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Abstract. Sequence classification has become a fundamental problem
in data mining and machine learning. Feature based classification is one
of the techniques that has been used widely for sequence classification.
Mining sequential classification rules plays an important role in feature
based classification. Despite the abundant literature in this area, min-
ing sequential classification rules is still a challenge; few of the available
methods are sufficiently scalable to handle large-scale datasets. MapRe-
duce is an ideal framework to support distributed computing on large
data sets on clusters of computers. In this paper, we propose a dis-
tributed version of MiSeRe algorithm on MapReduce, called MiSeRe-
Hadoop. MiSeRe-Hadoop holds the same valuable properties as MiSeRe,
i.e., it is: (i) robust and user parameter-free anytime algorithm and (ii)
it employs an instance-based randomized strategy to promote diversity
mining. We have applied our method on two real-world large datasets:
a marketing dataset and a text dataset. Our results confirm that our
method is scalable for large scale sequential data analysis.

1 Introduction

Sequential data is widely present in several domain such as biology [7,19],
medical [10] and web usage logs [20]. Consequently, sequence classification [24]
has become a fundamental problem in data mining and machine learning. The
sequence classification task is defined as learning a sequence classifier to map a
new sequence to a class label [24]. The literature in sequence classification is split
into three main paradigms: (1) feature based classification; (2) distance based
classification and (3) model based classification.

The feature based classification approach aims at extracting sequential clas-
sification rules of the form π : s → ci where s is the body of the rule and ci is
the value of a class attribute. Then, these rules are used as an input of a classifi-
cation method to build a classifier. Due to its potential of interpretability, many
approaches have been developed for mining sequential classification rules, such
c© Springer International Publishing AG 2017
L. Bellatreche and S. Chakravarthy (Eds.): DaWaK 2017, LNCS 10440, pp. 105–119, 2017.
DOI: 10.1007/978-3-319-64283-3 8



106 E. Egho et al.

a BayesFM [16], CBS [21], DeFFeD [13], SCII [27], and so on. All these methods
need parameters to prune the enumeration space. Unfortunately, setting these
parameters is not an easy task – each application data could require a specific
setting. Egho et al. [8,9] introduce a user parameter-free approach, MiSeRe, for
mining robust sequential classification rules. This algorithm does not require
any parameter tuning and employs an instance-based randomized strategy that
promotes diversity mining. MiSeRe works well in practice on typical datasets,
but it can not provide scalability, in terms of the data size and the performance,
for big data.

In modern life sciences, the sequential data can be very large; e.g., considering
a document collection with millions of documents or a web site with millions of
user web logs [1]. Mining massive sequential data on single computer suffers from
the problems of limited memory and computing power. To solve this problem,
parallel programming is an essential solution [23]. Parallel programming can be
divided into two categories: shared memory system; in which processes share a
single memory address space, and distributed memory system; where processes
only have access to a local private memory address space [2].

A number of efficient and scalable parallel algorithms have been developed
for mining sequential patterns [14]. Zaki et al. [26] present how a serial sequen-
tial approach SPADE [25] can be parallelized by using a shared memory sys-
tem. Parallelizing an algorithm by using shared system architecture is easy to
implement, but it does not provide enough scalability due to high synchroniza-
tion among processors and memory overheads [2]. On the other hand, Guralnik
et al. [12] propose a distributed memory parallel algorithm for a tree-projection
based sequential pattern mining algorithm. Cong et al. [5] present Par-CSP a
distributed memory parallel algorithm for mining closed sequential pattern. Par-
CSP is implemented by using the Message Passing Interface (MPI) in which low
level language is used for programming [11].

