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Introduction

Currently, there is an ongoing debate in education research on how to optimally
support learners during learning (Calder 2015; Askew 2015). Obviously, learning
outcome is most promising if the training program and learning content is tailored
to the learner’s specific needs (e.g., Gerjets & Hesse 2004; Richards et al. (2007);
for numerical interventions see Dowker 2004; Karagiannakis & Cooreman 2014).
To optimally support the learner’s efforts, it is important that the learning content
is neither too easy nor too difficult. Therefore, it is crucial for successful learning
to keep the cognitive workload in the individual optimal range for each learner
(Gerjets, Scheiter, & Cierniak 2009; Sweller, Van Merrinboer, & Paas 1998). This
can be achieved by adapting the difficulty of the training content to the individual
competencies of the learner.

Computer-supported learning (Kirschner & Gerjets 2006) seems specifically
suited for implementing adaptivity, because these informational environments can
be easily extended with algorithms that change the difficulty of the presented
material based on the learner’s behavioral response. This allows for an easy
personalization of the learning environment to the user’s individual needs, which
is assumed to be key for efficient learning. So far, adaptive computer-supported
learning environments rely on the user’s interaction behavior for adaptation, e.g.,
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the difficulty of the training content is adapted based on the number of correct
responses (Corbett 2001; Graesser & McNamara 2010; Käser et al. 2013). These
behavioral measures are rather indirect and distal measures that are not very specific
with respect to inferring the cognitive processes required for performing the task at
hand. For instance, more errors in a row may not only be caused by the difficulty of
the task itself but also by task-unspecific processes (e.g., lapses of attention, fatigue,
or disengagement).

As already outlined in Chap. 7 of this book (Soltanlou et al. 2017), there are
several neurocognitive processes involved in learning, which can be found in
recorded neurophysiological data. With the advent of Brain-Computer Interfaces
(BCIs), which translate brain activity into control signals (Wolpaw, Birbaumer,
McFarland, Pfurtscheller, & Vaughan 2002), there seems to be a new technology
that could use these neurocognitive processes in the context of educational learning
environments. For measuring brain activity, electroencephalography (EEG) is a
widely used method for BCIs. The measured activity is then processed, filtered,
and certain features are extracted out of the brain signals. For translation into
control signals, different machine learning methods are used. Those methods need
a certain amount of training data (e.g., preprocessed EEG data) and class labels
(e.g., user thinks left or right). Each data point has to be assigned one of the two
class labels. Based on the data and the corresponding labels, the algorithms find
patterns in the data that belong to either of the classes. These patterns can be used
to create a prediction model which allows to predict to which class a new data point
belongs.

While traditional BCIs allow a user to communicate or control a computer
by brain activity only (Spüler 2015), they are more recently also used to extract
information about the user and infer his or her mental states (e.g., workload,
vigilance).

As BCIs can be used to measure cognitive processes, this allows for a more direct
and implicit monitoring of the learner’s state and should thereby allow for a better
adaptation of the training content to improve learning success of the user. That the
amount of cognitive workload can be measured by EEG has been shown by multiple
studies (Gevins, Smith, McEvoy, & Yu 1997; Murata 2005; Berka et al. 2007; Wang,
Hope, Wang, Ji, & Gray 2012). While workload is reflected in the amplitude of
event-related potentials in the EEG (Brouwer et al. 2012; Causse, Fabre, Giraudet,
Gonzalez, & Peysakhovich 2015), it also affects the oscillatory activity observed in
an EEG (Kohlmorgen et al. 2007; Brouwer et al. 2012). Specific to arithmetic tasks,
it was shown that the cognitive demand results in a power increase in the theta band
and a decrease in the alpha band (Harmony et al. 1999). As there are known effects
of workload in the EEG, these can potentially be detected by a BCI and used for
adaptation of a learning environment.

In the course of this chapter, we will give an overview of the progress made in the
last 7 years, while trying to develop an EEG-based learning environment. Based on
the lessons learned from the first studies for workload assessment, we present results
that show that EEG can be used to assess workload during arithmetic learning.
By developing a BCI that detects workload in real-time, we could show that this
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approach can also be used for content adaptation in a learning environment. While
this system only detected workload as one component, we could also show that
different sub-components of workload can be differentiated and thereby be used to
gain more detailed information about the learner’s mental state. Finally, we discuss
these findings, show open problems, and present ideas how this line of research can
be extended in the following years.

The First Steps Are the Hardest: What We Have Learned in
the Early Days

When we started the project to develop an EEG-based learning environment, we
performed two studies in which we addressed the workload assessment during
learning of realistic instructional material and the use of cross-task workload
assessment to assess workload in a variety of different tasks. While the results of
these studies were mixed, they uncovered several issues in designing an EEG-based
learning environment. Here we briefly describe these studies and summarize the
lessons we have learned to avoid those issues in the future.

Workload Detection During Studying Realistic Material

In our first study (Walter, Cierniak, Gerjets, Rosenstiel, & Bogdan 2011), we ana-
lyzed workload in ten subjects (age 12–14 years) who studied instructional material
while EEG was recorded. There were two types of instructional material, which
involved processes of learning and comprehension with different levels of workload.
The material inducing a high workload consisted of graphical representations and
explanations of mathematical angle theorems, while the low workload material
consisted of comic strips in which the subjects had to understand the story. While
both materials contained a complex graphical display, the comic strips were easy to
understand, while the angle theorems were harder and required more effort.

An analysis of the EEG data showed that spectral power in the alpha band
(8–13 Hz) over the occipital area showed a strong desynchronisation (decrease of
power) for high-workload material. Using a support vector machine (SVM), we
tried to classify the data into categories of high and low workload on a single-trial
level and obtained an average accuracy of 76%, which shows that EEG can be used
to detect workload.

Although the results are promising for developing an EEG-based learning
environment, they have to be interpreted with caution as some methodological
critique can be applied to that study regarding perceptual-motor confounds. As
comic strips and angle theorems differed largely in their appearance, this might
lead to differences in perceptual processing beyond imposing different levels of
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workload. The different perception might also lead to different motor behavior (e.g.,
different eye movement patterns), which could lead to different motor-related brain
activity. Although the results are in line with the literature, some doubts remain if
the effects are solely caused by workload modulation.

