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Learning with Multimedia Information Environments

The use of explanatory texts (spoken or written) combined with pictorial repre-
sentations (e.g., diagrams, animations, or videos) as a format of instruction has
become omnipresent in educational information environments. Such text-picture
combinations are referred to as multimedia (Mayer, 2009). There is a large body of
research showing that learning with multimedia is under most circumstances more
effective than learning just from text alone, a finding commonly referred to as the
“multimedia effect” (Anglin, Vaez, & Cunningham, 2004; Butcher, 2014). Different
explanations for this multimedia effect have been proposed. According to the two
most prominent theories in the field, the Cognitive Theory of Multimedia Learning
(CTML; Mayer, 2009) and the Integrated Model of Text and Picture Comprehension
(ITPC; Schnotz, 2005), learning with text and pictures can result in richer and more
elaborate mental representations of the to-be-learnt content than when studying only
text. For this to happen, learners have to select relevant information from each
representational format (i.e., the text or the picture) and mentally organize the infor-
mation into meaningful mental structures. Most importantly, they need to establish
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coherence between information from the text and picture by mapping elements from
the text onto those of the picture and vice versa (Seufert, 2003). This process has
been referred to as global coherence formation (as opposed to the organization of
information within a single representation; Seufert, 2003) or text-picture integration
(Mayer, 2009; Schnotz, 2005), respectively. Only if learners mentally integrate
information from texts and pictures into coherent mental models, deeper learning
as a prerequisite for being able to apply the learnt contents to novel situations (i.e.,
transfer) is assumed to occur. A number of studies have deployed process measures
such as recordings of students’ eye gazes as indicators for integration. These studies
showed that more switches between text and picture processing as well as more
frequent processing of pictorial elements that corresponded to text are related to
better comprehension of multimedia materials (e.g., Mason, Tornatora, & Pluchino,
2013; Scheiter & Eitel, 2015).

In particular, the use of eye tracking as a research methodology has, however,
also revealed that many learners fail to adequately carry out the cognitive processes
necessary in order to benefit from multimedia (Renkl & Scheiter, 2015). Many
learners do not pay sufficient attention to the pictures but rather focus on the text
(e.g., Hannus & Hyönä, 1999; Schmidt-Weigand, Kohnert, & Glowalla, 2010a,
2010b); moreover, they fail to integrate information from texts and pictures if no
proper instructional guidance is provided (Cromley et al., 2013; Mason et al., 2013;
Scheiter & Eitel, 2015; Schwonke, Berthold, & Renkl, 2009). In early research
on multimedia learning, this problem of inadequate processing of multimedia
instruction has been addressed by developing various instructional design measures
that are tailored towards supporting learners in integrating texts and pictures (Mayer
& Moreno, 2002). For instance, spatial contiguity between texts and pictures, which
is established by presenting texts close to their corresponding picture elements, was
shown to be effective in fostering the integration process (Johnson & Mayer, 2012)
and comprehension (for reviews and meta-analyses see Ayres & Sweller, 2014;
Ginns, 2006). Similarly, cueing or signaling correspondences between texts and
pictures, for instance by showing corresponding text and picture elements in the
same color, also was shown to aid integration and comprehension (e.g., Ozcelik,
Karakus, Kursun, & Cagiltay, 2009; Scheiter & Eitel, 2015; for a meta-analysis see
Richter, Scheiter, & Eitel, in press).

Even though these design measures improve learning outcomes, relying on them
as the only approach to support learners may be problematic for both practical
and theoretical reasons. First, although a large body of research exists on them,
knowledge on these design measures has not yet made it into broader educational
practice. That is, by and large, existing educational resources such as printed and
digital text books as well as online learning environments that have been produced
for commercial reasons often violate the design measures that have been identified
in educational research. Thus, it is rather exceptional that learners face well-
designed multimedia material based on proven design measures. Second, partly
as a consequence of the prior point, learners should not become overly reliant on
the design of learning material; rather, they should be able to learn even with less
optimally designed instructional material and make the most out of it. Third, there
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is evidence that applying design measures is helpful only for those with little prior
knowledge of the considered domain, whereas those with more advanced knowledge
tend to not benefit or even suffer when faced with allegedly “optimized” instruction.
This finding has become known as the expertise-reversal effect in instructional
design research (Kalyuga, 2007). For instance, with regard to signaling it has
recently been shown that low prior knowledge learners benefitted from highlighting
text-picture correspondences in the material, whereas learners with either medium
or high prior knowledge showed even worse performance in the signaling condition
if compared to a control condition (Richter, Scheiter, & Eitel, in press). Different
explanations have been provided in the literature for why harmful instructional
design effects for learners with advanced prior knowledge occur. First, the design of
the material may nudge these learners into processing information that is redundant
to what they already know (Kalyuga, Ayres, Chandler, & Sweller, 2003). Second,
some designs may suppress meaningful learning activities that would have helped
advanced learners to achieve deeper comprehension. For instance, it has been shown
that highly coherent texts hamper understanding of these texts for advanced learners,
because there is no more need for knowledge-based inferences to overcome the
incoherence of the materials (McNamara, Kintsch, Songer, & Kintsch, 1996). As
a consequence, learners with more domain-prior knowledge will learn better from
incoherent compared with coherent texts, whereas the reverse is true for learners
with less prior knowledge. To conclude, the expertise-reversal effect suggests that a
one-size-fits-all for instructional design will not guarantee effective learning for all
learners.

More recently, researchers have reframed the problem of inadequate cognitive
processing of multimedia material into a challenge regarding learners’ lack of or
erroneous self-regulation of their learning processes (e.g., Kombartzky, Ploetzner,
Schlag, & Metz, 2010; Stalbovs, Scheiter, & Gerjets, 2015). This reinterpretation,
which will be explained in more detail in the next section, implies that rather than
relying on optimally designed instructional materials, learners should be guided
towards selecting and applying appropriate cognitive processing strategies. That is,
learners should be supported in becoming “good information processors” (Pressley,
Borkowski, & Schneider, 1989).

A Self-Regulated Learning Perspective on Multimedia
Learning

Self-regulated learning can be characterized as including metacognitive, motiva-
tional, and behavioral processes that result in the active engagement of individuals
in their own learning (Azevedo, 2005; Boekaerts, 1999; Winne & Hadwin, 1998;
Zimmerman & Schunk, 2001). According to Boekaerts (1999), the heterogeneity
of theories of self-regulated learning can be captured by analyzing these processes
as a function of three different layers: The outer layer comprises the motivational
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and volitional regulation of the self (i.e., choice of goals and resources). The middle
layer addresses the regulation of the learning process (i.e., use of metacognitive
skills to direct one’s learning), and the inner layer refers to the regulation of the
information processes (i.e., choice of cognitive strategies). Here we focus on the
two inner layers, since we are considering instructional settings, in which resources
(i.e., the information environment) are given and instructional goals are predefined.

