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Preface

This edited volume has been written to celebrate the 75th birthday of Prof. Roger
B. Nelsen, Professor Emeritus of Mathematics at Lewis & Clark College in Port-
land, Oregon, USA. In addition to his monograph An Introduction to Copulas, Prof.
Nelsen has authored or coauthored 11 books published by the Mathematical As-
sociation of America (mainly devoted to ”proofs without words”) and numerous
research papers; in particular, dealing with Copula Theory, dependence and associ-
ation measures. He has been universally recognized as one of the most influential
scientist in the copula community, as witnessed by a number of invited talks he
has given around the world along his career. For a historical overview of the Prof.
Nelsen’s main achievements as well as their developments, you may read the recent
interview published by the journal Dependence Modeling.

This edited volume agrees with the main research areas investigated by Prof.
Nelsen during his long and inspiring career and, in particular, to Copula Theory.
A copula is a multivariate probability distribution whose univariate marginals are
uniform on the unit interval and is used to describe the dependence between ran-
dom variables. Motivated by an open problem posed by Maurice Fréchet, Abe Sklar
introduced in 1959 the concept of copula to explain the relationship between mul-
tivariate distribution functions and their univariate marginals. Since then, copulas
have been used in various fields, primarily in Probability Theory and Statistics, but
also in Probabilistic Metric Spaces, Fuzzy Set Theory and Aggregation Theory, and
in many applications to Economics, Finance, Biosciences, Environmental Sciences,
just to cite few of them.

In the first edition of his celebrated An Introduction to Copulas (1999), Prof.
Nelsen wrote:

The study of copulas and the role they play in probability, statistics, and stochastic pro-
cesses is a subject still in its infancy. There are many open problems and much work to
be done.

After almost twenty years, we can see that his words are still up-to-date, as can be
inferred from the various results presented here.

v
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This volume includes 15 invited contributions dealing with different results re-
lated to copulas, quasi-copulas and related concepts, as well as to various aspects
of dependence modelling and their main applications. Authored by well-known re-
searchers in the field, the book contains both original contributions and surveys, with
particular emphasis on classical topics, such as distributions with fixed marginals,
constructions of copula models, etc. Most of the present contributions will be also
presented and discussed in a scientific conference to be held in Almerı́a, Spain, in
July 2017.

The purpose of this edited volume is to give the copula community the oppor-
tunity of knowing some of the more significant contributions of Prof. Nelsen and
provide some new contributions and reviews related to this field. The primary au-
dience of this book are researchers as well as practitioners, in stochastic models of
dependence from a variety of different perspectives.

The Editors apologize for the inevitable non-uniformity in the form and the style
of the contributions and for typos that might be inadvertently in. However, each
contribution is self-consistent and the possible different mathematical notations are
auto-explained in each chapter and in the corresponding references.

A brief summary of the contents of the chapters is mentioned below.

Chapter 1 by de Amo, Dı́az Carrillo, and Fernández Sánchez reviews problems
related to copula sections and some constructions of copulas with some additional
information, including copulas with given diagonal and/or opposite diagonal sec-
tions, semilinear copulas, biconic copulas, copulas with quadratic sections, among
others.

Next chapter, by Cherubini and Mulinacci, is devoted to the Gumbel-Marshall-
Olkin distribution, a generalization of the Marshall-Olkin distribution, an important
model to study default risks. The extension keeps the main structure of the model
and it is suitable for credit risk applications.

Chapter 3 by De Baets and De Meyer is devoted to the study of the degree of
asymmetry of a (quasi-)copula with respect to a continuous strictly increasing curve
in the unit square, generalizing the seminal work of Prof. Nelsen in this matter. The
authors also derive the maximum and the minimum value of asymmetry of a copula
with respect to a curve.

In Chapter 4, Di Lascio, Durante, and Pappadà review some clustering methods
which use a dissimilarity measure based either on concordance or tail dependence
or risk measures and a clustering procedure based on the likelihood of the copula.
Illustrations of the above methods are provided.

Chapter 5, written by Erdely, deals with the study of a gluing copula approach to
decompose the underlying copula into totally ordered copulas that, when combined,
may lead to a non-monotone regression function. The idea arises because most com-
mon parametric families of copulas are totally ordered and, in many cases, they lead
to monotone regression functions.

Chapter 6, by Genest and Nešlehová, presents a review of two of the most known
families of copulas: Gumbel and Galambos copulas. The authors of this chapter
recall some of their main properties and show their “connections” in any dimension.



Preface vii

The next chapter, by Jaworski, provides a study of systemic risk management by
using copula methods. In particular, the compatibility of the modified Conditional
Value at Risk (CoVaR) with the concordance ordering of copulas is considered.
Moreover, the modified CoVaR is investigated in several known families of copulas.

In Chapter 8, tail asymmetry and dependence properties and measures for copu-
las are summarized by Joe. With this purpose, new bivariate parametric families of
copulas are presented and some of their dependence and asymmetry properties are
determined.

Chapter 9, by Klement, Kolesárová, Mesiar, and Saminger-Platz, deals with the
study of some copula constructions by means of ultramodular functions. Interesting
connections with Schur concavity and functional inequalities are also stressed.

In the next chapter, Mayor, Suñer, and Torrens review two families of discrete
operations (or operations defined on finite chains): On the one hand, discrete trian-
gular norms, that are generalizations of copulas applied in fuzzy logic and approxi-
mate reasoning; on the other hand, discrete copulas, with applications in probability,
statistics and economy.

Chapter 11 by Quesada-Molina reviews the long-standing collaboration of Prof.
Roger Nelsen with him and some of his colleagues. The author recalls, from the
first, his numerous meetings with Prof. Nelsen, highlighting how some of the most
influential articles they coauthored were brewing, including those that study copulas
with prescribed sections, distribution functions of copulas, best-possible bounds on
sets of copulas, properties of quasi-copulas.

Next chapter, authored by Rüschendorf, reviews and elaborates on several de-
velopments of improved Fréchet-Hoeffding bounds for the distribution of a random
vector which assume some restriction on the dependence structure additional to the
information on the marginals. Improved VaR bounds for the joint portfolio of risk
vectors are obtained.

In Chapter 13, written by Sempi, a complete survey on the concept of quasi-
copula is analyzed, with special attention to its different characterizations, main
properties, recent results and the important contributions of Prof. Nelsen in this
matter. Some open problems are also listed.

Chapter 14, by Trutschnig, deals with some problems related to complete depen-
dence, putting the focus on dependence measures that detect functional dependence,
on a problem related to joint-default maximization, on a question from uniform dis-
tribution theory, and on the relationship between the two most well-known measures
of concordance, Kendall’s tau and Spearman’s rho. A short excursion to topology
showing that complete dependence is not at all atypical complements the chapter.

Last chapter, by Úbeda-Flores and Fernández-Sánchez, presents a complete
proof of Sklar’s theorem following seminal ideas by Abe Sklar. The authors also
provide an alternative proof by using the Zorn’s lemma, and review other proofs
appeared in the literature.

The Editors want to dedicate this book to Prof. Roger Nelsen, for his important
contributions to the Theory of Copulas, and they also wish that this edited volume
will contribute to promote new theoretical and practical results. Moreover, the Edi-
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tors would like to thank each one of the authors for all their contributions, because
without their enthusiastic efforts the volume would have not been possible.

The Editors are also grateful to Springer-Verlag for giving them the opportu-
nity of publishing this editorial work. Finally, they also acknowledge the support
by the Ministerio de Economı́a y Competitividad (Spain) under research project
MTM2014-60594-P and FEDER.

March 2017

Almerı́a, Spain Enrique de Amo Artero
Juan Fernández Sánchez

Manuel Úbeda Flores

Lecce, Italy Fabrizio Durante
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12.2 Dual representation of Hoeffding–Fréchet bounds . . . . . . . . . . . . . . 184
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Chapter 1

Constructions of copulas under prescribed

sections

Enrique de Amo, Manuel Dı́az Carrillo, and Juan Fernández Sánchez

Abstract The main problems related to copula sections are reviewed and various
methods for constructing copulas that preserve some partial information, are pre-
sented. Here, the scope of interest extends from seminal work on the existence and
construction of copulas with given diagonal sections to the most recent research on
copulas with given diagonal and opposite diagonal sections. Also a survey is given
on the state of the art on related domains such as the construction of special families
of copulas and generalizations of the copula concept.

1.1 Introduction

Since copulas were introduced by A. Sklar in 1959 as the solution to a question pro-
posed by M. Fréchet, this special type of distribution function has had an increasing
role in probability and statistics. But the interest in copulas is not reduced, whatso-
ever, to these topics. Copula theory has also revealed to be of importance in fields
such as probabilistic metric spaces, fuzzy set theory or aggregation theory.

One of the problems initially studied in copula theory was that of constructing
copulas given some partial information, for instance, copulas with given section(s).
Much attention was focused on the construction of copulas with given diagonal
section and on copulas having quadratic functions as vertical or horizontal sections.
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Since then, an ever growing variety of problems has been studied: copulas with
vertical and horizontal sections, compatibility between them, diagonal and opposite
diagonal and their compatibility, multidimensional generalizations, etc.

Here we give a survey of the main problems related to copula sections and of
the results and methods that are used to construct copulas that preserve some partial
information.

1.2 Preliminaries

Let us recall the definitions we use throughout this chapter. By I we denote the unit
closed interval [0,1], Z+ is the set of positive integers, by id we denote the identity
function.

Definition 1.1. A two-dimensional copula is a function C : I2→ I with the following
properties:

C.1 (Grounded) For every u,v ∈ I, C (u,0) = 0 =C (0,v).
C.2 (With Uniform margins) For every u,v ∈ I, C (u,1) = u, C (1,v) = v.
C.3 (2-increasing) For every u1,u2,v1,v2 ∈ I2 such that u1 ≤ u2 and v1 ≤ v2,

C(u2,v2)−C(u2,v1)−C(u1,v2)+C(u1,v1)≥ 0.

Alternatively, we can say that a copula is a bidimensional distribution function
concentred on I2 whose marginal distribution functions are uniformly distributed.
Therefore, each copula C induces a probability measure μC on I2 in the following
way. We start defining the C-volume of rectangles [a,b]× [c,d] via the formula

VC ([a,b]× [c,d]) =C (b,d)−C (b,c)−C (a,d)+C (a,c) .

VC can be extended to the σ -algebra B
(
I2
)

of Borel subsets to a corresponding μC
measure. We denote by λ the standard Lebesgue measure on the σ -algebra of Borel
sets. The support of a copula C is the complement of the union of all open subsets
of I2 with μC-measure equal to zero, and we denote it by Supp(C).

We denote by C 2 the class of all two-dimensional copulas. For each n ≥ 2 we
can also generalise the concept of copula:

Definition 1.2. An n-dimensional copula is a function C : In → I with the following
properties:

C.1’ (Grounded) C (u1, . . . ,ui−1,0,ui+1, . . . ,un) = 0 for all i = 1, . . . ,n.
C.2’ (With Uniform univariate margins) C (1, . . . ,1,ui,1, . . . ,1) = ui for all i =

1, . . . ,n.
C.3’ (n-increasing) For each rectangle [a,b] :=

n×
i=1

[ai,bi]⊂ In, with ai ≤ bi for all

i = 1, . . . ,n,
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VC ([a,b]) :=
2

∑
j1=1

· · ·
2

∑
jn=1

(−1) j1+···+ jn C
(

u1 j1
, . . . ,un jn

)
≥ 0

where ui1 = ai and ui2 = bi for all i = 1, . . . ,n.

We denote by C n the set of all n-copulas.

For any integer n≥ 2, an n-dimensional copula is the restriction to the unit n-cube
In of a multivariate cumulative distribution function whose margins are uniform on
I. They were introduced by Sklar in 1959 (see [54]), as the answer to a question
posed by M. Fréchet, and they allow to represent a joint distribution of random
variables as a function of marginal distributions. Precisely, Sklar enunciated the
result that follows:

Theorem 1.1 (Sklar). If F is the joint distribution function of n random variables
X1, . . . ,Xn, and F1, . . . ,Fn are the distribution functions of X1, . . . ,Xn, resp., then
there exists an n-dimensional copula C such that

F(x1, . . . ,xn) =C(F1 (x1) , . . . ,Fn (xn))

for all (x1, . . . ,xn)∈Rn. Such C is uniquely determined on Ran(F1)×·· ·×Ran(Fn) .
Furthermore, the copula C is uniquely determined when the margins F1, . . . ,Fn are
continuous. (Observe that x = (x1, . . . ,xn) ∈Rn, but u = (F1 (x1) , . . . ,Fn (xn)) ∈ In.)

The first proof of this theorem (in the bidimensional case) was published in 1974
by Schweizer and Sklar [50]. For a constructive proof of Sklar’s Theorem see [3, 5,
57].

Example 1.1. The function M, given by M (u) := min{u1, . . . ,un} , for all u:=
(u1, . . . ,un)
∈ In, is a copula for all n. It is called the comonotonicity copula. The function W
is given by W (u) := max{u1 + · · ·+un−n+1,0} , for all u:= (u1, . . . ,un) ∈ In is
a copula only if n = 2. In this case it is called the countermonotonicity copula. But
(Fréchet-Hoeffding bounds inequality), for every n-copula C,

W (u)≤C (u)≤M (u) , for all u := (u1, . . . ,un) ∈ In;

hence, M and W are respectively called the upper and lower Fréchet-Hoeffding
bounds. Moreover:

W (u) = inf{C (u) : C ∈ C n} , M (u) = sup{C (u) : C ∈ C n} .

The two following lemmas state very important properties for copulas:

Lemma 1.1. Copulas are 1-Lipschitz functions: for all C ∈ C n, and x and y in In,
we have

|C (x)−C (y)| ≤
n

∑
i=1
|xi− yi|=: ‖x−y‖1 .
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Lemma 1.2. The class C n of the n-copulas is a convex set. This set is also compact
w.r.t. the metric of the supremum.

One first schema of constructing copulas is given by the so-called ordinal sums:

Definition 1.3. Let N ⊂ Z+ and {]ai,bi[⊂ I : i ∈ N} be a family of non-empty and
two-by-two non-overlapping open intervals. Let {Ci : i ∈ N} be a family of copulas.
The ordinal sum of {Ci : i ∈ N} w.r.t. {]ai,bi[⊂ I : i ∈ N} is defined, for each u∈ In,
by

C (u) : = ∑
i∈N

(bi−ai)Ci

(
u1−ai

bi−ai
, . . . ,

un−ai

bi−ai

)
+λ ([0,min{u1, . . . ,un}]\∪i∈N ]ai,bi[) ,

where λ is the Lebesgue measure.

The ordinal sum above is, in fact, a copula (see [21, Th.3.8.2]). We denote it by
C = {〈]ai,bi[ ,Ci〉 : i ∈ N}.

1.3 Quasi-copulas

Quasi-copulas were introduced in [1] (see [52]) in order to characterize operations
on univariate distribution functions that can or cannot be derived from correspond-
ing operations on random variables (defined on the same probability space). The
original definition was as follows:

Definition 1.4. A quasi-copula is a function Q : I2 → I such that for every track B
in I2 (i.e., B can be described as {(α1 (t) ,α2 (t)) : t ∈ I} for some continuous and
nondecreasing functions αi with αi(0) = 1−αi(1) = 0 i ∈ {1,2}), there exists a
copula CB such that Q(x,y) =CB(x,y) with (x,y) ∈ B.

First, we should clarify whether there exist quasi-copulas that are not copulas.
As this is the case, it is necesary a characterization of quasi-copulas. The answer is
based on the following result.

Proposition 1.1. Let x,y,q : I→ I be three continuous functions satisfying:

i. x, y and q are non-decreasing;
ii. 0≤ q(t2)−q(t1)≤ |x(t2)− x(t1)|+ |y(t2)− y(t1)| , for all 0≤ t1 ≤ t2 ≤ 1;

iii. max(0,x(t)+ y(t)−1)≤ q(t)≤min(x(t),y(t)), for all t ∈ I.

Then there exists a copula C such that C(x(t),y(t)) = q(t) for all t ∈ I.

Corollary 1.1 ([30]). A function Q : I2 → I is a quasi-copula if and only if

i. Q(0,x) = Q(x,0) = 0 and Q(1,x) = Q(x,1) = x for all x ∈ I;
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ii. Q is a non-decreasing function in each of its arguments;
iii. Q is 1-Lipschitz: |Q(u,v)−Q(x,y)| ≤ |u− x|+ |v− y|, for all u,v,x,y ∈ I.

Example 1.2 ([41, Exercise 2.11]). Let

K (x,y) :=
{

min{x,y,1/3,x+ y−2/3} , 2/3≤ x+ y≤ 4/3
M (x,y) , otherwise.

This function K is a quasi-copula by the corollary above. But it is not a copula:
VK

(
[1/3,2/3]2

)
< 0.

1.4 Diagonal sections

The diagonal section of a copula C is the function δC : I→ I defined by δC(t) :=
C(t, t) for all t ∈ I. Note that δC has the following properties:

D.1 δC(1) = 1,
D.2 δC(t)≤ t for all t ∈ I,
D.3 δC is increasing,
D.4 |δC(x)−δC(y)| ≤ 2|x− y| for all x,y ∈ I.

A function δ satisfying conditions D.1 to D.4 is named a diagonal function. The
set of all diagonal functions is denoted by D2. A natural question arises: for a given
δ ∈D2, does there exist a copula C such that δC = δ? The answer is ”yes”, and it is
a consequence of Corollary 1.1, because when x(t) = y(t) = t, conditions a., b., and
c. in the statement are equivalent to conditions D.1 to D.4.

Theorem 1.2. If δ ∈D2, then there exists a copula C such that δ = δC.

Theorem 1.2 only states the existence of a such copula C, but does not provide
any qualitative information on it. One can ask, for instance, whether C is necessar-
ily a singular, or an absolutely continuous copula? In the following, we will recall
various constructions methods and study the properties of the copulas we gener-
ate. Given a diagonal function δ , we write by Cδ the set of all copulas C such that
δC = δ .

1.4.1 Diagonal and Hairpin copulas

In the investigations about extreme points in the class of copulas, the concepts of
hairpin sets and two-dimensional hairpin copulas have been introduced. Given an
increasing homeomorphism g : I → I fulfilling g(x) < x for every x ∈ ]0,1[ the
(compact) set Γ �(g) := Gr(g)∪Gr

(
g−1
)

(where Gr( f ) := {(t, f (t) : t ∈ I)}) will
be called a two-dimensional hairpin set. The class of all these homeomorphisms
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will be denoted by G . For g ∈ G , the inverse g−1 is strictly increasing and fulfills
g−1(x) > x for every x ∈ ]0,1[. We will write g j (resp., g− j) for the j-times com-
position of g (resp., g−1) with itself for every j ∈ Z+ and set g0 := idI. Following
[42, 53] (see [51] as well) we say that C is a two-dimensional hairpin copula if
Supp(C)⊆ Γ �(g) for some g ∈ G .

Theorem 1.3 ([51, 53]). For every g ∈ G there exists at most one copula C ∈ C 2

with Supp(C) ⊆ Γ �(g). If such a copula exists it is necessarily symmetric and for
every x ∈ ]0,1[,

f (x) := μC ({(t,g(t)) : 0≤ t ≤ x}) =
∞

∑
n=1

(−1)n+1 gn(x).

The function f so defined is named as mass spreader. Using notation above, we
have δC = 2 f .

Theorem 1.4 ([14, 53]). If for a given g ∈ G there exists one copula C ∈ C 2 with
Supp(C)⊆ Γ �(g), then:

i. The set Ox, defined by Ox =
⋃

n∈Z+

[
g2n+2(x),g2n+1(x)

]
, fulfills λ (Ox) = 1/2.

ii. The diagonal δC fulfills

2g(x) = δC(x)+δC(g(x)) (1.1)

for every x ∈ I.

As a consequence of Theorem 1.3, we have the next result.

Corollary 1.2. Hairpin copulas are extreme points in C 2.

To the best of our knowledge, the first time that the formula of a copula C with
mass concentrated in Γ �(g) appears in explicit form is in the proof of Theorem 2.4
in [38]. Nevertheless, it was already implicit in [51] and [53]. Its expression is given
in terms of the mass spreader function f , but we will use the diagonal function δC.

Theorem 1.5. Suppose that for a given g ∈ G there is one copula C ∈ C 2 with
Supp(C)⊆ Γ �(g). Then

C(x,y) = min
{

x,y,
δC(x)+δC(y)

2

}
In the light of this theorem, it is reasonable to study the functions

CFN
δ (x,y) := min

{
x,y,

δ (x)+δ (y)
2

}
,

with δ ∈D2.
This study was made by Fredricks and Nelsen, and the main result is the follow-

ing.
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Theorem 1.6 ([28, 42]). If δ ∈ D2, then CFN
δ is a copula. Moreover, for each sym-

metric copula C ∈ Cδ , it follows that C ≤CFN
δ .

We call δ a strict diagonal if δ (x)< x for all x ∈ ]0,1[, and both δ and δ̃ : I→ I,
defined by

δ̃ (x) = 2x−δ (x),
are strictly increasing. As a consequence, CFN

δ is a hairpin copula if and only if δ is
a strict diagonal.

Copulas in the form CFN
δ are called Fredricks-Nelsen copulas, or diagonal copu-

las. The theorem above again states that for a given diagonal function δ , there exists
at least one copula C such that δC = δ . Moreover, it provides a method to find an
example of this kind of copulas.

Example 1.3. Let us consider the strict diagonal δ (x) = x2 for x ∈ I. Then CFN
δ is

a hairpin copula and the corresponding homeomorphism g is given by g(x) = 1−√
1− x2, i.e. Γ �(g) is the union of two quarter-circles (see [42]).

The question whether for a given homeomorphism g there exists a copula that
concentrates it mass in Γ �(g), must be answered negatively: taking a singular home-
omorphism g (that is, g′ = 0 in a set of measure 1), it is impossible to find such a
copula. Indeed, g been singular, there exists a set Ng satisfying λ (Ng) = 0 and
λ (g(Ng)) = 1. Moreover, even for absolutely continuous or convex sections g, the
answer remains negative. This is made explicit by the following theorem.

Theorem 1.7 ([51]). If a > 1 and g(x) = xa, then there does not exist C ∈ C 2 with
Supp(C)⊆ Γ �(g).

The following example shows that hairpin copulas may be properly generalized
by shuffles of M in the sense of [20] (also see [55]), so in particular (mutually)
completely dependent copulas. Necessary and sufficient conditions for a shuffle of
M to be a diagonal copula can be found in [27] and in [42]. In the former article, the
following result was proved:

Theorem 1.8 ([27]). Suppose that δ is a two-dimensional diagonal. Then the diag-
onal copula CFN

δ is a generalized shuffle of M whose support is contained in the
graph of a λ -preserving bijection S : I→ I fulfilling S ◦ S = idI if and only if for
almost every x ∈ I either δ ′(x) ∈ {0,2} or δ (x) = x holds.

Example 1.4. Consider the partition Z= {I1,J1, I2,J2, . . .} of I, whereby

In =
[
1−1/2n,1−1/2n+1] and Jn =

[
1/2n+1,1/2n]

for every n ∈ Z+, and the ordinal sum of the copula CFN
δW

with respect to Z, whereby
δW denotes the diagonal of W . It follows immediately from the construction that
CFN
δW

is a generalized shuffle of M.
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A multidimensional generalization of these results can be found in [14] and
[31]. More precisely, we say that an n−dimensional diagonal function is a func-
tion δ : I→ I satisfying D.1 to D.3 and

D.4’ |δ (x)−δ (y)| ≤ n|x− y| for all x,y ∈ I.

Theorem 1.9 ([14, 31]). For a given n-dimensional diagonal function δ , the func-
tion

C(u1, . . . ,un) :=
1
n

n

∑
i=1

min
{

f (uτ i(1)), . . . , f (uτ i(n−1)), δ (uτ i(n))
}

(1.2)

for all (u1, . . . ,un) ∈ In, where τ is the permutation in {1, . . . ,n} given by τ i(k) :=
(k+ i) mod n and f (x) := nx−δ (x)

n−1 for every x ∈ I, is a copula satisfying δC = δ .

1.4.1.1 Absolutely continuous copulas

All copulas CFN
δ are singular. The characterisation of the diagonal functions δ

for which there exists an absolutely continuous copula C with diagonal section
δ = δC, is a problem that was studied and solved by Durante and Jaworski in [15].
The method is based upon the modification on the copulas CFN

δ . Denote by I(δ )
the set of points t in the unit interval such that δ has a derivative δ ′(t). Setting
sup{δ ′(t) : t ∈ I(δ )}= 2

1+εδ
, the next statement is true:

Theorem 1.10 ([15]). For every δ ∈D2, and α ∈ [ 1
2 − εδ , 1

2 + εδ
]
, the function de-

fined by
Kδ ,α(u,v) := min{u,v,αδ (u)+(1−α)δ (v)} ,

is a copula with diagonal section equal to δ . Moreover, if εδ > 0 then the function

Cδ (u,v) :=
∫ 1

2+εδ

1
2−εδ

Kδ ,α(u,v)dα,

is an absolutely continuous copula with diagonal section equal to δ .

With the aid of this theorem we can give a characterization of diagonal sections
of absolutely continuous copulas with full support.

Theorem 1.11 ([13, 15]).

a. A diagonal function δ ∈D2 is the diagonal of an absolutely continuous copula
if and only if λ ({t : δ (t) = t}) = 0.

b. Let δ ∈D2. The following statements are equivalent:

i. δ is the diagonal of an absolutely continuous copula with full support;
ii. δ (t)< t for every t ∈ ]0,1[ and there is no interval J included in I such that

either δ ′ = 0 on J or δ ′ = 2 on J.

In [4] appears an alternative method yielding statement a. above; and in [31] is
given a multidimensional generalization of this statement.
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1.4.2 Bertino copulas

Given a diagonal δ , the Bertino copula CBer
δ is defined by (see [29] and the seminal

paper [6]):

CBer
δ (x,y) := M(x,y)−min

{
δ̂ (t) : t ∈ [min{x,y},max{x,y}]

}
, (1.3)

where δ̂ (t) := t−δ (t). It is well know that CBer
δ is the minimal element in Cδ (see

[29]). We define the two following functions l,u : I→ I:

u(x) : = max
{

y≥ x : δ̂ (t)≥ δ̂ (x) for all t∈[x,y]
}

l(x) : = min
{

y≤ x : δ̂ (t)≥ δ̂ (x) for all t∈[y,x]
}
. (1.4)

Theorem 1.12. The support of the Bertino copula CBer
δ is contained in the union

of the diagonal and the closure of the graph of the measurable function S : I→ I,
defined by

S(x) =
{

u(x), if wδ (x)> 0
l(x), if wδ (x)≤ 0 (1.5)

where wδ is (a versions of) the derivative of δ .
Therefore, CBer

δ is a singular copula.

Note that the copulas CBer
δ and CFN

δ only coincide in case δ = δM (see [11]).

1.5 Semilinear and conic copulas

We have seen that for any diagonal function δ there exists a copula C with diagonal
section δC = δ . Quite a lot of research has been focused on the compatibility of
diagonal functions δ with the diagonal sections of copulas that are generated by very
special constructions methods, such as the methods based on linear interpolation. In
the next subsections we consecutively consider copulas of which certain sections
parallel to the borders of the unit square or sections that join one of the points (0,1)
and (1,0) to points on the diagonal of the unit square, are linear functions.

1.5.1 Semilinear copulas

We call a function L : I2 −→ I a lower semilinear function if it satisfies the boundary
conditions C.1 and C.2 of a copula and if for all x ∈]0,1], the mappings
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hx : [0,x]→ I,hx(t) := L(t,x),

vx : [0,x]→ I,vx(t) := L(x, t),

are linear. Analogously, a function U is called un upper semilinear if for all x∈ [0,1[,
the mappings

hx : [x,1]→ I,hx(t) :=U(t,x),

vx : [x,1]→ I,vx(t) :=U(x, t),

are linear.
It is easily verified that given a diagonal function δ ∈D2, the function Lδ : I2→ I

defined by

Lδ (x,y) =
{ y

xδC(x), y≤ x
x
yδC(y), otherwise

where the convention 0
0 := 0 is adopted, is the unique lower semilinear function with

diagonal section δLδ equal to δ .
The upper semilinear function Uδ with diagonal section δ is defined in an anal-

ogous way. Note that every upper semilinear copula Uδ with diagonal section δ is
equivalently given by

Uδ (x,y) = x+ y−1+Lδ (1− x,1− y)

where Lδ is the lower semilinear copula determined by the diagonal section δ̂ (t) =
2t−1+δ (1− t). This property allows to restrict the further analysis to just one of
these semilinear functions.

The characterization of the diagonal functions that generate lower semilinear
copulas is as follows:

Theorem 1.13 ([16]). Given a diagonal function δ , the lower semilinear function
Lδ with diagonal section δ is a copula if and only if the functions ϕδ ,ηδ : ]0,1]→ I

defined by ϕδ (x) := δ (x)
x , ηδ (x) := δ (x)

x2 are non-decreasing and non-increasing,
respectively.

Subsequently, the concept of semilinear copulas has been extended in various
ways (see [8, 24, 25, 32, 35, 36]).

1.5.2 Biconic copulas

We call a function Fδ : I2 → I a biconic function if it satisfies the boundary condi-
tions C.1 and C.2 of a copula and if it is linear on segments that join a point on the
diagonal of the unit square to one of the corners points (1,0) and (0,1).

It is easily verified that given a diagonal function δ ∈D2, the function Fδ : I2 → I

defined by
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Fδ (x,y) :=

⎧⎪⎪⎨⎪⎪⎩
δ
(

y
y+1− x

)
(y+1− x) , x≥ y

δ
(

x
x+1− y

)
(x+1− y) , x < y,

(1.6)

where the convention δ
( 0

0

)
:= 0 is adopted. In a closed form,

Fδ (x,y) = δ
(

x∧y
x∧y+1−x∨y

)
(x∧ y+1− x∨ y) .

The characterization of the diagonal functions generating biconic copulas is as
follows:

Theorem 1.14 ([12, 33]). Given a diagonal function δ , the biconic function Fδ with
diagonal section δ is a copula if and only if δ is convex.

Further studies on these copulas and their generalizations can be found in [26,
34, 37].

1.6 Subdiagonal sections

The study of diagonal sections was generalised to sub-diagonal sections by Quesada-
Molina et al. in [46]. We recall basic notions and properties:

a) Given a copula C and x0 ∈]0,1[, the sub-diagonal section δx0,C of C at x0 is the
function δx0,C : [0,1− x0]→ [0,1− x0] defined by δx0,C (t) =C (x0 + t, t) .

b) Given x0 ∈ ]0,1[ , a sub-diagonal function δx0 is a function [0,1− x0] →
[0,1− x0] with the following three properties:⎧⎨⎩

SD.1 δx0 (1− x0) = 1− x0,
SD.2 0≤ δx0 (t)≤ t for every t ∈ [0,1− x0] ,
SD.3 0≤ δx0 (t)−δx0 (t

′)≤ 2(t− t ′) , for every t and t ′ ∈ [0,1− x0] with t ′ ≤ t.

Remark 1.1. If (X ,Y ) is a pair of random variables distributed according to the cop-

ula C, the function
δx0

1−x0
is the restriction to I of the conditional distribution function

of max(X− x0,Y ), given Y ≤ 1− x0.

For a fixed sub-diagonal function δx0 , we denote by Cδx0
(resp. C ac

δx0
) the class of

all copulas (resp. absolutely continuous copulas) whose sub-diagonal section is δx0 .
For the next result we need some of notation:

mx0(x,y) : = min(x− x0,y),

Mx0(x,y) : = max(x− x0,y),

hx0(x,y) : = min
{
δ̂x0(t) : t ∈ [mx0(x,y),Mx0(x,y)

]}
.
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Theorem 1.15 ([46]). For every x0 ∈ ]0,1[ and every sub-diagonal δx0 , there exist a
copula C ∈Cδx0

. Moreover, it is possible to find an element in Cδx0
being symmetric.

The set Cδx0
has a minimun which is given by the formula

Bδx0
(x,y) :=

{
mx0(x,y)−hx0(x,y), if (x,y) ∈ [x0,1]× [0,1− x0]
W (x,y), otherwise.

Theorem 1.16 ([4]). Let x0 ∈ ]0,1[ and δx0 be a sub-diagonal function. Then the set
Cac
δx0

is non-empty.

1.7 Diagonal and opposite diagonal sections

The opposite diagonal section ωC of a copula C is a function ωC : I→ I defined by
ωC(t) =C(t,1− t). An opposite diagonal function is a function ω : I→ I satisfying
the following conditions:{

W.1 ω(t)≤min(t,1− t), for all t ∈ I,
W.2 |ω(v)−ω(u)| ≤ |v−u| for all u,v ∈ I.

Note that there exits a bijection between D2 and the set of opposite diagonals
which is given by δ → ωδ , with ωδ (t) := t−δ (t) . Also, many of the properties of
diagonal functions can be transferred to the opposite diagonal functions because the
copula C′(x,y) := x−C(x,1− y) satisfies ωC′ = ωδC (see [10]).

We can ask for necessary and sufficient conditions for a diagonal function δ and
an opposite diagonal function ω to be compatible, that is, there exists a copula C
such that δC = δ and ωC = ω. The first steps in this direction were made in [9],
where with the help of cross-copulas the authors have put forward compatibility
conditions between δ and ω.

We consider the following assumptions. Let δ be a diagonal function and ω be
an opposite diagonal function satisfying:

a) ∀t ∈ [0,1/2] , 0≤ ω(t)−δ (t) and 0≤ ω(1− t)−δ (t) ,
b) ∀t ∈ [1/2,1] , δ (t)−ω(t)≤ 2t−1 and δ (t)−ω(1− t)≤ 2t−1,
c) ∀t, t ′ ∈ [0,1/2] , t < t ′ ⇒
δ (t)+δ (1− t)−ω(t)−ω(1− t)≥ δ (t ′)+δ (1− t ′)−ω(t ′)−ω(1− t ′).

(1.7)
From (1.7.a) and (1.7.b), it follows that δ

( 1
2

)
= ω

( 1
2

)
. Taking this equality into

account and putting t ′ = 1
2 in (1.7.c), we have that δ (t)+ δ (1− t)−ω(t)−ω(1−

t)≥ 0, for all t ∈ [0,1/2] .
The solution to this problem was obtained through its reformulation as a linear

programming problem. The latter could be realized with the help of an algebraic
tool known as Farkas’ Lemma (see [49]).



1 Constructions of copulas under prescribed sections 13

Theorem 1.17 ([2]). Let δ be a diagonal function and ω be an opposite diagonal
function for which (1.7) holds. Then there exists a copula C with diagonal section
and opposite diagonal section equal to δ and ω , respectively.

This allowed to solve two problems posed earlier by Klement and Kolesárová in
[39].

Theorem 1.18. Let C be a copula, and let δ and ω be its diagonal and opposite
diagonal sections, respectively. Then C is the unique copula with these sections if
and only if ⎧⎨⎩

δ (x) = ω(x)
δ (x) = δ (1− x)−1+2x
ω(x) = ω(1− x)

(1.8)

for all x ∈ [0,1/2] .

Theorem 1.19. Let δ be a diagonal function and ω be an opposite diagonal func-
tion. Then there exists a unique copula having δ and ω as diagonal and opposite
diagonal sections, respectively, if and only if δ and ω satisfy conditions (1.7) and
(1.8).

These ideas can be applied to compatibility problems between other types of
sections that generalise either diagonal sections or opposite diagonal sections, as
can be found in [23].

1.8 Copulas with given quadratic sections

The notation and results we present in this section are those introduced in [45].
A function (x,y)→C (x,y) is said to have quadratic sections in x iff its intersec-

tion with y = y0 is quadratic in x for each y0 ∈ I; that is equivalent to say that C has
quadratic sections in x if and only if it can be expressed in the form

C (x,y) = a(y)x2 +b(y)x+ c(y) , (x,y) ∈ I2, (1.9)

where a, b, and c are real-valued functions defined on the unit interval I. Function
C can be characterised as a copula in terms of these a, b, and c by:

Theorem 1.20 ([45]). Let a, b, and c are real-valued functions defined on I, and
C : I2 → R be the function defined by the formula (1.9). Then these two statements
are equivalent:

i. C is a copula.
ii. The following conditions are satisfied:

• b(y) = y−a(y) and c(x) = 0 for all y ∈ I;
• a(0) = a(1) = 0;
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• a is 1-Lipschitz; i.e., |a(s)−a(t)| ≤ |s− t| for all s, t ∈ I.

In such a case, C is absolutely continuous.

Copulas with quadratic sections in y can be obtained by exchanging the variables:
C is a copula with quadratic sections in y if and only if its transpose Ct(x,y) =C(y,x)
is a copula with quadratic sections in x.

We can write, for the sake of simplicity,

C (x,y) = xy+a(y)x(1− x) , (x,y) ∈ I2, (1.10)

and the characterization of C as a copula is given by

Corollary 1.3. The function C in equation (1.10) is a copula if and only if a satisfies
the three following conditions:

a. y→ a(y) is an absolutely continuous function;
b. |a′ (y)| ≤ 1 almost everywhere in I; and
c. |a′ (y)| ≤min{y,1− y} for all y ∈ I.

In such a case, C is an absolutely continuous copula.

The next result, a direct consequence of the preceding corollary, is of practical
interest rather than the theoretical one for functions C given as above:

Corollary 1.4. Let a be a continuous function defined on I such that a(0) = a(1) =
0. Suppose that a is a differentiable function with continuous derivative a′ satisfying
|a′ (y)| ≤ 1. Then C is an absolutely continuous copula.

Other methods for obtaining copulas in other ways using quadratic constructions
either in one variable or in the multivariate case can be found in [43, 47, 48, 56].

1.9 Rectangular Patchwork and Cross Copulas

We conclude with this section which is devoted to the study of the compatibility be-
tween horizontal and vertical sections of a copula with the upper and lower bounds
of this copula.

Let C be a copula. The horizontal b-section of C is the function hC,b : I→ [0,b]
given by hC,b(t) :=C(t,b) and the vertical a-section of C is the function vC,a : I→
[0,a] given by vC,a(t) :=C(a, t).

Let a and b be fixed in ]0,1[. We denote by Hb the set of increasing and 1-
Lipschitz functions h : I→ I such that h(0) = 0 and h(1) = b with max{0, t + b−
1} ≤ h(t) ≤ min{t,b}. Analogously, we denote by Va the set of increasing and 1-
Lipschitz functions v : I→ I such that v(0) = 0 and v(1) = a with max{0, t + a−
1} ≤ v(t) ≤ min{a, t}. These functions will be called as horizontal b-sections and
vetical a-sections, respectively.
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It is easy to prove that for each b ∈ ]0,1[ and C ∈ C 2 then hC,b ∈Hb. The same
is true for vertical sections. By application of Proposition 1.1, we obtain the next
result:

Theorem 1.21 ([40]). For each h ∈Hb (resp., v ∈ Va), there exists a copula C such
that hC,b = h (resp. vC,a = v).

Actually, we can say more: there exists infinitely many copulas satisfying that
property. To see this property and other results related with maxima and minima in
the set Hb, we need a new tool which we describe in what follows.

Rectangular patchworks appear in [19] as an unification of different ideas that
were implicit in the literature (see [7, 16, 18, 22, 39, 40, 44, 46]). We introduce
some notation to describe them.

Let a1,a2,b1,b2,c1,c2 be in I with a1 < a2,b1 < b2 and c1 ≤ c2. Given a function
F : [a1,a2]× [b1,b2]→ [c1,c2], the margins of F are the functions hF

b1
,hF

b2
,vF

a1
and

vF
a2

defined by

hF
b1
,hF

b2
: [a1,a2]→ [c1,c2] , hF

b1
(x) := F(x,b1); hF

b2
(x) := F(x,b2),

vF
a1
,vF

a2
: [b1,b2]→ [c1,c2] , vF

a1
(y) := F(a1,y); vF

a2
(y) := F(a2,y).

Theorem 1.22 ([19]). Be given a family {Ci}i∈I of copulas and a family of rect-
angles

{
Ri =

[
ai

1,a
i
2
]× [bi

1,b
i
2
]}

i∈I
in I2 such that Ri∩R j ⊆ ∂Ri∩∂R j , for every

i = j. Let C be a copula and put λi = VC (Ri). Let C̃ : I2 → I be defined, for every
x,y ∈ I, by

C̃(x,y) =

⎧⎪⎪⎨⎪⎪⎩
λiCi

(
VC([ai

1,x]×[bi
1,b

i
2])

λi
,

VC([ai
1,a

i
2]×[bi

1,y])
λi

)
+hC

bi
1
(x)+ vC

ai
1
(y)−hC

bi
1
(ai

1),
(x,y) ∈ Ri,λi �= 0

C(x,y), otherwise

(1.11)

Then C̃ is a copula.

We use the notation C̃ = (〈Ri,Ci〉)Ci∈I for indicating the rectangular patchwork
of (〈Ri,Ci〉)i∈I into the copula C.

In case of a finite number of rectangles whose union fills the unit square it is un-
necessary to know the copula C since C̃ is completely determined by the horizontal
and vertical sections hC

bi
1
, hC

bi
2
, vC

ai
1

and vC
ai

2
, and the copulas Ci,. Therefore, we can

state the following result:

Corollary 1.5. Let 0 = a0 < a1 < · · ·< an = 1, 0 = b0 < b1 < · · ·< bm = 1,
{vi ∈ Vai : i ∈ {0,1, . . . ,n}} , and

{
h j ∈Hb j : j ∈ {0,1, . . . ,m}

}
satisfying the fol-

lowing compatibility conditions vi(b j) = h j(ai) and also the 2-increasingness:

a. h j+1(x) + h j(ai)− h j(x)− h j+1(ai) non decreasing when x ∈ [ai,ai+1] , ∀i ∈
{0,1, . . . ,n−1} , ∀ j ∈ {1, . . . ,m} .
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b. vi+1(x)+vi(b j)−vi(x)−vi+1(b j)≥ 0 non decreasing when x∈ [b j,b j+1
]
, ∀ j ∈

{0,1, . . . ,m−1} , ∀i ∈ {1, . . . ,n} .
Let
{

Ci, j ∈ C 2 : j ∈ {1, . . . ,m} , i ∈ {1, . . . ,n}} a family of copulas and set λi j =

h j+1(ai+1)+h j(ai)−h j(ai+1)−h j+1(ai). Let C : I2→ I be defined, for every (x,y)∈
I2, by

C(x,y) = λi jCi j

(
h j+1(x)+h j(ai)−h j(x)−h j+1(ai)

λi j
,

vi+1(x)+ vi(b j)− vi(x)− vi+1(b j)

λi j

)
+h j(x)+ vC

i (y)−h j(ai)

Then C is a copula with horizontal b j-sections and vertical ai-sections which coin-
cide with h j and vi, respectively.

The copula C obtained above is represented by
〈{

h j
}
,{vi} ,

{
Ci, j
}〉

, for the sake
of simplicity. Observe that h0 = v0 = 0 and h1 = v1 = id, and therefore it is unnec-
essary to include them in the above notation.

With the aid of this result we can describe the compatibility between elements
of Hb and Va. Given h ∈Hb and v ∈ Va, we represent by Ch,v the set of copulas{

C ∈ C 2 : hC
b = h,vC

a = v
}

. These are the Cross Copulas cited in [17]. Setting C =
〈{hb} ,{va} ,{C11,C12,C21,C22}〉, without restrictions on the copulas Ci j it follows:

Theorem 1.23 ([17]). Let h and v be given in Hb and Va, respectively, with h(a) =
v(b) = c, and max{a+b−1,0}< c < min{a,b}. Then, Ch,v is a non empty set.

The conditions of Theorem 1.23 can be weakened to max{a+ b− 1,0} ≤ c ≤
min{a,b}. Although condition ”a,b ∈ ]0,1[” is introduced, it is possible to consider
a or b to be zero. In this case, the results obtained for the case of horizontal b-
sections or vertical a-sections are retrieved(see [40]).

Taking copulas Ci j to be equal to M and W we obtain:

Theorem 1.24 ([17]). Let h be in Hb and v be in Va with h(a) = v(b) = c. Then
the set Ch,v has maximal a element that is 〈{hb} ,{va} ,{M,M,M,M}〉 and minimal
element given by 〈{hb} ,{va} ,{W,W,W,W}〉.
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38. Kamiński, A., Mikusiński, P., Sherwood, H. and Taylor, M.D.: Doubly Stochastic Measures,

Topology, and Latticework Hairpin, J. Math. Anal. Appl. 152 (1990) 252-268
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Chapter 2

The Gumbel-Marshall-Olkin distribution

Umberto Cherubini and Sabrina Mulinacci

Abstract In this paper we introduce a generalization of the Marshall-Olkin dis-
tribution that allows for some dependence among the shock arrival times while it
preserves exponentially distributed observed lifetimes: these features make the re-
sulting distribution well suited for credit risk applications. The main result of the
paper is that the only Archimedean dependence structure consistent with these re-
quirements is the Gumbel one.

2.1 Introduction

During the financial crisis, much of the literature devoted to credit risk has naturally
turned to look at the Marshall-Olkin model (see Marshall and Olkin, 1967) as an
important tool to represent and study systemic crises. From the point of view of
credit risk analysis, in fact, the Marshall-Olkin model has many advantages and one
main shortcoming.

The main advantages make the model perfectly well-suited to address a systemic
crisis. First, there are unobserved shocks, some of which are unique to each and
every individual and some others which are common to a subset of individuals. Sec-
ond, these common shocks allow for simultaneous default of the elements in the
cluster defined as the subset of individuals exposed to the same common factor.
This feature cannot be captured by the typical multivariate approach that has been
applied to credit risk, that is multivariate distributions obtained using absolutely
continuous copulas. This set of copula functions, and the corresponding multivari-
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ate distributions, structurally lead to underestimate the joint default of a number of
individuals in a short period of time, which is exactly what happens in a systemic
crisis. The third beauty of the Marshall-Olkin model is to preserve the exponential
marginal distribution for the observed default times (see also the seminal paper of
Gumbel, 1960). This is particularly relevant for credit risk models in which the con-
stant intensity structure of the default event is still considered an important working
assumption that simplifies very much the calibration of the model. Indeed, while for
univariate models it may be worthwhile to model the intensity of default as a pro-
cess, this makes the model quite difficult to address and calibrate in a multivariate
setting, so that marginal exponential distributions are the standard choice in most of
the multivariate analyses of credit risk. The few exceptions to this standard, such as
to jointly model self-exciting shocks to the intensities, are not able yet to deal with
the singularity issue, that is the simultaneous default of a number of issuers.

As for the flaw of the Marshall-Olkin model, the main issue has to do with the
fact that the unobserved shocks are independent. This assumption is not realistic
for credit risk applications, particularly with respect to banking crises, in which
any idiosyncratic shock can turn into a crisis of the banking system as a whole.
Assuming a dependence structure among the unobserved components has important
effects on the analysis of dependence among observed default events, both in terms
of measurement and interpretation. As for measurement, it is well known that in the
Marshall-Olkin model the dependence structure arises from the sensitivity of each
obligor to a systemic shock. Actually, it can be easily proved that the Kendall’s tau
between the systemic shock and the default time of an individual is simply the ratio
between the intensity of the systemic shock and the marginal default intensity. It is
clear that this dependence relationship should be made stronger by the assumption
that the unobserved components are also dependent in the first place. As for the
interpretation of dependence, it is clear that the dependence due to sensitivity to the
systemic shock is very different from dependence due to the fact that the systemic
shock could be actually triggered by the obligor.

A question is how to extend the Marshall-Olkin model keeping all its advantages,
including marginal exponential distributions of default times, while introducing a
dependence structure among the unobserved components. For this purpose, in this
paper we introduce a multivariate model to relax the assumption of independent
shocks arrival times, whose dependence structure is assumed of Archimedean type,
while preserving the main features of the Marshall-Olkin distribution: first, the in-
tensity of each arrival time of a shock is identified by a nonnegative parameter;
second, the observed lifetimes are exponentially distributed. The main result will be
that the only Archimedean dependence structure consistent with this extension of
the Marshall-Olkin structure is given by a Gumbel copula. For this reason we call
this distribution Gumbel-Marshall-Olkin.

The plan of the paper is as follows. In Section 2 we review the main literature
connected to this paper. In section 3 we will lay out the main assumptions of the
model. In section 4 we will derive the main result of the paper. Section 5 concludes.
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2.2 Literature review

There is a wide literature concerning extensions of the Multivariate Marshall-Olkin
distribution. Extensions of the Marshall-Olkin distribution have been considered in
Li (2009), where the so-called scale-mixtures of the Marshall-Olkin distributions are
introduced: such distributions are obtained as a scale-mixture of a Marshall-Olkin
distribution. The approach of obtaining generalizations of distributions reinforcing
the dependence through a scale mixing technique is well-established in literature
and its application for the construction of extensions of the Marshall-Olkin dis-
tribution is investigated in Mulinacci (2015). Scale-mixture of the Marshall-Olkin
distribution have also been considered in Mai et al. (2013) and in Bernhart et al.
(2013) in the exchangeable case which is applied to the CDO pricing problem. In
all these cases the resulting dependence structure of the shocks arrival times is of
Archimedean type when the generator is the Laplace transform of a positive ran-
dom variable, since this kind of copulas are obtained through a mixing technique.
A more general model with a dependence structure of Archimedean type with gen-
eral generator is considered in Mulinacci (2017) while the approach of combining
Archimedean copulas with extreme value copulas is extended in Charpentier et al.
(2014). The multivariate distribution studied in this paper is actually a special case
in that general setting.

Concerning credit risk applications, the Marshall-Olkin distribution and its ex-
tensions have become extremely relevant in the aftermath of the crisis, because of
their singularity property according to which events of simultaneous defaults have
positive probability mass. The use of common shocks in the general case of credit
risk has been applied in Giesecke (2003) and Lindskog and McNeil (2003) while
pricing and hedging applications to credit derivatives are addressed in Elouerkhaoui
(2007) and Mai and Scherer (2009). This singularity feature is particularly impor-
tant in the analysis of banking crises, in which simultaneous defaults are a practical
matter, and are the main reason of worries for the regulatory bodies. In this line of
research, Baglioni and Cherubini (2013a) applied a standard Marshall-Olkin model
to estimate the actuarial value of the liability to be faced by public finance, due to
a systemic banking crisis. Baglioni and Cherubini (2013b) extend the research to
investigate the relationship between credit risk of the banking system and sovereign
credit risk. Cherubini and Mulinacci (2016) extend the analysis to address the issue
of dependence among idiosyncratic and systemic shocks, in a model in which every
cluster is characterized by a single common shock.

The results presented in this paper are quite natural generalizations of those
showed in Cherubini and Mulinacci (2016) where the only shocks considered are
those causing the end of a single lifetime and that causing the simultaneous end
of all the lifetimes considered: in that case the setting is simplified because of the
application considered and the estimation tractability of the model. Here, instead,
the Gumbel-Marshall-Olkin distribution is derived in full generality for what con-
cerns the structure of the unobserved shocks. As for the literature on Marshall-Olkin
extensions, the distributional model considered in this paper is a particular case of
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the extensions of the Marshall-Olkin distribution obtained through the mixing tech-
nique mentioned above, where it can be characterized as the unique one satisfying
the requirements that preserve the Marshall-Olkin structure.

2.3 Model assumptions

Let us consider the classical construction of Marshall-Olkin distributions (see Mar-
shall and Olkin, 1967).

Let (Ω ,F ,P) be a probability space. If d ≥ 2, we consider the class of subsets
of {1, . . . ,d} given by P = {S⊂ {1, . . . ,d} : S �= /0} and X = {XS}S∈P a collection
of independent and exponentially distributed random variables with intensity λS ≥ 0
representing the arrival times of some unobservable shocks, that is, if x = (xS)S∈P ,
xS ≥ 0 for all S ∈P

F̄X(x) = exp

(
− ∑

S∈P

λSxS

)
.

We denote with Tj, j = 1, . . . ,d, the j-th observable lifetime whose end is caused by
the first arrival time among those shocks XS with j ∈ S, that is

Tj = min
S: j∈S

XS.

In this construction XS represents the arrival time of a shock causing the simultane-
ous end of all lifetimes Tj for which j ∈ S: the case λS = 0 is allowed in order to
take into account the case in which the occurrence of the simultaneous default of a
specific subset of the defaultable entities has probability zero.

The survival distribution of T = (T1, . . . ,Td) defines the so called Multivariate
Marshall-Olkin distribution whose survival version, for t = (t1, . . . , td) with t j ≥ 0
for all j = 1, . . . ,d is given by

F̄(t) = exp

(
− ∑

S∈P

λS max
j∈S
{t j}
)
.

We assume
λ̄ j = ∑

S: j∈S
λS > 0, for j = 1, . . . ,d (2.1)

and the corresponding survival marginal distributions are

F̄Tj(t j) = exp(−λ̄ jt j)

while the corresponding survival copula (see Li (2008)) is

Ĉ(u) = ∏
S∈P

min
j∈S

u
αS, j
j
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where
αS, j = λS/λ̄ j, with j ∈ S. (2.2)

In this paper we consider a generalization of the Marshall-Olkin model assuming
a more general distribution for the unobserved shock arrival times X. The model is
built starting from two basic assumptions.

Assumption 2.3.1. The joint survival distribution of the shocks arrival times X is,
for x = (xS)S∈P , xS ≥ 0 for all S ∈P ,

F̄(x) = ψ

(
∑

S∈P

λSH(xS)

)

with λS ≥ 0 and ∑S: j∈S λS > 0, for j = 1, . . . ,d (as in (2.1)) and where

• ψ : [0,+∞)→ [0,1] is the Laplace transform of a positive random variable
• H : [0,+∞)→ [0,+∞) is strictly increasing with H(0) = 0 and lim

x→+∞
H(x) =+∞.

Notice that in case ψ(z) = e−z and H(x) = x we recover the Marshall-Olkin
setting.

As a consequence of Assumption 2.3.1 we have that the survival marginal dis-
tributions of the occurrence times XS, for S ∈P , of the unobserved shocks are of
same type

F̄S(x) = ψ (λSH(x))

differing only for the intensity parameters λS. Notice that since ψ is the Laplace
transform of a positive random variable, this is always a survival distribution func-
tion for x≥ 0.

As for the survival dependence structure induced by Assumption 2.3.1 we triv-
ially recognize that it is of Archimedean type, being

Ĉ(u) = ψ

(
∑

S∈P

ψ−1(uS)

)
, u = (uS)S∈P , uS ∈ [0,1].

It is well known that the requirement for ψ to be a Laplace transform is restrictive,
since Archimedean copulas are defined for more general classes of generators ψ
(see McNeil and Nešlehová, 2009).

While with Assumption 2.3.1 we allow to deal with more general distributions
than that underlying the Marshall-Olkin construction, as for the marginal distribu-
tion of the observed lifetimes, we still require that they are of exponential type that
is:

Assumption 2.3.2. Default times are marginally exponentially distributed

F̄Tj(x) = exp(−μ jx), j = 1, . . . ,d
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where
μ j = f (λS : j ∈ S)

denotes the intensity parameter. We also assume that f is a strictly positive differ-
entiable function, strictly increasing with respect to each argument.

2.4 The Gumbel-Marshall-Olkin distribution

Under Assumption 2.3.1 we have that the joint survival distribution function of the
random vector T = (T1, . . . ,Td) is

F̄T(t) = ψ

(
∑

S∈P

λSH
(

max
j∈S
{t j}
))

(2.3)

for t = (t1, . . . , td) ∈ [0,+∞)d . As a consequence, the marginal survival distribution
functions are

F̄Tj(t) = ψ
(
λ̄ jH(t)

)
, t ∈ [0,+∞) (2.4)

where λ̄ j is defined in (2.1) and, applying Sklar’s theorem, the associated survival
copula is

Ĉ(u1, . . . ,ud) = ψ

(
∑

S∈P

max
j∈S

{
αS, jψ−1(u j)

})
(2.5)

where the αS, j’s are defined in (2.2).

In next Proposition, that is the main result of the paper, we show that, in our
setting, the requirement of exponentially distributed observed lifetimes is equivalent
to restrict to an Archimedean generator of Gumbel type. This is in line with the
classical result in Genest and Rivest (1989) according to which the Gumbel one
is the only Archimedean copula which is also extreme value. Of course it is the
requirement that the observed lifetimes are exponentially distributed that leads to a
copula of the extreme value class, according to a very well known result (see section
6.2 in Joe, 1997).

Proposition 2.1. Under Assumption 2.3.1, Assumption 2.3.2 is equivalent toψ(x) =

e−x
1
θ and H(x) = βxθ , for θ ≥ 1 and β > 0.

Proof. By (2.4), Assumption 2.3.2 is equivalent to

H(x) =
ψ−1

(
e− f (λS: j∈S)x

)
λ̄ j

, for j = 1, . . .d. (2.6)

Since H is given independently of every possible set of parameters λS, S ∈ P ,
setting ψ−1 = φ , necessarily
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∂
∂λS

⎛⎝φ
(

e− f (λS: j∈S)x
)

λ̄ j

⎞⎠= 0, ∀x≥ 0 and ∀λS such that ∑
S: j∈S

λS > 0.

It follows, ∀λS, such that ∑S: j∈S λS > 0 and ∀x≥ 0,

−φ ′
(

e− f (λS: j∈S)x
)

e− f (λS: j∈S)x ∂
∂λS

f (λS : j ∈ S)xλ̄ j−φ
(

e− f (λS: j∈S)x
)
= 0.

Setting z = e− f (λS: j∈S)x,

φ ′(z)
φ(z)

z logz =
f (λS : j ∈ S)

∂
∂λS

f (λS : j ∈ S) λ̄ j

for all λS such that ∑S: j∈S λS > 0 and for all z ∈ (0,1). It follows that there exists a
constant θ > 0 such that

φ ′(z)
φ(z)

z logz = θ and
f (λS : j ∈ S)

∂
∂λS

f (λS : j ∈ S) λ̄ j
= θ

from which
φ(z) = γ(− logz)θ

where γ > 0 and

f (λS : j ∈ S) = δ λ̄
1
θ
j

with δ > 0. From (2.6) it follows that

H(x) = γδθ xθ .

Since it is a known fact that Archimedean generators having proportional inverse,

generate the same copula function, setting γ = 1, we recover ψ(x) = e−x
1
θ , which is

an Archimedean generator for θ ≥ 1, and H(x) = δθ xθ .

As a consequence of the above result, under Assumptions 2.3.1 and 2.3.2, the
joint survival distribution function of the unobservable shocks arrival times X is of
type

F̄(x) = e−[∑S∈P λSδθ xθS ]
1
θ

and the corresponding marginal survival distributions are of exponential type,

F̄XS(x) = e−(δθ λS)
1
θ x with θ ≥ 1 and δ > 0.