Cross-Task Workload Prediction

While the previous results have shown that machine learning methods can be used to
detect workload from EEG data, another problem becomes apparent when trying to
use this approach in a learning environment. For the application of machine learning,
training data are needed, which also includes labels that assign each datapoint to one
class (such as easy or hard). In the previous study, data from the same task was used.
In a learning environment this approach can not be used, due to learning effects of
the subject. These learning effects (task is hard at the beginning, easy after learning)
change the labels of the data, which makes it difficult to apply machine learning
approaches.

As an alternative approach to calibrate an EEG-based learning environment,
we wanted to use basic psychological tasks (n-back, go-nogo, reading span) that
induce workload and use data from these tasks to train a classifier, which can
afterwards be used in a realistic learning scenario. Therefore, we recorded EEG data
from 21 subjects who performed the three basic psychological tasks for workload
induction and two realistic tasks. The two realistic tasks were comprised of algebra
and arithmetic tasks with different levels of difficulty. The tasks were designed to
avoid perceptual motor confounds. More details can be found in (Walter, Schmidt,
Rosenstiel, Gerjets, & Bogdan 2013).

When trying to classify the data, we found that a within-task classification (by
cross-validation) works very well for the three basic tasks with an average accuracy
>95%, while accuracies of 73% were reached for the arithmetic task and 67%
for the algebra task. For the cross-task classification, in which the classifier was
trained on data from one task, and tested on another task, we reached accuracies
around 50% (chance level) regardless of the combination of the tasks. These results
show that the EEG data contains workload-related activity that can be detected by
machine learning methods within a task, but not across different tasks. To identify
reasons why the cross-task classification failed, we also investigated the labels. We
used the objective difficulty, which ranges from 1 (e.g., 0-back) to 3 (e.g., 2-back).
This approach assumes that a 2-back task is as difficult as an arithmetic task of
level 3. As this is a bold assumption that may not necessarily be true, we also
investigated the subjective labels, as each subject rated the subjective difficulty of
each trial. Unfortunately, the subjective ratings could not be used for all subjects,
as some subjects had a strong bias in their response. However, for the remaining
subjects, the cross-task classification clearly improved. When using two basic tasks
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for training, and testing on either the algebra or the arithmetic task, classification
worked significantly above chance level for 16 out of 27 tests with accuracies �70%.

Pitfalls in Designing EEG-Based Learning Environments

As we have discussed in a previous paper (Gerjets, Walter, Rosenstiel, Bogdan, &
Zander 2014), the results from the first two studies led to some insight, which can
be summarized as four lessons that we have learned.

The first lesson was to avoid perceptual-motor confounds. If there are possible
perceptual-motor confounds it is difficult to tell if classification occurs solely on
the basis of workload-related changes in the brain activity or if the classifier is
unintentionally trained to detect perceptual- or motor-related brain activity. By using
simple material, which rules out any perceptual-motor confounds, one can ensure
that classification occurs solely on workload-related brain responses. However, this
raises another question, how well a classifier trained on workload data obtained from
a simple task is able to predict workload in a realistic and complex scenario, where
perceptual-motor confounds can not be eliminated.

The second lesson is about the task order in the context of learning. Randomizing
the task order with regard to task difficulty is usually a good choice to avoid
confounds. However, when it comes to learning, this is hard to implement due to
learning effects. A task with medium difficulty might induce high workload in the
beginning. With time, the subject learns how to perform the task and a medium
difficulty will induce low workload after the subject has mastered the task. This
shows not only that the labeling of the data during learning is problematic, but also
that data from the same task and subject should not be used for prediction in a
learning environment.

Lesson three is about using different tasks. As a cross-task classification avoids
some problems (lesson 2), it has some different issues. Although perceptual-motor
confounds should be avoided, there is always task-related brain activity present,
which might be different when performing different tasks. Thereby, for a cross-
task classification to work, it is advisable to use many different tasks. Thereby the
classifier can be trained on the overall workload pattern, without overfitting to task-
specific activity patterns.

Lesson four is also related to the labeling. As we have seen that a cross-task
classification using multiple tasks for training is advisable, the questions of labeling
arise. As the difficulty of a task is hard to compare between two tasks, and might
also be perceived differently by different subjects, an objective label might not be
the best choice. It would be better to use subjective labeling to assess the perceived
difficulty of the task. While this might lead to a better quality of the data, it is more
difficult to work with, as some subjects tend to give highly biased ratings (leading
to imbalanced data) and additional time is needed to acquire the subject rating.
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EEG-Based Workload Assessment During Arithmetic
Learning

As a next step towards the development of an EEG-based learning environment,
we performed a study in which the subjects performed arithmetic addition tasks.
The EEG data collected during that experiment was then used to train a classifier to
predict the difficulty of the task, which we used as measure for the expected mental
workload.

Study Design

Ten students (six female; mean age: 24:9˙5:3 years, 17–32) participated voluntarily
in this study and received monetary compensation for participation. All participants
reported normal or corrected-to-normal vision and no mathematical problems.
Participants were chosen randomly. Nevertheless, all were university students (with
different fields of study) and can thus be considered as having a high educational
background.

The tasks consisted of simple arithmetic exercises in the form x C y D‹, where
the addends ranged from single-digit to four-digit numbers. Difficulty of a task was
assessed with the Q-value (Thomas 1963), which ranged from 04 (e.g. 1+1) to 7.2
(addition of two four-digit numbers). The main parameters for problem difficulty in
addition are the size of the summands involved (i.e., problem size Stanescu-Cosson
et al. 2000) and whether or not a carry operation is needed (Kong et al. 2005). As
Q-value takes into account both problem size and the need for a carry operation it
is a more comprehensive measure of task difficulty as compared to using only one
parameter such as problem size. Moreover, the Q-value also considers additional
aspects, which should affect task difficulty (e.g., the reduced difficulty of specific
problems such as 1000 C 1000). Therefore, the Q-value is an adequate measure of
task difficulty. In Spüler et al. (2016) more detail on how we calculated the Q-value
is given.