A recent framework for distributed memory system, Hadoop-Yahoo MapRe-
duce, has been proposed by Google [6]. MapReduce is a scalable and fault-
tolerant data processing model that allows programmers to develop efficient
parallel algorithms at a higher level of abstraction [6]. Many parallel algorithms
has been developed by using MapReduce framework for mining big sequential
data such as: BIDE-MR [22], PLUTE [17], SPAMC [4], MG-FSM [3] and so on.
However, all these algorithms need parameters to prune the enumeration space
(frequency threshold, maximum length and a gap constraint) and they focus
solely on mining sequential pattern.

Although a significant amount of research results have been reported on par-
allel implementations of sequential pattern mining, to the best of our knowledge,
there is no parameter-free parallel algorithm that targets the problem of min-
ing sequential classification rules. In this paper, we propose MiSeRe-Hadoop,
the first scalable parameter-free algorithm for mining sequential classification
rules. MiSeRe-Hadoop is the parallel implementation of a serial algorithm MiS-
eRe [8,9] on MapReduce framework. MiSeRe-Hadoop has the same features as
MiSeRe which are: it is user parameter-free and it promotes diversity mining.
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To validate our contributions, we perform an experimental evaluation on two real
large datasets. The first one is marketing dataset from the French Telecom com-
pany Orange containing sequential information about the behavior of 473, 898
customers. Our second dataset includes natural language text from New York
Times corpus (NYT) which consists of over 53 million sentences.

The remainder of this paper is organized as follows. Section 2 briefly reviews
the preliminaries needed in our development as well as a running example.
Section 3 describes the serial algorithm MiSeRe, while the design and imple-
mentation issues for MiSeRe-Hadoop are presented in Sect. 4. Section 5 presents
experimental results before concluding.

2 Preliminaries

Table 1. D: a tiny
labeled sequential data
set as an example.

sid Sequence Class

1 〈baadg〉 c1

2 〈agbe〉 c1

3 〈badgb〉 c2

4 〈eefgbg〉 c2

Let I = {e1, e2, · · · , em} be a finite set of m distinct
items. A sequence s over I is an ordered list s =
〈s1, · · · , s�s〉, where si ∈ I; (1 ≤ i ≤ �s, �s ∈ N). An
atomic sequence is a sequence with length 1. A sequence
s′ = 〈s′

1 · · · s′
�s′ 〉 is a subsequence of s = 〈s1 . . . s�s〉,

denoted by s′ � s, if there exist indices 1 ≤ i1 < i2 <
· · · < i�s′ ≤ �s such that s′

z = siz for all z = 1 . . . �s′ and
�s′ ≤ �s. s is said to be a supersequence of s′. T(I)
will denote the (infinite) set of all possible sequences
over I. Let C = {c1, · · · , cj} be a finite set of j distinct
classes. A labeled sequential data set D over I is
a finite set of triples (sid, s, c) with sid is a sequence identifier, s is a sequence
(s ∈ T(I)) and c is a class value (c ∈ C). The set Dci ⊆ D contains all sequences
that have the same class label ci (i.e., D = ∪j

i=1Dci). The following notations
will be used in the rest of the paper: m is the number of items in I, j is the
number of classes in C, n is the number of triples (sid, s, c) in D, nc is the number
of triples (sid, s, c) in Dc, �s is the number of items in the sequence s, ks is the
number of distinct items in the sequence s, (ks ≤ �s) and �max is the number of
items in the longest sequence of D.

Definition 1. (Support of a sequence) Let D be a labeled sequential data set
and let s be a sequence. The support of s in D, denoted f (s), is defined as:

f (s) = |{(sid′, s′, c′) ∈ D|s � s′}|

The value of n − f (s) can be written as f (s). The support of s in Dc is noted
fc(s) and f c(s) stands for nc − fc(s).

Given a positive integer σ as a minimal support threshold and a labeled
sequential data set D, a sequence s is frequent in D if its support f (s) in D exceeds
the minimal support threshold σ. A frequent sequence is called a “sequential
pattern”.
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Definition 2 (Sequential classification rule). Let D be a labeled sequential
data set with j classes. A sequential classification rule π is an expression of the
form:

π : s → fc1(s), fc2(s), · · · , fcj (s)

where s is a sequence, called body of the rule, and fci(s) is the support of s in
each Dci , i = 1 · · · j.