Since different δ ’s translate in differently proportional parameters λS, we nor-
malize the setting assuming δ = 1.
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This result is consistent with the finding of Corollary 3.4 in Mai and Scherer
(2014), according to which the Gumbel is the only Archimedean copula consistent
with exponential distributions of unobserved and observed lifetimes. Beyond this
we recover the unique multivariate distribution of the observed lifetimes and the
specific shape of marginal intensities.

We notice that, under Assumptions 2.3.1 and 2.3.2, we necessarily recover the
same survival distribution presented in Example 5.6 in Mulinacci (2015) which is a
particular specification of the Mixed Generalized Marshall-Olkin distributions there
introduced and studied.

The resulting distributional features of the obtained distributions are summarized
in the following Proposition.

Proposition 2.2. Under Assumptions 2.3.1 and 2.3.2, the joint survival distribution
function of the random vector T = (T1,T2, . . . ,Td) is, for t = (t1, . . . , td) ∈ [0,+∞)d,
of type (see (2.3))

F̄T(t) = exp

⎧⎨⎩−
(

∑
S∈P

λS max
j∈S
{tθj }

) 1
θ
⎫⎬⎭

where θ ≥ 1. The marginal survival functions are

F̄Tj(t) = exp

⎛⎝−( ∑
S: j∈S

λS

) 1
θ

t

⎞⎠
while the associated survival copula function is (see (2.5))

Ĉ(u) = exp

⎧⎨⎩−
(

∑
S∈P

max
j∈S

{
αS, j (− logu j)

θ
}) 1

θ
⎫⎬⎭

where αS, j ∈ [0,1] is defined in (2.2).

As mentioned in Section 2, the above survival copula function is a particular
case among the multidimensional generalizations of the copulas studied in Muli-
nacci (2017) and of the copulas studied in Charpentier et al. (2014). Actually, from
the copula structure it is immediate to derive the effect of the dependence among
the unobserved components on the dependence of the observed default times. In
particular, let us consider the pairs of observed default times (Ti,Tk), and define

λ̂ik = ∑
S:i,k∈S

λS, λ̂i(k) = ∑
S:i∈S,k/∈S

λS and λ̂k(i) = ∑
S:k∈S,i/∈S

λS.

Then, the joint survival distribution of (Ti,Tk) is defined for (ti, tk) ∈ [0,+∞)2 as
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F̄ik(ti, tk) = exp
{
−
(
λ̂ik max{tθi , tθk }+ λ̂i(k)t

θ
i + λ̂k(i)t

θ
k

) 1
θ
}
.

and the associated bivariate copula function is

Ĉik(ui,uk) =exp
{− (max{α ik

i (− logui)
θ ,α ik

k (− loguk)
θ}

+(1−α ik
i )(− logui)

θ +(1−α ik
k )(− loguk)

θ) 1
θ
}

where α ik
i = λ̂ik

λ̄i
and α ik

k = λ̂ik
λ̄k

.
According to the results shown in Capéraà et al. (2000) and in Mulinacci (2017)

we have that the corresponding pairwise Kendall’s tau is

τi,k =
θ −1
θ

+
τMO

i,k

θ

where

τMO
i,k =

α ik
i α ik

k

α ik
i +α ik

k −α ik
i α ik

k

is the Kendall’s tau of the Marshall-Olkin copula.
Notice that in the standard Marshall-Olkin case the dependence among the de-

fault times is only defined in terms of the α parameters of the copula function, that
represent the measures, in the [0,1] interval, of the sensitivity of each default times
to the common components. In this model, the default time of every individual that
is not sensitive to any common shock is independent of the default time of any other
individual. This is no longer true in the Gumbel-Marshall-Olkin model, since in
this case even individuals whose lifetime is insensitive to common shocks play a
role in the dependence structure of the default times. This is due to the dependence
structure of the unobserved components, so that even the default time of individu-
als that are insensitive to common shocks may play the role of triggers of the other
components, and then in turn may affect the default time of the other individuals in
the system. So, the Archimedean dependence has the effect of introducing a floor of
positive dependence, raising the general level of dependence in the system. Ignoring
the dependence structure of the unobserved components would then naturally lead
to mis-specification of the sensitivities of each individual to the common shocks.

While this approach is purely theoretical, in practical applications the model
would run into a typical curse of dimensionality problem, with exploding number
of unobserved shocks and parameters. Two different routes are suggested to address
the problem. The first assumes an exchangeable model with same intensities for
each subset of shocks affecting the same number of observed lifetimes (see Hering
and Mai, 2012). The other route is to restrict the set of shocks to a smaller number of
common shocks and to identify clusters of observable lifetimes exposed to the same
set of shocks: in this case the estimation can be conducted relying on the bivariate
dependence structures of the observed variables (see Cherubini and Mulinacci, 2016
and Mazo et al., 2015).
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2.5 Conclusion

In this paper we provide an extension of the Marshall-Olkin multivariate distribution
that could allow for Archimedean dependence of the occurrence times of the unob-
served components while keeping the main advantages of the Marshall-Olkin model
and preserving exponential marginal default probabilities. The model is derived in
full generality for what concerns the number of shocks reaching the system. The
main result is that the only extension satisfying these requirements imposes a spe-
cific type of dependence among the unobserved components, that is that of a Gumbel
copula. For this reason, we call this multivariate distribution the Gumbel-Marshall-
Olkin distribution. Like in the Marshall-Olkin distributon, the marginal distribution
of the observed default times is exponential, but differently from that, the marginal
intensities are no longer linear functions of the unobserved intensities. Moreover,
the dependence structure among the observed components is higher than in the
Marshall-Olkin model because of the assumption of positive dependence among
the unobserved components. Nevertheless, the dependence among the observed de-
fault times is again determined by the sensitivities to the common shocks, like in the
Marshall-Olkin model, increased by the parameter representing the Archimedean
dependence of the unobserved components.
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Chapter 3

A look at copulas in a curved mirror

Bernard De Baets and Hans De Meyer

Abstract We extend the seminal work of Roger Nelsen on symmetry-related prop-
erties and the degree of asymmetry of copulas, by reattributing the role the diagonal
plays as axis of symmetry to a continuous strictly increasing curve in the unit square.
First, we make explicit the geometrical notion of symmetry of a function on the unit
square with respect to a curve. Next, we provide a measure for quantifying to what
extent a quasi-copula or copula can be regarded asymmetric with respect to a given
curve. Finally, we derive a lower and upper bound on the degree of asymmetry a
quasi-copula can possess with respect to a given curve and show that each bound is
sharp within the class of copulas.

3.1 Introduction

It was in the winter of 2003 when Roger Nelsen, who was invited speaker at the 24th
Linz Seminar on Fuzzy Systems (Austria), introduced us in the world of copulas.
Although we had heard of copulas shortly before and even had used them in our
research on preference models, we were at that time not at all aware of the rich
potential of these operations. Roger’s enthusiastic and clear teaching style aroused
our interest in the topic and encouraged us to start digging into his famous book.
Soon we realized that almost everything known on copulas could be found in it and
that any fresh idea on the subject could eventually be traced back to some germ
hidden in it. Looking back, our first meeting with Roger in Linz was one of those
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lucky circumstances that have left a significant mark on the development of our later
research work and for which we still remain very grateful.

As a tribute to the inspiring personality of Roger Nelsen, and at the occasion
of his 75th birthday, we want to expose in the present chapter some of our find-
ings on a generalization of the concept of degree of symmetry (or asymmetry) of
quasi-copulas and copulas, a concept that is strongly entangled with the probabilis-
tic concept of exchangeability of random variables and that, in geometric terms, is
related to diagonal reflection in the unit square (i.e., with the diagonal of the unit
square acting as a mirror), whence also indirectly related to the concept of diago-
nal copulas. Clearly, any one of these viewpoints and insights can, in some way or
another, be traced back to the seminal work of Roger Nelsen.

More in detail, we will investigate in the present contribution what are the
changes induced by bending the diagonal into a curvilinear mirror, in other words,
when we look at copulas and quasi-copulas through a curvilinear looking glass.
First, we will define what can be understood as symmetry with respect to a curve in
the unit square. Next, we will define a degree of asymmetry of a copula, and more
generally of a binary aggregation function. Finally, we will investigate what is the
minimum and maximum degree of asymmetry of quasi-copulas and copulas.

To make apparent the differences with the classical approach, we first recall some
definitions and properties of copulas and quasi-copulas that will be relevant to the
present exposition.

Definition 3.1. A two-dimensional quasi-copula is a function Q : [0,1]2 → [0,1]
with the following properties [10, 11, 12]:

(i) Q has absorbing element 0 and neutral element 1, i.e. for every u,v ∈ [0,1],

Q(u,0) = Q(0,v) = 0 , Q(u,1) = u and Q(1,v) = v ;

(ii) Q is increasing , i.e. for every u1,u2,v1,v2 ∈ [0,1] such that u1 ≤ u2 and v1 ≤ v2,

Q(u2,v2)≥ Q(u1,v1) ;

(iii) Q is 1-Lipschitz continuous, i.e. for every u1,u2,v1,v2 ∈ [0,1],

|Q(u2,v2)−Q(u1,v1)| ≤ |u2−u1|+ |v2− v1| .

Definition 3.2. A two-dimensional copula is a function C : [0,1]2 → [0,1] with the
following properties [1, 12, 15]:

(i) C has absorbing element 0 and neutral element 1, i.e. for every u,v ∈ [0,1],

C(u,0) =C(0,v) = 0 , C(u,1) = u and C(1,v) = v ;

(ii) C is 2-increasing, i.e. for every u1,u2,1 ,v2 ∈ [0,1] such that u1 ≤ u2 and v1 ≤ v2,

C(u2,v2)−C(u2,v1)−C(u1,v2)+C(u1,v1)≥ 0 .
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While every copula is a quasi-copula, there exist proper quasi-copulas that are
not copulas. The copulas M and W , defined by M(u,v) = min(u,v) and W (u,v) =
max(u+ v− 1,0) are, respectively, the greatest and the smallest quasi-copula, i.e.
for any quasi-copula Q, it holds that W ≤Q≤M. The product copula Π , defined by
Π(u,v) = uv, is also known as the independence copula. The set of all quasi-copulas
(resp. copulas) will be denoted by Q (resp. C ).

The copula C of an ordered pair of continuous real-valued random variables
(r.v.’s) X and Y , defined on the same probability space and such that FX and Fy are
the univariate distribution functions of X and Y , respectively, and FX ,Y and FY,X are
the joint distribution functions of (X ,Y ) and (Y,X), respectively, is the joint distribu-
tion function of the random vector (FX (X),FY (Y )), i.e. C(u,v)=FX ,Y (FX (u),FY (v)).
The r.v.’s X and Y are said to be exchangeable if FX = Fy and FX ,Y = FY,X . Two iden-
tically distributed r.v.’s are exchangeable if and only if their copula C is symmetric,
i.e. C(u,v) =C(v,u) for every (u,v) ∈ [0,1]2.

The diagonal section of a quasi-copula Q is the function δQ : [0,1]→ [0,1] de-
fined by δQ(t) = Q(t, t). Diagonal sections of copulas have the following probabilis-
tic interpretation. If X and Y are identically distributed r.v.’s with distribution func-
tion F and copula C, then the distribution function of the r.v. max(X ,Y ) is δC(F(t)).

The diagonal section of a quasi-copula has the following properties.

Proposition 3.1. If δ is the diagonal section of a quasi-copula, then

(i) δ (1) = 1 ;
(ii) δ is increasing and 2-Lipschitz continuous, i.e. for any t1, t2 ∈ [0,1] such that

t1 ≤ t2,
0≤ δ (t2)−δ (t1)≤ 2(t2− t1) ;

(iii) δ ≤ id (the identity function on [0,1] ), i.e. for every t ∈ [0,1],

δ (t)≤ t .

We call any function δ : [0,1]→ [0,1] that satisfies (i)–(iii) of Proposition 3.1 a
diagonal function. Properties (i)–(iii) characterize the diagonal section of a copula.

Proposition 3.2. For any diagonal function δ there exists at least one copula whose
diagonal section is δ .

This result was proven firstly by Fredricks and Nelsen in [8], who have shown
that given a diagonal function δ , the function Kδ : [0,1]2 → [0,1] defined by

Kδ (u,v) = min
(

u,v,
δ (u)+δ (v)

2

)
,

is a copula whose diagonal section is δ . Kδ is called the diagonal copula with diago-
nal section δ ; it is, moreover, the greatest symmetric copula with diagonal section δ .
Other structural properties of diagonal copulas have been reported in [17], alterna-
tive constructions of copulas with given diagonal section have been investigated in
[4, 18], while in [5] necessary and sufficient conditions on a diagonal function have
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been formulated that ensure the existence of an absolutely continuous copula hav-
ing this diagonal function as diagonal section. Also mentioned in [15] is the smallest
copula with prescribed diagonal section δ , known as the Bertino copula Bδ with di-
agonal section δ , and given by [3, 9]

Bδ (u,v) =

⎧⎨⎩
u− min

u≤t≤v
(t−δ (t)) , if u≤ v ,

v− min
v≤t≤u

(t−δ (t)) , if v≤ u .
(3.1)

Note that Bδ is symmetric.
Since exchangeability of random variables is, in general, not a desired property

in statistical modelling, there have been many efforts to construct families of non-
symmetric copulas. Among the wide variety of techniques for constructing such
copulas, it is worth mentioning the technique of diagonal splicing of symmetric cop-
ulas with common diagonal section [18]. Together with the development of meth-
ods to construct asymmetric copulas, the need arose for defining a measure that
quantifies the degree of asymmetry, or in probabilistic terms, the degree of non-
exchangeability of a pair of identically distributed r.v.’s. Among various ways for
measuring this asymmetry [6, 7], by far the most interesting one is the measure μ∞,
given by:

μ∞(Q) = 3
(

max
[u,v]∈[0,1]2

| Q(u,v)−Q(v,u) |
)
,

where Q can be any quasi-copula. For this measure, the question how non-symmetric
a copula can be, was first raised by Klement and Mesiar [13] and also treated by
Nelsen [16] who characterized the copulas that achieve this maximum degree of
asymmetry, a result that was subsequently refined in [2]. The scale factor 3 in the
definition of μ∞ ensures that this measure takes values in [0,1].

3.2 Curvilinear sections of a (quasi-)copula

As a first step in the proposed generalization, we have to define the kind of curves
(curved mirrors) we want to consider. Let Gφ denote the curve in the unit square
from (0,0) to (1,1) that is functionally described by an automorphism φ of [0,1], i.e.
Gφ is the graph of a function φ having the following properties:

(i) φ(0) = 0 and φ(1) = 1;
(ii) φ is continuous and strictly increasing on [0,1].

Clearly, if φ = id, Gid is the diagonal of the unit square, while if φ ≤ id (resp.
φ ≥ id), Gφ is a curve below (resp. above) the diagonal. We denote by A the set of
all automorphisms φ on [0,1] and by Al (resp. Au) the subset of all automorphisms
such that φ ≤ id (resp. φ ≥ id).

Let the curve Gφ be the graph of a given automorphism φ . The curvilinear
section of a quasi-copula Q, or, shortly, the Gφ -section of Q, is the function
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gQ,φ : [0,1]→ [0,1] that is the restriction of Q to Gφ , i.e. the function defined by
gQ,φ (t) = Q(t,φ(t)). For example, if φ(t) = ta (with a > 0), then gM,φ (t) = ta and
gΠ(t),φ = ta+1. Note that if φ = id, then gQ,id is the diagonal section δQ of Q.

We can attribute the following probabilistic meaning to the Gφ -section of a cop-
ula. If X and Y are identically distributed r.v.’s with distribution function F , as-
sumed to be a bijection, and with copula C, then the distribution function of the r.v.
max(X ,ψ(Y )), with ψ : R→ R a bijection, is gC,φ (F(t)), where φ = Fψ−1F−1. In
particular, if X and Y are uniformly distributed r.v.’s on [0,1] with copula C, then the
distribution function of the r.v. max(X ,φ(Y )) is gC,φ−1(t).

The Gφ -section of a quasi-copula has the following properties.

Proposition 3.3. If g is the Gφ -section of a quasi-copula for some φ ∈A , then:

(i) max(0, t +φ(t)−1)≤ g(t)≤min(t,φ(t)) for any t ∈ [0,1];
(ii) 0≤ g(t ′)−g(t)≤ t ′ − t +φ(t ′)−φ(t) for any t ≤ t ′ ∈ [0,1].

These properties immediately follow from the fact that any quasi-copula is 1-
Lipschitz continuous, and is bounded from below by W and from above by M.

Given a curve Gφ ∈A , any function g : [0,1]→ [0,1] that has properties (i) and
(ii) of Proposition 3.3 will be called a Gφ -function. The set of all Gφ -functions will
be denoted by Sφ . The following proposition provides a characterization of the
curvilinear section of a (quasi-)copula.

Proposition 3.4. Let φ ∈A . A function g : [0,1]→ [0,1] is a Gφ -section of a copula
if and only if g ∈Sφ .

Proof. If g is a Gφ -section of a copula Q, then obviously g ∈Sφ . Conversely, con-
sider a function g ∈Sφ . In [19], it is shown that for an increasing compact set S and
a quasi-copula Q, the function CS,Q : [0,1]2 → [0,1] defined by

CS,Q(u,v) = max(0,u+ v−1, max
(a,b)∈S

(Q(a,b)−max(a−u,0)−max(b− v,0)))

is a copula. Moreover, for any copula C that coincides with Q on the subset S, it
holds that CS,Q ≤C. Since φ is increasing and continuous, it follows that its graph
is an increasing compact set. Denoting a = z, b = φ(z) and CS,Q =Cg, we obtain

Cg(u,v) = max(0,u+ v−1, max
z∈[0,1]

(g(z)−max(z−u,0)−max(φ(z)− v,0))) .

Suppose that v≤ φ(u), then Cg(u,v) can be rewritten as

Cg(u,v) = max(0,u+ v−1, max
z∈[0,φ−1(v)]

g(z), max
z∈[φ−1(v),u]

(g(z)−φ(z)+ v),

max
z∈[u,1]

(g(z)−φ(z)− z+u+ v))) .

Property (ii) of Proposition 3.3 expresses that g is increasing and that g(z)−φ(z)−z
is decreasing, whereas property (i) implies that g(u)−φ(u)+ v≥ u+ v−1 for any
(u,v) ∈ [0,1]2. Hence, Cg can be further simplified to the equivalent form
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Cg(u,v) = max(g(φ−1(v)), max
z∈[φ−1(v),u]

(g(z)−φ(z)+ v),g(u)−φ(u)+ v) .

Note that g(z)− φ(z)+ v = g(φ−1(v)) when z = φ−1(v), while g(z)− φ(z)+ v =
g(u)−φ(u)+ v when z = u. Hence,

Cg(u,v) = v− min
z∈[φ−1(v),u]

(φ(z)−g(z)) .

Similarly, we can prove that Cg(u,v) = u− min
z∈[u,φ−1(v)]

(z−g(z)) when v > φ(u).

Combining the above, we finally obtain

Cg(u,v) =

⎧⎨⎩v−min{φ(z)−g(z) | z ∈ [φ−1(v),u]} , if v≤ φ(u) ,

u−min{z−g(z) | z ∈ [u,φ−1(v)]} , otherwise.
(3.2)

Moreover, Cg is the smallest copula with Gφ -section g. ��
If φ=id, then Cg in (3.2) is the Bertino copula, whence it is justified to call (3.2)

the Bertino copula with Gφ -section g. Note that in contrast to the proof of Nelsen in
the classical case of given diagonal section δ , we have not constructed a generaliza-
tion of the copula Kδ . This is not surprising, as the obvious generalization of Kδ in
case of a given Gφ -section g is the bivariate function

Kg,φ (u,v) = min
(

u,v,
g(u)+g(φ−1(v)

2

)
,

and this function is not necessarily a copula, not even a quasi-copula. Indeed, it is
not difficult to find Gφ -functions g such that in some point (u,v) where Kg,φ (u,v)<
M(u,v), the 1-Lipschitz continuity condition is violated.

3.3 Symmetry of a function with respect to a curve

The notion of symmetry of a [0,1]2 → [0,1] function w.r.t. a curve Gφ , which is the
graphical representation of a function φ ∈ A , has been investigated before [14].
It generalizes the classical concept of symmetry in the following manner. Any
point (u,v) ∈ [0,1]2 determines together with the points (φ−1(v),v), (u,φ(u)) and
(φ−1(v),φ(u)), a rectangle in the unit square (see Figure 3.1). Note that the points
(u,v) and (φ−1(v),φ(u) determine the same rectangle, while the two other points
lie on the curve Gφ .

Definition 3.3. Let φ ∈A . A function f : [0,1]2 → [0,1] is called Gφ -symmetric if
for every (u,v) ∈ [0,1]2,

f (u,v) = f (φ−1(v),φ(u)) .
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u

v

φ(u)

φ−1(v)

Gφ

0 1

1

Fig. 3.1: Illustration of the unique rectangle that is determined by the curve Gφ
(φ ∈Al) and the point (u,v) ∈ [0,1]2.

Example 3.1.

1. Consider the function φ : [0,1]→ [0,1] defined by φ(t) = t2 and the function
f : [0,1]2 → [0,1] defined by f (u,v) = u2v. One easily verifies that f is Gφ -
symmetric.

2. Consider the function φ : [0,1]→ [0,1] defined by φ(t) =
√

t and the function
f : [0,1]2→ [0,1] defined by f (u,v) =min(uv,u2√v). Again, one easily verifies
that f is Gφ -symmetric. �

When applied to a copula, the geometric notion of Gφ -symmetry can be related to
the probabilistic notion of φ -exchangeability in the following sense. Let X and Y be
uniformly distributed r.v.’s on [0,1] with copula C and φ ∈A a given automorphism.
The r.v.’s X and φ(Y ) are exchangeable r.v.’s if and only if Prob(X ≤ a,φ(Y ) ≤
b) =Prob(X ≤ b,φ(Y )≤ a) for any a,b∈ [0,1], hence, if and only if C(a,φ−1(b)) =
C(b,φ−1(a)) for any a,b ∈ [0,1]. This last condition is equivalent with the property
of Gφ -symmetry of C. Obviously, X and φ(Y ) can only be exchangeable r.v.’s if
φ =id. To see this, it suffices to put b = 1 hereabove, which leads to the condition
a = φ(a) for all a ∈ [0,1].

Next, we want to measure, for a given curve Gφ , the extent to which a function
f : [0,1]2 → [0,1] is not Gφ -symmetric, in other words, we want a measure of Gφ -
asymmetry. Inspired by the measure μ∞ that quantifies the degree of asymmetry
w.r.t. the diagonal, we propose the following extension.

Definition 3.4. Given an automorphism φ , the degree of Gφ -asymmetry μφ ( f ) of a
function f : [0,1]2 → [0,1] is defined by
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μφ ( f ) = sup
(u,v)∈[0,1]2

| f (u,v)− f (φ−1(v),φ(u))| . (3.3)

When μφ is applied to a copula C, it may be called a measure of indistinguishabil-
ity between r.v.’s X and φ(Y ) where X and Y are uniformly distributed r.v.’s on [0,1]
with copula C. Note that μid(C) = 1

3μ∞(C). It follows that in the class of copulas C ,
μid takes values from 0 (for any symmetric copula) to 1/3 (for the most asymmetric
copulas). In the following two sections we investigate, again in the class C , what
are the minimum and maximum values of μφ , given an arbitrary but fixed φ ∈A .

3.4 Minimum degree of asymmetry with respect to a curve

In this section, we investigate the minimum degree of asymmetry of a quasi-copula
Q with respect to a curve Gφ (φ ∈A ) according to the measure μφ . Let us introduce
the following notation

λφ = max
t∈[0,1]

|t−φ(t)| .

This quantity, which only depends on φ , turns out to provide a lower bound for μφ .

Proposition 3.5. For any φ ∈A and every Q ∈Q,

μφ (Q)≥ λφ .

Proof. One easily verifies that
μφ (Q)≥ sup

u∈[0,1]
|Q(u,1)−Q(1,φ(u))|= max

u∈[0,1]
|u−φ(u)|= λφ . ��

Note that 0≤ λφ < 1 for any φ ∈A . Consider, for instance, the function φn(t) =
tn, with n ∈ N. Clearly λφ1 = 0, while λφn gets closer to 1 when n increases.

Inspired by Proposition 3.5, given φ ∈A , we say that a quasi-copula has mini-
mum degree of asymmetry w.r.t. to the curve Gφ if μφ (Q) = λφ .

From here onward we will consider mainly automorphisms φ ∈Al∪Au, in other
words, curves Gφ that lie entirely below or entirely above the diagonal. Moreover,
we can even restrict the discussion to automorphisms φ ∈Al ; indeed, the situation
of φ ∈ Au is equivalent to the situation of φ−1 ∈ Al together with the interchange
of the coordinates u and v.

Lemma 3.1. Let φ ∈Al and Q ∈Q. Then for every (u,v) ∈ [0,1]2,

|Q(u,φ(v))−Q(φ(u),v)| ≤max(u−φ(u),v−φ(v)) .

Proof. Using φ ≤ id, and the increasingness and 1-Lipschitz continuity of Q, it
follows that

Q(u,φ(v))−Q(φ(u),v)≤ Q(u,v)−Q(φ(u),v)≤ u−φ(u)
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and
Q(φ(u),v)−Q(u,φ(v))≤ Q(u,v)−Q(u,φ(v))≤ v−φ(v) ,

which implies that |Q(u,φ(v))−Q(φ(u),v)| ≤max(u−φ(u),v−φ(v)). ��
The following proposition identifies some interesting quasi-copulas that have

minimum degree of Gφ -asymmetry.

Proposition 3.6. Let φ ∈Al . For any symmetric Q ∈Q, it holds that

μφ (Q) = λφ .

Proof. For all Q ∈Q it holds that

μφ (Q)≥ sup
u∈[0,1]

|Q(u,1)−Q(1,φ(u))|= max
u∈[0,1]

(u−φ(u)) = λφ .

Using z as a shorthand notation for φ−1(v), it follows that

μφ (Q)= sup
(u,v)∈[0,1]2

|Q(u,v)−Q(φ−1(v),φ(u))|= sup
(u,z)∈[0,1]2

|Q(u,φ(z))−Q(z,φ(u))| .

Since Q is symmetric, μφ (Q) can be rewritten in the form

μφ (Q) = sup
(u,z)∈[0,1]2

|Q(u,φ(z))−Q(φ(u),z)| .

Using Lemma 3.1 and Proposition 3.5, it follows that

μφ (Q)≤ sup
(u,z)∈[0,1]2

max(u−φ(u),z−φ(z)) = sup
u∈[0,1]

(u−φ(u)) = λφ ≤ μφ (Q) .

Therefore, μφ (Q) = λφ . ��
The following proposition illustrates that there are also non-symmetric quasi-

copulas that have minimum degree of asymmetry w.r.t. a given curve Gφ .

Proposition 3.7. Let φ ∈ Al . For any Gφ -function g, the Bertino-copula Cg with
Gφ -section g, given by (3.2), has minimum degree of Gφ -asymmetry.

Proof. For every point (u,v) such that v≤ φ(u), we obtain

Cg(φ−1(v),φ(u))−Cg(u,v)

= φ−1(v)− v− min
z∈[φ−1(v),u]

(z−g(z))+ min
z∈[φ−1(v),u]

(φ(z)−g(z)) .

Let z∗ denote a point where the function z− g(z) attains its maximum value in
[φ−1(v),u], then

Cg(φ−1(v),φ(u))−Cg(u,v)≤ φ−1(v)− v− z∗+φ(z∗) .
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Since both 0≤ φ−1(v)− v≤ λφ and z∗ −φ(z∗)≤ λφ , it follows that

Cg(φ−1(v),φ(u))−Cg(u,v)≤ λφ .

Similarly, we can prove that

Cg(φ−1(v),φ(u))−Cg(u,v)≥−λφ ,

which completes the proof. ��

3.5 Maximum degree of asymmetry with respect to a curve

In this section, we investigate the maximum degree of Gφ -asymmetry a quasi-copula
Q can have in case φ ∈Al . In fact, we are looking for an upper bound of |Q(u,v)−
Q(φ−1(v),φ(u))| valid for every (u,v) ∈ [0,1]2 and any Q ∈Q. To avoid working
with absolute values, we split the problem into two subproblems:

1. Find an upper bound on Q(u,v)−Q(φ−1(v),φ(u)) for every (u,v)∈ [0,1]2 such
that v≥ φ(u) and every Q ∈Q such that Q(u,v)≥ Q(φ−1(v),φ(u));

2. Find an upper bound on Q(u,v)−Q(φ−1(v),φ(u)) for every (u,v)∈ [0,1]2 such
that v≤ φ(u) and every Q ∈Q such that Q(u,v)≥ Q(φ−1(v),φ(u)).

The required upper bound is then the maximum of the upper bounds of subproblems
1 and 2, respectively. Note that (u,v) is always the point where Q attains a value
greater than it does in the opposite corner point (φ−1(v),φ(u)).

In both subproblems, the upper bound follows from two conditions, one related to
the 1-Lipschitz continuity of Q, the other to the bounding inequalities W ≤ Q≤M.
Making this explicit, we obtain

1. If v≥ φ(u) and Q(u,v)≥ Q(φ−1(v),φ(u)), it must hold that

Q(u,v)−Q(φ−1(v),φ(u))

≤min[max(φ−1(v)−u,v−φ(u)),min(u,v)−max(φ−1(v)+φ(u)−1,0)] .

2. If v≤ φ(u) and Q(u,v)≥ Q(φ−1(v),φ(u)), it must hold that

Q(u,v)−Q(φ−1(v),φ(u))

≤min[max(u−φ−1(v),φ(u)− v),v−max(φ−1(v)+φ(u)−1,0)] .

This is the starting point for proving the following proposition.

Proposition 3.8. For any φ ∈Al , it holds for every Q ∈Q that

μφ (Q)≤max(p1, p2) ,

with p1 the unique fixed point in [0,1] of the function f1 given by
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f1(t) = φ(1−φ(t))−φ(t) ,

and p2 the unique fixed point in [0,1] of the function f2 given by

f2(t) = 1− t−φ(t) .

Proof. Note that since φ is increasing, f1 and f2 are decreasing. Since these func-
tions are also continuous, they have exactly one fixed point. Also 2p2 = 1−φ(p2),
whence p2 ≤ 1/2. We analyze the subproblem of v ≥ φ(u). In this case, the upper
bound for a fixed (u,v) is

min[max(φ−1(v)−u,v−φ(u)),min(u,v)−max(φ−1(v)+φ(u)−1,0)]

= max[min(φ−1(v)−u,min(u,v)−max(φ−1(v)+φ(u)−1,0)),

min(v−φ(u),min(u,v)−max(φ−1(v)+φ(u)−1,0))] .

We need to compute

max
v≥φ(u)

max[min(φ−1(v)−u,min(u,v)−max(φ−1(v)+φ(u)−1,0)),

min(v−φ(u),min(u,v)−max(φ−1(v)+φ(u)−1,0))]

= max
(

max
v≥φ(u)

min[φ−1(v)−u,min(u,v)−max(φ−1(v)+φ(u)−1,0)],

max
v≥φ(u)

min[φ−1(v)−u,min(u,v)−max(φ−1(v)+φ(u)−1,0)]
)
.

Let us denote by Sφ the graph of the function φ(1− φ(t)). Note that the part of
the curve Sφ above (resp. below) Gφ is the mirror image with respect to Gφ of the
part of the opposite diagonal below (resp. above) Gφ . Indeed, let (t,1− t) be the
coordinates of a point on the opposite diagonal, then the mirrored point w.r.t. Gφ is
the point with coordinates (φ−1(1− t),φ(t)) which clearly lies on Sφ .

We use the curve Sφ and the diagonal D to separate the part of the unit square
above the curve Gφ into four subdomains labeled I to IV (see Figure 3.2). The
optimization problem hereabove can then be split into eight optimization problems,
two on each of the subdomains I–IV. For example, on subdomain I, delimited by the
left border of the unit square, the diagonal D and the curve Sφ , we first consider the
optimization problem

max
(u,v)∈I

min(φ−1(v)−u,u) .

The maximum is attained in the intersection point of the curve Fφ , which is the
graph of the function φ(2t), and the curve Sφ , hence in the point (x,y) where x is the
unique solution of the equation φ(2t) = φ(1−φ(t)), or equivalently of the equation
2t = 1− φ(t), and y = φ(2x). Clearly, (x,y) = (p2,φ(2p2)). Note that p2 is also
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the abscissa of the intersection point of the curve Gφ and the line with equation
v = 1−2u (see Figure 3.2). The value of the maximum is p2.
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Fig. 3.2: Different curves in the unit square that delimit subdomains I-IV and de-
termine the position of the points from which the upper bound of the degree of
Gφ -asymmetry is computed. Shown is a situation where p1 > p2.

The second optimization problem on subdomain I is

max
(u,v)∈I

min(v−φ(u),u) .

Now the maximum is attained in the intersection point of the curve Eφ , which is the
graph of the function φ(t)+ t, and the curve Sφ , hence in the point (x,y) where x is
the unique solution of the equation φ(t)+ t = φ(1−φ(t)) and y = φ(x)+x. Clearly,
(x,y) = (p1,φ(p1)+ p1). The value of the maximum is p1. It follows that

max
(u,v)∈I

(
Q(u,v)−Q(φ−1(v),φ(u))

)≤max(p1, p2) .

It is straightforward to analyze in a similar way the optimization problems on the
domains II-IV, and after that, to analyze the problem on the part of the unit square
below the curve Gφ . The outcome of all these lengthy computations is nonetheless
surprisingly simple: the maximum that we obtained so far gets not surpassed. Hence,
μφ (Q)≤max(p1, p2). ��

Depending on the curve Gφ , the maximum can be either p1 or p2. This is illus-
trated in the following example.
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Example 3.2. Let φ ∈Al be the piecewise linear function with graph Gφ composed
of a segment from (0,0) to (a,b) and a segment from (a,b) to (1,1), with a > b,
i.e.,

φ(t) =

⎧⎪⎨⎪⎩
b
a

t , if t ≤ a ,

1− 1−b
1−a

(1− t) , if t > a .

One can easily verify that p1 > p2 if a+b < 1, p1 = p2 if a+b = 1, and p1 < p2 if
a+b > 1. �

The following proposition yields a sufficient condition on φ ensuring that p1 ≥
p2.

Proposition 3.9. If φ ∈Al satisfies the inequality

φ(1−φ(t))≥ 1− t (3.4)

for all t ∈ [0,1/2], then p1 ≥ p2.

Proof. Suppose p1 < p2. Since φ is strictly increasing, it holds that φ(p1)≤ φ(p2).
It follows that

p2 = 1− p2−φ(p2)≤ φ(1−φ(p2))−φ(p2)> φ(1−φ(p1))−φ(p1) = p1 ,

which is a contradiction. ��
Example 3.3. Consider the function φn : [0,1]→ [0,1] defined by φn(t) = tn, with
n ∈ N. Clearly, φn satisfies (3.4) for any n ∈ N. In Table 1, the values of λφn and p1
are listed for some values of n. Note that the length of the interval [λφn , p1] decreases
when n grows. �

Table 3.1: The values of λφn and p1 for the case φn(t) = tn and for different values
of n.

n 1 2 4 8 10 ∞
λφn 0 1/4 0.472470 0.650123 0.696837 1
p1 1/3 0.445042 0.560689 0.671621 0.704910 1

Example 3.4. Consider the function φθ : [0,1]→ [0,1] defined by φθ (t) = θ t
1−(1−θ)t ,

with θ ∈ [0,1]. Clearly, φθ satisfies (3.4) for any θ ∈ [0,1]. One easily verifies that

p1 =
3−√1+8θ

4(1−θ) and λφθ =
1−√θ
1+

√
θ
.

�
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The upper bound max(p1, p2) is sharp. In both situations, whether p1 ≥ p2 or
p2 > p1, a shuffle of M can be found for which μφ attains the upper bound, namely
if p1 ≥ p2:

C1(u,v) = min(u,v,max(u−1+φ(p1),0)+max(v−φ(p1),0)) ;

if p2 > p1:

C2(u,v) = min(u,v,max(u−1+φ(p2),0)

+min(max(v−φ(p2),0),max(u− p2,0)+max(v+ p2−φ(2p2),0))) .

The support of these shuffles is shown in Figure 3.
Since shuffles of M are copulas, the upper bound is also a sharp upper bound on

the degree of Gφ -asymmetry in the class of copulas.

Proposition 3.10. Given φ ∈A . For any copula C ∈ C , it holds that

λφ ≤ μφ (C)≤max(p1, p2) ,

with p1 and p2 the fixed points in [0,1] of the functions φ(1− φ(t))− φ(t) and
1− t−φ(t), respectively.
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Fig. 3.3: The support of shuffle C1 (left figure) in the case p1 ≥ p2 and the support
of shuffle C2 (right figure) in the case p2 > p1.

3.6 Conclusions

Our investigation of a generalisation of the degree of asymmetry of copulas with
respect to a curve has revealed two major differences with respect to the classical



3 A look at copulas in a curved mirror 47

situation where the curve is the diagonal: there do not exist symmetric copulas (in
other words, the minimum degree of asymmetry is strictly positive), and the maxi-
mum degree of asymmetry follows from the relative position of the fixed points of
two functions that depend on the given curve.
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19. Tankov, P.: Improved Fréchet bounds and model-free pricing of multi-asset options. Journal
of Applied Probability 48, 389–403 (2011)



Chapter 4

Copula–based clustering methods

F. Marta L. Di Lascio, Fabrizio Durante, and Roberta Pappadà

Abstract We review some recent clustering methods based on copulas. Specifically,
in the dissimilarity–based clustering framework, we describe and compare methods
based on concordance or tail-dependence concept. An illustration is hence provided
by using a time series dataset formed by the constituent data of the S&P 500 ob-
served during the financial crisis of 2007-2008. Next, in the likelihood–based clus-
tering framework, we present and discuss a clustering algorithm based on copula
and called CoClust. Here, an application to the gene expression profiles of human
tumour cell lines is provided to describe the methodology. Finally, a comparison
between the two different approaches is performed through a case study on environ-
mental data.

4.1 Introduction

Cluster analysis, also called data segmentation, is related to the idea of grouping or
segmenting a collection of objects (observations or variables) into subsets or “clus-
ters”, such that those within each cluster are more closely related to one another
(according to a specific criterion) than objects assigned to different clusters. Cluster
analysis is sometimes used to form descriptive statistics to ascertain whether or not
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the data consists of a set of distinct groups, each group representing objects with
specific properties.

Generally, any cluster analysis starts with a (n× p)–data matrix X

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 . . . x1 j . . . x1 j′ . . . x1p
... . . .

... . . .
... . . .

...
xi1 . . . xi j . . . xi j′ . . . xip
... . . .

... . . .
... . . .

...
xi′1 . . . xi′ j . . . xi′ j′ . . . xi′p

... . . .
... . . .

... . . .
...

xn1 . . . xn j . . . xn j′ . . . xnp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.1)

and aims at dividing the n rows or the p columns, says r elements, into K non-empty
subsets C1, . . . ,CK , such that:

• each Ck (k = 1, . . . ,K) contains (at least) one element;
• |C1|+ · · ·+ |CK | ≤ r, i.e. the sum of the cardinalities of all subsets is bounded by

r. Notice that, we allow some elements to be not assigned to any cluster.

Model–based clustering methods assume that the data matrix X is generated ac-
cording to a specific (stochastic) data generating process (DGP hereafter). Here,
inspired by Sklar’s decomposition of a multivariate probability law [50], we as-
sume that the data matrix X is generated by a K-dimensional copula such that each
of the K subsets of elements is a realization of a (continuous) random variable Xk
(with k = 1, . . . ,K), and the joint distribution function of (X1, . . . ,Xk, . . . ,XK) can be
expressed as C(F1, . . . ,Fk, . . . ,FK), where F1, . . . ,Fk, . . . ,FK are the cumulative dis-
tribution functions of (X1, . . . ,Xk, . . . ,XK), while C is the linking copula, which is
unique since the marginal distributions are continuous (see, e.g., [24, 43]). In prac-
tice, K is often assumed to be equal to the number of columns (respectively, rows)
and the elements of each column (respectively, row) are realizations from a given
univariate model, linked to all other columns via C(·). Hence, copula–based cluster-
ing analysis is a sort of sub-class of model–based clustering methods that uses the
copula information (in a parametric as well as non-parametric form) to derive the
specific criterion that determines the clustering composition. As such, copula–based
clustering methods are rank invariant, i.e., two data matrices produce the same clus-
ter composition if one matrix is obtained from the other one by a monotone increas-
ing transformations of some of its columns/rows (depending on the context)..

Here, we aim at revisiting some clustering procedures which use a suitably de-
fined dissimilarity measure based either on concordance or tail dependence and a
clustering algorithm based on the likelihood of the copula, called CoClust, which
has been introduced in [13] and further developed and implemented in [14, 15].
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4.2 Dissimilarity–based clustering methods

Central to the goals of cluster analysis is the notion of the degree of similarity (or
proximity) between the individual objects being clustered, which can only come
from subject matter considerations. Dissimilarity–based clustering methods provide
this information in a direct way by replacing the (n× p) data matrix X in eq. (4.1)
with a (p× p) matrix Δ = (Δ j j′) with the following properties:

• for every j, j′ = 1, . . . , p, Δ j j′ ≥ 0;
• for every j, j′ = 1, . . . , p, Δ j j′ = Δ j′ j;
• for every j = 1, . . . , p, Δ j j = 0.

Basically, each entry Δ j j′ represents the dissimilarity among the columns x j and x j′
in the original data matrix so that the value Δ j j′ is small (close to zero) when x j and
x j′ are “near” to each other and becomes large when x j and x j′ are very different.
Notice that, in general, the triangle inequality does not hold for the elements of Δ .

Traditionally, dissimilarity matrices have focused on the use of Pearson correla-
tion (see, for instance, [34, 37]). However, clustering methods based on linear mea-
sures of correlation are inadequate to capture association when the involved random
variables are not (jointly) elliptical (see, for instance, [39]).

In a copula–based approach, the dissimilarity matrix usually depends on the cop-
ula Cj j′ that can be associated with the column data x j and x j′ . In particular, it is
often assumed that, if Cj j′ is equal to the comonotonicity copula M, which repre-
sents perfect positive dependence among x j and x j′ , then Δ j j′ = 0 (the converse
implication may not be true). For an alternative approach see [35].

Clearly, Cj j′ is unknown and could be replaced by one of its estimates in a
parametric/non-parametric setting.

Once a dissimilarity matrix has been obtained, a cluster analysis can be per-
formed by following (at least) two different approaches:

• Apply any classical dissimilarity–based technique (for instance, an agglomera-
tive hierarchical algorithm) by using as input the matrix Δ .

• Perform a non–metric Multidimensional Scaling (MDS) in order to obtain a rep-
resentation of the dissimilarity matrix into y1, . . . ,yp points in Rq. Then, one may
use any classical distance–based algorithm (for instance, K–means algorithm) by
using as inputs y1, . . . ,yp.

Clearly, both the choice of dissimilarity and the subsequent choice of the cluster-
ing algorithm can influence the final clustering composition. Here, we focus our
attention on the construction of suitable copula–based dissimilarities and we review
some recent methods that can be founded in the literature (for another approach, see
also [25]).

Dissimilarity based on measures of concordance.
These methods are derived from the fact that concordance measures can be ex-
pressed in terms of the copula associated with the involved random variables (see,
e.g., [27, 42, 49, 53]). Specifically, let κ be a concordance measure taking values
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in [−1,1]. Let g : [−1,1]→ [0,+∞] be a decreasing function such that g(1) = 0.
Then we can define a suitable dissimilarity between the random variables X and
Y via the formula

diss(X ,Y ) = g(κ(X ,Y )).

In fact, if X and Y are comonotonic, then κ(X ,Y ) = 1 and, hence, diss(X ,Y ) =
0. Analogously, the other properties of a dissimilarity can be proved using the
properties of a measure of concordance.
A popular choice in this context is to adopt g1(κ) =

√
1−κ2, where κ is equal

to Kendall’s τ or Spearman’s ρ . Actually, such a g also defines a pseudo–matrix;
see, for instance, [6, 17]. Such methods are also used in vine copula model se-
lection (see. e.g., [8, 16]).
Another popular choice is to use g2(κ) =

√
1−κ , where κ is the Spearman’s

rank correlation coefficient ρ (compare with [3]).
The main difference between g1 and g2 is that, while g1 does not distinguish
between comonotonicity and countermonotonicity, g2 does.

Dissimilarity based on tail–dependence.
Instead of constructing a dissimilarity based on the (global) association between
two random variables, one may consider specific features of the joint distribution
function, like the tail behavior.
This approach was introduced in [9] and further developed in [10, 11, 12] and
[23]. It is based on the tail dependence coefficients (either lower, λL, or upper,
λU ) associated with a copula C, usually defined as:

λL = lim
t→0+

δC(t)
t

and λU = lim
t→1−

1−2t +δC(t)
1− t

,

provided that δC(t) =C(t, t) is the diagonal section of the copula C and the above
limits exist.
In this setting, a common approach is to define a dissimilarity between the ran-
dom variables X and Y via the formula

diss(X ,Y ) =−log(λL) or diss(X ,Y ) =−log(λU ).

Thus, if X and Y are comonotonic, then λL = λU = 1 and diss(X ,Y ) = 0, while
diss(X ,Y )=+∞ when X and Y are asymptotically independent, i.e. λL = λU = 0.
Now, while tail dependence coefficients give an asymptotic approximation of the
tail behavior of the copula, it might be also of interest to consider the tail behavior
at some (finite) points nears the corners of the unit square, as stressed in [18] (see
also [52]). To this end, one can consider the so–called tail concentration function,
defined as the function qC : (0,1)→ [0,1] given by

qC(t) =
δC(t)

t
·1(0,0.5] +

1−2t +δC(t)
1− t

·1(0.5,1),
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where 1S is the indicator function of the set S. See, for instance, [55] and [44, 45].
In [18] suitable distances between qC and the tail concentration function of the
comonotone copula are used to define a dissimilarity.
Another analogous way consists of replacing the tail dependence coefficient by
a local concordance measure that focuses on the tail regions of the domain of the
joint distribution. In [22], for instance, the conditional Spearman’s ρ of (X ,Y ),
given that both variables are below their α–quantile for small values of α ∈
(0,1), is used and can be interpreted as the degree of dependence between two
profit/loss random variables X and Y , provided that both are taking on small
values.

Dissimilarity based on risk measures.
For particular purposes, various other dissimilarity measures can be defined using
special functionals on the class of copulas, which can be interpreted in terms of
risk measures associated with a given system. Examples of such situations are
described below.

• In [21], the Kendall distribution function associated with a copula is used to
derive a dissimilarity measure. This choice is mainly motivated by the use of
Kendall hazard scenarios in defining risky regions in hydrology and environ-
mental sciences (see, for instance, [48]).

• In [19], a contagion index is constructed in order to detect anomalies in the
correlation among financial time series during normal and crisis periods. Such
an index is then transformed to perform a (fuzzy) clustering of different stock
market data.

4.2.1 Illustration: S&P 500 dataset

Here, we illustrate the two above methods based on measures of concordance and
tail dependence by means of a time series dataset formed by the constituent data
of the S&P 500 in a time window covering the financial crisis of 2007-2008. The
end-day prices of all 505 constituents of the S&P 500 are available in the R package
qrmdata (see [31]). As in [32] we consider T = 756 daily records from 2007-
01-01 to 2009-12-31 on p = 465 constituents (which have maximally 20% missing
data). Moreover, the data are classified according to the Global Industry Classifica-
tion Standard (GICS) sector information (the number of companies in each sector is
in parenthesis): Consumer discretionary (78), Consumer staples (33), Energy (36),
Financials (85), Health care (51), Industrials (63), Information technology (60), Ma-
terials (25), Telecommunications services (5), and Utilities (29).

Following the standard approach in financial time series framework (see, e.g.,
[44]), we fit a suitable marginal model to each of the 755 log-returns from the
portfolio of 465 constituents. In particular, the ARMA(1,1)-GARCH(1,1) model
with innovations following a Student-t distribution is adopted and the correspond-
ing standardized residuals are extracted. Moreover, the joint distribution function of
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the standardized residuals (εt,1, . . . ,εt,p), t ∈ {1, . . . ,T}, can be expressed as

(εt,1, . . . ,εt,p)∼C(F1, . . . ,Fp), (4.2)

for a copula C and continuous marginal distributions Fj, j ∈ {1, . . . , p}, both as-
sumed to be time–invariant. In a non–parametric approach, the pseudo-observations
are hence computed via the empirical distribution functions F̂T,1, . . . , F̂T,p as

Ũt, j =
T

T +1
F̂T, j(ε̂t, j) =

Rt, j

T +1
, (4.3)

for j ∈ {1, . . . , p}, where Rt, j denotes the rank of εt, j among εt,1, . . . ,εt,p. Now, the
multivariate vector of pseudo–observations (Ũt,1, . . . ,Ũt,p) takes values on [0,1]p,
and can be used to calculate various bivariate measures of association related with
the data.

Specifically, we calculate the p× p matrix of empirical Spearman’s rho coeffi-
cients ρ j j′

T , for j, j′ ∈ {1, . . . , p}, and use it to determine a dissimilarity measure
between the portfolio constituents via the formula

diss(Ũt, j,Ũt, j′) =

√
2(1−ρ j j′

T ). (4.4)

Here, the multiplier 2 is used to highlight the differences in the dissimilarity values.
Once the dissimilarity matrix has been computed we apply an agglomerative

hierarchical clustering (method= complete linkage). The group composition deter-
mined by the hierarchical algorithm is hence compared with the groupings induced
by sectors (as given by GICS). That is, we are assuming that the desired number,
K, of clusters is equal to the number of sectors (K = 10). We adopt the well-known
Adjusted Rand Index (ARI) [33], which is bounded above by 1 and takes the value
0 when the index equals its expected value, as a measure of agreement between the
external criteria and clustering results. The obtained ARI value equals 0.31, which
suggests that the constituents in each sector are only partly assigned to the same
group, as one could expect.

It is interesting to observe that the difference between GICS sectors and groups
determined by statistical analysis becomes more relevant when considering a dis-
similarity matrix taking into account the tail dependence among the variables. To
this end, let us use in (4.4) the lower conditional Spearman’s rank-correlation coef-
ficient, defined by conditioning on the pseudo–observations belonging to Tα , defined
as Tα : = {(u,v) ∈ [0,1]2 : u ≤ α,v ≤ α}, where α ∈ (0,0.5]. Then, we repeat the
hierarchical clustering procedure for a specific choice of α . For instance, we can
set α ∈ {0.25,0.10}, meaning that we are considering those pseudo–observations
in the lower left area [0,0.25]2 and [0,0.10]2 of the copula domain, respectively.

The agreement between the agglomerative hierarchical clustering (with complete
linkage) and the benchmark classification by sectors is around 9.4%, in terms of
ARI, when considering α = 0.25; while it gives a value of 2.8%, when the thresh-
old is set to α = 0.10. Such findings seem to suggest that the natural grouping of the
companies by sectors reflects neither the degree of concordance between the data
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Fig. 4.1: Side by side dendrogram subtrees for S&P 500 constituents, based on ag-
glomerative hierarchical clustering according to Spearman’s ρ (left) and lower con-
ditional Spearman’s ρ for α = 0.25 (right). The subtrees are displayed so that they
include only a subset of 40 constituents over 465.

constituents, as measured by Spearman’s ρ , nor their tail dependence. Fig. 4.1 can
help us see which patterns are somewhat preserved between the two dendrograms
based on Spearman’s ρ and lower conditional Spearman’s ρ , for α = 0.25, respec-
tively, by visualizing the subtrees of the two dendrograms related to the variables
grouped together in both clustering solutions.

Such findings are in agreement with previous studies emphasising the need of
considering specific tools to understand rank-invariant dependencies in risky regions
(see, for instance, [10, 20, 22] among others).

4.3 Likelihood–based clustering methods

In this Section we describe and review the methodological framework of cluster
analysis based on the likelihood function of a probability model. In this approach to
clustering, the population of interest X given in eq. (4.1) is supposed to consist of K
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different subpopulations

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 . . . x1 j . . . x1 j′ . . . x1p
... . . .

... . . .
... . . .

...
xi1 . . . xi j . . . xi j′ . . . xip
... . . .

... . . .
... . . .

...
xi′1 . . . xi′ j . . . xi′ j′ . . . xi′p

... . . .
... . . .

... . . .
...

xn1 . . . xn j . . . xn j′ . . . xnp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
...

xi
...

xi′
...

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

}
→ 1-st subpopulation

...}
→ k-th subpopulation

...
}→ K-th subpopulation

(4.5)

and the density of a p-dimensional observation xi from the k-th subpopulation is
supposed to be fk(xi;θ) for some unknown (vector of) parameter(s) θ . Given ob-
servations (x1, . . . ,xn), we let γ1, . . . ,γn where γi denotes the identifying labels,
where γi = k if xi comes from the k-th subpopulation. In the maximum likelihood–
based clustering procedure, θ and γ are chosen so as to maximize the likelihood
L(θ ,γ)=∏n

i=1 fγi(xi,θ). In this approach, the generic k-th cluster is defined in terms
of a probability density function of the form fk(·).

In [41, 2] (see also [38, 4]) a clustering strategy based on multivariate normal
mixture models with covariances parameterized by eigenvalue decomposition has
been developed. For a recent review of mixture model–based clustering we refer
to [40]. Here, it is sufficient to recall that the whole population is a mixture model
with K components and the likelihood becomes

L(θ1 . . . ,θK ;π1, . . . ,πK) =
n

∏
i=1

K

∑
k=1

fπk(xi,θk)

where πk is the label for the generic k-th cluster. In this framework, a cluster k is
defined in terms of a component within an appropriate finite mixture model. The
term “appropriate” here means that the mixture model is tailored to the data under
consideration. Gaussian mixture model–based clustering with the EM algorithm for
maximum likelihood estimation has been extensively studied and the method has
been extended by [26] to select the parameterization of the model as well as the
number of clusters simultaneously using the Bayesian Information Criterion (BIC).
Nowadays, many deviations from the Gaussian model have been taken into consid-
eration (see, e.g., [40]).

The likelihood–based clustering approach has been used with copula models in
several different approaches and contexts (see [13, 1, 5, 36]). [5] developed a net-
work clustering technique based on the likelihood of the copula that finds a partition
of objects such that the ones belonging to the same cluster show a dependence struc-
ture. The approach in [13] has been then further developed in [15], where we focus
our attention. The CoClust assumes that the data are generated by a K-dimensional
copula whose arguments F1, . . . ,Fk, . . . ,FK are the probability-integral transforms of
the density functions that generate the clusters; thus, in this approach, each cluster
is defined in terms of a (marginal) univariate density probability function. It is im-
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portant to stress that here the definitions of “cluster” and “clustering” are somehow
different from the classical ones. Indeed, even though the assumptions of a proba-
bility model to generate a cluster and a multivariate probability model to generate
the whole final clustering are largely accepted, two main differences can be found:
i) a cluster is a set of independent observations, i.e. independent and identically dis-
tributed realizations of a univariate model and ii) in the final clustering the interest
focuses on the among-group relationship, which is the multivariate dependence, and
not on the within-group relationship, which is the independence.

The starting point of the CoClust algorithm is the standard n× p data matrix in
eq. (4.1) in which n objects have to be grouped in K groups and there are p seg-
mentation variables. The algorithm can be applied to the row or column data matrix
according to the purpose of the analysis. Here, the CoClust is described as applied to
the rows of the data matrix. The basic idea behind the CoClust consists in a forward
procedure that allocates a K-plet of row data matrix, i.e. a p-dimensional vector
for each cluster, at a time and the allocation of each K-plet of rows is performed
on the basis of the log-likelihood of the copula fit. This likelihood is computed
by using the K-plets already allocated and the one candidate to the allocation, say
xi′ = (xi′1, . . . ,xi′ j, . . . ,xi′p), by varying the permutations of observations in x′i in or-
der to find, if it exists, the combination that maximizes the copula fit.

The main steps of the algorithm to cluster n row data matrix are described:

1. for k = Kmin, . . . ,Kmax, where Kmin and Kmax are, respectively, the minimum and
the maximum number of clusters to be tried, such that 2≤ Kmin ≤ Kmax ≤ n,

a. select a subset of nk k-plets of rows in the data matrix in eq. (4.1) on the
basis of the following multivariate measure of association based on pairwise
Spearman’s ρ correlation coefficient:

H(Λ2|Λ1) = max
i′∈Λ2

{
ψ

i∈Λ1

(ρ(xi,xi′))

}
(4.6)

where Λ is a set of row index vectors such that Λ = Λ1 ∪Λ2, where Λ1
is the subset of vectors already selected to compose a k-plet and Λ2 is the
set of remaining candidates to complete it, and ψ is an average aggregation
function (see [29]), for instance, the mean, the median or the maximum;

b. fit on the nk k-plets of rows the copula model through the maximum
pseudo-likelihood estimation [28, 54] that estimates each univariate mar-
gins through the empirical cumulative distribution functions F̂k (Xk) with
k = 1, . . . ,K, and, then, the maximum likelihood is used to estimate the
copula parameter as follows

θ̂ = argmax
θ

nk

∑
i=1

logc
{

F̂1(X1i), . . . , F̂k(Xki);θ
}

; (4.7)
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2. select the subset of nk k-plets of rows, say nK K-plets, that maximizes the log–
likelihood of the copula; hence, the number of clusters K, that is the dimension
of the copula, is automatically chosen;

3. select a K-plet of rows (among the remaining ones) on the basis of the eq. (4.6)
and estimate K! copulas by using the observations already clustered and a per-
mutation of the candidate to the allocation;

4. allocate the permutation of the selected K-plet to the clustering by assigning
each row to the corresponding cluster only if it increases the log-likelihood of
the copula fit, otherwise drop the entire K-plet of rows;

5. repeat steps 3. and 4. until all the observations are evaluated (either allocated or
discarded).

The main purpose of the CoClust is to identify dependent groups in such a way that
the complex dependence among observations can be uncovered. Hence, at the end
of the procedure we obtain a clustering of K dependent clusters each one contained
at maximum (n/K)p independent observations.

As described above, the CoClust algorithm selects automatically the number of
clusters K on the basis of the log-likelihood of the copula estimated on the subsets
of k-plets allocated until a step predefined by the user. On the contrary, the selection
of the copula model is not automatic, but an information criterion should be em-
ployed. The Bayesian information criterion (BIC, from now on) has the following
expression for a K-dimensional copula model m with s independent parameters:

BICK,m =−2logΠ n
i=1cm

{
F̂1(X1i), . . . , F̂k(Xki), . . . , F̂K(XKi); θ̂

}
+ s log((n/K)p)

(4.8)
where θ̂ is as in eq. (4.7) with the summation over the number of allocated observa-
tions, which equals maximum (n/K)p (i.e. n/K p-dimensional vectors). According
to [46], we select the copula model that minimizes the BIC (for possible alternative
approaches, see also [30]).