Each participant had to solve 240 addition problems while EEG was measured.
Due to possible learning effects, the tasks were presented with increasing difficulty.
The time course of the experiment is illustrated in Fig. 8.1. The calculation task was
shown for 5 s, in which the participants could solve the addition problem. After the
5 s, presentation of the task disappeared and the subjects had up to 3.5 s to enter
their answer. The activation interval during the calculation phase was later used
for analysis of the EEG signal. By separating the response from the calculation
phase, we tried to avoid motor confounds in the EEG data during the calculation
phase.
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Fig. 8.1 Schematic illustration of the time course of the experiment. The grey area indicates the
considered activation interval (IA), whereas the white area represents response and inter-stimulus
interval (ISI). At the beginning and the end of the experiment, a fixation cross was displayed

EEG Recording

A set of 28 active electrodes (actiCap, BrainProducts GmbH) attached to the scalp
placed according to the extended International Electrode 10–20 Placement System
(FPz, AFz, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4, T8, CPz,
P7, P3, Pz, P4, P8, PO7, POz, PO8, O1, Oz, O2), was used to record EEG signals.
Three additional electrodes were used to record an electrooculogram (EOG); two
of them were placed horizontally at the outer canthus of either the left or the right
eye, respectively, to measure horizontal eye movements, and one was placed in the
middle of the forehead between the eyes to measure vertical eye movements. Ground
and reference electrodes were placed on the left and right mastoids. EOG- and EEG-
signals were amplified by two 16-channel biosignal amplifier systems (g.USBamp,
g.tec) and sampled at a rate of 512 Hz. EEG data was high-pass filtered at 0.5 Hz
and low-pass filtered at 60 Hz during the recording. Furthermore a notch-filter was
applied at 50 Hz to filter out power line noise.

Analysis of EEG Data Regarding Workload-Related Effects

To remove the influence of eye movements we applied an EOG-based regression
method (Schlögl et al. 2007). For analyzing the data we estimated the power
spectrum during the calculation phase of each trial. We used Burg’s maximum
entropy method (Cover & Thomas 2006) with a model order of 32 to estimate the
power spectrum from 1 to 40 Hz in 1 Hz bins.

As an indication of workload-related effects in the power spectrum we calculated
R2-values (squared Pearson’s correlation coefficient) between the Q-value and the
power at each electrode and frequency bin. In Fig. 8.2, the results for different
frequency bands are shown. While workload-related changes can be observed in
the delta and lower beta frequency band, changes are strongest in the theta and
alpha band. Location of activation changes slightly between theta and alpha, with
theta having a more centro-parietal distribution and alpha being stronger over the
parieto-occipital region.
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Fig. 8.2 Topographic display of R2 values averaged over all participants, showing the influence
of the Q-value for each electrode in different frequency bands. R2 color coded with increasing red
reflecting higher R2 values

Prediction of Task Difficulty

To predict the task difficulty based on the EEG data, we processed the data similarly
to that for the analysis in the previous section. In an earlier attempt to predict
workload using this data (Walter, Wolter, Rosenstiel, Bogdan, & Spüler 2014),
which is not presented in this section, we did not use an EOG-based artifact
correction and found that the prediction performance is largely influenced by eye-
movement artifacts. Thus, here we used an EOG-based regression method (Schlögl
et al. 2007) to eliminate eye-movement artifacts from the data. We again used Burg’s
maximum entropy method (Cover & Thomas 2006) with a model order of 32 to
estimate the power spectrum from 1 to 40 Hz in 1 Hz bins.

To correct for inter-participant variability in the participant’s baseline EEG
power, the first 30 trials (easy trials, with Q < 1) were used for normalization.
The mean and standard deviation for each frequency bin at each electrode was
calculated over the first 30 trials and the remaining 210 trials were scaled according
to these means and standard deviations. The 30 trials used for normalization were
not used further in the prediction process (either for training or for testing the
model). Based on the normalized data, we trained a linear ridge regression model
(regularization parameter � D 103 determined by cross-validation on the training
data). To reduce the number of features we used only every second frequency bin
(1 Hz, 3 Hz, 5 Hz,. . . ) to train the model. When not specified otherwise, we used the
17 inner electrodes (F3, Fz, F4, FC3, FCz, FC4, C3, Cz, C4, CPz, P3, Pz, P4, POz,
O1, Oz, O2) resulting in a total of 340 features used for prediction. However, other
electrode subsets were also tested.

The prediction was tested in two different approaches. For the first approach,
the within-subject prediction, data from the same subject were used for training
and testing the prediction model. To ensure that data do not overlap, a 10-fold
cross-validation was performed. The within-subject prediction was done only to
get an estimate of the data quality and how well task difficulty can be predicted in
an optimal scenario. The second approach, the cross-subject prediction, used data
from nine subjects for training the model and was tested on the one remaining
subject. The procedure was repeated so that data from each subject was used for
testing once. With regard to a future application of the method in an online learning
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environment, the within-subject approach is less interesting, because it would mean
that the learning environment needs to be calibrated to the user, which means that
the user has to use the system for a while to collect a certain amount of data needed
for training. The cross-subject prediction, on the other hand, allows the use of data
from other subjects for training a prediction model. Using this approach in a learning
environment would enable the subject to start using the system right away without
the need for the collection of training data.

For evaluation of the prediction model, we used different metrics: correlation
coefficient (CC) and root-mean-squared-error (RMSE). As both metrics assess
different kinds of prediction error, it is important to look at both metrics (Spüler,
Sarasola-Sanz, Birbaumer, Rosenstiel, & Ramos-Murguialday 2015).

As a regression predicts the Q-value, we assume that a precise prediction of
task difficulty will not be necessary in an adaptive learning environment. It is more
important to identify when the task gets too easy or too difficult to keep the learner
in his optimal range of cognitive workload, which is why we also used the output
of the regression model for a classification into three difficulty levels. For Q < 2

the trial was considered easy, for Q > 4 it was considered too difficult, while it
had a medium difficulty level when Q was between 2 and 4. These ranges were
estimated based on the relationship between Q and the behavioral task performance.
To estimate the validity of our classification procedure, we applied this thresholding
to the actual Q and the predicted Q and evaluated the classification accuracy (CA),
which is given as the percentage of trials correctly classified.

