
Chapter 14

Complete dependence everywhere?

Wolfgang Trutschnig

Abstract Describing the situation of full predictability of a random variable Y given
the value of another random variable X , the notion of complete dependence might
seem far too restrictive to be of any practical importance at first glance. Recent re-
sults have shown, however, that complete dependence naturally appears in various
settings. This chapter will therefore sketch some problems related to complete de-
pendence. Doing so, the focus will be on dependence measures strictly separating
extreme dependence concepts, on a problem related to joint-default maximization,
on a question from uniform distribution theory, and on the relationship between the
two most well-known measures of concordance, Kendall’s τ and Spearman’s ρ . A
short excursion to topology showing that complete dependence is not atypical at all
complements the chapter.

14.1 Introduction

Given two random variables X ,Y we call Y completely dependent on X if there ex-
ists a measurable function f such that Y = f (X) holds with probability one (see [21]
for the original definition). In other words: Knowing X means knowing Y but not
necessarily vice versa. Although a dependence structure describing full predictabi-
lity seems very pathological at first, research in the field of dependence modeling
conducted in the last years clearly points in the direction that complete dependence
is much more important than reflected by textbooks so far. Main objective of this
chapter is to illustrate this observation by means of some fairly recent results.

The rest of this chapter is organized as follows: Section 2 gathers notation and
preliminaries that will be used in the sequel and states various properties equivalent
to complete dependence. Section 3 recalls one possible way to construct metrics that
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clearly distinguish the two extremal dependence concepts, that of complete depen-
dence and that of independence. Based on these metrics a new dependence measure
ζ2 is introduced and analyzed, and alternative approaches from the literature are
mentioned. Section 4 first sketches why extreme points naturally comes into play
in the context of optimization problems and then shows two concrete examples in
both of which completely dependent copulas constitute solutions of the maximiza-
tion problem. Section 5 contains a short excursion to topology showing that (in
the language of Baire categories) with respect to weak convergence complete de-
pendence is all but an atypical property of a copula. Finally, Section 6 focuses on
recently established sharp inequalities between Kendall’s τ and Spearman’s ρ and
points out that mutually completely dependent random variable cover all possible
constellations of τ and ρ .

14.2 Notation and preliminaries

In the sequel C will denote the family of all two-dimensional copulas, PC the
family of all doubly stochastic measures, i.e. the family of all probability measures
on [0,1]2 whose marginals are uniformly distributed on [0,1]. M will denote the
lower Fréchet-Hoeffding bound, W the lower Fréchet-Hoeffding bound and Π the
product copula; for background on copulas we refer to [7] and [25]. For every C ∈C
the corresponding doubly stochastic measure will be denoted by μC. Letting d∞
denote the uniform metric on C it is well known that (C ,d∞) is a compact metric
space.

For every metric space (Ω ,d) the Borel σ -field on Ω will be denoted by B(Ω),
δx will denote the Dirac measure (concentrated) at x ∈Ω . λ and λ2 will denote the
Lebesgue measure on B(R) and B(R2) respectively. For every probability measure
ν on B(Ω) the support of ν , i.e. the complement of the union of all open sets U
fulfilling ν(U) = 0, will be denoted by Supp(ν).

Suppose that (Ω1,d1) and (Ω2,d2) are metric spaces. A Markov kernel from Ω1
to B(Ω2) is a mapping K :Ω1×B(Ω2)→ [0,1] such that x $→K(x,B) is measurable
for every fixed B ∈B(Ω2) and B $→ K(x,B) is a probability measure for every fixed
x ∈Ω1. Given real-valued random variables X ,Y on a probability space (Ω ,A ,P),
a Markov kernel K : R×B(R)→ [0,1] is called a regular conditional distribution
of Y given X if for every B ∈ B(R)