The CoClust has been implemented in an R package available on the CRAN [14].
The main function CoClust makes it possible to perform the cluster analysis by
employing Elliptical and Archimedean copula models and setting the set of numbers
of clusters to be tried, the number nk of observations to be used for the selection of
K and the kind of functionΨ in eq. (4.6).

4.3.1 Illustration: NCI60 data

The National Cancer Institute’s (NCI) Developmental Therapeutics Program (DTP)
has carried out intensive studies of 60 cancer cell lines derived from tumours from
a variety of tissues and organs [47]. Here, the interest focuses on the NCI60 data set
which contains the gene expression profiles of 60 human tumour cell lines derived
from patients with leukaemia (LEUK), melanoma (MELAN), non-small colon lung
(NSCLC), colon (COLON), central nervous system (CNS), ovarian (OVAR), renal
(RENAL), breast (BREAST) and prostate (PROSTATE) cancers. This panel of cell
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lines have been subjected to several different DNA microarray studies using differ-
ent array technologies, like spotted cDNA [47] and Affimetrix [51]. The data set
employed here is available in the R package made4 and contains subsets from one
cDNA spotted which has been pre-processed as described by [7].

The NCI60 data set contains 144 gene expression (log-ratio measurements) rows
and 60 cell line columns. We apply the CoClust to the cell lines with the main pur-
pose of evaluating the capability of the CoClust to recognize the organ specific of
each tumour type. Since [47] found that the gene expression patterns of cell lines
derived from non-small lung carcinoma, breast and prostate tumours are heteroge-
neous, we apply the CoClust to the 41 cell lines derived from central nervous system,
colon, leukaemia, melanoma, ovarian and renal tissues. For the distribution of the
cell lines per organ type see Tab. 4.1. The CoClust has been applied by varying the
number of clusters from Kmin = 2 to Kmax = 8 and copula models among all the
copulas in the Elliptical and Archimedean families. As for the t-Student copula, we
evaluated the clustering by using both ν = 2 and ν = 4 degrees of freedom. More-
over, the value of nk has been set to the minimum integer value n/Kmax, which is 5.

Table 4.1: Number of tumours for each kind of organ.

Organ type CNS COLON LEUK MELAN OVAR RENAL

N. of tissues 6 7 6 8 6 8

The copula model and the number of clusters of the final clustering have been se-
lected on the basis of the BIC as explained in Section 4.3. The selected copula model
is a 7-dimensional t-Student with ν = 4 degrees of freedom, estimated dependence
parameter θ̂ = 0.651 (which is equal to ρ = 0.633) and log-likelihood of the fit
equals 1911.04. The obtained clustering is shown in Tab. 4.2. On the one hand, the
CoClust has been able to almost perfectly recognize LEUK, MELAN, COLON and
RENAL tumour types, so gene expressions of cell lines with common presumptive
tissues of origin are strongly dependent to each other. On the other hand, OVAR and
CNS tumour types are not well-identified and six cell lines has been dropped out of
the clustering; specifically, they are 1 MELAN, 2 CNS, and 3 OVAR cell lines. It
could be possible that CNS and OVAR belong to a DGP with a dependence structure
different from the t-Student one.

4.4 Empirical comparison of the two approaches

In order to briefly illustrate a possible application of both the proposed methodolo-
gies and its comparison we present here a case study on environmental data. The
data were collected by “Ufficio Idrografico” of the province of Bozen-Bolzano and
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Table 4.2: Identification of cancer types through CoClust algorithm. 7-dimensional
t-Student copula model with ν = 4 and θ̂ = 0.651.

C1 C2 C3 C4 C5 C6 C7

LEUK LEUK COLON LEUK LEUK LEUK LEUK
MELAN MELAN MELAN MELAN MELAN MELAN MELAN
RENAL RENAL CNS CNS CNS OVAR CNS
COLON COLON COLON COLON COLON OVAR COLON
RENAL RENAL RENAL RENAL OVAR RENAL RENAL

are available online. They are related to daily rainfall measurements recorded at 18
gauge stations spread across the province of Bolzano-Bozen in the North-Eastern
Italy, from 1961 to 2010. This results in a set of p= 18 time series originally formed
by T = 18262 observations. Tab. 4.3 reports the available information on the anal-
ysed rainfall records.

Table 4.3: Summary of the rainfall measurement stations.

Code Station Longitude Latitude Height (mt)

0220 S.VALENTINO ALLA MUTA 10.5277 46.7745 1520
0310 TUBRE 10.4775 46.6503 1119
2090 PLATA 11.1783 46.8225 1147
3140 FLERES 11.3477 46.9639 1246
3260 VIPITENO-CONVENTO 11.4295 46.8978 948
8320 BOLZANO 11.3127 46.4976 254
9150 SESTO 12.3477 46.7035 1310
0250 MONTE MARIA 10.5213 46.7057 1310
0480 MAZIA 10.6175 46.6943 1570
1580 VERNAGO 10.8493 46.7357 1700
2170 S.LEONARDO PASSIARIA 11.2471 46.8091 644
2670 PAVICOLO 11.1093 46.6278 1400
3450 RIDANNA 11.3068 46.9091 1350
4450 S.MADDALENA IN CASIES 12.2427 46.8353 1398
6650 FUNDRES 11.7029 46.8872 1159
8570 BRONZOLO 11.3111 46.4065 226
8730 REDAGNO 11.3968 46.3465 1562
4100 ANTERIVO 11.3678 46.2773 1209

From these time series, in order to focus on extreme observations, annual maxima
at each spatial location are extracted resulting in a 50× 18 matrix of time series
observations X̃ i

1, . . . , X̃
i
p, i ∈ {1, . . . ,50}, summarized by Fig. 4.2.
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Fig. 4.2: Boxplot of annual maxima at each station from 1961 to 2010. The station
codes are as Tab. 4.3. On the y-axis the amount of rainfall is measured in millimeters.

4.4.1 Clustering of rainfall data based on tail dependence

As shown in Section 4.2, the dependence between the time series of annual maxima
can be studied in terms of a copula–based measure of dependence estimated from
the pseudo-observations in [0,1]p, (Ũi,1, . . . ,Ũi,p), i ∈ {1, . . . ,50}. Being interested
in exploring the tail behaviour of the data, we estimate the upper tail dependence
coefficient λU of the pair (Ũi, j,Ũi, j′), for all j, j′ ∈ {1, . . . , p}, j < j′. Specifically, the
function fitLambda of the copula package computes non-parametric estimators
of the matrix of tail dependence coefficients. By setting method="t" we fit a t-
Student copula and consider the implied tail-dependence coefficient (see [39]). In
the sequel, we will denote by λ̂U

j j′ the pairwise coefficients of upper tail dependence.
Such matrix can be transformed through a monotonic function in order to obtain

a dissimilarity measure between the 18 time series. As previously discussed, we can
consider the matrix Δ = (Δi j) with elements

Δ j j′ =− log(λ̂U
j j′). (4.9)
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The result of hierarchical agglomerative clustering is presented in Fig. 4.3 (here, the
complete linkage method is adopted). In the literature, a wide variety of methods
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Fig. 4.3: Dendrogram for the 18 rainfall measurement stations listed in Tab. 4.3
based on the complete linkage method.

Table 4.4: Hierarchical clustering of rainfall measurement stations.

C1 BZ0220 BZ0250 BZ0480 BZ2090 BZ3140 BZ3260 BZ3450
C2 BZ0310 BZ1580 BZ2170 BZ4450
C3 BZ2670 BZ4100 BZ6650 BZ8320 BZ8570 BZ8730 BZ9150

have been proposed to find the optimal number of clusters in a partitioning of a data
set. Here, we select K = 3 in order to have a clustering comparable with the one
obtained through the CoClust algorithm and shown in the next Section.
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4.4.2 Clustering of rainfall data based on the CoClust algorithm

In this Section, we apply the CoClust algorithm to the precipitation data described
in Section 4.4. As in Section 4.3, the algorithm has been applied by varying the
copula models among all the copulas in the Elliptical and Archimedean families
(the t-Student copula has been used with two different levels of degree of freedom
ν = 2 and ν = 4), whereas the number of clusters has been automatically selected
in the range from Kmin = 2 to Kmax = 6 by using nk = 3 observations. The copula
model and the number of clusters of the final clustering have been selected on the
basis of the BIC as explained in Section 4.3.

The obtained clustering is shown in Tab. 4.5. The selected model is a 5-dimensional
Gaussian copula with θ̂ = 0.555 and log-likelihood equals 142.9247. Note that the
three stations: BZ0310, BZ1580, and BZ3140, have been dropped out of the cluster-
ing. The geographical parameter appears to be a quite valid criterion for evaluating

Table 4.5: CoClust results on the rainfall measurement stations.

C1 C2 C3 C4 C5

BZ0250 BZ0220 BZ0480 BZ8320 BZ6650
BZ2670 BZ3260 BZ3450 BZ2170 BZ2090
BZ8730 BZ4100 BZ4450 BZ8570 BZ9150

the resulting clustering. Indeed, the second row contains stations of Alta Val d’Isarco
and Burgraviato, which are really close to each other, and the third row contains sta-
tions located in the south and east part of the land. Only the first row does not reflect
the geographical criterion because there are three stations in Val Venosta, which is
in the north-west of Alto-Adige, and two stations in the center of the region.

4.4.3 Comparing the two clusterings of rainfall data

In order to compare the two clusterings shown in the previous Sections, we should
find similarities and differences between the rows of tables 4.4 and 4.5. To sum-
marize them, Figure 4.4 shows and compares the two obtained clustering solutions:
for a given row i and column j in the graphical matrix, a black point in the corre-
sponding cell means that stations i and j belong to the same cluster according to the
clustering based on tail dependence, while an empty square means that stations i and
j are dependent to each other and belong to different clusters in the method based
on the log-likelihood of the copula fit; the presence of both the point and the square
means that the two stations have been identified as “similar/associated/dependent”
by both the clustering procedures. The figure shows a certain agreement between
the two findings, particularly for the clusters in the lower and upper corner of the
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matrix. In the middle of the matrix, on the contrary, there is a non-overlapping area
that confirm the differences between the two approaches.
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Fig. 4.4: Comparison between tail–based and likelihood–based clustering results.

4.5 Conclusions

Two different approaches to clustering based on copula and dependence measures
have been discussed. Firstly, dissimilarity measures based on concordance or tail
dependence have been presented and used to perform a cluster analysis of finan-
cial time series. Secondly, a copula-based clustering algorithm that uses the log-
likelihood of the copula fit has been described and an application to gene expression
profiles has been provided. Both the methods take into consideration the depen-
dence between variables but in a different way. The former aims at creating groups
of variables characterized by a higher global association or a similar tail behavior.
The CoClust, on the contrary, attempts to discover clusters of variables dependent
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to each other, whereas each cluster is a set of independent variables, so the interest
focuses on the among-group relationship. A case study from environmental data has
been performed in order to compare the two approaches in practice.
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Chapter 5

Copula-based piecewise regression

Arturo Erdely

Abstract Most common parametric families of copulas are totally ordered, and in
many cases they are also positively or negatively regression dependent and therefore
they lead to monotone regression functions, which makes them not suitable for de-
pendence relationships that imply or suggest a non-monotone regression function.
A gluing copula approach is proposed to decompose the underlying copula into to-
tally ordered copulas that once combined may lead to a non-monotone regression
function.

5.1 Introduction

Given a bivariate random vector (X ,Y ) with joint probability distribution func-
tion FX ,Y (x,y) = P(X ≤ x,Y ≤ y) it is possible to assess uncertainty about one
of the random variables conditioning on certain values of the other, for example
through the univariate conditional probability distribution of Y given X = x, that is
FY |X (y |x) = P(Y ≤ y |X = x). As a point estimate for a future value of Y given X = x
we may calculate central tendency measures with FY |X such as the mean (whenever
it exists) or the median (which always exists in the continuous case) which will de-
pend on the conditioning value x and therefore such point estimates depending on x
may be denoted by μ(x) and are called regression function for Y given X = x.

As a consequence of Sklar’s Theorem [9] for continuous random variables
there exists a unique copula C such that the joint probability distribution function
FX ,Y (x,y) =C(FX (x),FY (y)) where FX (x) = P(X ≤ x) and FY (y) = P(Y ≤ y) are the
marginal probability distribution functions of X and Y, respectively. As explained in
[5], the conditional distribution of Y given X = x can be obtained by
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FY |X (y |x) =
∂C(u,v)
∂u

∣∣∣
u=FX (x) ,v=FY (y)

(5.1)

and therefore to find the median regression function for Y given X = x whenever
FY |X is a continuous distribution function, we proceed as follows:

Algorithm 1

1. Set ∂C(u,v)/∂u = 1/2;
2. solve for the regression function of V =FY (Y ) given U =FX (X) = u, and obtain

v = ψ(u) ;
3. replace u by FX (x) and v for FY (y) ;
4. solve for the regression function of Y given X = x :

y = μ(x) = F(−1)
Y (ψ(FX (x))). (5.2)

It is worth to notice that since FX and FY only explain the individual (marginal)
probabilistic behavior of the continuous random variables X and Y, respectively,
then the information about their dependence for regression purposes is contained in
ψ. A survey of copula-based regression models may be found in [3] and estima-
tion/inference procedures for such purpose in [6].

5.2 Piecewise monotone regression

In [1] it is argued that when the regression function is non-monotone, copula-based
regression estimates do not reproduce the qualitative features of the regression func-
tion under commonly used parametric copula families. This occurs because very of-
ten such parametric copulas lead to monotone regression functions, but in case there
is evidence that the underlying regression function is non-monotone a piecewise re-
gression approach may be applied in order to break up a non-monotone relationship
into a piecewise monotonic one, and then seek for the best copula fit for each piece.

Piecewise (or segmented) monotone regression for Y given X = x is defined by
partitioning the support of X into a finite number of intervals such that restricted
to each one it is possible to obtain a monotone regression function. For example,
instead of (5.1) we may obtain something like

FY |X (y |x) =

⎧⎪⎨⎪⎩
∂
∂uC1(u,v)

∣∣∣
u=FX |X≤b(x) ,v=FY (y)

, if x≤ b,

∂
∂uC2(u,v)

∣∣∣
u=FX |X>b(x) ,v=FY (y)

, if x > b,
(5.3)

with C1 and C2 two different copulas, b is called a break-point for explanatory vari-
able X , and where FX |X≤b and FX |X>b are the conditional distribution functions of
X given X ≤ b and X > b, respectively. This may be justified in terms of the gluing
copula technique [8] as explained in [2] for the particular case of vertical section
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gluing and bivariate copulas. Specifically, given two bivariate copulas C1 and C2,
and a fixed value 0 < θ < 1 (gluing point), we may scale C1 to [0,θ ]× [0,1] and C2
to [θ ,1]× [0,1] and glue them into a single copula

C1,2,θ (u,v) =

{
θC1(

u
θ ,v), 0≤ u≤ θ ,

(1−θ)C2(
u−θ
1−θ ,v)+θv, θ ≤ u≤ 1.

(5.4)

Then
∂
∂u

C1,2,θ (u,v) =

{
∂
∂uC1(

u
θ ,v), 0≤ u≤ θ ,

∂
∂uC2(

u−θ
1−θ ,v), θ ≤ u≤ 1,

(5.5)

and by (5.1)

FY |X (y |x) =
∂C1,2,θ (u,v)

∂u

∣∣∣∣
u=FX (x) ,v=FY (y)

=

{
∂
∂uC1(

FX (x)
θ ,FY (y)), 0≤ FX (x)≤ θ ,

∂
∂uC2(

FX (x)−θ
1−θ ,FY (y)), θ ≤ FX (x)≤ 1,

=

⎧⎪⎨⎪⎩
∂
∂uC1(u,v)

∣∣∣
u=FX |X≤b(x) ,v=FY (y)

, x≤ F(−1)
X (θ) = b,

∂
∂uC2(u,v)

∣∣∣
u=FX |X>b(x) ,v=FY (y)

, x > F(−1)
X (θ) = b,

(5.6)

since FX |X≤b(x) = P(X ≤ x |X ≤ b) = P(X ≤ x)/P(X ≤ b) = FX (x)/θ and
FX |X>b(x) = P(b < X ≤ x)/P(X > b) = (FX (x)− θ)/(1− θ). The result obtained
in (5.6) leads to a regression function of the form

μ(x) =

{
μ1(x), if x≤ b,
μ2(x), if x > b,

(5.7)

where, for example, if μ1(x) is an increasing function and μ2(x) a decreasing one,
then μ(x) is non-monotone.

Example 5.1. From example 3.3 in [5] if a probability mass 0 < θ < 1 is uniformly
distributed on the line segment joining (0,0) to (θ ,1), and a probability mass 1−θ
is uniformly distributed on the line segment joining (θ ,1) to (1,0), see Fig. 5.1, the
underlying copula for a random vector (X ,Y ) of continuous Uniform(0,1) random
variables with such non-monotone dependence is given by

Cθ (u,v) =

⎧⎪⎨⎪⎩
u, 0≤ u≤ θv≤ θ ,
θv, 0≤ θv < u < 1− (1−θ)v,
u+ v−1, θ ≤ 1− (1−θ)v≤ u≤ 1.

(5.8)

By construction we have that P(Y = x
θ |X = x) = 1 whenever 0 ≤ x ≤ θ and

P(Y = 1−x
1−θ |X = x) = 1 whenever θ ≤ x ≤ 1, which implies that the regression

function of Y given X = x is
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Fig. 5.1: Example 5.1. Left: (X ,Y ) dependence. Right: underlying copula (5.8).

μ(x) =

{
x
θ , 0≤ x≤ θ ,

1−x
1−θ , θ ≤ x≤ 1,

(5.9)

clearly a non-monotone function: linearly increasing for 0≤ x≤ θ and linearly de-
creasing for θ ≤ x≤ 1, which suggests in this case that the underlying dependence
might be split by means of the gluing copula technique in terms of two copulas,
with θ as gluing point. Indeed, let C1(u,v) = min{u,v} (the Fréchet-Hoeffding up-
per bound that represents the case when one variable is almost surely an increasing
function of the other) and C2(u,v) =max{u+v−1,0} (the Fréchet-Hoeffding lower
bound that represents the case when one variable is almost surely a decreasing func-
tion of the other), then applying (5.4) it is straightforward to verify that the resulting
gluing copula C1,2,θ is equal to (5.8).

Therefore, the same regression function obtained in (5.9) could be obtained in
two pieces: the first one in terms of the random vector (X1,Y ) with underlying cop-
ula C1 and where the distribution of X1 is the conditional distribution of X given
X ≤ θ , which turns to be uniform(0,θ), and the second one in terms of the random
vector (X2,Y ) with underlying copula C2 and where the distribution of X2 is the con-
ditional distribution of X given X > θ , which turns to be uniform(θ ,1). Applying
(5.1) to the first piece we obtain the following:

FY |X1(y |x) =
∂
∂u

C1(u,v)
∣∣∣
u= x

θ ,v=y

=

{
1, if y≥ x

θ ,

0, if y < x
θ

(5.10)

from which we get μ1(x) = x
θ whenever 0 ≤ x ≤ θ , and similarly from FY |X2(y |x)

we obtain μ2(x) = 1−x
1−θ whenever θ ≤ x≤ 1, as expected. �
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For simplicity’s sake, the case for a single break-point has been analyzed, but the
analogous idea may be applied for finitely many break-points. For each interval I
induced in the support of the explanatory variable, the conditional distribution of Y
given X = x is obtained by

FY |X (y |x) =
∂
∂u

CI(u,v)
∣∣∣
u=FX |X∈ I(x) ,v=FY (y)

(5.11)

and with it the regression function μ(x) for x ∈ I may be calculated.

5.3 Dependence and regression

In this section the concepts of quadrant and regression dependence by [4] are re-
called.

Definition 5.1. A bivariate random vector (X ,Y ) or its joint distribution function
FX ,Y is positively quadrant dependent and abbreviated as PQD(X ,Y ) if

P(X ≤ x,Y ≤ y) ≥ P(X ≤ x)P(Y ≤ y) , for all x and y, (5.12)

and negatively quadrant dependent NQD(X ,Y ) if (5.12) holds with the inequality
sign reversed.

In the particular case where both X and Y are continuous random variables with
underlying copula C, as an immediate consequence of Sklar’s Theorem [9] we have
that PQD(X ,Y ) is equivalent to C(u,v) ≥ uv for all u,v in [0,1], and NQD(X ,Y )
with this last inequality sign reversed. From [5] we have the following:

Definition 5.2. If C1 and C2 are copulas, we say that C1 is smaller than C2 (or C2 is
larger than C1), and write C1 ≺C2 (or C2 �C1) if C1(u,v) ≤C2(u,v) for all u,v in
[0,1].

This point-wise partial ordering of the set of copulas is called concordance or-
dering. It is a partial order rather than a total order because not every pair of copulas
is comparable. However, there are families of copulas that are totally ordered. We
will call a totally ordered parametric family {Cθ} of copulas positively ordered if
Cα ≺ Cβ whenever α ≤ β ; and negatively ordered if Cα � Cβ whenever α ≤ β .
Many of well known one-parameter families of copulas are totally ordered and in-
clude Π(u,v) = uv, and hence have subfamilies of PQD and NQD copulas.

As mentioned in [5] one form to calculate Spearman’s concordance measure is

ρC = 12
∫∫

[0,1]2

[
C(u,v)−uv

]
dudv = 12

∫∫
[0,1]2

C(u,v)dudv − 3 , (5.13)

and hence ρC/12 can be interpreted as a measure of “average” quadrant depen-
dence (both positive and negative) for continuous random variables whose copula
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is C. Closely related to (5.13) is the L1 distance between C and the (sometimes
called) independence copula Π(u,v) = uv known as Schweizer-Wolff’s dependence
measure [7] defined as

σC = 12
∫∫

[0,1]2

∣∣C(u,v)−uv
∣∣dudv . (5.14)

Two main differences (among others) are that −1≤ ρC ≤ 1 in contrast to 0≤ σC ≤
1, and that σC = 0 if and only X and Y are independent (that is C =Π ) while ρC = 0
does not necessarily imply independence. Moreover, as explained in [5]:

Of course, it is immediate that if X and Y are PQD, then σX ,Y = ρX ,Y ; and that if X and Y
are NQD, then σX ,Y = −ρX ,Y . Hence for many of the totally ordered families of copulas
presented in earlier chapters (e.g., Plackett, Farlie-Gumbel-Morgenstern, and many families
of Archimedean copulas), σX ,Y = |ρX ,Y |. But for random variables X and Y that are neither
PQD nor NQD, i.e., random variables whose copulas are neither larger nor smaller than Π ,
σ is often a better measure than ρ [. . . ]

Definition 5.3. A random variable Y is positively regression dependent on a random
variable X and abbreviated as PRD(Y |X) if

FY |X (y |x) = P(Y ≤ y |X = x) is non-increasing in x, (5.15)

and negatively regression dependent NRD(Y |X) if (5.15) is non-decreasing in x.

From theorems 5.2.4 and 5.2.12 in [5] or from Lemma 4 in [4] we have the
following:

Corollary 5.1. Given (X ,Y ) a bivariate random vector:

a) If PRD(Y |X) then PQD(X ,Y ).
b) If NRD(Y |X) then NQD(X ,Y ).

By arguments explained in [5] the reverse implications in Corollary 5.1 do not
necessarily hold.

Corollary 5.2. If (X ,Y ) are continuous random variables with underlying copula C
then:

a) PRD(Y |X) if and only if for any v in [0,1] and for almost all u, ∂C(u,v)/∂u is
non-increasing in u;

b) NRD(Y |X) if and only if for any v in [0,1] and for almost all u, ∂C(u,v)/∂u is
non-decreasing in u.

In case the conditional expectation exists it is possible to obtain a mean regres-
sion function

μ(x) = E(Y |X = x) =
∫ ∞

0
[1−FY |X (y |x)]dy −

∫ 0

−∞
FY |X (y |x)dy , (5.16)
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and in case FY |X (y |x) is a continuous function of y then it is possible to obtain a
median regression function

μ(x) = median(Y |X = x) = F(−1)
Y |X (0.5 |x) . (5.17)

Proposition 5.1. Let μ(x) be a mean or median regression function:

a) If PRD(Y |X) then μ(x) is non-decreasing.
b) If NRD(Y |X) then μ(x) is non-increasing.

Proof. If PRD(Y |X) then for all x1 < x2

−FY |X (y |x1) ≤ −FY |X (y |x2) , (5.18)
1−FY |X (y |x1) ≤ 1−FY |X (y |x2) . (5.19)

Integration of (5.18) on ]−∞,0] and of (5.19) on [0,∞[ , and adding the results ac-
cording to the inequalities it is obtained μ(x1) = E(Y |X = x1) ≤ E(Y |X = x2) =
μ(x2), as required. Now from (5.18) we have FY |X (y |x1) ≥ FY |X (y |x2), and since

FY |X (y |x) is non-decreasing in y for any x so is F(−1)
Y |X (u |x) as a function of u

and therefore F(−1)
Y |X (u |x1) ≤ F(−1)

Y |X (u |x2), hence μ(x1) = median(Y |X = x1) =

F(−1)
Y |X (0.5 |x1)≤F(−1)

Y |X (0.5 |x2) =median(Y |X = x2) = μ(x2), as required. �

But the reverse implications in this last proposition do not necessarily hold, as it
can be easily verified by similar arguments.

Example 5.2. Continuing with Example 5.1, applying formulas (5.13) and (5.14) it
is straightforward to verify that Spearman’s ρθ = 2θ − 1 and Schweizer-Wolff’s
σθ = θ 2 +(θ − 1)2, and since 0 < θ < 1 then |ρθ | < σθ and therefore neither we
have PQD nor NQD, and neither PRD nor NRD. Moreover, if θ = 1

2 then ρ1/2 = 0
but this does not imply independence since σ1/2 =

1
2 (its minimum possible value,

by the way). See Fig. 5.2 (left). �

5.4 Change-point detection

The ideas explained in the previous sections may be useful in tackling the concerns
raised by [1] when the dependence relationship between random variables implies
a non-monotone regression function, considering that the most common families of
parametric copulas lead to monotone regression functions, and a possible solution
might be to break up such dependence into pieces such that within each one the
dependence implies a piecewise monotone regression function, and possibly one
of the common families of parametric copulas may have an acceptable fit for each
piece. In pursuing this objective, when dealing with data from which the dependence
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has to be estimated, a methodology to find break-point candidates, that is change-
point detection, becomes necessary.

Definition 5.4. The diagonal section of a copula C is a function δC : [0,1]→ [0,1]
given by δC(t) =C(t, t).

Since every copula C is bounded by the Fréchet-Hoeffding bounds max{u+ v−
1,0} ≤ C(u,v) ≤ min{u,v} then max{2t − 1,0} ≤ δC(t) ≤ t. If C = Π (indepen-
dence copula) then δΠ (t) = t2. If (X ,Y ) is a random vector of continuous random
variables with underlying copula C and PQD(X ,Y ) or NQD(X ,Y ) then C(u,v)≥ uv
or C(u,v) ≤ uv, respectively, for all (u,v) in [0,1]2, and therefore δC(t) ≥ t2 or
δC(t) ≤ t2, respectively, for all t in [0,1]. Hence, if there exist t1, t2 in [0,1] such
that δC(t1) < t2

1 and δC(t2) > t2
2 then neither PQD(X ,Y ) nor NQD(X ,Y ), and con-

sequently this would imply that neither PRD(Y |X) nor NRD(Y |X). In case of this
last scenario, this would not necessarily imply that a mean or median regression
function μ(x) is non-monotone since Proposition 5.1 is a one-way implication, but
at least raises the question and leads to propose and analyze break-point candidates.
The following result is straightforward:

Proposition 5.2. Let C1 and C2 be two copulas such that C1(u,v)≥ uv and C2(u,v)≤
uv for all (u,v)∈ [0,1]2, and let 0< θ < 1. Then the diagonal section of the resulting
gluing copula C1,2,θ as in (5.4) satisfies

δ1,2,θ (t)

⎧⎪⎨⎪⎩
≥ t2, if 0≤ t ≤ θ ,
= θ 2, if t = θ ,
≤ t2, if θ ≤ t ≤ 1.

(5.20)

Since the diagonal section δC of any copula C is a continuous function, see [5],
we may choose and analyze as possible break-point candidates those where cross-
ings between δC and δΠ take place.

Example 5.3. Continuing with Example 5.1, from formula (5.8) the corresponding
diagonal section is:

δθ (t) = Cθ (t, t) =

{
θ t , t ≤ 1

2−θ ,
2t−1 , t ≥ 1

2−θ .
(5.21)

If 0 < t ≤ 1
2−θ then δθ (t)≥ t2 if and only if t ≤ θ . If 1

2−θ ≤ t < 1 then δθ (t)≤ t2.

Since 0 < θ < 1 then θ < 1
2−θ and therefore we conclude that δθ (t)≥ t2 if and only

if t ≤ θ , and δθ (t) ≤ t2 if and only if t ≥ θ . Hence, we would propose t = θ as
break-point candidate, as expected. See Fig. 5.2 (right). �

Example 5.4. This is one of the examples used in [1] to raise concerns about the
use of copulas when the dependence relationship between random variables implies
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Fig. 5.2: Left: |ρθ | (dashed line) and σθ (continuous line) in Example 5.2. Right: δθ
(thick line) and δΠ (thin line) in Example 5.3.

a non-monotone regression function. Let ε be a Normal(0,1) random variable, a
constant k2 = 0.01, and X a Uniform(0,1) random variable independent from ε .
Now define the random variable:

Y = (X − 0.5)2 + kε . (5.22)

Then the conditional distribution of Y given X = x is Normal
(
(x− 0.5)2,k2

)
and

therefore the corresponding mean regression function is given by:

μ(x) = E(Y |X = x) = (x − 0.5)2 , 0≤ x≤ 1, (5.23)

clearly a non-monotone regression function (decreasing when x ≤ 0.5, increasing
when x≥ 0.5). Since the joint probability density of (X ,Y ) is given by fX ,Y (x,y) =
fX (x) fY |X (y |x) then:

FX ,Y (x,y) =
∫ x

−∞
fX (r)

∫ y

−∞
fY |X (s |x)dsdr =

∫ x

−∞
fX (r)FY |X (y |r)dr

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 , if x≤ 0,∫ x

0
Φ
(y− (r−0.5)2

k

)
dr , if 0 < x < 1,∫ 1

0
Φ
(y− (r−0.5)2

k

)
dr , if x≥ 1,

(5.24)

where Φ is the distribution function for a Normal(0,1) random variable. From
(5.24) it is possible obtain the following expression for the marginal distribution
function of Y :

FY (y) = FX ,Y (+∞,y) =
∫ 1

0
Φ
(y− (r−0.5)2

k

)
dr. (5.25)
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Fig. 5.3: Example 5.4. Left: Level curves (thick style) of copula (5.26) versus level
curves (thin style) of product (or independence) copula. Right: Diagonal section
(thick style) of copula (5.26) versus diagonal section (thin style) of product (or in-
dependence) copula.

Hence, by Sklar’s Corollary 2.3.7 in [5] it is possible to obtain the following expres-
sion for the underlying copula of (X ,Y ) :

C(u,v) = FX ,Y
(
F(−1)

X (u),F(−1)
Y (v)

)
=
∫ u

0
Φ
(F−1

Y (v)− (r−0.5)2

k

)
dr , (5.26)

and consequently the diagonal section of such copula is given by:

δC(t) = C(t, t) =
∫ t

0
Φ
(F−1

Y (t)− (r−0.5)2

k

)
dr. (5.27)

In Fig. 5.3 (left) we may notice crossings between copula (5.26) level curves
(thick style) and the product (or independence) copula Π(u,v) = uv level curves
(thin style), with the following interpretation: thick curve below thin curve implies
C(u,v)≥Π(u,v) and thick curve above thin curve implies C(u,v)≤Π(u,v). In Fig.
5.3 (right) the graph of the diagonal section (5.27) is compared to the graph of the
diagonal section of Π from where we get as gluing point candidate u = θ = 1/2.

Then we proceed to a gluing copula decomposition by means of (5.4) where C1,2,θ =
C. For 0≤ u≤ θ we get θC1(

u
θ ,v) =C(u,v), and if we let u∗ = u

θ ∈ [0,1] then:

C1(u∗,v) =
1
θ

C(θu∗,v) = 2
∫ u∗/2

0
Φ
(F−1

Y (v)− (r−0.5)2

k

)
dr , (5.28)

and therefore:

∂
∂u∗

C1(u∗,v) = Φ
(F−1

Y (v)−0.25(1−u∗)2

k

)
, (5.29)
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Fig. 5.4: Example 5.4. Left: Level curves (thick style) of copula (5.28) versus level
curves (thin style) of product (or independence) copula. Right: Level curves (thick
style) of copula (5.4) versus level curves (thin style) of product (or independence)
copula.

where clearly (5.29) is a non-decreasing function of u∗ which by Corollary 5.2 im-
plies NRD for copula C1, and consequently NQD by Corollary 5.1. Also, by Propo-
sition 5.1 we get that a regression function μ1(x) based on C1 will lead to a non-
increasing function of x. See Fig. 5.4 (left) for the level curves of C1 (thick style)
versus the level curves (thin lines) of Π(u,v) = uv, where all the level curves of
C1 are above the corresponding ones to Π implying that C1(u,v) ≤ Π(u,v), as ex-
pected.

Similarly, for θ ≤ u ≤ 1 we get (1− θ)C2(
u−θ
1−θ ,v) + θv = C(u,v) and if we let

u∗ = u−θ
1−θ ∈ [0,1] then:

C2(u∗,v) =
C((1−θ)u∗+θ ,v)−θv

1−θ
= 2

∫ (u∗+1)/2

0
Φ
(F−1

Y (v)− (r−0.5)2

k

)
dr − v , (5.30)

and therefore:
∂
∂u∗

C2(u∗,v) = Φ
(F−1

Y (v)−0.25u2∗)
k

)
, (5.31)

where clearly (5.31) is a non-increasing function of u∗ which by Corollary 5.2 im-
plies PRD for copula C2, and consequently PQD by Corollary 5.1. Also, by Propo-
sition 5.1 we get that a regression function μ2(x) based on C2 will lead to a non-
decreasing function of x. See Fig. 5.4 (right) for the level curves of C2 (thick style)
versus the level curves (thin lines) of Π(u,v) = uv, where all the level curves of
C2 are below the corresponding ones to Π implying that C2(u,v) ≥ Π(u,v), as ex-
pected.
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In summary, the dependence between X and Y induced by (5.22), which by con-
struction has a regression function μ(x) that is non-monotone, has an underlying
copula C given by (5.26) with a diagonal section δC given by (5.27) that gives as
gluing point candidate θ = 1/2, leading to a gluing copula decomposition as in (5.4)
where C1 is NQD and NRD and therefore leads to a non-increasing regression func-
tion μ1(x), and where C2 is PQD and PRD and therefore leads to a non-decreasing
regression function μ2(x), that is:

μ(x) =

{
μ1(x) ↓ , u = FX (x) = x≤ θ = 1/2 ,
μ2(x) ↑ , u = FX (x) = x≥ θ = 1/2.

(5.32)

In this example it was possible to obtain a gluing copula decomposition as in (5.4) of
the underlying copula C into C1 and C2 being these last two copulas NQD and PQD,
respectively, and therefore candidates to be approximated by well known totally
ordered families of copulas. �

5.5 Final remarks

If (X ,Y ) is a bivariate random vector of continuous random variables with an under-
lying copula C such that |ρC| < σC then C is neither PQD nor NQD and therefore
neither PRD nor NRD. Many of well known parametric families of copulas are to-
tally ordered (that is, PQD and/or NQD) and in such case they have to be discarded
as admissible copulas for (X ,Y ). To face this challenge, in the present work it has
been proposed a gluing copula decomposition of C into totally ordered copulas that
combined may lead to a non-monotone regression function.
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Chapter 6

When Gumbel met Galambos

Christian Genest and Johanna G. Nešlehová

Abstract The well known bivariate Gumbel and Galambos copulas have analytical
forms whose similarity is intriguing. As explored here, several deep connections
indeed exist between these two parametric families of copulas in any dimension.

6.1 Introduction

Emil Gumbel (1891–1966) and János Galambos (1940–) are two early contributors
to extreme-value theory who wrote influential books on the subject [10, 11, 16].
While they probably never met, they are frequently cited together in the statistical
literature on extremes, such as [1, 5], through families of multivariate dependence
structures that bear their name. In the context of copula theory, which Roger Nelsen
promoted and developed through research and the two editions of his book [28, 30],
the Gumbel and Galambos parametric families of copulas are well known.

The bivariate Gumbel copula with parameter ρ ∈ (0,1) is defined, for all u1,u2 ∈
(0,1), by

GUρ(u1,u2) = exp[−{| ln(u1)|ρ + | ln(u2)|ρ}1/ρ ]. (6.1)

The limiting cases ρ = 0 and ρ = 1 correspond respectively to the Fréchet–
Hoeffding upper bound M and the independence copula Π , where for all u1,u2,
M(u1,u2) = min(u1,u2) and Π(u1,u2) = u1u2.

As for the bivariate Galambos copula with parameter ρ ∈ (0,∞), it is defined, for
all u1,u2 ∈ (0,1), by
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GAρ(u1,u2) =
u1u2

exp[−{| ln(u1)|−1/ρ + | ln(u2)|−1/ρ}−ρ ] . (6.2)

The limiting cases ρ = 0 and ρ = ∞ correspond to the Fréchet–Hoeffding upper
bound M and the independence copula Π , respectively.

Beyond the fact that both families belong to the class of extreme-value copulas,
they have expressions that seem tantalizingly similar. The purpose of this contri-
bution to Roger Nelsen’s Festschrift is to unveil some of the deep connections that
exist between these two families of bivariate copulas and the following d-variate
extensions thereof, defined for arbitrary u1, . . . ,ud ∈ (0,1), by

GUρ(u1, . . . ,ud) = exp
[
−
{ d

∑
i=1
| ln(ui)|ρ

}1/ρ]
,

GAρ(u1, . . . ,ud) = exp
[

∑
A⊆{1,...,d}, A�= /0

(−1)|A|
{

∑
i∈A
| ln(ui)|−1/ρ

}−ρ]
.

In Section 6.2 we explore the Gumbel family from the perspective of Archimedean
copulas. In Section 6.3 we embed the Galambos family in the reciprocal Archimedean
class, newly introduced in [13]. Finally, Section 6.4 highlights the similarities be-
tween the two families when viewed as members of the extreme-value copula class.

6.2 Gumbel copulas as Archimedean copulas

Copulas of the form (6.1) were introduced implicitly by Gumbel, almost as an after-
thought, at the end of a paper studying new bivariate exponential distributions [17].
These copulas are easily seen to be Archimedean [28, 30, 36] and they are in fact
the only copulas that are both extreme-value and Archimedean [14].

In arbitrary dimension d ≥ 2, a copula is called Archimedean if it can be ex-
pressed, for all u1, . . . ,ud ∈ [0,1], in the form

Cψ(u1, . . . ,ud) = ψ{ψ−1(u1)+ · · ·+ψ−1(ud)}, (6.3)

where ψ : [0,∞) → [0,1] is d-monotone on (0,∞) and such that ψ(0) = 1 and
ψ(x)→ 0 as x → ∞; see [24, 26]. By convention, ψ−1(0) = inf{x ∈ R : ψ(x) =
0}. Following [38], a function f is said to be d-monotone on (0,∞) if for all
k ∈ {0, . . . ,d− 2}, the kth derivative of f exists everywhere on (0,∞) and satisfies
(−1)k f (k) ≥ 0, and if (−1)d−2 f (d−2) is non-increasing and convex.

The Gumbel copula is of the form (6.3) in every dimension d ≥ 2. Its generator
is defined, for all x ∈ [0,∞), by ψρ(x) = exp(−xρ). This generator is completely
monotone and has been identified as the Laplace transform of a variable Tρ whose
distribution γρ is positive stable with parameter ρ ∈ (0,1) and unit scaling [8]. The
copula GUρ may thus be regarded as the dependence structure of a multiplicative
hazard model [25, 31]. It was actually introduced as such by Hougaard [21], inde-
pendently of Gumbel’s work. Specifically, if X1, . . . ,Xd are mutually independent
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unit exponential random variables that are independent of the frailty Tρ , GUρ is the
survival copula of the random vector (X1, . . . ,Xd)/Tρ . This fact can be used, e.g.,
for sampling [25].

The Gumbel generator ψρ is also the survival function of the Weibull distribution
with shape parameter ρ and unit scaling. By Sklar’s Theorem for survival functions,
the mapping defined, for all x1, . . . ,xd ∈ [0,∞), by

GUρ{ψρ(x1), . . . ,ψρ(xd)}= ψρ(x1 + · · ·+ xd)

is thus a d-variate survival function with Weibull margins. Because this survival
function depends on x1, . . . ,xd only through their sum, it is Schur-constant.

As recognized by Nelsen [29], the survival copula of a Schur-constant survival
function is necessarily Archimedean. The converse is also true, as shown in [26]. In
fact, distributions on [0,∞)d with Schur-constant survival function coincide with the
class of �1-norm symmetric distributions. In particular, GUρ is the survival copula
of the random vector Rρ × (S1, . . . ,Sd), where (S1, . . . ,Sd) is uniformly distributed
on the unit simplex Sd = {(w1, . . . ,wd)∈ [0,1] : w1+ · · ·+wd = 1} and independent
of the strictly positive radial random variable Rρ . Put differently, the Gumbel copula
is the dependence structure of a resource sharing model, in which a random resource
Rρ is distributed equitably among d ≥ 2 agents [27].

The distribution function of Rρ is given through the inverse of the Williamson
d-transform of ψρ ; see [26]. That is, for all r ∈ (0,∞),

Pr(Rρ ≤ r) = 1−
d−1

∑
k=0

(−1)k

k!
rkψ(k)

ρ (r).

The derivatives of ψρ seem cumbersome to compute at first sight. Thanks to [20],
however, it is known that, for all d ∈ N and x ∈ (0,∞),

(−1)dψ(d)
ρ (x) =

ψρ(x)
xd

d

∑
k=1

xkρakd(ρ),

where for all k ∈ {1, . . . ,d}, adk(ρ) is a constant given in terms of the Stirling num-
bers s and S of the first and second kind, respectively, viz.

adk(ρ) = (−1)d−k
d

∑
i=k
ρ is(d, i)S(i,k) =

d!
k!

k

∑
i=1

(
k
i

)(
ρi
d

)
(−1)d−i.

A simple calculation shows that the density of Rρ is given, for all r ∈ (0,∞), by

gρ(r) =
(−1)d

(d−1)!
rd−1ψ(d)

ρ (r) =
d

∑
k=1

mdk(ρ)
{

ρ
(k−1)!

rρk−1e−rρ
}
, (6.4)

where, for each k ∈ {1, . . . ,d}, mdk(ρ) = adk(ρ)(k−1)!/{(d−1)!ρ}. In (6.4), the
term in curly brackets is the density of Q1/ρ , where Q is a Gamma random variable
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with shape parameter k ∈ {1, . . . ,d} and unit scaling, called a generalized Gamma
in [37]. As the weights md1(ρ), . . . ,mdd(ρ) are positive and add up to 1 for all
ρ ∈ (0,1), gρ can be recognized as a d-fold mixture of generalized Gamma ran-
dom variables. This leads to an easy implementation of the alternative sampling
algorithm for Archimedean copulas described in [26].

6.3 Galambos copulas as reciprocal Archimedean copulas

Formula (6.2) and its d-variate extension were obtained by Galambos [9] as the de-
pendence structure of the extremal attractor of Mardia’s multivariate survival Pareto
distribution. Just as Gumbel copulas are the only extreme-value copulas that are
Archimedean, Galambos copulas are the only extreme-value copulas that are recip-
rocal Archimedean in the sense of [13]. In the latter paper, a copula C is said to be
reciprocal Archimedean if it can be expressed, for all u1, . . . ,ud ∈ [0,1], in the form

CF(u1, . . . ,ud) = ∏
A∈Pd,o

F
{
∑
k∈A

F−1(uk)
}/

∏
A∈Pd,e

F
{
∑
k∈A

F−1(uk)
}
, (6.5)

where Pd,o = {A ⊆ {1, . . . ,d} : A �= /0 and |A| is odd}, Pd,e = {A ⊆ {1, . . . ,d} :
A �= /0 and |A| is even}, and the reciprocal Archimedean generator F is a continuous
univariate distribution with support [0,xF ], where 0 < xF ≤ ∞. In the case d = 2,
formula (6.5) reduces, for all u1,u2 ∈ [0,1], to the “reciprocal Archimedean” form

CF(u1,u2) =
u1u2

F{F−1(u1)+F−1(u2)} ,

which justifies in part the terminology. The copula GAρ is indeed of this form with
generator defined, for all x ∈ [0,∞), by Fρ(x) = exp(−x−ρ), i.e., its generator is the
Fréchet distribution function with parameter ρ ∈ (0,∞).

By Sklar’s Theorem, the distribution function given, for all x1, . . . ,xd ∈ [0,∞), by

HF(x1, . . . ,xd) =CF{F(x1), . . . ,F(xd)}= ∏
A∈Pd,o

F
(
∑
k∈A

xk
)/

∏
A∈Pd,e

F
(
∑
k∈A

xk
)

(6.6)
has margins F and a reciprocal Archimedean copula with generator F . Clearly, the
survival function corresponding to HF in (6.6) is not Schur-convex. However, HF
admits an alternative expression in which Schur-convexity plays a prominent role.

As shown in [13], Eq. (6.5) defines a copula if and only if Λ = − ln(F) is d-
monotone on (0,∞). The authors further prove that HF is max-infinitely divisible
(max-id), i.e., H p

F is a bona fide d-variate distribution function for any p > 0. More-
over, one has, for all x1, . . . ,xd ∈ [0,∞),

HF(x1, . . . ,xd) = exp
{−μF([−∞,x1]×·· ·× [−∞,xd ])

�},
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where the complement is taken with respect to the set Ed = [0,∞]d \{(0, . . . ,0)} and
μF is a measure on Ed such that, for all k ∈ {1, . . . ,d}, μF{(x1, . . . ,xd) ∈ Ed : xk =
0}= 0, and for all (x1, . . . ,xd) ∈ Ed ,

μF((x1,∞]×·· ·× (xd ,∞]) =Λ(x1 + · · ·+ xd).

In other words, the generalized survival function induced by μF is Schur-convex.
Alternatively, the exponent measure μF is �1-norm symmetric. It is further proved

in [13] that the class of max-id distributions whose exponent measure is �1-norm
symmetric has a stochastic representation which parallels that of �1-norm symmetric
distributions. Indeed, given a distribution of the form (6.6), define first the radial
measure νF on (0,∞] in such a way that, for all r ∈ (0,∞),

νF(r,∞] =
d−2

∑
k=0

(−1)kΛ (k)(r)
k!

rk +
(−1)d−1Λ (d−1)

+ (r)
(d−1)!

rd−1,

where Λ (d−1)
+ denotes the right-hand derivative of Λ (d−2). Next introduce a Pois-

son random measure ζ = ∑k δ (rk,sk1, . . . ,skd) on (0,∞]× Sd with mean measure
νF ×σd , where δ denotes a Dirac point measure and σd is the uniform probability
measure on Sd . Then HF is the distribution function of the random vector

Y = (Y1, . . . ,Yd) = max
k
{rk× (sk1, . . . ,skd)}∨ (0, . . . ,0),

where the maximum is taken component-wise and a∨b = max(a,b) for any vectors
a,b ∈ Rd . As discussed in [13], this representation leads, among other things, to
simulation algorithms for copulas of the form (6.5).

For the Galambos copula with parameter ρ ∈ (0,∞), one has Fρ(x) = exp(−x−ρ)
for all x ∈ [0,∞), i.e., Λρ(x) = − ln{Fρ(x)} = x−ρ . This function is completely
monotone and, for all k ∈ N, its kth derivative is given, for all x ∈ (0,∞), by

Λ (k)
ρ (x) = (−1)kx−ρ−k

k−1

∏
j=0

(ρ+ j).

Furthermore, the corresponding radial measure νFρ is such that, for all r ∈ (0,∞),

νFρ (r,∞] =
d−1

∑
k=0

(−1)k

k!
rk(−1)kx−ρ−k

k−1

∏
j=0

(ρ+ j) = r−ρ
Γ (ρ+d)

Γ (d)Γ (ρ+1)
,

where Γ is the Gamma function. Moreover, Λρ is the Laplace transform of a mea-
sure γρ on [0,∞) with γρ [0, t] = tρ/Γ (1+ρ) for all t ∈ [0,∞), as for all x ∈ (0,∞),∫ ∞

0
e−txγρ(t) =

ρ
Γ (1+ρ)

∫ ∞

0
e−txtρ−1dt = x−ρ =Λρ(x).

Now let E1 denote the unit exponential distribution on (0,∞) and consider a Pois-
son random measure ξ = ∑k δ (xk1, . . . ,xkd , tk) on (0,∞)d × [0,∞) with mean mea-
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sure E1×·· ·×E1×γρ . The function HFρ given in (6.6) is the distribution function of

(Z1, . . . ,Zd) = max
k
{(xk1, . . . ,xkd)/tk}∨ (0, . . . ,0),

as established in [13]. This stochastic representation parallels the interpretation
of Archimedean copulas with completely monotone generators as the dependence
structures of multiplicative frailty models. The measure γρ plays the role of the
frailty distribution. However, the crucial difference is that γρ([0,∞)) is infinite, so
that γρ cannot be scaled to be a probability measure.

6.4 Gumbel and Galambos brought together

Being extreme-value, the Gumbel and Galambos copulas can both be written, for
all u1, . . . ,ud ∈ (0,1), in the form

C�(u1, . . . ,ud) = exp[−�{− ln(u1), . . . ,− ln(ud)}], (6.7)

in terms of a function � : [0,∞)d → [0,∞) called the stable tail dependence function
[12, 15, 19] whose analytical characterization is given in [3, 34].

The stable tail dependence function of the Gumbel copula with parameter ρ ∈
(0,1) is given, for all x1, . . . ,xd ∈ [0,∞), by

�GU
ρ (x1, . . . ,xd) =

(
x1/ρ

1 + · · ·+ x1/ρ
d

)ρ
.

In contrast, the stable tail dependence function of the Galambos copula with param-
eter ρ ∈ (0,∞) is given, for all x1, . . . ,xd ∈ [0,∞), by

�GA
ρ (x1, . . . ,xd) = ∑

A⊂{1,...,d}, A�= /0
(−1)|A|+1

(
∑
i∈A

x−1/ρ
i

)ρ
.

As already mentioned, members of the Gumbel and Galambos families are the
only extreme-value copulas that are Archimedean and reciprocal Archimedean, re-
spectively. It is also known that Gumbel copulas are the only extreme-value attrac-
tors of the Archimedean class [4, 14, 23]. Proposition 6.1 below establishes a similar
result for the Galambos family within the class of reciprocal Archimedean copulas.

Recall first that an arbitrary copula C lies in the maximum domain of attraction
of an extreme-value copula C0 if, for all u1, . . . ,ud ∈ [0,1],

lim
n→∞

Cn(u1/n
1 , . . . ,u1/n

d ) =C0(u1, . . . ,ud).

Proposition 6.1. Let CF be a d-variate reciprocal Archimedean copula with gener-
ator F such that 1−F is regularly varying with index −ρ for ρ ∈ (0,∞), i.e., such
that for any x ∈ (0,∞), {1−F(xt)}/{1−F(t)} → x−ρ as t → ∞. Then CF is in the
maximum domain of attraction of the Galambos copula GAρ .
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Proof. Recall from [33] that if 1−F is regularly varying with index−ρ , there exists
a sequence (an) of positive constants such that, for any x ∈ (0,∞), Fn(anx)→ e−x−ρ

as n→ ∞. Thus HF given in Eq. (6.6) satisfies, for all x1, . . . ,xd ∈ (0,∞),

lim
n→∞

Hn
F(anx1, . . . ,anxd) = lim

n→∞ ∏
A∈Pd,o

Fn(an ∑
k∈A

xk
)/

∏
A∈Pd,e

Fn(an ∑
k∈A

xk
)

= ∏
A∈Pd,o

exp{−(∑
k∈A

xk
)−ρ}/ ∏

A∈Pd,e

exp{−(∑
k∈A

xk
)−ρ}.

The last expression is easily recognized as the distribution function HFρ , where
for all x ∈ (0,∞), Fρ(x) = exp(−x−ρ) is the Galambos generator. Consequently, the
copula of HF is in the maximum domain of attraction of GAρ , as claimed. �

Regular variation of 1− F required in Proposition 6.1 parallels the condition
needed for an Archimedean copula Cψ to be in the domain of attraction of GUρ ,
namely that 1−ψ(1/·) is regularly varying with index −ρ ∈ [−1,0). The limiting
case ρ = 1 refers to the independence copula Π .

In the remainder of this section, we show that the Gumbel and Galambos fami-
lies can in fact be embedded in a single parametric class of extreme-value copulas.
To this end, note that the stable tail dependence function in (6.7) can also be conve-
niently characterized in terms of a probability measure υd on Sd , called the spectral
distribution, with the property that, for all k ∈ {1, . . . ,d},∫

Sd

wk dυd(w1, . . . ,wd) =
1
d
.

Following [11, 32], one then has, for all x1, . . . ,xd ∈ [0,∞),

�(x1, . . . ,xd) = d
∫
Sd

max(w1x1, . . . ,wdxd)dυd(w1, . . . ,wd).

In the special case of the Gumbel copula, a simple calculation shows that the
density of the spectral distribution υd is given, for all (w1, . . . ,wd) ∈ Sd , by

hGU
ρ (w1, . . . ,wd) =

Γ (d−ρ)
dρd−1Γ (1−ρ)

( d

∏
k=1

wk

)−1/ρ−1( d

∑
k=1

w−1/ρ
k

)ρ−d
, (6.8)

which is the spectral density of Gumbel’s multivariate logistic model; see [6, 18].
For the Galambos copula, the density of υd is given, for all (w1, . . . ,wd) ∈ Sd , by

hGA
ρ (w1, . . . ,wd) =

Γ (d +ρ)
dρd−1Γ (1+ρ)

( d

∏
k=1

wk

)1/ρ−1( d

∑
k=1

w1/ρ
k

)−ρ−d
, (6.9)

which is the spectral density of the negative logistic model; see, e.g., [6, 22].
Comparing (6.8) and (6.9), one can see that the formulas are again strikingly

similar. In fact, it turns out that they can be embedded in one and the same family
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of spectral densities as follows. For all (w1, . . . ,wd) ∈ Sd and ρ ∈ (−∞,1)\{0}, let

hG
ρ (w1, . . . ,wd) =

Γ (d−ρ)
d|ρ|d−1Γ (1−ρ)

( d

∏
k=1

wk

)−1/ρ−1( d

∑
k=1

w−1/ρ
k

)ρ−d
. (6.10)

Then, for all (w1, . . . ,wd) ∈ Sd , one finds

hG
ρ (w1, . . . ,wd) =

{
hGU
ρ (w1, . . . ,wd) if ρ ∈ (0,1),

hGA−ρ (w1, . . . ,wd) if ρ ∈ (−∞,0).

The family of stable tail dependence functions with spectral density (6.10) is a
special case of the scaled extremal Dirichlet model derived in [2]. As shown therein,
this model has a simple stochastic representation which is stated and proved below
in the specific case of hG

ρ .

Proposition 6.2. For arbitrary ρ ∈ (−∞,1) \ {0}, the stable tail dependence func-
tion �G

ρ with spectral density (6.10) is given, for all x1, . . . ,xd ∈ [0,∞), by

�G
ρ (x1, . . . ,xd) =

Γ (d−ρ)
Γ (d)Γ (1−ρ) E{max(x1S−ρ1 , . . . ,xdS−ρd )}

=
1

Γ (1−ρ) E{max(x1X−ρ1 , . . . ,xdX−ρd )},

where (S1, . . . ,Sd) is uniformly distributed on the unit simplex Sd and X1, . . . ,Xd are
mutually independent unit exponential random variables.

Proof. As is well known, X = X1 + · · ·+Xd is independent of (X1/X , . . . ,Xd/X)
and the latter has the same distribution as (S1, . . . ,Sd). Moreover, X is Gamma with
shape parameter d and unit scaling. Therefore, E(X−ρ) = Γ (d−ρ)/Γ (d) and thus

E{max(x1X−ρ1 , . . . ,xdX−ρd )}= Γ (d−ρ)
Γ (d)

E{max(x1S−ρ1 , . . . ,xdS−ρd )}.

Furthermore, the left-hand side can be computed to be

1
Γ (1−ρ)

∫ ∞

0
· · ·
∫ ∞

0
max(x1t−ρ1 , . . . ,xdt−ρd )

( d

∏
k=1

e−tk
)

dt1 · · ·dtd . (6.11)

Now set q = t−ρ1 + · · ·+ t−ρd and wk = t−ρk /q for all k ∈ {1, . . . ,d − 1}. Let also
wd = 1− (w1 + · · ·+wd−1) so that, for all k ∈ {1, . . . ,d}, tk = (qwk)

−1/ρ . As the
absolute value of the Jacobian of this transformation is

|J|= 1
|ρ|d q−d/ρ−1

( d

∏
k=1

wk

)−1/ρ−1
,

the expression (6.11) can be rewritten as
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1
|ρ|dΓ (1−ρ)

∫
Sd

max(x1w1, . . . ,xdwd)
( d

∏
k=1

wk

)−1/ρ−1

×
∫ ∞

0
q−d/ρe−q−1/ρ ∑d

k=1 w−1/ρ
k dqdw1 · · ·dwd−1.

Equation (6.10) now follows from the fact that

∫ ∞

0
q−d/ρe−q−1/ρ ∑d

k=1 w−1/ρ
k dq = |ρ|Γ (d−ρ)

( d

∑
k=1

w−1/ρ
k

)ρ−d
.

This concludes the argument. �

Further note that, for all x1, . . . ,xd ∈ [0,∞),

lim
ρ→0

�G
ρ (x1, . . . ,xd) = max(x1, . . . ,xd),

which is the stable tail dependence function of the Fréchet–Hoeffding upper bound
[28, 30], i.e., the copula M of d comonotonic uniform random variables. The spectral
distribution of M is degenerate; it places mass 1 at (1/d, . . . ,1/d).

From Proposition 6.2 one sees that, for any x1, . . . ,xd ∈ [0,∞) and any ρ ∈ (0,1),

�GU
ρ (x1, . . . ,xd) =

1
Γ (1−ρ) E{max(x1X−ρ1 , . . . ,xdX−ρd )} (6.12)

while for any ρ ∈ (0,∞),

�GA
ρ (x1, . . . ,xd) =

1
Γ (1+ρ)

E{max(x1Xρ
1 , . . . ,xdXρ

d )}. (6.13)

It is interesting to note that when X is unit exponential and ρ > 0, E(Xρ) =Γ (1+ρ)
is always finite, while E(X−ρ) is finite and equal to Γ (1− ρ) only when ρ < 1.
Thus the parameter space of the Gumbel copula can only be extended to [0,1] but
not beyond; the case ρ = 1 corresponds to independence.