Performance of Workload Prediction

The cross-subject prediction performance averaged over all subjects reached an
average CC of 0.74, RMSE of 1.726, and a CA of 49.8% (chance level would be
33%). Regarding the classification accuracy, trials of normal difficulty (2 < Q < 4),
were correctly classified with an accuracy of 74.2%, while it was difficult to
differentiate easy 4.8% accuracy) and difficult (30.4%) trials. A closer look at the
prediction revealed that trials with Q > 6 were mostly classified as easy, indicating
that easy trials and trials with Q > 6 share similar patterns in EEG. To improve
performance we used only trials with Q < 6 for training and testing the model,
which resulted in a significantly better CC of 0.82 (p < 0:01, t-test), RMSE of 1.343
(p < 0:001, t-test), and an improved classification accuracy of 55.8% (p < 0:05, t-
test) (Table 8.1).

As it would be beneficial for an EEG-based learning environment to use as
few EEG electrodes as possible, we also investigated how performance changes
if the number of electrodes is reduced. The results with different electrodes are
summarized in Table 8.1. When using only one electrode (besides the ground and
reference electrode), POz was the position that delivered best results. While using
POz performs significantly worse than using 17 electrodes in terms of CA (p < 0:05,
t-test), there was no significant difference in CC and RMSE (p > 0:05). There
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Table 8.1 Prediction performance averaged over all participants for different electrode subsets
using only trials with Q < 6

Number Description Positions CC RMSE CA

28 All See section “EEG Recording” 0.807 1.292 55.6%

17 Inner See section “Prediction of Task
Difficulty”

0.820 1.343 55.8%

7 Central Fz,FCz,Cz,CPz,Pz,POz,Oz 0.839 1.352 54.7%

9 Frontocentral F3,Fz,F4,FC3,FCz,FC4,C3,Cz,C4 0.725 1.465 45.5%

7 Parietooccipital P3,Pz,P4,POz,O3,Oz,O4 0.831 1.383 54.1%

1 Best electrode POz 0.788 1.479 50.5%

In each line one subset is described by the number of electrodes, a short description referring to the
approximate location of the electrodes as well the position of all electrodes in the subset according
to the 10–20 system. As performance metric we showed the correlation coefficient (CC), the root
mean squared error (RMSE), and the average classification accuracy (CA)

was also no significant difference in prediction performance between using the 17
inner channels, all 28 channels, or a subset of frontocentral, central, or parietocentral
electrodes (p > 0:05).

The within-subject prediction achieved an average CC of 0.90 and an RMSE
of 0.95, which is significantly better for CC (<0.01) and RMSE (p < 0:001),
but, as discussed earlier, the reduced calibration and training effort in a cross-
subject prediction seems to outweigh the performance increase of the within-subject
prediction.

A Passive BCI for Online Adaptation of a Learning
Environment

As we have shown in the previous section, that it is possible to predict workload
during solving mathematical exercises by using a cross-subject regression model,
we wanted to apply this model in an online study. This study should serve as a proof-
of-concept that a digital learning environment can adapt its content in real-time
based on the EEG of the user. To evaluate the effect of the learning environment, we
assessed the learning success of the subjects and compared it to a control group.

Study Design and Participants

The participants in this study were divided into two groups: an experimental group
using the EEG-based learning environment and a control group using an error-
adaptive learning environment, which can be considered as state-of-the-art. In both
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groups, the subjects learned arithmetic addition in the octal number system (e.g.,
5 C 3 D 10), which was a completely new task to all subjects.

To evaluate the learning success, each subject did a pre-test and a post-test, before
and after using the learning environment for approximately 45 min (180 exercises).
The tests consisted of 11 exercises, with varying difficulty. Although difficulty of
the exercises were the same for the pre- and post-tests, the exercises themself were
different.

The participants of both groups were university students of various disciplines,
reported to have normal or corrected-to-normal vision, and participated voluntarily
in the EEG experiment. Thirteen subjects (7 male and 6 female; mean age: 28:1˙4:3

years, 21–35) participated in the experimental group using the EEG-based learning
environment. The control group consisted of 11 subjects (7 male and 4 female; mean
age: 23:4 ˙ 1:4 years, 22–27), using an error-adaptive learning environment.

Cross-Subject Regression for Online Workload Prediction

Based on the EEG data obtained from the previous study (see section “EEG-Based
Workload Assessment During Arithmetic Learning”), we created a prediction model
that was used to predict the cognitive workload online and further was able to
adjust the learning environment accordingly. In terms of usability, we wanted the
EEG-based learning environment to be useable out-of-the-box without the need
for a subject-specific calibration phase, which is why we used the cross-subject
regression method.

Therefore, EEG data from the previous study were used for training a linear
ridge regression model with a regularization parameter of � D 103. The number
of electrodes used for online adaptation was reduced to 16 inner electrodes (FPz,
AFz, F3, Fz, FC3, FCz, FC4, C3, Cz, C4, CPz, P3, Pz, P4, Oz, POz). Furthermore,
only trials with a Q-value smaller than 6 were used to train the regression model,
since trials with a higher Q-value showed similar EEG patterns as very easy trials,
which is most likely due to a disengagement of the subjects. While the trained
regression model allows workload prediction on a single-trial level, the accuracy
of the prediction was improved by averaging the prediction output using a moving
average window of the last six trials. The moving average leads to a more robust
prediction, but also makes the system react slower to sudden changes in workload,
which is feasible since it is not recommended to adapt the difficulty of an online
learning environment too rapidly.