K(X(ω),B) = E(1B ◦Y |X)(ω) (14.1)

holds P-a.e. It is well known that for each pair (X ,Y ) of real-valued random vari-
ables a regular conditional distribution K(·, ·) of Y given X exists, that K(·, ·) is
unique PX -a.s. (i.e. unique for PX -almost all x ∈ R) and that K(·, ·) only depends
on PX⊗Y . Hence, given A ∈ C we will denote (a version of) the regular conditional
distribution of Y given X by KA(·, ·), directly view it as Markov kernel from [0,1] to
B([0,1]), and refer to KA(·, ·) simply as regular conditional distribution of A or as
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Markov kernel of A. Note that for every A ∈ C , its regular conditional distribution
KA(·, ·), and every Borel set G ∈ B([0,1]2) we have the following disintegration
(here Gx := {y ∈ [0,1] : (x,y) ∈ G} denotes the x-section of G for every x ∈ [0,1])∫

[0,1]
KA(x,Gx)dλ (x) = μA(G), (14.2)

so in particular ∫
[0,1]

KA(x,F)dλ (x) = λ (F) (14.3)

for every F ∈ B([0,1]). On the other hand, every Markov kernel K : [0,1]×
B([0,1]) → [0,1] fulfilling (14.3) induces a unique element μ ∈ PC ([0,1]2) via
(14.2). For every A ∈C and x ∈ [0,1] the function y $→ FA

x (y) := KA(x, [0,y]) will be
called conditional distribution function of A at x. For more details and properties of
conditional expectation, regular conditional distributions, and general disintegration
see [15] and [18].

Viewing copulas as special Markov kernels (fulfilling eq. (14.3)) has proved
surprisingly useful in the past. As an example, translating the so-called ∗-product
of copulas introduced in [3] to the Markov kernel setting directly yields that the
Markov kernel KA∗B of A ∗B is nothing else but the standard composition of the
Markov kernels KA and KB as well known in the context Markov processes, i.e.

K(x,F) :=
∫
[0,1]

KB(y,F)KA(x,dy) (14.4)

is a Markov kernel of A∗B (see [36]). For additional examples underlining the use-
fulness of Markov kernels we refer, for instance, to [7, 10, 36, 37] and the references
therein.

A copula A is called completely dependent (see [21, 35]) if there exists a λ -
preserving transformation h : [0,1]→ [0,1] such that K(x,E)= 1E(h(x)) is a Markov
kernel of A. Slightly extending [35, Lemma 10] the subsequent characterization of
complete dependence can be proved:

Lemma 14.1. The following assertions are equivalent:

(d1) A is completely dependent .
(d2) For PX⊗Y = μA the conditional variance V(Y |X = x) of Y given X fulfills

V(Y |X = x) = 0 for λ -a.e. x ∈ [0,1].
(d3) For λ -a.e. x ∈ [0,1] the conditional distribution function FA

x is {0,1}-valued.
(d4) There exists a λ -preserving transformation h : [0,1]→ [0,1] such that A(x,y) =

λ
(
[0,x]∩h−1([0,y])

)
for all (x,y) ∈ [0,1]2.

(d5) There exists a λ -preserving transformation h : [0,1]→ [0,1] with μA(Γ (h)) = 1,
whereby Γ (h) = {(x,h(x)) : x ∈ [0,1]} ∈ B([0,1]2) denotes the graph of h.

(d6) A is left invertible w.r.t. the star product, i.e. there exists a copula B ∈ C with
B∗A = M.

In the sequel T will denote the family of all λ -preserving transformations h
on [0,1], Tb the subclass of all λ -preserving bijections, and Ts the subclass of all
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λ -preserving, piecewise linear bijections. For every h ∈ T we will let Ah denote
the corresponding completely dependent copula, Cd will denote the family of all
completely dependent copulas. In case of h ∈ Ts we will refer to Ah as a (classical)
shuffle of M and in case of h ∈ Tb the copula Ah will be called mutually completely
dependent.