Beyond highlighting the kinship between the Gumbel and Galambos families
of copulas, formulas (6.12)–(6.13) lead to a unified simulation algorithm for these
two dependence structures. This procedure, adapted from [7, 35], is presented in a
broader context in [2]. Gumbel and Galambos are thereby united, at last.
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References

1. Beirlant, J., Goegebeur, Y., Teugels, J., Segers, J.: Statistics of Extremes. Wiley, Chichester
(2004)
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Chapter 7

On the Conditional Value-at-Risk (CoVaR) in

copula setting

Piotr Jaworski

Abstract This survey is dedicated to an application of copula methodology to sys-
temic risk management. We deal with the modified Conditional Value-at-Risk (Co-
VaR) for various families of copulas. We study to what extent the tail behaviour of
the copula determines the limiting performance of the CoVaR when the conditioning
event is becoming more extreme.

7.1 Introduction

The theory of copulas provides a useful tool for modeling dependence in risk man-
agement. In insurance and finance, as well as in other applications like hydrology,
dependence of extreme events is particularly important, hence there is a need for the
detailed study of the tail behaviour of copulas.

To fix the notation, in this paper we will base on the Profit/Loss (P/L) approach
as for example in [12, 1, 2, 22].

We will study random variables X and Y , which are modelling for example: wel-
fare of the financial institutions, financial positions, gains of the investments, or rates
of returns of stock prices and indices. So generally

”The higher value of X the better”.

We recall that Value-at-Risk, at a given significance level α ∈ (0,1), of a P/L
random variable X , is defined as follows ([12]):

VaRα(X) = inf{v ∈ R : P(X + v < 0)≤ α}.
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The above can be expressed in terms of quantiles. Namely Value-at-Risk at a
level α is equal to minus upper α quantile of X or lower 1−α quantile of the loss
−X

VaRα(X) =−Q+
α (X) = Q−1−α(−X).

We recall that for a given random variable X and a given level κ ∈ (0,1) the set
of κ quantiles is a closed interval Qκ(X), which might be reduced to a point. The
end points of the interval Qκ(X) are referred to as upper and lower quantiles.

[Q−κ (X),Q+
κ (X)] = Qκ(X) = {x : P(X ≤ x)≥ κ and P(X ≥ x)≥ 1−κ}.

To switch to the alternative Loss/Profit (L/P) approach (applied for example in
[32, 15, 3]) when random variables are modelling losses of the financial investments,
actuarial risks or high water levels in hydrology, it is is enough to change the sign
of the variables

L =−X ,

and remember that, by a convention, the subscript is changed. The significance level
α is replaced by the confidence level c = 1−α

VaRc(L) =VaRα(X).

Now assume, that we are measuring the risk given some stress event. For exam-
ple, we want to determine how big bailout would be necessary to keep a financial
institution Y solvent with probability at least 1−β when a financial institution X
would perform badly. Conditional Value-at-Risk (CoVaR) introduced in 2008 by
Adrian and Brunnermeier ([1]) and its later modifications proved to be very useful
tools for measuring (quantifying) such phenomena.

Let X and Y be random variables modelling positions. CoVaR is defined as VaR
of Y conditioned by X. In more details:

CoVaR(Y |X) =VaRβ (Y |X ∈ E),

where a Borel subset of the real line E is modeling some adverse event concerning
X . Most often E consists of one point (a threshold) or is a half-line bounded by a
threshold.

As we see, to deal with CoVaR, one has to model the dependence between Y
and X . This can be achieved by means of copulas. In this survey we recapitulate the
results stated in [32, 2, 22] putting a special attention to the asymptotic dependence
and asymptotic independence between X and Y . Since we are following a P/L ap-
proach, we are interested in the shape of the copula close to the left border of the
unit square, especially around the origin.

Adrian and Brunnermeier ([1]) applied the construction with E consisting of one
point. Such approach has a certain drawback, pointed out for example by Mainik
and Schaanning in [32], which is due to the fact that the standard CoVaR is not
compatible with the concordance ordering. Hence it is ”breaking” the paradigm:
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more dependence, more systemic risk (see also [22]). To avoid this inconsistency a
modified definition of CoVaR was introduced in 2013 and 2014 by Girardi and A.T.
Ergün ([13]) and by Mainik and Schaanning ([32]), both in L/P setting.
The modified Conditional-VaR at a level (α,β ), which is a main objective of this
survey, is defined as VaR at level β of Y under the condition that X ≤−VaRα(X).

Definition 7.1.

CoVaR≤α,β (Y |X) =VaRβ (Y | X ≤−VaRα(X)),

which can be expressed in terms of quantiles as:

CoVaR≤α,β (Y |X) =−Q+
β (Y | X ≤ Q+

α (X)).

The paper is organized in the following way:
In section 7.2 we recapitulate the basic facts about copulas, their geometric trans-
formations and tail expansions.
Section 7.3 contains the main ”general” results. We recall how to express modified
CoVaR in terms of copulas. Following [2] we study the threshold w∗(α,β ,C) such
that CoVaR≤(Y )=VaRw∗(Y ). We discuss the compatibility of modified CoVaR with
concordance ordering of copulas i.e. with the strength of dependence between the
conditioned and conditioning variable and provide the rough bounds for the thresh-
olds. Next we deal with copulas with non-trivial tail expansions at one of points
(0,0) or (0,1) or both of them. We show that for such copulas the first order limiting
properties of w∗ are fully determined by the tail dependence functions. In the last
part of the section we deal with copulas that are differentiable and close to the inde-
pendent copula.
We illustrate the above results in last section. We study the implied threshold w∗ for
several families of copulas.

7.2 Copulas

7.2.1 Basic notation

To fix the notation we collect here some basic facts about copulas. For more details
the reader is referred to the monograph of Roger Nelsen [35] or other publications
on the subject like [26, 8, 6, 23, 24, 10, 34].

We recall that the function

C : [0,1]2 −→ [0,1]

is called a copula if the following three properties hold:

(c1) ∀u1,u2 ∈ [0,1] C(u1,0) = 0, C(0,u2) = 0;
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(c2) ∀u1,u2 ∈ [0,1] C(u1,1) = u1, C(1,u2) = u2;
(c3) ∀u1,u2,v1,v2 ∈ [0,1], u1 ≤ v1,u2 ≤ v2

C(v1,v2)−C(u1,v2)−C(v1,u2)+C(u1,u2)≥ 0.

We can alternatively characterize copulas in a more probabilistic way. Namely,
a function C is a copula if and only if there exist random variables U,V , which
are uniformly distributed on [0,1], such that C is a restriction to the unit square
[0,1]2 of their joint distribution function. Random variables U and V are called the
representers of the copula C.

Note that when random variables X and Y have continuous distribution functions
FX and FY , then the random variables

FX (X),FY (Y )

are representers of the copula C of the pair (X ,Y ) (compare [18] Pr.1).
One more premise to use copulas to model systemic risk follows from the fact

that the copulas are true measures of interdependence between random phenomena.
Namely they do not depend on the scale in which these phenomena are quantified.

Indeed, if C is a copula of a random pair

X = (X1,X2),

and the functions h1,h2 are defined and strictly increasing on the supports of X1,X2,
then C is also a copula of the transformed random pair

Y = (h1(X1),h2(X2)).

7.2.2 Geometrical transformations of copulas

We recall that there exist eight linear isometric transformations of the unit square
[0,1]2: two mirror reflections with respect to the diagonals, two mirror reflections
with respect to bisectors, one point reflection, two rotations ±π/2 (90 and 270 de-
grees) and identity. They induce the transformations of copulas. Namely let random
variables (U1,U2) be representers of a copula C and

σ : [0.1]2 −→ [0,1]2

be an isometry, then random variables V1,V2 given by

(V1,V2) = σ(U1,U2)

are uniformly distributed on the unit interval [0,1]. The copula Cσ of the pair V1,V2
is called a reflection or respectively rotation of the copula C.
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The copulas obtained by the point reflection are better known under the name
”survival copulas”

Csurv(u,v) = u+ v−1+C(1−u,1− v).

Note that in this case
V1 = 1−U1, V2 = 1−U2.

Survival copulas are a useful tool when one is switching from P/L to L/P setting.
Indeed when C is a copula of gains X and Y , then the survival copula Csurv is a cop-
ula of losses L1 =−X and L2 =−Y .

In the following we will study the tail behaviour of copulas at the left side of its
domain. Therefore we will be checking the tail dependence not only at the origin
(0,0) but also at the vertex (0,1). We will denote by Ĉ the reflection of a copula C
with respect to the horizontal line v = 0.5.

Ĉ(u,v) = u−C(u,1− v).

In this case
V1 =U1, V2 = 1−U2.

7.2.3 Copulas admitting tail expansions

In risk management one has to deal with extreme events and the interdependen-
cies between them. This leads to the study of the tail behaviour of a copula, i.e.
of the possible approximations of a copula close to the vertices of the unit square.
Since applying a proper geometric transformation one may map any vertex of the
unit square [0,1]2 to the selected one, we restrict ourselves to the vertex (0,0) (the
origin).

Definition 7.2. We say that a copula C has a tail expansion at the vertex (0,0) of the
unit square if the limit

lim
t→0+

C(tx, ty)
t

exists for all nonnegative x,y.

The function

L : [0,∞]2 −→ [0,∞), L(x,y) = lim
t→0

C(tx, ty)
t

,

is called the tail dependence function or the leading term of the tail expansion. The
second naming follows from the fact, proved in [19]: if L exists then we have a
decomposition of a copula
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C(u,v) = L(u,v)+R(u,v)(u+ v),

where R is bounded and
lim

(u,v)→(0,0)
R(u,v) = 0.

The above can be applied to other vertices as well. It is enough to reflect the
copula. For example for the vertex (0,1) we get

L̂(x,y) = lim
t→0

Ĉ(tx, ty)
t

= lim
t→0

tx−C(tx,1− ty)
t

.

Note that L(1,1) is equal to the lower tail dependence coefficient λL.
We recall the basic properties of the tail dependence functions (for details see

[17, 18, 19, 20, 21, 28, 4, 5, 27, 30]).

Lemma 7.1. [see [18, 19]] The tail dependence function induced by a copula C,

L(u) = lim
t→0+

C(tu)
t

, u ∈ [0,+∞)2,

is

1. homogeneous of degree 1,
2. 2-nondecreasing and nondecreasing with respect to every variable,
3. nonnegative and bounded by the smaller coordinate of u:

0≤ L(u)≤min(u1,u2).

4. Lipschitz with Lipschitz constant 1:

|L(v)−L(u)| ≤ |v1−u1|+ |v2−u2|.

5. concave:

∀λ1,λ2 ≥ 0,λ1 +λ2 = 1 L(λ1u+λ2v)≥ λ1L(u)+λ2L(v).

Due to homogeneity, the leading term L is uniquely described by vertical sections
like

l(t) = L(1, t).

Theorem 7.1. Let
l : [0,∞)→ [0,1], l(0) = 0,

be a nondecreasing, concave function, such that l(t)≤ t. Then the function

L : [0,+∞)2 −→ [0,+∞), L(x,y) =
{

xl
( y

x

)
for x > 0,

0 for x = 0.

is a leading term of some copula.
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The function l(t) = L(1, t) will be called a generator of the leading term. The
proof of theorem 7.1 follows from the examples in last section (see [18], section
2.1, and [17] for detailed calculations).

7.3 Modified CoVaR by copulas

We follow the P/L approach from [2]. For the L/P setting the reader is referred to
[32] Theorem 3.1.b.

Let C(u,v) be a copula of random variables X and Y having continuous distribu-
tion functions FX and FY , then

P(Y ≤ y | X ≤ Q+
α (X)) =

P(Y ≤ y∧X ≤ Q+
α (X))

α
=

C(α,FY (y))
α

.

Therefore
CoVaR≤α,β (Y |X) =VaRw∗(Y ),

where w∗ = w∗(α,β ,C) is the largest solution of the equation

C(α,w∗) = αβ .

Note that:
w∗ =−CoVaR≤α,β (FY (Y )|FX (X)).

Furthermore as was observed in [32] Theorem 3.4 for the L/P setting, modified
CoVaR is compatible with the concordance ordering of copulas. The same is valid
for the P/L setting ([22]). In more details:

Theorem 7.2. Let Ci(u,v), i = 1,2, be a copula of a random pair (Xi,Yi) having
continuous marginal distribution functions FXi and FYi and α,β ∈ (0,1] some fixed
thresholds. If

∀(u,v) ∈ [0,1]2 C1(u,v)≤C2(u,v),

then
w∗(α,β ,C1)≥ w∗(α,β ,C2). (7.1)

If, furthermore,
∀t ∈ (−∞,+∞) FY1(t)≥ FY2(t),

then
CoVaR≤α,β (Y1|X1)≤CoVaR≤α,β (Y2|X2). (7.2)

Theorem 7.2 implies the rough bounds for the threshold w∗. Due to Fréchet-
Hoeffding bounds (see [35, 8]) we have

M(u,v)≥C(u,v)≥W (u,v),
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where M(u,v) = min(u,v) is the comonotonicity copula and W (u,v) = (u+v−1)+

the countermonotonicity one. Since w∗(α,β ,M) = αβ and w∗(α,β ,W ) = 1−α+
αβ ([2] §3.1), we get:

Corollary 7.1. Let C be any bivariate copula. Then

αβ ≤ w∗(α,β ,C)≤ 1−α(1−β ).

If furthermore we assume that copula C is PQD (positively quadrant dependent)
i.e. C dominates the independence copula Π(u,v) = uv

∀(u,v) ∈ [0,1]2 C(u,v)≥ uv =Π(u,v),

we may improve the upper bound. Indeed, since w∗(α,β ,Π) = β , we get:

Corollary 7.2. Let C be a PQD copula then

αβ ≤ w∗(α,β ,C)≤ β .

So, if random variables X and Y with continuous distribution functions are more
likely to be large together or to be small together compared with a pair of indepen-
dent random variables (X ′,Y ′) where X ′ d

= X and Y ′ d
= Y then

CoVaR≤α,β (Y |X)≥VaRβ (Y ).

Indeed, a positively quadrant dependent random pair (X ,Y ) admits a positively
quadrant dependent copula (see [35] section 5.2.1).

7.3.1 Copulas with non-trivial tail expansions

In this section we deal with copulas having non-trivial tail expansions at the left
vertices of the unit square. We show that the generators of the leading terms describe
the limiting properties w∗(α,β ) for respectively small and large (close to 1) values
of β . Most of the copulas used to model dependencies between extremes have non-
trivial tail expansion at one vertex. But there are significant exceptions. For example
the t-Student copula has non-trivial tail expansions at all four vertices of the unit
square.

Theorem 7.3. ([22]) Let the copula C have a nonzero tail dependence function L

lim
t→0

C(tu, tv)
t

= L(u,v) = ul
( v

u

)
.

Then for β < l(∞)
lim
α→0

w∗(α,β ,C) = 0,



7 On the Conditional Value-at-Risk (CoVaR) in copula setting 103

lim
α→0

w∗(α,β ,C)

α
= l−1(β ).

Proof. For consistency we recall the proof. We have to solve the equation

C(α,w∗) = αβ . (7.3)

First we show that for sufficiently small α , w∗(α,β ,C) is bounded by some linear
function of α . Indeed. We choose β1 from the interval (β , l(+∞)). We obtain

lim
α→0

C(α,αl−1(β1))

α
= L(1, l−1(β1)) = β1 > β .

So, for α smaller than sufficiently small α1

C(α,αl−1(β1))> αβ .

Since C is continuous and monotonic in the second variable, we get that for α ∈
(0,α1) the solution w∗ of (7.3) is between 0 and αl−1(β1). Hence,

lim
α→0

w∗(α,β ,C) = 0.

To show the second equality we decompose C

C(u,v) = L(u,v)+R(u,v)(u+ v).

As it was shown in [19], R is bounded and has a limit at zero

lim
(u,v)→(0,0)

R(u,v) = 0,

i.e. for any two sequences of numbers un and vn from the unit interval, which are
tending to 0 when n→ ∞, the sequence Rn = R(un,vn) is tending to 0 as well.
We rewrite equation (7.3)

L(α,w∗)+R(α,w∗)(α+w∗) = αβ .

We divide both sides by α .

l
(w∗
α

)
= β −R(α,w∗)

(
1+

w∗
α

)
.

Hence,
w∗
α

= l−1
(
β −R(α,w∗)

(
1+

w∗
α

))
.

Since for α < α1 w∗ < αl−1(β1), we get

lim
α→0

R(α,w∗)
(

1+
w∗
α

)
= 0.
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Since l−1 is continuous, we obtain

lim
α→0

w∗(α,β ,C)

α
= l−1(β ).

The similar results are valid for the vertex (0,1).

Theorem 7.4. Let the copula C have a nonzero tail dependence function L̂ at the
vertex (0,1)

lim
t→0

tu−C(tu,1− tv)
t

= L̂(u,v) = ul̂
( v

u

)
.

Then for β > 1− l̂(∞)
lim
α→0

w∗(α,β ,C) = 1,

lim
α→0

w∗(α,β ,C)−1
α

= l̂−1(1−β ).

Proof. Let
Ĉ(u,v) = u−C(u,1− v)

be the reflected copula. Since w∗ = w∗(α,β ,C) is a solution of the equation

C(α,w∗) = αβ ,

we get
Ĉ(α,1−w∗) = α−C(α,w∗) = α(1−β ).

Hence,
w∗(α,β ,C) = 1−w∗(α,1−β ,Ĉ).

From theorem 7.3 applied for Ĉ and 1−β we get for 1−β < l̂(+∞)

w∗(α,β ,C) = 1−α l̂−1(1−β )+o(α).

7.3.2 Auxiliary results

In the next theorem we show that regularity conditions like differentiability of the
copula and non-vanishing density may simplify the study of the threshold w∗. We
shall deal with copulas that are three times continuously differentiable on the neig-
bourhood of the segment {0}× (0,1). In more details, we assume that there exists a
function C+ defined on R2 such that :
1. Copula C is a restriction of C+,

C(u,v) =C+(u,v) for all (u,v) ∈ [0,1]2.

2. The extension C+ is three times continuously differentiable on some neighbour-
hood of the segment {0}× (0,1).
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Theorem 7.5. Let the copula C admits an extension C+ which is three times contin-
uously differentiable on some convex neighbourhood U of the segment {0}× (0,1)
and its mixed derivative is positive on {0} × (0,1). Moreover, let the function
ϕ : [0,1]→ [0,1] given by

ϕ(v) =
∂C(0+,v)

∂u
be continuous.

Then, for all β ∈ (0,1),

lim
α→0

w∗(α,β ,C) = ϕ−1(β ).

and

lim
α→0

w∗(α,β ,C)−ϕ−1(β )
α

=−
∂ 2C+(0,ϕ−1(β ))

∂u2

∂ 2C+(0,ϕ−1(β ))
∂u∂v

.

Proof. Since the mixed derivative of C+ is positive along {0}× (0,1), ϕ(v) is con-
tinuous and strictly increasing on [0,1]. Hence there exists exactly one v0 ∈ (0,1)
such that

∂C+(0,v0)

∂u
= ϕ(v0) = β .

Equivalently one may put
v0 = ϕ−1(β ).

We shall study a new function

Ψ(u,v) =C+(u,v)−u
∂C+(0,v0)

∂u
.

Note that Ψ and its gradient are vanishing at the point (0,v0). Hence there exists
functions b1,1, b1,2 and b2,2 differentiable on U , such that

Ψ(u,v) = b1,1(u,v)u2 +b1,2(u,v)u(v− v0)+b2,2(u,v)(v− v0)
2

and

b2,2(0,v0) = 0, b1,2(0,v0) =
∂ 2C+(0,v0)

∂u∂v
, b1,1(0,v0) =

∂ 2C+(0,v0)

∂u2 .

For details see [16] Ch. 6 §1.1. Furthermore due to assumption about positivity of
a mixed derivative, b1,2(0,v0) is positive. Since ∂C+(0,v0)

∂u = β we have to solve an
equation

Ψ(α,w∗) = 0.

We substitute w∗(α) = v0 +αv1(α) and divide by α2. We get

b1,1(α,v0 +αv1)+b1,2(α,v0 +αv1)v1 +b2,2(α,v0 +αv1)v2
1 = 0.
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Since the left side of the equation is vanishing at the point α = 0,v1 =− b1,1(0,v0)

b1,2(0,v0)
and

the derivative of the left side with respect to v1 is positive at this point, the implicit
function theorem implies the existence of the function v1(α) which solves the above
equation. Obviously

v1(0) =−b1,1(0,v0)

b1,2(0,v0)
.

Next theorem shows what happens when we drop the assumption of the existence
and continuity of the right-sided derivate with respect to u at u = 0.

Theorem 7.6. If for every v ∈ (0,1]

liminf
α→0

C(α,v)
α

≥ l∗ > 0,

then for β < l∗
lim
α→0

w∗(α,β ,C) = 0.

Proof. Let us assume that there exists a sequence αk, limk→∞αk = 0, such that for
fixed β < l∗

lim
k→∞

w∗(αk,β ) = v∗ > 0.

Then for sufficiently large k
w∗(αk,β )>

v∗
2
.

Hence for such k

β =
C(αk,w∗(αk,β ))

αk
≥ C

(
αk,

v∗
2

)
αk

.

However

liminf
α→0

C
(
αk,

v∗
2

)
αk

≥ l∗ > β

and a contradiction holds.

7.4 Examples

7.4.1 Survival extreme value copulas

Let l : [0,+∞]→ [0,1] be a concave, nondecreasing function, such that l(t)≤ t, then
the function

Cl : [0,1]2 −→ [0,1],

Cl(u,v) = u+ v−1+(1−u)(1− v)exp
(
− ln(1−u)l

(
ln(1− v)
ln(1−u)

))
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is a copula. Indeed, the survival copula is given by

Csurv
l (u,v) = uvexp

(
− ln(u)l

(
ln(v)
ln(u)

))
.

It belongs to the well-known class of extreme value copulas (see for example [35]
§3.3.4, [8] §6.6. or [14]). When we put

l(t) = 1+ t− (1+ tθ )1/θ ,θ ≥ 1,

we get the Gumbel family of copulas.

Copula Cl has a non-trivial tail expansion at the origin (compare [18] §5.4)

L(x,y) = xl
(y

x

)
and trivial tail expansion at vertex (0,1). We get a following equation for w∗.

α+w∗ −1+(1−α)(1−w∗)exp
(
− ln(1−α)l

(
ln(1−w∗)
ln(1−α)

))
= αβ .

We solve it with respect to l.

l
(

ln(1−w∗)
ln(1−α)

)
=

ln(1+αβ −α−w∗)− ln(1−α)− ln(1−w∗)
− ln(1−α) = β +O(α).

Next we inverse l and assume that β < l(+∞). Theorem 7.3 implies that w∗ = O(α)
and we get

w∗ = 1− exp
(

ln(1−α)l−1
(

ln(1+αβ −α−w∗)− ln(1−α)− ln(1−w∗)
− ln(1−α)

))
= αl−1(β )+O(α2).

To get a better approximation of w∗ one may apply the following recurrence:

Lemma 7.2. ([22]) Let the functions w1,w2 : [0,1]−→ [0,1] fulfill the equation

w2(α)=1−exp
(

ln(1−α)l−1
(

ln(1+αβ−α−w1(α))−ln(1−α)−ln(1−w1(α))
− ln(1−α)

))
.

If w∗(α)−w1(α) = O(αk), k ≥ 2, then w∗(α)−w2(α) = O(αk+1).
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7.4.2 Survival conic copulas

Let l : [0,+∞]→ [0,1] be a concave, nondecreasing function, such that l(t)≤ t, then
the function

Cl : [0,1]2 −→ [0,1], Cl(u,v) = max
(

ul
( v

u

)
,u+ v−1

)
is a copula with a tail dependence function

L(x,y) = xl
(y

x

)
.

At the vertex (0,1), we get

L̂(x,y) = min((1− l(+∞))x,y),

with generator
l̂(t) = min(1− l(+∞), t).

Hence,
l̂(+∞) = 1− l(+∞).

Copulas of this form were used in [18] to prove the existence of copulas with given
lower and upper tail dependence functions. The survival copulas are given by

Csurv
l : [0,1]2 −→ [0,1],

Csurv
l (u,v) = max

(
1+(1−u)

(
l
(

1− v
1−u

)
− 1− v

1−u
−1
)
,0
)
.

They are known under the name ”conic copulas” (see [29, 11]).
To get the threshold w∗ we have to solve an equation

max
(

l
(w
α

)
,1+

w
α
− 1
α

)
= β .

We get

w∗ =
{

min(αl−1(β ),1−α(1−β )) for β < l(∞),
1−α(1−β ) for β ≥ l(∞),

Hence for β < l(∞) and α ≤ 1
1+l−1(β )−β

w∗(α,β ,Cl) = αl−1(β ).

If l(+∞)< 1 we have additionally an illustration to theorem 7.4.
For β ≥ l(+∞) = 1− l̂(+∞)

w∗(α,β ,Cl) = 1−α(1−β ) = 1−α l̂−1(1−β ).
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7.4.3 LTI copulas

Let f : [0,+∞]→ [0,1] be a surjective, concave and nondecreasing function and g
its right inverse ( f (g(y)) = y). Then the function

Cf : [0,1]2 −→ [0,1], Cf (x,y) =

{
0 for x = 0,

x f
(

g(y)
x

)
for x > 0.

is a copula introduced and considered in [7, 9]. It belongs to the class of copulas that
are invariant under left truncation. For a suitable generator f , the popular Clayton
copulas belong to this class. Namely

f (t) = (1+ t−θ )−1/θ , θ > 0.

Furthermore (see [9] proposition 4.1) the leading term of Cf equals

L(x,y) = x f
(

g′(0+)
y
x

)
.

Note that since g is a convex increasing function its right sided derivative at 0 exists
and is nonnegative. Furthermore L is nonzero if and only if g′(0+) > 0. Then the
generator l(t) equals f (g′(0+)t) and

l(+∞) = lim
t→+∞

l(t) = 1.

We have to solve an equation

f
(

g(w)
α

)
= β .

We get ([2])
w∗ = f (αg(β )),

lim
α→0

w∗ = f (0) = 0, lim
α→0

∂w∗
∂α

= lim
α→0

w∗
α

= f ′(0+)g(β ).

Note that since f is concave, nondecreasing its derivative may be finite or infinite.
In the first case Cf has a non-trivial leading term and

w∗ = α f ′(0+)g(β )+o(α).

7.4.4 Fréchet copulas

To illustrate the fact that copula may have two non-trivial tails along the x = 0
side of the unit square we consider the subclass of copulas from the Fréchet family
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that consists of the convex combinations of the comonotonicity copula M and the
countermonotonicity copula W . Copulas of this type are also known as X–copulas,
since their support is contained in the two diagonals of the unit square (see [8]). We
put for all λ ∈ (0,1)

CFre
λ (u,v) = λ min(u,v)+(1−λ )max(u+ v−1,0). (7.4)

We get
L(x,y) = λ min(x,y) , l(t) = λ min(1, t).

L̂(x,y) = (1−λ )min(x,y) , l̂(t) = (1−λ )min(1, t).

Note that since

l(+∞) = lim
t→+∞

l(t) = λ and l̂(+∞) = lim
t→+∞

l̂(t) = 1−λ ,

we get for a convex combination of M and W

l(+∞)+ l̂(+∞) = 1.

Let us consider the case α < 0.5 (which is the case of practical interest in the
calculation of these risky quantities). As for the calculation of w∗ (in the case α <
0.5), easy calculations yield

w∗ =

{
αβ
λ , for β < λ ,

1− α(1−β )
1−λ , for β ≥ λ .

For a pair of random variables with copula CFre
λ , we get

CoVaR≤α,β (Y | X) =

⎧⎨⎩VaR αβ
λ
(Y ) , for β < λ ,

VaR
1− α(1−β )

1−λ
(Y ) , for β ≥ λ .

7.4.5 t-Student copulas

The construction of t-Student copulas is based on the Sklar’s theorem.

Ct(u,v;ν ,r) =Φt(ν ,R)

(
Φ−1

t(ν ,1)(u),Φ
−1
t(ν ,1)(v)

)
,

R =

(
1 ρ
ρ 1

)
, ρ ∈ (−1,1), ν >= 1,

where Φt(ν ,R) and Φt(ν ,1) are distribution functions of bivariate and univariate t-
Student’s probability law.
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The t-Student copula has a non-trivial tail expansions at all four corners of the
unit square. For the origin (0,0) we have ([36], Thm.2.3)

L(x,y) =xΦt(ν+1,1)

( √
ν+1√
1−ρ2

(
−
(

x
y

) 1
ν
+ρ

))

+ yΦt(ν+1,1)

( √
ν+1√
1−ρ2

(
−
(y

x

) 1
ν
+ρ
))

with a generator

l(t) =Φt(ν+1,1)

( √
ν+1√
1−ρ2

(
−t−

1
ν +ρ

))
+ tΦt(ν+1,1)

( √
ν+1√
1−ρ2

(
−t

1
ν +ρ

))
.

Since the reflected t-Student copula is a t-Student copula with −ρ we get at
vertex (0,1)

L̂(x,y) =xΦt(ν+1,1)

( √
ν+1√
1−ρ2

(
−
(

x
y

) 1
ν
−ρ
))

+ yΦt(ν+1,1)

( √
ν+1√
1−ρ2

(
−
(y

x

) 1
ν −ρ

))

with a generator

l̂(t) =Φt(ν+1,1)

( √
ν+1√
1−ρ2

(
−t−

1
ν −ρ

))
+ tΦt(ν+1,1)

( √
ν+1√
1−ρ2

(
−t

1
ν −ρ

))
.

Note that

l(+∞) =Φt(ν+1,1)

( √
ν+1√
1−ρ2

ρ

)
, l̂(+∞) =Φt(ν+1,1)

(
−
√
ν+1√
1−ρ2

ρ

)
.

Hence similarly as in the previous examples

l(+∞)+ l̂(+∞) = 1.

Theorems 7.3 and 7.4 imply that:
For β < l(+∞)

w∗(α,β ,Ct) = αl−1(β )+o(α).

For β > l(+∞)
w∗(α,β ,Ct) = 1−α l̂−1(1−β )+o(α).
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7.4.6 FGM copulas

Now, consider the FGM family of copulas (see [8]), which is given for (u,v)∈ [0,1]2

and θ ∈ [−1,1] by

CFGM
θ (u,v) = uv(1+θ (1−u)(1− v)) . (7.5)

Note that FGM copulas are restrictions of polynomials. Hence they are illustrat-
ing theorem 7.5. As for the calculation, we can consider that w∗ is the solution of
the equation

v(1+θ(1−α)(1− v)) = β ,

which gives

w∗ =
2β

1+θ (1−α)+√Δ , with Δ = (1+θ (1−α))2−4βθ (1−α) .

In the independence case (i.e. θ = 0), we have CoVaR≤α,β (Y | X) = VaRβ (Y ), as
expected. It is of interest to note that

lim
α→0+

w∗ =
2β

1+θ +
√

1+2θ(1−2β )+θ 2
.

7.4.7 Marshall–Olkin copulas

Let (u,v) ∈ [0,1]2, and let a,b ∈ (0,1) be the copula parameters, then the Marshall–
Olkin copula (see, e.g., [8]) is defined as

CMO
a,b (u,v) =

{
u1−av, for ua ≥ vb,

uv1−b, for ua < vb.

Note that theorem 7.5 applies to the Marshall-Olkin family of copulas. Indeed, we
construct the extension C+ in a following way:

C+(u,v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u1−av, for ua ≥ vb ≥ 0,
uv1−b, for 0≤ ua < vb,

uv1−b, for u < 0≤ v,
0, for v < 0.

For the calculation of w∗, it can be checked that

w∗ =

{
βαa, for β ∈ (0,α(1−b)a/b),

β 1/(1−b), for β ∈ (α(1−b)a/b,1).
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In particular, we have
lim
α→0+

w∗ = β
1

1−b .

7.4.8 Gaussian copulas

The construction of Gaussian copulas similarly as t-Student copulas is based on the
Sklar’s theorem.

CGa(u,v;r) =ΦN(0,R)

(
Φ−1

N(0,1)(u),Φ
−1
N(0,1)(v)

)
, R =

(
1 r
r 1

)
, r ∈ (−1,1).

where ΦN(0,R) and ΦN(0,1) are distribution functions of bivariate and univariate
Gaussian probability law. Note that Gaussian copulas have trivial tail expansions
at all four vertices of the unit square (compare [18] Pr. 3). But with positive r they
fulfill assumptions of theorem 7.6. Indeed

∂CGa(u,v;r)
∂u

=ΦN(0,1)

(
Φ−1

N(0,1)(v)− rΦ−1
N(0,1)(u)√

1− r2

)
.

At the limit u = 0 we get for v > 0 and r > 0

∂CGa(0+,v;r)
∂u

= 1.

Hence,

lim
α→0

CGa(α,v;r)
α

=
∂CGa(0+,v;r)

∂u
= 1.

By a direct calculation we get:

lim
α→0

w∗ =

⎧⎨⎩
0 r > 0,
β r = 0,
1 r < 0,

lim
α→0

∂w∗
∂α

=

⎧⎨⎩
∞ r > 0,
0 r = 0,
−∞ r < 0,

7.4.9 Archimedean copulas

We recall that a bivariate copula C is called Archimedean (see [35, 33]) if there exist
generators ψ and ϕ such that
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Cϕ(u,v) = ψ(ϕ(u)+ϕ(v)).

The generators are convex decreasing functions

ψ : [0,∞]→ [0,1], ϕ : [0,1]→ [0,∞],

such that

ψ(0) = 1, ϕ(1) = 0, and ∀t ∈ [0,1] ψ(ϕ(t)) = t.

We observe that
w∗ = ψ(ϕ(αβ )−ϕ(α)). (7.6)

If ϕ is not a strict generator, i.e. ϕ(0)<+∞, then

lim
α→0+

w∗ = ψ(ϕ(0)−ϕ(0)) = ψ(0) = 1. (7.7)

which is similar to what we can get from the countermonotonicity copula.
If ϕ is strict, i.e. ϕ(0) =+∞, and regularly varying at 0 with a negative index, i.e.

there exists d > 0 such that, for every x > 0, limt→0+
ϕ(tx)
ϕ(t) = x−d (compare [5, 18]),

then copula Cϕ has a non-trivial tail expansion at the origin

L(x,y) = x
(

1+
(y

x

)−d
)− 1

d
=
(

x−d + y−d
)− 1

d
,

with the generator

l(t) =
(

1+ t−d
)− 1

d
, l(+∞) = 1,

and a trivial one at the vertex (0,1). Due to theorem 7.3 we get in such a case

w∗(α,β ,Cϕ) = α
(
β−d−1

)− 1
d
+o(α).

7.4.9.1 Clayton copulas

Consider the Clayton copula Cθ given, for θ > 0, by

CCl
θ (u,v) =

(
u−θ + v−θ −1

)− 1
θ
.

Moreover, it can be calculated that

w∗ = αβ (1+αθβθ −βθ )−1/θ = αβ (1−βθ )−1/θ +O(αθ )

which goes almost linearly to 0 as α → 0+, since the generator of these copulas is
regularly varying at 0 with index −θ .
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7.4.9.2 Frank copulas

Consider the Frank copula Cθ given, for θ ∈ (−∞,0)∪ (0,+∞), by

CFr
θ (u,v) =− 1

θ
ln
(

1+
(exp(−θu)−1)(exp(−θv)−1)

exp(−θ)−1

)
.

Then

w∗ =− 1
θ

ln
{

1+
(exp(−θαβ )−1)(exp(−θ)−1)

exp(−θα)−1

}
=− 1

θ
ln{1−β (1− exp(−θ))}+O(α).

Note that although the generator of the Frank copula is regularly varying at 0, the
variation index is 0 and w∗ need not to tend to 0 as in the case of the Clayton family.
On the other side Frank copula is a restriction of an analytic function and theorem
7.5 is applicable.

7.4.9.3 Gumbel copulas

Consider the Gumbel copula Cθ given, for θ ∈ (1,+∞), by

CGu
θ (u,v) = exp

{
−
(
(− ln(u))θ +(− ln(v))θ

) 1
θ
}
. (7.8)

Then a closed form expression for w∗ can be calculated as follows

w∗ = exp
{
−
(
(− ln(αβ ))θ − (− ln(α))θ

) 1
θ
}
. (7.9)

Subsequently
lim
α→0+

w∗ = 0 with lim
α→0+

w∗
α

= ∞.

Note that similarly as in the case of a Frank copulas, the generator of a Gumbel
copula is regularly varying at 0 with index 0. But in this case for v > 0

lim
α→0

CGu
θ (α,v)
α

= 1

and theorem 7.6 is applicable.
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Chapter 8

Parametric copula families for statistical models

Harry Joe

Abstract For data analysis with copulas, one tries to match features seen in data to
properties of parametric copula models. Relevant tail asymmetry and dependence
properties and measures are summarized. New parametric bivariate copula fami-
lies in the class of [Durante and Jaworski, 2012] are presented, and some of their
dependence and asymmetry properties are determined.

8.1 Introduction

For high-dimensional applications, vine and factor copula models are most useful
for their flexible and parsimonious dependence structures. Because these classes of
copulas are usually constructed from a sequence of parametric bivariate copulas, I
will mention (a) how to match bivariate copula families to asymmetry features seen
in bivariate scatterplots and (b) further research needed for constructing 2-parameter
and 3-parameter bivariate copula families to cover different tail properties.

I will illustrate construction and analysis of new bivariate parametric copula fam-
ilies with examples satisfying the class in [Durante and Jaworski, 2012]; members
of this class have a generator that is either a concave cumulative distribution function
(cdf) or a concave survival function. Some links to bivariate Archimedean copulas
are mentioned.

Section 8.2 has background on fitting copula models in practice. Section 8.3
has concepts used to assess asymmetries in copulas. Section 8.4 summarizes some
useful parametric copula families to use within vines. Section 8.5 has some new
parametric bivariate copula families in the class in [Durante and Jaworski, 2012],
and theory from Section 8.3 is used to obtained some of their properties. For the
remainder of this chapter, if no specific reference for a concept or topic, the general
reference is [Joe, 2014].
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8.2 Fitting copula models in practice

Sklar’s theorem implies that any d-variate distribution F can be written as a copula
C with univariate margins F1, . . . ,Fd , as arguments:

F1···d(y1, . . . ,yd) =C(F1(y1), . . . ,Fd(yd)).

The copula is unique if F1, . . . ,Fd are continuous.
For statistical practice with parametric models, one often considers parametric

families for the univariate margins and for the copula, for example,

F1···d(y1, . . . ,yd ;θ ,η1, . . . ,ηd) =C
(
F1(y1;η1), . . . ,Fd(yd ;ηd);θ

)
,

where η j is a parameter vector for the jth margin Fj and θ is a parameter vector for
the copula.

The flexible construction of vine copulas is based on a sequential mixing of con-
ditional distributions, so it is indicated below how Sklar’s theorem applies for this
class.

Let S be a subset of indices from {1, . . . ,d} with cardinality between 1 and d−2
inclusive. Let j,k be two distinct indices that are not in S. Consider the Fréchet
class of multivariate distributions with given margins F{ j}∪S and F{k}∪S for (Yj,YS)
and (Yk,YS) respectively, where YS = (Yi : i ∈ S). Let Fj|S(·|yS) and Fk|S(yk|yS) be
conditional distributions given YS = yS for yS in the domain of YS. If Fjk|S(·|yS) is
known for all yS, then

F{ j,k}∪S(y j,yk,yS) =
∫ yS

(−∞,...,−∞)
Fjk|S(y j,yk|zS)dFS(zS)

=
∫ yS

(−∞,...,−∞)
Cjk;S

(
Fj|S(y j|zS)Fk|S(yk|zS);zS

)
dFS(zS),

where Cjk;S(·;zS) is a bivariate copula for Fjk|S(·|zS) with univariate conditional
margins Fj|S(·|zS) and Fk|S(·|zS).

For statistical modeling, this result is usually applied with Cjk;S(·;θ jk;S) being in
a parametric family, not depending on zS, and considered as a copula for Fj|S(·|zS)
and Fk|S(·|zS), where these conditional distributions have parameters from an ear-
lier stage of the (vine) sequence. When Cjk;S(·;θ jk;S) doesn’t depend on zS; this is
called the simplifying assumption for vines. Note that if all of the above copulas amd
distributions are multivariate Gaussian, then the simplifying assumption does hold
when Sklar’s theorem is applied for Fjk|S. That is, vine copulas wih the simplifying
assumption are an extension of Gaussian copulas after the multivariate Gaussian dis-
tribution has been parametrized in terms of d−1 correlations and (d−1)(d−2)/2
partial correlations that are algebraically independent.

For the dependence structure covered by the copula model, the dimension of θ is
of the order O(d) to O(d2) to cover a range of flexible dependence. If dependence
in the variables can be explained by common or group-specific latent factors, then I
find that factor copula models (which generalize classical Gaussian factor models)
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are good-fitting models. If dependence cannot be explained by latent factors, then
vine pair-copula constructions (continuous, discrete and mixed) are the most flexi-
ble. The vine pair-copula construction is based on a sequence of bivariate copulas; in
tree 1, bivariate copulas are applied to univariate margins, and in trees 2 to d−1, they
apply to conditional univariate margins where the conditioning is based on marginal
multivariate distributions that exist from previous trees. Generally for applications
of the vine pair-copula construction, one puts pairs of variables with strongest de-
pendence in tree 1 and assumes the simplifying assumption for higher-order trees. If
the dimension is large, one would used a truncated vine ([Brechmann et al., 2012])
as a parsimonious dependence model; in a truncated vine, trees at some level m
and higher have independence copulas on all edges to represent some conditional
independence (given lower order trees).

In summary, vine, truncated vine and factor copulas cover flexible and parsimo-
nious dependence structures, with classical Gaussian models as special cases. But
the flexibility depends on having a sufficiently large number of different bivariate
parametric copula families. Do there exists a sufficient number of bivariate paramet-
ric copulas families to cover different contour shapes that one might see in bivariate
scatterplots? This is discussed further below, after some review of how to match
features seen in scatterplots to the contours of copula densities.

For d continuous variables, the first step before the copula is to fit univariate
margins and then transform to N(0,1) (normal score transform) or use ranks to
convert to normal scores. Bivariate scatterplots of normal scores are used to check
for deviation from elliptical shape that would be expected if a multivariate Gaussian
model were valid.

Candidate bivariate families would depend on the deviations from elliptical,
strength of tail dependence (sharpness or roundness in corners relative to ellipse)
and tail asymmetries (joint lower versus joint upper, and lower right versus upper
left corners). “Tailweights” and measures of tail asymmetry are discussed in Sec-
tion 8.3, and discussion of bivariate parametric copula families to satisfy different
features is given in Section 8.4.

For univariate models for unimodal densities/histograms, as the sample size gets
larger, one needs parametric families with two to four parameters to handle asym-
metries and tail behavior. Not surprisingly, this is also the case for bivariate cop-
ula families for tree 1 of a vine copula model. With stronger dependence, different
parametric families are more easily distinguished based on likelihood inference. For
weaker dependence, the impact of different families is less, and hence the choice of
bivariate copula families has less of an effect in higher-order trees of a vine when
the conditional dependence is weaker.

Suppose the original data are (yi1, . . . ,yid) for i = 1, . . . ,n, and they have been
transformed to normal scores. Preliminary data analysis involves looking at bivari-
ate normal scores scatterplots of the pairs with strongest dependence and detecting
possible joint tail asymmetries and tail dependence relative to Gaussian. If some
variables are discrete, one can compare empirical probability mass functions with
fits from discretized multivariate Gaussian distributions or Gaussian copulas.
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For factor copulas, results in [Krupskii and Joe, 2013] link strength of depen-
dence in joint tails for bivariate copulas that link observed variables and latent
variables to those for two observed variables. The bivariate scatterplots and tail-
weighted dependence measures can help in choice of parametric copula families in
the vine rooted at one or more latent variables.

For vine models without latent variables, one approach ([Dissmann et al., 2013],
[Panagiotelis et al., 2017]) is to assign pairs with strongest dependence to tree 1. For
continuous variables, after tree 1, one can compute pseudo-observations of the form

vi j;k = F̂j|k(yi j|yik) =Cj|k(Fj(yi j; η̂ j)|Fk(yik; η̂k); θ̂ jk),

vik; j = F̂k| j(yik|yi j) =Ck| j(Fj(yik; η̂k)|Fk(yi j; η̂ j); θ̂ jk),

where variables j,k form an edge in tree 1 with fitted copula Cjk(·; θ̂ jk) and corre-
sponding conditional distributions Cj|k(u j|uk; θ̂ jk) and Ck| juk|u j; θ̂ jk). If ( j1,k) and
( j2,k) are edges in tree 1, one can look at normal score plots of (vi j1;k,vi j2;k) for
i = 1, . . . ,n to see the shape and choose some appropriate copula familes for the tree
2 edge ( j1|k, j2|k). This could be done for any potential edge for tree 2.

After deciding on edges for tree 2 and fitting bivariate parametric copula families.
If Cj1, j2;k(·; θ̂ j1, j2;k) is the fitted copula to (vi j1;k,vi j2;k), then it leads to pseudo-
observations vi j1; j2k = F̂j1| j2k(yi j1 |yi j2 ,yik) and vi j2; j1k = F̂j2| j1k(yi j2 |yi j1 ,yik) for tree
3. This procedure iterates to the trees at higher levels.

For a small dimension d, it is useful for one to go through the above procedure
manually one tree at a time. For a large dimension d, one can automate the proce-
dure; summary statistics to diagnose tail dependence and tail asymmetries can be
used to narrow the choices of bivariate copula families for each edge. See Sections
2.15, 2.17 and 5.12.1 of [Joe, 2014] for tail-weighted measures of dependence and
measures of tail asymmetries.

8.3 Tail asymmetry and strength of dependence in tails

To assess the strength of dependence in a joint lower or upper tail of a copula, the
concept of a tail order is analogous to the tailweight for the tails of a univariate
density. By comparing the tail orders of the joint lower and joint upper tails, one can
get a sense of tail asymmetry.

For copulas, [Hua and Joe, 2011] define that tail orders based on the rates that
C(u1d) and C((1− u)1d) go to 0 as u → 0+. If C(u1d) ∼ �L(u)uκL as u → 0+,
where �L(u) is a slowly varying function, then the lower tail order is defined as κL.
Similarly if C((1− u)1d) ∼ �U (u)uκU as u→ 0+, where �U (u) is a slowly varying
function, then the upper tail order is defined as κU . If 1 < κL < d (or 1 < κU < d)
then λL = 0 (or λU = 0 respectively), and this is termed intermediate tail depen-
dence in [Hua and Joe, 2011]. A smaller value of the tail order corresponds to more
dependence in the joint tail (more probability in the corner). Then, the strongest de-
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pendence in the tail corresponds to κL = 1 or κU = 1. When κL = d or κU = d with
a constant for the slowly varying function �L or �U , then this is referred to as tail
orthant independence (or tail quadrant independence for d = 2). The tail order can
be greater than d for negative dependence.

The tail order, as well as the tail dependence coefficient, are defined as limits. For
data, tail-weighted dependence measures can be used to assess strength of tail de-
pendence relative to Gaussian. For example, the lower and upper semi-correlations
of normal scores are defined for bivariate copulas, and these have sample counter-
parts for data — say ρ̂−jk,L and ρ̂+

jk,U for variables j,k. For a bivariate Gaussian copula
with correlation ρ , the lower and upper semi-correlations are both ζ (ρ) as given in
equation (2.59) in [Joe, 2014]. An indicator of stronger lower tail dependence when
ρ̂−jk,L > ζ (ρ̂ jk,N), where ρ̂ jk,N is the correlation of normal scores for variables j,k.

Other measures of tail-weighted dependence are in [Krupskii and Joe, 2015]. See
also [Krupskii, 2017], and references therein, for (i) measures of reflection asymme-
try (to summarize the probability in the joint upper tail has relative to that in the joint
lower tail), and (ii) measures of bivariate permutation asymmetry (to summarize the
tail probability in the lower right corner relative to that in the upper left corner).

A bivariate copula is reflection symmetric if C(u,v) = Ĉ(u,v) for all (u,v) ∈
[0,1]2, where Ĉ(u,v) = u+v−1+C(1−u,1−v). If (U,V )∼C so that the reflection

(1−U,1−V )∼ Ĉ, then reflection symmetry implies that (U,V )
d
=(1−U,1−V ). A

bivariate copula is permutation symmetric if C(u,v) =C(v,u) for all (u,v) ∈ [0,1]2.

If (U,V )∼C, then permutation symmetry implies that (U,V )
d
=(V,U).

For copula families, these corner probabilities can also be analyzed the appro-
priate tail orders; examples are shown in Section 8.5 when analyzing some new
parametric copula families for the two tail asymmetries: reflection and permutation.

8.4 Parametric bivariate families

This section summarizes some bivariate parametric copula that could be useful
within vines. Based on the tail asymmetries mentioned in Section 8.3, indications
are given for what might be lacking.

Simple bivariate parametric copula families have monotonic dependence be-
tween that two variables, so that the common parametric families are unsuitable for
non-monotonic dependence. For the latter, one might consider non-parametric meth-
ods (see [Nagler and Czado, 2016]). But for monotonic dependence, it is simpler to
use parametric models to avoid the “curse of dimensionality” of non-parametric
methods for high-dimensional data.

There are many 1-parameter bivariate Archimedean families in [Nelsen, 2006]
and there are several 2-parameter bivariate Archimedean and non-Archimedean
families in [Joe, 2014]. They can cover a variety of tail behavior in the joint lower
and upper tails, but they assume permutation symmetry. There is a need for simple
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3-parameter and 4-parameter bivariate copula families that can add some permuta-
tion asymmetry.

Some of the useful copula families with permutation symmetry include the fol-
lowing.

• 2-parameter BB1 Archimedean copula (8.3) based onψ(s;θ ,δ )= (1+s1/δ )−1/θ

for θ > 0 and δ > 1. This has asymmetric lower/upper tail dependence. For data,
sometimes the reflected BB1 copula provides a better fit.

• 2-parameter Archimedean copula (8.3) based on the integrated Mittag-Leffler
Laplace transform ψ(s;θ ,δ ) = 1− FB(s1/δ/(1 + s1/δ );δ ,θ−1) where θ > 0,
δ > 1 and FB(·;a,b) is the cdf of the Beta(a,b) random variable. This has upper
tail dependence (κU = 1) and lower intermediate tail dependence (1 < κL < 2)
and the reflected copula has lower tail dependence and upper intermediate tail
dependence.

• 2-parameter BB8 copula: this has asymmetric tails with κL = κU = 2.

There are several 1-parameter and 2-parameter Archimedean copulas with (κL,κU )=
(1,2) or (2,1) but these are quite tail asymmetric and often provide poorer fits to
data. There is no Archimedean copulas in the above references with one κ equal to
2 and the other in the interval (1,2).

For bivariate copulas with flexible permutation asymmetry, some useful families
are the following.

• The 3-parameter bivariate skew-normal copula based on the bivariate skew-
normal distribution in [Azzalini and Dalla Valle, 1996].

• The 4-parameter bivariate skew-t copula based on the bivariate skew-t distribu-
tion in [Azzalini and Capitanio, 2003].

• A permutation symmetric bivariate copula C(u,v) with an added parameter to
attain permutation asymmetry. For example, with 0 ≤ α ≤ 1, define C∗(u,v) =
uαC(u1−α ,v) or C∗(u,v) = vαC(u,v1−α).

For bivariate/multivariate skew-normal and skew-t distributions, see [Azzalini, 2013],
[Yoshiba, 2015] shows that these can be implemented for faster maximum likeli-
hood estimation if monotone interpolation is used for the univariate skew-normal
and skew-t inverse cdfs.

For a given parametric copula family, there are associated families based on re-
flected U(0,1) random variables; these are useful to reorient the tail asymmetry or
to get negative dependence. Suppose (U,V )∼C for a bivariate copula C. The cop-
ula of (1−U,1−V ) is denoted as Ĉ(u,v) = u+v−1+C(1−u,1−v), and is called
the survival or reflected copula. The copula of (1−U,V ) is v−C(1− u,v) and is
called the 1-reflected copula, and the copula of (U,1−V ) is u−C(u,1− v) and is
called the 2-reflected copula. This terminology is used in [Panagiotelis et al., 2017].
These copulas are sometimes referred to as rotated copulas, but they are not rota-
tions of the (U,V ); they are rotations of the contours of the copula density when
C(u,v) = C(v,u). The operations to get 1-reflected and 2-reflected copulas can
change a family with positively dependence to one with negative dependence. The
operation to get a survival copula can change the direction of skewness relative to
joint lower/upper tails.
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8.5 Durante-Jaworski class of bivariate copulas

In this section, some properties are obtained for the class of bivariate copulas in
[Durante and Jaworski, 2012]. Based on these properties, some parametric copulas
families that interpolate for independence to comonotonicity or countermonotonic-
ity are derived. Then their tail properties are obtained. The latter parts of this section
show steps that one can go through to determine properties and potential usefulness
of new constructions of copula families.

The Durante-Jaworski (DJ) class generally have permutation asymmetry and tail
properties not in Archimedean families, but some links are shown between the DJ
class and the class of bivariate Archimedean copulas due to the two classes having
generators with common monotonicity properties.

In the remainder of this chapter, the superscript ← to denotes functional inverse
of a monotonically increasing or decreasing function.

Let ϕ : [0,∞)→ [0,1] be a function satisfying (i) ϕ is concave increasing with
ϕ(0) = 0, ϕ(∞) = 1, or (ii) ϕ is convex decreasing with ϕ(0) = 1, ϕ(∞) = 0.
Through univariate truncation, [Durante and Jaworski, 2012] show that

Cϕ(u,v) = uϕ[ϕ←(v)/u], 0≤ u≤ 1, 0≤ v≤ 1, (8.1)

is a bivariate copula cdf. The generator ϕ in (8.1) is a concave cdf on [0,∞)
or a convex survival function on [0,∞). Some basic properties are given next as
they are not stated together previously — P3 is in [Durante and Jaworski, 2012];
P4–P5 are in Section 7.6.1 of [Jaworski, 2013]; and P6 is Proposition 2.1 in
[Durante et al., 2011].

P1. Invariance to scale changes. If ϕ(z) is a convex survival function or concave
cdf on [0,∞), then so is ϕ2(z) = ϕ(αz) for α > 0. Note that, with ϕ←2 (p) =
α−1ϕ←(p),

Cϕ2(u,v) = uϕ2[u−1ϕ←2 (v)] = uϕ2[u−1α−1ϕ←(v)] = u−1ϕ[u−1ϕ←(v)].

P2. Power change: If ϕ(z) is a convex survival function or concave cdf on [0,∞),
then so is ϕ2(z) = ϕ(zα) for 0 < α ≤ 1. Note that, with ϕ←2 (p) = [ϕ←(p)]1/α ,

Cϕ2(u,v) = uϕ2[u−1ϕ←2 (v)] = uϕ2[u−1{ϕ←(v)}1/α ] = uϕ[u−αϕ←(v)].

P3. From cdf to survival function, and vice versa. If ϕ is a concave cdf and ϕ2 =
1−ϕ is a convex survival function (and vice versa). Since ϕ←2 (p) = ϕ←(1− p),

Cϕ2(u,v) = uϕ2[u−1ϕ←(1−v)] = u{1−ϕ[u−1ϕ←(1−v)]}= u−Cϕ(u,1−v).

Hence Cϕ2(u,v) is the 2-reflection of Cϕ(u,v).
P4. Comonotonicity: ϕ(z) = min{z,1}, for z > 0, is the cdf of U(0,1) and it is

concave. Since ϕ←(p) = p, this leads to:
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Cϕ(u,v) = umin{u−1ϕ←(v),1}= umin{u−1v,1}= min{u,v}=C+(u,v).

Hence the comonotonicity copula C+ is within the DJ class.
P5. Countermonotonicity: From the above (items 3 and 4), this obtains with the

U(0,1) survival function ϕ(z) = max{1− z,0} and ϕ←(p) = 1− p, and

Cϕ(u,v) = umax{1−u−1(1− v),0}= max{u−1+ v,0}=C−(u,v).

P6. Positive quadrant dependence (PQD) holds if ϕ is a concave cdf and negative
quadrant dependence (NQD) holds if ϕ is a convex survival function. That is,
Cϕ(u,v) ≥ uv in [0,1]2 if ϕ is a concave cdf and Cϕ(u,v) ≤ uv in [0,1]2 if ϕ is
a convex survival function.
Proof. If ϕ is a concave cdf, then ϕ is increasing and

uϕ(u−1ϕ←(v))≥ uv ⇐⇒ ϕ(u−1ϕ←(v))≥ v ⇐⇒ u−1ϕ←(v))≥ ϕ←(v)).

If ϕ is a convex survival function, ϕ is decreasing and

uϕ(u−1ϕ←(v))≤ uv ⇐⇒ ϕ(u−1ϕ←(v))≤ v ⇐⇒ u−1ϕ←(v))≥ ϕ←(v)).

Other properties are stated as propositions. These include stochastic representa-
tion, concordance ordering and a formula for Kendall’s τ that is a one-dimensional
integral similar to that for bivariate Archimedean copulas. The stochastic represen-
tation in the next proposition is different from that in [Durante et al., 2011], but is
equivalent to that in Theorem 2.2 of [Di Lascio et al., 2016].

Proposition 8.1. (Stochastic representation). Let ϕ be a concave cdf on [0,∞). and
let FY (y) = ϕ(y) be the cdf of Y . Let Z be defined so that its conditional distribution
given Y = y is: FZ|Y (z|y) = fY (z)/ fY (y), for z≥ y; this is well defined because fY is
decreasing. Then Y/Z ∼U(0,1) and the copula of Y/Z and Y is Cϕ .

Proof: For 0 < u < 1,

Pr(Y/Z ≤ u) = Pr(Z ≥ Y/u) =
∫ ∞

0
Pr(Z > y/u|Y = y) fY (y)dy

=
∫ ∞

0

fY (y/u)
fY (y)

fY (y)dy = u
∫ ∞

0
fY (y/u)u−1dy = u.

For the joint distribution of Y/Z and Y ,

Pr(Y/Z ≤ u, Y ≤ y) =
∫ y

0
Pr(Z > s/u|Y = s) fY (s)ds = u

∫ y

0
fY (s/u)u−1ds

= u
∫ y/u

0
fY (t)dt = uFY (y/u) = uϕ(u−1y).

Then the copula is uϕ[u−1ϕ←(v)], for u,v ∈ [0,1]. �
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Proposition 8.2. (Concordance ordering).

