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Molecular Targets of Treatment 
in Acute Promyelocytic Leukemia

Ramy Rahmé, Cécile Esnault, and Hugues de Thé

 Introduction

Acute promyelocytic leukemia (APL) is the M3 
subtype of acute myeloid leukemia (AML), char-
acterized at the cellular level by a differentiation 
block of the granulocytic lineage at the promy-
elocytic stage. On the molecular level, more than 
98% of APL cases are caused by the chromo-
somal translocation t(15;17) which implicates the 
two genes promyelocytic leukemia (PML) and 
retinoic acid receptor alpha (RARA), leading to 
the expression of the PML/RARA fusion oncop-
rotein [1]. In the RARA gene, the breakdown 

always occurs in the intron 2, whereas three 
breakdown regions were described occurring in 
the PML gene and resulting in the expression of 
two long isoforms (bcr1 and bcr2 transcripts) and 
one short isoform (bcr3 transcript) (Fig. 2.1) [1–
3]. Other translocations were reported in APL 
always involving the RARA gene with various 
gene partners, of which PLZF is the most com-
mon [4]. This chapter will discuss the role of 
PML/RARA in the development of APL while 
focusing on the importance of treatment- triggered 
PML/RARA degradation and PML/P53-driven 
senescence in the pathophysiology of cure.
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 The Translocation Partners: RARA 
and PML

RARA, the retinoic acid (RA) receptor alpha, is 
a nuclear transcription factor activated by reti-
noids—such as all-trans retinoic acid (ATRA). 
Upon heterodimerization with its cofactor the 
retinoic X receptor (RXR) [5], the RARA/RXR 
complex binds to specific DNA RA response 
elements (RARE) composed typically of two 
direct repeats of a core hexameric motif, PuG 
[G/T] TCA; the classical RARE is a 5 bp-
spaced direct repeat [6]. In the absence of the 
ligand, RARA/RXR interacts with nuclear 
receptor corepressors such as N-CoR (nuclear 
receptor corepressor) and SMRT (silencing 
mediator of retinoid and thyroid hormone 
receptor). This interaction leads to the recruit-
ment of Sin3A and histone deacetylase (HDAC) 
complexes which maintain chromatin in a com-
pacted and repressed state [7, 8]. The binding 

of retinoids induces conformational changes in 
the ligand-binding domain (LBD) of RARA, 
the most striking one being the repositioning of 
helix 12. This structural modification causes 
corepressor release and recruitment of coregu-
lator complexes, some members of which 
exhibit enzymatic activities such as CBP/p300, 
then allowing transcription of target genes [9, 
10]. Some of these target genes accelerate 
myeloid differentiation toward granulopoiesis. 
Accordingly, in vivo granulopoiesis is delayed 
in the presence of RARA, reflecting the basal 
repressive activity of unliganded RARA, while 
it is accelerated by RA solely in the presence of 
RARA [11].

The PML gene was originally identified in 
APL [3, 12] and is encoded by nine exons. 
Seven isoforms are generated by alternative 
splicing: six are nuclear isoforms designated 
PML-I to PML-VI, and one is cytoplasmic, 
PML-VII. PML belongs to the TRIM family, 
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Fig. 2.1 The t(15;17) translocation partners. The t(15;17) 
translocation involves two genes, PML and RARA, lead-
ing to the expression of the PML/RARA fusion protein. 
The breakpoints always occur in the intron 2 of the RARA 
gene, whereas three breakdown regions were described in 
the PML gene: in the intron and exon 6 for bcr1 and bcr2 
transcripts, respectively, and in the intron 3 for bcr3 tran-

script. This results in the expression of two long PML/
RARA isoforms (bcr1 and 2) and one short (bcr3). PML/
RARA retains all the functional domains of RARA (nota-
bly the DNA- and ligand-binding domains) and PML (in 
particular the RING finger and coiled-coil domains). bcr 
breakpoint cluster region
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many of which are ubiquitin ligases [13, 14]. 
Several members of this family are oncogenes: 
few of them were shown to promote malignant 
transformation as partners of fusion genes [15]. 
PML protein contains several regions: a RBCC/
TRIM motif (amino acids 57–253 in exons 1–3) 
which harbors a C3HC4 RING finger, two B 
boxes (B1 and B2), and an α-helical coiled-coil 
homodimerization domain [14, 16, 17], a 
nuclear localization signal (NLS) (amino acids 
476–490 in exon 6), a SUMO-interacting motif 
(SIM) (amino acids 556–565 in exon 7a) pres-
ent only in PML-I to PML-V, and a nuclear 
export signal (NES) (amino acids 704–713 in 
exon 9) found only in PML-I and consistent 
with its nuclear and cytoplasmic distribution 
[17]. Some domains were described in isoform-
specific sequences, like the interaction domain 
between PML-IV and ARF, a positive regulator 
of p53 [18], and the exonuclease- like domain in 
PML-I [19].