According to models of self-regulated learning, an inadequate cognitive process-
ing of multimedia materials can be seen as a failure to regulate one’s learning
at the meta-cognitive and information-processing levels. Such a failure can occur
for different reasons. First, learners may be unable to judge what they know and
what they do not know, thereby failing to monitor their understanding of a domain
(Bjork, Dunlosky, & Kornell, 2013). Inaccurate comprehension monitoring can
result in either over- or underconfidence regarding one’s level of understanding,
with both biases resulting in different problems for a student’s regulation of learning
behavior. Overconfidence in one’s knowledge may cause learners to terminate
studying prematurely, whereas underconfidence will result in learners investing
time in studying materials already well understood. Hence, both biases result in
an inadequate allocation of study time (Son & Metcalfe, 2000). Recent research has
shown that the use of multimedia materials (compared with text-only instruction)
increases the likelihood of learners becoming overconfident in their knowledge
(multimedia heuristic, Eitel, 2016; Serra & Dunlosky, 2010). Failure to regulate
one’s learning may also be caused by a student’s lack of knowledge regarding
the question of how to respond to, for instance, gaps in their understanding. That
is, even when correctly detecting gaps, students may not know how to overcome
these gaps. Veenman, Van Hout-Wolters, and Afflerbach (2006) have conceptualized
this problem that occurs when students lack strategy knowledge. They suggest that
ideally learners should know what to do (declarative strategy knowledge), when and
why to do it (conditional strategy knowledge), and how to do it (procedural strategy
knowledge).

Applying a self-regulated learning perspective to multimedia learning suggests
that learners need to be supported in assessing what they (do not) know (monitoring
support) and in regulating their learning behavior in a way that matches their
current understanding. So far, support measures have focused on verbal or visual
instructions that convey strategy knowledge and make its use in a given learning
situation more likely (for an overview see Renkl & Scheiter, 2015). For instance, a
number of studies have used prompts or prompt-like instructions that tell students to
apply certain cognitive processes such as information integration (e.g., Bartholomé
& Bromme, 2009; Kombartzky et al., 2010; Schlag & Ploetzner, 2010; Stalbovs
et al., 2015). Moreover, visual instructions have been used where learners were
shown eye movements that illustrated helpful visual behavior in advance to learning
from multimedia materials (e.g., Mason, Pluchino, & Tornatora, 2015; Skuballa,
Fortunski, & Renkl, 2015). These support measures have in common that they
can be deployed irrespective of whether well-designed instructional materials are
available; moreover, they can help students to become independent learners who are
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able to control their learning without having to rely on high-quality instructions.
However, their effectiveness depends on a number of possible boundary conditions
that are not yet fully known (Renkl & Scheiter, 2015). Moreover, they are deployed
in a one-size-fits-all fashion to all learners regardless of whether they are already
able to self-regulate their learning or not. Furthermore, not only for instructional
design measures but also for self-regulation interventions, expertise-reversal effects
(Kalyuga, 2007) have been revealed. For example, Nückles, Hübner, Dümer, and
Renkl (2010) found that psychology students who self-regulated their learning
during journal writing initially benefited from being supported by prompts that
activated elaborative, organizational, and metacognitive learning strategies. When
such prompting was continued over the course of a semester, however, it had
detrimental effects on the motivational as well as on the cognitive level in the second
half of the semester. Adaptive forms of support, which will be introduced next, offer
a potential solution to this problem.

Adaptive (Multimedia) Learning Environments

Adaptivity is present when the instruction automatically changes in response to
the learners’ states and learning behaviors (Akbulut & Cardak, 2012; Park & Lee,
2004). Adaptive learning environments or response-sensitive systems (Park & Lee,
2004) require that relevant learner states and learning behaviors are assessed and
evaluated online. Thus, the system takes over some of the monitoring that is required
from learners during self-regulated study. Then the system will react towards the
results of this diagnosis, thereby supporting (or even replacing) learners’ regulation
of the learning process. Adaptive learning environments respond to a learner’s state
and behavior on a moment-to-moment basis rather than to the results of a one-time
assessment prior to learning. Their responses can take many forms: For instance,
the system could reduce or increase the difficulty of the learning task, offer prompts
that tell students how to proceed, or choose a different format of instruction (e.g.,
more or less elaborate explanations, another multimedia design variant). From a
self-regulated learning perspective it is important to disinguish two different forms
of adaptivity. Assistive adaptivity occurs when the system suggests to a learner how
to proceed, while the learner maintains control over whether and how to follow the
suggestion. For instance, a learner could decide to (not) follow the system’s advice
of restudying a previously encountered unit of instruction. Directive adaptivity, on
the other hand, constrains learner control to a much stronger extent by offering a
further choice to the learner. For instance, automatically displaying the previously
encountered unit of instruction leaves no option to the learner other than to restudy
it. Thus, whereas assistive adaptivity only scaffolds the process of self-regulated
learning, directive adaptitivy imposes external control of the learning process. In
both cases, the adaptivity mechanism presupposes that there is an unambigious
mapping between a diagnosis and a system response (e.g., “if test item X is not
answerred correctly, then display unit X again for restudy”).
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Adaptive learner environments differ in whether they select responses relative
to single learner states or behaviors or relative to a learner model. Such a learning
model captures all relevant states and behaviors and is continuously updated while
the learner proceeds with the learning task. For adaptive systems relying on learner
modeling, Shute and Zapata-Rivera (2008) have proposed an adaptive cycle that
includes four components, namely capturing, analyzing, selecting, and presenting.
First, the system captures data about a learner who is interacting with the system.
These data are the foundation for the learner model, which is generated later in the
course. Data collection is ongoing during the whole interaction process and aims at
updating the learner model. Next, the captured data are analyzed in order to directly
create a model of the learner according to content-specific information presented
in the system’s learning environment. Based on the learner model, the system can
determine whether an intervention is necessary and, furthermore, identify the kind
of intervention that should be presented to the learner. Thus, the third process refers
to the selection of a system response such as a hint, a prompt, or an explanation.
The main purpose of the system is to determine what kind of system response
or information is appropriate. Although decision rules can be predefined, they
continually need to be updated during the interaction between the learner and the
system. Finally, the last component corresponds to the presentation of the selected
adaptive intervention. Although such an adaptive cycle is linear at the beginning,
recurrences and returns between the components become inevitable. The first cycles
generate a rather coarse learner model, which becomes refined over time. Thus, the
learner model is not static because new learning traces can be used to update, revise,
or verify the learner model. Creating adaptive systems based on a comprehensive
learner modeling can be very challenging, because it requires extensive a priori
knowledge regarding an effective mapping between the various combinations of
learner states/behaviors and the adequate responses of the system.

Moreover, adaptive systems differ in whether they rely on a diagnosis of a
learner’s processing behavior or on his/her current state of knowledge, skill, or
motivation (e.g., disengagement).