(a) Let ϕ1,ϕ2 be concave cdfs on [0,∞). If ϕ←2 ◦ϕ1 is anti-starshaped with respect
to the origin, then Cϕ1(u,v)≤Cϕ2(u,v) for all (u,v) ∈ [0,1]2.

(b) Let ϕ1,ϕ2 be convex survival functions on [0,∞). If ϕ←2 ◦ϕ1 is anti-starshaped
with respect to the origin, then Cϕ1(u,v)≥Cϕ2(u,v) for all (u,v) ∈ [0,1]2.

Proof: (a)

uϕ1[u−1ϕ←1 (v)]≤ uϕ2[u−1ϕ←2 (v)], ∀u,v ∈ (0,1),
⇐⇒ u−1ϕ←1 (v)]≤ ϕ←1 ◦ϕ2[u−1ϕ←2 (v)], ∀u,v ∈ (0,1),
⇐⇒ u−1y≤ ϕ←1 ◦ϕ2[u−1ϕ←2 ◦ϕ1(y)], ∀u ∈ (0,1),y > 0,
⇐⇒ b(u−1y)≤ u−1b(y), ∀u ∈ (0,1),y > 0,

where b = ϕ←2 ◦ ϕ1 : [0,∞)→ [0,∞). Since ϕ j(0) = 0 for a continuous concave
cdf, the condition is the same as b anti-starshaped with respect to the origin. Let
y∗ = u−1y > y. The above implies b(u−1y)/[u−1y] ≤ b(y)/y or b(y∗)/y∗ ≤ b(y)/y
for y∗ > y > 0, which is the definition of anti-starshapedness.

The proof of (b) is similar, or can make use of Property P3. �

Proposition 8.3. (Kendall’s τ). Let τ(Cϕ) be the Kendall tau value for the copula
Cϕ in (8.1). Then

τ(Cϕ) =

{
2
∫ ∞

0 x[ϕ ′(x)]2dx, ϕ concave cdf,
−2
∫ ∞

0 x[ϕ ′(x)]2dx, ϕ convex survival.
(8.2)

Proof: We use the formula in [Fredricks and Nelsen, 2007] and Section 2.12.1
of [Joe, 2014]. With conditional distributions C1|2(u|v) and C2|1(v|u), then τ =
1− 4

∫
[0,1]2 C2|1(v|u)C1|2(u|v)dudv. For Cϕ , the conditional distributions are (i)

C1|2(u|v) = ϕ ′[u−1ϕ←(v)]/ϕ ′[ϕ←(v)], and (ii) C2|1(v|u) = γϕ(u−1ϕ←(v)), where
γϕ(t) = ϕ(t)−tϕ ′(t) for t ≥ 0. First consider ϕ being a concave cdf. Let y = ϕ←(v),
x = u−1ϕ←(v) = u−1y, with x ≥ y. Then u = y/x, v = ϕ(y), dv = ϕ ′(y)dy, du =
−yx−2dx, and∫

[0,1]2
C2|1(v|u)C1|2(u|v)dudv =

∫ ∞

y=0

∫ ∞

x=y
[ϕ(x)− xϕ ′(x)]ϕ ′(x)yx−2dxdy

=
∫ ∞

x=0
[ϕ(x)− xϕ ′(x)]ϕ ′(x)x−2

∫ x

y=0
ydydx

= 1
2

∫ ∞

0
[ϕ(x)− xϕ ′(x)]ϕ ′(x)dx = 1

2

[
1
2 −
∫ ∞

0
x[ϕ ′(x)]2dx

]
.

Hence for a concave cdf ϕ , τ(Cϕ) = 2
∫ ∞

0 x[ϕ ′(x)]2dx.
Next, consider ϕ being a convex survival function. Starting with the same steps:

let y = ϕ←(v), x = u−1ϕ←(v) = u−1y, with x ≥ y. Then ϕ ′ ≤ 0, dv = ϕ ′(y)dy,
du =−yx−2dx,
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[0,1]2

C2|1(v|u)C1|2(u|v)dudv

= −
∫ ∞

y=0

∫ ∞

x=y
[ϕ(x)− xϕ ′(x)]ϕ ′(x)yx−2dxdy

= − 1
2

∫ ∞

0
[ϕ(x)− xϕ ′(x)]ϕ ′(x)dx =− 1

2 [− 1
2 −
∫ ∞

0
x[ϕ ′(x)]2dx.

Hence, for a convex survival function ϕ , τ(Cϕ) =−2
∫ ∞

0 x[ϕ ′(x)]2dx. �
Some additional tail properties are given in Subsection 8.5.2. Other tail properties

and extensions of the DJ class are given in [Coia, 2017].

8.5.1 Connections to Archimedean copulas

In this subsection, Propositions 8.2 and 8.3 are used to show connections between
the DJ class with positive dependence and the class of bivariate Archimedean cop-
ulas. These classes have the same generators as shown below. See also Section 3 of
[Durante et al., 2011] for other similarities of the two classes.

For a bivariate Archimedean copula

CA,ψ(u,v) = ψ(ψ←(u)+ψ←(v)), (8.3)

the generator ψ : [0,∞)→ [0,1] is a Laplace transform (LT) or a Williamson 2-
transform. That is, ψ is a convex survival function. Hence ϕ = 1−ψ is a concave
cdf and can be used as a generator for the DJ class to get positive dependence,
and ϕ = ψ as a convex survival function can be used for the DJ class to get nega-
tive dependence. Note that this representation of Archimedean copulas, as given in
[Joe, 1997] and [McNeil and Nešlehová, 2009], is needed to show the connection,
and not the form of generator in [Nelsen, 2006].

Note the following similarities/contrasts.

1. Let ψ be a decreasing convex survival function on [0,∞). For an Archimedean
copula, Kendall’s τ is

τA(CA,ψ) = 1−4
∫ ∞

0
s[ψ ′(s)]2 ds,

as given in Theorem 4.3 of [Joe, 1997]. For a DJ copula, Kendall’s τ is (from
Proposition 8.3) given in (8.2).

2. For two generators ψ1,ψ2, the concordance ordering for Archimedean copu-
las Cψ1≺cCψ2 holds iff ψ←2 ◦ψ1 is superadditive; starshapedness is a sufficient
condition for superadditivity. See Theorem 4.1 of [Joe, 1997]. For two gener-
ators ϕ1,ϕ2 that are concave cdfs, the concordance ordering for DJ copulas
Cϕ1≺cCϕ2 holds iff ϕ←2 ◦ϕ1 is anti-starshaped (from Proposition 8.2). Hence
with a family of Williamson 2-transforms or corresponding cdfs that are con-
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cave and satisfy starshapedness or anti-starshapedness, the orderings of concor-
dance for Archimedean copulas and DJ copulas are in opposite directions.

Let ϕ = 1−ψ be a cdf whereψ is a Williamson 2-transform, then
∫ ∞

0 z[ϕ ′(z)]2 dz=∫ ∞
0 s[ψ ′(s)]2 ds, and

τDJ(Cϕ) = 1
2 [1− τA(CA,ψ)],

τDJ(Cψ) = − 1
2 [1− τA(CA,ψ)].

Suppose ψ(·;θ) = 1−ϕ(·;θ) is a 1-parameter family such that the corresponding
Archimedean copulas are increasing in concordance.

• If τA(CA,ψ(·;θ)) goes from 0 to 1 (independence C⊥ to comonotonicity C+ as θ
increases, then τDJ(Cϕ(·;θ)) goes from 1

2 to 0 as θ increases and τDJ(Cψ(·;θ)) goes
from − 1

2 to 0 as θ increases.
• If τA(CA,ψ(·;θ)) goes from −1 to 1 (countermonotonicity C− to comonotonic-

ity C+ as θ increases, then τDJ(Cϕ(·;θ)) goes from 1 to 0 as θ increases and
τDJ(Cψ(·;θ)) goes from −1 to 0 as θ increases.

Therefore, from families of parametric Archimedean copulas that range from
C− to C+, we can get parametric DJ copulas that range from C⊥ to C+ with the
same family of generators. For bivariate Archimedean copulas, a sufficient condition
(Corollary 8.23 of [Joe, 2014]) for PQD is that − logψ is concave (in addition to ψ
decreasing convex) and a a sufficient condition for NQD is that − logψ is convex.

With ϕ = 1−ψ being a concave cdf, the following hold.

• If ψ is a decreasing convex survival function and − logψ is concave (or ψ is a
survival function with decreasing failure rate; see [Barlow and Proschan, 1981],
then τA(CA,ψ)≥ 0 and τDJ(Cϕ) ∈ [0, 1

2 ].• If ψ(s) = 1− e−s so that the Archimedean copula is the independence copula,
then τA(CA,ψ) = 0 and τDJ(Cϕ) = 1

2 .
• If ψ is a decreasing convex survival function and − logψ is convex (equivalent

to ψ being a survival function with increasing failure rate), then τA(CA,ψ) ≤ 0
and τDJ(Cϕ) ∈ [ 1

2 ,1].

Note that any generator of Archimedean copulas that is a Laplace transform satis-
fies concavity for− logψ so that τDJ(Cϕ)∈ [0, 1

2 ] when ϕ = 1−ψ . To get a Kendall
τ value exceeding 1

2 , one can consider survival functions ψ that are decreasing con-
vex and have increasing failure rate (and hence not Laplace transforms). Examples
of parametric copula families in the DJ class using known families of Archimedean
generators are given next.

1. Positive stable LTs or Weibull distributions. With ϕ(z;α) = 1− exp{−zα} for
0 < α ≤ 1, one has ϕ←(p;α) = [− log(1− p)]1/α and

Cϕ(u,v;α) = u[1− (1− v)1/uα ], 0≤ u,v≤ 1.

Kendall’s τ goes from 0 to 1
2 as α goes from 0 to 1.



130 Harry Joe

2. Gamma LTs and extension to Williamson 2-transforms, or Pareto distributions
and extension to Beta distributions (combined as generalized Pareto distri-
butions). With notation x+ = max{0,x}, let ϕ(z;ξ ) = 1− (1 + ξ z)−1/ξ

+ and
ϕ←(p;ξ ) = [(1− p−ξ −1]/ξ for−1< ξ <∞ (with the exponential distribution
in the limit as ξ → 0). This leads to:

Cϕ(u,v;ξ ) = u
{

1− (1+u−1[(1− v)−ξ −1])−1/ξ
+

}
, 0≤ u,v≤ 1.

Kendall’s τ goes from 1 to 0 as ξ goes from −1 to ∞. When −1 < ξ < 0, the
Archimedean copulas based on 1−ϕ or the DJ copulas based on ϕ do not have
support on all of [0,1]2; the support of the latter is on the set {(u,v) : (1−u)≤
(1− v)−ξ}. This includes the corner point (1,0) but not the corner point (0,1).

3. Logarithmic series LTs and extension to Williamson 2-transforms. Let ϕ(z;θ)=
1+ θ−1 log[1− (1− e−θ )e−z], for −∞ < θ < ∞, with ϕ←(p;θ) = − log[(1−
e−θ(1−p))/(1− e−θ )] for 0 < p < 1. The DJ copula family becomes:

Cϕ(u,v;θ)= u
{

1+θ−1 log
[
1−(1−e−θ )

(1− e−θ(1−v)

1− e−θ
)1/u]}

, 0≤ u,v≤ 1.

This goes from C+ to C⊥ as θ increases from −∞ to ∞. The support of the
copula is all of [0,1]2.

4. Integrated positive stable LTs and extension to Williamson 2-transforms; cdfs
are generalized gamma. For the Archimedean copula family, see Section 4.11
of Joe (2014). Let FΓ (·;η) be the Gamma(η ,1) cdf with η > 0. Let ϕ(z;θ) =
FΓ (z1/θ ;θ), for 0 < θ < ∞, with ϕ←(p;θ) = [F←Γ (p;θ)]θ for 0 < p < 1. The
DJ copula family becomes:

Cϕ(u,v;θ) = uFΓ (u−1/θF←Γ (v;θ);θ), 0≤ u,v≤ 1.

This goes from C+ to C⊥ as θ increases from 0 to ∞. The support of the copula
is all of [0,1]2.

One can also go in the opposite direction from the DJ class to a family of
Archimedean copulas. [Durante and Jaworski, 2012] show in their Theorem 4.1 that
the bivariate Mardia-Takahasi-Clayton-Cook-Johnson (MTCJ) copula also in DJ
class with ϕ(z;α) = (1+ z−α)−1/α with α > 0 (independence copula as α → 0+

and comonotonicity copula C+ as α → ∞). Since the MTCJ family is ordered by
concordance, ϕ←(ϕ(z;α1);α2) is anti-starshaped for 0 < α1 < α2.

With ψ(s;α) = 1− (1+ s−α)−1/α , one gets a family of Archimedean copulas:

CA,ψ(u,v;α) = 1−{1+
[
((1−u)−α −1)−1/α +((1− v)−α −1)−1/α]−α}−1/α

,
(8.4)

for α > 0. Note that (8.4) decreases in concordance from C+ to C− as α goes from
0 to ∞, and its Kendall’s tau value is τ = (2−α)/(2+α). For α = 2, τ = 0 but
the copula is not the independence copula; the copula can be greater than or less
than uv, depending on (u,v). Also ψ ′(s;α) = −(1+ sα)−1/α−1 < 0, ψ ′′(s;α) =
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(1+α)(1+ sα)−1/α−2sα−1 > 0 and further derivatives alternative in sign only if
0 < α ≤ 1. That is, ψ(s;α) = 1− (1+ s−α)−1/α is a LT only for 0 < α ≤ 1.

The copula (8.4) has some tail properties not common for Archimedean copulas.
(i) The lower tail dependence parameter is λL = 2−α and there is (weak) lower tail
dependence even for α ≥ 2 with τ ≤ 0. (ii) The upper tail order is κU = α + 1.
Hence there is intermediate upper tail dependence (κU < 2) for 0 < α < 1, and
negative tail quadrant dependence (κU > 2) for α > 1. (iii) Using Theorem 8.38
in [Joe, 2014], the tail order in the (0,1) and (1,0) corners behaves like that
of −ψ ′(ψ←(u)) ·ψ←(1− u) as u → 0+, leading to O(u2+1/α). (iv) The combi-
nation of these tail properties is especially clear in contour plots of the density
c(Φ(y1),Φ(y2))φ(y1)φ(y2) for α near 2 (overall negative dependence with joint
lower tail dependence); here Φ ,φ are the standard normal cdf and density respec-
tively.

8.5.2 Asymmetries, tail properties and orders

In this subsection, tail properties of (8.1) are studied using the tail order in all four
corners. Proposition 4.1 of [Durante et al., 2011] has results for tail dependence
only. The results are for cases of positive dependence with concave cdfs, and the
corresponding results for convex survival functions follow with 2-reflection.

The tail orders in the different corners mainly depend on the behavior of ϕ(z) as
z→ 0+ and as z→∞. Next, the form of tails are given for the Pareto, Beta, Weibull,
logseries-mixture and generalized gamma cdfs, in Section 8.5.1.

• Pareto: ϕ(z;α) = 1− (1+ z)−α for α > 0, with ϕ←(p;α) = (1− p)−1/α − 1.
As z → ∞, ϕ(z;α) ∼ 1− z−α and as z → 0, ϕ(z;α) ∼ αz. As p = 1− q → 1,
ϕ←(p;α)∼ q−1/α and as p→ 0, ϕ←(p;α)∼ p/α .

• Beta(1,γ): ϕ(z;γ) = 1− (1− z)γ for γ > 1, with ϕ←(p;γ) = 1− (1− p)1/γ .
As z → 0, ϕ(z;γ) ∼ γz. As p = 1− q → 1, ϕ←(p;γ) ∼ 1− q1/γ . As p → 0,
ϕ←(p;γ)∼ γ−1 p.

• Weibull: ϕ(z;α) = 1− exp{−zα} for 0 < α ≤ 1, with ϕ←(p;α) = [− log(1−
p)]1/α . As z→ 0, ϕ(z;α)∼ zα . As p = 1−q→ 1, ϕ←(p;α)∼ [− logq]1/α . As
p→ 0, ϕ←(p;α)∼ p1/α .

• logseries-mixture: ϕ(z;θ) = 1+ θ−1 log[1− (1− e−θ )e−z], for −∞ < θ < ∞.
As z → ∞, ϕ(z;θ) ∼ 1−m(θ)e−z with m(θ) = θ−1(1− e−θ ) > 0. As p → 1,
ϕ←(p;θ)∼− log[(1− p)/m(θ)].
As z→ 0, ϕ(z;θ)∼ 1+θ−1 log[1− (1−e−θ )(1− z)]∼ 1+θ−1 log[e−θ (1− z+
eθ z)]∼ θ−1(eθ −1)z. As p→ 0, ϕ←(p;θ)∼ pθ/(eθ −1).

• generalized gamma: ϕ(z;θ) = FΓ (z1/θ ;θ) for θ > 0. As z→ ∞, ϕ(z;θ) ∼ 1−
ze−z1/θ

. As p→ 1, ϕ←(p;θ)∼ [− log(1− p)]θ .
As z→ 0, ϕ(z;θ)∼ z/Γ (θ +1). As p→ 0, ϕ←(p;θ)∼ pΓ (θ +1).

Note that ψ increasing concave implies that ψ← is increasing convex. Also,
(− log(1− p)ζ is convex in large p for any ζ > 0.
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Next, tail properties in all four corners of the copula (8.1) are obtained assuming
the tails of ϕ are like one of the above cases.

Lower left corner

The corner probability is Cϕ(u,u) = uϕ(u−1ϕ←(u)). As u → 0+, this depends
mainly on the behavior of ϕ← near 0.
(a) If ϕ←(p) ∼ kp as p → 0+ with k > 0, then Cϕ(u,u) ∼ uϕ(k) as u → 0+ and
there is lower tail dependence. This applies for the Pareto, logseries-mixture and
generalized gamma cdfs.
(b) If ϕ←(p)∼ kpζ as p→ 0+ with k > 0 and ζ > 1, then Cϕ(u,u)∼ uϕ(kuζ−1) as
u→ 0+ and there is no lower tail dependence with Cϕ(u,u)/u→ ψ(0) = 0. For the
Weibull cdf for ϕ , one gets Cϕ(u,u)∼ u · (u1/α−1)α = u2−α implying intermediate
lower tail dependence with tail order κL = 2−α ∈ (0,1) for 0 < α < 1.

Upper right corner

If (U,V )∼C, the upper corner probability is Ĉϕ(u,u) = 2u−1+(1−u)ϕ((1−
u)−1ϕ←(1−u)) as u→ 0+.
(a) If ϕ has support on the positive real line, then ϕ←(1− u) dominates 1− u as
u → 0, and ϕ[(1− u)−1ϕ←(1− u)] ∼ ϕ[ϕ←(1− u)] = 1− u. Hence Ĉϕ(u,u) ∼
2u−1+(1−u)2 = u2, as u→ 0+, with upper tail quadrant independence.
(b) For a cdf ϕ with finite upper support point, such as generalized Pareto with neg-
ative parameter or equivalently, Beta(1,γ) with γ > 1. ϕ[(1− u)−1ϕ←(1− u)] ∼
ϕ[(1−u)−1(1−u1/γ)]∼ ϕ(1−u1/γ +o(u))∼ 1−u, and Ĉϕ(u,u)∼ u2.
(c) For a cdf ϕ with finite upper support point, such that ϕ ′[ϕ←(1)] > 0, then
Ĉϕ(u,u) = O(u) using l’Hopital’s rule and there is tail dependence (Proposition
4.1 of [Durante et al., 2011]).

Lower right corner

If (U,V ) ∼ C, for 1-reflection, the copula of (1−U,V ) is v−C(1− u,v). For
(8.1), the corner probability is u−Cϕ(1− u,u) = u− (1− u)ϕ[(1− u)−1ϕ←(u)]
as u → 0+. It depends mainly on ϕ←(p) for p near 0. If ϕ←(p) ∼ kpζ as p →
0+ with k > 0 and ζ ≥ 1, then u−Cϕ(1− u,u) ∼ u− (1− u)ϕ(kuζ ) ∼ u− (1−
u)ϕ(ϕ←(u)) = u2 and this tail behaves like quadrant independence.

Upper left corner

If (U,V ) ∼ C, for 2-reflection, the copula of (U,1−V ) is u−C(u,1− v). For
(8.1), the corner probability is u−Cϕ(u,1−u) = u−uϕ [(u−1ϕ←(1−u)] as u→ 0+.
It depends mainly on ϕ←(p) for p near 1.
(a) If ϕ←(1−q)∼ kq−ζ ∼ q as q→ 0+ with k > 0 and ζ > 0, then u−Cϕ(u,1−u)∼
u−uϕ(u−1ku−ζ )∼ u−u(1−u1+1/ζ )∼ u2+1/ζ .
(b) If ϕ←(1− q) ∼ k(− logq)ζ ∼ q as q → 0+ with k > 0 and ζ > 0, then
u−Cϕ(u,1− u) ∼ u− uϕ(u−1k(− logu)ζ ) ∼ u− u[1− exp{−u−1/ζ (− logu)} ∼
uexp{−u−1/ζ (− logu)}. This goes to zero faster than rate u2 and indicates depen-
dence weaker than quadrant independence.

Conclusions about asymmetries

For positive dependence, as u→ 0+, generally for
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• the lower left corner, Cϕ(u,u) can be O(u) to O(u2),
• for the upper right corner, 2u−1+Cϕ(1−u,1−u) = O(u2),
• for the lower right corner, u−Cϕ(1−u,u) = O(u2),
• for the upper left corner, u−Cϕ(u,1−u) = o(u2+ζ ) with ζ ≥ 0; also this corner

can have zero probability (as u→ 0+) if ϕ has a finite upper end point of support.

Hence the general pattern is skewness to joint lower tail relative to joint upper
tail (reflection asymetry skewed to joint lower), and permutation asymmetry skewed
to lower right corner.

8.6 Closing remarks

It is shown how to analyze some tail properties of new parametric families of cop-
ulas. Several new parametric families of bivariate copulas interpolating C⊥ to C+

or C− to C+ have been constructed, but it remains to be seen if they are useful for
applications within vines. The DJ class (8.1) is derived based on univariate trunca-
tion. Copulas based on truncation tend to have one joint (upper or lower) orthant
that is tail orthant independent, so they can be quite tail asymmetric if the opposite
orthant has tail dependence. In data applications, it is rare to see such deviations in
tail asymmetry relative to Gaussian copulas. However, perhaps the DJ class can be
extended to a larger class that covers more flexibility in tail asymmetries.
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Chapter 9

Copula constructions using ultramodularity
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Abstract We discuss some copula constructions by means of ultramodular bivariate
copulas. In general, the ultramodularity of a real function is a stronger version of
both its convexity and its supermodularity (the latter property being always satisfied
in the case of a bivariate copula). In a statistical sense, ultramodular bivariate copu-
las are related to random vectors whose components are mutually stochastically de-
creasing with respect to each other. Analytically speaking, an ultramodular bivariate
copula is characterized by the convexity of all of its horizontal and vertical sections.
Among other results, we give a sufficient condition for the additive generators of
Archimedean ultramodular bivariate copulas, and we propose two constructions for
bivariate copulas: the first one being based on ultramodular aggregation functions,
and the other one showing the special role of ultramodularity and Schur concavity
for a product-like composition of bivariate copulas being again a bivariate copula.
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9.1 Introduction

We work in the framework of aggregation functions [22] with special properties, in
particular with boundary conditions (extending the Boolean conjunction) and super-
modularity (i.e., with bivariate copulas [17, 26, 53, 69]). When constructing bivari-
ate copulas, it is therefore necessary to guarantee these two properties which can be
treated rather independently.

This survey is organized as follows. In the following section, the necessary pre-
liminaries from the theory of aggregation functions, quasi-copulas and copulas are
given, including ultramodularity and Schur concavity. Ultramodular bivariate copu-
las are discussed in Section 9.3.

In Section 9.4 we exploit the ultramodularity of copulas using the important fact
that in a composition of functions the supermodularity of the inner function is pre-
served just when the outer function is ultramodular [44]. We discuss some variants
of this approach and present a number of examples, some of them leading to bivari-
ate copulas which are well-known from the literature.

Section 9.5 is devoted to the so-called D-product of a bivariate copula and its
dual, where the bivariate copula D is ultramodular and Schur concave on the upper
left triangle of the unit square [31, Theorem 2.3]. These properties of D are shown
to be sufficient for the D-product of an arbitrary copula and its dual to be a bivariate
copula, and several examples and counterexamples in this context are given.

9.2 Preliminaries

For elements (x1,x2, . . . ,xn) of the n-dimensional Euclidean space Rn we shall also
write x, whatever is more convenient in the given context. In one case (when dis-
cussing the proof of Theorem 9.5.2 in Section 9.5) we will interpret elements of R2

as points in the Euclidian plane and denote them by capital letters. The order on Rn

is induced by the usual linear order in its coordinates.
To simplify some of the formulas to come, we shall also use the infix notations

∧ and ∨ for the lattice operations meet and join in Rn.
If A : [0,1]2 → [0,1] is a binary function, we shall sometimes work with its diag-

onal section δA : [0,1]→ [0,1], its horizontal section hA,α : [0,1]→ [0,1] and with
its vertical section vA,α : [0,1]→ [0,1] at level α ∈ [0,1] given by, respectively,

δA(x) = A(x,x), hA,α(x) = A(x,α), vA,α(x) = A(α,x).

We often require a function f : Ω →R, where Ω is a non-empty subset of Rn, to
be 1-Lipschitz, i.e., for all x,y ∈Ω we have | f (x)− f (y)| ≤ ∑n

i=1 |xi− yi|.
Three particular functions will play a special role in our considerations: the

Fréchet-Hoeffding lower bound W : [0,1]n → [0,1], the product Π : [0,1]n → [0,1],
and the Fréchet-Hoeffding upper bound M : [0,1]n → [0,1] given by, respectively,
W (x) = max

(
∑n

i=1 xi− (n−1),0
)
, Π(x) = ∏n

i=1 xi, and M(x) = min(x1,x2, . . . ,xn).
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9.2.1 Aggregation functions, quasi-copulas, copulas

An (n-ary) aggregation function [22] is a function A : [0,1]n→ [0,1] which is mono-
tone non-decreasing in each component and which satisfies A(0,0, . . . ,0) = 0 and
A(1,1, . . . ,1) = 1.

Given a binary 1-Lipschitz aggregation function A : [0,1]2 → [0,1], its dual [22]
A∗ : [0,1]2 → [0,1] is defined by A∗(x,y) = x+ y−A(x,y).

Each n-ary 1-Lipschitz aggregation function A satisfies W ≤ A≤W ∗, where the
dual function W ∗ : [0,1]n → [0,1] of the Fréchet-Hoeffding lower bound W is given
by W ∗(x) = min

(
∑n

i=1 xi,1
)
.

A (bivariate) quasi-copula (see [2, 20]) Q : [0,1]2 → [0,1] is a 1-Lipschitz ag-
gregation function which satisfies Q(0,x) = Q(x,0) = 0 and Q(1,x) = Q(x,1) = x
for all x ∈ [0,1].

Observe that a 1-Lipschitz aggregation function A : [0,1]2 → [0,1] is a quasi-
copula if and only if A(0,1) = A(1,0) = 0 (see [37]) or, equivalently, if and only if
it is bounded from above by the Fréchet-Hoeffding upper bound M, i.e., A≤M.

A (bivariate) copula C : [0,1]2 → [0,1] (see [69, 53]) is a function which sat-
isfies C(0,x) = C(x,0) = 0 and C(1,x) = C(x,1) = x for all x ∈ [0,1] and which
is 2-increasing, i.e., for all x1,x2,y1,y2 ∈ [0,1] with x1 ≤ x2 and y1 ≤ y2 for the
C-volume VC of the rectangle [x1,x2]× [y1,y2] we have

VC([x1,x2]× [y1,y2]) =C(x1,y1)−C(x1,y2)+C(x2,y2)−C(x2,y1)≥ 0. (9.1)

Obviously, each bivariate copula is a quasi-copula but not vice versa. Each quasi-
copula Q satisfies W ≤ Q≤M, and so the same inequalities hold for each copula.

A bivariate copula C : [0,1]2 → [0,1] is called Archimedean if there is a contin-
uous, strictly decreasing convex function t : [0,1]→ [0,∞] with t(1) = 0 such that
(see [51]) for all (x,y) ∈ [0,1]2

C(x,y) = t−1(min(t(x)+ t(y), t(0))). (9.2)

The function t is called an additive generator of C, and it is unique up to a posi-
tive multiplicative constant. Note that a bivariate Archimedean copula is necessarily
associative and satisfies C(x,x) < x for all x ∈ ]0,1[. For many more facts about
quasi-copulas and copulas see [17, 26, 53].

If (Ci)i∈I is a family of copulas and (]ai,ei[)i∈I a family of non-empty, pairwise
disjoint open subintervals of [0,1], the ordinal sum of the summands (〈ai,ei,Ci〉)i∈I
(which we shall call here M-ordinal sum) is well-known from the literature [18,
35, 42, 62]), and it is based on a result in the theory of abstract semigroups [9].
In this construction, the “gaps” between the squares [ai,ei]

2 are filled by the upper
Fréchet-Hoeffding bound M, and the result is always a copula. Another ordinal sum
construction of copulas is based on the lower Fréchet-Hoeffding bound W , and it
was considered more recently in [10, 14, 32, 50].

Let (Ci)i∈I be a family of copulas and (]ai,ei[)i∈I be a family of non-empty, pair-
wise disjoint open subintervals of [0,1].
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(i) The copula C = M-(〈ai,ei,Ci〉)i∈I defined by

C(x,y) =

{
ai +(ei−ai)Ci

( x−ai
ei−ai

, y−ai
ei−ai

)
if (x,y) ∈ [ai,ei]

2 ,

M(x,y) otherwise,
(9.3)

is called the M-ordinal sum of the summands (〈ai,ei,Ci〉)i∈I .
(ii) The copula C =W-(〈ai,ei,Ci〉)i∈I defined by

C(x,y)=

{
ai +(ei−ai)Ci

( x−ai
ei−ai

, y−1+ei
ei−ai

)
if (x,y) ∈ [ai,ei[× [1− ei,1−ai[ ,

W (x,y) otherwise,
(9.4)

is called the W-ordinal sum of the summands (〈ai,ei,Ci〉)i∈I .

More recently, also other constructions in this spirit were proposed, using patch-
work [10, 13, 14] and gluing techniques [68], or ordinal sums based on the prod-
uct Π [38, 48, 60].

9.2.2 Modular, supermodular, and ultramodular functions

Let Ω be a convex sublattice of Rn. A function f : Ω → [0,1] is called convex if, for
all x,y∈Ω and for all λ ∈ [0,1], we have f

(
λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y).

A function f : Ω → [0,1] is called

[M] modular if, for all x,y ∈Ω , we have f
(
x∨y

)
+ f
(
x∧y

)
= f (x)+ f (y);

[SM] supermodular [6, 33, 44] if, for all x,y ∈Ω ,

f
(
x∨y

)
+ f
(
x∧y

)≥ f (x)+ f (y);

[UM] ultramodular [44] if, for all x,y ∈ Ω with x ≤ y and for all h ∈ Rn with
h≥ 0 and x+h,y+h ∈Ω ,

f (x+h)− f (x)≤ f (y+h)− f (y).

Each modular function is ultramodular, and ultramodularity implies supermodu-
larity [44]. As a consequence of [25, 28, 30, 72], the ultramodular functions form a
proper subset of the set of all convex functions. Ultramodular functions were also
called Wright convex [57] by some authors (mainly in mathematical analysis where
they first appeared in [72] and originally just were called convex functions).

In the case of an n-dimensional real domain, ultramodularity can be seen as a
version of convexity. Assuming some mild regularity, the set of ultramodular func-
tions equals the intersection of the set of all supermodular functions and the set of all
functions which are convex in each variable. Ultramodular functions are used in eco-
nomics, in particular in game theory when dealing with convex measure games [3],
but they also have applications in multicriteria decision support systems [5].
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In statistics, ultramodular functions play an important role in modelling stochas-
tic orders and positive dependence among random vectors (see [52, 64]), and they
are known there also as directionally convex functions. For more details about ultra-
modular real functions we recommend [44].

Trivially, each additive function f : [0,1]→ R, i.e., for all x,y ∈ [0,1] we have
f (x+y) = f (x)+ f (y), is an ultramodular function. However, it is linear (and, there-
fore, convex) only if we require additional properties, such as continuity, mono-
tonicity or boundedness. Otherwise, an additive function f : [0,1]→ R can be quite
pathological (for instance, its graph may be a dense subset of [0,1]×R).

For a function of one variable, ultramodularity and convexity are equivalent. If
n > 1, ultramodularity and convexity of a function f : Rn → R are independent
notions. There are, on the one hand, convex functions which are not ultramodular
(e.g., f (x) = ‖x‖) and, on the other hand, ultramodular functions which are not
convex (e.g., f (x) = ∏n

i=1 xi).
In special cases, there are several additional characterizations of and some inter-

esting relations between these properties.
A function of one variable defined on an interval which is twice differentiable is

a convex function if and only if its second derivative is non-negative. A continuous,
twice differentiable function of several variables defined on a convex set is a convex
function if and only if its Hessian matrix is positive semidefinite on the interior of
the convex set.

A monotone non-decreasing function f : [0,1]2 → [0,1] is supermodular if and
only if for all x,x∗,y,y∗ ∈ [0,1] with x≤ x∗ and y≤ y∗

f (x∗,y∗)− f (x∗,y)− f (x,y∗)+ f (x,y)≥ 0. (9.5)

Binary aggregation functions satisfying condition (9.5) are also called 2-increa-
sing [53] or of moderate growth [29]. Mainly in economics, ultramodular functions
f : Ω → [0,1] are said to have non-decreasing increments [7].

Observe that a function C : [0,1]2 → [0,1] is a bivariate copula if and only if it is
a supermodular quasi-copula.

In [44] several equivalent conditions for a function f : Ω → [0,1] to be ultramod-
ular are given:

[UM1] for all x,y,z ∈Ω with y,z≥ 0 and x+y+ z ∈Ω

f (x+ z)− f (x)≤ f (x+y+ z)− f (x+y);

[UM2] for all x,y,z,w ∈Ω with x≤ y≤ w and x+w = y+ z

f (y)+ f (z)≤ f (w)+ f (x);

[UM3] for all x ∈Ω and all h,k ∈Rn with h≥ 0 and (|k1|, |k2|, . . . , |kn|)≤ h and
x+h,x−h,x+k,x−k ∈Ω

f (x+k)+ f (x−k)≤ f (x+h)+ f (x−h).
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The vectors x,y,z,w ∈Ω in [UM2] can be viewed as the vertices of a parallelo-
gram centered at 1

2 (x+w) (see Figure 9.1).

Fig. 9.1: Modularity (left), supermodularity (center), and ultramodularity (right)
condition for a binary function defined on the unit square.

The following characterization of supermodular functions f : [0,1]n → [0,1] is
due to [6, 27]:

Proposition 9.2.1. An n-ary function f : [0,1]n → [0,1] is supermodular if and only
if each of its two-dimensional sections is supermodular, i.e., for each x ∈ [0,1]n

and all i, j ∈ {1,2, . . . ,n} with i �= j, the function fx,i, j : [0,1]2 → [0,1] given by
fx,i, j(u,v) = f (y), where yi = u, y j = v and yk = xk for k ∈ {1,2, . . . ,n} \ {i, j}, is
supermodular.

The following result (Corollary 4.1 of [44]) states the exact relationship between
ultramodular and supermodular functions f : [0,1]n → [0,1]:

Proposition 9.2.2. A function f : [0,1]n → [0,1] is ultramodular if and only if f is
supermodular and if each of its one-dimensional sections is convex, i.e., if for each
x ∈ [0,1]n and each i ∈ {1, . . . ,n} the function fx,i : [0,1]→ [0,1] which is given by
fx,i(u) = f (y), where yi = u and y j = x j whenever j �= i, is convex.

For an n-ary aggregation function A : [0,1]n → [0,1] the following are equivalent
as a consequence of Propositions 9.2.1 and 9.2.2:

(i) A is ultramodular;
(ii) each two-dimensional section of A is ultramodular;
(iii) each two-dimensional section of A is supermodular and each one-dimensional

section of A is convex.

For n= 2, the ultramodularity [UM] of an aggregation function A : [0,1]2→ [0,1]
is equivalent to A being P-increasing (see [16]), i.e., to

A(u1,v1)+A(u4,v4)≥max
(
A(u2,v2)+A(u3,v3),A(u3,v2)+A(u2,v3)

)
for all u1,u2,u3,u4,v1,v2,v3,v4 ∈ [0,1] which satisfy u1 ≤ u2 ∧ u3 ≤ u2 ∨ u3 ≤ u4,
v1 ≤ v2∧ v3 ≤ v2∨ v3 ≤ v4, u1 +u4 ≥ u2 +u3, and v1 + v4 ≥ v2 + v3.
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9.2.3 Ultramodular aggregation functions

In general, the class of ultramodular aggregation functions is closed under com-
position (see Theorem 3.2 in [33]), i.e., ultramodular aggregation functions form a
clone [39]. Therefore, any n-ary extension of a bivariate ultramodular aggregation
function is again ultramodular:

Proposition 9.2.3. Let A : [0,1]2 → [0,1] be an ultramodular bivariate aggregation
function and define for n≥ 2 its n-ary extension A[n] : [0,1]n → [0,1] inductively by

A[2] = A and A[n+1](x1,x2, . . . ,xn+1) = A
(
A[n](x1,x2, . . . ,xn),xn+1

)
. (9.6)

Then A[n] is an n-ary ultramodular aggregation function for each n≥ 2.

Proof. The function A[3] : [0,1]3 → [0,1] given by A[3](x1,x2,x3) = A(A(x1,x2),x3)
is ultramodular because of the ultramodularity of A and the ultramodularity of the
two functions B1 : [0,1]3 → [0,1], B1(x1,x2,x3) = A(x1,x2) and B2 : [0,1]3 → [0,1],
B2(x1,x2,x3) = x3. The rest follows by induction. ��

If A : [0,1]2 → [0,1] is an ultramodular bivariate aggregation function which is
not associative then we can define another trivariate extension B[3] : [0,1]3 → [0,1]
by B[3](x1,x2,x3) = A(x1,A(x2,x3)) which may be different from A[3] given in (9.6),
but which is also ultramodular.

The following result is a consequence of Theorems 3.1 and 3.2 in [33], and it
generalizes [12, Theorem 5.2]:

Theorem 9.2.4. Let A : [0,1]n → [0,1] be an ultramodular n-ary aggregation
function and let B1,B2, . . . ,Bn : [0,1]k → [0,1] be supermodular, monotone non-
decreasing functions of k variables such that A

(
B1(0),B2(0), . . . ,Bn(0)

)
= 0 and

A
(
B1(1),B2(1), . . . ,Bn(1)

)
= 1. Then the composite function D : [0,1]k → [0,1] de-

fined by D(x) = A
(
B1(x),B2(x), . . . ,Bn(x)

)
is a supermodular k-ary aggregation

function.

9.2.4 Schur concave functions and copulas

Another property of real functions which will play a crucial role in the constructions
in Section 9.5 is the Schur concavity. The concept of Schur convex functions (and
Schur concave functions as their negations) was presented in [61] as a variant of
convexity and concavity of real functions, respectively (see also [58]). For exam-
ple, each symmetric convex function is Schur convex (and each symmetric concave
function is Schur concave). An example of a Schur convex function is the maximum.
The minimum and the product (the latter only in the case of strictly positive factors)
are Schur concave, as well as all elementary symmetric functions (again only if all
components are strictly positive) [66, 67].
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Schur convexity is a special type of monotonicity which reverses majorization.
Majorization [46], a preorder on vectors of real numbers, and inequalities related
to it [65] are used when comparing income inequality, and they have applica-
tions also in physics, chemistry, political science, engineering, and economics [47].
Looking at bivariate copulas, one sees that each Schur concave copula is necessar-
ily symmetric, and that each associative copula is Schur concave [15]. Also other
Schur convex (concave) functions have interpretations in stochastics and/or aggre-
gation [22]: the variance and the standard deviation turn out to be Schur convex,
whereas the Shannon entropy, the Rényi entropy and the Gini coefficient are Schur
concave [4, 21, 40, 55, 56].

If x= (x1,x2, . . . ,xn)∈Rn is a vector then we denote by x↓= (x↓1,x
↓
2, . . . ,x

↓
n)∈Rn

the vector having the same components as x, but sorted in descending order.
We say that y = (y1,y2, . . . ,yn) ∈Rn majorizes x = (x1,x2, . . . ,xn) ∈Rn (in sym-

bols y� x) if we have ∑n
i=1 xi =∑n

i=1 yi and ∑n
i=k x↓i ≤∑n

i=k y↓i for all k∈{1,2, . . . ,n}.
The relation � on Rn is reflexive and transitive, i.e., a preorder, but not anti-

symmetric and, therefore, not a partial order: from y � x and x � y it only follows
that x and y have the same components, but not necessarily in the same order.

If Ω is a subset of Rn then a function f : Ω → R is called Schur convex if for
all x,y ∈ Ω with y � x we have f (y) ≥ f (x), and it is called Schur concave if its
negation − f is Schur convex.

When considering the special scenario n = 2 and Ω = [0,1]2, the conditions for
Schur concavity become somewhat simpler:

In this case, a function f : [0,1]2 → [0,1] is Schur concave if and only if, for
all (x,y),(u,v) ∈ [0,1]2 satisying x+ y = u+ v and min(x,y) ≤ min(u,v), we have
f (x,y)≤ f (u,v).

Equivalently, a function f : [0,1]2 → [0,1] is Schur concave if and only if we
have f (x,y) ≤ f (λ · x+(1−λ ) · y,(1−λ ) · x+λ · y) for all (x,y) ∈ [0,1]2 and all
λ ∈ [0,1].

We will often require the Schur concavity of a copula C : [0,1]2 → [0,1] on the
upper left triangle Δ = {(x,y) ∈ [0,1]2 | x≤ y} of the unit square only, which means
that C(x,y)≤C(x+ε,y−ε) for all (x,y)∈Δ and for all ε > 0 with (x+ε,y−ε)∈Δ .

Here are some well-known facts about Schur concave copulas: first of all, each
associative copula is Schur concave. As a consequence, the three basic copulas W ,Π
and M and also all Archimedean copulas are Schur concave. Trivially, each convex
combination of Schur concave copulas is also Schur concave (implying that, for
example, each member of the two families of Fréchet [19] and Mardia [43] copulas
as discussed in [53, Exercise 2.4] is Schur concave).

Moreover, each Schur concave copula is symmetric, and each symmetric copula
which is Schur concave on the upper left triangle Δ is Schur concave.

In general, however, the Schur concavity of a copula on the upper left triangle Δ
does not imply its symmetry. A counterexample is given by the copula C defined by

C(x,y) =

{
Π(x,y) if x≤ y,

min
( x2+y2

2 ,y
)

otherwise.
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Since C coincides with Π on the upper left triangle Δ it is Schur concave on Δ .
On the other hand, C is not ultramodular: for example, the horizontal section
hC, 1

2
: [0,1]→ [0, 1

2

]
is not a convex function (see figure below).

hC, 1
2
(x) =

⎧⎪⎪⎨⎪⎪⎩
x
2 if x ∈ [0, 1

2

]
,

4x2+1
8 if x ∈ [ 1

2 ,
√

3
2

]
,

1
2 otherwise.

9.3 Ultramodular copulas

Ultramodular bivariate copulas, characterized by the convexity of all of their hor-
izontal and vertical sections [44, Corollary 4.1] (see also [34, Proposition 2.3]),
were studied recently in [33, 34]. An ultramodular copula describes the dependence
structure of stochastically decreasing random vectors (see [53]), and thus each ul-
tramodular copula is said to be negative quadrant dependent.

The set Cu of all ultramodular copulas is closed under convex combinations and
pointwise limits, i.e., it is a compact and convex subset of the set of all binary func-
tions from [0,1]2 to [0,1].

The smallest element of Cu is the Fréchet-Hoeffding lower bound W , and its
greatest element is the product copula Π (observe that each section of Π is a lin-
ear function i.e., the greatest convex function satisfying the boundary conditions of
copulas).

Moreover, each survival copula [17, 53] of an ultramodular copula is ultramod-
ular, and a W-ordinal sum W-(〈ai,ei,Ci〉)i∈I of bivariate copulas as given by (9.4) is
ultramodular if and only if each copula Ci is ultramodular [33].

No copula which is greater than Π (for example, the Fréchet-Hoeffding upper
bound M) can be ultramodular. Also no copula C with an idempotent element dif-
ferent from 0 and 1, i.e., C(a,a) = a for some a ∈ ]0,1[, can be ultramodular since
this would imply C(x,a) = min(x,a) for all x ∈ [0,1], i.e., the existence of some
non-convex horizontal section. As a consequence, a non-trivial M-ordinal sum of
copulas [9, 18, 35, 42, 53, 62, 63]) can never be ultramodular.

Because of [53, 63], each associative copula is an M-ordinal sum of Archimedean
copulas. Therefore, each ultramodular associative copula C is a trivial ordinal sum of
Archimedean copulas, i.e., C itself must be Archimedean. The set of all ultramodular
Archimedean copulas is a compact (but not convex) subset of Cu (see [36]).

Some of the one-parameter families of Archimedean copulas listed in [53, Ta-
ble 4.1] contain ultramodular copulas: the complete family of copulas given in [53,
(4.2.7)] is ultramodular (in the framework of triangular norms it is also known as
family of Sugeno-Weber t-norms [35, 70, 71]), as well as “half” of the family (with



144 E. P. Klement, A. Kolesárová, R. Mesiar, and S. Saminger-Platz

parameters in [−1,0]) of Ali-Mikhail-Haq copulas [1] (also known as family of
Hamacher t-norms [35, 23, 24]) given in [53, (4.2.3)] and “half” of the family (with
parameters in [−∞,0]) of Frank copulas [18] given in [53, (4.2.5)].

In [59, Proposition 3.2] (compare also Proposition 9.2.3) it was shown that, for
each ultramodular bivariate copula C : [0,1]2 → [0,1] and for each n ≥ 2, the func-
tion C[n] : [0,1]n → [0,1] defined as in (9.6) is an n-ary ultramodular quasi-copula.
Even if the bivariate copula C is associative, the quasi-copula C[n] is not a copula in
general: the Fréchet-Hoeffding lower bound is a well-known counterexample.

The diagonal section δC : [0,1]→ [0,1] of an ultramodular bivariate copula C is
strictly increasing on the preimage δC

←(]0,1]) = {x ∈ [0,1] | δC(x) ∈ ]0,1]}:
Lemma 9.3.1. If C : [0,1]2 → [0,1] is an ultramodular bivariate copula then there
are no numbers x1,x2 ∈ ]0,1[ with x1 < x2 such that 0 < δC(x1) = δC(x2).

Proof. Assume, to the contrary, that such numbers exist and assume without loss
of generality x1 = inf{x ∈ ]0,1[ | δC(x) = δC(x2)}. Choose some ε ∈ ]0, x2−x1

2

]
and

consider x,y,z ∈ [0,1]2 given by x = (x1− ε,x1− ε), y = (ε,2ε), and z = (2ε,ε).
Then we obtain, due to the monotonicity of C, C(x) = δC(x1− ε) < δC(x2) and
C(x+y) =C(x+ z) =C(x+y+ z) = δC(x2), implying that

C(x+y+ z)−C(x+y)−C(x+ z)+C(x) = δC(x1− ε)−δC(x2)< 0,

in contradiction to the ultramodularity of C. ��
If we want to see whether an Archimedean copula is ultramodular, i.e., has con-

vex horizontal and vertical sections, its symmetry (as a consequence of (9.2)) and
boundary conditions tell us that it suffices to check the convexity of all horizontal
sections for a ∈ ]0,1[.

The following characterization of the ultramodularity of an Archimedean bi-
variate copula C : [0,1]2 → [0,1] with a two times differentiable additive generator
t : [0,1]→ [0,∞] was given in [34, Theorem 3.1] (see also [8]): C is ultramodular if
and only if 1/t ′ is a convex function.

9.4 A rather general construction method

Based on some earlier results of [11, Theorem 2] and [34, Theorem 4.1], the follow-
ing was shown in [31, Theorem 2.3]:

Theorem 9.4.1. Let C,D1,D2 : [0,1]2 → [0,1] be bivariate copulas and suppose
that C is ultramodular. Then, for all monotone non-decreasing continuous functions
f1, f2,g1,g2 : [0,1]→ [0,1] such that C( f1(x), f2(x)) =C(g1(x),g2(x)) = x for each
x ∈ [0,1], also the function E : [0,1]2 → [0,1] given by

E(x,y) =C
(
D1( f1(x),g1(y)),D2( f2(x),g2(y))

)
(9.7)

is a bivariate copula.
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As a consequence of Proposition 9.2.3 and Theorem 9.2.4, there is an extension
of Theorem 9.4.1, generalizing a result shown for the product copula in [41]:

Corollary 9.4.2. Let Q : [0,1]n → [0,1] be an ultramodular n-ary quasi-copula and
suppose that D1,D2, . . . ,Dn : [0,1]2 → [0,1] are bivariate copulas. If the functions
f1, f2, . . . , fn,g1,g2, . . . ,gn : [0,1]→ [0,1] are monotone non-decreasing and contin-
uous and satisfy Q( f1(x), f2(x), . . . , fn(x)) = Q(g1(x),g2(x), . . . ,gn(x)) = x for each
x ∈ [0,1], then also the function E : [0,1]2 → [0,1] given by

E(x,y) = Q
(
D1( f1(x),g1(y)),D2( f2(x),g2(y)), . . . ,Dn( fn(x),gn(y))

)
is a bivariate copula.

Example 9.4.3. Consider the n-ary Fréchet-Hoeffding lower bound W : [0,1]n →
[0,1] which is an ultramodular quasi-copula. Note that for all monotone non-
decreasing continuous functions f1, f2, . . . , fn : [0,1]→ [0,1] and for each x ∈ [0,1]
we have W

(
f1(x), f2(x), . . . , fn(x)

)
= x if and only if ∑n

i=1 fi = id[0,1] +n−1, where
the identity function id[0,1] : [0,1]→ [0,1] is given by id[0,1](x) = x. Defining for
each i ∈ {1,2, . . . ,n} the function ϕi : [0,1]→ [0,1] by ϕi = fi− fi(0) and putting
ξi = ϕi(1)∈ [0,1], we obviously get ∑n

i=1ϕi = id[0,1] and ∑n
i=1 ξi = 1. Note that func-

tions ϕ1,ϕ2, . . . ,ϕn : [0,1]→ [0,1] with these properties are necessarily 1-Lipschitz,
and they exist if and only if there is a bivariate copula C such that, for each
i ∈ {1,2, . . . ,n} and for all x ∈ [0,1],

ϕi(x) =C
(
x,ξ1 +ξ2 + · · ·+ξi

)−C
(
x,ξ1 +ξ2 + · · ·+ξi−1

)
, (9.8)

where ξ0 = 0 by convention (compare the ordered modular averages discussed
in [49]). If now, for each i ∈ {1,2, . . . ,n}, we choose ϕi(x) = ξix for each x ∈ [0,1]
(this corresponds to the case C = Π in (9.8)), i.e., fi(x) = 1− ξi + ξix, and if,
for some (η1,η2, . . . ,ηn) ∈ [0,1]n satisfying ∑n

i=1ηi = 1, we define the functions
g1,g2, . . . ,gn : [0,1]→ [0,1] by gi(x) = 1−ηi +ηix, for D1 = D2 = · · · = Dn = Π
we obtain

W
(

D1
(

f1(x),g1(y)
)
,D2
(

f2(x),g2(y)
)
, . . . ,Dn

(
fn(x),gn(y)

))
= max

( n

∑
i=1

(1−ξi +ξix)(1−ηi +ηiy)− (n−1),0
)

(9.9)

= max
(( n

∑
i=1
ξiηi

)
xy+

(
1−

n

∑
i=1
ξiηi

)
(x+ y−1),0

)
.

Observe that the copulas defined by (9.9) are all members of the family of bivariate
copulas given by (4.2.7) in [53, Table 4.1], where the parameter θ ∈ [0,1] used there
equals ∑n

i=1 ξiηi (note that, in the framework of triangular norms [35], this family
is known as family of Sugeno-Weber t-norms).

If the bivariate copula C in Theorem 9.4.1 fails to be ultramodular, then the func-
tion constructed via (9.7) may not even be a quasi-copula.
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Example 9.4.4. Put C = M and D1 = D2 =Π and recall that M is not ultramodular.
Define the functions f1, f2 : [0,1]→ [0,1] by

f1(x) =

⎧⎪⎨⎪⎩
x if x ∈ [0, 1

2

]
,

4x− 3
2 if x ∈ ] 1

2 ,
5
8

]
,

1 otherwise,
f2(x) = max(x, 1

2 ),

and put g1 = f1 and g2 = f2. Clearly, M( f1(x), f2(x)) =M(g1(x),g2(x)) = x for each
x ∈ [0,1]. For E : [0,1]2 → [0,1] given by E(x,y) = M

(
f1(x) · g1(y), f2(x) · g2(y)

)
we have

∣∣E( 5
8 ,

3
8

)−E
( 1

2 ,
3
8

)∣∣ > ∣∣ 58 − 1
2

∣∣+ ∣∣ 38 − 3
8

∣∣, i.e., E is not 1-Lipschitz and,
therefore, not even a quasi-copula.

For α ∈ [0,1] define the function pα : [0,1]→ [0,1] given by pα(x) = max(x,α).
Obviously, p0 = id[0,1] and p1(x) = 1 for all x ∈ [0,1], and for each ultramodular
copula C and for each x ∈ [0,1] we have C(p0(x), p1(x)) =C(p1(x), p0(x)) = x.
Example 9.4.5. Define the functions f1, f2 : [0,1]→ [0,1] by f1(x) = min(2x,1)
and f2(x) = max(x,1− x), respectively. Note that f1 is not 1-Lipschitz and f2 is
not monotone, but we have W ( f1(x), f2(x)) = x for all x ∈ [0,1]. Applying the con-
struction of Theorem 9.4.1 to the case C = W , D1 = D2, g1 = p0, and g2 = p1 we
obtain

D1 =W : W
(
W ( f1(x),y),W ( f2(x),1)

)
=W (x,y);

D1 =Π : W
(
Π( f1(x),y),Π( f2(x),1)

)
=W-(〈0, 1

2 ,Π〉)(x,y) which is a W-ordinal
sum and, therefore, an ultramodular copula;

D1 = M: W
(
M( f1(x),y),M( f2(x),1)

)
= max(max(2x+ y−1,0)− x,0) which is

not monotone and, therefore, not even an aggregation function.

If C is an ultramodular copula we shall write IC for the set of all pairs ( f1, f2)
of continuous, monotone non-decreasing functions f1, f2 : [0,1]→ [0,1] satisfying
C( f1(x), f2(x)) = x for each x ∈ [0,1].

Let us fix some ultramodular bivariate copula C : [0,1]2 → [0,1]. In order to ex-
ploit Theorem 9.4.1 for the construction of (possibly non-symmetric) copulas by
means of C it is advantageous to have at hand a reasonable sample of functions f1
and f2 such that ( f1, f2) ∈IC.

To start with, recall the diagonal section δC : [0,1]→ [0,1] of the ultramodu-
lar copula C, put dC = sup{x ∈ [0,1] | δC(x) = 0} and observe that the restriction
δC � [dC,1] of δC to [dC,1] is a strictly increasing bijection because of Lemma 9.3.1.
Defining f : [0,1]→ [0,1] as its inverse, i.e., f (x) =

(
δC � [dC,1]

)−1
(x), we obvi-

ously get C( f (x), f (x)) = δC ◦ f (x) for each x ∈ [0,1], i.e., ( f , f ) ∈IC.

Proposition 9.4.6. For each ultramodular bivariate copula C : [0,1]2 → [0,1] and
for each α ∈ ]0,1[ there exist two uniquely determined monotone non-decreasing,
continuous functions rC

α ,q
C
α : [0,1]→ [0,1] such that {(pα ,rC

α),(q
C
α , pα)} ⊆IC.

Proof. Because of the ultramodularity of C, for each α ∈ ]0,1[ both the hori-
zontal section hC,α : [0,1] → [0,α] and the vertical section vC,α : [0,1] → [0,α]
of C given by hC,α(x) = C(x,α) and vC,α(x) = C(α,x), respectively, are convex,
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monotone non-decreasing, and 1-Lipschitz, and they satisfy hC,α(0) = vC,α(0) = 0
and hC,α(1) = vC,α(1) = α . If we denote aC,α = sup{x ∈ [0,1] | hC,α(x) = 0}
and bC,α = sup{x ∈ [0,1] | vC,α(x) = 0}, then the restrictions hC,α � [aC,α ,1] and
vC,α � [bC,α ,1] of hC,α to [aC,α ,1] and vC,α to [bC,α ,1], respectively, are strictly
increasing bijections. Now, for each α ∈ [0,1] we can define the two continuous
functions rC

α ,q
C
α : [0,1]→ [0,1] by

rC
α(x) =

⎧⎪⎨⎪⎩
p1−α(x) if α ∈ {0,1},(
vC,α � [bC,α ,1]

)−1
(x) if α ∈ ]0,1[ and x ∈ [0,α[ ,

1 otherwise,

qC
α(x) =

⎧⎪⎨⎪⎩
p1−α(x) if α ∈ {0,1},(
hC,α � [aC,α ,1]

)−1
(x) if α ∈ ]0,1[ and x ∈ [0,α[ ,

1 otherwise,

and we have {(pα ,rC
α),(q

C
α , pα)} ⊆IC. ��

Clearly, if the bivariate copula C : [0,1]2 → [0,1] is symmetric and the function
rC
α : [0,1]→ [0,1] exists then we have qC

α = rC
α .

Example 9.4.7. Consider the convex combination Cλ = λΠ +(1−λ )W of the two
extremal ultramodular bivariate copulas Π and W with λ ∈ [0,1]. Looking at its
vertical sections, we have vCλ ,α(x) = λαx+ (1− λ )max(α + x− 1,0), which in
the case α ∈ ]0,1[ implies bCλ ,α = sup{x ∈ [0,1] | vCλ ,α(x) = 0} = 0. This means
that the vertical section vCλ ,α itself is a bijection and that rCλ

α equals its inverse for
α ∈ ]0,1[, i.e., rCλ

α is given by

rCλ
α (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p1−α(x) if α ∈ {0,1},

x
λα if α ∈ ]0,1[ and x ∈ [0,λα(1−α)] ,
1− α−x

1−λ+λα if α ∈ ]0,1[ and x ∈ ]λα(1−α),α[ ,
1 otherwise.

