W (interpreted as fuzzy preferences
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between the elements of W) to crisp subsets of W (fuzzy preferences on crisps sub-

sets). Within the logical approach, we have defined and studied several two-tiered

modal logics capturing, at the syntactical level, the corresponding preference struc-

tures. The same scheme can be generalized to fuzzy preference relations on fuzzy

sets. Given a fuzzy preorder ≤ on a universe W, we can define corresponding exten-

sions to fuzzy relations on the set  (W) of fuzzy subsets of W. For example, for all

A,B ∈  (W), corresponding extensions for ∀∃ and ∀∀ could be defined as

(A ≤∀∃ B) = [ inf
u∈W

((𝜇A(u)) → (sup
v∈W

([u ≤ v]⊙ 𝜇B(v))))]

(A ≤∀∀ B) = [ inf
u∈W

((𝜇A(u)) → ( inf
v∈W

([u ≤ v] → 𝜇B(v))))].

As future work we plan to study and characterize these type of fuzzy preference rela-

tions taking into account the works by Bodenhofer et al. [2–4], where the authors

study some of these relations in the purely fuzzy relational setting. Finally we plan

to connect the corresponding fuzzy preference structures with a modal many-valued

logic framework, with necessity, possibility, universal and existential modal opera-

tors (see [21] for a first approach) in a similar way that it is done in [1] in the classical

setting.
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On Possibilistic Dependencies: A Short
Survey of Recent Developments

Robert Fullér and István Á. Harmati

Abstract Carlsson and Fullér introduced the notions of possibilistic mean value and

variance of fuzzy numbers. Fullér and Majlender introduced a measure of possibilis-

tic covariance between marginal distributions of a joint possibility distribution as the

average value of the interactivity relation between the level sets of its marginal dis-

tributions. Fullér et al. introduced the possibilistic correlation ratio, the possibilistic

correlation coefficient and the possibilistic informational coefficient of correlation.

In this paper we give a short survey of some later works which extend and develop

these notions.

1 Introduction

In probability theory the notion of mean value of functions of random variables plays

a fundamental role in defining the basic characteristic measures of probability dis-

tributions: the measure of covariance, variance and correlation of random variables

can all be computed as probabilistic means of their appropriately chosen real-valued

functions. Similarly, in possibility theory we can use the principle of average value
of appropriately chosen real-valued functions to define mean value, variance, covari-

ance and correlation of possibility distributions. Marginal probability distributions

are determined from the joint one by the principle of ‘falling integrals’ and marginal

possibility distributions are determined from the joint possibility distribution by the

principle of ‘falling shadows’. Probability distributions can be interpreted as carriers

of incomplete information [43], and possibility distributions can be interpreted as

carriers of imprecise information. A function f∶ [0, 1] → ℝ is said to be a weighting
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function if f is non-negative, monotone increasing and satisfies the following nor-

malization condition ∫ 1
0 f (𝛾)d𝛾 = 1. Different weighting functions can give different

(case-dependent) importances to 𝛾-levels sets of fuzzy numbers. It is motivated in

part by the desire to give less importance to the lower levels of fuzzy sets [34] (it is

why f should be monotone increasing).

We can define the mean value (variance) of a possibility distribution as the

f -weighted average of the probabilistic mean values (variances) of the respective

uniform distributions defined on the 𝛾-level sets of that possibility distribution. A

measure of possibilistic covariance (correlation) between marginal possibility dis-

tributions of a joint possibility distribution can be defined as the f -weighted aver-

age of probabilistic covariances (correlations) between marginal probability distri-

butions whose joint probability distribution is defined to be uniform on the 𝛾-level

sets of their joint possibility distribution [29]. We should note here that the choice

of uniform probability distribution on the level sets of possibility distributions is

not without reason. Namely, these possibility distributions are used to represent

imprecise human judgments and they carry non-statistical uncertainties. Therefore

we will suppose that each point of a given level set is equally possible. Then we

apply Laplace’s principle of Insufficient Reason: if elementary events are equally

possible, they should be equally probable (for more details and generalization of

principle of Insufficient Reason see [26], page 59). The main new idea here is to

equip the level sets of joint possibility distributions with uniform probability distrib-

utions and to derive possibilistic mean value, variance, covariance and correlation of

possibility distributions, in such a way that they would be consistent with the exten-

sion principle. The idea of equipping the level sets of fuzzy numbers with a uniform

probability refers to early ideas of simulation of fuzzy sets by Yager [60], and possi-

bility/probability transforms by Dubois et al. [25] as well as the pignistic transform

of Smets [55].

2 Possibilistic Mean Value, Variance, Covariance,
Correlation Coefficient and Correlation Ratio

In this section we will recall the possibilistic mean value, variance, covariance and

correlation of fuzzy numbers, which are consistent with the extension principle and

with the well-known definitions of expectation and variance in probability theory.

A fuzzy number A is a fuzzy set ℝ with a normal, fuzzy convex and continuous

membership function of bounded support. The family of fuzzy numbers is denoted

byF . Fuzzy numbers can be considered as possibility distributions [24, 63]. A fuzzy

set C in ℝ2
is said to be a joint possibility distribution of fuzzy numbers A,B ∈ F , if

it satisfies the relationships max{x ∣ C(x, y)} = B(y) and max{y ∣ C(x, y)} = A(x) for

all x, y ∈ ℝ. Furthermore, A and B are called the marginal possibility distributions

of C.
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The possibilistic mean (or expected value), variance, covariance and correlation

were originally defined from the measure of possibilistic interactivity (as shown in

[10, 29]) but for simplicity, we will present the concept of possibilistic mean value,

variance, covariance and possibilistic correlation in a probabilistic setting and point

out the fundamental difference between the standard probabilistic approach and the

possibilistic one. Let A ∈ F be fuzzy number with [A]𝛾 = [a1(𝛾), a2(𝛾)] and let U
𝛾

denote a uniform probability distribution on [A]𝛾 , 𝛾 ∈ [0, 1]. Recall that the proba-

bilistic mean value of U
𝛾

is equal to

M(U
𝛾

) =
a1(𝛾) + a2(𝛾)

2
,

and its probabilistic variance is computed by

var(U
𝛾

) =
(a2(𝛾) − a1(𝛾))2

12
.

In 1987 Dubois and Prade [23] defined an interval-valued expectation of fuzzy

numbers, viewing them as consonant random sets. They also showed that this expec-

tation remains additive in the sense of addition of fuzzy numbers. In 2003 Fullér and

Majlender [28] introduced the f -weighted possibilistic mean value of A ∈ F as

Ef (A) = ∫

1

0
M(U

𝛾

)f (𝛾)d𝛾 =
∫

1

0

a1(𝛾) + a2(𝛾)
2

f (𝛾)d𝛾,

where U
𝛾

is a uniform probability distribution on [A]𝛾 for all 𝛾 ∈ [0, 1]. If f (𝛾) = 1
for all 𝛾 ∈ [0, 1] then we get

E(A) =
∫

1

0
M(U

𝛾

)f (𝛾)d𝛾 =
∫

1

0

a1(𝛾) + a2(𝛾)
2

d𝛾,

which the possibilistic mean value of A originally introduced in 2001 by Carlsson and

Fullér [3]. In 2003 Fullér and Majlender [28] introduced the f -weighted possibilistic
variance of A ∈ F as

Var f (A) = ∫

1

0
var(U

𝛾

)f (𝛾)d𝛾 =
∫

1

0

(a2(𝛾) − a1(𝛾))2

12
f (𝛾)d𝛾.

In 2004 Fullér and Majlender [29] introduced a measure of possibilistic covari-

ance between marginal distributions of a joint possibility distribution C as the

expected value of the interactivity relation between the 𝛾-level sets of its marginal

distributions. In 2005 Carlsson et al. [10] showed that the possibilistic covariance

between fuzzy numbers A and B can be written as the weighted average of the prob-

abilistic covariances between random variables with uniform joint distribution on the
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level sets of their joint possibility distribution C. The f -weighted measure of possi-
bilistic covariance between A,B ∈ F (with respect to their joint distribution C) [29]

can be written as,

Covf (A,B) = ∫

1

0
cov(X

𝛾

,Y
𝛾

)f (𝛾)d𝛾,

and the f -weighted possibilistic correlation coefficient of A,B ∈ F (with respect to

their joint distribution C) is defined by [31],

𝜌f (A,B) = ∫

1

0
𝜌(X

𝛾

,Y
𝛾

)f (𝛾)d𝛾

where

𝜌(X
𝛾

,Y
𝛾

) =
cov(X

𝛾

,Y
𝛾

)
√
var(X

𝛾

)
√
var(Y

𝛾

)

and X
𝛾

and Y
𝛾

are random variables whose joint distribution is uniform on [C]𝛾 ,

cov(X
𝛾

,Y
𝛾

) denotes their covariance, for all 𝛾 ∈ [0, 1].
In statistics, the correlation ratio is a measure of the relationship between the

statistical dispersion within individual categories and the dispersion across the whole

population or sample. The correlation ratio was originally introduced by Pearson [52]

and it was extended to random variables by Kolmogorov [44] as,

𝜂

2(X|Y) = var[M(X|Y)]
var(X)

,

where X and Y are random variables. If X and Y have a joint probability density func-

tion, denoted by g(x, y), then we can compute 𝜂

2(X|Y) using the following formulas

M(X|Y = y) =
∫

∞

−∞
xg(x|y)dx

and

var[M(X|Y)] = M(M(X|y) − M(X))2,

and where,

g(x|y) =
g(x, y)
g(y)

.

In 2010 Fullér et al. [30] introduced the f -weighted possibilistic correlation ratio
of marginal possibility distribution A with respect to marginal possibility distribution

B as

𝜂

2
f (A|B) = ∫

1

0
𝜂

2(X
𝛾

|Y
𝛾

)f (𝛾)d𝛾
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where X
𝛾

and Y
𝛾

are random variables whose joint distribution is uniform on [C]𝛾 ,

cov(X
𝛾

,Y
𝛾

) denotes their covariance and 𝜂(X
𝛾

|Y
𝛾

) denotes their probabilistic corre-

lation ratio [44], for all 𝛾 ∈ [0, 1].
In 2012 Fullér et al. [32] introduced the f -weighted possibilistic informational

coefficient of correlation. For any two continuous random variables X and Y (admit-

ting a joint probability density), their mutual information is given by,

I(X,Y) =
∬

g(x, y) ln
g(x, y)

g1(x)g2(y)
dx dy

where g(x, y) is the joint probability density function of X and Y , and g1(x) and g2(y)
are the marginal density functions of X and Y , respectively. The informational coef-

ficient of correlation of X and Y is defined by

L(X,Y) =
√
1 − e−2I(X,Y)

Then the f -weighted possibilistic informational coefficient of correlation of marginal

possibility distributions A and B is defined by

L(A,B) =
∫

1

0
L(X

𝛾

,Y
𝛾

)f (𝛾)d𝛾

where X
𝛾

and Y
𝛾

are random variables whose joint distribution is uniform on [C]𝛾 ,

for all 𝛾 ∈ [0, 1].

Note 1 There exist several other ways to define correlation coefficient for fuzzy

numbers, e.g. Liu and Kao [47] used fuzzy measures to define a fuzzy correla-

tion coefficient of fuzzy numbers and they formulated a pair of nonlinear pro-

grams to find the 𝛼-cut of this fuzzy correlation coefficient, then, in a special case,

Hong [39] showed an exact calculation formula for this fuzzy correlation coefficient.