Finally, adaptive systems can be distinguished according to the way that they
gather information required for choosing an appropriate response from the system’s
repertoire. Relevant information can be gained explicitly by asking the learner to
answer a questionnaire or test or implicitly by drawing inferences from the way how
the learner interacts with the system. Explicit assessment methods provide—if well
designed—a valid judgment of the current state of affairs. However, in particular
the use of long assessments may disrupt the learning process; moreover, working on
such assessments repeatedly can be demotivating for learners. To counteract these
problems, rapid assessment tasks (RATs) have been suggested (Kalyuga, 2008) as
an alternative to more comprehensive tests. RATs are short assignments that are
interspersed into the learning material and that aim at assessing the current cognitive
state of the learner. Verification tasks are a special version of RATs. They ask the
learner to judge whether statements referring to the previously learnt content are
correct or incorrect. This technique has been proven to be efficient and non-reactive
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in past research (Renkl, Skuballa, Schwonke, Harr, & Leber, 2015). Based on the
results of such verification tasks the further path of the learning experience can be
adjusted to the learners’ needs: learners who provide correct answers may continue
with their learning paths, while learners with insufficient knowledge receive specific
instructions and interventions.

In contrast to explicit assessment methods, implicit assessment methods are
characterized by their unobstrusiveness because data collection may take place
even without the learner realizing it (Barab, Bowdish, Young, & Owen, 1996).
However, it may be rather difficult to infer and interpret a learner’s knowledge,
and learning merely from his/her interactions with the learning environment. For
instance, adaptive hypermedia systems (Brusilovsky, 2001), in which students’
navigation behavior was used to inform the system’s response, were not very
successful in providing information concerning the deployment of information
utilization strategies. This is because navigational behavior (e.g., selecting a link,
browsing through a section) operates at a rather coarse level where it often remains
unclear which navigation behavior corresponds to a certain cognitive or affective
process. Moreover, rather than looking at a single click on a link, it is often necessary
to analyze longer navigational sequences to derive meaningful behavioral patterns,
making unambigious data interpretation rather difficult.

More recently there have been attempts to use more fine-grained assessment
methods that are assumed to be more closely linked to the actual learning behavior
and learner states (cf. Azevedo et al., 2017; Spüler et al., 2017; Winne et al., 2017).
In the present chapter we focus on the use of eye tracking as a way of assessing
learning behavior as well as inferring learners’ cognitive (and motivational) states
from it (cf. Conati & Merten, 2007; D’Mello, Olney, Williams, & Hays, 2012; Roda
& Thomas, 2006; Toet, 2006). Eye tracking provides information on where a person
is looking, for how long, and in which order. According to Just and Carpenter
(1980), this information can be taken as an indication of a person’s processing
of information at the cognitive level (eye-mind hypothesis). In particular, it is
assumed that elements that are fixated will be processed in the mind without any
considerable delay (immediacy assumption). The duration of a fixation (i.e., the
time when the eye is positioned on one spot and when information intake occurs)
thus can be interpreted as the intensity with which some information element is
processed. Longer fixation times can thus indicate more interest from a learner or
more relevance of that information for the learning task. Saccades (i.e., rapid eye
movements in between fixations during which information intake is suppressed) are
indicative of the order of information processing. In multimedia research, saccades
between text and pictures are seen as indicators for the process of text-picture
integration (Johnson & Mayer, 2012; Scheiter & Eitel, 2016).

Conati and Merten (2007) investigated the usefulness of gaze data and com-
pared three different probabilistic models describing a learner’s behavior. They
demonstrated that the inclusion of on-line eye movement data improved sensi-
tivity and specificity in predicting when learners were implicitly self-explaining
learning content. Gaze data hence helped to model the mental state of a learner
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more accurately. In addition, gaze data can also provide information about the
motivational states of learners such as boredom and disengagement (D’Mello et
al., 2012). Eye tracking has also yielded important insights into how students learn
from multimedia materials (cf. Scheiter & Eitel, 2016; Scheiter & van Gog, 2009;
van Gog & Scheiter, 2010). Thus, this method seems highly suitable as a diagnostic
instrument that could also be used for the design of adaptive learning environments.

Until recently, the use of eye tracking was both cumbersome and expensive;
however, this has changed to some extent with the development of customized
systems. Importantly, at the moment these systems provide relatively easy-to-
use methods for analyzing eye-tracking data offline after the learning took place.
However, online analysis methods have not yet been implemented in the software
packages. Therefore, one important aspect of the development of the multimedia
learning system described in the next section was to allow for an online analysis of
the learners’ eye movements as a prerequisite for incorporating adaptivity.

The Adaptable and Adaptive Multimedia System (AAMMS)

The Adaptable and Adaptive Multimedia System (AAMMS) is a multimedia learn-
ing environment that was developed in an interdisciplinary project with researchers
from computer science, psychology, and educational technology. It is based on
the ILIAS 4 Open Source Framework (www.ilias.de) and uses the infrastructure
of an established ILIAS installation to present multimedia content as well as
instructional interventions such as prompts. The AAMMS allows for different
modes of regulation: On the one hand, learners can adapt the instruction to their
own information needs by choosing which content should be displayed in which
format and which types of support they would like to receive (adaptable mode). On
the other hand, the AAMS offers an Adaptive Learning Module (ALM) that allows
for implementing adaptive instruction based on rapid assessments and eye tracking
(adaptive mode). Both modes can also be switched off, in which case the multimedia
content is displayed as pre-determined by an instructor or researcher (fixed mode).

The User Interface

Figure 9.1 shows the user interface with its five main areas. The navigation tree
(1) provides access to the learning units by means of a hierarchical menu. The
navigation bar (2) offers page-by-page browsing. Each learning unit is made up
of several representations such as written and spoken texts, schematic and realistic
images, videos and animations. In adaptable learning scenarios, where learners can
decide upon the learning content themselves, different representation formats can be
accessed via the media shelf (3). The content area (4) displays the representations

http://www.ilias.de
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Fig. 9.1 The user interface of the Adaptable and Adaptive Multimedia System (AAMMS)

that were selected by a learner (adaptable mode), selected by the system (adaptive
mode), or pre-determined by an instructor or researcher (fixed mode). The support
area (5) can be used to offer prompts or other interventions to foster specific
cognitive learning activities.

When learning in the adaptable mode of the AAMMS, users can either follow
a linear pathway through the learning units or they can use the navigation tree to
navigate freely in accordance with their individual learning goals. For each learning
unit, the system suggests an initial combination of representations and displays them
in the content area. The learners may customize this combination by dragging their
preferred representations from the media shelf into the content area. A preview of
each representation is displayed in the media shelf to assist in the selection process.
The learners’ combinations of representations are recorded by the system. If the
learners re-visit a learning unit, the stored combinations are displayed again.

In each learning unit prompts can be presented to the learners that ask them to
engage more deeply with the instructional materials (cf. Ruf & Ploetzner, 2014).
They are stated as questions, for example: (a) Which information is essential? (b)
Which relations can be identified? (c) How is the information related to the overall
topic? Learners who need additional information can obtain more specific questions
by clicking on the questions. Each question has a textbox below it to take notes. The
notes are automatically stored so that learners can review or change them when they
re-visit the learning unit.