Since Cλ is ultramodular and symmetric we may put qCλ
α = rCλ

α for each α ∈ [0,1].
The approach in Theorem 9.4.1 can also be used to generate a copula which is a

Π -horizontal ordinal sum [48, 60] (see also the gluing of copulas [68]).
Example 9.4.8. For λ ∈ ]0,1[ consider, as in Example 9.4.7, the convex combina-
tion Cλ = λΠ +(1−λ )W of the ultramodular bivariate copulas Π and W and the
function rCλ

α : [0,1]→ [0,1]. Then, for each α ∈ ]0,1[ the function C : [0,1]2 → [0,1]
given by

C(x,y) =Cλ
(
Π(x, pα(y)),W

(
1,rCλ

α (y)
))

=Cλ
(

xpα(y),r
Cλ
α (y)

)
is a bivariate copula (visualized in Figure 9.2 left and center). It is not difficult to
see that C is indeed a Π -horizontal ordinal sum: keeping the notations of [60] and
putting κ = αλ

αλ−λ+1 , we obtain C =Πh-(〈λα(1−α),α,Cκ〉).
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Fig. 9.2: The Π -horizontal sum (left and center) in Example 9.4.8, and the copula
in Example 9.4.9

Example 9.4.9. For α,β ,λ ∈ [0,1] consider, as in Example 9.4.7, the convex com-
bination Cλ = λΠ +(1−λ )W of the two ultramodular bivariate copulas Π and W
and the functions rCλ

α ,rCλ
β : [0,1]→ [0,1]. Then, for each α,β ,λ ∈ ]0,1[ the function

C : [0,1]2 → [0,1] given by

C(x,y) =Cλ
(
Π(pα(x), pβ (y)),W

(
rCλ
α (x),rCλ

β (y)
))

is a bivariate copula (visualized in Figure 9.2 right). Observe that C coincides withΠ
on the set ([α ,1]× [β ,1])∪ ([α ,1]× [0,λβ (1−β )])∪ ([0,λα(1−α)]× [β ,1]), and
that C vanishes (coinciding there with W ) on a set containing the triangle determined
by the vertices (0,0), (0,λβ (1−β )), and (λα(1−α),0).
Example 9.4.10. Let (]ai,bi[)i∈I be a family of non-empty, pairwise disjoint open
subintervals of [0,1] and (Ci)i∈I be a family of ultramodular bivariate copulas, and
let C be their W-ordinal sum, i.e., C = W-(〈ai,bi,Ci〉)i∈I . If α ∈ ]0,1[ then for the
continuous function rC

α : [0,1]→ [0,1] which satisfies C
(

pα(x),rC
α(x)

)
= x for each

x ∈ [0,1] we have to distinguish two cases, depending on the position of α with
respect to the family of open intervals (]ai,bi[)i∈I :

(i) if there is an i∗ ∈ I such that λ ∈ ]ai∗ ,bi∗ [ then rC
α : [0,1]→ [0,1] is given by

rC
α(x) =

⎧⎪⎪⎨⎪⎪⎩
(1−bi∗)+(bi∗ −ai∗)r

Ci∗
α−ai∗

bi∗−ai∗

( x
bi∗−ai∗

)
if x ∈ [0,α−ai∗ ] ,

1−α+ x if x ∈ ]α−ai∗ ,α[ ,
1 otherwise;

(ii) if λ /∈ ⋃
i∈I

]ai,bi[ then rC
α : [0,1]→ [0,1] is given by rC

α(x) = min(1−α+ x,1),

and we have rC
α = rW

α .

There is also a counterpart of Theorem 9.4.1 for (ultramodular) quasi-copulas.
We formulate it here for the bivariate case only (see [31, Corollary 5.2]):
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Corollary 9.4.11. Let R,Q1,Q2 : [0,1]2 → [0,1] be bivariate quasi-copulas and as-
sume that R is ultramodular. If f1, f2,g1,g2 : [0,1]→ [0,1] are monotone non-de-
creasing continuous functions satisfying R( f1(x), f2(x)) = R(g1(x),g2(x)) = x for
each x ∈ [0,1], then the function L : [0,1]2 → [0,1] given by

L(x,y) = R
(
Q1( f1(x),g1(y)),Q2( f2(x),g2(y))

)
(9.10)

is a quasi-copula.

9.5 A product-like construction

Now we summarize some results from [31] demonstrating the role of (partial) ultra-
modularity and Schur concavity when constructing copulas.

If D,A : [0,1]2 → [0,1] are binary aggregation functions and if A is 1-Lipschitz
then the function D(A,A∗) : [0,1]2 → [0,1] given by

D(A,A∗)(x,y) = D(A(x,y),A∗(x,y)) (9.11)

is called the D-product of A and its dual A∗.
When we start with two bivariate quasi-copulas D,Q : [0,1]2 → [0,1] then it was

shown in Proposition 5.3 in [31] that the D-product D(Q,Q∗) of Q and its dual Q∗
is always a bivariate quasi-copula.
Example 9.5.1. If D,C : [0,1]2 → [0,1] are bivariate copulas and if one of them
equals one of the three basic copulas W , Π and M, then the D-product of C and its
dual C∗ quite often (but not always) is also a copula [31].

(i) For each copula C we trivially get W (C,C∗) =W and M(C,C∗) =C, and for
each copula D we have D(W,W ∗) =W .

(ii) In [38] it was shown that, for each copula C, also Π(C,C∗) is a copula.
(iii) Let D be a copula. Then D(M,M∗) is a copula if and only if, for the copula

CδD : [0,1]2 → [0,1] given by

CδD(x,y) = min
(
x,y, D(x,x)+D(y,y)

2

)
and for the restriction D �Δ of D to Δ we have D �Δ≤CδD �Δ . Note that the
copula CδD is the diagonal copula (see [54]) whose diagonal section coin-
cides with the diagonal section δD of D.

(iv) For a symmetric copula D we obtain D(M,M∗) = D. Consider the (non-
symmetric) copula D =W-(〈0,0.5,Π〉) given by

D(x,y) =

{
Π(x,2y−1) if (x,y) ∈ [0,0.5]× [0.5,1] ,
W (x,y) otherwise,
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Fig. 9.3: The two cases in the proof of Theorem 9.5.2

and notice that it satisfies D �Δ≤CδD �Δ . Then D(M,M∗) is a copula different
from D: indeed, D(M,M∗) =W-(〈0,0.5,Π〉,〈0.5,1,Π〉) �= D.

(v) Consider the (non-symmetric) W-ordinal sum D =W-(〈0,0.8,M〉) given by

D(x,y) =

{
M(x,y−0.2) if (x,y) ∈ [0,0.8]× [0.2,1] ,
W (x,y) otherwise.

Then the D(M,M∗)-volume VD(M,M∗) of, e.g., the square [0.4,0.6]2 ⊆ [0,1]2

is negative, i.e., D(M,M∗) is not a copula.

The following main result of [31] (there it is Theorem 3.1) shows that, for a
copula D, the validity of the ultramodularity [UM] and the Schur concavity on the
upper left triangle Δ ⊆ [0,1]2 are sufficient conditions for the D-product of an arbi-
trary copula C and its dual C∗ to be a copula. Note that, although the upper Fréchet-
Hoeffding bound M is not ultramodular on [0,1]2, it is ultramodular on the upper
left triangle Δ , so Theorem 9.5.2 will apply to D = M as well.

Theorem 9.5.2. Let D be a copula which is ultramodular and Schur concave on
the upper left triangle Δ = {(x,y) ∈ [0,1]2 | x ≤ y}. Then, for each copula C, the
D-product D(C,C∗) of C and its dual C∗ is a copula.

The proof of Theorem 9.5.2 as given in [31] turns out to be quite elaborate,
so we present here a sketch of it highlighting its key points. Since the boundary
conditions are trivial, the main issue is to show that D(C,C∗) is 2-increasing, i.e.,
that inequality (9.1) holds for arbitrary, but fixed, numbers x1,x2,y1,y2 ∈ [0,1] with
x1 ≤ x2 and y1 ≤ y2. Choosing the points P1,P2,P3 and P4 in [0,1]2 according to
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P1 = (C(x1,y1),C∗(x1,y1)), P2 = (C(x2,y1),C∗(x2,y1)),

P3 = (C(x1,y2),C∗(x1,y2)), P4 = (C(x2,y2),C∗(x2,y2)),

it is not difficult to see that they all belong to the upper left triangle Δ . Putting

P5 = P2 +P3−P1

= (C(x2,y1)+C(x1,y2)−C(x1,y1),C∗(x2,y1)+C∗(x1,y2)−C∗(x1,y1)),

i.e., extending the triangle with vertices P1, P2 and P3 to a parallelogram, there are
two possible cases.

If P5 ∈ Δ (as in Figure 9.3 left) then the Schur concavity of D on Δ implies
D(C,C∗)(x2,y2) = D(P4)≥ D(P5), and the ultramodularity of D on Δ then leads to
D(P1)−D(P3)+D(P5)−D(P2) ≥ 0, which means that D(C,C∗) satisfies inequal-
ity (9.1) in this case and, therefore, is a copula.

If P5 /∈ Δ (as in Figure 9.3 right) then we consider the points P6–P10 as in the
figure and observe that, again because of the Schur concavity of D on Δ ,

D(C,C∗)(x1,y1)−D(C,C∗)(x1,y2)+D(C,C∗)(x2,y2)−D(C,C∗)(x2,y1)

= D(P1)−D(P3)+D(P4)−D(P2)

= D(P1)+D(P6)−D(P2)−D(P10) (a)
+D(P10)+D(P7)−D(P3)−D(P8) (b)
+D(P9)−D(P7)−D(P6)+D(P8) (c)
+D(P4)−D(P9). (d)

Now it is not too difficult to see that the expressions (a) and (b) are both non-negative
because of the ultramodularity of D on Δ , that expression (c) is non-negative be-
cause of the Schur concavity of D on Δ , and that the non-negativity of expression (d)
is essentially due to D ≥W . Summarizing, D(C,C∗) satisfies inequality (9.1) also
in this case and, therefore, is a copula.
Example 9.5.3. The following examples (see Example 4.1 in [31]) illustrate the
importance of the hypotheses in Theorem 9.5.2:

(i) Consider the W-ordinal sum D =W-(〈0,0.5,Π〉) as in Example 9.5.1(iv) and
the M-ordinal sum C = M-(〈 1

4 ,
13
24 ,W 〉) given by

C(x,y) =

{
max(x+ y− 13

24 ,
1
4 ) if (x,y) ∈ [ 1

4 ,
13
24

]2
,

M(x,y) otherwise.

Observe that D is ultramodular, but not Schur concave on the upper left trian-
gle Δ . Then the D(C,C∗)-volume VD(C,C∗) of the square [0.375,0.5]2 ⊆ [0,1]2

is negative, i.e., D(C,C∗) is not a copula.
(ii) Consider the M-ordinal sum D = M-(〈0.5,1,W 〉) given by
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D(x,y) =

{
max(x+ y−1,0.5) if (x,y) ∈ [0.5,1]2 ,
M(x,y) otherwise.

Observe that D is Schur concave, but not ultramodular on the upper left tri-
angle Δ . Then the D(Π ,Π ∗)-volume VD(Π ,Π∗) of the square

[ 2
3 ,

3
4

]2 ⊆ [0,1]2

is negative, i.e., D(Π ,Π ∗) is not a copula.
(iii) Theorem 9.5.2 cannot be modified replacing the dual copula C∗ by the co-

copula C : [0,1]2 → [0,1] given by C(x,y) = 1−C(1− x,1− y). Indeed, for
the M-ordinal sum C = M-(〈0,0.5,Π〉) given by

C(x,y) =

{
2Π(x,y) if (x,y) ∈ [0,0.5]2 ,
M(x,y) otherwise

the Π(C,C)-volume VΠ(C,C) of [0.3,0.4]2 is negative, i.e., Π(C,C) is not a
copula.

It is remarkable (see Proposition 3.2 in [31]) that the construction in Theo-
rem 9.5.2 preserves the ultramodularity and the Schur concavity on Δ of the copulas
involved. More precisely, if C,D : [0,1]2 → [0,1] are bivariate copulas which are ul-
tramodular and Schur concave on the upper left triangle Δ , then also the copula
D(C,C∗) is ultramodular and Schur concave on Δ .

It also turns out (Theorem 3.3 in [31]) that the ultramodularity of D on Δ is a
necessary condition in Theorem 9.5.2: if D : [0,1]2 → [0,1] is a bivariate copula
such that for each bivariate copula C : [0,1]2 → [0,1] also the function D(C,C∗) is a
copula, then D must be ultramodular on the upper left triangle Δ .

The construction in Theorem 9.5.2 allows us also to construct sequences of cop-
ulas converging to the Fréchet-Hoeffding lower bound W (see [31]):

Let D,C : [0,1]2 → [0,1] be bivariate copulas and assume that D is ultramodular
and Schur concave on Δ and different from the Fréchet-Hoeffding upper bound M.
Then we necessarily have D(x,y) < x for all (x,y) ∈ Δ ∩ ]0,1[2 and D(C,C∗) < C.
Therefore, we can inductively define a sequence of bivariate copulas (Cn)n∈N putting
C1 =C, and Cn+1 = D(Cn,(Cn)

∗) for each n ∈ N, and we obtain lim
n→∞

Cn =W .
Keep the notations of the previous paragraph and define the trivariate function

f :
{
(x,y,z) ∈ [0,1]3

∣∣ x+ y− z ∈ [0,1]
}→ [0,1] by f (x,y,z) = D(z,x+ y− z), and

put zn =Cn(x,y), where (x,y) is an arbitrary but fixed point in [0,1]2. Then we have
z1 =C(x,y) and zn+1 = f (x,y,zn) for each n ∈ N, implying lim

n→∞
zn =W (x,y).

Taking into account the flipping method for constructing new bivariate copu-
las [53] which transforms ultramodular bivariate copulas into copulas with concave
horizontal and vertical sections [45], Theorem 9.5.2 can be modified as follows
(Corollary 3.5 in [31]):

Let E : [0,1]2 → [0,1] be a bivariate copula which is concave on the horizontal
and vertical sections which are contained in the lower left triangle Δ∗ determined by
the vertices (0,0), (0,1) and (1,0), and assume that E is 1-Lipschitz with respect to
the Chebyshev norm on the affine sections which are parallel to the main diagonal of
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[0,1]2 and are contained in Δ∗, i.e., E(x+ ε,y+ ε)−E(x,y)≤ ε for all x,y≥ 0 and
all ε > 0 with x+y+2ε ≤ 1. Then, for each bivariate copula C : [0,1]2 → [0,1], the
function EC : [0,1]2 → [0,1] given by EC(x,y) =C(x,y)−E(C(x,y),1−C∗(x,y)) is
a bivariate copula.

Since the product copula Π is invariant under flipping, this construction and
the one in Theorem 9.5.2 yield the same result in the case D = E = Π , i.e.,
Π(C,C∗) =ΠC for each bivariate copula C : [0,1]2 → [0,1]. For the extremal cases
E =W (which vanishes on Δ∗) and E = M we obtain WC =C and MC =W for each
copula C.

9.6 Concluding remarks

We have presented two constructions of bivariate copulas involving ultramodular
copulas.

The first approach extends the result of [44] that, in a composition of functions,
the ultramodularity of the outer function preserves the supermodularity of the inner
function.

In [38] it was shown that the product of a bivariate copula and its dual is always a
copula. In our second construction the product was replaced by a copula D which is
ultramodular and Schur concave on the upper left triangle Δ of the unit square [31].
The ultramodularity on Δ is necessary, but it is still an open question whether or
to which extent the Schur concavity on Δ can be weakened in order to obtain a
condition which is necessary and sufficient.

Most of the constructions in this survey led to bivariate copulas. The next chal-
lenge will be to obtain copulas of higher dimensions, a task which will require some
strengthening of the ultramodularity.
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58. Rovenţa, I.: A note on Schur-concave functions. J. Inequal. Appl. 2012, 9 pages (2012)
59. Saminger-Platz, S., Arias-Garcı́a, J.J., Mesiar, R., Klement, E.P.: Characterizations of bivariate

conic, extreme value, and Archimax copulas. Depend. Model. 5, 45–58 (2017)
60. Saminger-Platz, S., Dibala, M., Klement, E.P., Mesiar, R.: Ordinal sums of binary conjunctive

operations based on the product. Publ. Math. Debrecen 91 (2017, in press)
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Chapter 10

Operations on Finite Settings: from Triangular

Norms to Copulas

Gaspar Mayor, Jaume Suñer, and Joan Torrens

Abstract Operations defined on finite chains, usually known as discrete operations,
have become a topic of increasing interest because of their applications in many
fields. In this paper, we recall two of the main families of discrete operations: dis-
crete t-norms with applications in fuzzy logic, approximate reasoning and comput-
ing with words, and discrete copulas with applications in probability, statistics and
economy. For both kinds of operations, we emphasize their main properties, their
structure and characterization. We also devote some part of the work to highlight
the importance of these discrete operations and their impact in the mentioned fields.

10.1 Introduction

Although we already superficially knew copulas and their applications, it was after
meeting Professor Roger Nelsen that we really care and devote part of our investi-
gation to the field of copulas. Thus, our production in this topic is partially due to
the influence of Professor Nelsen in our research and it is for this reason that we are
very glad to have been invited to collaborate in this book devoted to him.

Taking into account that part of our field of expertise lies in the topic of discrete
operations, understood as operations defined on finite chains, the introduction and
study of copula-like operations defined on a finite chain L was one of the first topics
related to copulas that we dealt with. The importance of discrete operations lies in
the fact that they allow us to avoid numerical interpretations of linguistic variables.
Although the most usual scale in fuzzy logic is the real unit interval [0,1], only a
finite number of values is used in most applications. Moreover, expert reasoning
is usually carried out through linguistic terms that are always increasingly ordered
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forming a finite chain. Thus, operations defined on this discrete setting allow us to
directly manage these linguistic terms, with the consequent applications in fuzzy
logic, approximate reasoning and computing with words.

The current paper has been thought as a naive survey on discrete operations,
paying special attention to the seminal work that was the starting point of the theory,
that is, the paper where discrete t-norms and t-conorms were introduced, and the
paper that was devoted to the introduction and study of discrete copulas. However,
we also compile several references where other kind of discrete operators can be
found, as well as many works derived from these two aforementioned papers in
which their importance and their impact was pointed out. We will do it devoting one
section to each one of the two types of discrete operators: t-norms and copulas.

10.2 Discrete t-norms

All through this section the domain of all discrete binary operations will be the finite
chain L = {0,1, . . . ,n},n≥ 1.

Definition 10.1. A mapping F : L×L→ L is said to be a discrete aggregation func-
tion if it is increasing in each argument and such that F(0,0) = 0, F(n,n) = n.

This section is devoted to a special class of aggregation functions, the so-called
t-norms.

Definition 10.2. A discrete triangular norm (briefly discrete t-norm) on L is a func-
tion T : L×L→ L such that for all x,y,z ∈ L the following axioms are satisfied:

(T1) T (x,y) = T (y,x) (Commutativity)
(T2) T (T (x,y),z) = T (x,T (y,z)) (Associativity)
(T3) T (x,y)≤ T (x,z) whenever y≤ z (Monotonicity)
(T4) T (x,1) = x (Boundary conditions)

Basic examples of discrete t-norms on L are the minimum TM and the drastic TD,
which are given by:

TM(x,y) = min(x,y) and TD(x,y) =
{

0 if max(x,y) �= n
min(x,y) if max(x,y) = n

With similar arguments as in the case L = [0,1], basic properties of any discrete
t-norm on L can be proved. We collect some of them as follows.

Proposition 10.1. Let T be a discrete t-norm on L. Then:

• TD ≤ T ≤ TM, that is TD and TM are the smallest and the largest t-norms respec-
tively (where ≤ denotes the pointwise ordering).

• T (x,0) = T (0,x) = 0 for all x ∈ L (that is, 0 is an annihilator).
• TM is the only t-norm for which all elements in L are idempotent (that is,

TM(x,x) = x for all x ∈ L).
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Some additional properties can be required to a discrete t-norm depending on
the context where they have to be applied. Some of them are listed in the following
definition stated for any commutative aggregation function F in general1.

Definition 10.3. Let F : L×L→ L be a commutative discrete aggregation function.
We say that F

a) is divisible if for all x,y ∈ L with x≤ y, there is z ∈ L such that x = F(y,z),
b) is smooth if for all x,y ∈ L with x≤ n−1, F(x+1,y)−F(x,y)≤ 1,
c) satisfies the 1-Lipschitz condition if for all x,y,z ∈ L such that z ≥ x, F(z,y)−

F(x,y)≤ z− x,
d) satisfies the “intermediate value theorem” if the following condition holds: let

F(x,y) = z and F(x,y′) = z′ with z < z′; then for all z′′ ∈ [z,z′], there is some
y′′ ∈ [y,y′] such that F(x,y′′) = z′′.

All these conditions are in fact equivalent when we deal with discrete t-norms as
follows.

Proposition 10.2. Given any discrete t-norm T on L, the following statements are
equivalent:

• T is divisible.
• T is smooth.
• T satisfies the 1-Lipschitz condition.
• T satisfies the “intermediate value theorem”.

Another important property for discrete t-norms is given in the following defini-
tion.

Definition 10.4. Let T : L×L→L be a discrete t-norm. We say that T is Archimedean
if it satisfies the following condition:

For all x,y ∈ L\{0,n} there is m ∈ N such that x(m)
T < y (10.1)

where x(m)
T is defined in the usual way by induction,

x(m)
T =

{
x, if m = 1,

T (x(m−1)
T ,x), if m≥ 2.

For any discrete t-norm, 0 and n are always idempotent elements, i.e., T (0,0) =
0, T (n,n) = n. They are usually called trivial idempotent elements. In view of this
fact, we give the following definition.

Definition 10.5. A discrete t-norm T on L is idempotent-free if the only idempotent
elements of T are 0 and n.

1 Moreover, all these properties can be extended also to the non-commutative case just by requiring
the conditions in both variables instead of requiring them only in one variable.
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For discrete t-norms we have the following equivalence, which in the case of the
real interval [0,1], only holds for continuous t-norms.

Proposition 10.3. Let T be a t-norm on L. Then T is Archimedean if and only if it
is idempotent-free.

We recall now a method for constructing a new t-norm from a family of given
t-norms. It is based on results concerning ordinal sums of semigroups (see [6]), that
can be adapted to the case of t-norms on [0,1] (see [13]) and also in our discrete
setting. In fact, we only need here a simple version of this method. First let us point
out the following notation.

Remark 10.1. Given two elements i, j ∈ L with i < j we will denote by [i, j] the
subset of L given by

[i, j] = {k ∈ L | i≤ k ≤ j}.
Note that such interval is again a finite chain of j− i+ 1 elements and so we can
consider also t-norms on this chain [i, j].

Thus, given r ∈ {0,1, . . . ,n− 1}, let a0,a1, . . . ,ar,ar+1 ∈ L such that 0 = a0 <
a1 < · · · < ar < ar+1 = n. Let us take Li = [ai,ai+1] with i ∈ J = {0,1, . . . ,r}, a
family of intervals of L, and for each i ∈ J, let Ti be a discrete t-norm defined on
[ai,ai+1]. We can construct a new discrete t-norm on L as follows:

T (x,y) =
{

Ti(x,y) if (x,y) ∈ [ai,ai+1]
2

min(x,y) otherwise. (10.2)

Definition 10.6. Let ([ai,ai+1],Ti), i ∈ J, be a family of intervals of L and discrete
t-norms on these intervals like above. Then the discrete t-norm T on L defined by
(10.2) is called the ordinal sum of ([ai,ai+1],Ti), i ∈ J, and we will denote it by
T =< ([ai,ai+1],Ti)i∈J >.

Remark 10.2. The set of idempotent elements of T =< ([ai,ai+1],Ti)i∈J > contains
0,n and all the other end-points of the intervals [ai,ai+1], i∈ J. Note that the equality
between these two sets occurs if and only if the set of idempotent elements of each
t-norm Ti is {ai,ai+1}, that is, each Ti is idempotent-free.

The structure of an ordinal sum like in the definition above can be viewed in
Figure 1.

Proposition 10.4. Let T =< ([ai,ai+1],Ti)i∈J > be an ordinal sum of discrete t-
norms. Then T is divisible if and only if Ti is divisible for all i ∈ J.

In this general but simple assumption, we can establish a representation theorem
of divisible t-norms on L by means of ordinal sums.

Theorem 10.1. Let T be a discrete t-norm on L with the set of its idempotent el-
ements given by {0 = a0,a1, . . . ,ar,ar+1 = n} and let J = {0,1, . . . ,r}. Then the
following are equivalent:
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0 ai ai+1. . . ai+2 . . . n

ai

ai+1

...
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n
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Figure 1. An ordinal sum of t-norms Ti defined on intervals [ai,ai+1].

i) T is divisible
ii) T is an ordinal sum T =< ([ai,ai+1],Ti)i∈J > where each Ti is a divisible,

idempotent-free t-norm on [ai,ai+1].

With respect to the Archimedean property, we have the following results.

Proposition 10.5. Let T be a discrete t-norm on L. Then T is Archimedean if and
only if

T (x,y) �= min(x,y) for all x,y ∈ L\{0,n}
Proposition 10.6. The only Archimedean divisible discrete t-norm on L is the Łukasiewicz
t-norm

TL(x,y) = max(0,x+ y−n) for all x,y ∈ L

Now, we can state the following characterization of the class of divisible discrete
t-norms as ordinal sums of Łukasiewicz t-norms.

Theorem 10.2. A discrete t-norm T on L = {0,1, ...,n} is divisible if and only if
there exists a natural number r with 0≤ r ≤ n−1 and a subset of L, I = {0 = a0 <
a1 < .. . < ar < ar+1 = n} such that T is given by:

T (x,y) =
{

max(ai,x+ y−ai+1) if (x,y) ∈ [ai,ai+1]
2 for some 0≤ i≤ r

min(x,y) otherwise
(10.3)

Remark 10.3. Let us denote by T I the discrete t-norm given by equation (10.3). I is
the set of idempotent elements of T . Note that
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• In case r = 0, that is I = {0,n}, we obtain T I = TL.
• In case r = n−1, that is I = L, we obtain T I = TM .
• It is easily deduced from Theorem 10.2 that TL ≤ T I ≤ TM for any divisible dis-

crete t-norm T I .

Example 10.1. Consider n = 7, L = {0,1,2,3,4,5,6,7} and I = {0,4,7}. According
to the previous results, there is a unique divisible discrete t-norm on L with I as the
set of its idempotent elements. It is given by

T I(x,y) =

⎧⎨⎩
max(0,x+ y−4) if (x,y) ∈ [0,4]2

max(4,x+ y−7) if (x,y) ∈ [4,7]2

min(x,y) otherwise

and it can be viewed explicitly in Table 1.

T 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 1 1

2 0 0 0 1 2 2 2 2

3 0 0 1 2 3 3 3 3

4 0 1 2 3 4 4 4 4

5 0 1 2 3 4 4 4 5

6 0 1 2 3 4 4 5 6

7 0 1 2 3 4 5 6 7

Table 1. The only divisible t-norm on L = {0,1,2,3,4,5,6,7} with idempotent
elements 0, 4, 7.

Let us denote by TDIV (L) the set of all divisible discrete t-norms on L. From the
given classifications of divisible discrete t-norms, we obtain the following Corollary.

Corollary 10.1. The correspondence ψ : TDIV (L)→P(L\{0,n}) between the set
of all divisible discrete t-norms on L and the power set of {1,2, ...,n− 1}, defined
by ψ(T ) = I \{0,n} (the set of non-trivial idempotent elements of T ), is a bijection.
Thus there are exactly 2n−1 divisible discrete t-norms on L.

In table 2 we can view, depending on n, the number of discrete t-norms and the
number of divisible discrete t-norms on L = {0,1, ...,n}.

The results presented here are only the most important ones related to discrete t-
norms, but many other details and facts can be found in [28]. To finish this section let
us highlight the usefulness and impact of the results recalled just before. This study
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n | T (L) | | TDiv(L) |
1 1 1

2 2 2

3 6 4

4 22 8

5 94 16

6 451 32

7 2386 64

Table 2. Number of discrete t-norms and divisible discrete t-norms on L =
{0,1, ...,n}.

on discrete t-norms was firstly published in [27] and, due to its impact and interest,
it was rewritten and completed in several aspects leading to the book chapter in [28].
Some relevant aspects to be stressed are as follows:

• As we have already commented in the introduction, the importance of discrete
operations lies in the fact that they allow us to avoid numerical interpretations of
linguistic variables, with the consequent applications in fuzzy logic and approxi-
mate reasoning. In this sense, not only t-norms were studied on finite chains, but
also other logical operators like t-conorms [28], uninorms [5, 17] and also some
different kinds of implication functions like residual and material implication de-
rived from discrete t-norms and t-conorms [19], QL and D-implications [20], or
residual implications derived from discrete uninorms [16].

• The one-to-one correspondence between divisible discrete t-norms and finite BL-
chains relates this work with BL-algebras and related structures, as well as with
formal fuzzy logic. For instance, this relation has been recently used to provide
an equational characterization of any divisible t-norm, see [7] and the references
therein.

• This work was pioneer in the study of aggregation functions on finite scales or
discrete aggregation functions and depicted the starting point of many later pa-
pers devoted to this topic, which is the basis of many linguistic approaches for
decision making, consensus processes and linguistic preference relations. Thus,
discrete t-norms have been later used to characterize many new classes of dis-
crete aggregation functions [9, 15, 21, 22] and, in particular, uninorms and null-
norms [17], non-commutative versions of them [8, 18], idempotent uninorms [5],
weighted means [10], and also copulas and quasi-copulas [1, 2, 11, 12, 25, 26]
(see also next section).

• Moreover, discrete t-norms have been more deeply studied leading to additional
papers related to this topic. In particular, the research of additive generators for
discrete t-norms led to some interesting papers proving for instance that all di-
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visible discrete t-norms, but not all discrete t-norms, are additively generated
[14, 23, 24]. On the other hand, extensions of discrete t-norms to more general
settings have been investigated like extensions to multisets [3] or to discrete fuzzy
numbers [4].

10.3 Discrete copulas

Definition 10.7. A (discrete) copula C on L = {0,1, . . . ,n},n≥ 1 is a binary opera-
tion on L, i.e., C : L×L−→ L, such that the following axioms are satisfied:

(C1) C(i,0) =C(0, i) = 0 ∀i ∈ L
(C2) C(i,n) =C(n, i) = i ∀i ∈ L
(C3) C(i, j)+C(i′, j′)≥C(i, j′)+C(i′, j) whenever i≤ i′, j ≤ j′

(2-increasing condition)

An operation C : D×D′ −→ L, with {0,n} ⊂D,D′ ⊂ L satisfying (C1)−(C3) of
the definition above is called a discrete subcopula on L. Both the concepts of discrete
copula and discrete subcopula are the discrete versions of copula and subcopula on
[0,1].

Remark 10.4. Let us consider In the subset of [0,1] given by In = {0,1/n, . . . ,(n−
1)/n,1}.
i) Note that any operation C : L×L→ L is a discrete copula on L if and only if the

operation C′ : In× In → In given by C′(a,b) = 1/n ·C(na,nb) for all a,b ∈ In is
a discrete copula on In. Moreover, note that in this case the operation C′ can be
also understood as a subcopula on [0,1] with domain DomC′ = In× In and range
RanC′ = In.
Reciprocally, if C′ is a subcopula on [0,1] with domain DomC′= In×In and range
RanC′ = In, then C(a,b) = n ·C′(a/n,b/n) for all a,b ∈ L is a discrete copula on
L.

ii) Similarly, there is a close relation between discrete copulas and empirical copulas
as follows. Consider P= {(x1,y1), . . . ,(xn,yn)} a set of n ordered real pairs where
xi �= x j, yi �= y j, for i �= j, i, j : 1, . . . ,n. Consider x(1) ≤ ·· · ≤ x(n) and y(1) ≤
·· · ≤ y(n) the increasing reordering of the collections x1, . . . ,xn and y1, . . . ,yn
respectively. The empirical discrete copula defined from P is the discrete copula,
say CP, defined on L = {0,1, . . . ,n} by: ∀(i, j) ∈ L2,

CP(i, j) =

⎧⎪⎪⎨⎪⎪⎩
0 if i = 0 or j = 0∣∣{(xk,yk) ∈ P : xk ≤ x(i),yk ≤ y( j)}

∣∣
otherwise

Reciprocally, any discrete copula on L is the empirical discrete copula of some
set P.
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Observe that if we apply the construcion given in the previous item to CP, we
obtain the empirical copula in the sense of [30]: For all i, j ∈ L,

Cn

(
i
n
,

j
n

)
= 1/n ·C(i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if i = 0 or j = 0∣∣{(xk,yk) ∈ P : xk ≤ x(i),yk ≤ y( j)}

∣∣
n

otherwise

Example 10.2. It is clear that discrete copulas need not to be commutative nor asso-
ciative and so they are far to coincide with discrete t-norms. However, as in the case
of [0,1] there exist intersections between both families of discrete operations. For
instance we have the following examples.

(i) CM(x,y) = min(x,y) and CL(x,y) = max(0,x+ y− n) are discrete copulas.
We call them the minimum and the Łukasiewicz copula respectively (in statistics
and probability fields, CL is commonly known as the Fréchet copula). It is already
known that these copulas are also (divisible) discrete t-norms on L.

(ii) C defined on L = {0,1,2,3} by

C(x,y) =

⎧⎨⎩
CL(x,y) = max(0,x+ y−3) if (x,y) �= (1,2)

1 if (x,y) = (1,2)

is a discrete copula which is not a t-norm.

Next we summarize some basic properties of discrete copulas that can be proved
in the same way as for copulas defined on [0,1].

Proposition 10.7. Let C be a discrete copula on L. The following statements are
valid:

(i) CL ≤C ≤CM.
(ii) C is non-decreasing in each variable.

(iii) C satisfies the Lipschitz condition.
(iv) The only discrete copula C that satisfies C(x,x) = x ∀x ∈ L is C =CM.
(v) The only discrete copula C that satisfies C(x,n− x) = 0 (or C(n− x,x) = 0) for

all x ∈ L is C =CL.

Similarly to the case of discrete t-norms, a discrete copula C is said to be divisible
when for all x,y∈ L with x≤ y, there are z,z′ ∈ L such that x=C(y,z) =C(z′,y). The
second part of the next result is a consequence of the structure of divisible discrete
t-norms given in Theorem 10.2.

Proposition 10.8. All discrete copulas on L are divisible and all divisible discrete
t-norms are (associative) discrete copulas.

An explicit and useful characterization of discrete copulas can be obtained using
permutation matrices. Recall that an n× n permutation matrix A is an n× n matrix
(ai j) such that there exists a permutation σA of {1,2, . . . ,n} such that
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ai j =

{
1 if i = σA( j)
0 otherwise

Note that this is equivalent to saying that in each row and each column of A all
entries are equal to 0 except one which is 1.

Proposition 10.9. A binary operation C on L is a discrete copula if and only if there
exists an n×n permutation matrix A = (ai j) such that ∀(x,y) ∈ L2,

C(x,y) =

⎧⎪⎪⎨⎪⎪⎩
0 if x = 0 or y = 0

∑
i≤x
j≤y

ai j otherwise (10.4)

A discrete copula C on L given through an n×n permutation matrix A by equa-
tion (10.4) will be denoted by CA. Thus, the previous proposition says that for any
discrete copula C on L, there exists an n×n permutation matrix A such that C =CA.
From this fact, we easily obtain the following corollaries.

Corollary 10.2. The correspondence A −→ CA defined by equation (10.4) is a bi-
jection between the set of n×n permutation matrices and the set of discrete copulas
on L. Thus, there are n! discrete copulas on L.

Corollary 10.3. The set of discrete copulas on L can be equipped in a natural way
with a group structure defining the product of two discrete copulas by CA ·CB =CA·B.
This group is obviously isomorphic to the symmetric group Sn of all permutations
on {1, . . . ,n} and has the copula minimum as neutral element.

Corollary 10.4. A discrete copula is commutative if and only if its associated per-
mutation matrix is symmetric.

Example 10.3.

i) The identity matrix In is the associated n×n permutation matrix to the copula
CM . In this case the associated permutation is the identity.

ii) The corresponding matrix to the Łukasiewicz copula CL is the n×n permuta-
tion matrix A = (ai j) given by:

ai j =

{
1, if i+ j = n+1,
0, otherwise,

and for this reason we call A the n×n Łukasiewicz matrix. Note that in this case, the
associated permutation σA is given by:

σA = (n,n−1, . . . ,1) = ∏
i:1≤i<n+1−i

(i,n+1− i)

where (i, j) denotes the transposition which interchanges i and j, and ∏ means the
composition of the transpositions (i,n+1− i).
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Given A1, . . . ,Ak,k ≥ 1, where each Ai is the ni× ni Łukasiewicz permutation
matrix, we can construct a new n× n (n = n1 + · · ·+ nk) permutation matrix A =
A1⊕·· ·⊕Ak in the following form:

A =

⎛⎝A1 · · · 0
· · · · · · · · ·
0 · · · Ak

⎞⎠
We call A the ordinal sum of A1, . . . ,Ak. Of course, A is symmetric.

Example 10.4. Let CA be the discrete copula on L = {0,1,2,3,4,5,6,7,8,9} given
by the matrix:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
A is an ordinal sum of four Łukasiewicz matrices: A = A1⊕A2⊕A3⊕A4, where

A1 =

⎛⎝ 0 0 1
0 1 0
1 0 0

⎞⎠ , A2 = (1), A3 =

(
0 1
1 0

)
, A4 =

⎛⎝0 0 1
0 1 0
1 0 0

⎞⎠ ,

σA = (3,2,1,4,6,5,9,8,7) is the permutation associated to A.

The next two propositions give results on associative copulas.

Proposition 10.10. The following items hold.
i) The only associative discrete copula on L with 0 and n as the only idempotent

elements is the Łukasiewicz copula.
ii) A discrete copula is associative if and only if its associated matrix is an ordinal

sum of Łukasiewicz matrices.
iii) If a discrete copula is associative, then it is commutative.
iv) The class of associative discrete copulas coincides with the class of divisible

discrete t-norms.

Proposition 10.11. Any discrete copula is a product of associative discrete copulas.
In other words, for each copula C there exist divisible discrete t-norms T1, . . . ,Tr
such that C = T1 · · · · ·Tr.

Note that these are only the main results about discrete copulas, but more details
can be found in [25], including for instance different ways to extend discrete copulas
to copulas on [0,1]: the bilinear extension that gives a monomorphism from the
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group of discrete copulas into a semigroup of copulas on [0,1], and 2n different
extensions of any discrete copula to n-regular shuffles of M.

To end this section we would like to highlight again the importance and impact
of the results recalled here as we have done in the previous section with discrete
t-norms. What is named here “discrete copula” corresponds to those with minimal
range (that is, taking values in the same finite set In). They are important because of
their relationship with discrete bivariate distribution functions with uniform discrete
univariate marginals. When the marginals are uniformly distributed with step 1/n,
the joint distribution can be represented by a discrete copula C that gives information
on the dependence structure of the involved random variables. In this sense, the most
immediate sequel of this work (that was published in [25]) was the discrete version
of the well known Sklar Theorem proving that the joint distribution function of two
discrete marginals with range included in In can be described through a discrete
copula C.

From these two works, some other papers related to discrete copulas have ap-
peared generalizing the results presented here. For instance,

• Discrete copulas in general, that is, with range in the unit interval [0,1] were
studied in [11]. In this paper, these general operations are called discrete copu-
las, whereas the discrete operations presented here are referred as “irreducible
discrete copulas”. It is proved that there is an annalogous relation between dis-
crete copulas and bistochastic matrices and that the set of all discrete copulas is
simply the convex closure of the set of all irreducible discrete copulas.

• An extremely related paper is [12] where irreducible discrete quasi-copulas (that
is, those with minimal range, of the form Q : In × In → In) and some of their
properties are investigated. Ordinal sum structures are analyzed and the problem
of finding irreducible quasi-copulas with some given diagonal section is solved,
characterizing the cases when such extension is unique (except for the case of
copulas). However, the following two open problems arise:

– Counting the exact number of irreduccible discrete quasi-copulas existing on
In, and

– Characterizing all diagonal sections δ for which there exists a unique copula
C having δ as its diagonal.

• These two open problems were solved in [1] precisely by generalyzing the study
of discrete copulas given here to discrete quasi-copulas. Thus, in a similar way as
in the current section, a one-to-one correspondence between irreducible discrete
quasi-copulas and Alternating Sign Matrices (ASM’s for short) is proved. This
result allows to find the number of irreducible discrete quasi-copulas as the same
number of ASM’s (see [31]), that is:

n−1

∏
k=0

(3k+1)!
(n+ k)!

=
n

∏
k=1

(3k−2)!
(2n− k)!

.

Similarly, it is proved that the set of discrete quasi-copulas is bijective with a class
of matrices that generalize both, ASM’s and bistochastic matrices, called there
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Generalized Bistochastic Matrices (GBM’s for short). Again, it is also proved
that the set of all discrete quasi-copulas is the convex closure of the set of all
irreducible discrete quasi-copulas. Moreover, by using the structure of ASM’s it
is easy to see when, given a diagonal section δ , there exists a unique irreducible
discrete quasi-copula with diagonal δ retriving the results in [12], but solving
also the second open problem related to copulas.

• Finally, note that all previous works deal with discrete copulas and quasi-copulas
defined on In× In. Generalizations to non-square grids of the unit square, that is
to domains of the form In× Im with n �= m, can be found in [2] and [29].
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29. J. Mordelová, A. Kolesárová, Some results on discrete copulas, in Proceedings of EUSFLAT-
2007, pp. 145–150.

30. R. B. Nelsen, An Introduction to Copulas, New York: Springer-Verlag, 1999.
31. D.P. Robbins, H. Rumsey, Determinants and alternating-sign matrices, Advances in Mathe-

matics 62 (1986) 169–184.



Chapter 11

My meetings with Roger B. Nelsen

José Juan Quesada-Molina

On the occasion of the 75th anniversary of Roger B. Nelsen

Abstract In this paper, we will review our many meetings with Roger B. Nelsen,
from August 1986 to the present day. A commented summary of the main results
of Roger B. Nelsen and other colleagues work with the author is presented. Most of
the mathematical results described here were obtained in the theory of copulas and
quasi-copulas.

11.1 Introduction and first meeting

I met Roger B. Nelsen for the first time in August 1986, in Mount Holyoke Col-
lege (South Hadley, Massachusetts, USA) at the XXIV International Symposium on
Functional Equations, organized by Berthold Schweizer. Since September 1985, I
had been visiting the University of Massachusetts in Amherst, to work on research
under the advice and expertise of Berthold Schweizer, after my Ph.D. thesis at the
University of Granada, in Spain. I must say that I met such a great group of peo-
ple at that conference in Mount Holyoke: good mathematicians and good friends
afterwards. I had had the opportunity to meet some of them before that confer-
ence: Claudi Alsina, in Barcelona (Spain); Jerry Frank, in Amherst (Massachusetts,
USA); Abe Sklar, in Chicago (Illinois, USA); and Howard Sherwood and Michael
D. Taylor, in Orlando (Florida, USA). I also met many others for the first time at that
conference: Carlo Sempi, Robert Moynihan, János Aczél, Edward F. Wolff, Robert
Tardiff, Richard Rice,. . . and Roger B. Nelsen. I will never be able to thank my
good friend and mentor, Professor Berthold Schweizer, enough, for his hospitality
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in Amherst, for having faith in me, for teaching me so many valuable things that I
could never have learned from books, and for introducing me to such a great group
of friends and colleagues.

That first meeting with Roger B. Nelsen in Mount Holyoke College in August
1986 was the first of many meetings over the last thirty years, where friendship and
mathematics have been shared with other colleagues: Berthold Schweizer, Carlo
Sempi, José Antonio Rodrı́guez-Lallena, Manuel Úbeda-Flores, Fabrizio Durante,
and Juan Fernández-Sánchez.

In the following sections of this paper, the main results of the work of Roger B.
Nelsen and the above mentioned colleagues with the author are presented sequen-
tially. Most of the mathematical results described here were obtained in the theory
of copulas and quasi-copulas.

11.2 Second meeting: Via the Università di Lecce (Italy)

In September 1990, I visited Carlo Sempi for the first time at the Università di Lecce,
in Italy. Lecce is a beautiful city in the south of Italy, in a region called Puglia. I spent
a month there working with Carlo in a wonderful environment. It was a pleasure for
me to be in Lecce. Carlo provided me with everything for a wonderful stay, and as
a result, it was a delightful and fruitful visit; the beginning of a sequence of visits to
Lecce, and the start of a great friendship with Carlo and his family.

During that visit to Lecce, Carlo and I were working on the problem of the deriv-
ability of operations on distribution functions. I remember that, back in Granada a
few months later, I wrote Roger an e-mail, and I explained to him what Carlo and
I had been researching. He told me that something very similar was the subject of
ongoing research with Bert Schweizer. Actually, we were using different notation,
but the same concepts with different names. So, we (Bert, Roger, Carlo and I) de-
cided to join forces, and write a joint paper on the subject. As a result, we wrote
[27], and we presented it at the Symposium on Distributions with Fixed Marginals,
Doubly Stochastic Measures, and Markov Operators held in Seattle (Washington,
USA), in August 1993. In that paper, we characterized the operations on distribu-
tion functions that are both derivable from functions on random variables defined
on a common probability space and induced pointwise by functions from [0,1]n into
[0,1]. We specified the class of functions on random variables from which the oper-
ations are derived, and showed that it includes all order statistics. We also described
the n-place functions from which these operations are induced pointwise. Finally,
we also showed, by way of illustration, that mixtures, which are induced pointwise,
are not derivable. I remember this as an interesting and very technical paper, and we
truly enjoyed working on it.

That was my second meeting with Roger B. Nelsen, not personally, but through
Carlo Sempi and the Università di Lecce.
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11.3 Third meeting: Lewis & Clark College (Portland, OR, USA)

In January-February 1995, I visited Roger B. Nelsen at Lewis & Clark College
in Portland (Oregon, USA) for three weeks. I hold wonderful memories from that
visit. During my stay at Lewis & Clark College, Roger and I, together with José
Antonio Rodrı́guez-Lallena, from Almerı́a (Spain), started working on the problem
of constructing copulas whose horizontal or vertical sections are cubic polynomials.
Before continuing, I must state the obvious: the concept of copula was introduced
by Abe Sklar in 1959 [33]. It was a very clever idea from Abe Sklar: A copula is a
function linking the joint distribution function of a random vector to their marginal
distribution functions; and, therefore, the copula captures the whole dependence
structure among the variables of the random vector. This is why Berthold Schweizer
and Edward F. Wolff used copulas to define and study new nonparametric measures
of dependence for random variables (see [32]). Back to the work with Roger at
Lewis & Clark, the idea of looking for such a type of copulas was, in a sense, a
continuation of previous work (see [28]) that José Antonio Rodrı́guez-Lallena and I
developed two years before, about bivariate copulas with quadratic sections. One of
the main results of that work, with Roger and José Antonio, as a method to construct
bivariate copulas with cubic sections, follows ([16], Theorem 2.4):

Let C be a function from [0,1]2 into I := [0,1], given by

C(u,v) = uv+u(1−u)[α(v)(1−u)+β (v)u],

where α and β are two functions from I to R, satisfying α(0) = α(1) = β (0) =
β (1) = 0. It is easy to see that C has cubic sections in u. It was shown in [16] that C
is a copula if, and only if,

(i) α(v) and β (v) are absolutely continuous, and
(ii) for almost every v in I, either

−1≤ α ′(v)≤ 2 and −2≤ β ′(v)≤ 1

or
[α ′(v)]2−α ′(v)β ′(v)+ [β ′(v)]2−3α ′(v)+3β ′(v)≤ 0.

Moreover, C is absolutely continuous.
In [16], we also studied dependence properties, measures of association, and con-

cepts of symmetry for these copulas with cubic cross-sections. We explored exam-
ples of copulas with cubic sections, which extend some well-known families of
bivariate copulas, such as the iterated Farlie-Gumbel-Morgenstern, Kimeldorf and
Sampson, Lin, and Sarmanov families of copulas, and which provide second-order
approximations to the Frank and Plackett families of copulas.

My third meeting with Roger B. Nelsen, this time at Lewis & Clark College, was
fruitful and very enjoyable, and with a beautiful snow storm during my stay.
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11.4 Fourth meeting: University of Massachusetts (Amherst,

MA, USA)

In 1995, Berthold Schweizer had retired from the Department of Mathematics and
Statistics of the University of Massachusetts in Amherst. He spent most of his aca-
demic career at UMass. He was advised by Karl Menger, and gained his Ph.D.
degree at the Illinois Institute of Tecnhology in Chicago in 1956.

A good group of people, friends and colleagues, were invited to Amherst in
November 1995, to celebrate the retirement of Professor Berthold Schweizer. We
all met at UMass in Amherst, and held a symposium in honor of Bert Schweizer,
and another colleague from the Department of Mathematics and Statistics, Haskell
Cohen, who was also retiring. Carlo Sempi was there, as well as Jerry Frank, Abe
Sklar, Robert Moynihan, János Aczél, Thomas Riedel, Howard Sherwood, Michael
D. Taylor, Claudi Alsina,. . . and Roger B. Nelsen. It was there, during a break at
that symposium, when some of us, after talking about copulas, suggested the idea of
writing an introductory-level monograph on this subject to Roger, which would be
the first book on copulas, his very well known “An Introduction to Copulas” [15].
Before Roger’s book on copulas, Berthold Schweizer and Abe Sklar devoted Chap-
ter 6 of their “Probabilistic Metric Spaces” book [31] to copulas, Bert Schweizer
himself with his work in [30], and just as Harry Joe devoted Chapter 5 of his “Mul-
tivariate Models and Dependence Concepts” book [9]. After Roger’s book on copu-
las, several books on the applications of the theory of copulas to different fields have
appeared in recent years, for instance the books by Gianfausto Salvadori et al. [29]
Umberto Cherubini et al. [3], Jan-Frederik Mai and Matthias Scherer [14], and the
book “Dependence Modeling with Copulas” [10] by Harry Joe. Recently, Fabrizio
Durante and Carlo Sempi have written a beautiful book entirely devoted to copulas,
“Principles of Copula Theory” [4], which will be extremely useful for researchers
in this field.

Once again, it was such a joy for me to be in Amherst with all those friends and
colleagues, ten years after my stay there in 1985-86. The symposium was truly en-
joyable, as was the celebration on the occasion of the retirement of Bert Schweizer.

This was my fourth meeting with Roger B. Nelsen, and, at that time, he was
aware of our invitation for him to visit the Universities of Granada and Almerı́a in
Spain. Just a few years later, Roger visited our universities, and we commenced our
engaging, continuous, and fruitful collaboration, that has never ended.

11.5 Fifth, sixth,. . . and many other meetings: Granada,

Almerı́a, Barcelona (Spain)

After my meeting with Roger in Amherst in November 1995, to celebrate the retire-
ment of Professor Berthold Schweizer, he has visited Granada and Almerı́a many
times. We have thoroughly enjoyed working on different research problems in the
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theory of copulas and quasi-copulas all these years. We have shared wonderful mo-
ments of mathematics and friendship in Granada and Almerı́a, working together
with José Antonio Rodrı́guez-Lallena and Manuel Úbeda Flores, and also with Fab-
rizio Durante and Juan Fernández-Sánchez.

The research work of these years has been presented in several papers (see [6, 7,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26]). In what follows, the main results of these
papers will be described.

It is well known that the fundamental best-possible bounds inequality for bivari-
ate distribution functions with given margins is the Fréchet-Hoeffding inequality
[8]. Namely, if H denotes the joint distribution function of random variables X and
Y whose margins are F and G, respectively, then

max{0,F(x)+G(y)−1} ≤ H(x,y)≤min{F(x),G(y)}

for all x,y in [−∞,∞]. In [17], we studied the problem of finding bounds on dis-
tribution functions with given margins when a value of the population version of a
measure of association, such as Kendall’s tau or Spearman’s rho, is also given. Let
τ(C) denote the Kendall’s tau of a copula C, and let Tt denote the set of copulas
with a common value t ∈ [−1,1] of Kendall’s tau, i.e.,

Tt = {C |C ∈ C ,τ(C) = t },

where C denotes the set of all copulas. Let Tt and Tt denote the pointwise infimum
and supremum, respectively, of Tt for t in [−1,1], i.e., for each (u,v) in I2,

Tt(u,v) = inf{C(u,v) |C ∈ Tt } and Tt(u,v) = sup{C(u,v) |C ∈ Tt } .

Then,

Tt(u,v) = max
(

0,u+ v−1,
1
2

[
(u+ v)−

√
(u− v)2 +1− t

])
and

Tt(u,v) = min
(

u,v,
1
2

[
(u+ v−1)−

√
(u+ v−1)2 +1+ t

])
,

which are copulas themselves. Hence, if X and Y are continuous random variables
with joint distribution function H and respective marginal distribution functions F
and G, and such that τ(X ,Y ) = t, then the best-possible bounds for H are

Tt(F(x),G(y))≤ H(x,y)≤ Tt(F(x),G(y))

for all (x,y) in [−∞,∞]2.
A similar result was obtained for the set Pt = {C |C ∈ C ,ρ(C) = t }, where ρ(C)

denotes the Spearman’s rho of the copula C ([17], Theorem 4).
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Now, let X and Y be continuous random variables with distribution functions F
and G, respectively, and let H1 and H2 be bivariate distribution functions whose uni-
variate margins are F and G, respectively. In [18] (see also [19]), we showed that
the distribution function of the random variable H1(X ,Y ), given that the joint distri-
bution function of X and Y is H2, depends only on the copulas C1 and C2 associated
with H1 and H2, respectively. In particular, like the (one-dimensional) probability
integral transform, it is independent of the marginal distribution functions F and G.
However, unlike the probability integral transform, it is rarely uniformly distributed
on I.

In July 2000, a great group of people went to Barcelona (Spain) for the “Distribu-
tions with given marginal and statistical modelling” meeting. Among them, Claudi
Alsina, Barry C. Arnold, Gregory A. Fredricks, Christian Genest, Harry Joe, Samuel
Kotz, Ingram Olkin, Ludger Rüschendorf, Carmen Ruiz-Rivas, Allan R. Sampson,
Carlo Sempi, Abe Sklar, Michael D. Taylor, Manuel Úbeda-Flores,. . . and Roger B.
Nelsen. And, of course, the organizers and editors of the book of papers presented
at the meeting: Carles M. Cuadras, Josep Fortiana and José Antonio Rodrı́guez-
Lallena. It was a delightful meeting in the beautiful city of Barcelona, where we
missed Berthold Schweizer, who could not attend.

We presented two papers at the meeting. One of them devoted to the study
of a class of multivariate quasi-copulas, the Archimedean n-quasi-copulas, which
have a wide range of applications. So, we studied basic properties of multivariate
Archimedean quasi-copulas—that are also properties of Archimedean n-copulas—
of particular interest for proper n-quasi-copulas. By the way, the notion of quasi-
copula, that generalizes the concept of copula, was introduced by Claudi Alsina,
Roger B. Nelsen and Berthold Schweizer in 1993 (see [1]), in order to show that
a certain class of operations on univariate distribution functions is not derivable
from corresponding operations on random variables defined on the same probability
space. This concept was also used in [27], by Roger B. Nelsen, Berthold Schweizer,
Carlo Sempi and I, to characterize, in a given class of operations on distribution
functions, those that do derive from corresponding operations on random variables.
A few years later, in 1999, the quasi-copula concept was characterized in simpler op-
erational terms by Christian Genest, José Antonio Rodrı́guez-Lallena, Carlo Sempi
and I (see [11]).

In the second paper at the meeting of Barcelona [21], we presented a new simple
characterization and some new properties of quasi-copulas, all of them concerning
the mass distribution of these functions. For instance, we showed that for any quasi-
copula Q, and any rectangle R = [u1,u2]× [v1,v2] in I2, the Q−volume of R, given
by

VQ(R) = Q(u2,v2)−Q(u2,v1)−Q(u1,v2)+Q(u1,v1),

satisfies that −1/3 ≤ VQ(R) ≤ 1. Moreover, VQ(R) = 1 if, and only if, R = I2, and
VQ(R) =−1/3 implies that R = [1/3,2/3]2. We also showed that any quasi-copula
(and hence any copula) can be approximated arbitrarily closely by a quasi-copula
with as much negative mass as desired. Namely, for any ε > 0, M > 0, and any
quasi-copula Q, there exists a quasi-copula Q and a set S in I2 such that:
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(i) μQ(S)<−M;
(ii)
∣∣Q(u,v)−Q(u,v)

∣∣< ε for all u,v in I,

where μQ(S) = ∑i VQ(Ri), whenever S = ∪iRi.

In [22], we studied various properties of Kendall distribution functions and their
consequences. If X and Y are continuous random variables with joint distribution
function H, then the Kendall distribution function of (X ,Y ) is the distribution func-
tion of the random variable H(X ,Y ). This function was called a “decomposition of
Kendall’s tau” by Christian Genest and Louis-Paul Rivest in [10], and by Philippe
Capéraà, Anne-Laure Fougères and Christian Genest (see [2]), when defining a
stochastic ordering based on this function. Furthermore, it appears in [18] as a bi-
variate probability integral transform. We used the Bertino family of copulas [9] to
show that every distribution function satisfying the properties of a Kendall distribu-
tion function is the Kendall distribution function of some pair of random variables.
We also examined the equivalence relation on the set of copulas induced by Kendall
distribution functions, and, finally we studied empirical Kendall distribution func-
tions and their relationships to the ordinary sample version of Kendall’s tau. A few
years later, we proved (see [25]) that any Kendall distribution function is the Kendall
distribution function of some associative copula. Moreover, this fact allowed us to
show that each equivalence class of the relation “to have the same Kendall distribu-
tion function as” contains a unique associative copula.

In [23], we used quasi-copulas to express the pointwise best-possible bounds on
nonempty sets of distribution functions, copulas or quasi-copulas, and showed that
every set S of (quasi-)copulas has the smallest upper bound and the greatest lower
bound in the set of quasi-copulas (in the sense of pointwisely ordered functions).
These bounds do not necessarily belong to the set S , nor they are necessarily copu-
las whenever S does not contain any quasi-copula. We also presented an application
to sets of copulas with some common property, such as a common diagonal section
or common values at quartiles.

In [24], we studied a method, which we called a copula (or quasi-copula) diago-
nal splice, for creating new functions by joining portions of two copulas (or quasi-
copulas) with a common diagonal section. The diagonal splice of two quasi-copulas
is always a quasi-copula, and we found a necessary and sufficient condition for the
diagonal splice of two copulas to be a copula. An alternative approach to our method
was independently proposed by Fabrizio Durante, Anna Kolesárová, Radko Mesiar
and Carlo Sempi in [5]. We showed that, in particular, such a method can be used
to construct absolutely continuous asymmetric copulas with a prescribed diagonal
section. In [21], we also introduced the concept of a simple diagonal and showed
that many of the most commonly used copulas have simple diagonal sections. We
also showed that an important subclass of such diagonals is the set of convex diag-
onals. We found an elementary way to construct asymmetric copulas with simple
diagonal sections and, as an application, we obtained the best-possible upper bound
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for the set of copulas with a given simple diagonal. I remember that we particularly
enjoyed working on this paper in Granada and Almerı́a.