14.3 Quantifying dependence

According to [25] the class of all shuffles of M is dense in the compact metric
space (C ,d∞). Hence, as pointed out explicitly already in [22], the uniform distance
d∞ is not clearly ’distinguishing different types of statistical dependence’ and the
same holds for every dependence measure that is continuous w.r.t. d∞, including
Schweizer and Wolffs σ (see [25, 30]). Viewing copulas as Markov kernels allows
for a simple way to construct stronger metrics on C that strictly separate extremal
dependence concepts, i.e. that of independence and that of complete dependence.
Following [35] and setting

Dp
p(A,B) :=

∫
[0,1]2

∣∣KA(x, [0,y])−KB(x, [0,y])
∣∣pdλ2(x,y) (14.5)

defines a metric Dp on C for every p ∈ [1,∞). For a generalization to the multivari-
ate setting we refer to [7, 9]. According to [35] the metrics D2 and D1 induce the
same topology on C and the resulting metric spaces (C ,D1) and (C ,D2) are com-
plete and separable. It is straightforward to verify that the same assertions hold for
(C ,Dp) and arbitrary p ∈ [1,∞). In fact, using Hölder inequality and considering∣∣KA(x, [0,y])−KB(x, [0,y])

∣∣≤ 1 directly yields

Dp
p(A,B)≤ D1(A,B)≤ Dp(A,B), (14.6)

from which separability and completeness of (C ,Dp) directly follows from sep-
arability and completeness of (C ,D1). Although all metrics Dp induce the same
topology on C they are not equivalent - the following result holds:

Lemma 14.2. For any pair p,q ∈ [1,∞) with p �= q the metrics Dp and Dq are not
equivalent.

Proof: We start by showing that Dp
p and Dq

q coincide on Cd and consider h1,h2 ∈
T :

Dp
p(Ah1 ,Ah2) =

∫
[0,1]2

∣∣1[0,y](h1(x))−1[0,y](h2(x))
∣∣pdλ2(x,y) = ‖h1 −h2‖1

=
∫
[0,1]2

∣∣1[0,y](h1(x))−1[0,y](h2(x))
∣∣qdλ2(x,y) = Dq

q(Ah1 ,Ah2)

From this, considering q = 1 it also follows that the first inequality in (14.6) can not
be improved. For every n ∈ N define hn ∈ Ts (see Figure 14.1) by
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Sn(x) =

⎧⎨⎩
x+

(
1− 1

2n

)
if x ∈ (

0 , 1
2n

]
x− (

1− 1
2n

)
if x ∈ (

1− 1
2n , 1

]
x otherwise,

and set h = id[0,1] ∈ Ts. Then we get

Dp
p(Ahn ,M) = Dq

q(Ahn ,M) = ‖hn −h‖1 = 2
∫
[0, 1

2n ]

(
1− 1

2n

)
dλ =

1
2n−1

(
1− 1

2n

)
.

(14.7)
Suppose now that p > q. Then eq. (14.7) implies that the quotient Dp(An,M)

Dq(An,M) is un-
bounded in n, so Dq and Dp can not be equivalent metrics. �
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Fig. 14.1: The transformations hn used in the proof of Lemma 14.2

In [35] the metric D1 mainly served as a vehicle to construct the dependence
measure ζ1(A) = 3D1(A,Π) for every A ∈ C . The most important properties of ζ1
are summarized in the following theorem.

Theorem 14.1 ([35]). For every A∈C we have ζ1(A)∈ [0,1]. Additionally, ζ1(A) =
1 holds if and only if A ∈ Cd, and ζ1(A) = 0 implies A =Π . In other words: Exclu-
sively all completely dependent copulas are assigned maximum dependence mea-
sure and the product copula is the only copula with zero dependence.

Taking into account eq. (14.6) a similar result can be expected for the dependence
measure ζp, defined by ζp(A) = cp Dp(A,Π) for every p ∈ [1,∞). Thereby cp is a
normalizing constant assuring maxA∈C ζp(A) = 1. In the sequel we will state and
prove the result for the case p = 2 which allows for a more elegant proof than the
original one for D1.
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Theorem 14.2. For every A ∈ C we have D2
2(A,Π)≤ 1/6 with equality if and only

if A ∈ Cd.

Proof: Fix A ∈ C and y ∈ [0,1], and define a random variable Zy on the proba-
bility space ([0,1],B([0,1],λ )→ [0,1] by

Zy(x) := KA(x, [0,y]).