This definition of classification rule is slightly different from the usual defin-
ition where the consequent is a class value (i.e., s → ci). It refers to the notion
of distribution rule [15] and allows us to access the whole frequency information
within the contingency table of a rule π – which is needed for the development
of our framework.

Example 1. We use the sequence database D in Table 1 as an example. It con-
tains four data sequences (i.e., n = 4) over the set of items I = {a, b, d, e, f, g}
(i.e., m = 6). C = {c1, c2} is the set with two classes (i.e., j=2). The longest
sequence of D is s = 〈eefgbg〉 (i.e., �s = �max), �max = 6 while ks = 4. Sequence
〈aad〉 is a subsequence of 〈baadg〉. The sequence 〈a〉 is an atomic sequence. Given
the sequence s = 〈ab〉, we have f (s) = 2, f (s) = 2, fc1(s) = 1, f c1(s) = 1,
fc2(s) = 1 and f c2(s) = 1. π : 〈ab〉 → fc1(〈ab〉) = 1, fc2(〈ab〉) = 1 is a sequential
classification rule.

Given a labeled sequential data set D and a sequential classification rule π :
s → fc1(s), fc2(s), · · · , fcj (s), a Bayesian criterion level is defined by Egho et al.
[8,9] for evaluating the interestingness of sequential classification rule. This cri-
terion is based on the a posteriori probability of a rule given the data and does
not require any wise threshold setting. The level criterion is defined as follows:

level(π) = 1 − cost(π)
cost(π∅)

where cost(π) is defined as the negative logarithm of the a posteriori probability
of a rule given the data:

cost(π) = −log(P (π | D)) ∝ −log(P (π) × P (D | π))

Considering a hierarchical prior distribution on the rule models,
Egho et al. [8,9] obtained an exact analytical expression of the cost of a rule:

cost(π) = log(m + 1) + log(�max + 1) + log(
mks

ks!
) + log(ks

�s)

+ log
(
f (s) + j − 1

j − 1

)
+ log

(
f (s) + j − 1

j − 1

)

+ log(f (s)!) −
j∑

i=1

log(fci(s)!) + log(f (s)!) −
j∑

i=1

log(f ci(s)!)
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cost(π∅) is the cost of the default rule with empty sequence body. The cost of
the default rule π∅ is formally:

cost(π∅) = log(m + 1) + log(�max + 1) + log

(
n + j − 1

j − 1

)
+ log(n!) −

j∑
i=1

log(nci !)

The level naturally highlights the border between the interesting rules and
the irrelevant ones. Indeed, rules π such that level(π) ≤ 0, are less probable
than the default rule π∅. Then using them to explain the data by characterizing
classes of sequence objects is more costly than using π∅; such rules are considered
spurious. “rule such that 0 < level(π) ≤ 1 is an interesting rule” (see [8,9]
for more details about the interpretation of these two formulas).

3 MiSeRe Algorithm

Start

Generate Singleton Rules

Continue

Randomly Choose Sequence (s)

Randomly Generate Rule π from s

level(π) > 0

Keep π

Yes

Yes

End

No

No

Fig. 1. Flow chart for the
main procedure of the MiSeRe
algorithm

In this section we describe MiSeRe [8,9], an algo-
rithm for mining sequential classification rules,
which forms the basis for our distributed algo-
rithm. MiSeRe is an anytime algorithm: the
more time the user grants to the task, the more it
learns. MiSeRe employs an instance-based ran-
domized strategy that promotes diversity min-
ing. MiSeRe is based on the following two-step
process:

Step 1: MiSeRe firstly performs a single data
scan to gather basic statistics about the data:
the number of items in I, the number of classes
in C, the number of sequences in D, the num-
ber of sequences in Dci and the length of the
longest sequence of D. In this step, MiSeRe also
generates all sequential classification rules whose
body is an atomic sequence, such rules with pos-
itive level values are chosen. These rules are
selected for two reasons: first, these rules are easy
to mine. Second, the short sequences are more
probable a priori and preferable as the cost of
the rule c(π) is smaller for lower �s and ks val-
ues, meeting the consensus: “Simpler and shorter rules are more probable
and preferable”.