Vaidyanathan [57] introduced a new measure for the correlation coefficient between

triangular fuzzy variables called credibilistic correlation coefficient.

Fullér and colleagues have extensively used the possibilistic mean value, vari-

ance, covariance and correlation in their later works for real option valuation [4, 8,

14], portfolio selection problems [6, 7, 11, 12] and strategic planning [9, 13]. For

example, in 2007 Carlsson et al. [12] developed a methodology for valuing options

on R&D projects, when future cash flows are estimated by trapezoidal fuzzy num-

bers. In particular, they presented the following fuzzy mixed integer programming

model for the R&D optimal portfolio selection problem,
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maximize

N∑

i=1
uiFi

subject to

N∑

i=1
uiXi +

N∑

i=1
(1 − ui)ci ≤ B

ui ∈ {0, 1}, i = 1,…N,

where N is the number of R&D projects, B is the whole investment budget, ui is the

decision variable that takes value one if the i-th project should start now (at time zero)

or takes the value zero if it should be postponed and started at a later time, ci denotes

the cost of the postponment (i.e. keep the option alive), Xi is the investment cost, and

Fi denotes the possibilistic deferral flexibility of the i-th project for i = 1,… ,N.

Furthermore, they discussed how their methodology can be used to build decision

support tools for optimal R&D project selection in a corporate environment. They

also claimed that the imprecision we encounter when judging or estimating future

cash flows is not stochastic in nature, and the use of probability theory gives us a

misleading level of precision and a notion that consequences somehow are repetitive.

This is not the case, the uncertainty is genuine, i.e. we simply do not know the exact

levels of future cash flows. Without introducing fuzzy real option models it would

not be possible to formulate this genuine uncertainty.

In 2009 Collan et al. [18] presented a new method (fuzzy pay-off method) for

real option valuation using fuzzy numbers that is based on findings from earlier real

option valuation methods and from fuzzy real option valuation. They also presented

the use of number of different types of fuzzy numbers with the method and an appli-

cation of the new method in an industry setting. In 2010 Carlsson et al. [13] used

fuzzy real option models for the problem of closing/not closing a production plant in

the forest products industry sector. In 2013 Carlsson and Fullér [15] implemented a

hybrid probabilistic and possibilistic model to assess the success of computing tasks

in a Grid. Using the predictive probabilistic approach they developed a framework

for resource management in grid computing, and by introducing an upper limit for

the number of possible failures, they approximated the probability that a particular

computing task can be executed. Coroianu and Fullér [19] studied he problem of

additivity property of the weighted possibilistic mean operator for interactive fuzzy

numbers. They showed that the weighted possibilistic mean operator is additive on

the set of symmetric fuzzy numbers if their joint possibility distribution is defined

by a triangular norm. They also showed some results for general joint-possibility-

distribution-based additions of fuzzy numbers of symmetrical opposite sides.

3 Recent Developments

The notions of possibilistic mean value, variance, covariance and correlation are

used in many different research areas and by many different authors (Google Scholar

finds over 2,000 citations to papers [3, 8, 10, 12, 28, 29]).
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In 2005 Yoshida et al. [61] evaluated the randomness and fuzziness in fuzzy sto-

chastic processes by the probabilistic expectation and the mean values defined by

fuzzy measures and 𝜆-weighting functions. The mean values are demonstrated par-

ticularly in three kinds of important fuzzy measures: possibility measure, necessity

measure and credibility measure. Furthermore, by introducing fuzziness to stochas-

tic processes in optimization/decision-making, they considered a new model with

uncertainty of both randomness and fuzziness, which is a reasonable and natural

extension of the original stochastic process.

In 2006 Fang et al. [27] proposed a portfolio rebalancing model with transaction

costs based on fuzzy decision theory and illustrated the behaviour of their proposed

model using real data from the Shanghai Stock Exchange. Huang [41] selected the

optimal portfolio with fuzzy returns by criteria of chance represented by credibility

measure. He introduced two types of credibility-based portfolio selection models:

(i) by one chance criterion, the objective is to maximize the investor’s return at a

given threshold confidence level; (ii) by another chance criterion, the objective is

to maximize the credibility of achieving a specified return level subject to the con-

straints. To solve the resulting problems he designed a hybrid intelligent algorithm

integrating fuzzy simulation and genetic algorithm.

In 2007 Zhang et al. [64] proposed two kinds of portfolio selection models based

on lower and upper possibilistic means and possibilistic variances, respectively, and

introduced the notions of lower and upper possibilistic efficient portfolios. They also

presented an algorithm which can derive the explicit expression of the possibilis-

tic efficient frontier for the possibilistic mean-variance portfolio selection problem

dealing with lower bounds on asset holdings. Zhang and Wang [65] investigated the

relationship between several crisp possibilistic variances and covariances of fuzzy

numbers. Silva et al. [54] presented and developed an original and novel fuzzy sets

based method that solves a class of quadratic programming problems with vagueness

in the set of constraints. The method uses two phases to solve fuzzy quadratic pro-

gramming problems, which eventually can be considered in the portfolio context. In

the first phase they parametrize the fuzzy problem in several classical alpha-problems

with different cutting levels. In the second phase each of these alpha-problems is

solved by using conventional solving techniques.

In 2008 by introducing the concept of semivariance of fuzzy variable Huang [42]

proposed two fuzzy mean-semivariance models for portfolio selection problems in

fuzzy environment. To solve the new models in general cases, he presented a fuzzy

simulation based genetic algorithm. By morphing mean-variance optimization port-

folio model into semi-absolute deviation model, Gupta et al. [36] applied multi cri-

teria decision making via fuzzy mathematical programming to develop comprehen-

sive models of asset portfolio optimization for the investors’ pursuing either of the

aggressive or conservative strategies.

In 2009 Chen et al. [16] considered a possibilistic mean-variance (FMVC) port-

folio selection model and proposed a cutting plane algorithm to solve it. Xu et al.

[59] presented a fuzzy normal jump-diffusion model for European option pricing,

with uncertainty of both randomness and fuzziness in the jumps, which is a reason-

able and a natural extension of the Merton [50] normal jump-diffusion model. Based
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on the crisp weighted possibilistic mean values of the fuzzy variables in fuzzy nor-

mal jump-diffusion model, they also obtained the crisp weighted possibilistic mean

normal jump-diffusion model. Yoshida [62] discussed value-at-risk portfolio model

under uncertainty. In his proposed model the means, the variances and the measure-

ments of imprecision for fuzzy numbers/fuzzy random variables are evaluated in the

possibility case and the necessity case, and the rate of return in portfolio is estimated

regarding the both random factors and imprecise factors. Zhang et al. [66] proposed a

new portfolio selection model with the maximum utility based on the interval-valued

possibilistic mean and possibilistic variance, which is a two-parameter quadratic pro-

gramming problem. They also presented a sequential minimal optimization (SMO)

algorithm to obtain the optimal portfolio. The remarkable feature of their algorithm

is that it is extremely easy to implement, and it can be extended to any size of port-

folio selection problems for finding an exact optimal solution.

In 2010 Zhang et al. [67] proposed a possibilistic portfolio adjusting model with

transaction costs and bounded constraints on holdings of assets, which can be trans-

formed into a linear programming problem. Both the lower bounds on holdings and

the total investment constraints influence the optimal portfolio adjusting strategies.

Gładysz and Kasperski [33] discussed the problem of computing the mean absolute

deviation in a set of uncertain variables. The uncertainty is modelled by closed inter-

vals and fuzzy intervals. Some polynomial algorithms for determining the lower and

upper bounds for the mean absolute deviation under interval uncertainty are pro-

posed. Possibility theory is then applied to generalize the interval uncertainty repre-

sentation to the fuzzy one.

In 2011 Ho and Liao [38] proposed a fuzzy binomial approach for investment

project valuation in uncertain environments from the aspect of real options. Their

approach also reveals the value of flexibilities embedded in the project. Duan and

Stahlecker [22] considered static portfolio selection problem, in which future returns

of securities are given as fuzzy sets. In contrast to traditional analysis, they assume

that investment decisions are not based on statistical expectation values, but rather on

maximal and minimal potential returns resulting from the 𝛼-cuts of these fuzzy sets.

By aggregating over all 𝛼-cuts and assigning weights for both best and worst possible

cases they get a new objective function to derive an optimal portfolio. Lee and Lee

[45] examined the strategic characteristic of RFID (Radio Frequency Identification)

investment and proposed a fuzzy real options technique that can consider various

situations of expected cash flow or investment costs as a plan to support investment

decisions.

In 2012 Deng and Li [20] proposed a portfolio selection model with borrow-

ing constraint by means of possibilistic mean, possibilistic variance, and possibilis-

tic covariance under the assumption that the returns of assets are fuzzy numbers.

They presented a quadratic programming model with inequality constraints when

the returns of assets are trapezoid fuzzy numbers and utilized the Lemke algorithm

to solve the problem. Zhang et al. [68] dealt with a multi-period portfolio selection

problem with fuzzy returns and presented a possibilistic mean-semivariance-entropy

model for multi-period portfolio selection by taking into account four criteria: return,

risk, transaction cost and diversification degree of portfolio. In their proposed model,
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the return level is quantified by the possibilistic mean value of return, the risk level is

characterized by the lower possibilistic semivariance of return, and the diversifica-

tion degree of portfolio is measured by the originally presented possibilistic entropy.

Based on the possibilistic mean and the possibilistic variance/covariance of fuzzy

numbers, Chrysafis [17] proposed a method to reduce some problems arising from

the Capital Asset Pricing Model (CAPM) assumptions.

In 2013 Thavaneswaran et al. [56] used fuzzy set theory to price binary options.

Namely, they studied binary options by fuzzifying the maturity value of the stock

price using trapezoidal, parabolic and adaptive fuzzy numbers. Hsieh and Tsaur

[40] proposed a simplified fuzzy regression equation based on possibilistic mean

and variance method and used it for modeling the constraints and objective func-

tion of a fuzzy regression model without determining the membership function of

extrapolative values. Liu and Zhang [48] discussed a multi-objective portfolio opti-

mization problem for practical portfolio selection in fuzzy environment, in which the

return rates and the turnover rates are characterized by fuzzy variables. Based on the

possibility theory, they quantified fuzzy return and liquidity by possibilistic mean,

and market risk and liquidity risk are measured by lower possibilistic semivariance.

They proposed a fuzzy multi-objective programming technique to transform their

proposed models into corresponding single-objective models and then designed a

genetic algorithm for their solution.

In 2014 Wang et al. [58] employed the weighted possibilistic mean (WPM),

weighted interval valued possibilistic mean (WIVPM) of fuzzy number as a sort

of representative values for the fuzzy attribute data, and establish new fuzzy con-

trol charts with WPM and WIVPM. They compared the performance of the charts

to the existing fuzzy charts with a fuzzy c-chart example via newly defined average

number of inspection for variation of control state. Based on possibility theory and

the assumption that the returns of assets are triangular fuzzy numbers, Deng and

Li [21] proposed a bi-objective nonlinear portfolio selection model. They show that

their nonlinear bi-objective model is equivalent to the linear bi-objective minimizing

programming model on the basis of possibilistic mean and possibilistic variance.