Then
E(Zy) =

∫
[0,1]

KA(x, [0,y])dλ (x) = μA
(
[0,1]× [0,y]

)
= y

holds. Considering∫
[0,1]

(
KA(x, [0,y])− y

)2dλ (x) = V(Zy) = E(Z2
y )− (E(Zy))

2 = E(Z2
y )− y2

≤ E(Zy)− y2 = y− y2 (14.8)

we directly get D2
2(A,Π) ≤ ∫

[0,1](y− y2)dλ (y) = 1
6 , which completes the proof of

the first assertion.
Since ineq. (14.8) becomes an equality if and only if E(Z2

y ) = E(Zy) holds, it
follows that D2

2(A,Π) = 1
6 is equivalent to the condition that Z2

y = Zy holds λ -a.e.
The latter, however, is obviously equivalent to the existence of a set Λy ∈ B([0,1])
with λ (Λy) = 1 such that Zy(x) = KA(x, [0,y]) ∈ {0,1} for every x ∈Λy.

Suppose now that D2
2(A,Π) = 1/6. Repeating the last argument we can find a

set Λ ∈ B([0,1]) fulfilling λ (Λ) = 1 such that FA
x (y) = KA(x, [0,y]) ∈ {0,1} holds

for every x ∈Λ and every y ∈Q∩ [0,1]. Using right-continuity of distribution func-
tions we immediately get that λ -a.e. conditional distribution functions FA

x are {0,1}-
valued, so Lemma 14.1 implies that A is completely dependent. Since, on the other
hand, it is straightforward to verify D2

2(Ah,Π) = 1
6 for every h ∈ T , the proof is

complete. �

As direct consequence of Theorem 14.1, setting ζ2(A) =
√

6D2(A,Π) we get the
following result:

Proposition 14.1. For every A ∈ C we have ζ2(A) ∈ [0,1]. Additionally, ζ2(A) = 1
holds if and only if A∈Cd and ζ2(A) = 0 implies A=Π . In other words: Exclusively
all completely dependent copulas are assigned maximum ζ2-value and the product
copula is the only copula with ζ2(A) = 0.

Independence of two random variables X ,Y is a symmetric concept (knowing X
does not change our knowledge about Y and vice versa) - nevertheless, from the
author’s point of view, notions quantifying dependence should not automatically be
symmetric since in many situations one might also be interested in understanding
causal effects between X and Y and the dependence structure might be strongly
asymmetric. The latter is the case, for instance, for the copula Ah ∈ Cd with h ∈ T
being the transformation h(x) = 2n(mod1) for large n ∈ N. Furthermore, having
a unidirectional (i.e. non-mutual) dependence measure one can easily construct a
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mutual one: The mutual dependence measure ω studied by Siburg and Stoimenov
(see [33]), for instance, can easily be expressed in terms of ζ2 as

ω2(A) = 3
(
ζ 2

2 (A)+ζ 2
2 (A

t)
)
, (14.9)

whereby At denotes the transpose of A, defined by At(x,y) = A(x,y). Proposition
14.1 directly yields that ω(A) = 1 if and only if both A and At are completely de-
pendent, i.e. if and only if A is mutually completely dependent.

Recently, dependence measures for (absolutely continuous) random vectors have
been introduced using similar ideas as the afore-mentioned ones, see [2] and the
references therein. For a dependence measure based on conditional variance we
refer to [16].

14.4 Complete dependence in the context of optimization

Remember that a point x in a convex setΩ is called an extreme point ofΩ if it is not
an interior point of any line segment lying entirely in Ω , i.e. if x = αy+(1−α)z
for y,z ∈Ω and α ∈ [0,1] implies x = y or x = z.

It is straightforward to show that every completely dependent copula is an ex-
treme point of C . As a consequence, in the metric space (C ,d∞) the set Ex(C )
of all extreme points of C is dense. Although a full and handy characterization of
the set Ex(C ) seems out of reach it is known, that there are extreme points which
are not completely dependent. In fact, in [31] (also see [26, 32]) so-called hairpin
copulas, which concentrate their mass on the graphs of two functions were studied
and shown to be elements of Ex(C ). For the generalization of hairpin copulas to
the multivariate setting we refer to [5]. To the best of the author’s knowledge the
most striking example of an extreme point of C was given in [23], where the author
proved the existence of a copula A ∈ C such that Supp(μA) = [0,1]2.