Step 2: In this step, MiSeRe randomly chooses one sequence s from the labeled
sequential database D. Then, it randomly generates a subsequence from the
chosen sequence s. This generation is done by randomly removing z items from
s where z is between 1 and �s−2. Then, the rule π is built based on the generated
subsequence s′. Finally, the rule π is added to the rule set if its level value is
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positive and it is not already in R. MiSeRe repeats the Step 2 until the algorithm
is stopped by the user manually at some point in time. Figure 1 shows a flow
chart (simplified for exposition, see [8,9] for full details) for the main procedure
of the MiSeRe algorithm.

4 MiSeRe Hadoop Algorithm

In this section, we present MiSeRe-Haddoop, a distributed version of MiSeRe.
MiSeRe-Hadoop has the same features as MiSeRe which are: (i) it is user
parameter-free and (ii) anytime algorithm and (iii) it employs an instance-based
randomized strategy. MiSeRe-Hadoop is divided into two steps as MiSeRe where
each step is completely parallelized (Fig. 2).

MiSeRe-Hadoop

Data

Generating Statistics
and Singleton Rules

Job 1

Singleton Rules

Statistics

Pruning Singleton
Rules

Job 2

Result

Previous
Candidates

Generating Candidates

Job 3

Candidates

Generating and Pruning
Rules

Job 4

Keep a copy Pass as parameter

Pass as parameter

Step I

Step II

Fig. 2. MiSeRe-Hadoop

4.1 Step I:

In the first step, MiSeRe-Hadoop gathers basic statistics about the data and
mines all sequential classification rules having only an atomic sequence in the
body. This can be done efficiently in two MapReduce jobs.

The job “Generating Statistics and Singleton Rules” generates the
singleton rules and the statistics about the data consisting of: the number of
sequences in Dci (i.e., nci), the number of sequences in D (i.e., n) and the length
of the longest sequence of D (i.e., �max). During this job, the data is distributed
to available mappers. Each mapper takes a pair (s, c) ∈ D as input and tokenizes
it into distinct items. Then, the mapper emits the class label for each item. In
order to compute the statistic values about data nci , n and �max, the mappers
output the pair (key,value) as follow: the mapper emits also 1 for the class label
c (i.e., (class.c, 1)), 1 for the term n (i.e., (notation.n, 1)) and the number of
items in the sequence for the term �max (i.e., (notation.�max, �s)).
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Example 2. Given the pair (〈baadg〉, c1) from our toy data set (Table 1). The
mapper splits the sequence 〈baadg〉 into distinct items b, a, d and g. Then, the
mapper forms the key value pairs: (b, c1), (a, c1), (d, c1), (g, c1), (class.c1, 1) ,
(notation.n, 1) and (notation.�max, 5).

The reducer forms an aggregation function and outputs its results into two
files: Singleton Rules and Statistics depending on the key as follows:

– In case the key is a class label class.ci or the term notation.n, the reducer
sums up the values associated with this key. Then, it outputs them to the
Statistics file.

– In case the key is the term notation.�max, the reducer selects the maximum
values associated with the key notation.�max. Then, it outputs them to the
Statistics file.

– In case the key is an item e; e ∈ I, the reducer computes the frequency of
each class label appearing in its value. Then, it outputs the sequence and its
support in each Dci to the Singleton Rules file.