In [26], we studied the relationship between multivariate quasi-copulas and mea-
sures that they may or may not induce on In. We studied the mass distribution of the
pointwise best possible lower bound for the set of n-quasi-copulas for n≥ 3; and, as
a consequence, we showed that not every n-quasi-copula induces a signed measure
on In. That was a quite technical research work that Roger Nelsen, José Antonio
Rodrı́guez-Lallena, Manuel Úbeda-Flores and I completed in 2010.

In one of the recent meetings with Roger in Granada, we have investigated, to-
gether with Fabrizio Durante and Manuel Úbeda-Flores (see [6]), whether pairwise
dependence properties related to all the bivariate margins of a trivariate copula im-
ply the corresponding trivariate dependence property. What we have found is that, in
general, information about the pairwise dependence is not sufficient to infer some
aspects of global dependence. In other words, that stochastic dependence has so
many facets, that they cannot be recovered from its lower-dimensional projections.
For instance, pairwise independence does not imply mutual independence; positive
quadrant dependence (PQD) of all bivariate margins does not imply positive lower
orthant dependence (PLOD) or positive upper orthant dependence (PUOD) for the
corresponding 3-copula; pairwise exchangeability does not imply mutual exchange-
ability.

Roger’s most recent visit to Granada took place in May 2014. During that meet-
ing with Roger, together with Juan Fernández-Sánchez and Manuel Úbeda-Flores,
we were interested in the study of some properties of multivariate lower and upper
tail dependence coefficients. As a result, in [7] we have presented those properties,
and have used copulas to analyze the relationship between pairwise tail indepen-
dence, mutual tail independence, and extremal independence.

11.6 Conclusions and next meetings

There is a popular saying that: “Time flies”. I think most of us are in agreement on
the truth in this. Looking back to 1986, when I met Roger B. Nelsen for the first time
in Mount Holyoke College, I realize how fast these last thirty years have flown by.
Now, we look forward to the coming years, with further meetings, and more good
moments to share our friendship and mathematics.

Finally, I wish to express my sincere gratitude to Roger B. Nelsen, and to all my
friends and colleagues, for their friendship, and for everything that they have taught
me over the years.
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results for multivariate tail dependence coefficients, Statist. Probab. Lett. 284, 129–137 (2016).
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erties of quasi-copulas, in Distributions with Given Marginals and Statistical Modelling, ed.
by C.M. Cuadras, J. Fortiana, J.A. Rodrı́guez-Lallena (Kluwer Academic Publishers, Dor-
drecht, 2002) pp. 187-194.

22. R.B. Nelsen, J.J. Quesada-Molina, J.A. Rodrı́guez-Lallena, M. Úbeda-Flores, Kendall distri-
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33. A. Sklar, Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ.
Paris 8, 229–231 (1959).



Chapter 12

Improved Hoeffding–Fréchet bounds and

applications to VaR estimates

Ludger Rüschendorf

Abstract The classical Fréchet bounds determine upper and lower bounds for the
distribution function F of a random vector X , when the marginal df’s Fi are fixed. As
consequence these bounds imply also upper and lower bounds for the expectation
Eϕ(X) of a certain class of functions ϕ(X). The classical examples are the Hoeffd-
ing bounds for the expectation of the product EX1X2 of two random variables. In
this paper we review and partially elaborate on several developments of improved
Hoeffding–Fréchet bounds which assume some restriction on the dependence struc-
ture additional to the information on the marginals. We describe applications of the
results to obtain improved VaR bounds for the joint portfolio of risk vectors. We
consider in particular improved VaR bounds in the case where information of the
joint distribution function resp. on the copula is available on some subsets and the
case where higher order marginal information is available.

12.1 Hoeffding–Fréchet bounds

The classical Fréchet bounds are one of the most prominent results in stochastic or-
dering. They can be stated in the following form. For an n-dimensional df F holds:
F ∈F (F1, . . . ,Fn) – the Fréchet class of n-dimensional df’s with marginals F1, . . . ,Fn
– if and only if

F− ≤ F ≤ F+, (12.1)

where F+(x) := min1≤i≤n Fi(xi) and F−(x) := max
{

0,∑n
i=1 Fi(xi)− (n− 1)

}
are

the upper and lower Fréchet bounds. While F+ is in general a df and thus F+ ∈
F (F1, . . . ,Fn), it holds that F− ∈ F (F1, . . . ,Fn) only for n = 2 and for rare cases
when n ≥ 3. These cases were characterized in [Dall’Aglio (1972)]. F+ is denoted
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the comonotonic distribution, F− is called in case n = 2 the antimonotonic distribu-
tion.

The inequalities in (12.1) imply some integral inequalities. Let for a real function
ϕ = ϕ(x1, . . . ,xn) of n variables

M(ϕ) := sup
{∫

ϕdP;P ∈M(P1, . . . ,Pn)
}

and m(ϕ) := inf
{∫

ϕdP;P ∈M(P1, . . . ,Pn)
} (12.2)

denote the generalized Hoeffding–Fréchet functionals, where Pi are probability mea-
sures on some measurable spaces (Ei,Ai). Since Hoeffding’s paper from 1940 be-
longs to the earliest papers on the bounds in (12.1) we call bounds of this type in
the following invariably Fréchet bounds or Hoeffding–Fréchet bounds. In particular
this includes the case where (Ei,Ai) = (R1,B1) and Pi have distribution functions
Fi.

A basic consequence of the Fréchet bounds in (12.1) is the following result on
the supermodular ordering of distributions. Define for P,Q ∈M(P1, . . . ,Pn) – i. e. P
and Q have marginals P1, . . . ,Pn –

P≤sm Q if
∫

f dP≤
∫

f dQ (12.3)

for all supermodular functions f ∈Fsm such that the integrals exist. Let≤uo denote
the upper orthant ordering, i. e. P≤uo Q if P([a,∞))≤Q([a,∞)) for all a∈Rn. Then
the following result holds

Theorem 12.1 (Supermodular order). Let P,Q ∈M1(Rn,Bn), then

a) In case n = 2 it holds:
P≤sm Q⇔ P≤uo Q (12.4)

b) Lorentz Theorem: For any P ∈M(P1, . . . ,Pn) holds

P≤sm P+, (12.5)

where P+ ∼ F+ is the comonotonic probability measure with marginals Pi.

The characterization of the supermodular ordering by the upper orthant order
≤uo in a) is due to [Cambanis et al. (1976)]. It generalizes in particular the classical
Hoeffding bounds for the expectation of the product of two random variables. Let
X ∼ F , Y ∼ G, and U ∼U(0,1), then

EF−1(U)G−1(1−U)≤ EXY ≤ EF−1(U)G−1(U). (12.6)

Part b) was proved in [Tchen (1980)] by discrete approximation and reduction
to the [Lorentz (1953)] inequalities. In Rueschendorf1(1979,1983) the problem to

1 In the further text Rüschendorf is abbreviated as Rü.
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determine the generalized Hoeffding–Fréchet functional was identified with a rear-
rangement problem for functions. The Lorentz Theorem was reduced to the Lorentz
inequality for functions.

There is also an analogue of the Fréchet bounds in (12.1) for the survival func-
tions Fi(xi) = P(Xi ≥ xi) and F(x1, . . . ,xn) = P(Xi ≥ xi,1≤ i≤ n)

F−(x) :=
( n

∑
i=1

Fi(xi)− (n−1)
)
+
≤ F(x1, . . . ,xn)≤min

1≤n
Fi(xi) := F+

(x). (12.7)

This version of the Fréchet bounds leads to an ordering result for the class of Δ -
monotone functions (also called n-increasing) by means of a partial integration for-
mula

Theorem 12.2 (Δ -monotone ordering). Let f : Rn → R1 be Δ -monotone and as-
sume that for any 1≤ i≤ n, limxi→−∞ f (x1, . . . ,xi, . . . ,xn) = 0, ∀x j, j �= i,

a) For any F ∈F (F1, . . . ,Fn) holds∫
F−(x)d f (x)≤

∫
f dF ≤

∫
F+

(x)d f (x). (12.8)

b) If F ∈F (F1, . . . ,Fn) and G,H are decreasing functions with

F− ≤ G≤ F ≤ H ≤ F+
, (12.9)

then ∫
G(x)d f (x)≤

∫
f dF ≤

∫
H(x)d f (x). (12.10)

For part a) see Rü (2004, Theorem 5.5). Part b) is a direct consequence of the
proof of Part a) and the assumptions in Part b).

Remark 12.1. a) Convex ordering of risk portfolios. Taking functions of the form
ϕ(x) =Ψ(∑n

i=1 xi),Ψ convex, we obtain that ϕ ∈Fsm and the Lorentz Theorem
implies that for any random vector X = (X1, . . . ,Xn), Xi ∼ Fi it holds that

n

∑
i=1

Xi ≤cx

n

∑
i=1

Xc
i , (12.11)

where Xc = (Xc
i ) is a comonotonic vector with comonotonic distribution P+; a re-

sult due to [Meilijson and Nadas (1979)]. In risk theory this result implies that Xc

is the worst case dependence structure for the joint portfolio for any convex risk
measure ρ . Further recent results on the convex ordering of risk portfolios as well
as to VaR bounds of joint portfolios are described in [Puccetti and Wang (2015)].

b) Parameter free price bounds under dependence constraints. Part b) in Theorem
12.2 implies that positive or negative dependence constraints on the survival func-
tion F in terms of the upper orthant ordering≤uo imply directly improved param-
eter free bounds for the value of options defined by Δ -monotone functions.
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Dependence restrictions as in (12.8) depend typically only on the copulas. They
are closely related to modelling of dependence structures and to various specific
constructions and bounds on copulas. A wealth of relevant material on these kind of
theory and models is given in the by now classical book of [Nelsen (2006)] as well
as in the recent book on copulas of [Durante and Sempi (2016)].

In the following Section 12.2 we discuss various forms of dual representations
which are available to deal with the Hoeffding–Fréchet functional for general ag-
gregation functions ϕ and also allow to include dependence information.

In Section 12.3 we consider the case where additional information on the de-
pendence structure is available on some part of the domain. Finally in Section 12.4
we discuss additional information on the dependence structure by including second
order marginal information. We discuss in particular applications to the problem of
establishing VaR-bounds for the joint portfolio.

12.2 Dual representation of Hoeffding–Fréchet bounds

The most relevant and general information on the generalized Hoeffding–Fréchet
functional is given by the dual representation of these functionals. The basic duality
theorem states under some general conditions on ϕ equality of M(ϕ) with a dual
functional U(ϕ). For detailed conditions see Rü (1991a,2007):
Duality Theorem:

M(ϕ) =U(ϕ) := inf
{ n

∑
i=1

∫
fidPi;

n

∑
i=1

fi(xi)≥ ϕ(x1, . . . ,xn)
}
. (12.12)

Similarly,

m(ϕ) = I(ϕ) := sup
{ n

∑
i=1

∫
fidPi;

n

∑
i=1

fi ≤ ϕ
}
. (12.13)

Remark 12.2. Some history: The duality result was proved in Rü (1979,1981) and
Gaffke and Rü (1981) including existence of solutions for the case where ϕ is
bounded continuous. For the case of bounded measurable functions it was shown
in these papers that replacing the σ -additive measures by finitely additive measures
with marginals Pi and defining

M̃(ϕ) := sup
{∫

ϕdμ;μ ∈ ba(P1, . . . ,Pn)
}

one gets
M̃(ϕ) =U(ϕ). (12.14)

This is a consequence of the Hahn–Banach separation theorem combined with Riesz
representation theorem. Under suitable regularity on the spaces and on ϕ one ob-
tains that M̃(ϕ) = M(ϕ). These duality results were then extended to some general
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classes of functions based on continuity properties of the functionals U, I and on the
Choquet capacity theorem in [Kellerer (1984)].

For a survey of these developments, see Rü (1991b,2007) or Rachev and Rü
(1998). It should be noted that in case n = 2 the duality result in (12.12) and (12.13)
was the first instance of the Kantorovich duality theorem for mass transportation for
general functionals ϕ . Kantorovich (1942) had established his duality result in the
case where ϕ(x1,x2) is a metric on a compact space.

As consequence of the duality theorem some basic inequalities and bounds were
obtained, as for example the following result (see Rü (1981)).

Define for A ∈A1⊗·· ·⊗An, M(A) := M(1A), then:

Theorem 12.3 (Sharpness of Fréchet bounds). For any Ai ∈Ai, 1≤ i≤ n holds

M(A1×·· ·×An) = min{Pi(Ai);1≤ i≤ n} (12.15)

and m(A1×·· ·×An) = min
( n

∑
i=1

Pi(Ai)− (n−1)
)
+
. (12.16)

In particular (12.16) was the first proof of the sharpness of the lower Fréchet
bounds in (12.1). An alternative proof was given in Sklar (1998) (see Theorem
2.10.13 in [Nelsen (2006)]).

A consequence of the duality theorem (or alternatively of Strassens’s Theorem)
is also a formula for the maximal and minimal value of the distribution function of
the sum in case n = 2 due to Makarov (1981) and Rü (1982):

M(s) := sup{P(X1 +X2 ≤ x);X1 ∼ Fi}
= inf

x∈R
(F1(x)+F2(t− x)) =: F1∧F2(t) (12.17)

m(s) := inf{P(X1 +X2 < s);Xi ∼ Fi}
= 1− sup

x∈R
(F1(x)+F2(t− x) := 1−F1∨F2(t) (12.18)

This implies by inversion sharp bounds for the Value at Risk (VaR) in case n = 2.
Embrechts and Puccetti (2006a, 2006b) relaxed the dual representation by re-

stricting to admissible piecewise linear functions of a simple form. This way they
establish the following dual bounds:

M(s)≤ D(s) = inf
u∈U(s)

min
{

∑n
i=1
∫ s−∑ j �=i u j

ui Fi(t)dt
s−∑n

i=1 ui
,1
}

(12.19)

and m(s)≥ d(s) = sup
u∈U(s)

max
{

∑n
i=1
∫ s−∑ j �=i u j

ui Fi(t)dt
s−∑n

i=1 ui
−d +1,0

}
(12.20)

where U(s) =
{

u ∈ Rn;∑n
i=1 ui < s

}
and U(s) =

{
u ∈ Rn;∑n

i=1 u1 > s
}

.
In the homogeneous case these dual bounds simplify strongly and can be shown

under some mixing conditions to be sharp bounds (see Puccetti and Rü (2012)).
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The method of proving the duality theorem described above is flexible enough
to be able to handle also additional constraints. Some examples of additional con-
straints have been considered in Ramachandran and Rü (1997,1999,2002) who con-
sidered e. g. upper or lower bounds on the marginals, restrictions on the domain of
the admissible measures or upper local bounds on the class of admissible measures.
In a similar way also other types of constraints can be dealt with this approach. Con-
sider for example an additional positive upper orthant dependence assumption and
define

MPUOD(P1, . . . ,Pn) = {P ∈M(P1, . . . ,Pn) : P is positive upper orthant dependent}.
(12.21)

Here P is called positive upper orthant dependent (PUOD) if P⊥ ≤uo P, where P⊥ =
⊗n

i=1Pi.
Let FΔ denote the cone of Δ -monotone functions, then for P ∈ M(P1, . . . ,Pn)

holds:

P is PUOD iff P⊥ ≤FΔ P i. e.
∫

f dP⊥ ≤
∫

f dP for all f ∈FΔ . (12.22)

For a duality statement we consider as above the modified Hoeffding–Fréchet
problem with finitely additive measures

M̃PUOD(P1, . . . ,Pn) = {μ ∈ ba(P1, . . . ,Pn);μ is PUOD} (12.23)

and for bounded measurable ϕ

M̃PUOD(ϕ) = sup{ϕdμ;μ ∈ M̃PUOD(P1, . . . ,Pn)}. (12.24)

There are several possible classes of dual problems. Define

H1 =
{
(( fi),g);g ∈FΔ , fi ∈L 1(Pi),

n

∑
i=1

fi−g≥ ϕ
}
.

Theorem 12.4 (Dual representation with PUOD constraints). For any bounded
measurable function ϕ holds:

M̃PUOD(ϕ) = I1(ϕ) := inf
{ n

∑
i=1

∫
fidPi−

∫
gd⊗n

i=1 Pi;(( fi),g) ∈H1

}
(12.25)

Proof. For any μ ∈ M̃PUOD(P1, . . . ,Pn) and any g ∈FΔ holds by (12.22)∫
gdμ ≥

∫
gd⊗n

i=1 Pi.

This implies for any (( fi),g) ∈H1
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n

∑
i=1

∫
fidPi−

∫
gd⊗n

i=1 Pi ≥
n

∑
i=1

∫
fidPi−

∫
gdμ

=
∫ ( n

∑
i=1

fi−g
)

dμ ≥
∫
ϕdμ.

As consequence we get
M̃PUOD(ϕ)≤ I1(ϕ). (12.26)

By Riesz representation theorem any continuous linear functional T on B(Rn,Bn)
with T fi =

∫
fidPi for fi = fi(xi) ∈ B(R1,B1) can be identified with an element

μ̃ ∈ M̃(P1, . . . ,Pn). Further it holds that

μ̃ ∈ M̃PUOD(P1, . . . ,Pn)⇔ μ̃ ≤ I1.

Therefore, the Hahn–Banach separation theorem implies that for any ϕ ∈B(Rn,Bn)

M̃PUOD(ϕ) = I1(ϕ). ��

Remark 12.3.

a) Existence and extensions: The separation theorem also implies the existence of
a solution μ̃ ∈ ba(P1, . . . ,Pn). Restricting to the class of continuous bounded
functions Cb on Rn we obtain by Riesz representation theorem

MPUOD(ϕ) = M̃PUOD(ϕ) = I1(ϕ), ϕ ∈Cb. (12.27)

This duality result can be further extended to more general classes of functions
by suitable continuity properties of the functionals MPUOD and I1 as in the sim-
ple marginal case.

b) Reduced dual problem: The duality statements in (12.25) and (12.27) give an
exact upper bound for

∫
ϕdP, P ∈MPUOD(P1, . . . ,Pn) which however as in the

simple marginal case in general is not easy to evaluate. For the dual functional
we can restrict to a more simple generator of VΔ by restricting to g of the form

g(x) =
m

∑
i=1
αi1[ai,∞)(x) with αi ≥ 0.

Then the dual problem reduces to optimize

∑
∫

fidPi−
m

∑
i=1
αiF⊥(ai) (12.28)

over all admissible duals of this form, where F⊥(x) = ∏n
i=1 Pi([x,∞)) is the

survival function. In particular, any admissible dual choice yields by (12.25)
and (12.26) to an upper bound.

As second example we consider the case where additional to the marginals also
the covariances σi j = Cov(Xi,Xj) = EXiXj−aia j, ai = EXi are specified. In a sim-
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ilar way as above one gets the dual representation for the class MΣ (P1, . . . ,Pn) of
measures P with marginals Pi and correlation matrix Σ = (σi j).

Theorem 12.5 (Fixed correlations). For any ϕ ∈ B(Rn,Bn) holds

M̃Σ (ϕ) = I2(ϕ) := inf
{ n

∑
i=1

∫
fidPi + ∑

(i, j)
αi jsi j;ϕ ≤

n

∑
i=1

fi(xi)+Σαi jxix j

}
(12.29)

Remark 12.4.

a) Similarly as above for ϕ ∈Cb, M̃Σ (ϕ) =MΣ (ϕ) and the duality can be extended
to more general classes of functions ϕ .

b) If we consider as in [Bernard et al. (2015)] ϕ = 1{∑n
i=1 xi≥t} and assume that it is

known that additional to the marginals Pi, also it is known that VaR(Sn) ≤ σ2,
then the dual in (12.29) simplifies strongly to the form

I2,σ2(ϕ) = inf
{ n

∑
i=1

∫
fidPi +α(σ2−μ2);

ϕ(x)≤
n

∑
i=1

fi(xi)+α
[( n

∑
i=1

xi

)2−μ2
]
,α ≥ 0, fi ∈ L1(Pi)

}(12.30)

In [Bernard et al. (2015)] good upper bounds for this case were given. In con-
trast formula (12.30) gives theoretically sharp upper bounds.

c) Model independent price bounds: In a similar way the above sketched method
also applies to various other types of constraints. For robust model independent
price bounds in recent years dual representations with martingale constraints
have been developed (see e. g. [Acciaio et al. (2013)] and [Beiglbock et al. (2013)]).¨
This kind of constraints is due to the fact, that reasonable pricing measures have
the martingale property. Also this type of constraints can be dealt with by the
above described method.

12.3 Improved Hoeffding–Fréchet bounds – distributional

information on domains

Motivated by the problem to determine good bounds for the Value at Risk (VaR) of
the joint portfolio there has been a lot of recent papers to improve the Fréchet bounds
in (12.1) by including additional dependence information and as consequence to
obtain improved bounds for the tail risk P(∑n

i=1 Xi ≥ t) or on VaRα(∑n
i=1 Xi).

For a random vector X with Xi ∼ Fi and distribution function FX = F we
can pose positive dependence restrictions in the form that F ≤ G or that the
survival function F ≥ G for some increasing (resp. decreasing) function G (G),
where G and G are bounded above and below by the Fréchet bounds in (12.1)
resp. (12.7). Defining A (s) := {u = (u1, . . . ,un) ∈ Rn : ∑n

i=1 ui = s} and
∧

G(s) =
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infu∈A (s) G(u),
∨

G(s) = supu∈A (s) G(u), the following improved standard bounds
on the joint portfolio have been given in several similar forms in the literature,
see [Williamson and Downs(1990), Embrechts et al. (2003)], Rü (2005,2013), Em-
brechts and Puccetti (2006b,2010), and Puccetti and Rü (2012).

Theorem 12.6 (Improved standard risk bounds under positive dependence re-

striction). Let X ,F,G, and G be as introduced above.

a) If G≤ F, then

P
( n

∑
i=1

Xi ≤ s
)
≥
∨

G(s) (12.31)

b) If G≤ F, then

P
( n

∑
i=1

Xi < s
)
≤ 1−

∨
G(s). (12.32)

In the case where G = F− resp. G = F− include no further dependence in-
formation these bounds are called standard bounds. By inversion we obtain the
standard bounds for VaR which depend only on the lower Fréchet copula bound
W (u) = (∑n

i=1 ui− (n−1))+. We denote the corresponding standard VaR bound by
VaRW .

In particular (12.31) and (12.32) give upper and lower bounds for the distribution
function and thus also for the tail risk of the sum if the risk vector X is positive
quadrant dependent (i. e. PUOD and PLOD).

To establish bounds for the df as in (12.31) or in (12.32) it is of course suf-
ficient to have bounds for the copula C = CX . An elaboration on the method in-
duced by Theorem 12.6 to VaR bounds has been given in [Embrechts et al. (2013),
Embrechts et al. (2014)]. Also several alternative ways to include dependence in-
formation in order to obtain improved VaR bounds for the sum have been dis-
cussed in the recent literature. For example, Bernard et al. (2016a,2016b) derive
improved risk bounds based on additional variance or moment information. Pos-
itive and negative dependence restrictions as in (12.31) and (12.32) based on in-
dependence and positive dependence information in subgroups were considered in
[Bignozzi et al. (2015)] and [Puccetti et al. (2015)]. Structural information by par-
tially specified risk factor models was investigated in [Bernard et al. (2016b)]. A
survey of these developments is given in Rü (2016).

Assuming that for a distribution function F with marginals Fi it is known that
F ≤G and/or that F ≥G on some subset S⊂Rn one obtains the following improved
Hoeffding–Fréchet bounds which were given independently in [Puccetti et al. (2016)]
and in [Lux and Papapantoleon (2016)].

Theorem 12.7 (Improved Hoeffding–Fréchet bounds). Let G : Rn → R be an in-
creasing function with F− ≤ G≤ F+ and define
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F∗(x) = min
(

min
1≤i≤n

Fi(xi), inf
y∈S

{
G(y)+

n

∑
i=1

(Fi(xi)−Fi(yi))+

})
F∗(x) = max

(
0,

n

∑
i=1

Fi(xi)− (n−1),sup
y∈S

{
G(y)−

n

∑
i=1

(Fi(yi)−Fi(xi))+

})
Then for F ∈F (F1, . . . ,Fn) holds

i) If F(y)≤ G(y) for all y ∈ S, then F(x)≤ F∗(x) for all x ∈ Rn.
ii) If F(y)≥ G(y) for all y ∈ S, then F(x)≥ F∗(x) for all x ∈ Rn.

iii) If F(y) = G(y) for all y ∈ S, then F∗(x)≤ F(x)≤ F∗(x) for all x ∈ Rn.

Remark 12.5. In the case n= 2 the improved Hoeffding–Fréchet bounds in Theorem
12.7 are due to Rachev and Rü (1994). They were restated in the case of uniform
marginals i. e. for copulas in [Tankov (2011)] for the case of equality constraints. In
this paper also a sharpness result for increasing sets S and an application to model
free pricing bounds for multi-asset options is given. In the case that S is singleton
and n = 2 these bounds and their sharpness were shown in [Nelsen et al. (2004),
Theorem 3.2.2].

In [Nelsen (2006)] several constructions are given for copulas with given sec-
tions. An interesting construction are f. e. the diagonal copulas with prescribed di-
agonal section. They are however different from the upper or lower bounds F∗
resp. F∗ as specified in Theorem 12.7. For n ≥ 2 and S being a singleton the im-
proved bounds were given in [Rodrı́guez-Lallena and Úbeda-Flores (2004)] and in
[Sadooghi-Alvandi et al. (2013)] for finite sets S.

Extensions of the sharpness result are given in [Bernard et al. (2012)]. The paper
of [Bernard et al. (2013)] discusses as application the case where S is the central
part of the distribution.

As corollary in the case that Fi ∼U(0,1), 1 ≤ i ≤ n Theorem 12.7 implies the
following improved bounds for the copula of a risk vector.

Corollary 12.8 (Improved copula bounds). Let S ⊂ [0,1]n and let Q be a compo-
nentwise increasing function on [0,1]n such that W (u) ≤ Q(u) ≤M(u), u ∈ [0,1]n.
Define the bounds AS,Q,BS,Q : [0,1]n → [0,1] as

AS,Q(u) = min
(

M(u), inf
a∈S

{
Q(a)+

n

∑
i=1

(ui−ai)+

})
BS,Q(u) = max

(
W (u),sup

a∈S

{
Q(a)−

n

∑
i=1

(ai−ui)+

})
Then for an n-dimensional copula C, it holds

i) If C(u)≤ Q(u) for all u ∈ S, then C(u)≤ AS,Q(u) for all u ∈ [0,1]n.
ii) If C(u)≥ Q(u) for all u ∈ S, then C(u)≥ BS,Q(u) for all u ∈ [0,1]n.

iii) If C(u) = Q(u) for all u ∈ S, then BS,Q(u)≤C(u)≤ AS,Q(u) for all u ∈ [0,1]n.
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It is shown in [Puccetti et al. (2016)] in several relevant examples that the im-
proved Hoeffding–Fréchet bounds in Theorem 12.7 may lead to strongly improved
VaR bounds for the joint portfolio based on the method of improved standard risk
bounds in Theorem 12.6.

Some examples showing the effect of the improved Hoeffding–Fréchet bounds
are discussed in [Puccetti et al. (2015)]. The following example shows related re-
sults in a graphical way.

Example 12.1.

a) Positive dependence in the tails. We consider the case n = 2 with F1 = F2 =
Pareto(2) and assume that the copula Q of the risk vector is comonotonic on
the tail area S = [0.9,1]2, i. e. for a copula vector (U1,U2)∼ Q holds

P(U1 ≥ u1,U2 ≥ u2) = min(1−u1,1−u2),ui ≥ 0.9.

This models a case where in extreme situations a strong form of positive de-
pendence arises. As consequence of this strong positive dependence in the tails
we obtain from Corollary 12.8 and Theorem 12.6 a remarkable reduction of the
improved VaR bounds VaRBS,Q

α for moderate and in particular for high quantile
levels α (see Figure 12.1). In fact in this example the standard bounds are know
to be sharp bounds.

Fig. 12.1: Comparison of VaRBS,Q

α and the standard bound VaRS
α for n = 2 with

Pareto(2) marginals.
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Based on Corollary 12.8 a similar effect also holds in the case that n ≥ 2. The
assumption of comonotonicity in the tails is a strong assumption.
In [Puccetti et al. (2016)] it is shown that some related effects are obtained when
replacing the strong positive dependence assumption in the tail in Corollary 12.8
by a weaker assumption of the form Q(u) = 1−Q(u) ≥ Gϑ (u), u ∈ S, where
Gϑ is a parametric class of Gumbel or of Gaussian copulas.

b) Independent subgroups with positive internal dependence. In this example we
modify the model assumption investigated in [Bignozzi et al. (2015)]. We con-
sider the case that the risks are split into k independent subgroups I j.
[Bignozzi et al. (2015)] allow any kind of dependence within these subgroups.
In comparison we assume that the risks within the subgroups are strongly posi-
tive dependent (comonotonic) in the tails, i. e., similar as in Example 12.1 a) on
[0.9,1]ni , where ni = |Ii|.
As concrete example we consider the case where n = 20, with k = 1,10,20
subgroups, where the subgroup sizes are equal to 20

k . We further assume that
Fi = Pareto(2) = F , 1≤ i≤ n. As consequence of Theorem 12.6 and Corollary
12.8 we obtain

P
( n

∑
i=1

Xi ≤ s
)
≥ BS,Q

k

(
F
( s

n

)
, . . . ,F

( s
n

))
= max

(
nF
( s

n

)
− (n−1),max

a∈S

{
Q(a)−

n

∑
i=1

(
ai−F

( s
n

))
+

})
,

where S= [0.9,1]n and Q(a) :=∏k
j=1 mini∈I j ai. The corresponding VaR bounds

VaR
BS,Q

k
α are obtained by inversion and are given in Figure 12.2. In that pa-

per also the improved standard bounds are compared with the (sharp) bounds
with marginal information only. For strong enough positive dependence the im-
proved standard bounds are sharper than the dual bounds.
The results obtained can be expected. The worst bound is the standard bound.
The best bound is obtained for the case k = 1 of general comonotonicity in the
tails. The case of 10 independent subgroups with positive tail dependence leads
to a considerable reduction.
As in Example 12.1 a) [Puccetti et al. (2016)] describe similar effects in this
example when replacing the comonotonicity assumption inside the groups by
weaker Gumbel type specification in the tails.

12.4 Higher order marginal information; comparison of various

VaR bounds for the joint portfolio

If higher order marginal distributions of the risk vector X are known then it is pos-
sible to improve the Hoeffding–Fréchet bounds and as consequence of (12.31),
(12.32), (12.19), and (12.20) one gets improved standard bounds for the VaR. In
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Fig. 12.2: Comparison of VaR
BS,Q

k
α for k = 1,10,20 and standard bound VaRS

α , n =
20, Fi = Pareto(2).

this section we consider the case where two dimensional marginal distributions
are known. Alternative dual bounds with higher order marginals called ‘reduced
bounds’ have been discussed in [Embrechts and Puccetti (2006a)], Puccetti and Rü
(2012), and in [Embrechts et al. (2013)]. As a result it was found in these papers
that the additional information of higher dimensional marginals may lead to consid-
erably improved upper VaR bounds, when the joint marginals are not ‘too close’ to
the upper Hoeffding–Fréchet bounds.

One obtains improved Hoeffding–Fréchet bounds for the distribution function
(resp. for the copula) by means of Bonferroni-type bounds (see Prop. 6 in Rü
(1991a)).

Proposition 12.1 (Bonferroni-type bounds). Let C be an n-dimensional copula
with bivariate marginals Ci, j for i �= j. Then

min
i�= j

Ci j ≥C ≥WB ≥WA ≥W, (12.33)

where W (u) = (∑n
i=1 ui− (n−1))+ is the Hoeffding–Fréchet lower bound,
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WA(u) =
( n

∑
i=1

ui− (n−1)+
2
n ∑

i< j
(1−ui−u j +Ci, j(ui,u j))

)
+

(12.34)

and WB(u) =
( n

∑
i=1

ui− (n−1)+ sup
τ

∑
(i, j)∈τ

(1−ui−u j +Ci, j(ui,u j))
)
+
, (12.35)

the sup being taken over all spanning trees of the complete graph induced by
{1, . . . ,n}.

The bound WB is a consequence of the Bonferroni inequality from [Hunter (1976)]
(see Prop. 6 in Rü (1991a)). It improves the bound WA arising from a Bonferroni
bound of [Hunter (1976)] and [Worsley(1982)]. As consequence of (12.31) and
(12.32) these bounds imply improved bounds for the tail-risk and the VaR of the
joint portfolio ∑n

i=1 Xi, where (Xi,Xj) have copulas Ci, j. Let

VaRW
α =W (F1, . . . ,Fn)

−1(α), VaRWA
α =WA(F1, . . . ,Fn)

−1(α)

and VaRWB
α =WB(F1, . . . ,Fn)

−1(α)
(12.36)

denote the upper α-quantiles of W , WA, WB with marginals F1, . . . ,Fn. Then we
obtain as consequence of (12.33)

VaRα(S)≤ VaRWB
α ≤ VaRWA

α ≤ VaRW
α . (12.37)

The upper bound VaRWA
α has been investigated in [Liu and Chan (2011)]. In con-

trast to their statement this bound is not the ‘best possible upper bound’ for VaRα(S).
As their numerical results indicate the bound VaRWA

α improves on the dual bound,
which is based solely on marginal information, only for high confidence levels α
and for highly positive correlated two-dimensional marginals. Correspondingly it
was seen in [Embrechts et al. (2013)] that strong improvements of lower bounds are
obtained, when the two-dimensional marginals are independent.

In the following examples we compare the Bonferroni bounds VaRWA
α and VaRWB

α
with each other and with the standard bounds VaRW

α as well as with the dual bound
VaRD

α arising from (12.19) for various dependence levels on the bivariate marginals.
By (12.31) we have

P
( n

∑
i=1

Xi ≤ t
)
≥ sup

u∈U (t)
CL(F1(u1), . . . ,Fn(un)), (12.38)

where CL is either W or is one of the (improved) bounds WA, WB. For u =
( t

n , . . . ,
t
n

)
we get the lower bound

P
( n

∑
i=1

Xi ≤ t
)
≥CL

(
F1

( t
n

)
, . . . ,Fn

( t
n

))
. (12.39)

In general the improvements of the Fréchet bounds as in (12.33) can be consider-
able. The improved standard bounds in (12.38) are not easy to determine in general
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in explicit form. In several cases however conditions are easy to state which allow
to determine them explicitly. In general we obtain the strongest improvement of the
upper bound VaRW

α if the two-dimensional copulas are comonotonic.
We next state for some cases explicit solutions to (12.38). If CL = W and

F1, . . . ,Fn have decreasing densities and u∗ ∈ U(t) satisfies F1(u∗1) = · · · = Fn(u∗n)
then u∗ = (u∗1, . . . ,u

∗
n) is uniquely determined and u∗ is a solution to (12.38). If

F1 = · · · = Fn has a decreasing density, then
( t

n , . . . ,
t
n

)
is a solution to (12.38) and

thus the bound in (12.39) coincides with that in (12.38).
More generally let

A = {(F1(u1), . . . ,Fn(un)); u = (ui) ∈U (t)}

and assume that (Fi(u∗i )) is a smallest element of A w.r.t. the increasing Schur convex
order #S, then

sup
u∈U (t)

W (F1(u1), . . . ,Fn(un)) =W (F1(u∗1), . . . ,Fn(u∗n)). (12.40)

Similarly, assuming that WA resp WB are Schur concave, i. e. decreasing w.r.t. the
increasing Schur convex order #S we obtain

sup
u∈U (t)

WA(F1(u1), . . . ,Fn(un)) =WA(F1(u∗1), . . . ,Fn(u∗n)) (12.41)

resp. sup
u∈U (t)

WB(F1(u1), . . . ,Fn(un)) =WB(F1(u∗1), . . . ,Fn(u∗n)). (12.42)

Sufficient conditions for Schur concavity of WA and WB can be inferred from
Chapters 3 and 4 in [Marshall and Olkin (1979)]. For example, in the homogeneous
case Ci j =C2 for all i, j, if C2 is concave and symmetric or more generally is Schur
concave, then WA and WB are Schur concave.

In the following we use the vector u∗ with identical components (F1(u∗1), . . . ,
Fn(u∗n)) as above as a proxy for comparison of the upper bounds in (12.40)–(12.42).
In particular in the case F1 = · · · = Fn = F we use the vector

(
F
( t

n

)
, . . . ,F

( t
n

))
. In

contrast to statements in [Liu and Chan (2011)] this choice will not give the exact
bounds in (12.40) and (12.41) (and also in (12.42)) in general.

In the following examples we consider the homogeneous case where Fi = F and
where Ci, j = C2 for all i < j. We concentrate on the approximate bounds based on
u∗.

Comparison of VaRWA , standard bounds, and dual bound

In the first example we compare the standard bound, i. e. the VaR bound induced by
W , the VaR bound induced by WA and the dual bound D, which gives the optimal
bound with only marginal information in this example.

Let n = 5 and let Xi be standard normal resp. log-normal distributed, 1 ≤ i ≤ 5.
Let C2 be a Gauß-copula with correlations ρ = 0, 0.5, 1. Figure 12.3 compares the
VaRWA

α,ρ upper bounds with the dual bound VaRD
α in dependence on α and ρ for both
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distributions. Note that using the proxies the bounds VaRWA
α,ρ and VaRWB

α,ρ coincide
in this case.

((a)) ((b))

Fig. 12.3: Comparison VaRWA
α,ρ , standard bound and dual bound, n= 5, ρ = 0, 0.5, 1,

in case of Gaußcopula in (a) and log normal copula in (b).

Figure 12.3 (a) shows that the VaRWA
α,ρ bound improves with increasing cor-

relation. In particular the case ρ = 1 (comonotonicity) for the two dimensional
marginals gives better upper bounds than the case ρ = 0 (independence). This kind
of dependence on ρ can also be seen directly from the definition of WA in (12.34).
Further one finds as expected, that for any ρ the VaRWA

α,ρ bound using information
on two-dimensional marginals is an improvement on the standard bound based on
marginal information only.

The dual bound VaRD
α is a strong improvement over the standard bound, both

being based on marginal information only. It is known that the dual bound is optimal
in this example. This example shows that the technique of standard bounds does not
work well in higher dimensions.

From Figure 12.3 and Table 12.1 one sees that the dual bound VaRD
α is even an

improvement over the bounds VaRWA
α,ρ when ρ < 0.9 and α ≥ 0.9, i.e. the informa-

tion on two-dimensional marginal information does not lead to an improved upper
bound in these cases, when using the method of improved standard bounds.

α VaRS
α VaRD

α VaRWA
α,0 VaRWA

α,0.5 VaRWA
α,0.9 VaRWA

α,1

0.9 10.268 8.773 10.234 9.943 8.764 6.407

0.95 11.631 10.311 11.616 11.415 10.425 8.224

0.99 14.390 13.322 14.388 14.297 13.589 11.631

Table 12.1: Comparison of VaRS, VaRD and VaRWA
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In Figure 12.3 (b) we see that in the case of log-normal distributions with heavy
tails we obtain a similar picture of the relation between these VaR bounds.

While in this example the bounds VaRWA and VaRWB coincide when using the
proxies, in the following example we show that in inhomogeneous cases the differ-
ence can be quite big so that VaRWB is a strong improvement over VaRWA .

Comparison of VaRWA and VaRWB

We consider the case n = 20 where the marginals Xi are log-normal distributed. We
assume that Ci, j(ui,u j) is a t-copula with three degrees of freedom and correlation
ρ . The risks Xi are divided into two groups of equal size 10. Within the groups the
rv’s are pairwise comonotone, i. e. ρ = ρ1 = 1 and between the groups the rv’s are
pairwise independent, i. e. ρ = ρ2 = 0.

In this case the sup in (12.35) is attained by the tree which uses only once the
correlation ρ2 = 0. On the other hand VaRWA

α can be seen as an average over all
starwise trees which also contains trees which use several times the low correla-
tion connections with ρ2 = 0. This construction makes the difference between both
bounds in a particular way big. We find in Figure 12.4 (a) that in this case VaRWB

α
is strongly improved compared to the VaR bound VaRWA

α . For example we obtain
VaRWB

0.9 = 99.5875 which is about 50 % better than VaRWA
0.9 = 202.6817. The differ-

ence between the bounds is increasing in α . For α = 0.99 we have for example
VaRWB

0.99 = 257.1075 an improvement of 59 % over VaRWA
0.99 = 437.2221. VaRWB

α im-
proves over the dual bound VaRD

α whereas VaRWA
α is worse than the dual bound.

((a)) ρ1 = 1, ρ2 = 0 ((b)) ρ1 = 0.9, ρ2 = 0.1

Fig. 12.4: Comparison of VaRWA
α , VaRWB

α , VaRD
α , inhomogeneous case, Ci, j t-copula

In Figure 12.4 (b) we see that under slightly weaker differences for the correla-
tions with ρ1 = 0.9 and ρ2 = 0.1 the dual bound VaRD

α is better than the Bonferroni
bounds VaRWA

α and VaRWB
α indicating again a weakness of the method of improved

standard bounds. While the Fréchet bounds for the df’s improve considerably by
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inclusion of two dimensional marginals, the corresponding VaR bounds for the ag-
gregated sums only improve in certain cases which exhibit strong enough positive
dependence.

Remark 12.6 (Reduced bounds versus Bonferroni-type bounds). The reduced bounds
in [Embrechts et al. (2013)] consider the case with the weaker assumption that
only the non-overlapping distributions F12 of (X1,X2), . . . ,F2n−1,2n of (X2n−1,X2n)
are known and give a non-sharp reduction to the one-dimensional case for Y1 =
X1 +X2, . . . ,Yn = X2n−1 +X2n, which can be handled by the dual bounds. From the
examples in the present and in the related papers on improved bounds, it seems rea-
sonable to expect that the reduced bounds may be well better than the Bonferroni
bounds if the positive dependence on the 2-dimensional marginals is not strong. But
in grouped examples like in Example 12.1 b) or in related structured examples the
Bonferroni bounds are better able to make use of this structure by the choice of a
suitable dependence tree τ consisting of strongly positive dependent components.
So in case that information on more than the serial two-dinensional marginals are
available it seems that the Bonferroni-type bounds in combination with the improved
standard bounds are better than the reduced bounds.

In the following example we compare the bounds for a set of heavy tailed
marginal distributions and a different set of bivariate copulas.

Comparison of VaR bounds for bivariate Clayton copulas

We assume that n = 20 and Xi are Pareto-distributed, i. e. Fi(x) = 1−x−2, x≥ 1. We
assume that Ci, j(ui,u j) is a Clayton copula with parameter ϑ . Note that for ϑ → ∞
the Clayton copula approaches comonotonicity while for ϑ → 0 it approaches inde-
pendence. As in the third example we consider the case that the risks are divided into
two groups. Within the groups the risks are approximatively comonotone (strongly
positive dependent), i. e. the Clayton parameter ϑ = ϑ1 is big. Between the groups
the risks are approximatively independent, i. e. the Clayton parameter ϑ = ϑ2 is
small. This construction allows us to investigate the behaviour of the various VaR
bounds in dependence of the dependence parameter ϑ of the copulas.

In Figure 12.5 and Table 12.2 we consider the choice ϑ1 = 10000, ϑ2 = 0.1 in
5(a) and ϑ = 1000, ϑ2 = 1 in 5(b). As in the case of log-normal distributions we find
that the Bonferroni bound VaRWB

α is significantly better than VaRWA
α and in particular

improves the standard bound VaRS
α .

In case ϑ1 = 10000 and ϑ2 = 0.1 the dual bound VaRD
α improves on the Bonfer-

roni bound VaRWB
α for α ≥ 0.9975 = α0. Experience of further examples shows that

this turning point moves to smaller values of α , the smaller the dependence parame-
ter ϑ1 gets. For example, for ϑ1 = 1000 and ϑ2 = 1 the turning point is α0 = 0.975.
For α > α0 the dual bounds are better than the Bonferroni bounds if the model is in
enough distance to the comonotonic case.

As general conclusion of the examples in this section we obtain that the Bon-
ferroni bound VaRB

α and the dual bound VaRD
α improve upon the standard bound



12 Improved Hoeffding–Fréchet bounds and applications to VaR estimates 199

((a)) ϑ1 = 10000, ϑ2 = 0.1 ((b)) ϑ1 = 1000, ϑ2 = 1

Fig. 12.5: Comparison of VaR bounds, n = 20, Pareto-marginals, bivariate Clayton
copula

ϑ1 = 10000, ϑ2 = 0.1 ϑ1 = 1000, ϑ2 = 1

α VaRS
α VaRD

α VaRWA
α VaRWB

α VaRWA
α VaRWB

α

0.9 282.842 123.288 209.452 88.717 214.864 93.168

0.99 894.427 389.871 684.720 301.371 813.773 676.727

0.999 2 828.427 1 232.883 2 574.672 2 141.456 2 797.193 2 764.304

Table 12.2: Comparison of VaR bounds, n = 20, Pareto-marginals, Clayton copulas
with parameter ϑ1 and ϑ2 for α ≥ 0.9

VaRW
α . VaRWB

α also improves generally on VaRWA
α . The Bonferroni bound VaRWB

improves for high degree of positive dependence on the dual bound VaRD but for
weaker forms of positive dependence the dual bound may be preferable. It should be
noted however that the dual bound is typically only calculable for small dimensions
for inhomogeneous cases. In these cases however the rearrangement algorithm (RA)
can be applied to yield sharp marginal bounds. In our applications we used proxies
for the calculation of the Bonferroni bounds. These were shown above to be sharp
under some conditions.

Acknowledgements The simulations in Sections 12.3 and 12.4 were produced by Dennis Manko
in the frame of his master thesis.
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[Bernard et al. (2015)] C. Bernard, L. Rüschendorf, and S. Vanduffel. Value-at-risk bounds with
variance constraints. Journal of Risk Insurance, 2015. doi: 10.2139/ssrn.2572508.
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[Bernard et al. (2016b)] C. Bernard, L. Rüschendorf, S. Vanduffel, and J. Yao. How ro-
bust is the value-at-risk of credit risk portfolios? Eur. J. Finance, 2016b. doi:
10.1080/1351847X.2015.1104370.

[Bignozzi et al. (2015)] V. Bignozzi, G. Puccetti, and L. Rüschendorf. Reducing model risk via
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[Rüschendorf (1982)] L. Rüschendorf. Random variables with maximum sums. Advances in
Applied Probability, 14:623–632, 1982.
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Chapter 13

Quasi–copulas: a brief survey

Carlo Sempi

Abstract This article is a survey of quasi–copulas. The genesis, the history and the
properties of quasi–copulas are presented, with special emphasis on their character-
isation and on recent results. The presentation will also highlight the key part played
by Roger Nelsen in all stages of the development of the theory.

13.1 Preliminaries and notation

The reader is supposed to have some familiarity with the definition and the main
properties of copulas, as they can be derived from Nelsen’s classical book ([22] for
the first edition and [24] for the second one) or from the more recent [10]. Here only
the notation is recalled that will be used in the sequel.

The extended reals will be denoted by R = R∪{−∞,+∞} and the unit interval
[0,1] by I. A distribution function(=df) is a function F : R→ I that is increasing (in
the weak sense), right–continuous on R and such that F(−∞) = 0 and F(+∞) =
1. Given a probability space (Ω ,F ,P), a random variable(=rv) is a measurable
function from Ω into R; its df FX is defined by FX (t) := P(X ≤ t). An almost surely
constant rv X = a has a df given by the unit step function with jump at a, i.e.

εa(t) :=

{
0, t < a ,
1, t ≥ a .

The set of df’s will be denoted by D .
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13.2 Quasi–copulas make their appearance

In a probabilistic setting, quasi–copulas were first introduced in 1993 in a paper
by Alsina, Nelsen and Schweizer [1] in the bivariate case. In the same year, but
published in 1996, the definition was extended to the general case d ≥ 3 by Nelsen,
Quesada Molina, Schweizer and Sempi [29].

The definition of a quasi–copula requires the notion of a track, which is here
recalled in the d–dimensional setting (d ≥ 2).

Definition 13.1. A track B in the unit square Id is a subset of Id that can be written
in the form

B := {(F1(t), . . . ,Fd(t)) : t ∈ I}, (13.1)

where F1, . . . , Fd are continuous distribution functions such that Fj(0) = 0 and
Fj(1) = 1 for every j in {1, . . . ,d}. ♦

Definition 13.2. A d-quasi-copula is a function Q : Id → I such that for every track
B in Id there exists a d–copula CB that coincides with Q on B, namely such that, for
every point u ∈ B, Q(u) =CB(u). ♦

It follows immediately from this definition that every copula C ∈ Cd is a quasi–
copula, since it suffices to take CB = C for every track B. However, once we recall
a characterisation of quasi–copulas, it will be seen that quasi–copulas exist that are
not copulas; therefore, if Qd denotes the set of d–quasi–copulas one has the strict
inclusion Cd ⊂Qd . A quasi-copula that is not a copula will be called proper.

But why were quasi–copulas introduced? It had been known at least since the
publication of the paper by Schweizer and Sklar [34] that, while an operation on
random variables defined on the same probability space (Ω ,F ,P) induces a corre-
sponding operation on their distribution functions, not all operations on distribution
functions may be derived from a corresponding operation on random variables de-
fined on the same probability space. Below we provide a formal definition of deriv-
ability in this sense (see [29]).

Definition 13.3. An operation ϕ on D is said to be derivable from a function on
random variables if there exists a Borel–measurable function V : Rd → R that sat-
isfies the following condition: for every collection of d dfs F1,. . . , Fd in D there
exist a common probability space (Ω ,F ,P) and d random variables X1,. . . , Xd on
(Ω ,F ,P) such that, for every j ∈ {1, . . . ,d}, Fj is the df of Xj, FXj = Fj and such
that ϕ(F1, . . . ,Fd) is the df of V (X1, . . . ,Xd). ♦

It is easily seen that the convex combination of two dfs is not derivable from a
binary operation on random variables defined on the same probability space (see
[2]).

Example 13.1. Assume, if possible, that the convex combination ϕ = α F + (1−
α)G of two dfs F and G with parameter α ∈ ]0,1[ is derivable from a suitable
function V on corresponding rvs.
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For all a,b ∈ R, a �= b, let F and G be the unit step functions at a and b, respec-
tively. Then F and G are, respectively, the dfs of the rvs X and Y , which are defined
on a common probability space and are almost surely equal, respectively, to a and
b. Hence V (X ,Y ) is a rv defined on the same probability space and almost surely
equal to V (a,b). Thus the distribution function of V (X ,Y ) is εV (a,b), the unit step
function at V (a,b). But because ϕ is derivable from V , the distribution function of
V (X ,Y ) must be equal to αF +(1−α)G, which is not a step function with a single
jump, and, hence, cannot be the df of V (X ,Y ). �

As a consequence, it is of interest to look for, and to characterise, classes of oper-
ations on dfs that are indeed derivable in the sense of Definition 13.3. The first class
to be studied under this framework was that of the pointwise induced operations.

Definition 13.4. A d–operation ϕ on D is said to be induced pointwise by a function
ψ : Id → I if,

ϕ (F1, . . . ,Fd)(t) = ψ (F1(t), . . . ,Fd(t))

for every choice of F1,. . . , Fd in D and for every t ∈ R. ♦

A typical example of operation on D that is induced pointwise is the convex
combination of dfs, namely a mixture in the language of Statistics, which can be
derived by the function ψ(u) = ∑d

j=1α j u j, where α j ≥ 0 for every index j and
∑d

j=1α j = 1.
Of course, not every operation on D is induced pointwise. Consider, for instance,

the convolution of two dfs F and G defined, for every x ∈ R, by

F⊗G(x) =
∫
R

F(x− t)dG(t) .

Now, since the value of the convolution of two dfs F and G at the point x generally
depends on more than just the values of F and G at x, convolution is not induced
pointwise by any two–place function. However, as is well known, the convolution
is interpretable in terms of rvs, since F ⊗G can be seen as the df of the sum of
independent rvs X and Y such that X ∼ F and Y ∼ G.

The class of operations that are both induced pointwise and derivable from op-
erations on random variables turns out to be quite small, as the following theorem
shows.

Theorem 13.1. Let ϕ be a binary operation on D that is both induced pointwise by a
two-place function ψ : I2 → I and derivable from a function V on random variables
defined on a common probability space. Then precisely one of the following holds:

(a) V = max and ψ is a quasi-copula;
(b) V = min and ψ(x,y) = x+ y−Q(x,y), where Q is a quasi-copula;
(c) V and ϕ are trivial in the sense that, for all x and y in R and for all a and b in

I, either V (x,y) = x and ψ(a,b) = a or V (x,y) = y and ψ(a,b) = b.
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Proof. Since ϕ(F,G), F and G are dfs, the function ψ is right-continuous and in-
creasing in each place; moreover, ψ(0,0) = 0 and ψ(1,1) = 1. Consider F = εx and
G = εy the unit step functions at x and y, respectively, with x,y ∈ R. Then F and G
are the dfs of two random variables X and Y that may be defined on a common prob-
ability space (Ω ,F ,P) and which are respectively equal to x and y almost surely.
It follows that V (X ,Y ) is also a random variable on (Ω ,F ,P) and that it takes the
value V (x,y) almost surely; hence, its df is the step function εV (x,y), which, since ϕ
is derivable from V , must be ϕ(εx,εy). Thus, for every t ∈ R, one has

εV (x,y)(t) = ϕ(εx,εy)(t) = ψ (εx(t),εy(t))

=

{
ψ(1,0)εx(t)+(1−ψ(1,0)) εy(t) , x≤ y ,
(1−ψ(0,1)) εx(t)+ψ(0,1)εy(t) , x≥ y .

But εV (x,y) takes only the values 0 and 1, so that one of the following four cases
holds:

(a) ψ(1,0) = 0, ψ(0,1) = 0 and V (x,y) = max{x,y};
(b) ψ(1,0) = 1, ψ(0,1) = 1 and V (x,y) = min{x,y};
(c1) ψ(1,0) = 1, ψ(0,1) = 0 and V (x,y) = x;
(c2) ψ(1,0) = 0, ψ(0,1) = 1 and V (x,y) = y.

Now let B = {(α(t),β (t)) : t ∈ I} be a track and let F and G be given by

F(t) =

⎧⎪⎨⎪⎩
0 , t < 0 ,
α(t) , t ∈ I ,

1 , t > 1 ,
G(t) =

⎧⎪⎨⎪⎩
0 , t < 0 ,
β (t) , t ∈ I ,

1 , t > 1 .

Let X , Y and V (X ,Y ) be rvs having dfs F , G and ϕ(F,G), respectively, and let
H and C be the joint df and the (uniquely defined) copula of X and Y . In case
(a), one has V (X ,Y ) = max{X ,Y}, so that FV (X ,Y ), the df of V (X ,Y ), is given by
FV (X ,Y )(t) = H(t, t); then

ψ (F(t),G(t)) = ϕ(F,G)(t) = FV (X ,Y )(t) = H(t, t)

=C (F(t),G(t)) .

Thus ψ agrees with a copula on the track B, which is arbitrary; therefore ψ is a
quasi-copula.

In case (b), one has V (X ,Y ) = min{X ,Y}, so that FV (X ,Y )(t) = F(t) +G(t)−
H(t, t). Therefore

ψ (F(t),G(t)) = ϕ(F,G)(t) = FV (X ,Y )(t)

= F(t)+G(t)−C (F(t),G(t)) ,

which is the assertion in this case.
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In case (c1) one has V (X ,Y ) = X , whence ψ(F(t),G(t)) = FV (X ,Y )(t) = F(t);
thus ψ(u,v) = u; the remaining case (c2) is completely analogous. �

Theorem 13.1 is a special case, for d = 2, of a more general result holding for
every d ≥ 2 (see [29], especially Theorem 2.5 and Corollary 2.6).

A quasi-copula satisfies the same general bounds as a copula.

Theorem 13.2. For every d-quasi-copula Q and for every point u ∈ Id

Wd(u)≤ Q(u)≤Md(u) . (13.2)

Proof. Given a point u ∈ Id , consider any track B going through u and a copula CB
that coincides with Q on B; then

Wd(u)≤CB(u)≤Md(u) .

Since Q(u) =CB(u), the inequalities (13.2) have been proved. �

The lower and upper bounds provided by (13.2) are, obviously, the best possible
in Qd .

It easily follows from (13.2) that every quasi–copula Q ∈Q2 satisfies

max{u,v} ≤ u+ v−Q(u,v)≤min{u+ v,1} (13.3)

for all (u,v) ∈ I2. Since neither the arithmetic mean ψ(u,v) = αu+(1−α)v, α ∈
]0,1[, nor the geometric mean ψ(u,v) =

√
uv satisfies (13.3), it follows at once, as

a consequence of Theorem 13.1, that neither mixtures nor the geometric mean are
derivable.

13.3 Characterisation of quasi–copulas

Since it was hard to check whether a function Q : Id → I is a proper quasi–copula1,
research was soon started in order to characterise quasi–copulas in an operationally
convenient manner. The necessary conditions that a quasi–copula satisfies are given
in the next theorem.

Theorem 13.3. A d-quasi-copula Q satisfies the following properties:

(a) for every j ∈ {1, . . . ,d}, Q(1, . . . ,1,u j,1, . . . ,1) = u j;
(b) Q is increasing in each of its arguments, viz. for every j ∈ {1, . . . ,d} and for

every point (u1, . . . ,u j−1,u j+1, . . . ,ud) in Id−1, the function t $→ Q(u j(t)), where
u j(t) := (u1, . . . ,u j−1, t,u j+1, . . . ,ud), is increasing;

1 It is easily checked whether Q is a copula, so that the identification problem remains only for
proper quasi–copulas.
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(c) Q satisfies the following Lipschitz condition: if u and v are in Id, then

|Q(v)−Q(u)| ≤
d

∑
j=1
|v j−u j| . (13.4)

Properties (a) and (b) of Theorem 13.3 together imply Q(u) = 0 when at least
one of the components of u vanishes, viz. when min{u1, . . . ,ud}= 0.

But not only are the conditions of Theorem 13.3 necessary; they are also suffi-
cient, so that they completely characterise quasi–copulas. This is stated in the next
theorem.

Theorem 13.4. A function Q : Id → I is a d-quasi-copula if, and only if, it satisfies
the following conditions:

(a) for every j ∈ {1, . . . ,d}, Q(1, . . . ,1,u j,1, . . . ,1) = u j;
(b) Q is increasing in each of its arguments;
(c) Q satisfies Lipschitz condition (13.4).

The characterisation of Theorem 13.4 is now frequently used as the standard
definition of a quasi–copula. Using it one immediately proves that Wd is a d-quasi-
copula, and, since it is already known that it is not a d-copula if d ≥ 3, it is a proper
d-quasi-copula for d ≥ 3.