The prediction model thus trained was then applied in the EEG-based learning
environment, to predict the amount of cognitive workload for novice subjects in
real-time.
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Real-Time Adaptation of the Learning Environment

For the experimental group, the EEG data served as a workload indicator. Therefore,
we used the output of the previously trained regression model to predict the current
workload state of each learner and differentiated three difficulty levels. If the
predicted workload was less than Q D 0:8, the presented task difficulty was
assumed to be too easy. Thus the following Q-value was increased by 0:2. Vice
versa, the target Q of the subsequent task decreased by 0:2 when the predicted
workload was greater than Q D 3:5. In this case, the presented task difficulty
was assumed to be too difficult. If the predicted workload was between Q D 0:8

and Q D 3:5, the Q-value for the next presented task remained the same and
the difficulty level was kept constant. These thresholds were defined based on the
relationship between error rate and Q-value (Spüler et al. 2016). Trials with Q < 1

were solved correctly in all cases, while none of the subjects were able to solve
trials with a Q > 6. 50% of the trials with a Q D 3:5 were successfully solved on
average.

For the control group, an error-adaptive learning environment was used. The
number of wrong answers served as performance and adaptation measure. When
subjects solved five consecutive tasks correctly, the difficulty level increased by 1.
On the other hand, the difficulty level decreased by a factor of 1 when participants
made three errors in a row. Otherwise, the Q-value did not change and the difficulty
level was held constant. The adaptation scheme was kept similar in the control
group, as in common tutoring systems. Because of the repetitions till the difficulty
level was changed, the presented Q-values increased or decreased by steps of size 1
and the calculated Q-values were rounded to the next integer. The learning session
for the experimental group as well as for the control group started with an exercise
of difficulty level Q D 2.

To compare the learning success of the two groups, the learning effect after
completing the learning phase serves as a performance measure and is used as an
indicator of how successfully each subject was supported during learning. Hence,
each subject had to perform a pre-test before the learning phase started. This was
used to assess the prior knowledge of each user. After the learning session, each
participant had to solve a post-test, and the difference in score between the two tests
served as an indicator of the learning effect.

Task Performance Results

The behavioral results, how well the subjects performed the octal arithmetic task,
are shown in Table 8.2 for the experimental group and in Table 8.3 for the control
group. For the experimental group, 45:5% of the 180 exercises were solved correctly
on average. Averaged over all subjects, a maximum Q-value of 5:85 was reached
by using the EEG-based learning environment. Each subject achieved at least the
difficulty level of Q D 3:2 (see Table 8.2).
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Table 8.2 Task performance for the experimental group

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 Mean

Correct 38.3 88.9 60.6 10.0 28.9 25.6 31.1 17.8 66.1 33.3 16.7 92.2 82.2 45.5

max. Q 6.6 3.2 6.6 6.6 6.6 6.6 6.6 6.6 5.2 6.6 6.6 3.6 4.6 5.85

The relative amount of correctly solved trials in % and the maximum Q-value for each subject
using the EEG-based learning environment is shown

Table 8.3 Task performance for the control group

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Mean

Correct 64:4 62:2 57:2 66:7 63:3 61:1 63:3 67:8 65:0 66:1 66:7 64:0

max. Q 6 4 5 6 4 5 4 4 4 5 4 4:64

The relative amount of correctly solved trials in % and the maximum Q-value for each subject
using the error-adaptive learning environment is shown

Table 8.4 Number of correctly solved trials in the pre-and post-test, as well as the learned factor
for each subject of the experimental group and overall subjects

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 All

Pre-Test 3 0 6 0 2 1 0 1 0 5 1 1 0 1:54

Post-Test 7 0 9 8 2 3 3 2 8 7 7 2 8 5:08

Learned 4 0 3 8 0 2 3 1 8 2 6 1 8 3:54

The control group answered 64% of all 180 assignments correctly on average.
Since the error-rate was used for adapting the difficulty level of the presented
learning material, the number of correctly solved trials was similar across subjects.
On average, a maximum Q-value of 4:64 was reached (see Table 8.3). The best
subjects reached a maximum Q-value of 6, whereas each participant achieved at
least the difficulty level of Q D 4.

Learning Effect

To evaluate if the EEG-based learning environment works and how it compares to an
error-adaptive learning environment, we analyzed the learning effect of each subject
by pre- and post-tests. Furthermore, the learning effects between the experimental
and control group were compared.

Table 8.4 reports the learning effect of each individual subject of the experimental
group, as well as the overall values. After using the EEG-based learning environ-
ment and thus learning how to calculate in an octal number system, a learning effect
can be recognized for almost every subject, except for subject 2 and 5. On average,
5:08 assignments from 11 post-test tasks were solved correctly after completing the
learning phase (see Table 8.4), 3:54 more assignments compared to the pre-test. On
average a significant learning effect can be verified between the pre- and post-test
(p D 0:0026, two-sided Wilcoxon test).
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Table 8.5 Number of correctly solved trials in the pre- and post-tests, as well as the learned factor
for each subject of the control group and overall subjects

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Mean

Pre-Test 4 3 1 0 2 1 2 1 1 2 0 1:55

Post-Test 8 2 4 7 5 8 3 4 4 6 4 5

Learned 4 �1 3 7 3 7 1 3 3 4 4 3:45

The control group solved 1:55 tasks from the 11 pre-test assignments on average
correctly. As the difference to the experimental group is not significant (p > 0:05,
two-sided Wilcoxon test), equal prior knowledge can be implied for both groups.
The best subject of the control group performed 36:36% of the pre-test tasks
accurately, whereas the worst subjects gave no correct answers (see Table 8.5). For
almost every subject, a learning effect for calculating in the octal number system is
noticeable after the error-adaptive learning session, except for subject 2. On average,
3:45 more tasks were solved correctly in the post-test, compared to the pre-test (see
Table 8.5), which also shows a significant learning effect between the pre- and post-
tests (p D 0:0016, two-sided Wilcoxon test).

Although the learning effect for the group using the EEG-based learning
environment is higher than for the control group, this difference is not significant
(p > 0:05, two-sided Wilcoxon test). These results show that an EEG-based
adaptation of a digital learning environment is possible and that results are similar
to error-adaptive learning environments, which can be considered state-of-the-art.

Towards More Differentiated Workload Estimation

We have shown in the previous section that it is possible to use a passive BCI
approach to adapt content of a digital learning environment in real-time, based on
the user’s EEG recordings. While the EEG-based learning environment worked, it
showed results that were as good as an error-adaptive learning environment. This
raises the question of how we can improve the EEG-based learning environments
and what can we do with an EEG-based learning environment that we can not do
with an error-adaptive learning environment. In the proposed EEG-adaptive learning
environment we adapted according to the user’s workload, which was initially
measured by the Q-value. As the Q-value was shown to highly correlate with the
error-rate (Spüler et al. 2016), it is not surprising that the results are similar to the
ones obtained with an error-adaptive learning environment.