Example 3. If the reducer receives the following (key,value) pairs from the
mapper: (f, c2), (g, c1), (g, c2), (g, c2), (notation.�max, 5), (notation.�max, 4),
(notation.�max, 5), (notation.�max, 6), (notation.n, 1), (notation.n, 1),
(notation.n, 1), (notation.n, 1), (notation.c2, 1) and (notation.c2, 1) . Then, it
results (〈f〉, fc2(〈f〉) = 1), (〈g〉, fc1(〈g〉) = 1 fc2(〈g〉) = 2), (class.c2, 2),
(notation.n, 4) and (notation.�max, 6).

Given the output of the job “Generating Statistics and Singleton
Rules”, we compute the rest of the statistics about the data consisting of:
the number of classes in C (i.e., j) and the number of items in I (i.e., m).

Data

〈baadg〉 c1
〈badgb〉 c2
〈agbe〉 c1
〈eefgbg〉 c2

Spliting

〈baadg〉 c1

〈badgb〉 c2

〈agbe〉 c1

〈eefgbg〉 c2

Mapping
(Key,Value)

(a,c1)
(b, c1)
(d, c1)
(g, c1)

(class.c1, 1)
(notation.�max, 5)
(notation.n, 1)

(a, c2)
(b, c2)
(d, c2)
(g, c2)

(class.c2, 1)
(notation.�max, 5)
(notation.n, 1)

( a, c1)
( b, c1)
(e, c1)
(g, c1)

(class.c1, 1)
(notation.�max, 4)
(notation.n, 1)

(b, c2)
(e, c2)
(f , c2)
(g, c2)

(class.c2, 1)
(notation.�max, 6)
(notation.n, 1)

Reducing
(Key,Value)

(〈a〉 fc1(〈a〉) = 2 fc2(〈a〉) = 1)
(〈b〉, fc1(〈b〉) = 2 fc2(〈b〉) = 2)
(〈d〉 , fc1(〈d〉) = 1 fc2(〈d〉) = 1)
(〈e〉, fc1(〈e〉) = 1 fc2(〈e〉) = 1)

(class.c1, 2)

( 〈f〉, fc2(f〉) = 1)
(〈g〉, fc1(〈g〉) = 1 fc2(〈g〉) = 2)

(class.c2, 2)
(notation.�max, 6)
(notation.n, 4)

Candidate Rules

(〈a〉, fc1(〈a〉) = 2 fc2(〈a〉) = 1)
(〈b〉, fc1(〈b〉) = 2 fc2(〈b〉) = 2)
(〈d〉, fc1(〈d〉) = 1 fc2(〈d〉) = 1)
(〈e〉, fc1(〈e〉) = 1 fc2(〈e〉) = 1)

(〈f〉, fc2(〈f〉) = 1)
(〈g〉, fc1(〈g〉) = 1 fc2(〈g〉) = 2)

Statistics

(class.c1, 2)
(class.c2, 2)

(notation.�max, 6)
(notation.n, 4)

Inject (notation.j,4-2)

Inject (notation.m,6)

Fig. 3. Generating statistics and singleton rules job
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The term j is computed by counting the number of lines in Statistics file
then subtracting 2 from the result which represents the two lines of the terms
notation.�max and notation.n. Then, we inject the value of j into the Statis-
tics file. The term m is computed by counting the number of lines in Single-
ton Rules file and we inject it into the Statistics file. Figure 3 details the job
“Generating Statistics and Singleton Rules”.

The job “Pruning Singleton Rules” prunes the candidate rules
which are generated after applying the job “Generating Statistics and
Singleton Rules”. This job consists only of mappers. The rules are distrib-
uted to available mappers. The basic statistics of our data (i.e., Statistics file)
are passed as a parameter to each mapper by using the distributed cache. Then,
the mapper computes the level of each rule and emits the rules having a positive
level, i.e., “interesting singleton rules”, as a key and its level as a value.