Moreover, it is possible to employ different types of assessment during learning.
Before the learners start a new learning unit, they may be asked questions about
the unit just completed. These questions can be used either by the learners to self-
assess and monitor their current level of understanding or by the system to trigger
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adaptations of the learning material. Moreover, in conjunction with an eye tracker,
the ALM included in the AAMMS allows analyzing students’ eye movements
online and adapting the instruction based on this analysis.

System Architecture of the Adaptive Learning Module (ALM)

The ALM offers predefined adaptivity functions that authors can implement in their
learning environments. These adaptivity functions allow adaptive behavior of the
learning platform in response to a user’s behavioral data (Schmidt, Wassermann, &
Zimmermann, 2014). The adaptivity functions are mainly based on learner data from
two sources: a learner’s eye movements and answers to rapid assessment verification
tasks.

The eye-tracking application of ALM connects the eye-tracking hardware and the
web-based learning environment (cf. Wassermann, Hardt, & Zimmermann, 2012).
In particular, the ALM allows receiving, analyzing, and responding to eye-tracking
data via a web-socket interface in real-time. The application’s adaptivity is based
on the capture of gaze fixations on pre-defined areas of interest (AOIs). When a
user fixates an AOI for a predefined time, a fixation is registered and recorded. The
system allows counting the number of fixations, their overall duration (dwell time),
and the frequency of transitions between AOIs, that is, when learners move their
visual attention from one AOI (e.g., a text) to another (e.g., a picture) and vice
versa. The data are recorded for each learning unit separately and are analyzed once
a learner indicates that he or she wants to proceed to the next learning unit. For each
learning unit, threshold values can be defined that need to be reached in order to be
considered as adequate learning behavior. If the learning behavior remains below
the threshold values, a system response is generated and the learner is prevented
from proceeding to the next learning unit. For instance, when the ALM registers a
too short reading time for a text in a given learning unit, it can prompt the learner to
re-read the text or the text can be highlighted to nudge the learner into rereading it
(for details on the adaptivity of ALM and its technical implementation, see Schmidt
et al., 2014).

Adaptivity functions can also be based on a learner’s performance in interspersed
rapid assessment tasks (e.g., Kalyuga, 2008; Renkl et al., 2015). ALM supports
overlay prompts on the screen for asking, for example, multiple-choice questions.
This ALM function can be used to easily integrate rapid assessment tasks into the
learning environment. When learners answer a rapid assessment task, the system
assesses the predefined answers and reacts to it. For example, the system can
limit the learner’s ability to navigate through the learning content by temporarily
disabling the “continue” button and asking the learner to re-read highlighted areas
of the learning material again. The system can also present other learning aids such
as prompts asking the learners to rethink particular aspects of the learning content
or to write down a self-explanation.
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Empirical Evidence

Two sets of studies have been carried out evaluating the effectiveness of the ALM
for supporting learning from multimedia. In the first set of studies, we tested ways
to best close knowledge gaps that remain during learning with multimedia learning
materials. In the second set of studies, the ALM was used to detect potential learning
problems in real-time using eye tracking and to change the design of the instruction
adaptively. Both sets of studies will be sketched next.

Closing Knowledge Gaps During Learning with Multimedia

This section exemplarily presents two studies on how to best close learners’
knowledge gaps by an adaptive procedure based on rapid assessment tasks. An
initial study addressed the question of whether eye-tracking indicators can be used
to reduce the number of presented rapid assessment tasks and, thereby, learning
time without the drawback of overlooking many of the learners’ knowledge gaps.
The second study evaluated variants of restudy prompts that can be presented when
a learner fails to correctly answer a rapid assessment task. Hence, this second study
implemented assistive adaptivity.

In the first study (Skuballa, Leber, Schmidt, Zimmermann, & Renkl, 2016;
N D 60 university students), we tested whether eye-tracking data can be used
to select and, thereby, reduce the number of rapid assessment tasks without the
disadvantage of missing potential knowledge gaps. More specifically, we compared
two conditions: (a) In the full-presentation condition, we provided all available rapid
assessment tasks; and (b) in the adaptive-presentation condition, we provided a
rapid assessment task whenever the eye-tracking data hinted towards a potential
knowledge gap (e.g., very short dwell time at a certain picture). We found that
the selection of rapid assessment tasks increased their hit rates (i.e., enhanced
diagnostic sensitivity) in that these tasks were answered more often incorrectly as
compared to tasks in the full-presentation condition (43% vs. 32%). The adaptive
presentation also reduced the learning time by about 17% without compromising
learning outcomes; the latter were comparable in both conditions. Overall, our
findings suggest presenting rapid assessment tasks based on eye-tracking indicators
hinting towards potential knowledge gaps. The main advantage is that the learners
need less study time.

Beyond the question about which rapid assessment tasks should be presented,
it is an open question which type of restudy prompt is best provided in the case
of a knowledge gap. A prompt may encourage a learner to close the very specific
knowledge gap that has been detected by a rapid assessment task (e.g., the fact
that it is the nucleus where DNA doubles during mitosis). Such a specific prompt
might be a parsimonious intervention but it may fail to address a potentially “bigger
problem”: The learner may miss not merely a specific piece of knowledge, but
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his or her knowledge representation may be incomplete with respect to a broader
sub-area of the learning contents (e.g., what happens in general in the nucleus
during mitosis). In the latter case, a prompt that encourages not just looking up the
specific missing knowledge piece, but considering the “field” of related knowledge
pieces as well might have broader effects on learning outcomes. Such broader and
more unspecific prompts, however, have the potential disadvantage of being less
efficient than specific prompts when just such a specific piece of knowledge is
missing. Furthermore, unspecific prompts can induce redundant (i.e., unnecessary)
processing of already understood materials (cf. the redundancy effect; Sweller,
Ayres, & Kalyuga, 2011).

Renkl, Skuballa, Schwonke, Harr, and Leber (2015; Exp. 2) compared the effects
of specific and unspecific restudy prompts (i.e., focusing on a very specific piece of
knowledge or the “field” of related knowledge pieces; N D 41 university students).
In the specific prompts condition, the relevant text passages were highlighted by
darkening the less relevant information on the page. The prompt requested learners
to restudy the relevant passage in order to solve the task correctly, and the task was
repeated (Fig. 9.2). In the unspecific prompts condition, the learners were asked
to restudy and figure out both the direct answer to the question and to explore the
broader context (Fig. 9.3).

We assumed that specific prompts were superior in repairing the specific
knowledge gaps identified by the rapid assessment tasks and in acquiring knowledge
about the central issues of the mitotic process (as these issues were covered by the
rapid assessment tasks). We expected that unspecific prompts were more effective

Fig. 9.2 Screenshot of a specific prompt (taken from Renkl et al., 2015)
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Fig. 9.3 Screenshot of an unspecific prompt (taken from Renkl et al., 2015)

in fostering knowledge about more general issues related to mitosis. The results
showed that both types of prompts repaired the specific knowledge gaps in most
cases (in over 80% of the cases). Moreover, we found a general superiority of
unspecific prompts, thereby suggesting that knowledge gaps should be closed by
unspecific restudy prompts.