Extreme points of C naturally come into play in the context of optimization
problems of the form

MH := sup
A∈C

∫
[0,1]2

H(x,y)dμA(x,y) (14.10)

whereby H is a non-negative measurable function on [0,1]2. In fact, if there is a
unique A ∈ C attaining MH then A has to be an extreme point of C . Additionally, if
H is continuous (hence bounded) then MH is attained and, according to the Bauer
Maximum Principle (see [1]), the maximum is also attained by an extreme point.
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14.4.1 Distributions with fixed marginals maximizing the mass of
the endograph of a function

Suppose that F and G are (continuous) distribution functions of two default times
and let FF,G denote the Fréchet class of F,G (i.e. the family of all two-dimensional
distribution functions having F and G as marginals). It is well known from coup-
ling theory (see [34]) that there exists a maximal coupling, i.e. a two-dimensional
distribution function H ∈FF,G such that for the case of (X ,Y )∼H the probability of
a joint default P(X =Y ) is maximal. Translating to the class of copulas maximizing
the probability of a joint default means calculating supA∈C μA(Γ (T )) for T : [0,1]→
[0,1] being defined by T = G ◦F−, F− denoting the quasi-inverse of F and Γ (T )
the graph of T . Using coupling theory we can find a (not necessarily unique) copula
A0 with

M1Γ (T ) = sup
A∈C

∫
[0,1]2

1Γ (T )dμA(x,y) = sup
A∈C

μA(Γ (T )) = μA0(Γ (T )) (14.11)

that can even be computed in closed form. Additionally, applying the results from
[28] or via manual calculations a very simple formula for M1Γ (T ) can be derived.
Returning to the original problem of maximizing the probability of a joint default,
considering (U,V ) ∼ A0 and setting (X ,Y ) = (F− ◦U,G− ◦V ), it follows that the
pair (X ,Y ) has marginal distribution functions F and G and maximizes the joint
default probability. In general, A0 is not completely dependent unless F and G co-
incide.

Slightly modifying the optimization problem and maximizing P(Y ≤ X) instead
of P(Y = X) brings us back to complete dependence. In fact, proceeding analo-
gously as before and setting

Γ≤(T ) =
{
(x,y) ∈ [0,1]2 : y ≤ T (x)

} ∈ B([0,1]2) (14.12)

the following results can be derived manually or using the results in [28]:

Theorem 14.3 ( [24]). For every non-decreasing T : [0,1]→ [0,1] we have

M1Γ≤(T )
= 1+ inf

x∈[0,1]
(T (x)− x). (14.13)

Additionally, there exists a shuffle AR ∈ Cd fulfilling μAR(Γ≤(T )) = M1Γ≤(T )
.

In other words, given continuous distribution functions F and G, considering
(U,V )∼ AR and setting (X ,Y ) = (F− ◦U,G− ◦V ), it follows that for the pair (X ,Y )
the quantity P(Y ≤ X) is maximal.

Example 14.1. We consider a very simple situation illustrating Theorem 14.3: Choo-
sing F as the distribution function of U (0,1) and G=Φ as the distribution function
of N (0,1) we immediately get T = Φ as well as M1Γ≤(T )

= Φ(1) ≈ 0.841. Figu-
re 14.2 denotes a sample of the random vector (X ,Y ) with marginal distribution
functions F and G for which P(Y ≤ X) is maximal.
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Fig. 14.2: Sample of size n = 10.000 of (X ,Y ) as in Example 14.2 and the corre-
sponding marginal histrograms; the upper right panel depicts the endograph of T
(gray) and the shuffle AR according to Theorem 14.3 (blue).