As we used a very simply concept of workload in the previous work, a more
detailed definition of workload could help to improve the EEG-based learning
environment. Miyake and colleagues (Miyake et al. 2000) defined three components
of workload: Updating, Inhibition, and Shifting. Updating is described as a process
of (un-)loading, keeping, and manipulating information in memory during a certain
period of time (Ecker, Lewandowsky, Oberauer, & Chee 2010), whereas Shifting
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can be described as the adjustment of a current mind set to new circumstances or
new rules of a task (Monsell 2003). Inhibition comprises blending out (irrelevant)
information or withholding actions while being involved in a cognitive task (Dia-
mond 2013). Miyake and colleagues describe those three core functions as sharing
many properties but also having distinct diversities that characterize the individual
functions. If the diversities between the functions lead to different patterns of EEG
activity, those patterns could be detected and used to gain more detailed information
about the user. Instead of only assessing the mental workload, it was also possible
to assess how demanding a task is in terms of updating, inhibition, and shifting, and
the content could be adapted more precisely to match the individual needs of the
user.

With the aim of developing a prediction model that is able to differentiate
between workload components, we performed a study to find evidence of two of
the components (Updating and Inhibition) in EEG data and see how well machine
learning methods can be used to differentiate those components based on the EEG
data.

Task Design: n-Back Meets Flanker

The “n-back meets flanker” task (Scharinger, Soutschek, Schubert, & Gerjets
2015b) combines an n-back task with simultaneous presentation of flanker stimuli.
The task was used to find and investigate interactions between the two executive
functions Updating and Inhibition in terms of behavioral data as well as on a
neurophysiological level. The n-back task is known to induce Updating demands in
different intensities depending on the value of n (Miyake et al. 2000; Jonides et al.
1997). In this experiment n was altered between 0, 1, and 2 in a block design. In each
trial, at each stimulus presentation, the subject had to react as accurately and quickly
as possible to the following question: “Is the currently presented letter the same as
the one I saw n before?” A yes or no decision was required, which was recorded via
a button press. In addition to the given answer, the reaction time was recorded. The
stimuli consisted of a set of four letters, S, H, C, and F. The different values of n
indicated how many letters need to be constantly updated in memory throughout the
specified block. For n D 0 the subjects had to remember one predefined stimulus
letter, which remained the same throughout the block, which is why no updating of
memory content was necessary.

The flanker task is known to induce Inhibition demands (Eriksen 1995; Sanders
& Lamers 2002). A flanking stimulus can either be congruent or incongruent to
the accompanied n-back task stimulus. An incongruent flanker usually introduces
conflicts in the decision making, reactions eventually need to be inhibited even
though the reflex urges the subject to react otherwise. The flanker stimuli in this
experiment were presented simultaneously with the n-back stimulus and they were
either congruent (identical) or incongruent (different) with the presented n-back
stimulus. The central letter used for the n-back task was flanked by three letters
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on the right and three on the left (all identical). The subjects were instructed to not
react to the flanker stimuli at all. Each n-back condition was presented twice, in
which 154 trials where presented per block. Half of the stimuli of each block were
targets, half were non-targets. The flanker items were chosen to be incongruent in
one-third of all trials, congruent in the other two-thirds of all trials. By design an
incongruent—incongruent sequence of stimuli was prevented, to avoid undesired
effects. In addition to that in each block, a sequence of ten targets and non-targets
was randomly chosen in which the central n-back stimulus was removed and only
the flanker letters were presented. This was done to recreate awareness of the flanker
items.

Data Recording and Preprocessing

Twenty-two subjects (10 male and 12 female; mean age: 28:5 ˙ 4:3 years, 21–
35) participated in the study. All participants had normal or corrected-to-normal
vision, none reported neurological disorders and all were right-handed (with one
exception). Twenty-two electrodes (Acticap brain products) were used for the
recording at a sampling rate of 500 Hz and placed according to the 10/20 system
(Jasper 1958) with the reference at right mastoid and the ground electrode at AFz.

The data was bandpass filtered between 0.4 and 40 Hz and re-referenced to the
common average. To remove artifacts, a threshold of 100 �V was chosen and all
trials exceeding this level were discarded, whereas trials including EOG artifacts
were corrected using independent component analysis (ICA), in which artefactual
independent components were removed by visual inspection. After these steps, trials
were sorted and more trials were discarded. The first four trials of each block, for
example, as they were always congruent non-targets, were removed as well as all
congruent trials following incongruent trials because the so-called Gratton effect
(the effect caused by the incongruence is bigger if the incongruent trial follows a
congruent trial compared to an incongruent trial) should not influence the analysis.
Furthermore, all trials in which the subject did not respond correctly to the n-back
task were removed from the dataset. On average this resulted in 215 trials per subject
that could be used for the analysis. More details can be found in the publication
(Scharinger et al. 2015b).

Neurophysiological Analysis

To investigate if Updating and Inhibition show different patterns in the EEG activity,
the data were divided into trials containing Baseline (BL), Updating 1 (Up1),
Updating 2 (Up2), and Inhibition (Inh). The first 0-1,000 ms after stimulus onset
were used as epoch of interest. Updating demands are supposed to be induced for
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Fig. 8.3 ERPs from 0-1,000 ms from stimulus onset for the four conditions: BL, Inh, Up1, and
Up2 at position Cz. The values represent the grand average over all subjects and trials. The grey
bars (bottom) state that the amplitude differs significantly (p < 0:05, corrected for multiple
comparisons) for the respective comparison

1-back and 2-back, while Inhibition demands are expected for incongruent flanker.
Due to this, the data were divided into four conditions:

• Baseline (BL): 0-back with congruent flanker
• Inhibition (Inh): 0-back with incongruent flanker
• Updating1 (Up1): 1-back with congruent flanker
• Updating2 (Up2): 2-back with congruent flanker

To find evidence of diversity between Inhibition and Updating in the EEG, we
first looked at the event-related potentials (ERPs) in the data. As the amplitude of the
P300 at electrode positions Fz, Cz, Pz is supposed to be correlated with workload,
we investigated the ERPs at those positions. While nearly no effects were found at
electrode Fz, we found significant differences in amplitude between all conditions
in the time range of 200–750 ms for electrodes Cz and Pz. The results for electrode
Cz are shown in Fig. 8.3.