Overall, adaptive systems based on a rapid-assessment procedure should provide
rapid assessment tasks only if eye-tracking indicators hint towards a potential
knowledge gap. If the learners cannot answer correctly a rapid assessment task, they
should receive prompts that ask them to restudy the corresponding field of related
knowledge pieces.

Adapting the Multimedia Design in Response to Learners’ Eye
Movements

Previous research has shown that some learners have difficulties in adequately using
effective cognitive processes like selection, organization, and integration while
processing multimedia materials (e.g., Mason et al., 2013). To support learners by
providing them with personalized, just-in-time instructional support, the ALM was
used to monitor, analyze, and modify the learners’ individual processing behavior
online based on the learners’ eye movements in two studies described below. In
contrast to the aforementioned set of studies, the adaptivity mechanism relied on
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directive adaptivity in that the system’s response led to a change in the instructional
format of the material, which learners were forced to make use of.

In order to tailor the ALM to the population under study, Schubert et al. (n.d.)
first determined threshold values in a pre-study. In this study (N D 32 students),
patterns of eye movements were identified that were suited to distinguish successful
versus less successful learners in a non-adaptive multimedia learning session on
mitosis. Results showed that successful learners had longer fixations times and
higher fixation counts on text and pictures as well as more transitions between
text and pictures than less successful learners. These findings were then used to
implement the gaze-based adaptive system that analyzed learners’ eye movements
during learning and altered the presentation of the materials according to learners’
viewing behavior. Whenever learners showed a viewing behavior similar to that of
the unsuccessful learner group in the pre-study (i.e., too short fixation times on
either text or pictures or too few text-picture transitions), the system presented the
same content in an instructional design that should prompt adequate processing.
In particular, whenever either text or picture on a given page were processed for
too short a time (i.e., below the threshold values derived from the first study), the
text or the picture was enlarged, thereby covering most of the screen (Fig. 9.4, left
panel). In case of too few text-picture transitions, the page design was altered in
that corresponding elements from the text and the picture were then highlighted
using the same colors (Fig. 9.4, right panel), thereby signaling the conceptual
relations between the verbal and pictorial information (cf. Richter et al., 2016, for
the effectiveness of multimedia integration signals). The system enforced processing
of the redesigned multimedia materials in that these were presented for a fixed
amount of time before the students were allowed to proceed to the next page of
the learning materials. This page was again presented in the standard layout without
enlargements of color coding.

The first study with the adaptive system (N D 79 students) investigated whether
the adaptive multimedia learning system would have any beneficial effects on
learning compared to a non-adaptive, fixed presentation of the same materials.

Fig. 9.4 Exemplary pages of the adaption: Zooming-out of the picture (left panel) and presentation
of the color-coded version (right panel)
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Students learned with either the adaptive or the non-adaptive multimedia instruction
about mitosis while their eye movements were recorded. After learning, their recall
and comprehension of the materials was assessed. As thresholds, we used the mean
fixation times on either text or picture and the mean number of transitions of the
group of non-successful learners identified in the pre-study and added one standard
deviation to it. Results showed that irrespective of learners’ prior knowledge,
the gaze-based adaptive system had no effect on the effectiveness of multimedia
learning. A possible reason for these findings was that the thresholds might have
been set too high so that successful learners were also falsely identified as poor
learners.

The aim of second study (N D 58 students) conducted with the gaze-based
adaptive system was hence to improve the adaptivity mechanism of the system.
To this end, we adjusted the threshold values by choosing the mean values of
the group of unsuccessful learners from the pre-study (rather than adding one
standard deviation to it). This way we expected only learners with inadequate
processing behavior to receive personalized instructional support. Again, students
either learned with the adaptive or the non-adaptive multimedia instruction about
mitosis. Results showed no effects for recall performance. For comprehension,
there was a significant interaction between experimental condition and students’
prior knowledge: stronger students scored marginally higher with than without
adaptive instructional support, whereas weaker students scored significantly worse
with adaptive instructional support. These results can be interpreted in at least
two ways: First it may have been the case that the adjusted thresholds were now
too restrictive so that learners with inadequate processing behavior were falsely
identified as successful learners. Second, there might have been too little adaptive
instructional support especially for learners with lower prior knowledge. Further
studies are required that look more closely at both the assessment as well as the
support component of the adaptive multimedia learning system, before conclusions
regarding the effectiveness of adjusting instruction to a learner’s gaze behavior can
be drawn.

Conclusions

Adaptive learning environments are supposed to enhance learning by providing
personalized support for every individual student. The multimedia information
environment described in this chapter shows how challenging the design of such
a system can be. From a learning sciences perspective, the challenges pertain to at
least three aspects that match well onto the description of adaptive systems provided
by Shute and Zapata-Rivera (2008).

The first challenge is to decide what constitutes a learner state that requires
adaptive instruction and how this state should be diagnosed, thereby pertaining to
the assessment component of adaptive systems. In the sample studies sketched in
this chapter, two diagnostic approaches have been implemented: rapid verification
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tasks and eye movements. Rapid verification tasks address students’ current knowl-
edge in an explicit fashion, hence their interpretation is rather straightforward. Eye
movements, on the other hand, are more ambiguous in this respect. For instance, the
relation between a given eye movement behavior and learning outcomes appears to
vary across different material and learners (cf. Scheiter & Eitel, 2016; Schwonke
et al., 2009), requiring extensive pretesting to calibrate these relations before an
adaptive system can be deployed. Moreover, eye movements are not just indications
of students’ cognitive processes while learning, but they may also point towards
students’ motivational states such as boredom and disengagement (D’Mello et al.,
2012), thereby further complicating the state of affairs. Against this background,
Skuballa et al. (2015) used an adaptation procedure in which eye-tracking data
and rapid assessment tasks were combined. First evidence suggested that such a
combination is promising.

Despite these difficulties, there is a current trend of considering more rather than
fewer physiological indicators as possible candidates for assessing learner states
as a prerequisite for adapting instruction—including emotional expressions, skin
responses, and brain activity parameters (see also Azevedo et al., 2017; Spüler
et al., 2017). The promise of this multivariate approach is that triangulation of
these different data sources will allow better disambiguation of a student’s current
state of learning. Moreover, these advanced learning technologies often rely on
more complex methods of data analyses such as machine learning algorithms to
determine patterns of parameters related to successful learning (see also Azevedo
et al., 2017; Spüler et al., 2017; Winne et al., 2017). Using these methods thus allows
describing learner behavior and states in a multidimensional space that comprises
emotional, cognitive, and metacognitive components. Moreover, there is increasing
interest in learning analytics based on large data sets to account for the complexity of
(self-regulated) learning that results from interindividual as well as intraindividual
differences in learning processes (Winne et al., 2017).