14.4.2 A maximization problem from uniform distribution theory

Recall that a sequence (xn)n∈N in [0,1] is called uniformly distributed if the induced
empirical measure ϑn := 1

n ∑n
i=1 δxi converges weakly to λ on [0,1] for n → ∞. For

background on uniform distribution theory we refer to [4, 20].
Following [14] and the references therein one particularly interesting problem

in the context of uniform distribution theory is the following one: Given uniformly
distributed sequences (xn)n∈N and (yn)n∈N in [0,1] and a real-valued continuous
function H on [0,1]2, determine

limsup
n→∞

1
n

n

∑
i=1

H(xi,yi) and liminf
n→∞

1
n

n

∑
i=1

H(xi,yi). (14.14)

It is a straightforward exercise to show that for every accumulation point a of the
sequence ( 1

n ∑n
i=1 H(xi,yi))n∈N there exists a copula A ∈ C such that

a =
∫
[0,1]2

H dμA
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holds. In other words, for calculating the quantities in eq (14.14) it suffices to cal-
culate MH and −M−H .

We will proceed as in [14] and consider the following special case for H: Fix
y0 ∈ (0,1) and, suppose that H is continuous on [0,1]2 and that ∂ 2H(x,y)

∂y∂x > 0 on

(0,1)× (0,y0) as well that ∂ 2H(x,y)
∂y∂x < 0 on (0,1)× (y0,1) holds. Moreover we will

let Sy0 denote the class of all y0-sections of copulas, i.e. the family of all maps
of the form x $→ C(x,y0), x ∈ [0,1], with C ∈ C . It is straightforward to verify that
s ∈ Sy0 if and only if s fulfills the following three properties:

• s(0) = 0,s(1) = y0
• s is non-decreasing and Lipschitz continuous with Lipschitz constant L = 1
• s fulfills s(x) ∈ [W (x,y0),M(x,y0)] for all x ∈ [0,1]

For every s ∈ Sy0 in the rest of this section the copula Cs ∈ C be defined by

Cs(x,y) =

{
M(s(x),y) if (x,y) ∈ [0,1]× [0,y0]

s(x)+(1− y0)W
(

x−s(x)
1−y0

, y−y0
1−y0

)
if (x,y) ∈ [0,1]× (y0,1].

(14.15)

Obviously the y0-section of Cs coincides with s and, setting s(x) = 1−(x−s(x)) the
copula Cs concentrates its mass on Γ (s)∪Γ (s) in the sense that

μCs(Γ (s)∪Γ (s)) = 1.

The following reduction result can be shown:

Theorem 14.4 ([14]). Under the afore-mentioned assumptions on H the following
equality holds:

MH = max
s∈Sy0

∫
[0,1]2

H dμCs (14.16)

For general s ∈ Sy0 obviously the copula Cs need not be completely dependent.
If, however, s is strictly increasing with s′ < 1 then we get (Cs)t ∈ Cd , i.e. the trans-
pose of Cs is completely dependent (also see Figure 14.3). We conclude this section
with an example illustrating that a copula of the latter type may even be the unique
maximizer.

Example 14.2. Consider y0 ∈ [ 1
2 ,1) and suppose that H is given by

H =

{
xy if (x,y) ∈ [0,1]× [0,y0]

xy0 − x(y− y0) if (x,y) ∈ [0,1]× (y0,1].
(14.17)

For arbitrary s ∈ Sy0 applying Theorem 14.4 and using integration by parts we
finally get∫

[0,1]2
H dμCs = y2

0 −
1
2

{∫
[0,1]

(
s2(x)+(2y0 −1+ x− s(x))2)dλ (x)

}
.



14 Complete dependence everywhere? 235

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

y

Fig. 14.3: Sample of size n = 1.000 of the unique maximizer Cs in Example 14.2.

For fixed x the integrand becomes minimal if s(x) = y0 − 1
2 +

x
2 . The function s1 :

x $→ y0 − 1
2 +

x
2 is a global minimizer of the integral which, however, only lies in

Sy0 for y0 =
1
2 . It is straightforward to verify that for y0 ≥ 1

2 the (piecewise linear)
function h, defined by

s(x) =
{

x if x ∈ [0,2y0 −1]
y0 − 1

2 +
x
2 if x ∈ (2y0 −1,1]

is the unique minimizer of the integral in eq. (14.17). As a consequence, the cor-
responding copula Cs, which fulfills (Cs)t ∈ Cd is the unique copula attaining MH .
Figure 14.3 depicts a sample of the corresponding copula Cs for the case y0 =

3
4 .