In 2015 Nguyen et al. [51] initiated the fuzzy Sharpe ratio in the fuzzy model-

ing context. In addition to the introduction of the new risk measure, they also put

forward the reward-to-uncertainty ratio to assess the portfolio performance in fuzzy

modeling. Zhang [69] considered a multi-period portfolio selection problem in a

fuzzy investment environment, in which the return and risk of assets are character-

ized by possibilistic mean value and possibilistic semivariance, respectively. Based

on the theories of possibility, he proposed a new multi-period possibilistic portfo-

lio selection model, which contains risk control, transaction costs, borrowing con-

straints, threshold constraints and cardinality constraints. By redefining the concepts

of mean and variance for fuzzy numbers, Li et al. [46] formulated a fuzzy mean-

variance-skewness portfolio selection model.

In 2016 Mashayekhi and Omrani [49] proposed a novel multi objective model

for portfolio selection, where the asset returns are considered as trapezoidal fuzzy

numbers. Their model incorporates the DEA cross-efficiency into Markowitz mean-

variance model and considers return, risk and efficiency of the portfolio. Rubio et al.
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[53] proposed the weighted fuzzy time series method to forecast the future perfor-

mance of returns on portfolios. They modelled the uncertain parameters of the fuzzy

portfolio selection models using a possibilistic interval-valued mean approach, and

approximate the uncertain future return on a given portfolio by means of a trape-

zoidal fuzzy number. Guo et al. [35] considered a fuzzy multi-period portfolio selec-

tion problem with V-Shaped transaction cost. Compared with the traditional studies

assuming that assets have the same investment horizon, they handled the practical

but complicated situation in which assets have different investment horizons. Within

the framework of credibility theory, they formulate a mean-variance model with the

objective of maximizing the terminal return under the total risk constraint over the

whole investment.

In 2017 Babazadeh et al. [1] presented a multi-objective possibilistic program-

ming model to design a second-generation biodiesel supply chain network under

risk. Their model minimizes the total costs of biodiesel supply chain from feedstock

supply centers to customer centers besides minimizing the environmental impact of

all involved processes under a well-to-wheel perspective. Brunelli and Mezei [2]

presented an analysis of approximate operations on fuzzy numbers. By focusing on

the ranking and defuzzification procedures as essential tools in fuzzy decision mak-

ing problems, they studied the errors produced by the application of approximate

operations.

4 Concluding Remarks

Possibility theory is mathematically the simplest uncertainty theory for dealing with

incomplete information [26]. This may be the reason why possibilistic dependencies

are used in many different research areas like information sciences, geosciences,

social sciences, economics, mathematical and computer modelling, financial engi-

neering, systems engineering, military engineering, and robotics. We have shown

several applications of possibilistic dependencies ranging from multi-period portfo-

lio selection problem with fuzzy returns to designing a second-generation biodiesel

supply chain network. However, it is still an open problem to construct joint possi-

bility distribution for correlated variables in applications [37].
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Penalty Function in Optimization Problems:
A Review of Recent Developments

Humberto Bustince, Javier Fernandez and Pedro Burillo

Abstract In this chapter we make a brief revision of some recent developments

on the notion of penalty function as a tool for the fusion of information, including

the most recently published definition as well as the extension of the concept to the

lattice setting.

1 Introduction

Penalty functions provide a method to determine up to what extent a given output is

similar (or dissimilar) to a set of inputs. This information can be used, by means of

an appropriate minimization procedure, to define a function (the so-called penalty-

based function) for fusing the considered inputs. In this sense, it is a powerful tool

for those applications where fusion of information is crucial, as it is the case for

almost every real-world application. For this reason, and since it was first suggested

by Yager in 1993 [18], the notion of penalty and penalty-based functions have been

gaining an increasing interest among the scientific community, specially in order to

overcome the different technical difficulties which arise to properly define such a

class of functions, see [6] for a complete discussion.

In this chapter, and basing ourselves in [6], we make a brief review of the evolution

of the ideas of penalty and penalty-based functions, from its origin in the works of

Yager up to the last definition in the literature, which has finally encompassed all the

desired properties for such functions. Furthermore, we also discuss briefly how this

concept can also be extended to more general setting, considering in particular the

case of a Cartesian product of lattices, which is of interest in applications such as

image processing [3, 8].
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The structure of this chapter is as follows. First we discuss some preliminary

notions and results, and, in Sect. 3, we make the review of the evolution of the idea

of penalty functions and penalty-based function. In Sect. 4, we provide an idea of

how a similar concept can be defined in a Cartesian product of lattices. We finish

with some conclusions and references.

2 Preliminaries

We denote by 𝕀 a closed subinterval of the extended real line, i.e., 𝕀 = [a, b] ⊆ ℝ.

The notion of penalty-function relies on the ideas of convexity and quasi-

convexity, that we recall now.

Definition 1 A function f ∶ 𝕀 → ℝ is convex if for every x, y ∈ 𝕀 and for every 𝜆 ∈
[0, 1] the inequality

f (𝜆x + (1 − 𝜆)y) ≤ 𝜆f (x) + (1 − 𝜆)f (y)

holds.

Definition 2 A function f ∶ 𝕀 → ℝ is quasi-convex if for every x, y ∈ 𝕀 and for every

𝜆 ∈ [0, 1] the inequality

f (𝜆x + (1 − 𝜆)y) ≤ max{f (x), f (y)}

holds.

Quasi-convex functions are relevant for us due to the following result about min-

imization [15]:

Proposition 1 Let f ∶ 𝕀 → ℝ be a quasi-convex function. Then, the set of minimizers
of f is either empty or a connected set.

We also recall here the idea of lower semicontinuity.

Definition 3 A function f ∶ 𝕀 → ℝ is lower semicontinuous at x0 ∈ 𝕀 if

lim inf
x→x0

f (x) ≥ f (x0).

Analogously one defines upper semicontinuity. Observe that a function is contin-

uous at x0 ∈ 𝕀 if and only if it is upper and lower semicontinuous there.

Again, lower semicontinuity is important for us because, in a compact domain,

the set of minimizers of a lower semicontinuous function is not empty.

Proposition 2 Let f ∶ 𝕀 → ℝ be a lower semicontinuous function, with 𝕀 bounded.
Then, the set of minimizers of f is not empty.
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We finally review the notions related to aggregation functions. We take, from now

on, n ≥ 2.

Definition 4 [2, 12] A function A ∶ [0, 1]n → [0, 1] is said to be an n-ary aggrega-

tion function if:

(A1) A is increasing in each argument: for each i ∈ {1,… , n}, if xi ≤ y, then

A(x1,… , xn) ≤ A(x1,… , xi−1, y, xi+1,… , xn);
(A2) A satisfies the boundary conditions: A(0,… , 0) = 0 and A(1,… , 1) = 1.

It is well known that an aggregation function f ∶ [0, 1]n → [0, 1] is called averag-

ing if, for all (x1,… , xn) ∈ [0, 1]n, it holds that:

min{x1,… , xn} ≤ f (x1,… , xn) ≤ max{x1,… , xn}.

In particular, an aggregation function is averaging if and only if it is idempotent,

i.e., f (x,… , x) = x for every x ∈ [0, 1].
Finally, and for the sake of completeness, we recall that a fuzzy set A on an uni-

verse U is a mapping A ∶ U → [0, 1]. The value A(u) is called membership degree

of the element u. We will denote by FS (U) the class of all fuzzy sets defined on

the referential U.

3 The Evolution of the Idea of Penalty Functions

The first approaches to the notion of penalty function in information aggregation

procedures may be traced back to Yager [18]. A few years later, in 1997, Yager and

Rybalov [19] considered the possibility of obtaining an appropriate function in order

to fuse information by means of a minimization procedure. The information to be

fused may even be of different nature. Formally, and considering only numerical

dates, their proposal was the following:

Definition 5 The function LP ∶ ℝ2 → ℝ+
is said to be a local penalty function if,

for any xi, xj, y ∈ ℝ and i, j = 1,… , n, it satisfies:

(LP3.1-1) LP(xi, y) = 0, if xi = y;

(LP3.1-2) LP(xi, y) > 0, if xi ≠ y;

(LP3.1-3) LP(xi, y) ≥ LP(xj, y), if ∣ xi − y ∣>∣ xj − y ∣,

where y is called the fused value related to each observation in 𝐱.

Definition 6 Let LP ∶ ℝ2 → ℝ+
be a local penalty function. A penalty function P ∶

ℝn+1 → ℝ+
is defined, for any 𝐱 ∈ ℝn

and y ∈ ℝ as:

P(𝐱, y) =
n∑

i=1
LP(xi, y), (1)
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where y ∈ ℝ is called the fused value of 𝐱 ∈ ℝn
.

The main problem with this approach is that the minimizer y∗ may not exist or

may be not unique [19]

The following step in this step was done by Calvo et al. [10], proposing the fol-

lowing definition:

Definition 7 The function LP ∶ 𝕀2 → [0,∞] is a local penalty function on 𝕀 if and

only if, for any x, y ∈ 𝕀, it satisfies:

(LP3.4-1) LP(x, y) = 0 if x = y, and

(LP3.4-2) LP(x, y) ≥ LP(z, y), whenever x ≥ z ≥ y or x ≤ z ≤ y.

By considering local penalty functions such that

LP = K ◦ f , that is, LP(x, y) = K(f (x), f (y)), (2)

where f ∶ 𝕀 → [−∞,+∞] is a continuous strictly monotonic function and

K ∶ [−∞,+∞]2 → [0,∞] is a local penalty function, which is convex in each com-

ponent, Calvo et al. [10] avoided the problem of non-existence of minimizers. This

kind of functions were called faithful local penalty functions, and lad to the following

definition of penalty function.

Definition 8 Let LP ∶ 𝕀2 → [0,∞] be a faithful local penalty function. A function

fP ∶
⋃

n∈N 𝕀n → 𝕀, defined for all 𝐱 ∈ 𝕀n and n ∈ N, by

fP(𝐱) =
l𝐱 + r𝐱

2
,

where

l𝐱 = inf{u ∈ 𝕀 ∣ ∀v ∈ 𝕀 ∶ P(𝐱, u) ≤ P(𝐱, v)}
r𝐱 = sup{u ∈ 𝕀 ∣ ∀v ∈ 𝕀 ∶ P(𝐱, u) ≤ P(𝐱, v)}

is called a penalty-based function, or P-function, for short.

Nevertheless, the next step was to try to recover most relevant aggregation func-

tions, and in this sense, the definition provided by Calvo et al. did not allow to recover

idempotent (and hence, averaging) aggregation functions.

This study led to Calvo and Beliakov to propose, in [9], the following definition

of a penalty function:

Definition 9 The function P ∶ 𝕀n+1 → [0,∞] is a penalty function if and only if it

satisfies:

(P3.6-1) P(𝐱, y) ≥ 0, for all 𝐱,y;
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(P3.6-2) P(𝐱, y) = 0 if 𝐱 = 𝐲, and
1

(P3.6-3) For every fixed 𝐱, the set of minimizers of P(𝐱, y) is either a singleton or

an interval.