4.2 Step II:

In the second step, MiSeRe-Hadoop mines all sequential classification rules hav-
ing a sequence with more than one item in the body. MiSeRe-Hadoop iteratively
repeats this step until the algorithm is stopped by the user manually at some
point in time. The Step II can be efficiently achieved in two MapReduce jobs.

The job “Generating Candidates” employs an instance-based randomized
strategy to generate candidate sequences from the data. This strategy can gener-
ate exactly the same candidate sequence several times. To avoid this redundancy
problem, we define two kinds of mappers as follows:

– The set of first mappers take data as an input and generates new candidate
sequences as an output. When the data is distributed to these mappers, each
mapper randomly chooses one sequence s from each subset of data. From this
chosen sequence s, the mapper randomly removes some items to generate a
new subsequence. Finally, the mapper outputs the generated subsequence as
a key and the term “New” as a value. This task is repeated by each mapper
until a fixed number of candidate sequences is generated from each subset.

– The second set of mappers take the sequences from Previous Candidates1

file which is generated from this step iteratively. The sequences in Previous
Candidates file are distributed to these mappers. Then, the mapper outputs
the sequence as a key and the term “Old” as a value.

The reducer filters the sequences based on its value i.e., it only outputs those
sequences which do not include the term “Old” in their value. Figure 4 details
the job “Generating Candidates”. The candidate sequences generated from
this job are then copied to the Previous Candidates file to avoid generating the
same candidate sequences from the data in the next iteration.

The job “Generating and Pruning Rules” generates the sequential rules
from the data based on the candidate sequences generated from the job
1 This file keeps a copy of all the candidate sequences generated from the job
“Generating Candidates” in each iteration.
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Data

〈baadg〉 c1
〈agbe〉 c1
〈badgb〉 c2
〈eefgbg〉 c2

Pr evious
Candidates

〈aa〉
〈bb〉

〈aaa〉

Spliting

〈baadg〉 c1
〈agbe〉 c1

〈badgb〉 c2
〈eefgbg〉 c2

〈aa〉
〈ba〉

〈aaa〉

Mapping
(K ey,Value)

(〈aa〉, New)
(〈ae〉, New)
(〈ba〉, New)

(〈ba〉, New)
(〈fb〉, New)
(〈bb〉, New)

(〈aa〉, Old)
(〈bb〉, Old)

(〈aaa〉, Old)

Reducing
(K ey,Value)

〈aa〉, (New,Old))
〈ae〉, (New))

〈ba〉, (New,New))
〈fb〉, (New))

〈bb〉, (New,Old))
〈aaa〉, (Old))

〈ae〉
〈ba〉
〈fb〉

Candidates

Keep a copy

Fig. 4. Generating candidates job

“Generating Candidates”. The data is distributed to available mappers while
the candidates are passed as a parameter to each mapper by using the distrib-
uted cache. Each mapper takes a pair (s, c) ∈ D as input. Then, each candidate
sequence is checked against the input sequence, if it is a sub-sequence of the input
sequence, a key value pair is emitted where the key is the candidate sequence
and the value is the class label. The reducer then generates the sequential classi-
fication rules by aggregating the frequency of the sequence in each class. Finally,
the reducer computes the level of the rule and emits only the rules having a
positive level, i.e.,“interesting rules”, as a key and its level as a value.

5 Experiments

In this section, we empirically evaluate our approach on two real big datasets.
MiSeRe-Hadoop is implemented in JAVA. The experiments are performed on
a cluster of 6 computers, each with 64GB memory. One machine actes as the
Hadoop master node, while the other five machines acte as worker nodes. The
experiments are designed to discuss the following two points: the scalability of
MiSeRe-Hadoop and the diversity of the mined rules with MiSeRe-Hadoop.

Datasets. We use two real-world datasets for our experiments. The first dataset
is a large marketing database from the French Telecom company Orange con-
taining sequential information about the behavior of 473 898 customers. We
use this dataset for predicting their propensity to churn. Each sequence rep-
resents a time-ordered set of actions (or events) categorized into two parts: (1)
history of interaction between the customer and the LiveBox2, e.g., changing the
channel, rebooting the router, etc., (2) state of the box such as sending the tem-
perature of box etc. These customers are classified into 2 classes. The first class
includes 159 229 customers who terminated their contract with the company.