14.5 A typical copula is (mutually) completely dependent

As already mentioned in Section 3 the set of all shuffles of M is dense in the metric
space (C ,d∞) (but nowhere dense in the metric space (C ,D1), see [35]). On the one
hand, non-absolutely continuous copulas naturally appear in various problems, on
the other hand, possibly due to their handy structure, absolutely continuous copulas
are certainly not underrepresented in the literature.
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Topology offers a way to quantify the size of sets in a binary manner through
Baire categories (see [27]): A subset E of a general metric space (Ω ,d) is considered
small if it is of first category or meager, i.e. if it is the countable union of sets Ei
whose topological closer has empty interior. If E is not of first category then, by
definition, E is said to be of second category. Finally, if E is meager then Ec is
considered big and referred to as co-meager. Following [6] we will call elemen-
ts of a meager set E atypical and elements of a co-meager set typical. With this
topological notions various interesting results can be shown, e.g. that the family
Cabs of all absolutely continuous copulas is of first category both in (C ,d∞) and in
(C ,D1). Considering completeness of (C ,d∞) and (C ,D1) it directly follows that
the family C c

abs = C \Cabs of all copulas with non-degenerated singular component
is co-meager and of second category in (C ,d∞) and in (C ,D1), i.e. a typical copula
has a non-degenerated singular component. As a matter of fact, the following much
stronger result holds (and can be extended to the general multivariate setting):

Theorem 14.5 ([6]). The family Csing of all purely singular copulas is co-meager
(hence of second category) in (C ,d∞).

In other words: A typical copula in (C ,d∞) has no absolutely continuous com-
ponent. It remains an open question if Csing is also co-meager in (C ,D1). As the
authors of [6] discovered recently, Theorem 14.5 is not even close to the end of the
story - the following striking result was proved already in 1968:

Theorem 14.6 ([17]). Cd is co-meager (hence of second category) in (C ,d∞).

Based on the elegant proof of Theorem 14.6 as given in [17] one gets the follo-
wing even more striking corollary, saying that in (C ,d∞) a typical copula is mutu-
ally completely dependent, without any difficulty:

Corollary 14.1. The family of all mutually completely dependent copulas is co-
meager (hence of second category) in (C ,d∞).

14.6 Sharp inequalities between Kendall’s τ and Spearman’s ρ

This section first recalls the main results from [29] and then sketches why ‘complete
dependence everywhere’ particularly holds true in the situation of Kendall’s τ and
Spearman’s ρ .

Suppose that X ,Y are random variables with continuous distribution functions
F and G respectively. Then Spearman’s ρ is defined as the Pearson correlation co-
efficient of the U (0,1)-distributed random variables U := F ◦X and V := G ◦Y
and Kendall’s τ is given by the probability of concordance minus the probability of
discordance, i.e.

ρ(X ,Y ) = 12
(
E(UV )− 1

4

)
τ(X ,Y ) = P

(
(X1 −X2)(Y1 −Y2)> 0)−P

(
(X1 −X2)(Y1 −Y2)< 0

)
,
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where (X1,Y1) and (X2,Y2) are independent and have the same distribution as (X ,Y ).
Clearly τ and ρ are the two most famous nonparametric measures of concordance.
Both measures are scale invariant and only depend on the underlying (uniquely de-
termined) copula A of (X ,Y ). It is well known and straightforward to verify (see
[25]) that τ(X ,Y ) and ρ(X ,Y ) can be expressed in terms of the underlying copula A
as

τ(X ,Y ) = 4
∫
[0,1]2

A(x,y)dμA(x,y)−1 =: τ(A) (14.18)

ρ(X ,Y ) = 12
∫
[0,1]2

xydμA(x,y)−3 =: ρ(A) (14.19)

Considering that τ and ρ quantify different aspects of the underlying dependence
structure, it is natural to ask how much they can differ. Since the 1950s two universal
inequalities between τ and ρ are known - the first one goes back to Daniels ([3]),
the second one to Durbin and Stuart ([8]); for proofs alternative to the original ones
see [19, 12, 25].