The second challenge pertains to the question of which instructional support
measures promote learning best, thereby addressing the response component of
adaptive systems. While instructional design research has made enormous progress
in determining how instruction should be delivered in order to be effective, there still
remains quite a bit of ambiguity in this regard. Instructional design variants do not
prove effective in all situations; rather, their effectiveness seems to be tied to certain
boundary conditions that are not yet fully understood (cf. Renkl & Scheiter, 2015).
For instance, the effectiveness of prompts appears to depend on their focus (specific
vs. general), whether they require externalizing of knowledge, or reproduction of
knowledge versus generating new information via inferencing, to name just a few
dimensions.

The third challenge results from the first two and refers to the question of
matching a learner state with the most adequate system response. Thus, it addresses
the rules that should be used to link assessment and response to each other. It is
yet unclear whether we will ever be able to come up even with heuristics telling
instructional designers which variant of an instructional material will be most suited
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for which learner. What has become very evident in the past years of educational
research is that a student’s level of prior knowledge plays an important role in this
regard. That is, for many multimedia designs it has been shown that design variants
that clearly improve learning for students with less prior knowledge have no or even
detrimental effects for students with high prior knowledge (cf. expertise reversal
effect, Kalyuga et al., 2003; Kalyuga & Renkl, 2010). Hence, this research suggests
that adaptivity mechanisms need to consider a person’s prior knowledge. However,
it is still an open question whether there are other variables that have similar effects
on the effectiveness of different instructional designs.

In the present chapter, we described different versions of a fully adaptive system
that diagnoses a learner’s behavior and responds accordingly. Based on the results of
the two sets of studies reported, it looks as if assistive adaptivity is more promising
than directive adaptivity. However, even though we used similar learning materials
and assessments, there are still a number of differences between the sets of studies
beyond the adaptivity mechanism. Most importantly, the studies also differ in
the assessments (eye tracking plus rapid assessment tasks to diagnose a learner’s
knowledge state vs. eye tracking to diagnose learning behavior) based on which a
response was given. Thus, further studies are needed that systematically address the
question of how much learner control should/can be offered during regulation.

Irrespective of the adaptivity mechanism that had been implemented, we faced
all three of the aforementioned challenges in the design of our adaptive system.
An alternative to this approach is offered by systems that provide an assessment
a learner’s current state and/or his/her learning processes, which is then commu-
nicated to the learner (e.g., via a visualization of his/her state that is described
based on multichannel data, see Azevedo et al., 2017; nStudy, Winne et al.,
2017). Importantly, these systems then leave regulation to the learner, thereby
implementing the extreme of assistive adaptivity. They thus rely on the implicit
assumption that while learners may experience difficulties in accurately monitoring
their current state, they are very capable of regulating their learning behavior relative
to their states. These systems thereby circumvent the second and third challenge
mentioned above. That is, they do not require any insight into possible system
responses and how these match with learner states.

References

Akbulut, Y., & Cardak, C. S. (2012). Adaptive educational hypermedia accommodating learning
styles: A content analysis of publications from 2000 to 2011. Computers & Education, 58,
835–842. doi:10.1016/j.compedu.2011.10.008

Anglin, G. J., Vaez, H., & Cunningham, K. L. (2004). Visual representation and learning: The role
of static and animated graphics. In D. H. Jonassen (Ed.), Handbook of research on educational
communications and technology (2nd ed., pp. 865–916). Mahwah, NJ: Erlbaum.

Ayres, P., & Sweller, J. (2014). The split-attention principle in multimedia learning. In R. E. Mayer
(Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 206–226). New York,
NY: Cambridge University Press.

http://dx.doi.org/10.1016/j.compedu.2011.10.008


220 K. Scheiter et al.

Azevedo, R. (2005). Using hypermedia as a metacognitive tool for enhancing student learning?
The role of self-regulated learning. Educational Psychologist, 40, 199–209.

Azevedo, R., Millar, G. C., Taub, M., Mudrick, N. V., Bradbury, A. E., & Price, M. J. (2017). Using
data visualizations to foster emotion regulation during self-regulated learning with advanced
learning technologies. In J. Buder & F. W. Hesse (Eds.), Informational environments: Effects
of use, effective designs (pp. 225–247). New York, NY: Springer.

Barab, S. A., Bowdish, B. E., Young, M. F., & Owen, S. V. (1996). Understanding kiosk navigation:
Using log files to capture hypermedia searches. Instructional Science, 24, 377–395.

Bartholomé, T., & Bromme, R. (2009). Coherence formation when learning from text and
pictures: What kind of support for whom? Journal of Educational Psychology, 101, 282–293.
doi:10.1037/a0014312

Bjork, R. A., Dunlosky, J., & Kornell, N. (2013). Self-regulated learning: Beliefs, techniques, and
illusions. Annual Review of Psychology, 64, 417–444. 10.1146/annurev-psych-113011-143823

Boekaerts, M. (1999). Self-regulated learning: Where we are today. International Journal of
Educational Research, 31, 445–457.

Brusilovsky, P. (2001). Adaptive hypermedia. User Modeling and User-Adapted Interaction, 11,
87–110.

Butcher, K. R. (2014). The multimedia principle. In R. E. Mayer (Ed.), The Cambridge handbook
of multimedia learning (2nd ed., pp. 174–205). New York, NY: Cambridge University Press.

Conati, C., & Merten, C. (2007). Eye-tracking for user modeling in exploratory learn-
ing environments: An empirical evaluation. Knowledge-Based Systems, 20, 557–574.
doi:10.1016/j.knosys.2007.04.010

Cromley, J. G., Bergey, B. W., Fitzhugh, S. L., Newcombe, N., Wills, T. W., Shipley, T. F.,
& Tanaka, J. C. (2013). Effectiveness of student-constructed diagrams and self-explanation
instruction. Learning & Instruction, 26, 45–58. doi:10.1016/j.learninstruc.2013.01.003

D’Mello, S., Olney, A., Williams, C., & Hays, P. (2012). Gaze tutor: A gaze-reactive intel-
ligent tutoring system. International Journal of Human-Computer Studies, 70, 377–398.
doi:10.1016/j.ijhcs.2012.01.004

Eitel, A. (2016). How repeated studying and testing affects multimedia learning:
Evidence for adaptation to task demands. Learning and Instruction, 41, 70–84.
doi:10.1016/j.learninstruc.2015.10.003

Ginns, P. (2006). Integrating information: A meta-analysis of the spatial conti-
guity and temporal contiguity effects. Learning & Instruction, 16, 511–525.
doi:10.1016/j.learninstruc.2006.10.001

Hannus, M., & Hyönä, J. (1999). Utilization of illustrations during learning of science textbook
passages among low-and high-ability children. Contemporary Educational Psychology, 24,
95–123. doi:10.1006/ceps.1998.0987

Johnson, C. I., & Mayer, R. E. (2012). An eye movement analysis of the spatial contiguity
effect in multimedia learning. Journal of Experimental Psychology. Applied, 18, 178–191.
doi:10.1037/a0026923

Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension.
Psychological Review, 87, 329–355.

Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored instruction.
Educational Psychology Review, 19, 509–539. doi:10.1007/s10648-007-9054-3

Kalyuga, S. (2008). When less is more in cognitive diagnosis: A rapid online method for
diagnosing learner task-specific expertise. Journal of Educational Psychology, 100, 603–612.
doi:10.1037/0022-0663.100.3.603

Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational
Psychologist, 38, 23–31. doi:10.1207/s15326985ep3801_4

Kalyuga, S., & Renkl, A. (2010). Expertise reversal effect and its instructional
implications: Introduction to the special issue. Instructional Science, 38, 209–215.
doi:10.1007/s11251-009-9102-0

http://dx.doi.org/10.1037/a0014312
http://dx.doi.org/10.1146/annurev-psych-113011-143823
http://dx.doi.org/10.1016/j.knosys.2007.04.010
http://dx.doi.org/10.1016/j.learninstruc.2013.01.003
http://dx.doi.org/10.1016/j.ijhcs.2012.01.004
http://dx.doi.org/10.1016/j.learninstruc.2015.10.003
http://dx.doi.org/10.1016/j.learninstruc.2006.10.001
http://dx.doi.org/10.1006/ceps.1998.0987
http://dx.doi.org/10.1037/a0026923
http://dx.doi.org/10.1007/s10648-007-9054-3
http://dx.doi.org/10.1037/0022-0663.100.3.603
http://dx.doi.org/10.1207/s15326985ep3801_4
http://dx.doi.org/10.1007/s11251-009-9102-0


9 How to Design Adaptive Information Environments to Support. . . 221

Kombartzky, U., Ploetzner, R., Schlag, S., & Metz, B. (2010). Developing and evalu-
ating a strategy for learning from animations. Learning & Instruction, 20, 424–433.
doi:10.1016/j.learninstruc.2009.05.002

Mason, L., Pluchino, P., & Tornatora, M. C. (2015). Eye-movement modeling of integrative
reading of an illustrated text: Effects on processing and learning. Contemporary Educational
Psychology, 41, 172–187. doi:10.1016/j.cedpsych.2015.01.004

Mason, L., Tornatora, M. C., & Pluchino, P. (2013). Do fourth graders integrate text and picture
in processing and learning from an illustrated science text? Evidence from eye-movement
patterns. Computers & Education, 60, 95–109. doi:10.1016/j.compedu.2012.07.011

Mayer, R. E. (2009). Multimedia learning (2nd ed.). New York, NY: Cambridge University Press.
Mayer, R. E., & Moreno, R. (2002). Aids to computer-based multimedia learning. Learning and

Instruction, 12, 107–120.
McNamara, D., Kintsch, E., Songer, N. B., & Kintsch, W. (1996). Are good texts always better?

Interactions of text coherence, background knowledge, and levels of understanding in learning
from text. Cognition and Instruction, 14, 1–43. doi:10.1207/s1532690xci1401_1

Nückles, M., Hübner, S., Dümer, S., & Renkl, A. (2010). Expertise reversal effects in writing-to-
learn. Instructional Science, 38, 237–258. doi:10.1007/s11251-009-9106-9

Ozcelik, E., Karakus, T., Kursun, E., & Cagiltay, K. (2009). An eye-tracking study of
how color coding affects multimedia learning. Computers & Education, 53, 445–453.
doi:10.1016/j.compedu.2009.03.002

Park, O.-C., & Lee, J. (2004). Adaptive instructional systems. In D. H. Jonassen (Ed.), Handbook
of research for educational communications and technology (pp. 651–684). Mahwah, NJ:
Erlbaum.

Pressley, M., Borkowski, J. G., & Schneider, W. (1989). Good information processing: What
it is and how education can promote it. International Journal of Educational Research, 13,
857–867.

Renkl, A., & Scheiter, K. (2015). Studying visual displays: How to instructionally support learning.
Educational Psychology Review, 1–23. doi:10.1007/s10648-015-9340-4

Renkl, A., Skuballa, I. T., Schwonke, R., Harr, N., & Leber, J. (2015). The effects of rapid
assessments and adaptive restudy prompts in multimedia learning. Educational Technology &
Society, 18, 185–199.

Richter, J., Scheiter, K., & Eitel, A. (in press). Signaling text–picture relations in multi-
media learning: The influence of prior knowledge. Journal of Educational Psychology.
https://doi.org/10.1037/edu0000220

Roda, C., & Thomas, J. (2006). Attention aware systems: Theories, applications, and research
agenda. Computers in Human Behavior, 22, 557–587. doi:10.1016/j.chb.2005.12.005

Ruf, T., & Ploetzner, R. (2014). One click is too far! How the presentation of cognitive learning
aids influences their use in multimedia learning environments. Computers in Human Behavior,
38, 229–239. doi:10.1016/j.chb.2014.06.002

Scheiter, K., & Van Gog, T. (2009). Using eye tracking in applied research to study and
stimulate the processing of information from multi-representational sources. Applied Cognitive
Psychology, 23, 1209–1214. https://doi.org/10.1002/acp.1524

Scheiter, K., & Eitel, A. (2015). Signals foster multimedia learning by supporting inte-
gration of highlighted text and diagram elements. Learning and Instruction, 36, 11–26.
doi:10.1016/j.learninstruc.2014.11.002

Scheiter, K., & Eitel, A. (2016). The use of eye tracking as a research and instructional tool
in multimedia learning. In C. Was, F. Sansosti, & B. Morris (Eds.), Eye-tracking technology
applications in educational research (pp. 143–164). Hershey, PA: IGI Global.

Schlag, S., & Ploetzner, R. (2010). Supporting learning from illustrated texts: Con-
ceptualizing and evaluating a learning strategy. Instructional Science, 39, 921–937.
doi:10.1007/s11251-010-9160-3

Schmidt, H., Wassermann, B., & Zimmermann, G. (2014). An adaptive and adaptable learning
platform with real- time eye-tracking support: Lessons learned. In S. Trahash, R. Ploetzner, G.

http://dx.doi.org/10.1016/j.learninstruc.2009.05.002
http://dx.doi.org/10.1016/j.cedpsych.2015.01.004
http://dx.doi.org/10.1016/j.compedu.2012.07.011
http://dx.doi.org/10.1207/s1532690xci1401_1
http://dx.doi.org/10.1007/s11251-009-9106-9
http://dx.doi.org/10.1016/j.compedu.2009.03.002
http://dx.doi.org/10.1007/s10648-015-9340-4
http://dx.doi.org/10.1037/edu0000220
http://dx.doi.org/10.1016/j.chb.2005.12.005
http://dx.doi.org/10.1016/j.chb.2014.06.002
http://dx.doi.org/10.1002/acp.1524
http://dx.doi.org/10.1016/j.learninstruc.2014.11.002
http://dx.doi.org/10.1007/s11251-010-9160-3


222 K. Scheiter et al.

Schneider, C. Gayer, D. Sassiat, & N. Wöhrle (Eds.), Tagungsband DeLFI 2014 (pp. 241–252).
Bonn, Germany: Köölen Druck & Verlag GmbH.