2 Orange Livebox is an ADSL wireless router available to customers of Orange’s Broad-
band services in several countries.
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Fig. 5. The scalability results for each iteration in Step 2.

The second class consists of 314 669 customers who still have the contract.
This data set contains 433 distinct actions, the longest sequence is a customer
having 23 759 actions while the median length of sequences is 192 actions.
Our second dataset is the New York Times corpus (NYT) [18] which consists
of 53 267 584 sentences from 1.8 million articles published between 1987 and
2007. We treat each sentence as an input sequence with each word (token) as an
item. All the sentences were stemmed and lemmatized using WordNet lemma-
tizer. These sentences are classified into 34 classes such as News, Sports, Health,
etc. This data set contains 965 782 distinct words, the longest sequence is a
sentence having 2 381 words while the median length of sequences is 10 words.
The difference between Orange and NYT dataset is that the former does not
contain a large number of sequences however each sequence contains too many
number of actions creating longer sequences. While the latter consists of huge
number of sequences with lesser number of words in the sequences.

Scalability. In this experiment, we explore the scalability of each job in MiSeRe-
Hadoop. We run MiSeRe-Hadoop for 48 h over Orange dataset. MiSeRe-Hadoop
firstly runs the job “generating statistics and singleton rules” which takes 43 s
and generates 433 candidate singleton rules. Then, MiSeRe-Hadoop filters
these rules over the second job “pruning singleton rules” which takes 40 s
and returns 268 singleton interesting rules. Then, MiSeRe-Hadoop passes
to the second step where it iteratively repeats the two jobs “generating candi-
dates” and “generating and pruning rules” until it is stopped after 48 h. In each
iteration, MiSeRe-Hadoop generates at most 2000 distinct candidate sequences
then prunes them. MiSeRe-Hadoop repeats this step 877 times during 48 h.
Figure 5 (a) shows the execution times of the two jobs “generating candidates”
and “generating and pruning rules” over Orange dataset. The average execution
time of the job “generating candidates” is 33.4 s while for the job “generating
and pruning rules” it is 118.51 s.

We also run MiSeRe-Hadoop for 192 h over NYT dataset. The job “generat-
ing statistics and singleton rules” takes 183 s and generates 965 782 candidate
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singleton rules. Then, the job “pruning singleton rules” filters these rules which
takes 47 s and returns 7 092 singleton interesting rules. Then, MiSeRe-
Hadoop iteratively repeats 110 times the two jobs “generating candidates”
and “generating and pruning rules” during 192 h. In each iteration, MiSeRe-
Hadoop generates at most 2000 distinct candidate sequences then prunes them.
Figure 5(b) shows the execution times of the two jobs “generating candidates”
and “generating and pruning rules” over NYT dataset. The average execution
time of the job “generating candidates” is 43.67 s while for the job “generating
and pruning rules” it is 2 528.4 s.

From Fig. 5, it can be noticed that the job “generating and pruning rules” is
the only job which takes the most time in the pipeline of MiSeRe-Hadoop. The
performance of this job is based on two criteria. The first one is the number of
candidate sequences which are generated form the job “generating candidates”.
For this reason, the execution time of the job “generating and pruning rules”
for NYT data set is more stable and fixed around 2 528.4 s as the number
of candidates are more stable and fixed around 2000 new candidates sequences
(see Fig. 6). On the other hand, for Orange dataset, the number of candidate
sequences is lesser at each iteration, for this reason the execution time of the
job “generating and pruning rules” is decreasing at each iteration. The second
criteria which effects on the performance of the job “generating and pruning
rules” is the size of the dataset. For this reason, the execution time of this job
over NYT dataset takes 20 times more than the execution time of the same job
over Orange dataset because the size of NYT data set is larger than the Orange
data set.