|3τ−2ρ| ≤ 1 (14.20)

(1+ τ)2

2
−1 ≤ ρ ≤ 1− (1− τ)2

2
(14.21)

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
τ

ρ

Fig. 14.4: The classical τ-ρ-region Ω0 and some copulas (distributing mass uni-
formly on the blue segments) for which the inequality by Durbin and Stuart is sharp.
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The inequalities together yield the setΩ0 (see Figure 14.4) which, following [29]
we will refer to as classical τ-ρ region in the sequel. Daniels’ inequality was known
to be sharp [25] whereas the first part of the inequality by Durbin and Stuart was
only known to be sharp at the points pn = (−1+ 2

n ,−1+ 2
n2 ) with n ≥ 2 (which,

using symmetry, is to say that the second part is sharp at the points −pn). Although
both inequalities were known since the 1950s and the interrelation between τ and
ρ keeps receiving much attention in recent years (particularly in the context of the
Hutchinson-Lai conjecture [11, 13]), only very recently a full characterization of the
exact τ-ρ region Ω , defined by

Ω =
{
(τ(X ,Y ),ρ(X ,Y )) : X ,Y continuous random variables

}
(14.22)

=
{
(τ(A),ρ(A)) : A ∈ C

}
,

was given in [29]. One direct consequence of this characterization is the fact that
inequality by Durbin and Stuart is not sharp outside the points ±pn.

Throughout the entire proof shuffles (hence complete dependence) played a cru-
cial role: The authors first calculated τ and ρ for so-called prototypes, which, loosely
speaking, are shuffles consisting of n−1 segments of equal length and a shorter one,
arranged in decreasing order similar to the shuffles depicted in Figure 14.4. Based
on these prototypes they defined Φn : [−1+ 2

n ,1]→ [−1,1] by

Φn(x) =−1− 4
n2 +

3
n
+

3x
n
− n−2√

2n2
√

n−1
(n−2+nx)3/2 (14.23)

and then set

Φ(x) =

{−1 if x =−1,

Φn(x) if x ∈
[

2−n
n , 2−(n−1)

n−1

]
for some n ≥ 2. (14.24)

Based on Φ the set Ω can be characterized as follows (this characterization was
already conjectured by Manuel Úbeda-Flores in an unpublished working paper in
2011):

Theorem 14.7 ([29]). The following equality holds:

Ω =
{
(x,y) ∈ [−1,1]2 : Φ(x)≤ y ≤−Φ(−x)

}
(14.25)

In particular, Ω is compact but not convex. For an animation showing for which
copulas A we have (τ(A),ρ(A))∈ ∂Ω , where ∂Ω denotes the topological boundary
of Ω , we refer to http://www.trutschnig.net/tau-rho-boundary.pdf

Returning to complete dependence, notice that continuity of τ and ρ with respect
to d∞ directly yields that {(τ(Ah),ρ(Ah)) : h ∈ Ts} is dense in Ω . The proof of
Theorem 14.7, however, produced the by-product that only for prototypes A∈Cd we
can have (τ(A),ρ(A)) ∈ ∂Ω . In fact, using a homotopy argument it was possible to
show the following corollary which underlines the importance of (mutual) complete
dependence yet again.

http://www.trutschnig.net/tau-rho-boundary.pdf
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Corollary 14.2. For every point (x,y)∈Ω there exists a transformation h∈Ts such
that we have (τ(Ah),ρ(Ah)) = (x,y).

As pointed out in [29, Section 6] characterizing the exact τ-ρ-region for standard
subclasses of copulas may in some cases be even more difficult than determining Ω
was. The main reason for this fact is that not in all subclasses of C we may find
dense subsets consisting of elements B for which τ(B) and ρ(B) reduce to handy
formulas (as it is the case for shuffles of M). The author conjectures, however, that
the classical Hutchinson-Lai inequalities are not sharp for the class of all extreme-
value copulas and that it might be possible to derive sharper inequalities in the near
future.
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