Definition 10 A penalty-based function f ∶ 𝕀n → 𝕀 is defined, for all 𝐱 ∈ Xn
, by

f (𝐱) = argmin
y

P(𝐱, y), (3)

if y is the unique minimizer, and y = a+b
2

if the set of minimizers is the interval ]a, b[
(or [a, b]).

We use P-function to shorten the expression penalty function.

Remark 1 In Definition 9, observe that:

1. The condition (P3.6-1) is redundant, since this is a consequence of the fact that

the range of the function P is [0,∞].
2. A singleton can be seen as a degenerated interval {k} = [k, k].

Definition 9 presents some problems identified below.

Furthermore, in [1], Beliakov and James considered the problem of aggregating

some special kind of discontinuous intervals, called non-convex intervals, and pro-

pose the following definition:

Definition 11 The function P ∶ [0, 1]n+1 → [0,∞] is a penalty function if and only

if it satisfies:

(P3.8-1) P(𝐱, y) = 0 if xi = y, for all i;
(P3.8-2) P(𝐱, y) > 0 if xi ≠ y for some i, and

(P3.8-3) For every fixed 𝐱, the set of minimizers of P(𝐱, y) is either a singleton or

an interval.

The concept of penalty-based function, for a penalty function in the sense of Def-

inition 11, is defined analogously to Definition 10. It is worth to mention that Defi-

nitions 9 and 11 are not equivalent.

Furthermore, the restriction of the domain to [0, 1]n+1 is not very significant, since

the results can be extended to any other bounded interval in a straightforward way.

With this new definition, many averaging functions that are P-functions. For

example, the arithmetic mean AM can be generated from

P(𝐱, y) =

n∑
i=1

(xi − y)2

n
,

1
Observe that the vector 𝐲 should be defined as 𝐲 = (y,… , y

⏟⏟⏟

n times

), although the authors had not men-

tioned that in [9].
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which is a penalty function in the sense of Definition 11.

But, in fact, it not yet possible to recover every aggregation function as a penalty-

based function. So a further modification of the definition is required in order to get

such a result. This step was done in [6], obtaining the following result:

Theorem 1 A function f ∶ [0, 1]n → [0, 1] is a P-function, for a penalty function in
the sense of Definition 11, if and only if f is idempotent.

It follows that each averaging aggregation function is a P-function, for a penalty

function in the sense of Definition 11. But it is worth mentioning that the proof of

Theorem 1 uses the same argument as that in [9], but with an extra term, which

produces a discontinuity for the penalty function.

Regarding monotonicity issues, Wilkin and Beliakov [16] considered also the

use of weakly monotonic aggregation functions (see also [7, 13]). In this way, non-

monotone operators, such as the mode, can be recovered.

Definition 12 For any closed, nonempty interval 𝕀 ⊆ [−∞,+∞], the function P ∶
𝕀n+1 → ℝ is a penalty function if and only if it satisfies:

(P3.9-1) P(𝐱, y) ≥ c, for all 𝐱 ∈ 𝕀n,y ∈ 𝕀, for some constant c ∈ ℝ;

(P3.9-2) P(𝐱, y) = c if and only if all xi = y, for all i = 1… n, and

(P3.9-3) P is quasi-convex in y for any 𝐱.

All the previous discussed definitions, however, share different difficulties which

made its use for applications complicate. For this reason, in [ ], a new definition of

penalty functions encompassing most of the advantages of the discussed ones and

all the desired properties of these functions was proposed.

Let 𝕀 ⊆ ℝ be a closed interval.

Definition 13 The function P ∶ 𝕀n+1 → ℝ+
is a penalty function if and only if there

exists c ∈ ℝ+
such that:

(P4.1-1) P(𝐱, y) ≥ c, for all 𝐱 ∈ 𝕀n,y ∈ 𝕀;
(P4.1-2) P(𝐱, y) = c if and only if xi = y, for all i = 1… n, and

(P4.1-3) P is quasi-convex lower semi-continuous in y for each 𝐱 ∈ 𝕀n.

Definition 14 Let f ∶ 𝕀n → 𝕀 be a function and P be a penalty function in the sense

of Definition 13. Then f is said to be a P-function if, for each 𝐱 ∈ 𝕀n, one has that

f (𝐱) = a + b
2

(4)

where

[a, b] = cl(Minz(P(𝐱, ⋅)))

and Minz(P(𝐱, ⋅)) is the set of minimizers of P(𝐱, ⋅), that is:

Minz(P(𝐱, ⋅)) = {y ∈ 𝕀 ∣ P(𝐱, y) ≤ P(𝐱, z), for each z ∈ 𝕀}, (5)

and cl(S) is the closure of S ⊆ 𝕀.
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Note that the requirement of quasi convexity and lower semicontinuity ensure that

the set of minimizers of P(𝐱, ⋅) is either a singleton or an interval. In particular, we

have now the following result [6]:

Theorem 2 A function f ∶ 𝕀n → 𝕀 is a P-function in the sense of Definition 14 if and
only if f is idempotent.

It is also worth to say that it is always possible to get a continuous penalty function

Pf , for an idempotent function f .
So, finally, we have the following result.

Proposition 3 Let A ∶ 𝕀n → 𝕀 be an increasing function. A is an averaging aggre-
gation function if and only if A is a P-function in the sense of Definition 14.

4 Penalty Functions in a Cartesian Product of Lattices

In the same way as in the real case averaging functions may be constructed by means

of penalty functions, an analogous construction can be done for general lattices. In

particular, in [3, 8] this construction inpires itsels on the notion faithful penalty func-

tions and it is done using as a first step restricted dissimilarity functions [4, 5]

Definition 15 [5] A mapping dR ∶ [0, 1]2 → [0, 1] is a restricted dissimilarity func-

tion if:

1. dR(x, y) = dR(y, x) for every x, y ∈ [0, 1];
2. dR(x, y) = 1 if and only if x = 0 and y = 1 or x = 1 and y = 0; that is, {x, y} =

{0, 1};

3. dR(x, y) = 0 if and only if x = y;

4. For any x, y, z ∈ [0, 1], if x ≤ y ≤ z, then dR(x, y) ≤ dR(x, z) and dR(y, z) ≤ dR(x, z).

Note that distances between fuzzy sets can be defined in terms of restricted dis-

similarity functions.

Definition 16 [17] A mapping D ∶ FS (U)2 → [0, 1] is a distance over FS (U)
if

1. D(A,B) = D(B,A) for every A,B ∈ FS (U);
2. D(A,B) = 0 if and only if A = B;

3. D(A,B) = 1 if and only if A and B are complementary crisp sets;

4. if A ≤ A′ ≤ B′ ≤ B, then D(A,B) ≥ D(A′
,B′).

Along this section, and to avoid possible confusion, we will denote by the letter

M an aggregation function.

Theorem 3 [5] Let M be an aggregation function such that it satisfies

(A1) M(x1,… , xn) = 1 if and only if x1 = ⋯ = xn = 1;
(A2) M(x1,… , xn) = 0 if and only if x1 = ⋯ = xn = 0,
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and let dR ∶ [0, 1]2 → [0, 1] be a restricted dissimilarity function. Then

D(A,B) =
n
M
i=1

(dR(A(ui),B(ui)))

for all A,B ∈ FS (U) defines a distance in the sense of Liu.

In this paper, whenever we speak of distances between fuzzy sets, we mean dis-

tances in the sense of Liu [17].

From the point of view of application it is enough to consider as lattices the

Cartesian product of finite chains C . Moreover, and since all the finite chains

of the same length are isomorphic to each other, we can always assume that we

are working with chains of the type C = 0 ≤ 1 ≤ 2 ≤ ⋯ ≤ n − 1. Recall that, if

Lk = {C1 ×⋯ × Ck,≤,∧,∨} and a, b ∈ Lk such that a ≤ b, every maximal chain

joining a and b has the same length.

So the distance between x, y ∈ L can be defined as the length of the chain C with

minimal element a = ∧(x, y) and maximal element b = ∨(x, y), minus one. That is,

d(x, y) = length(C ) − 1.

This definition is equivalent to the following.

d(x, y) =
m∑

i=1
di(xi, yi) =

m∑

i=1
|xi − yi| (6)

where di is the distance in the i-th chain. It is easy to see that Eq. (6) is a distance,

called natural distance.

We restrict to chains with supremum and infimum. We need to extend the defini-

tion of distance to L-fuzzy sets using the notion of restricted dissimilatity function.

Consider the lattice Lm = {C1 ×⋯ × Cm,≤,∧,∨}. For each chain Ci we denote

by ∨(Ci) and ∧(Ci) its top and bottom elemnts, respectively. We also denote

1Lm
= (∨(C1),… ,∨(Cm)),

0Lm
= (∧(C1),… ,∧(Cm)).

Definition 17 Take Lm = {C1 ×⋯ × Cm,≤,∧,∨}. A mapping

𝛿R ∶ Lm ×Lm → Lm

is a lattice restricted dissimilarity function if

1. 𝛿R(x, y) = 𝛿R(y, x) for any x, y ∈ Lm;

2. 𝛿R(x, y) = 1Lm
if and only if for any i = 1,… ,m,
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xi = ∨(Ci) and yi = ∧(Ci),
or

xi = ∧(Ci) and yi = ∨(Ci);

3. 𝛿R(x, y) = 0Lm
if and only if x = y;

4. If x ≤ y ≤ z then 𝛿R(x, y) ≤ 𝛿R(x, z) and 𝛿R(y, z) ≤ 𝛿R(x, z).

Proposition 4 Let each 𝛿Ri
∶ Ci × Ci → Ci be a lattice restricted dissimilarity func-

tion. Then the mapping defined as

𝛿R(x, y) = (𝛿R1
(x1, y1),… , 𝛿Rm

(xm, ym)) (7)

for every x, y ∈ Lm is a lattice restricted dissimilarity function.

Let FS (U)m denote the class A = (A1,… ,Am) with Ai ∶ U → Ci such that

A(ui) = (A1(ui),… ,Am(ui)) for every ui ∈ U. Notice that each of the Ai is an L-

fuzzy set in the sense of Goguen [11]; i.e., each Ai is a fuzzy set defined over the

lattice {Ci,≤i,∧i,∨i}.

Definition 18 Take Lm = {C1 ×⋯ × Cm,≤,∧,∨}. A mapping

𝛺 ∶ FS (U)m ×FS (U)m → Lm

is a lattice distance in FS (U)m if

1. 𝛺(A,B) = 𝛺(B,A) for every A,B ∈ FS (U)m;

2. 𝛺(A,B) = 0Lm
if and only if Ai = Bi for every i = 1,… ,m;

3. 𝛺(A,B) = 1Lm
if and only if for every i = 1,… ,m, Ai and Bi are sets such that

for every uj

Ai(uj) = ∨(Ci) and Bi(uj) = ∧(Ci)

or

Ai(uj) = ∧(Ci) and Bi(uj) = ∨(Ci);

4. If A ≤ A′
≤ B′

≤ B, then 𝛺(A,B) ≥ 𝛺(A′
,B′) where A = (A1,… ,Am) ≤

(A′
1,… ,A′

m) = A′
if Ai ≤ A′

i for every i.

we have the nest straight result.

Proposition 5 Let M1,… ,Mm be aggregation functions

Mi ∶ Ci × Ci → Ci
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Then the mapping

F ∶ Lm ×Lm → Lm given by
F(x, y) = (M1(x1, y1),… ,Mm(xm, ym))

is an aggregation function overLm.