Diversity. In this section, we study the diversity of the mined rules by MiSeRe-
Hadoop. The maximum number of candidate sequences to be generated by the
job “generating candidates” at each iteration over the two datasets was set to
2000. The main goal of these experiments are as follows: (1) how many candidate
sequences and interesting rules are generated by MiSeRe-Hadoop at each itera-
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Fig. 6. Number of candidate sequences and rules generated over each iteration in
Step 2.
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tion, (2) the number of candidate sequences and interesting rules generated by
MiSeRe-Hadoop having n-items and (3) what is the relation between the number
of items in the body of the rules and its value for the level criterion.

Figure 6 shows the number of candidate sequences generated and the inter-
esting rules found over each iteration. From Fig. 6(a), it can be observed that
for Orange dataset, at each iteration around 70% of the candidate sequences
are interesting rules which implies that these rules were easier to generate. On
the contrary, for NYT dataset, we have text data where MiSeRe-Hadoop has
difficulty in finding interesting rules at each iteration as the percentage of finding
rules from candidate sequence is very low, which is around 5% (see Fig. 6(b)).
The total number of interesting rules generated from Orange dataset during 877
iterations is 534 460 rules, while the total number of rules generated from NYT
dataset during 110 iterations is 11 473 rules.

In Fig. 7, we study the relation between the length and the value of level of
interesting rules. We plot the length of the interesting rule against its level. For
Orange dataset, we can extract interesting rules with up to 72 items while for
NYT, MiSeRe-Hadoop extracts interesting rules with at most 4 items (words).
From Fig. 7, it can be concluded that the level value of the shorter rules is larger
than the longer ones, meeting the consensus: “Simpler and shorter rules are
more probable and preferable”.

(a) Orange (b) New York Times

Fig. 7. Length of rules against its value of level criterion.

We also study the relation between the length of candidate sequences and
mined rules. Figure 8(a) shows the number in logscale of candidate sequences and
rules mined over the step 2 of MiSeRe-Hadoop from Orange dataset. For this plot,
we limit the visualization up to 30 items as 99.75% of mined rules have a body
with maximum 30 items. In MiSeRe-Hadoop, the job “generating candidates”
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generates more candidate sequences with lesser number of items as compared
to the longer ones because short rules are more probable and preferable. For
this reason, the candidate sequences having items less than 8 represent 85%
of all the generated candidate sequences. For NYT data set, MiSeRe-Hadoop
generates most of the candidate sequences with 2-items because it is a text
data set and has 965 782 distinct words. Thus, it can generate upto (965782)2

distinct candidate sequences with 2-items. From Fig. 8(b), It can be observed
that generating sequential classification rules form text data is not easy task.
For example, MiSeRe-Hadoop generates 11 673 candidate sequences with
three words and finally finds just 157 interesting rules over these candidates.

Figures 6, 7 and 8 highlight that the randomized strategy employed in
MiSeRe-Hadoop allows us to mine interesting rules with diversity which is highly
dependent on the data.
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Fig. 8. Length of candidate sequences and rules against the number of rules.

6 Conclusion and Future Work

This paper focuses on the important problem of mining sequential rule patterns
from large scale sequential data. We propose MiSeRe-Hadoop, a scalable algo-
rithm for mining sequential rules in MapReduce. MiSeRe-Hadoop is a parameter-
free algorithm that efficiently mines interesting rules. The empirical experiments
show that: (1) our method is scalable for large scale sequential data analysis and
(2) the randomized strategy employed in MiSeRe-Hadoop allows us to mine
interesting rules with diversity. As future work, we plan to extend our approach
for multi label sequential data set. On the other hand, we are also planning on
using the mined sequential classification rules by MiSeRe-Hadoop as an input of
the classification method to build a classifier.
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