As this shows that Inhibition and Updating show different patterns in the ERPs,
we further analyzed the data with regard to the power spectrum. Therefore, we used
Burg’s maximum entropy method (Burg 1972) with a model order of 32 to estimate
the power spectrum between 4 and 13 Hz (theta and alpha band). Significant (p <

0:05) workload-related changes could be observed in the power spectrum in both
frequency bands at Fz and Cz, while Pz showed only a significant effect in the alpha
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Table 8.6 Classification accuracies averaged over all subjects using either evoked response
potentials (ERPs) for classification or the power spectrum

Features Inh vs BL Up vs BL Up2 vs BL Up vs Inh Up2 vs Inh

RP 61:12%��� 61:20%��� 73:38%��� 68:23%��� 74:73%���

Spectrum 52:48%� 52:68%� 63:17%��� 55:46%��� 64:13%���

Significance regarding the difference to chance level accuracy is indicated as follows: *p < 0:05,
**p < 0:005, ***p < 0:0005

band, which therefore was much stronger than at the other electrodes. However,
the only significant effects (p < 0:05) between Updating (up1) and Inhibition were
found in the theta band at electrode Cz.

Classification

As there is evidence that Inhibition and Updating show different patterns of EEG
activity, we tried to use machine learning methods to classify the data in order to
detect if a task induced Updating or Inhibition demands. For classification we used
the ERP data, as well as the power spectral data. Data from 17 inner channels were
used for classification by a support vector machine (SVM) with a linear kernel and
a hyperparameter of C D 1. For the classification of the ERPs, we further used a
CCA-based spatial filtering method (Spüler, Walter, Rosenstiel, & Bogdan 2014) to
improve classification accuracy.

Classification results are shown in Table 8.6. While all results were significantly
above chance level accuracy, classification using ERPs worked better than using
the power spectrum. While Inhibition and Updating could individually be classified
against baseline data, it was also possible to discriminate between Inhibition and
Updating demands. While this is a clue that there might be differences between
Inhibition and Updating, the results could also be explained by the different
conditions inducing different amounts of workload and the classifier detecting
that different amounts of workload. To rule out that hypothesis we performed a
classification where the classifier was trained on one condition (e.g., BL vs. Inh)
and tested on a different condition (e.g., Up1). If the patterns between the conditions
were similar and only varied in strength due to different amounts of workload,
we would expect that the conditions would still be classified correctly as a high-
workload condition. However, most of the results were not significantly above
chance (p > 0:05), showing that classification did not work. Only for one test,
in which the classifier was trained on Up2 vs. BL, we obtained a classification
accuracy significantly different from chance level (p < 0:05). As this classifier
classified Inhibition trials mostly as BL, this indicates that Inhibition has a pattern
more similar to Baseline than to the Up2 condition.
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Fig. 8.4 Activation patterns obtained by SVM classification for Inhibition vs. Baseline (top) and
Updating1 vs. Baseline (bottom). The activation patterns for all electrodes and frequencies are
shown(left), a topographic display of the activation pattern for the theta-band (middle) and for the
alpha-band (right)

In addition to the previous neurophysiological analysis regarding the changes in
the power spectrum, we looked at the classifier weights in order to visualize the
differences in the power spectra between Inhibition and Updating. As weights of a
linear classifier should not be interpreted directly, we used the feature covariance
matrix to calculate neurophysiologically interpretable activation patterns (Haufe
et al. 2014) from the classifier weights. The activation patterns for Inh vs. BL and
Up1 vs. BL are shown in Fig. 8.4. It can be seen that occipital alpha activity is a
strong indicator of changes in workload for both components. In the theta-band,
the pattern differed between Inhibition and Updating. While the theta activity in the
central region changed with workload for the Inhibition component, the Updating
component showed workload-related changes in the frontal area. Not only does the
strength of the effect vary between the two components, also the location does; this
is a further argument that the two components of the Miyake-model are also different
on a neurophysiological level. With regard to an EEG-based learning environment,
this opens up new possibilities as detecting the individual Inhibition and Updating
demands of a task could lead to a more specific adaptation of the content than only
detecting the overall workload.

Discussion and Outlook

In this chapter, we have outlined the progress of our project and our efforts to
develop an EEG-based learning environment. While the lessons learned from our
first studies were already outlined in the section “Pitfalls in Designing EEG-Based
Learning Environments”, the main message of these studies was that cross-task clas-
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sification is not feasible. Although the cross-task classification could be improved by
using subjective labels, a subjective labeling introduced other problems (difficulty
to collect labels and subjective bias), which is why the cross-task classification was
not investigated any further.

As an alternative, we employed a cross-subject classification, in which a
prediction model is trained on a number of subjects, and used to predict workload
in a different subject. Thereby, it is possible to use the workload prediction on a
subject without the need for a time-consuming subject-specific calibration phase.
As this method performed well when tested offline, it was tested online to adapt
the content of a digital learning environment in real-time based on the EEG signals.
This study was a successful proof-of-concept that an EEG-based adaptation of a
digital learning environment is possible. However, we could not show any benefit of
the system as it performed similarly to an error-adaptive learning environment. As
this work also revealed new difficulties that arise when trying to evaluate a digital
learning environment in an online study, these two issues need to be discussed in
more detail.

Evaluating an EEG-Based Learning Environment

Commonly, if neural signals (like EEG) are used to estimate a user’s mental state
or a user’s intention, the performance of the prediction method is assessed in terms
of accuracy or other metrics that try to quantify how well the prediction model is
working. While we have also evaluated the prediction performance of our model in
the offline study (see section “EEG-Based Workload Assessment During Arithmetic
Learning”), this kind of assessment is no more feasible with an online learning
environment.