Now we can introduce a method to build lattice distances.

Proposition 6 Let 𝛿R1
,… , 𝛿Rm

be lattice restricted dissimilarity functions 𝛿Ri
∶ Ci ×

Ci → Ci. Let M1,… ,Mm be aggregation functions Mi ∶ Ci ×⋯ × Ci → Ci such that

(L1) Mi(x1,… , xn) = 1L if and only if xi = ∨(Ci) for every i = 1,… , n
(L2) Mi(x1,… , xn) = 0L if and only if xi = ∧(Ci) for every i = 1,… , n

Then

𝛺(A,B) =
( n
M1
i=1

(𝛿R1
(A1(ui),B1(ui))),… ,

n
Mm
i=1

(𝛿Rm
(Am(ui),Bm(ui)))

)
(8)

defines a lattice distance inFS (U)m.

We know that the arithmetic mean of convex functions is also a convex function.

Next, we consider aggregation functions such that applied to convex functions we

obtain another convex function, as in the arithmetic mean case.

Theorem 4 Let Y = (y1,… , ym) ∈ Lm. For each yi (i = 1,… ,m) we consider the
set

Byi (uj) = yi for all uj ∈ U (9)

and let BY = (By1 ,… ,Bym ) ∈ FS (U)m. Let M1,… ,Mm be aggregation functions
Mi ∶ Ci ×⋯ × Ci → Ci such that each of them when composed with convex func-
tions is also convex. Take the lattice restricted dissimilarity function 𝛿R(x, y) =
(𝛿R1

(x1, y1),… , 𝛿Rm
(xm, ym)) such that each 𝛿Ri

with i = 1,… ,m is convex in one
variable. Then

P
𝛺

∶ FS (U)m+1 → Lm given by

P
𝛺

(A,Y) = 𝛺(A,BY ) =
( n
M1
i=1

(𝛿R1
(A1(ui), y1)),… ,

n
Mm
i=1

(𝛿Rm
(Am(ui), ym))

)
(10)

satisfies:

1. P
𝛺

(A,Y) ≥ 0Lm
;

2. P
𝛺

(A,Y) = 0Lm
if Ak(uj) = yk for every k and for every j;

3. Each of its components is convex with respect to the corresponding yk (k =
1,… ,m).
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Analogously to the case of (see [10, 14]), we introduce the definition of lattice
faithful restricted dissimilarity functions:

𝛿R(x, y) = K(d(x, y)) = K(
m∑

i=1
|xi − yi|) (11)

with K ∶ C → C a convex with a unique minimum at K(0) = 0.

Theorem 5 In the setting of Theorem 4, if 𝛿R1
,… , 𝛿Rm

are lattice faithful restricted
dissimilarity functions, then the mapping

FLm
∶ FS (U)m → Lm given by

FLm
(A) = argmin

Y
P
𝛺

(A,Y) = argmin
Y
𝛺(A,BY )

=
(
argmin

y1
(

n
M1
i=1

(K1(d(A1(ui), y1))),… , argmin
ym

(
n

Mm
i=1

(Km(d(Am(ui), ym)))
)

=
(
argmin

y1
(
n
M
i=1

(K1(|A1(ui) − y1|))),… , argmin
ym

(
n
M
i=1

(Km(|Am(ui) − ym|)))
)

is such that each of its components is an averaging aggregation function over
FS (U) and FLm

(A) is an averaging aggregation function over the Cartesian prod-
uct FS (U)m.

From now on we will denote by Byq the fuzzy set over U such that all its mem-

bership values are equal to yq ∈ [0, 1]; that is, Byq (ui) = yq ∈ [0, 1] for all ui ∈ U.

Let Y = (y1,… , ym) and BY = (By1 ,… ,Bym ) ∈ FS (U)m. We will denote by C ∗

a chain whose elements belong to [0, 1] and by L ∗
m the product such that L ∗

m =
C ∗ ×⋯ × C ∗

.

Finally, the penalty functions can be obtained as follows.

Theorem 6 Let Ki ∶ ℝ → ℝ+ be convex functions with a uniqueminimumat Ki(0) =
0 (i = 1,… ,m), and take the distance between fuzzy sets defined as

D(A,B) =
n∑

i=1
|A(ui) − B(ui)| (12)

where A,B ∈ FS (U) and Cardinal(U) = n. Then the mapping

P∇ ∶ FS (U)m ×L ∗
m → ℝ+ given by

P∇(A,Y) =
m∑

q=1
Kq(D(Aq,Byq )) =

m∑

q=1
Kq

( n∑

p=1
|Aq(up) − yq|

)
(13)
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satisfies

1. P∇(A,Y) ≥ 0;
2. P∇(A,Y) = 0 if and only if Aq = yq for every q = 1,… ,m;
3. is convex in yq for every q = 1,… ,m.

Observe thatP∇ is a penalty function defined over the Cartesian product of lattices

L ∗n+1
m .

Theorem 7 In the setting of Theorem 6, the mapping

F(A) = 𝜇 = argmin
Y

P∇(A,Y) (14)

where 𝜇 is the rounding to the smallest closest element, is an averaging aggregation
function.

Penalty functions on Cartesian product of lattices have shown themselves very

useful in decision making and consensus, see [3, 8].

5 Conclusions

In this chapter we have made a revision of the ideas of penalty and penalty-based

functions. We have also discussed how such notions can be extended to deal with

data in Cartesian products of lattices.
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The Single Parameter Family of Gini
Bonferroni Welfare Functions and the
Binomial Decomposition, Transfer Sensitivity
and Positional Transfer Sensitivity

Silvia Bortot, Mario Fedrizzi, Ricardo Alberto Marques Pereira
and Anastasia Stamatopoulou

Abstract We consider the binomial decomposition of generalized Gini welfare

functions in terms of the binomial welfare functions Cj, j = 1,… , n and we exam-

ine the weighting structure of the latter, which progressively focus on the poorest

part of the population. In relation with the generalized Gini welfare functions, we

introduce measures of transfer sensitivity and positional transfer sensitivity and we

illustrate the behaviour of the binomial welfare functions Cj, j = 1,… , n with respect

to these measures. We investigate the binomial decomposition of the Gini Bonferroni

welfare functions and we illustrate the dependence of the binomial decomposition

coefficients in relation with the single parameter which describes the family. More-

over we examine the family of Gini Bonferroni welfare functions with respect to the

transfer sensitivity and positional transfer sensitivity principles.

Keywords Generalized Gini welfare functions ⋅ Binomial decomposition ⋅ Single

parameter family of Gini Bonferroni welfare functions ⋅ Principle of transfer sensi-

tivity ⋅ Principle of positional transfer sensitivity

1 Introduction

The study of welfare and inequality has been the research interest of many economi-

cal and social scientists, and has been understood as an investigation on the departure

from the ideal situation of economic equalitarianism, where each individual of the

population has an equal share of the total income. In this sense, different welfare

and inequality measures, with different characteristics, have been introduced in the

literature in order to express the fairness of the income distribution in society.
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The generalized Gini welfare functions introduced by Weymark [60], and the

associated inequality indices in Atkinson-Kolm-Sen’s (AKS) framework, see Atkin-

son [5], Kolm [48, 49], and Sen [55], are related by Blackorby and Donaldson’s

correspondence formula [13, 15], A(x) = x̄ − G(x), where A(x) denotes a general-

ized Gini welfare function, G(x) is the associated absolute inequality index, and x̄ is

the plain mean of the income distribution x = (x1,… , xn) ∈ 𝔻n
of a population of

n ≥ 2 individuals, with income domain 𝔻 = [0,∞).
The generalized Gini welfare functions [60] have the form A(x) =

∑n
i=1wi x(i)

where x(1) ≤ x(2) ≤ ⋯ ≤ x(n) and, as required by the principle of inequality aversion,

w1 ≥ w2 ≥ ⋯ ≥ wn ≥ 0 with
∑n

i=1 wi = 1. These welfare functions correspond to

a particular class of the ordered weighted averaging (OWA) functions introduced by

Yager [63], which in turn correspond [34] to the Choquet integrals associated with

symmetric capacities.

In this paper we recall the binomial decomposition of generalized Gini welfare

functions due to Calvo and De Baets [22], see also Bortot and Pereira [20]. The

binomial decomposition is formulated in terms of the functional basis formed by the

binomial welfare functions.

The binomial welfare functions, denoted Cj with j = 1,… , n, have null weights

associated with the j − 1 richest individuals in the population and therefore they are

progressively focused on the poorest sector of the population.

The paper is organized as follows. In Sect. 2 we review the notions of general-

ized Gini welfare function and associated generalized Gini inequality index, and we

introduce general measures of transfer sensitivity and positional transfer sensitivity.

In Sect. 3 we briefly review the Gini and Bonferroni welfare functions and inequal-

ity indices, and we examine them with respect to the principles of transfer sensitivity

and positional transfer sensitivity.

In Sect. 4 we consider the binomial decomposition of generalized Gini welfare

functions in terms of the binomial welfare functions Cj, j = 1,… , n. We illustrate the

weights of the binomial welfare functions Cj, j = 1,… , n, which progressively focus

on the poorest sector of the population, and we examine their transfer sensitivity and

positional transfer sensitivity properties.

Finally, in Sect. 5 we investigate the Gini Bonferroni welfare functions with para-

meter 𝛾 ∈ [0, 1], particularly in the context of the binomial decomposition. More-

over, we illustrate the weighting structure of the Gini Bonferroni welfare functions

and we study their measures of transfer sensitivity and positional transfer sensitivity

in terms of the parameter 𝛾 ∈ [0, 1]. Section 6 contains some conclusive remarks.

2 Generalized Gini Welfare Functions and Inequality
Indices

In this section we consider populations of n ≥ 2 individuals and we briefly review the

notions of generalized Gini welfare function and generalized Gini inequality index

over the income domain 𝔻 = [0,∞). The income distributions in this framework are
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represented by points x, y ∈ 𝔻n
. We introduce general measures of transfer sensitiv-

ity and positional transfer sensitivity.

We begin by presenting notation and basic definitions regarding averaging func-

tions on the domain 𝔻n
, with n ≥ 2 throughout the text. Comprehensive reviews of

averaging functions can be found in Chisini [27], Fodor and Roubens [35], Calvo et

al. [23], Beliakov et al. [10], Grabisch et al. [46], and Beliakov et al. [9].

Notation. Points in 𝔻n
are denoted x = (x1,… , xn), with 1 = (1,… , 1), 0 =

(0,… , 0) . Accordingly, for every x ∈ 𝔻 , we have x⋅1 = (x,… , x). Given x, y ∈ 𝔻n
,

by x ≥ y we mean xi ≥ yi for every i = 1,… , n, and by x > y we mean x ≥ y and

x ≠ y. Given x ∈ 𝔻n
, the increasing and decreasing reorderings of the coordinates

of x are indicated as x(1) ≤ ⋯ ≤ x(n) and x[1] ≥ ⋯ ≥ x[n], respectively. In particular,

x(1) = min{x1,… , xn} = x[n] and x(n) = max{x1,… , xn} = x[1] . In general, given a

permutation 𝜎 on {1,… , n}, we denote x
𝜎

= (x
𝜎(1),… , x

𝜎(n)). Finally, the arithmetic

mean is denoted x̄ = (x1 +⋯ + xn)∕n.