PML proteins aggregate in the nucleus and 
form speckles known as PML nuclear bodies 
(NBs). These domains are tightly associated 
with senescence and control of p53 activation, 
as recently reviewed [20]. Indeed, PML is 
required for senescence induction, as demon-
strated upon stress, DNA damage, oncogene 
activation, or simply during replicative senes-
cence [21]. At least, some of these functions 
are mediated through PML NBs which have 
been implicated in partner sequestration and/or 
posttranslational modifications, notably phos-
phorylation, sumoylation, and ubiquitinylation 
[22, 23]. PML NBs are dynamic structures 
which harbor a few constitutive, and numerous 
transiently, client proteins depending on differ-
ent conditions (i.e., stress, interferon (IFN) 
treatment, viral infections) like the death 
domain-associated protein Daxx [22], p53, and 
many of its regulators [24–26]. Indeed, PML 
NBs regulate the subcellular localization of 
Daxx, thereby controlling its proapoptotic 
activity, and appear to be important for activa-
tion of p53-mediated senescence, most likely 

through posttranslational modifications [27, 
28]. In addition, PML-controlled senescence 
can be initiated and furthermore reinforced at 
the transcriptional level: PML promoter con-
tains IFN and p53 response elements, creating 
a positive feedback loop during senescence 
induction [27, 29].

 The Oncoprotein PML/RARA

The expression of PML/RARA is sufficient 
to drive leukemogenesis by deregulating 
RA-dependent cell differentiation pathways and 
enhancing the self-renewal of myeloid progenitors 
[30]. In murine transgenic models, PML/RARA 
expression yields typical APL, although at vari-
able penetrance [31]. From a structural point of 
view, the PML/RARA fusion protein retains all 
the functional domains of RARA (notably the 
DNA- and the ligand-binding domains) and 
PML (in particular the RING finger and coiled-
coil domains). On one hand, PML/RARA binds 
DNA via its RARA domain and acts in a 
dominant- negative manner to repress the tran-
scription of RARA target genes by strengthening 
the recruitment of corepressors (N-CoR and 
SMRT) and HDACs, enforcing DNA methyla-
tion and gene silencing. PML/RARA oligomers 
are complexed to RXR which greatly enhances 
PML/RARA ability to bind DNA and recognize 
highly degenerate sites [32, 33]. As RARA sig-
naling regulates myeloid differentiation, its inhi-
bition could explain the block in differentiation 
that is observed in APL cells. On the other hand, 
PML/RARA also heterodimerizes with PML via 
its coiled-coil domain leading to the disruption 
of NBs: in APL cells, PML is redistributed in a 
microspeckled pattern (Fig. 2.2). This could 
abrogate the PML-controlled senescence path-
ways and contribute to APL pathogenesis. 
Accordingly, PML/RARA expression was con-
clusively linked to defective p53 activation [26, 
28], thus leading to senescence deregulation, as 
well as increased self-renewal.

2 Molecular Targets of Treatment in Acute Promyelocytic Leukemia



20

 Therapeutic Effects of Retinoic Acid 
in APL

In the 1980s, APL patients were treated with che-
motherapy alone and had poor prognosis despite a 
complete remission rate of 50–90%. This was 
explained by a high rate of relapse. The addition of 
RA to anthracycline-based chemotherapy marked a 
major advance in the treatment of APL by increas-
ing rates of clinical remission and cure. With these 
optimized historical regimens, the 5-year overall 
relapse-free survival is up to 75% [34]:

 Uncoupling Differentiation and Loss 
of Clonogenicity Under RA Treatment

RA treatment of APL constitutes the first exam-
ple of differentiation therapy in patients [35–38]. 
RA binds to the ligand-binding domain on the 
RARA moiety of PML/RARA, triggering a 
 conformational change that releases corepres-
sors and recruits transcriptional coactivators. 