The reason for this is the lack of an objective measure for the user’s workload.
For the creation of the prediction model we used EEG data from a task that all
subjects were carrying out fluently (addition in a decimal system). As no learning
effects are expected in this case, the difficulty of the task (measured by Q) was used
as a subjective measure of expected workload. But the sole purpose of an online
learning environment is to induce learning effects, and we have shown that our
system does so. Thereby, the relationship between task difficulty (Q) and workload
is invalidated. At the beginning, when the task is unknown to the user, even easy
exercises will induce a high workload. After using the learning environment, the
user may have mastered arithmetic tasks in the octal number system, and even
exercises with moderate difficulty will result in a low workload. This example shows
that the relationship between task difficulty and workload is invalidated if learning
effects are present.

As the task difficulty measured by the Q-value is the only objective measure we
have, and the relationship to workload is invalid in the online scenario, there are
no means to objectively assess the prediction performance of our model. Although
we cannot assess the performance of the prediction model in the online scenario,
we can evaluate the EEG-based learning environment with regard to its effect on
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learning success. Learning success was defined as the difference in score between
the pre- and post-tests, which were performed by the subjects before and after using
the learning environment. As it is not important for the learner how accurate the
workload-prediction works, but it is important how much the learning success can
be improved, learning success is also the most user-centered metric.

Due to these facts, that other usually used metrics are not applicable for the
scenario of an online learning environment and that learning success is the most
user-centered metric, we think that learning success should be used as prime
outcome measure for this kind of study.

Benefits of an EEG-Based Learning Environment

As subjects using the EEG-based learning environment showed a significant learn-
ing effect, we could show that the EEG-based learning environment works. When
comparing the experimental group using the EEG-based learning environment with
the control group using the error-based learning environment, the learning success
was higher for the experimental group, but the difference was not significant. This
basically indicates that an EEG-based learning environment is an alternative to
the state-of-the-art approach but offers no benefits in its current form. However,
the presented system is meant as a proof-of-concept, and the parameters could be
tweaked to optimize workload prediction, as well as the adaptation of the learning
material.

Although we aimed at a high usability for the presented system by using a cross-
subject prediction model to omit a subject-specific calibration phase, the usability
of the current system is still rather low. The use of gel-based EEG needs some
time and effort to prepare, thereby making it impractical to use an EEG-based
learning environment on a wide basis. As we have shown in the section “EEG-Based
Workload Assessment During Arithmetic Learning”, the number of electrodes could
be drastically reduced to reduce preparation time. Another approach would be the
use of dry EEG electrodes, which would reduce the preparation time even more, as
they don’t require any gel. However, dry electrodes have a lower signal-to-noise
ratio and would thereby lead to a lower prediction accuracy. Regardless of the
preparation time, the costs of an EEG setup are high, which raises the question:
what are the benefits of an EEG-based adaptive learning environment that would
justify the additional cost and time investment compared to a normal digital learning
environment?

It is likely that the answer is that there are no benefits when using an EEG-
based learning environment in a broad population (e.g., in a class room). However,
this technique could prove helpful for special cases in which the user suffers from
learning disability or other problems. In the presented study, one subject of the
experimental group suffered from test anxiety and reported feeling very comfortable
using the EEG-based learning environment, as the system turned down the difficulty
every time the subject was close to feeling overwhelmed, thereby providing a good
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learning experience. Depending on the individual case, the good learning experience
can outweigh the disadvantages of the setup time and costs and thus render the usage
feasible.

Improving an EEG-Based Learning Environment

As the EEG-based learning environment merely served as a proof-of-concept
to show that the idea is feasible, it also inspires one to think about possible
improvements that could be made to enhance the prediction performance. On
one side, the system could be improved by using better classification and signal
processing methods from the area of BCI research. While we used a simple
normalization method of the EEG signal, which helped to improve results, results
could be further improved by using more advanced methods to normalize EEG data
like PCA-based covariate shift adaptation (Spüler, Rosenstiel, & Bogdan 2012b) or
a classifier adaptation (Spüler, Rosenstiel, & Bogdan 2012a), which improves the
classifier while using the learning environment and adapts it to changes in the EEG
data. Regarding the cross-subject classification approach, there are also approaches
from the field of transfer learning (Tu and Sun 2012; Samek, Meinecke, & Müller
2013) that could be used to improve the cross-subject (and possibly also a cross-
task) classification, which should be evaluated in future studies.

Despite improving only the prediction performance, one could also try to
increase the information about the user, by not only measuring workload, but also
how demanding a task is regarding different subcomponents of workload. As each
learner is different, one might have more problems with tasks that have a high
Updating demand, while others might have more problems with high Inhibition
demands. By being able to discriminate between those two, the learning content
could be adapted more specifically to the individual needs of the user. Measuring
the Inhibition demand could potentially also be used as an indicator of distractions
outside of the learning environment and would thereby be an interesting measure
for the application when applied in a classroom setting.

Measuring workload or differentiating workload into subcomponents are not the
only things that could be done with an EEG-based learning environment. It was also
shown that mental states like vigilance, alertness, or attention can be detected in
EEG (Oken, Salinsky, & Elsas 2006; Berka et al. 2007). If those can be detected
by an EEG-based learning environment this could lead to a more comprehensive
monitoring of the user and not only allow for better adaptation of the learning
content, but also introduce breaks or place motivating rewards based on the mental
state of the user to improve learning effort and learning success of the user.

Lastly, such a BCI-based learning environment could also be improved by not
only using EEG to measure neurocognitive processes, but also use other physio-
logical signals, such as Eye-Tracking. As was shown by Scharinger, Kammerer,
& Gerjets (2015a), cognitive workload influences pupil dilation, which can be
measured in real-time and could be used as additional information to improve an
adaptive learning environment. In the following chapter of this book (Scheiter et al.
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2017), a learning environment is presented that measures eye-movements of the
student and uses this additional information for adaptation. As the combination of
eye-tracking information with neurophysiological signals (like EEG) would give
a more comprehensive view of the current state of the learner, combining EEG
with other physiological signals like eye tracking could allow for an even better
adaptation of the system.
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