Definition 1 Let A ∶ 𝔻n ⟶ 𝔻 be a function. We say that

1. A is monotonic if x ≥ y ⇒ A(x) ≥ A(y), for all x, y ∈ 𝔻n
. Moreover, A is

strictly monotonic if x > y ⇒ A(x) > A(y), for all x, y ∈ 𝔻n
.

2. A is idempotent if A(x ⋅ 1) = x, for all x ∈ 𝔻. On the other hand, A is nilpotent if

A(x ⋅ 1) = 0, for all x ∈ 𝔻.

3. A is symmetric if A(x
𝜎

) = A(x), for any permutation 𝜎 on {1,… , n} and all

x ∈ 𝔻n
.

4. A is invariant for translations if A(x + t ⋅ 1) = A(x), for all t ∈ 𝔻 and x ∈ 𝔻n
.

On the other hand, A is stable for translations if A(x + t ⋅ 1) = A(x) + t, for all

t ∈ 𝔻 and x ∈ 𝔻n
.

5. A is invariant for dilations if A(t ⋅ x) = A(x), for all t ∈ 𝔻 and x ∈ 𝔻n
. On the

other hand, A is stable for dilations if A(t ⋅ x) = t A(x), for all t ∈ 𝔻 and x ∈ 𝔻n
.

The terms positive (negative), increasing (decreasing), and monotonic are used in

the weak sense. Otherwise these properties are said to be strict.

We introduce the majorization relation on 𝔻n
and we discuss the concept of

income transfer following the approach in Marshall and Olkin [51], focusing on the

classical results relating majorization, income transfers, see Marshall and Olkin [51,

Chap. 4, Proposition A.1].

Definition 2 The majorization relation ⪯ on 𝔻n
is defined as follows: given x, y ∈

𝔻n
with x̄ = ȳ, we say that

x ⪯ y if

k∑

i=1
x(i) ≥

k∑

i=1
y(i) k = 1,… , n (1)

where the case k = n is an equality due to x̄ = ȳ. As usual, we write x ≺ y if x ⪯ y
and not y ⪯ x, and we write x ∼ y if x ⪯ y and y ⪯ x. We say that y majorizes x if

x ≺ y, and we say that x and y are indifferent if x ∼ y.
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The majorization relation is a partial preorder, in the sense that x, y ∈ 𝔻n
are

comparable only when x̄ = ȳ, and x ∼ y if and only if x and y differ by a permutation.

Given an income distribution x ∈ 𝔻n
, with mean income x̄, it holds that x̄ ⋅ 1 ⪯ x

since k x̄ ≥
∑k

i=1 x(i) for k = 1,… , n. The majorization is strict, x̄ ⋅ 1 ≺ x, when x is

not a uniform income distribution.

Definition 3 Given x, y ∈ 𝔻n
with x̄ = ȳ, we say that x is derived from y by means

of an income transfer if, for some pair i, j = 1,… , n with yi ≤ yj, we have

xi = (1 − 𝜀) yi + 𝜀yj xj = 𝜀yi + (1 − 𝜀) yj 𝜀 ∈ [0, 1] (2)

and xk = yk for k ≠ i, j. These formulas express an income transfer, from a richer to a

poorer individual, of an income amount 𝜀(yj −yi). The income transfer obtains x = y
if 𝜀 = 0, and exchanges the relative positions of donor and recipient in the income

distribution if 𝜀 = 1, in which case x ∼ y. In the intermediate cases 𝜀 ∈ (0, 1) the

income transfer produces an income distribution x which is majorized by the original

y, that is x ≺ y.

In general, for the majorization relation ⪯ and income distributions x, y ∈ 𝔻n
with

x̄ = ȳ, it holds that x ⪯ y if and only if x can be derived from y by means of a finite

sequence of income transfers. Moreover, x ≺ y if any of the income transfers is not

a permutation.

Definition 4 A function A ∶ 𝔻n ⟶ 𝔻 is an averaging function if it is monotonic

and idempotent. An averaging function is said to be strict if it is strictly monotonic.

Note that monotonicity and idempotency implies that min(x) ≤ A(x) ≤ max(x), for

all x ∈ 𝔻n
.

Particular instances of averaging functions are weighted averaging (WA) func-

tions, ordered weighted averaging (OWA) functions, and Choquet integrals. The for-

mer two are special cases of Choquet integration.

Definition 5 Given a weighting vector w = (w1,… ,wn) ∈ [0, 1]n, with
∑n

i=1 wi = 1,

the Weighted Averaging (WA) function associated with w is the averaging function

A ∶ 𝔻n ⟶ 𝔻 defined as

A(x) =
n∑

i=1
wi xi. (3)

Definition 6 Given a weighting vector w = (w1,… ,wn) ∈ [0, 1]n, with
∑n

i=1 wi = 1,

the Ordered Weighted Averaging (OWA) function associated with w is the averaging

function A ∶ 𝔻n ⟶ 𝔻 defined as

A(w) =
n∑

i=1
wi x(i). (4)
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The traditional form of OWA functions as introduced by Yager [63] is as follows,

A(x) =
∑n

i=1 w̃i x[i] where w̃i = wn−i+1. In [64, 65] the theory and applications of

OWA functions are discussed in detail. The following is a classical result particularly

relevant in our framework. This result regards a form of dominance relation between

OWA functions and the associated weighting structures, see for instance Bortot and

Pereira [20] and references therein.

A class of welfare functions which plays a central role in this paper is that of the

generalized Gini welfare functions introduced by Weymark [60], see also Mehran

[52], Donaldson and Weymark [30, 31], Yaari [61, 62], Ebert [33], Quiggin [54],

Ben-Porath and Gilboa [11].

Definition 7 Given a weighting vector w = (w1,… ,wn) ∈ [0, 1]n, with w1 ≥ ⋯ ≥

wn ≥ 0 and
∑n

i=1 wi = 1, the generalized Gini welfare function associated with w is

the function A ∶ 𝔻n ⟶ 𝔻 defined as

A(x) =
n∑

i=1
wix(i) (5)

and, in the AKS framework, the associated generalized Gini inequality index is

defined as

G(x) = x̄ − A(x) = −
n∑

i=1
(wi −

1
n
) x(i) . (6)

Generalized Gini welfare functions are strict if and only if w1 > ⋯ > wn > 0. More-

over, generalized Gini welfare functions are stable for translations and the associated

generalized Gini inequality indices are invariant for translations. Both are stable for

dilations.

In relation with generalized Gini welfare functions, the principles of transfer sen-

sitivity (TS) and positional transfer sensitivity (PTS) are based on the central notion

of a progressive income transfer. Given an income distribution

x =
(
x(1),… , x(i),… , x(j),… , x(n)

)

and i < j and x(i) ≤ x(j), we consider the progressive transfer of an income amount 𝛿

from x(j) to x(i), such that x(i) + 𝛿 ≤ x(j) − 𝛿. This progressive transfer results in a new

income distribution

x′ =
(
x(1),… , x(i) + 𝛿,… , x(j) − 𝛿,… , x(n)

)
.

We consider thus a progressive income transfer 𝛿 from x(j) to x(i) with i < j. This

transfer results in a new income distribution in which x′(i) = x(i)+𝛿, x′(j) = x(j)−𝛿, and

x′(k) = x(k) for k ≠ i, j. From the definition (5) of generalized Gini welfare functions,

we obtain
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A(x′) − A(x) =
n∑

k=1
wkx′(k) −

n∑

k=1
wkx(k)

=
[(

w1x(1) +⋯ + wi(x(i) + 𝛿) +⋯ + wj(x(j) − 𝛿) +⋯ + wnx(n)
)

−
(
w1x(1) +⋯ + wix(i) +⋯ + wjx(j) +⋯ + wnx(n)

)]

=
(
wi − wj

)
𝛿 . (7)

Given that the weight difference wi−wj is non negative, the generalized Gini welfare

of the distribution x′ is greater or equal than that of the original distribution x. This

means that the generalized Gini welfare function A satisfies the transfer sensitivity

(TS) principle, or Pigou-Dalton principle, which states that welfare (inequality) mea-

sures should be non decreasing (non increasing) under progressive income transfers.

On the other hand, the principle of positional transfer sensitivity (PTS) states that

the effect of an income transfer generates higher welfare values when it occurs at

lower income levels. In fact, the non negative weight difference wi−wj can vary with

the position indicated by the indices i, j. In particular, with j = i + 1, we may have

constant weight differences (the classical Gini case) or decreasing weight differences

(the classical Bonferroni case), as we will see below.

We can measure the transfer sensitivity of generalized Gini welfare functions

A(x) =
∑n

i=1 wi x(i) by means of

TS(A) =
n−1∑

i=1
wi − wi+1 = w1 − wn ∈ [0, 1] (8)

where wi are the weights of the generalized Gini welfare function, with i = 1,… , n.

The TS measure takes values in the unit interval [0, 1]. A TS value further away

from zero indicates a higher level of transfer sensitivity. More specifically, as the

value of the TS measure increases, transfer sensitivity increases too.

We can measure the positional transfer sensitivity of generalized Gini welfare

functions A(x) =
∑n

i=1 wi x(i) ≠ x̄ by means of

PTS(A) = 1 −
n−1∑

i=1

𝜔i ln𝜔i

ln(1∕(n − 1))
∈ [0, 1] (9)

where 𝜔i with i = 1,… , n − 1 is given by

𝜔i =
wi − wi+1

w1 − wn
i = 1,… , n − 1 (10)

with 𝜔1,… , 𝜔n−1 ≥ 0 and 𝜔1 +⋯+𝜔n−1 = 1. In the case 𝜔 = 0 we conventionally

take 𝜔 ln𝜔 = 0.

This measure takes values in the unit interval [0, 1]. In fact, the summation term

in (9), corresponding to the Shannon entropy of the 𝜔1,… , 𝜔n−1 distribution, takes
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values in [0, 1] and reaches the maximum value 1 when such distribution is uniform,

𝜔1 = ⋯ = 𝜔n−1 = 1∕(n−1). Therefore, the higher the value of the PTS(A) measure,

the greater the positional transfer sensitivity of generalized Gini welfare function A in

relation with income transfers from individual j+1 to individual j, with j = 1,… , n.

3 Gini and Bonferroni Welfare Functions and the
Associated inequality Indices

The classical Gini [37–39], Bonferroni [18, 19], and De Vergottini [28, 29] welfare

functions and the associated inequality indices are classical instances of the AKS

generalized Gini framework. In this section we recall the basic facts about the Gini

and Bonferroni welfare functions and inequality indices and we examine their prop-

erties regarding transfer sensitivity and positional transfer sensitivity.

The classical Gini welfare function AG(x) and the associated classical Gini inequal-

ity index G(x) = x̄ − AG(x) are defined as

AG(x) =
n∑

i=1
wG

i x(i) wG
i = 2(n − i) + 1

n2
(11)

where the weights of AG(x) are positive and strictly decreasing with unit sum,∑n
i=1 wG

i = 1, and

G(x) =
n∑

i=1

(1
n
− wG

i

)
x(i) = −

n∑

i=1

n − 2i + 1
n2

x(i) (12)

where the coefficients of G(x) have zero sum.