This allows the activation of RARA target gene 
transcription and differentiation of leukemic cells 
(Fig. 2.3). It was first believed that the  therapeutic 
effect of RA stems solely from its ability to 
reverse repression of myeloid differentiation. 
Nevertheless, experiments from APL transgenic 
mice have demonstrated that blast differentiation 
can be uncoupled from loss of leukemia- initiating 
cells (LIC) [39]. As reviewed below, multiple set-
tings were described in which full differentiation 
was not accompanied by significant APL regres-
sion or prolongation of survival [40]. For exam-
ple, in PML/RARA mice, treatment with various 
RA doses (low, intermediate, and high) or syn-
thetic retinoids similarly yielded terminal granu-
locytic differentiation; however, survival of 
treated mice sharply differed by dose and retinoid 
type. In fact, loss of LIC was dose dependent 
with only intermediate and high all-trans RA was 
able to impede clonogenicity in secondary recipi-
ents [39–41]. In PLZF-RARA transgenic mice 
(PLZF-RARA APL is RA resistant in patients), 
cell differentiation levels upon RA treatment 
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were comparable to that observed in PML/RARA 
mice but with a strong difference in survival of 
primary- and secondary-treated recipients [41]. 
Moreover, RA-resistant APL cells are highly sen-
sitive to cAMP-induced differentiation, particu-
larly in the presence of RA but fail to regress [39, 
42]. Similarly, treatment of PML/RARA leuke-
mic mice with histone deacetylase inhibitors 
(HDACi) led to tumor regression as well as a 
release in the differentiation block; however, 
HDACi failed to induce disease clearance [43]. 
Collectively, those results clearly establish the 
uncoupling of blast differentiation and tumor 
eradication in APL: significant transcriptional 
activation can indeed be obtained with small 
doses of RA, whereas clearance of LIC necessi-
tates exposure to higher RA levels, an observa-
tion that was not yet fully transferred to clinical 
protocols. Indeed, a unique study has reported 
the use of single-agent liposomal RA in the treat-
ment of APL patients and has found that some 
patients—mainly low-risk APL—can be cured 
without any additional chemotherapy [44], sup-
porting the existence of dose-response in patients 
upon treatment with RA.

 RA-Induced PML/RARA Degradation

Several studies have shown that RA triggers 
PML/RARA proteasomal degradation [40, 45, 
46, 47]. Indeed, RA binding to PML/RARA 
allows direct recruitment of the proteasome to 
the ligand-activated transcriptional activation 
domain AF2 of RARA moiety, leading to 
PML/RARA degradation (Fig. 2.3) [46, 47]. 
This proteasome- mediated degradation is 
additionally modulated by a cAMP-triggered 
PML/RARA phosphorylation at serine 873 
[39, 48]. A caspase-dependent cleavage was 
also reported [49]. Resistance to RA of some 
APL cell lines was associated with failure to 
degrade the fusion protein [46, 50]. In fact, 
most of these cell lines were mutated for PML/
RARA [51, 52]. Thus, PML/RARA proteoly-
sis seems to be linked to clearance of leukemic 
cells under RA treatment. Phosphorylation at 
serine 873 sharply enhances RA-induced LIC 
clearance [39], and the use of theophylline, an 
inhibitor of cAMP degradation, was beneficial 
in the treatment of a RA-resistant APL patient 
[42]. Ablain et al. further showed that treating 
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APL mice with retinoids other than RA did not 
affect PML/RARA degradation, although cell 
differentiation was induced. In secondary 
recipient experiments, loss of clonogenicity 
was only observed with RA [40] demonstrat-
ing that PML/RARA degradation by RA is 
 followed by reformation of PML NBs [53]. 
Collectively, these data pharmacologically 
prove the uncoupling of differentiation and 
blast clearance and underscore the key role 
of PML/RARA in vivo degradation in APL 
eradication.

 Role of PML and p53 in the Cure 
of APL Under RA Treatment

Loss of RA-treated PML/RARA leukemic cells 
was linked to cell cycle arrest and P53 activa-
tion. Examination of bone marrow transcrip-
tome revealed that genes strongly associated 
with cell cycle arrest were activated only when 
APL mice were treated with high RA doses that 
also significantly affect LIC survival. Among 
the 30 most upregulated genes in this context, 
10 were drivers of cell senescence directly 
linked to p53. For example, a massive induction 
of the master senescence gene Serpine1, also 
known as plasminogen activator inhibitor-1 
(PAI-1), was observed. PML/RARA degrada-
tion was followed by PML NB reformation and 
triggered p53 stabilization, possibly through 
posttranslational modifications occurring on 
NBs (Fig. 2.3). This leads to a cell cycle arrest 
with senescence-like features resulting in elim-
ination of leukemia- propagating cells [41]. The 
role of p53 in RA-induced APL elimination 
was demonstrated by in vivo survival experi-
ments in p53+/+ and p53−/− PML/RARA-driven 
APLs [41]. In addition, the importance of 
PML in inducing p53 activation and APL clear-
ance was further established by mice survival 
experiments showing a much shorter survival 
of Pml−/− APL compared to that of Pml+/+ 

APL. Definitely, these data demonstrate that 
functional PML NB reorganization upon RA 
treatment leading to p53 activation is a deter-
mining step in the cure of APL.