Schmidt-Weigand, F., Kohnert, A., & Glowalla, U. (2010a). A closer look at split visual attention
in system-and self-paced instruction in multimedia learning. Learning and Instruction, 20,
100–110. doi:10.1016/j.learninstruc.2009.02.011

Schmidt-Weigand, F., Kohnert, A., & Glowalla, U. (2010b). Explaining the modality and conti-
guity effects: New insights from investigating students’ viewing behavior. Applied Cognitive
Psychology, 24, 226–237. doi:10.1002/acp.1554

Schnotz, W. (2005). An integrated model of text and picture comprehension. In R. E. Mayer (Ed.),
Cambridge handbook of multimedia learning (pp. 49–69). Cambridge: Cambridge University
Press.

Schubert, C., Scheiter, K., Schüler, A., Schmidt, H., Zimmermann, G., Wassermann, B., : : :

Eder, T. (n.d.). Adaptive multimedia: Using gaze-contingent instructional guidance to provide
personalized processing support.

Schwonke, R., Berthold, K., & Renkl, A. (2009). How multiple external representations are
used and how they can be made more useful. Applied Cognitive Psychology, 23, 1227–1243.
doi:10.1002/acp.1526

Serra, M. J., & Dunlosky, J. (2010). Metacomprehension judgements reflect the belief that dia-
grams improve learning from text. Memory, 18, 698–711. doi:10.1080/09658211.2010.506441

Seufert, T. (2003). Supporting coherence formation in learning from multiple representations.
Learning & Instruction, 13, 227–237. doi:10.1016/S0959-4752(02)00022-1

Shute, V. J., & Zapata-Rivera, D. (2008). Adaptive technologies. In J. M. Spector, D. Merrill, J.
Van Merriënboer, & M. Driscoll (Eds.), Handbook of research on educational communications
and technology (3rd ed., pp. 277–294). New York, NY: Erlbaum.

Skuballa, I. T., Fortunski, C., & Renkl, A. (2015). An eye movement pre-training fosters the
comprehension of processes and functions in technical systems. Frontiers in Psychology, 6,
598. doi:10.3389/fpsyg.2015.00598

Skuballa, I. T., Leber, J., Schmidt, H., Zimmermann, G., & Renkl, A. (2016). Using online eye-
movement analyses in an adaptive learning environment. In L. Lin & R. K. Atkinson (Eds.),
Educational technologies: Challenges, applications, and learning outcomes (pp. 115–142).
Hauppauge, NY: Nova Science.

Son, L. K., & Metcalfe, J. (2000). Metacognitive and control strategies in study-time allocation.
Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 204–221.

Spüler, M., Krumpe, T., Walter, C., Scharinger, C., Rosenstiel, W., & Gerjets, P. (2017).
Brain-computer interfaces for educational applications. In J. Buder & F. W. Hesse (Eds.),
Informational environments: Effects of use, effective designs (pp. 177–201). New York, NY:
Springer.

Stalbovs, K., Scheiter, K., & Gerjets, P. (2015). Implementation intentions during multimedia
learning: Using if-then plans to facilitate cognitive processing. Learning & Instruction, 35,
1–15. doi:10.1016/j.learninstruc.2014.09.002

Sweller, J., Ayres, P. L., & Kalyuga, S. (2011). Cognitive load theory. New York, NY: Springer.
Toet, A. (2006). Gaze directed displays as an enabling technology for attention aware systems.

Computers in Human Behavior, 22, 615–647. doi:10.1016/j.chb.2005.12.010
Van Gog, T., & Scheiter, K. (2010). Eye tracking as a tool to study and enhance multimedia learn-

ing. Learning and Instruction, 20, 95–99. https://doi.org/10.1016/j.learninstruc.2009.02.009
Veenman, M. J. V., Van Hout-Wolters, B., & Afflerbach, P. (2006). Metacognition and learn-

ing: Conceptual and methodological considerations. Metacognition & Learning, 1, 3–14.
doi:10.1007/s11409-006-6893-0

Wassermann, B., Hardt, A., & Zimmermann, G. (2012). Generic gaze interaction events
for web browsers: Using the eye tracker as input device. In WWW2012 Workshop:
Emerging web technologies, facing the future of education (p. 6). Retrieved from http://
www2012.wwwconference.org/proceedings/nocompanion/EWFE2012_006.pdf

http://dx.doi.org/10.1016/j.learninstruc.2009.02.011
http://dx.doi.org/10.1002/acp.1554
http://dx.doi.org/10.1002/acp.1526
http://dx.doi.org/10.1080/09658211.2010.506441
http://dx.doi.org/10.1016/S0959-4752(02)00022-1
http://dx.doi.org/10.3389/fpsyg.2015.00598
http://dx.doi.org/10.1016/j.learninstruc.2014.09.002
http://dx.doi.org/10.1016/j.chb.2005.12.010
http://dx.doi.org/10.1016/j.learninstruc.2009.02.009
http://dx.doi.org/10.1007/s11409-006-6893-0
http://www2012.wwwconference.org/proceedings/nocompanion/EWFE2012_006.pdf


9 How to Design Adaptive Information Environments to Support. . . 223

Winne, P. H., & Hadwin, A. F. (1998). Studying as self-regulated learning. In D. J. Hacker, J.
Dunlosky, & A. C. Graesser (Eds.), Metacognition in educational theory and practice (pp.
277–304). Mahwah, NJ: Erlbaum.

Winne, P. H., Vytasek, J. M., Patzak, A., Rakovic, M., Marzouk, Z., Pakdaman-Savoji, A., : : :

Nesbit, J. C. (2017). Designs for learning analytics to support information problem solving. In
J. Buder & F. W. Hesse (Eds.), Informational environments: Effects of use, effective designs
(pp. 249–272). New York, NY: Springer.

Zimmerman, B., & Schunk, D. (Eds.). (2001). Self-regulated learning and academic achievement:
Theoretical perspectives (2nd ed.). Mahwah, NJ: Erlbaum.


	9 How to Design Adaptive Information Environments to Support Self-Regulated Learning with Multimedia
	Learning with Multimedia Information Environments
	A Self-Regulated Learning Perspective on Multimedia Learning
	Adaptive (Multimedia) Learning Environments
	The Adaptable and Adaptive Multimedia System (AAMMS)
	The User Interface
	System Architecture of the Adaptive Learning Module (ALM)

	Empirical Evidence
	Closing Knowledge Gaps During Learning with Multimedia
	Adapting the Multimedia Design in Response to Learners' Eye Movements

	Conclusions
	References