The classical absolute Gini inequality index G is traditionally defined as

G(x) = 1
2n2

n∑

i,j=1
|xi − xj| = − 1

n2

n−1∑

i=1

n∑

j=i+1

(
x(i) − x(j)

)
(13)

where the double summation expression for −n2G(x) in (13) can be written as

(−(n − 1))x(1) + (1 − (n − 2))x(2) +⋯ + ((n − 2) − 1)x(n−1) + (n − 1)x(n) (14)

which corresponds to (12).

The classical Bonferroni welfare function AB(x) and the associated classical Bon-

ferroni inequality index B(x) = x̄ − AB(x) are defined as
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AB(x) =
n∑

i=1
wB

i x(i) wB
i =

n∑

j=i

1
jn

(15)

where the weights of AB(x) are positive and strictly decreasing with unit sum,∑n
i=1 wB

i = 1, and

B(x) =
n∑

i=1

(1
n
− wB

i

)
x(i) (16)

where the coefficients of B(x) have zero sum.

The classical absolute Bonferroni inequality index B is traditionally defined as

B(x) = x̄ − 1
n

n∑

i=1
mi(x) (17)

where the mean income of the i poorest individuals in the population is given by

mi(x) =
1
i

i∑

j=1
x(j) for i = 1,… , n . (18)

Therefore we have

AB(x) =
1
n

n∑

i=1
mi(x) (19)

= 1
n

[(
x(1)

)
+ 1

2

(
x(1) + x(2)

)
+⋯ + 1

n

(
x(1) +⋯ + x(n)

)]
(20)

= 1
n

[ n∑

j=1

1
j

x(1) +
n∑

j=2

1
j

x(2) +⋯
n∑

j=n

1
j

x(n)
]

(21)

which corresponds to (15).

The rich literature on the three classical cases of generalized Gini welfare

functions—Gini, Bonferroni and De Vergottini—includes, for instance, Kolm [47],

Atkinson [5], Sen [55, 56], Mehran [52], Blackorby and Donaldson [13–16], Loren-

zen [50], Donaldson and Weymark [30, 31], Nygård and Sandström [53], Blackorby

et al. [17], Weymark [60], Yitzhaki [66], Giorgi [40, 41], Benedetti [12], Ebert [32],

Shorrocks and Foster [57], Yaari [62], Silber [58], Bossert [21], Tarsitano [59], Ben

Porath and Gilboa [11], Zoli [68], Gajdos [36], Aaberge [1–3], Giorgi and Crescenzi

[42, 43], Chakravarty and Muliere [26], Chakravarty [24, 25], Bárcena and Imedio

[6], Giorgi and Nadarajah [44], Bárcena and Silber [7, 8], Aristondo et al. [4], and

Zenga [67].
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We now consider a progressive transfer 𝛿 from x(j) to x(i) with i < j. This transfer

results in a new income distribution in which x′(i) = x(i) + 𝛿, x′(j) = x(j) − 𝛿, and

x′(k) = x(k) for k ≠ i, j. From (11) and (15) we obtain

AG(x′) − AG(x) =
n∑

k=1
wG

k x′(k) −
n∑

k=1
wG

k x(k)

=
[(

wG
1 x(1) +⋯ + wG

i (x(i) + 𝛿) +⋯ + wG
j (x(j) − 𝛿) +⋯ + wG

n x(n)
)

−
(
wG
1 x(1) +⋯ + wG

i x(i) +⋯ + wG
j x(j) +⋯ + wG

n x(n)
)]

=
(
wG

i 𝛿 − wG
j 𝛿

)
=
( 2(n − i) + 1

n2
−

2(n − j) + 1
n2

)
𝛿

= 2
n2

(j − i) 𝛿 (22)

AB(x′) − AB(x) =
n∑

k=1
wB

k x′(k) −
n∑

k=1
wB

k x(k)

=
[(

wB
1 x(1) +⋯ + wB

i (x(i) + 𝛿) +⋯ + wB
j (x(j) − 𝛿) +⋯ + wB

n x(n)
)

−
(
wB
1 x(1) +⋯ + wB

i x(i) +⋯ + wB
j x(j) +⋯ + wB

n x(n)
)]

=
(
wB

i 𝛿 − wB
j 𝛿

)
=
( n∑

k=i

1
nk

−
n∑

k=j

1
nk

)
𝛿

= 1
n

( 1
i
+ 1

i + 1
+⋯ + 1

j − 1

)
𝛿 =

(1
n

j−1∑

k=i

1
k

)
𝛿. (23)

Since AG(x′) −AG(x) > 0 and AB(x′) −AB(x) > 0, both welfare functions satisfy the

principle of transfer sensitivity. Expression (22) implies that the increase in welfare,

in the Gini case, depends on the difference (j−i), irrespectively of the actual positions

i, j. The Bonferroni welfare function, on the other hand, does depend on the actual

positions i, j. Expression (23) indicates that the increase in welfare is greater if the

transfer occurs at lower income levels and therefore the Bonferroni welfare function

satisfies the principle of positional transfer sensitivity.

4 The Binomial Decomposition

In this section we review the binomial decomposition of generalized Gini welfare

functions due to Calvo and De Baets [22] and Bortot and Pereira [20]. We examine

the weighting structures of the binomial welfare functions Cj, with j = 1,… , n,

and we illustrate their properties regarding transfer sensitivity and positional transfer

sensitivity.
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Definition 8 The binomial welfare functions Cj ∶ 𝔻n ⟶ 𝔻, with j = 1,… , n, are

defined as

Cj(x) =
n∑

i=1
wji x(i) =

n∑

i=1

(n−i
j−1

)

(n
j

) x(i) j = 1,… , n (24)

where the binomial weights wji, i, j = 1,… , n are null when i+ j > n+ 1, according

to the usual convention that
(p

q

)
= 0 when p < q, with p, q = 0, 1,… Given that the

binomial weights are decreasing, wj1 ≥ wj2 ≥ ⋯ ≥ wjn for j = 1,… , n, the binomial

welfare functions are generalized Gini welfare functions.

With the exception of C1(x) = x̄, the binomial welfare functions Cj, j = 2,… , n
have an increasing number of null weights, in correspondence with x(n−j+2),… , x(n).
The weight normalization of the binomial welfare functions,

∑n
i=1 wji = 1 for j =

1,… , n, is due to the column-sum property of binomial coefficients,

n∑

i=1

(
n − i
j − 1

)

=
n−1∑

i=0

(
i

j − 1

)

=
(

n
j

)

j = 1,… , n . (25)

The binomial welfare functions Cj, j = 1,… , n are continuous, idempotent, and

stable for translations, where the latter two properties follow immediately from the

unit sum normalization of the binomial weights. Moreover, due to the cumulative

property of the binomial weights, see Calvo and De Baets [22], see also Bortot

and Pereira [20], the binomial welfare functions satisfy the relations x̄ = C1(x) ≥
C2(x) ≥ ⋯ ≥ Cn(x) ≥ 0, for any x ∈ 𝔻n

.

Proposition 1 Generalized Gini welfare functions A ∶ 𝔻n ⟶ 𝔻 can be written
uniquely as

A(x) = 𝛼1C1(x) + 𝛼2C2(x) +⋯ + 𝛼nCn(x) (26)

where the coefficients 𝛼j, j = 1,… , n are subject to the following conditions,

𝛼1 = 1 −
n∑

j=2
𝛼j ≥ 0 (27)

n∑

j=2

[
1 − n

(i−1
j−1

)

(n
j

)
]
𝛼j ≤ 1 i = 2,… , n (28)

n∑

j=2

(n−i
j−2

)

(n
j

) 𝛼j ≥ 0 i = 2,… , n . (29)

The binomial welfare functions constitute therefore a functional basis for the

generalized Gini welfare functions, which can be uniquely expressed as
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A(x) =
∑n

j=1 𝛼j Cj(x) where the coefficients 𝛼j, j = 1,… , n satisfy the constraints

(27)–(29), one of which is
∑n

j=1 𝛼j = 1. However, the binomial decomposition does

not express a simple convex combination of the binomial welfare functions, as the

condition 𝛼1 +⋯+ 𝛼n = 1 might suggest. In fact, condition (27) ensures 𝛼1 ≥ 0 but

conditions (28) and (29) allow for negative 𝛼2,… , 𝛼n values.

Notice that C1(x) = x̄ and C2(x), which has n − 1 positive linearly decreasing

weights and one null last weight, is the only strict binomial welfare function. In

terms of the classical Gini welfare function we have that

Ac(x) = 1
n

C1(x) +
n − 1

n
C2(x) . (30)

The remaining binomial welfare functions Cj(x), j = 3,… , n, have n − j + 1
positive non-linear decreasing weights and j − 1 null last weights.

In dimensions n = 4, 8 the weights wij ∈ [0, 1], i, j = 1,… , n of the binomial

welfare functions Cj, j = 1,… , n are as follows,

n = 4 C1 ∶ ( 1
4
,

1
4
,

1
4
,

1
4
) n = 8 C1 ∶ ( 1

8
,

1
8
,

1
8
,

1
8
,

1
8
,

1
8
,

1
8
,

1
8
)

C2 ∶ ( 3
6
,

2
6
,

1
6
, 0) C2 ∶ ( 7

28
,

6
28
,

5
28
,

4
28
,

3
28
,

2
28
,

1
28
, 0)

C3 ∶ ( 3
4
,

1
4
, 0, 0) C3 ∶ ( 21

56
,

15
56
,

10
56
,

6
56
,

3
56
,

1
56
, 0, 0)

C4 ∶ (1, 0, 0, 0) C4 ∶ ( 35
70
,

20
70
,

10
70
,

4
70
,

1
70
, 0, 0, 0)

C5 ∶ ( 35
56
,

15
56
,

5
56
,

1
56
, 0, 0, 0, 0)

C6 ∶ ( 21
28
,

6
28
,

1
28
, 0, 0, 0, 0, 0)

C7 ∶ ( 7
8
,

1
8
, 0, 0, 0, 0, 0, 0)

C8 ∶ (1, 0, 0, 0, 0, 0, 0, 0)

The binomial welfare functions Cj, j = 1,… , n have null weights associated with

the j − 1 richest individuals in the population and therefore, as j increases from 1 to

n, they behave in analogy with poverty measures which progressively focus on the

poorest part of the population.

In order to measure the transfer sensitivity of the binomial welfare functions Cj,

with j = 1,… , n we consider a transfer from the richest to the poorest individ-

ual. To measure the transfer sensitivity of the binomial welfare functions Cj, with

j = 1,… , n, we use expression (8).

In Fig. 1 we can see the values of the TS(Cj) measure of the binomial welfare

functions Cj, with j = 1,… , n for the cases n = 4, 8.

In both cases n = 4, 8 we observe that TS increases linearly for j = 3,… , n, which

means that the TS difference Cj − Cj−1 between any 2 consecutive binomial welfare

functions is the same. This can be proved as follows,
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Fig. 1 Transfer sensitivity of Cj, for j = 1,… , n

(wj1 − wjn) − (wj−1,1 − wj−1,n) =
1
(n

j

)
[(n − 1

j − 1

)

−
(

n − n
j − 1

)]
−

1
( n

j−1

)
[(n − 1

j − 2

)

−
(

n − n
j − 2

)]

=
(n − 1)! j!
(j − 1)! n!