 Therapeutic Effects of Arsenic 
Trioxide in APL

Arsenic trioxide (ATO) was first utilized in APL 
patients in the early 1990s and led to cure in 70% 
of patients [54, 55]. Thereby, APL is exquisitely 
sensitive to ATO which, in contrast to RA, may 
cure APL as a single agent. Moreover, the combi-
nation of RA and ATO in clinical trials appeared 
to be much superior to the conventional treatment 
with RA and chemotherapy [56]:

 ATO-Induced PML NB Reformation 
and PML/RARA Degradation

Although RA and ATO are two unrelated ther-
apeutic agents in APL, they share the bio-
chemical property of inducing PML/RARA 
degradation. As described above, PML/RARA 
loss was directly linked to loss of self-renewal 
in leukemic cells and cure of APL [39]. 
Furthermore, ATO- induced PML/RARA loss 
could explain the differentiation observed in 
vivo in APL cells upon ATO exposure by a 
promoter clearance mechanism [57]. At the 
molecular level, while RA targets the RARA 
moiety of the fusion oncoprotein, ATO targets 
its PML moiety [50, 58] and induces its oxi-
dation [59]. The same effect is observed on 
normal PML, and a specific ATO binding site 
was identified in the second B box. Arsenic 
sharply enhances the reformation of PML 
NBs by multimerization of PML and PML/
RARA proteins. Then, through recruitment 
of UBC9 SUMO-E2 ligase, it favors the 
sumoylation of PML [23, 60]. Sumoylation 
of PML is followed by recruitment of the 

R. Rahmé et al.
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 SUMO-dependent ubiquitin E3 ligase RNF4, 
which catalyzes polyubiquitination and subse-
quent proteasome-mediated proteolysis of 
PML and PML/RARA (Fig. 2.4) [61, 62]. In 
conclusion, degradation of PML/RARA and 
enhanced NB biogenesis are the two main 
effects of ATO which results in p53 activation 
and clearance of APL LICs. Note that the dual 
targeting of PML/RARA and PML likely 
explains the clinical superiority of this drug.

 RA and ATO Synergy in APL Cure

In several mice models, combined RA and 
ATO treatment causes a rapid disappearance of 

APL cells and cures leukemia. Yet, those two 
therapeutic agents do not synergize (even 
antagonize) to induce cell differentiation [63–
65], but they do cooperate to induce PML/
RARA degradation by non-overlapping bio-
chemical pathways [39, 50, 58]. Actually, NB 
reformation with RA-ATO treatment was much 
more complete in APL blasts than with RA 
alone, which can be explained both by the syn-
ergistic effect of both drugs on PML/RARA 
degradation but also by the direct PML target-
ing by ATO [41]. Accordingly, this treatment 
elicited enhanced activation of p53 target genes 
[41]. Hence, ATO cooperates with RA to cure 
APL by increasing RA-induced  PML/RARA 
degradation and also by potentiating PML NB 
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ubiquitin E3 ligase RNF4 resulting in their degradation. 
This likely explains the great efficacy of ATO in APL 
treatment. As is ATO
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reorganization yielding enhanced NB forma-
tion, p53 activation, and senescence (Fig. 2.5).

This model for PML NB-based APL eradi-
cation was strongly supported by the  discovery 

of a mutation in normal PML gene in a 
therapy- resistant patient [66–68]. Strikingly, 
this mutation (A216V), located immediately 
next to the ATO binding site on PML, is the 
predominant one observed within PML/RARA 
in ATO- resistant patients (Fig. 2.6) [69–72]. 
Finally, mutations in the p53 gene have been 
reported in rare, fully therapy-resistant 
patients [51, 52].

 Conclusions

PML/RARA degradation by RA and/or ATO 
appears to be the driving force underlying 
the cure of APL patients. Triggering the deg-
radation of oncoproteins in other leukemias 
and sarcomas caused by fusion proteins 
could be a promising therapeutic approach 
as in APL. Downstream of PML/RARA deg-
radation and PML NB reformation drives 
P53 activation and is required for loss of 
self-renewal by a senescence-like program. 
Importantly, targeting PML by ATO could 
drive cancer cell senescence in other dis-
eases. Indeed, there are some indications 
that PML may be important in other hemato-
logical malignancies, like adult T-cell leuke-
mia/lymphoma (ATL). Thus, this model of 
APL cure not only constitutes a success 
story of molecularly targeted therapy but 
may actually open new therapeutic avenues 
in other malignancies.
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Fig. 2.5 Molecular effects of treatment combination in 
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by the two therapeutic agents as well as PML NB refor-
mation. This effect drives a greater NB reformation and 
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ates with RA to cure APL
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