−
(n − 1)!(j − 1)!

n!(j − 2)!

=
j
n
−

j − 1
n

= 1
n

where wji are the binomial weights in (24) with i, j = 1,… , n.

In order to measure the positional transfer sensitivity of the binomial welfare func-

tions Cj, with j = 1,… , n we consider n − 1 income transfers, each time from an

individual in position j to the individual in position j − 1, with j = 1,… , n. To

measure the positional transfer sensitivity of the binomial welfare functions Cj, with

j = 1,… , n we use expression (9)
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Fig. 2 Positional transfer sensitivity of Cj, for j = 1,… , n
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In Fig. 2 we illustrate the PTS values of the binomial welfare functions Cj, with

j = 1,… , n in the cases n = 4, 8. We observe in both cases that PTS is null for

j = 1, 2 while for j = 3,… , n it increases monotonically, not linearly.

5 The Single Parameter Gini Bonferroni Welfare Functions

The single parameter family of Gini Bonferroni (GB) welfare functions, which inter-

polates between the classical Gini and Bonferroni cases, has been introduced by

Bárcena and Silber [8]. We recall the definition of the single parameter GB wel-

fare functions and we examine their binomial decomposition. Moreover, we study

the measures of transfer sensitivity and positional transfer sensitivity in terms of the

parameter 𝛾 ∈ [0, 1].
The welfare functions of the GB family are of the form

AGB(x) =
n∑

i=1
wGB

i x(i) (31)

with

wGB
i = (1∕n2)

[
n − i(n∕i)𝛾 +

n∑

j=i
(n∕j)𝛾

]
𝛾 ∈ [0, 1] (32)

where the classical Gini and Bonferroni welfare functions are special cases with

𝛾 = 0, 1. Note that when 𝛾 = 0 we obtain the “equally distributed equivalent level

of income” corresponding to the Gini welfare function, while when 𝛾 = 1 we obtain

the “equally distributed equivalent level of income” corresponding to the Bonferroni

welfare function.

Given that the weights of the GB welfare functions are strictly decreasing, wGB
1 >

wGB
2 > ⋯ > wGB

n = 1∕n2, the GB welfare functions are generalized Gini welfare

functions. The weighting structure of the GB welfare functions is illustrated in Fig. 3

in the cases n = 4, 8.

Fig. 3 Weights of the GB welfare functions for parameter values 𝛾 = 0, 0.1,… , 1
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Fig. 4 Coefficients of the binomial decomposition for n = 4, 8

In the framework of the binomial decomposition (26), each GB welfare function

AGB(x) can be uniquely expressed in terms of the binomial Gini welfare functions

C1,C2,…Cn as follows,

AGB(x) = 𝛼1C1(x) + 𝛼2C2(x) +⋯ + 𝛼nCn(x) 𝛾 ∈ [0, 1] (33)

which can be written as

n∑

i=1
wGB

i x(i) = 𝛼1

n∑

i=1
w1i x(i)+𝛼2

n∑

i=1
w2i x(i)+⋯+𝛼n

n∑

i=1
wni x(i) 𝛾 ∈ [0, 1] . (34)

The expression of the binomial decomposition is unique and therefore, for each value

of the parameter 𝛾 ∈ [0, 1], we obtain a unique vector (𝛼1,… , 𝛼n) by solving the

linear system

⎧
⎪
⎪
⎨
⎪
⎪
⎩

wGB
1 = 𝛼1w11 + 𝛼2w21 +⋯ + 𝛼nwn1

wGB
2 = 𝛼1w12 + 𝛼2w22 +⋯ + 𝛼nwn2

…
wGB

n = 𝛼1w1n + 𝛼2w2n +⋯ + 𝛼nwnn

(35)

where the binomial weights wji, i, j = 1,… , n are as in (24).

In Fig. 4 we depict the vector (𝛼1,… , 𝛼n) as a function of the parameter 𝛾 ∈ [0, 1]
in the cases n = 4, 8.

We observe, as expected, that 𝛼1 = 1∕n is independent of the parameter 𝛾 ∈ [0, 1]
since, in the last equation of the linear system (35), we have wGB

n = 1∕n2 and w1n =
1∕n and w2n = ⋯ = wnn = 0.

On the other hand, we observe that only 𝛼2 is decreasing, whereas 𝛼3,… 𝛼n are

increasing with respect to 𝛾 ∈ [0, 1].
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It is well known that the classical Gini welfare function is 2-additive, see for

instance Grabisch [45] and Bortot and Pereira [20] and references therein. On the

other hand, the classical Bonferroni welfare function is n-additive. In fact in Fig. 4

we observe that only 𝛼1, 𝛼2 ≠ 0 in the classical Gini case 𝛾 = 0, and 𝛼1,… , 𝛼n ≠ 0
in the classical Bonferroni case 𝛾 = 1.

In order to illustrate the PTS principle in relation with the classical Gini and

Bonferroni welfare functions, corresponding to the extreme values of the parameter

𝛾 = 0, 1, consider first the classical Gini welfare function AG(x), whose weighting

structure for n = 8 is given by (11) as follows,

wG =
(15
64

,

13
64

,

11
64

,

9
64

,

7
64

,

5
64

,

3
64

,

1
64

)
. (36)

Consider now a progressive income transfer 𝛿 from x(j) to x(i) with j = i + 1. This

transfer results in a new income distribution in which x′(i) = x(i) + 𝛿, x′(j) = x(j) − 𝛿,

and x′(k) = x(k) for k ≠ i, j. According to the expression for the classical Gini welfare

difference (22), we obtain

for i = 1, j = 2 ∶ AG(x′) − AG(x) = (wG
1 − wG

2 )𝛿 = 1
32

𝛿

for i = 2, j = 3 ∶ AG(x′) − AG(x) = (wG
2 − wG

3 )𝛿 = 1
32

𝛿

for i = 3, j = 4 ∶ AG(x′) − AG(x) = (wG
3 − wG

4 )𝛿 = 1
32

𝛿

for i = 4, j = 5 ∶ AG(x′) − AG(x) = (wG
4 − wG

5 )𝛿 = 1
32

𝛿

for i = 5, j = 6 ∶ AG(x′) − AG(x) = (wG
5 − wG

6 )𝛿 = 1
32

𝛿

for i = 6, j = 7 ∶ AG(x′) − AG(x) = (wG
6 − wG

7 )𝛿 = 1
32

𝛿

for i = 7, j = 8 ∶ AG(x′) − AG(x) = (wG
7 − wG

8 )𝛿 = 1
32

𝛿.

We can see that any progressive income transfer generates the same increase in wel-

fare, meaning that the classical Gini welfare function does not satisfies PTS.

Consider now the classical Bonferroni welfare function AB(x), whose weighting

structure for n = 8 is given by (15) as follows,

wB =
( 761
2240

,

481
2240

,

341
2240

,

743
6720

,

533
6720

,

73
1344

,

15
448

,

1
64

)
. (37)

As before, consider a progressive income transfer 𝛿 from x(j) to x(i) with j = i+1. This

transfer results in a new income distribution in which x′(i) = x(i) + 𝛿, x′(j) = x(j) − 𝛿,

and x′(k) = x(k) for k ≠ i, j. According to the expression for the classical Bonferroni

welfare difference (23), we obtain
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for i = 1, j = 2 ∶ AB(x′) − AB(x) = (wB
1 − wB

2 )𝛿 = 1
8
𝛿

for i = 2, j = 3 ∶ AB(x′) − AB(x) = (wB
2 − wB

3 )𝛿 = 1
16

𝛿

for i = 3, j = 4 ∶ AB(x′) − AB(x) = (wB
3 − wB

4 )𝛿 = 1
24

𝛿

for i = 4, j = 5 ∶ AB(x′) − AB(x) = (wB
4 − wB

5 )𝛿 = 1
32

𝛿

for i = 5, j = 6 ∶ AB(x′) − AB(x) = (wB
5 − wB

6 )𝛿 = 1
40

𝛿

for i = 6, j = 7 ∶ AB(x′) − AB(x) = (wB
6 − wB

7 )𝛿 = 1
48

𝛿

for i = 7, j = 8 ∶ AB(x′) − AB(x) = (wB
7 − wB

8 )𝛿 = 1
56

𝛿.

We can see in this case that the actual position in which the progressive income

transfer occurs has a differentiated impact on welfare. More specifically, the increase

in welfare is greater when the transfer applies to the lowest income levels.

In general, we can measure the transfer sensitivity and positional transfer sensi-

tivity of the GB welfare functions in terms of the parameter 𝛾 ∈ [0, 1] using the

measures in (8) and (9) as follows,

TS(𝛾) =
n−1∑

i=1
wGB

i − wGB
i+1 = wGB

1 − wGB
n , (38)

where wGB
i are the weights of the single parameter GB welfare functions AGB asso-

ciated with the parameter 𝛾 ∈ [0, 1], with i = 1,… , n.

PTS(𝛾) = 1 +
n−1∑

i=1

𝜔i ln𝜔i

ln(n − 1)
, (39)

where 𝜔i, with i = 1,… , n − 1, is given by

𝜔i =
wGB

i − wGB
i+1

wGB
1 − wGB

n

where wGB
i are the weights of the GB welfare functions, with i = 1,… , n.

In Figs. 5 and 6 we can see the measures of transfer sensitivity and positional

transfer sensitivity of the GB welfare functions associated with the parameter 𝛾 ∈
[0, 1], in the cases n = 4, 8. As the parameter 𝛾 value increases, we observe that both

transfer sensitivity and positional transfer sensitivity of the AGB welfare function

increase too. Notice the fact that transfer sensitivity is not null for 𝛾 = 0, corre-

sponding to the classical Gini case.
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Fig. 5 Transfer sensitivity of the AGB for parameter values 𝛾 ∈ [0, 1], with n = 4, 8

0.00

0.04

0.08

0.12

(a) PTS in the case n= 4

0.00

0.04

0.08

0.12

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b) PTS in the case n= 8

Fig. 6 Positional transfer sensitivity of the AGB for parameter values 𝛾 ∈ [0, 1], with n = 4, 8

6 Conclusions

We have examined the binomial decomposition of the single parameter family of GB

welfare functions and we have illustrated the dependence of the binomial decompo-

sition coefficients in relation with the parameter which describes the GB family. We

have found that 𝛼1 = 1∕n is independent of the parameter 𝛾 ∈ [0, 1] and we have

observed that only 𝛼2 is decreasing, whereas 𝛼3,… , 𝛼n are increasing with respect

to 𝛾 ∈ [0, 1]. In particular, since the binomial coefficients 𝛼j with j = 1,… , n are

non negative with unit sum, the decrease in 𝛼2 compensates the increase in 𝛼3,… , 𝛼n
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with respect to 𝛾 ∈ [0, 1]. The Bonferroni welfare function, associated with 𝛾 = 1,

is obtained by means of this compensatory mechanism.

Moreover, we have illustrated the transfer sensitivity and positional transfer sensi-

tivity of the binomial welfare functions, and we have examined their properties with

respect to these principles. For this purpose, we have introduced measures of transfer

sensitivity and positional transfer sensitivity for generalized Gini welfare functions

and, in particular, we have illustrated the behaviour of these measures in the case of

the GB welfare functions, in relation with the values of the parameter 𝛾 ∈ [0, 1].
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