The proof of Theorem 13.4 was given by Genest et al. ([17]) in the case d = 2 and
by Cuculescu and Theodorescu ([4]) for d ≥ 3; the proofs provided by these papers
are not similar. At the time of publication, however, it was not clear to the authors
of the first one of them how the proof given in the appendix could be generalised to
characterise quasi–copulas in higher dimension. There was an attempt by the same
authors to prove the general case along the same lines of [17]; they even submit-
ted a paper with the general “proof” but promptly withdrew it when they found a
counterexample to one of the crucial steps. Then Cuculescu and Theoderescu char-
acterised quasi–copulas using completely different ideas and techniques. It is worth
giving at least a glimpse of their complicated proof 2.

The idea of the proof is to approximate a given, but arbitrary, track by a polyg-
onal; more specifically, given a d-quasi-copula Q and a track, one can consider n
points along this track and the polygonal having those points as the endpoints of
the segments constituting it. For n sufficiently large, the polygonal approximates the
given track; moreover, one can find a d–copula agreeing with Q at those points. To
this end one has recourse to the concept of system.

Definition 13.5. A system will be a finite sequence of points in Id

0 = a(0) ≤ a(1) ≤ ·· · ≤ a(n) = 1 ,

together with a finite sequence, of the same length n, of numbers in I, 0 = q0 ≤ q1 ≤
·· · ≤ qn = 1, such that

2 The reader is referred to [10] for the proofs of the results reported in this section.
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max{0,a( j)
1 +a( j)

2 + · · ·+a( j)
d −d +1} ≤ q j ≤min{a( j)

1 ,a( j)
2 , . . . ,a( j)

d }

and

q j+1−q j ≤
∥∥∥a( j+1)−a( j)

∥∥∥
1
=

d

∑
i=1

(
a( j+1)

i −a( j)
i

)
.

Such a system will be denoted by

Σ =
(

a(0),a(1), . . . ,a(n);q0,q1, . . . ,qn

)
,

and it will be said to be increasing if a( j) < a( j+1) for every j = 0,1, . . . ,n− 1.
Finally a system will be said to be simple if

• it is increasing;
• it is of even length;
• q j+1 = q j for every even index j, while q j+1− q j = ‖a( j+1)− a( j)‖1 for every

odd index.

The track of a system is the polygonal line that consists of all the segments S j with
endpoints a( j) and a( j+1) ( j = 1, . . . ,n− 1). The function of a system is the piece-
wise linear function f defined by f (a( j)) := q j and linear on S j. One speaks of a
d-copula C as the solution for a system when C(a( j)) = q j for j = 0,1, . . . ,n. ♦

The proof consists in showing that every system has a solution and is achieved in
a series of steps.

Lemma 13.1. Let Σ be an increasing system. If k is such that 2≤ k≤ n−2, assume
the following:

(a) the system Σk obtained from Σ by deleting the elements with indices 1, . . . ,k−
1, has a solution Ck;

(b) there exists a measure μ on the Borel sets of [0,a(k)] such that μ([0,a( j)]) = q j
for j ≤ k and such that its i-th margin μi satisfies

μi ≤ 1
[0,a(k)i ]

·λ = λ
∣∣∣∣[0,a(k)i ]

.

Then Σ has a solution.

Corollary 13.1. Let Σ be as in Lemma 13.1 and assume that a solution exists for
the system Σ ′k obtained from Σ by deleting the elements with index j ≥ k+1. Then
condition (b) of Lemma 13.1 holds.

Lemma 13.2. Let Σ be a simple system

Σ =
(

a(0),a(1), . . . ,a(n);q0,q1, . . . ,qn

)
.

Then there exists a measure μ on the Borel sets of [0,a(2)] such that
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μ([0,a(1)]) = q1 and μ([0,a(2)]) = q2 , (13.5)

and such that for every one of its margins μi, one has μi ≤ λ .

Two operations are introduced on a system Σ ; each of them yields a new system
as a result.

Straightening: this operation consists in deleting some elements of a system
Σ ; specifically, one deletes the elements of index j if either one of the following
conditions holds:

• q j−1 = q j = q j+1;

•
∥∥∥a( j)−a( j−1)

∥∥∥
1
= q j−q j−1 and

∥∥∥a( j+1)−a( j)
∥∥∥

1
= q j+1−q j.

Smashing: Consider all the segments of endpoints a( j) and a( j+1) such that

q j < q j+1 < q j +
∥∥∥a( j+1)−a( j)

∥∥∥
1
,

and on each such segment insert a new point b( j) determined by the condition∥∥∥a( j+1)−b( j)
∥∥∥

1
= q j+1−q j ;

the function of Σ then takes the value q j at b( j) and is linear on the segment of
endpoints b( j) and a( j+1).

Lemma 13.3. If C is a solution for a system Σ , it is also a solution for the system
obtained from Σ by either smashing or straightening it, or both.

Lemma 13.4. Let

Σ =
(

a(0),a(1),a(2),a(3),1;0,0,q,q,1
)

be a simple system of length 4; then the system

Σ ′ =
(

a(0),a(2),a(3),1;0,q,q,1
)

obtained from Σ by deleting the elements with index 1 has a solution.

Lemmata 13.2 and 13.4 together yield

Corollary 13.2. Every simple system of length 4 has a solution.

The final auxiliary result is provided by the following lemma.

Lemma 13.5. Every system Σ has a solution.
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At this point one is ready for the final step in the proof.

Proof (of Theorem 13.4). Because of Theorem 13.3, it is already known that a quasi-
copula Q satisfies the properties of the statement.

Conversely, let a function Q : Id → I be given that satisfies properties (a), (b) and
(c), and let

B = {(F1(t), . . . ,Fd(t)) : t ∈ I}
be a track in Id . For n = 2m consider the points in Id

u( j) =

(
F1

(
j

2m

)
, . . . ,Fd

(
j

2m

))
,

and set q j := Q
(

u( j)
)
( j = 1,2, . . . ,2m). As a consequence of Lemma 13.5, for

every m ∈ N, there exists a copula Cm that coincides with Q at each of these points,
viz., Cm(u

( j)) = Q(u( j)).
Since Cd is compact, the sequence (Cm) of copulas obtained in this fashion con-

tains a subsequence
(
Cm(k)

)
k∈N that converges to a copula C. This limiting copula

coincides with Q on B. To see this, fix t ∈ I and for each k ∈ N, let j = j(m(k)) be
the largest integer smaller than, or, at most, equal to, 2m(k)−1 for which∣∣∣∣ t− j

2m(k)

∣∣∣∣≤ 1
2m(k)

.

Because of the continuity of the functions Fi (i = 1, . . . ,d) it is then possible to take
m(k) large enough to ensure that∣∣∣∣Fi(t)−Fi

(
j

2m

)∣∣∣∣< ε
3d

simultaneously for every index (i = 1, . . . ,d) and for a given ε > 0. Since (Cm(k))

converges to C on Id , for k sufficiently large, one has∣∣Cm(k)(F1(t), . . . ,Fd(t))−C(F1(t), . . . ,Fd(t))
∣∣< ε

3
.

Keeping in mind that Cm(k)(u
( j)) = Q(u( j)) ( j = 1, . . . ,2m(k)) and that both Q and

Cm(k) satisfy the Lipschitz condition, then one has

|Q(F1(t), . . . ,Fd(t))−C(F1(t), . . . ,Fd(t))|
≤
∣∣∣Q(F1(t), . . . ,Fd(t))−Q(u( j))

∣∣∣
+
∣∣∣Cm(k)(u

( j))−Cm(k)(F1(t), . . . ,Fd(t))
∣∣∣

+
∣∣Cm(k)(F1(t), . . . ,Fd(t))−C(F1(t), . . . ,Fd(t))

∣∣
< d

ε
3d

+d
ε

3d
+
ε
3
= ε .
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Because of the arbitrariness of ε , Q coincides with the copula C on the track B and
is, therefore, a d-quasi-copula. �

It is this author’s belief, and his hope, that the proof just outlined will in the future
be replaced by a simpler and more transparent one.

It is worth mentioning that a different characterisation is possible (see [32]).

Theorem 13.5. For a function Q : Id → I the following statements are equivalent:

(a) Q is a d–quasi–copula;
(b) Q satisfies property (a) of Theorem 13.3, and the functions

t $→ Q(u j(t)) ( j = 1, . . . ,d) (13.6)

are absolutely continuous for every choice of u = (u1, . . . ,ud) in Id−1 and

0≤ ∂ jQ(u j(t))≤ 1 ( j = 1, . . . ,d) (13.7)

for almost every t ∈ I and for all (u1, . . . ,ud) ∈ Id−1.

13.4 Archimedeanity

In order to speak of Archimedean quasi–copulas it is convenient to compare them
with the analogous concept for copulas. To this end the well known concept of gen-
erator will be needed, since Archimedean copulas are parametrised via a function
of a single variable, which is defined below.

Definition 13.6. A function ϕ : [0,+∞[→ I is said to be a generator if it is continu-
ous, decreasing and ϕ(0) = 1, limt→+∞ϕ(t) = 0 and is strictly decreasing on [0, t0],
where t0 := inf{t > 0 : ϕ(t) = 0}. ♦

The pseudo–inverse of the generator ϕ is defined by

ϕ(−1)(t) :=

{
ϕ−1(t) , t ∈ ]0,1] ,
t0 , t = 0 .

(13.8)

Notice that ϕ(−1)(ϕ(t)) = min{t, t0} for every t ≥ 0.

Definition 13.7. A d–copula C with d ≥ 2 is said to be Archimedean if a generator
ϕ exists such that C may be represented in the form

C(u) = ϕ
(
ϕ(−1)(u1)+ · · ·+ϕ(−1)(ud)

)
, (13.9)

for every u ∈ Id . ♦
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McNeil and Nešlehová [21] have characterised the generators for which the func-
tion defined by (13.9) is a d–copula.

Theorem 13.6. Let ϕ : [0,+∞[→ I be a generator. Then the following statements
are equivalent:

(a) ϕ is d-monotone on [0,+∞[;
(b) the function C : Id → I defined by (13.9) is a d-copula.

A function f : ]a,b[→R is called d–monotone in ]a,b[, where−∞≤ a< b≤+∞
and d ≥ 2 if

• it is differentiable up to order d−2;
• for every x ∈ ]a,b[, its derivatives satisfy

(−1)k f (k)(x)≥ 0

for k = 0,1, . . . ,d−2;
• (−1)d−2 f (d−2) is decreasing and convex in ]a,b[.

Moreover, if f has derivatives of every order in ]a,b[ and if

(−1)k f (k)(x)≥ 0 ,

for every x ∈ ]a,b[ and for every k ∈ Z+, then f is said to be completely monotone.
Let I⊆R be an interval. A function f : I→R is said to be d–monotone (respectively,
completely monotone) on I, with d ∈ N, if it is continuous on I and if its restriction
to the interior I◦ of I is d-monotone (respectively, completely monotone).

For d = 1, f is said to be (1-)monotone on ]a,b[ if it is decreasing and positive on
this interval, while in the case d = 2, a 2-monotone function f is simply a decreasing
and convex function.

Kimberling [19] proved the following

Corollary 13.3. Let ϕ : [0,+∞[→ I be a generator. Then the following statements
are equivalent:

(a) ϕ is completely monotone on [0,+∞[;
(b) the function Cϕ : Id → I defined by (13.9) is a d-copula for every d ≥ 2.

Nelsen et al. [26] completely characterised Archimedean quasi–copulas.

Theorem 13.7. For d ≥ 2 and for a given generator ϕ , the following statements are
equivalent:

(a) the generator ϕ is convex;
(b) the function Qϕ : Id → I defined by

Qϕ(u) = ϕ
(
ϕ(−1)(u1)+ · · ·+ϕ(−1)(ud)

)
is a d–quasi–copula.
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As a consequence of this latter results no proper Archimedean quasi–copula ex-
ists when d = 2, while for d > 2 there are proper Archimedean quasi–copulas, the
easiest example being, for instance for d = 3, the lower Fréchet–Hoeffding bound
W3, which is a proper 3–quasi–copula; in fact its generator ϕ(t) = max{1− t,0} is
convex but not differantiable at t = 1, and, hence, not 3–monotone. Another example
is given in [26].

13.5 Discrete quasi–copulas

The construction of discrete quasi–copulas was introduced in [30], for the case d =
2, although the construction applies in principle to any dimension d. Here, only the
case d = 2 will be briefly discussed. Let In,m be the set of points of I2 given by

In,m :=
{(

i
n
,

j
m

)
: i ∈ {0,1, . . . ,n}, j ∈ {0,1, . . . ,m}

}
,

where n and m are natural numbers with n,m≥ 2.

Definition 13.8. A discrete quasi–copula on In,m is a function Qn,m : In,m → I that
satisfies the following conditions

(a) Qn,m
( i

n ,0
)
= Qn,m

(
0, j

m

)
= 0 , i ∈ {0, . . . ,n}, j ∈ {0, . . . ,m};

(b) Qn,m
( i

n ,1
)
= i

n , Qn,m

(
1, j

m

)
= j

m i ∈ {0, . . . ,n}, j ∈ {0, . . . ,m};
(c) 0≤ Qn,m

(
i
n ,

j
m

)
−Qn,m

(
i−1

n , j
m

)
≤ 1

n i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m};
(d) 0≤ Qn,m

(
i
n ,

j
m

)
−Qn,m

(
i
n ,

j−1
m

)
≤ 1

m i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m}.
The discrete quasi–copula Qn,m is said to be proper if at least a pair (i, j) exists such
that the inequality

Qn,m

(
i
n
,

j
m

)
+Qn,m

(
i−1

n
,

j−1
m

)
< Qn,m

(
i−1

n
,

j
m

)
+Qn,m

(
i
n
,

j−1
m

)
(13.10)

is fullfilled. ♦

Theorem 13.8. The restriction to In,m of a 2–quasi–copula Q is a discrete quasi–
copula. Moreover, if Q is a copula, then it satisfies eq. (13.10) where the inequality
sign < is replaced by ≥.

Given a quasi–copula Q on I2, the discrete quasi–copula Qn,m defined by

Qn,m

(
i
n
,

j
m

)
:= Q

(
i
n
,

j
m

)
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will be called the discretisation of order n×m of Q. When m = n it will be denoted
by Qn and called the discretisation of order n.

Theorem 13.9. Let Q be a 2–quasi–copula and Qn its discretisation of order n; then

lim
n→+∞

Qn

(
[nu]

n
,
[nv]
n

)
= Q(u,v) ,

where [x] denotes the integral part of x.

In the opposite direction one has

Theorem 13.10. Let k≥ 2 be a natural number and let (Qkm)m∈N,m≥2 be a sequence
of discrete quasi–copulas satisfying the consistency condition

Qkm

(
i

km−1 ,
j

km−1

)
= Qkm−1

(
i

km−1 ,
j

km−1

)
i, j ∈ {0, . . . ,km−1} .

Then the limit of the sequence(
Qkm

(
[kmu]

km ,
[kmv]
km

))
exists at every point (u,v) ∈ I2 and the function Q : I2 → I defined by

Q(u,v) : lim
m→+∞

Qkm

(
[kmu]

km ,
[kmv]
km

)
is a quasi–copula.

Given a discrete (not necessarily proper) quasi–copula Qn it is possible to con-
struct a whole set of quasi–copulas having Qn as their discretisation of order n (see
[30, Section 4]).

A modification of the transformation matrices studied in [16] can be used in order
to construct quasi–copulas ([13]); this will be useful in proving some of the results
of sections 13.8 and 13.9.

A matrix T = (ti j)
m
i, j=1 ∈ [−1/3,1]m×m will be said to be a quasi–transformation

matrix if

(a) ∑m
i, j=1 ti, j = 1;

(b) ∑m
j=1 ti, j > 0 for every i ∈ {1, . . . ,m};

(c) ∑m
i=1 ti, j > 0 for every j ∈ {1, . . . ,m};

(d) the sum of the entries in any submatrix of T that contains at least one entry from
the first or the last row or column of T is nonnegative.

A quasi–transformation matrix T is said to be proper if at least two indices i and
j exist such that ti, j < 0.
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Given a quasi–transformation matrix T , let pi (respectively, q j) denote the sum of
the entries of the first i columns (respectively, of first j rows) T with i, j∈{1, . . . ,m};
set p0 = q0 := 0. Consider the m2 rectangles Ri, j := [pi−1, pi]×

[
q j−1,q j

]
; they

have disjoint interiors and their union is the whole unit square I2. Thus, a quasi–
transformation matrix induces an operator WT on Q2 defined for Q∈Q2 and (u,v)∈
Ri0, j0 by

WT (Q)(u,v) := ∑
i<i0, j< j0

ti, j +
u− pi0−1

pi0 − pi0−1
∑
j< j0

ti0, j +
v−q j0−1

q j0 −q j0−1
∑
i<i0

ti, j0

+ ti0, j0 Q
(

u− pi0−1

pi0 − pi0−1
,

v−q j0−1

q j0 −q j0−1

)
. (13.11)

In [13] it is proved that

(a) WT (Q) is a quasi–copula for every quasi–copula Q, so that WT (Q2)⊆Q2;
(b) WT is a contraction on (Q2,d∞);
(c) if T is proper then WT (Q) is also proper for every Q ∈ Q2, so that one has

WT (Q2)⊆Q2 \C2, when T is proper;
(d) W n

T (Q) is a proper quasi–copula for every n ∈ N, if, and only if, Q is proper;
(e) a unique quasi–copula QT exists such that WT (QT ) = QT ;
(f) for every Q ∈Q2, limn→+∞ W n

T (Q) = QT .

13.6 The space of quasi–copulas and its lattice structure

While quasi–copulas were originally introduced in characterising operations on dis-
tribution functions that are induced pointwise, they play a considerable role in study-
ing the structure of the set of copulas, and, in time, this aspect of quasi–copulas has
become their most important one; to it is devoted the present section.

It is easily checked that Qd , the space of d-quasi-copulas, is a closed subset of
the space (Ξ(Id),d∞) of continuous functions on Id endowed with the topology of
uniform convergence.

Theorem 13.11. The set Qd of d-quasi-copulas is a compact and convex subset of
(Ξ(Id),d∞).

We recall a few definitions from lattice theory (see, e.g., [5]). Given a partial
ordered set (=poset) (P,≤), and two elements x and y in P, x∨ y denotes their join,
namely their least upper bound when it exists, while x∧y denotes their meet, namely
their greatest lower bound, when it exists. If S is a subset of P, ∨S and ∧S are defined
in the obvious way.

Now one can consider the classical pointwise order among functions in Qd ,
namely, for Q1,Q2 ∈Qd , Q1 ≤ Q2 if, and only if, Q1(u)≤ Q2(u) for every u ∈ Id .
In particular, one may define
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Q1∨Q2 := inf{Q ∈Qd : Q1 ≤ Q,Q2 ≤ Q} ,
Q1∧Q2 := sup{Q ∈Qd : Q≤ Q1,Q≤ Q2} .

When the join, or meet, is found in a particular poset P, one writes ∨PS and ∧PS.
Given two posets A and B, A is said to be join–dense (respectively, meet–dense)
in B if for every D ∈ B, there exists a set S ⊆ A, such that D = ∨BS (respectively,
D = ∧BS). A poset P �= /0 is said to be a lattice if for all x and y in P, both x∨ y and
x∧y are in P; and P is a complete lattice if both ∨S and ∧S are in P for every subset
S of P. If ϕ : P→ L is an order-preserving injection of a poset (P,≺) into a complete
lattice (L,≺1), then L is said to be a completion of P; in particular, if ϕ maps P onto
L, then it is an order–isomorphism.

Definition 13.9. A complete lattice (L,≺1) is said to be the Dedekind–MacNeille
completion of a poset (P,≺) (also referred to as the normal completion or the com-
pletion by cuts) if (P,≺) is both join-dense and meet-dense in (L,≺1). ♦

Theorem 13.2 states that the upper and lower bounds in Qd coincide with the
Hoeffding–Fréchet bounds for copulas; however, more can be said. The relevant
result is the following theorem (see [27] in the case d = 2 and [32] for d > 2).

Theorem 13.12. The set Qd of d-quasi-copulas is a complete lattice.

Since the set Cd of d-copulas is included in Qd , one immediately has the follow-
ing corollary.

Corollary 13.4. Both the join and the meet of every set of d-copulas are d-quasi-
copulas.

However, proper subsets of Qd may not be closed under supremum and infimum
operations; two important cases in point are given in the next result.

Theorem 13.13. For every d ≥ 2, neither the set Cd of copulas nor the set Qd \Cd
of proper quasi–copulas is a lattice.

In examining the question of the Dedekind–MacNeille completion of Cd one has
to distinguish the two cases d = 2 and d > 2. As a preliminary, a few lemmata will
be needed.

In the next result, which refers to bivariate copulas, sharper bounds, both upper
and lower, are given related to the class of all 2-copulas taking a specified value at a
point in the interior of the unit square.

Lemma 13.6. Let the 2-copula C take the value θ at the point (a,b) ∈ ]0,1[2, i.e.
C(a,b) = θ , where θ belongs to the interval [max{a+b−1,0},min{a,b}]. Then,
for every (u,v) in I2,

CL(u,v)≤C(u,v)≤CU (u,v) , (13.12)
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where CL and CU are defined by

CL(u,v) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max{0,u−a+ v−b+θ} , (u,v) ∈ [0,a]× [0,b] ,
max{0,u+ v−1,u−a+θ} , (u,v) ∈ [0,a]× [b,1] ,
max{0,u+ v−1,v−b+θ} , (u,v) ∈ [a,1]× [0,b] ,
max{θ ,u+ v−1} , (u,v) ∈ [a,1]× [b,1] ,

and

CU (u,v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min{u,v,θ} , (u,v) ∈ [0,a]× [0,b] ,
min{u,v−b+θ} , (u,v) ∈ [0,a]× [b,1] ,
min{u−a+θ ,v} , (u,v) ∈ [a,1]× [0,b] ,
min{u,v,u−a+ v−b+θ} , (u,v) ∈ [a,1]× [b,1] ,

respectively. The bounds in (13.12) are the best possible.

As usual set x+ := max{x,0}.

Lemma 13.7. For (a,b) ∈ ]0,1[2 and for θ ∈ [W2(a,b),M2(a,b)] let Sa,b,θ denote
the set of quasi–copulas that take the value θ at (a,b),

Sa,b,θ := {Q ∈Q2 : Q(a,b) = θ} .

Then both ∨Sa,b,θ and ∧Sa,b,θ are copulas and∨
Sa,b,θ (u,v) = min{M2(u,v),θ +(u−a)+ +(v−b)+} ,∧
Sa,b,θ (u,v) = max{W2(u,v),θ − (a−u)+− (b− v)+} .

Lemma 13.8. For every quasi-copula Q∈Q2, one has Q=∨S1(Q), where S1(Q) :=
{C ∈ C2 : C ≤ Q}, and Q = ∧S2(Q), where S2(Q) := {C ∈ C2 : C ≥ Q}.

In particular, it follows that 2-quasi-copulas can be characterised in terms of cop-
ulas. The following result is now obvious.

Lemma 13.9. The set of bivariate copulas C2 is both join-dense and meet-dense in
Q2.

Theorem 13.14. The complete lattice Q2 of 2–quasi–copulas is order–isomorphic
to the Dedekind–MacNeille completion of the poset C2 of bivariate copulas.

The sets C2 of bivariate copulas and Cd with d > 2 of multivariate copulas dif-
fer with respect to their Dedekind–MacNeille completion: in fact, while Q2 is the
Dedekind–MacNeille completion of C2, Qd is not the Dedekind–MacNeille com-
pletion of Cd for d > 2 (see [25] and [12]).
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Theorem 13.15. For d > 2, the complete lattice Qd of d–quasi–copulas is not
order–isomorphic to the Dedekind–MacNeille completion of the poset Cd of d–
copulas.

Proof. It is enough to consider that Wd is a proper quasi-copula and that, because of
Theorem 13.2, Wd cannot be the upper bound of any set of d–copulas. �

13.7 Best bounds for quasi–copulas with a given diagonal

It follows from the results of the previous section that quasi–copulas are likely to
appear whenever bounds for specific sets of copulas are considered. We provide one
further example: consider the set of 2–copulas with a given diagonal. We recall that
a function δ : I→ I is the diagonal section of a 2–copula C if, and only if, it satisfies
the following properties: (a) δ (0) = 0 and δ (1) = 1, (b) δ (t)≤ t for every t ∈ I, (c)
δ is increasing and (d) δ satisfies the Lipschitz condition |δ (t ′)− δ (t)| ≤ 2 |t ′ − t|
for all t and t ′ in I.

Theorem 13.16. For every diagonal δ the function Aδ : I2 → I defined by

Aδ (u,v) := min
{

u,v,max{u,v}−max{δ̂ (t) : t ∈ [u∧ v,u∨ v]}
}

(13.13)

=

{
min
{

u,v−maxt∈[u,v]{t−δ (t)}
}
, u < v ,

min
{

v,u−maxt∈[v,u]{t−δ (t)}
}
, v≤ u,

is a symmetric 2–quasi–copula having diagonal equal to δ .

While Aδ is in general a proper quasi–copula, Fernández Sánchez and Trutschnig
[14] have recently given necessary and sufficient conditions on the graph of δ that
ensure that it is a copula (see also [35] and [27, 20]).

Once Aδ has been introduced, the following holds

Theorem 13.17. For every diagonal δ and for every quasi-copula Q having δ as its
diagonal, viz. δ (t) = Q(t, t) for every t ∈ I, one has

CBer
δ ≤ Q≤ Aδ , (13.14)

where CBer
δ is the Bertino copula defined by

CBer
δ (u,v) := min{u,v}−min{δ̂ (t) : t ∈ [u∧ v,u∨ v]}

=

{
u−mint∈[u,v]{t−δ (t)} , u≤ v ,
v−mint∈[v,u]{t−δ (t)} , v < u,

The Bertino’s copula was introduced by Fredricks and Nelsen [15] following a
paper by Bertino [3].
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13.8 Mass distribution

A d–copula C generates a d–fold stochastic measure on the Borel sets of Id : if
R = Id ∩∏d

j=1 [a j,b j[ is a rectangle in Id , then one defines

μC(R) :=V (R) = ∑
v∈ver(]a,b])

sign(v)C(v) , (13.15)

where

sign(v) =

{
1 , if v j = a j for an even number of indices,
−1 , if v j = a j for an odd number of indices,

Through the usual techniques of measure theory the above definition of μC is then
extended to the set B(Id) of Borel sets (see, e.g., [10]). This measure is d–fold
stochastic in the sense that, for every A ∈B(I) and for every j ∈ {1, . . . ,d},

μ(I×·· ·× I︸ ︷︷ ︸
j−1

×A× I×·· ·× I) = λ (A) , (13.16)

where λ denotes the (restriction to B(I) of the) Lebesgue measure.

Perhaps naively, it was expected, in particular by the present author, that some-
thing similar would happen for a quasi–copula Q.

In the case of a quasi–copula Q repeating the same construction leads to the
expression

μQ(S) :=
n

∑
i=1

μQ(Ri) ,

where S = ∪n
i=1Ri, and the interiors of the rectangles Ri do not overlap. However,

this only defines a finitely additive set function μQ on the ring of R of finite disjoint
unions of rectangles. One may therefore wonder whether μQ can be extended to a
real measure on the Borel sets of Id ; we recall that a real measure, often called a
signed measure, μ : F → R is a σ–additive set function defined on the measurable
space (Ω ,F ) with the condition that μ( /0) = 0 and μ assumes at most one of the
values ∞ and −∞ (see, e.g., [18]). Equivalently, μ is the difference between two
(positive) measures μ1 and μ2 (defined on the same measure space), such that at
least one of them is finite. As a consequence of the definition of quasi–copulas, if Q
induces a real measure μQ, this measure should be d–fold stochastic. In particular,
any d-fold stochastic real measure μ on B(Id) should satisfy μ(Id) = 1 and, in view
of [18, page 119], |μ(E)|< ∞ for every E ∈B(Id).

It came as a surprise that the extension mentioned in the previous paragraph is
not possible, as will be seen.

The following result provides information about the bounds of VQ(R).
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Theorem 13.18. For every 2-quasi-copula Q and for every rectangle R contained
in I2, one has

−1
3
≤VQ(R)≤ 1 .

Moreover, VQ(R)= 1 if, and only if, R= I2 and R= [1/3,2/3]2 when VQ(R)=−1/3.

Notice that, for d = 2, a unique rectangle exists on which the minimal mass
(which turns out to be −1/3) can be spread, as well as a unique rectangle (the unit
square itself) on which the maximal mass 1 can be accumulated. The situation is
slightly different in higher dimensions. For the case d = 3, De Baets, De Meyer and
Úbeda–Flores [6] showed that there still exists a unique 3–rectangle on which the
minimal mass (which now turns out to be −4/5) can be spread, while there exist
multiple 3–rectangles on which the maximal mass 1 can be spread. In principle, the
methodology used in the proof may be applied to the case d > 3 as well (apart from
an increasing complexity of the formulation).

In general, the area of rectangles contained in I2 with given Q2–volume is subject
to specific bounds.

Theorem 13.19. Let R = [u1,u2]× [v1,v2] be a rectangle contained in I2 and let θ
be in [−1/3,1]. If there is a 2-quasi-copula Q for which VQ(R) = θ , then the area
A(R) of R satisfies

θ 2 ≤ A(R)≤
(

1+θ
2

)2

. (13.17)

Moreover, A(R) attains both bounds; in both cases R is necessarily a square.

It is important to note that a quasi–copula may have a negative mass as large
as one wishes. The following result was first proved for the independence (quasi)–
copula Π2 and then extended to any quasi–copula.

Theorem 13.20. For all given ε > 0 and H > 0, and for every 2–quasi–copula Q̃,
there exist a 2–quasi–copula Q and a subset S of I2 such that

(a) μQ(S)<−H;
(b) for all u and v in I, |Q(u,v)− Q̃(u,v)|< ε .

The fact that a quasi–copula need not induce a real measure on the Borel sets
B(I2) of I2 is established below (see the papers [23], [28], [13] and [11]).

Theorem 13.21. A 2-quasi-copula Q exists that does not induce a doubly stochastic
real measure on I2.

In general, i.e., for d ≥ 3, one has

Theorem 13.22. For every d ≥ 3, Wd does not induce a d-fold stochastic real mea-
sure on Id.

These results will be further analysed in the next section.
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13.9 Category results

It has to be recalled that in the very first paper in which quasi–copulas were intro-
duced it was conjectured that no absolutely continuous3 proper quasi–copula ex-
isted, a conjecture proved wrong in [17] by using a result in Rodrı́guez Lallena’s
Ph.D. thesis [31]. Hence the importance of the recent extension [9] by Durante,
Fernández–Sánchez and Trutschnig of their category results for copulas [7, 8] to the
setting of bivariate quasi–copulas. Some of the results of [9] are summarised below.

Let Q2,R denote the subset of Q2, for which an extension to a real measure, in
the sense of the previous section, exists and let Q2,Rac ⊆Q2,R denote the subset of
those quasi–copulas for which the associated real measure is absolutely continuous.

First of all, one has the following result.

Theorem 13.23. The sets Q2,R, Q c
2,R and Q2,Rac are dense in (Q2,d∞).

We recall that a subset N of a metric space (Ω ,d) is said to be nowhere dense if
the interior of its closure is empty. A subset A of Ω is said to be of first category or
meager if it is the countable union of a sequence of nowhere dense sets; otherwise
A will be said to be of second category.

Theorem 13.24. The set C2 of bivariate copulas is nowhere dense in (Q2,d∞).

This result implies that, in general, a quasi–copula is proper. A category argu-
ment allows to sharpen the result quoted above about the connexion between quasi–
copulas and real measures. To this end, a quasi–copula Q will be said to be locally
extendable when a point u in I2 and ρ > 0 exist such that VQ of eq. (13.15) can be
extended to a real measure on B(I2)∩B(u,ρ). The family of locally extendable
quasi–copulas will be denoted by Q loc

2,R . Such quasi–copulas exist, see, for instance,
[9, Example 2.1].

Theorem 13.25. Both the sets Q2,R and Q loc
2,R are of first category in (Q2,d∞).

As a consequence, a typical quasi–copula cannot be associated with a doubly
stochastic real measure on B(I2), not even locally.

13.10 Final comments

It is only appropriate to look at the list of open problems listed in Nelsen’s sur-
vey [23] of 2005; however, there he dealt mainly with copulas and their relation-
ships with triangular norms and the open problems he listed were questions about

3 In view of the fact that in general the finitely additive measure induced by a quasi–copula cannot
be extended to a real measure on the the Borel subsets B(Id), it is improper to speak of an abso-
lutely continuous proper quasi–copula; here we continue to use this terminology, although more
correctly one should speak of a quasi–copula Q in Q2, for instance, such that D2D1Q = 0 a.e..
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copulas. But, of course, new questions may arise. The first, and most natural, of
these concerns the search for best bounds, upper and lower, which are necessarily
quasi–copulas, in all those instances in which one has to consider sets of copulas,
either bivariate or multivariate, with special properties. This question will necessar-
ily presents itself again whenever a new set of copulas is deemed important enough
to be studied.

The category results of [9] will have to be extended to the case of d–dimensional
quasi–copulas.

Finally, attention ought to be payed to the use of quasi–copulas in the construc-
tion of triangle functions (see [33]).
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and doubly stochastic signed measures. Fuzzy Sets and Systems 168, 81–88 (2011)
14. Fernández-Sánchez, J., Trutschnig, W.: Some members of the class of (quasi-)copulas with

given diagonal from the Markov kernel perspective. Comm. Statist. Theory Methods 45,
1508–1526 (2015)

15. Fredricks, G.A., Nelsen, R.B.: The Bertino family of copulas. In: C.M. Cuadras, J. Fortiana,
J.A. Rodrı́guez Lallena (eds.) Distributions with given marginals and statistical modelling, pp.
81–91. Kluwer, Dordrecht (2003)



224 Carlo Sempi

16. Fredricks, G.A., Nelsen, R.B., Rodrı́guez-Lallena, J.A.: Copulas with fractal support. Insur.
Math. Econom. 37, 42–48 (2005)

17. Genest, C., Quesada Molina, J.J., Rodrı́guez Lallena, J.A., Sempi, C.: A characterization of
quasi-copulas. J. Multivariate Anal. 69, 193–205 (1999)

18. Halmos, P.R.: Measure theory. Springer (1974)
19. Kimberling, C.H.: A probabilistic interpretation of complete monotonicity. Aequationes Math.

10, 152–164 (1974)
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Chapter 14

Complete dependence everywhere?

Wolfgang Trutschnig

Abstract Describing the situation of full predictability of a random variable Y given
the value of another random variable X , the notion of complete dependence might
seem far too restrictive to be of any practical importance at first glance. Recent re-
sults have shown, however, that complete dependence naturally appears in various
settings. This chapter will therefore sketch some problems related to complete de-
pendence. Doing so, the focus will be on dependence measures strictly separating
extreme dependence concepts, on a problem related to joint-default maximization,
on a question from uniform distribution theory, and on the relationship between the
two most well-known measures of concordance, Kendall’s τ and Spearman’s ρ . A
short excursion to topology showing that complete dependence is not atypical at all
complements the chapter.

14.1 Introduction

Given two random variables X ,Y we call Y completely dependent on X if there ex-
ists a measurable function f such that Y = f (X) holds with probability one (see [21]
for the original definition). In other words: Knowing X means knowing Y but not
necessarily vice versa. Although a dependence structure describing full predictabi-
lity seems very pathological at first, research in the field of dependence modeling
conducted in the last years clearly points in the direction that complete dependence
is much more important than reflected by textbooks so far. Main objective of this
chapter is to illustrate this observation by means of some fairly recent results.

The rest of this chapter is organized as follows: Section 2 gathers notation and
preliminaries that will be used in the sequel and states various properties equivalent
to complete dependence. Section 3 recalls one possible way to construct metrics that
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clearly distinguish the two extremal dependence concepts, that of complete depen-
dence and that of independence. Based on these metrics a new dependence measure
ζ2 is introduced and analyzed, and alternative approaches from the literature are
mentioned. Section 4 first sketches why extreme points naturally comes into play
in the context of optimization problems and then shows two concrete examples in
both of which completely dependent copulas constitute solutions of the maximiza-
tion problem. Section 5 contains a short excursion to topology showing that (in
the language of Baire categories) with respect to weak convergence complete de-
pendence is all but an atypical property of a copula. Finally, Section 6 focuses on
recently established sharp inequalities between Kendall’s τ and Spearman’s ρ and
points out that mutually completely dependent random variable cover all possible
constellations of τ and ρ .

14.2 Notation and preliminaries

In the sequel C will denote the family of all two-dimensional copulas, PC the
family of all doubly stochastic measures, i.e. the family of all probability measures
on [0,1]2 whose marginals are uniformly distributed on [0,1]. M will denote the
lower Fréchet-Hoeffding bound, W the lower Fréchet-Hoeffding bound and Π the
product copula; for background on copulas we refer to [7] and [25]. For every C ∈C
the corresponding doubly stochastic measure will be denoted by μC. Letting d∞
denote the uniform metric on C it is well known that (C ,d∞) is a compact metric
space.

For every metric space (Ω ,d) the Borel σ -field on Ω will be denoted by B(Ω),
δx will denote the Dirac measure (concentrated) at x ∈Ω . λ and λ2 will denote the
Lebesgue measure on B(R) and B(R2) respectively. For every probability measure
ν on B(Ω) the support of ν , i.e. the complement of the union of all open sets U
fulfilling ν(U) = 0, will be denoted by Supp(ν).

Suppose that (Ω1,d1) and (Ω2,d2) are metric spaces. A Markov kernel from Ω1
to B(Ω2) is a mapping K :Ω1×B(Ω2)→ [0,1] such that x $→K(x,B) is measurable
for every fixed B ∈B(Ω2) and B $→ K(x,B) is a probability measure for every fixed
x∈Ω1. Given real-valued random variables X ,Y on a probability space (Ω ,A ,P),
a Markov kernel K : R×B(R)→ [0,1] is called a regular conditional distribution
of Y given X if for every B ∈B(R)

K(X(ω),B) = E(1B ◦Y |X)(ω) (14.1)

holds P-a.e. It is well known that for each pair (X ,Y ) of real-valued random vari-
ables a regular conditional distribution K(·, ·) of Y given X exists, that K(·, ·) is
unique PX -a.s. (i.e. unique for PX -almost all x ∈ R) and that K(·, ·) only depends
on PX⊗Y . Hence, given A ∈ C we will denote (a version of) the regular conditional
distribution of Y given X by KA(·, ·), directly view it as Markov kernel from [0,1] to
B([0,1]), and refer to KA(·, ·) simply as regular conditional distribution of A or as
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Markov kernel of A. Note that for every A ∈ C , its regular conditional distribution
KA(·, ·), and every Borel set G ∈ B([0,1]2) we have the following disintegration
(here Gx := {y ∈ [0,1] : (x,y) ∈ G} denotes the x-section of G for every x ∈ [0,1])∫

[0,1]
KA(x,Gx)dλ (x) = μA(G), (14.2)

so in particular ∫
[0,1]

KA(x,F)dλ (x) = λ (F) (14.3)

for every F ∈ B([0,1]). On the other hand, every Markov kernel K : [0,1]×
B([0,1])→ [0,1] fulfilling (14.3) induces a unique element μ ∈ PC ([0,1]2) via
(14.2). For every A∈C and x ∈ [0,1] the function y $→ FA

x (y) := KA(x, [0,y]) will be
called conditional distribution function of A at x. For more details and properties of
conditional expectation, regular conditional distributions, and general disintegration
see [15] and [18].

Viewing copulas as special Markov kernels (fulfilling eq. (14.3)) has proved
surprisingly useful in the past. As an example, translating the so-called ∗-product
of copulas introduced in [3] to the Markov kernel setting directly yields that the
Markov kernel KA∗B of A ∗B is nothing else but the standard composition of the
Markov kernels KA and KB as well known in the context Markov processes, i.e.

K(x,F) :=
∫
[0,1]

KB(y,F)KA(x,dy) (14.4)

is a Markov kernel of A∗B (see [36]). For additional examples underlining the use-
fulness of Markov kernels we refer, for instance, to [7, 10, 36, 37] and the references
therein.

A copula A is called completely dependent (see [21, 35]) if there exists a λ -
preserving transformation h : [0,1]→ [0,1] such that K(x,E)= 1E(h(x)) is a Markov
kernel of A. Slightly extending [35, Lemma 10] the subsequent characterization of
complete dependence can be proved:

Lemma 14.1. The following assertions are equivalent:

(d1) A is completely dependent .
(d2) For PX⊗Y = μA the conditional variance V(Y |X = x) of Y given X fulfills

V(Y |X = x) = 0 for λ -a.e. x ∈ [0,1].
(d3) For λ -a.e. x ∈ [0,1] the conditional distribution function FA

x is {0,1}-valued.
(d4) There exists a λ -preserving transformation h : [0,1]→ [0,1] such that A(x,y) =

λ
(
[0,x]∩h−1([0,y])

)
for all (x,y) ∈ [0,1]2.

(d5) There exists a λ -preserving transformation h : [0,1]→ [0,1] with μA(Γ (h)) = 1,
whereby Γ (h) = {(x,h(x)) : x ∈ [0,1]} ∈B([0,1]2) denotes the graph of h.

(d6) A is left invertible w.r.t. the star product, i.e. there exists a copula B ∈ C with
B∗A = M.

In the sequel T will denote the family of all λ -preserving transformations h
on [0,1], Tb the subclass of all λ -preserving bijections, and Ts the subclass of all
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λ -preserving, piecewise linear bijections. For every h ∈ T we will let Ah denote
the corresponding completely dependent copula, Cd will denote the family of all
completely dependent copulas. In case of h ∈ Ts we will refer to Ah as a (classical)
shuffle of M and in case of h ∈ Tb the copula Ah will be called mutually completely
dependent.

14.3 Quantifying dependence

According to [25] the class of all shuffles of M is dense in the compact metric
space (C ,d∞). Hence, as pointed out explicitly already in [22], the uniform distance
d∞ is not clearly ’distinguishing different types of statistical dependence’ and the
same holds for every dependence measure that is continuous w.r.t. d∞, including
Schweizer and Wolffs σ (see [25, 30]). Viewing copulas as Markov kernels allows
for a simple way to construct stronger metrics on C that strictly separate extremal
dependence concepts, i.e. that of independence and that of complete dependence.
Following [35] and setting

Dp
p(A,B) :=

∫
[0,1]2

∣∣KA(x, [0,y])−KB(x, [0,y])
∣∣pdλ2(x,y) (14.5)

defines a metric Dp on C for every p ∈ [1,∞). For a generalization to the multivari-
ate setting we refer to [7, 9]. According to [35] the metrics D2 and D1 induce the
same topology on C and the resulting metric spaces (C ,D1) and (C ,D2) are com-
plete and separable. It is straightforward to verify that the same assertions hold for
(C ,Dp) and arbitrary p ∈ [1,∞). In fact, using Hölder inequality and considering∣∣KA(x, [0,y])−KB(x, [0,y])

∣∣≤ 1 directly yields

Dp
p(A,B)≤ D1(A,B)≤ Dp(A,B), (14.6)

from which separability and completeness of (C ,Dp) directly follows from sep-
arability and completeness of (C ,D1). Although all metrics Dp induce the same
topology on C they are not equivalent - the following result holds:

Lemma 14.2. For any pair p,q ∈ [1,∞) with p �= q the metrics Dp and Dq are not
equivalent.

Proof: We start by showing that Dp
p and Dq

q coincide on Cd and consider h1,h2 ∈
T :

Dp
p(Ah1 ,Ah2) =

∫
[0,1]2

∣∣1[0,y](h1(x))−1[0,y](h2(x))
∣∣pdλ2(x,y) = ‖h1−h2‖1

=
∫
[0,1]2

∣∣1[0,y](h1(x))−1[0,y](h2(x))
∣∣qdλ2(x,y) = Dq

q(Ah1 ,Ah2)

From this, considering q = 1 it also follows that the first inequality in (14.6) can not
be improved. For every n ∈ N define hn ∈Ts (see Figure 14.1) by
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Sn(x) =

⎧⎨⎩
x+
(
1− 1

2n

)
if x ∈ (0 , 1

2n

]
x− (1− 1

2n

)
if x ∈ (1− 1

2n , 1
]

x otherwise,

and set h = id[0,1] ∈Ts. Then we get

Dp
p(Ahn ,M) = Dq

q(Ahn ,M) = ‖hn−h‖1 = 2
∫
[0, 1

2n ]

(
1− 1

2n

)
dλ =

1
2n−1

(
1− 1

2n

)
.

(14.7)
Suppose now that p > q. Then eq. (14.7) implies that the quotient Dp(An,M)

Dq(An,M) is un-
bounded in n, so Dq and Dp can not be equivalent metrics. �

n=3
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Fig. 14.1: The transformations hn used in the proof of Lemma 14.2

In [35] the metric D1 mainly served as a vehicle to construct the dependence
measure ζ1(A) = 3D1(A,Π) for every A ∈ C . The most important properties of ζ1
are summarized in the following theorem.

Theorem 14.1 ([35]). For every A∈C we have ζ1(A)∈ [0,1]. Additionally, ζ1(A) =
1 holds if and only if A ∈ Cd, and ζ1(A) = 0 implies A =Π . In other words: Exclu-
sively all completely dependent copulas are assigned maximum dependence mea-
sure and the product copula is the only copula with zero dependence.

Taking into account eq. (14.6) a similar result can be expected for the dependence
measure ζp, defined by ζp(A) = cp Dp(A,Π) for every p ∈ [1,∞). Thereby cp is a
normalizing constant assuring maxA∈C ζp(A) = 1. In the sequel we will state and
prove the result for the case p = 2 which allows for a more elegant proof than the
original one for D1.
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Theorem 14.2. For every A ∈ C we have D2
2(A,Π)≤ 1/6 with equality if and only

if A ∈ Cd.

Proof: Fix A ∈ C and y ∈ [0,1], and define a random variable Zy on the proba-
bility space ([0,1],B([0,1],λ )→ [0,1] by

Zy(x) := KA(x, [0,y]).

Then
E(Zy) =

∫
[0,1]

KA(x, [0,y])dλ (x) = μA
(
[0,1]× [0,y]

)
= y

holds. Considering∫
[0,1]

(
KA(x, [0,y])− y

)2dλ (x) = V(Zy) = E(Z2
y )− (E(Zy))

2 = E(Z2
y )− y2

≤ E(Zy)− y2 = y− y2 (14.8)

we directly get D2
2(A,Π) ≤ ∫[0,1](y− y2)dλ (y) = 1

6 , which completes the proof of
the first assertion.

Since ineq. (14.8) becomes an equality if and only if E(Z2
y ) = E(Zy) holds, it

follows that D2
2(A,Π) = 1

6 is equivalent to the condition that Z2
y = Zy holds λ -a.e.

The latter, however, is obviously equivalent to the existence of a set Λy ∈B([0,1])
with λ (Λy) = 1 such that Zy(x) = KA(x, [0,y]) ∈ {0,1} for every x ∈Λy.

Suppose now that D2
2(A,Π) = 1/6. Repeating the last argument we can find a

set Λ ∈B([0,1]) fulfilling λ (Λ) = 1 such that FA
x (y) = KA(x, [0,y]) ∈ {0,1} holds

for every x ∈Λ and every y ∈Q∩ [0,1]. Using right-continuity of distribution func-
tions we immediately get that λ -a.e. conditional distribution functions FA

x are {0,1}-
valued, so Lemma 14.1 implies that A is completely dependent. Since, on the other
hand, it is straightforward to verify D2

2(Ah,Π) = 1
6 for every h ∈ T , the proof is

complete. �

As direct consequence of Theorem 14.1, setting ζ2(A) =
√

6D2(A,Π) we get the
following result:

Proposition 14.1. For every A ∈ C we have ζ2(A) ∈ [0,1]. Additionally, ζ2(A) = 1
holds if and only if A∈Cd and ζ2(A) = 0 implies A=Π . In other words: Exclusively
all completely dependent copulas are assigned maximum ζ2-value and the product
copula is the only copula with ζ2(A) = 0.

Independence of two random variables X ,Y is a symmetric concept (knowing X
does not change our knowledge about Y and vice versa) - nevertheless, from the
author’s point of view, notions quantifying dependence should not automatically be
symmetric since in many situations one might also be interested in understanding
causal effects between X and Y and the dependence structure might be strongly
asymmetric. The latter is the case, for instance, for the copula Ah ∈ Cd with h ∈ T
being the transformation h(x) = 2n(mod1) for large n ∈ N. Furthermore, having
a unidirectional (i.e. non-mutual) dependence measure one can easily construct a
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mutual one: The mutual dependence measure ω studied by Siburg and Stoimenov
(see [33]), for instance, can easily be expressed in terms of ζ2 as

ω2(A) = 3
(
ζ 2

2 (A)+ζ 2
2 (A

t)
)
, (14.9)

whereby At denotes the transpose of A, defined by At(x,y) = A(x,y). Proposition
14.1 directly yields that ω(A) = 1 if and only if both A and At are completely de-
pendent, i.e. if and only if A is mutually completely dependent.

Recently, dependence measures for (absolutely continuous) random vectors have
been introduced using similar ideas as the afore-mentioned ones, see [2] and the
references therein. For a dependence measure based on conditional variance we
refer to [16].

14.4 Complete dependence in the context of optimization

Remember that a point x in a convex setΩ is called an extreme point ofΩ if it is not
an interior point of any line segment lying entirely in Ω , i.e. if x = αy+(1−α)z
for y,z ∈Ω and α ∈ [0,1] implies x = y or x = z.

It is straightforward to show that every completely dependent copula is an ex-
treme point of C . As a consequence, in the metric space (C ,d∞) the set Ex(C )
of all extreme points of C is dense. Although a full and handy characterization of
the set Ex(C ) seems out of reach it is known, that there are extreme points which
are not completely dependent. In fact, in [31] (also see [26, 32]) so-called hairpin
copulas, which concentrate their mass on the graphs of two functions were studied
and shown to be elements of Ex(C ). For the generalization of hairpin copulas to
the multivariate setting we refer to [5]. To the best of the author’s knowledge the
most striking example of an extreme point of C was given in [23], where the author
proved the existence of a copula A ∈ C such that Supp(μA) = [0,1]2.

Extreme points of C naturally come into play in the context of optimization
problems of the form

MH := sup
A∈C

∫
[0,1]2

H(x,y)dμA(x,y) (14.10)

whereby H is a non-negative measurable function on [0,1]2. In fact, if there is a
unique A ∈ C attaining MH then A has to be an extreme point of C . Additionally, if
H is continuous (hence bounded) then MH is attained and, according to the Bauer
Maximum Principle (see [1]), the maximum is also attained by an extreme point.
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14.4.1 Distributions with fixed marginals maximizing the mass of
the endograph of a function

Suppose that F and G are (continuous) distribution functions of two default times
and let FF,G denote the Fréchet class of F,G (i.e. the family of all two-dimensional
distribution functions having F and G as marginals). It is well known from coup-
ling theory (see [34]) that there exists a maximal coupling, i.e. a two-dimensional
distribution function H ∈FF,G such that for the case of (X ,Y )∼H the probability of
a joint default P(X =Y ) is maximal. Translating to the class of copulas maximizing
the probability of a joint default means calculating supA∈C μA(Γ (T )) for T : [0,1]→
[0,1] being defined by T = G ◦F−, F− denoting the quasi-inverse of F and Γ (T )
the graph of T . Using coupling theory we can find a (not necessarily unique) copula
A0 with

M1Γ (T ) = sup
A∈C

∫
[0,1]2

1Γ (T )dμA(x,y) = sup
A∈C

μA(Γ (T )) = μA0(Γ (T )) (14.11)

that can even be computed in closed form. Additionally, applying the results from
[28] or via manual calculations a very simple formula for M1Γ (T ) can be derived.
Returning to the original problem of maximizing the probability of a joint default,
considering (U,V ) ∼ A0 and setting (X ,Y ) = (F− ◦U,G− ◦V ), it follows that the
pair (X ,Y ) has marginal distribution functions F and G and maximizes the joint
default probability. In general, A0 is not completely dependent unless F and G co-
incide.

Slightly modifying the optimization problem and maximizing P(Y ≤ X) instead
of P(Y = X) brings us back to complete dependence. In fact, proceeding analo-
gously as before and setting

Γ≤(T ) =
{
(x,y) ∈ [0,1]2 : y≤ T (x)

} ∈B([0,1]2) (14.12)

the following results can be derived manually or using the results in [28]:

Theorem 14.3 ( [24]). For every non-decreasing T : [0,1]→ [0,1] we have

M1Γ≤(T )
= 1+ inf

x∈[0,1]
(T (x)− x). (14.13)

Additionally, there exists a shuffle AR ∈ Cd fulfilling μAR(Γ≤(T )) = M1Γ≤(T )
.

In other words, given continuous distribution functions F and G, considering
(U,V )∼ AR and setting (X ,Y ) = (F− ◦U,G− ◦V ), it follows that for the pair (X ,Y )
the quantity P(Y ≤ X) is maximal.

Example 14.1. We consider a very simple situation illustrating Theorem 14.3: Choo-
sing F as the distribution function of U (0,1) and G=Φ as the distribution function
of N (0,1) we immediately get T = Φ as well as M1Γ≤(T )

= Φ(1) ≈ 0.841. Figu-
re 14.2 denotes a sample of the random vector (X ,Y ) with marginal distribution
functions F and G for which P(Y ≤ X) is maximal.
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Fig. 14.2: Sample of size n = 10.000 of (X ,Y ) as in Example 14.2 and the corre-
sponding marginal histrograms; the upper right panel depicts the endograph of T
(gray) and the shuffle AR according to Theorem 14.3 (blue).

14.4.2 A maximization problem from uniform distribution theory

Recall that a sequence (xn)n∈N in [0,1] is called uniformly distributed if the induced
empirical measure ϑn := 1

n ∑n
i=1 δxi converges weakly to λ on [0,1] for n→ ∞. For

background on uniform distribution theory we refer to [4, 20].
Following [14] and the references therein one particularly interesting problem

in the context of uniform distribution theory is the following one: Given uniformly
distributed sequences (xn)n∈N and (yn)n∈N in [0,1] and a real-valued continuous
function H on [0,1]2, determine

limsup
n→∞

1
n

n

∑
i=1

H(xi,yi) and liminf
n→∞

1
n

n

∑
i=1

H(xi,yi). (14.14)

It is a straightforward exercise to show that for every accumulation point a of the
sequence ( 1

n ∑n
i=1 H(xi,yi))n∈N there exists a copula A ∈ C such that

a =
∫
[0,1]2

H dμA
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holds. In other words, for calculating the quantities in eq (14.14) it suffices to cal-
culate MH and −M−H .

We will proceed as in [14] and consider the following special case for H: Fix
y0 ∈ (0,1) and, suppose that H is continuous on [0,1]2 and that ∂ 2H(x,y)

∂y∂x > 0 on

(0,1)× (0,y0) as well that ∂ 2H(x,y)
∂y∂x < 0 on (0,1)× (y0,1) holds. Moreover we will

let Sy0 denote the class of all y0-sections of copulas, i.e. the family of all maps
of the form x $→C(x,y0), x ∈ [0,1], with C ∈ C . It is straightforward to verify that
s ∈Sy0 if and only if s fulfills the following three properties:

• s(0) = 0,s(1) = y0
• s is non-decreasing and Lipschitz continuous with Lipschitz constant L = 1
• s fulfills s(x) ∈ [W (x,y0),M(x,y0)] for all x ∈ [0,1]

For every s ∈Sy0 in the rest of this section the copula Cs ∈ C be defined by

Cs(x,y) =

{
M(s(x),y) if (x,y) ∈ [0,1]× [0,y0]

s(x)+(1− y0)W
(

x−s(x)
1−y0

, y−y0
1−y0

)
if (x,y) ∈ [0,1]× (y0,1].

(14.15)

Obviously the y0-section of Cs coincides with s and, setting s(x) = 1−(x−s(x)) the
copula Cs concentrates its mass on Γ (s)∪Γ (s) in the sense that

μCs(Γ (s)∪Γ (s)) = 1.

The following reduction result can be shown:

Theorem 14.4 ([14]). Under the afore-mentioned assumptions on H the following
equality holds:

MH = max
s∈Sy0

∫
[0,1]2

H dμCs (14.16)

For general s ∈Sy0 obviously the copula Cs need not be completely dependent.
If, however, s is strictly increasing with s′ < 1 then we get (Cs)t ∈ Cd , i.e. the trans-
pose of Cs is completely dependent (also see Figure 14.3). We conclude this section
with an example illustrating that a copula of the latter type may even be the unique
maximizer.

Example 14.2. Consider y0 ∈ [ 1
2 ,1) and suppose that H is given by

H =

{
xy if (x,y) ∈ [0,1]× [0,y0]

xy0− x(y− y0) if (x,y) ∈ [0,1]× (y0,1].
(14.17)

For arbitrary s ∈ Sy0 applying Theorem 14.4 and using integration by parts we
finally get∫

[0,1]2
H dμCs = y2

0−
1
2

{∫
[0,1]

(
s2(x)+(2y0−1+ x− s(x))2)dλ (x)

}
.
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Fig. 14.3: Sample of size n = 1.000 of the unique maximizer Cs in Example 14.2.

For fixed x the integrand becomes minimal if s(x) = y0− 1
2 +

x
2 . The function s1 :

x $→ y0− 1
2 +

x
2 is a global minimizer of the integral which, however, only lies in

Sy0 for y0 =
1
2 . It is straightforward to verify that for y0 ≥ 1

2 the (piecewise linear)
function h, defined by

s(x) =
{

x if x ∈ [0,2y0−1]
y0− 1

2 +
x
2 if x ∈ (2y0−1,1]

is the unique minimizer of the integral in eq. (14.17). As a consequence, the cor-
responding copula Cs, which fulfills (Cs)t ∈ Cd is the unique copula attaining MH .
Figure 14.3 depicts a sample of the corresponding copula Cs for the case y0 =

3
4 .

14.5 A typical copula is (mutually) completely dependent

As already mentioned in Section 3 the set of all shuffles of M is dense in the metric
space (C ,d∞) (but nowhere dense in the metric space (C ,D1), see [35]). On the one
hand, non-absolutely continuous copulas naturally appear in various problems, on
the other hand, possibly due to their handy structure, absolutely continuous copulas
are certainly not underrepresented in the literature.
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Topology offers a way to quantify the size of sets in a binary manner through
Baire categories (see [27]): A subset E of a general metric space (Ω ,d) is considered
small if it is of first category or meager, i.e. if it is the countable union of sets Ei
whose topological closer has empty interior. If E is not of first category then, by
definition, E is said to be of second category. Finally, if E is meager then Ec is
considered big and referred to as co-meager. Following [6] we will call elemen-
ts of a meager set E atypical and elements of a co-meager set typical. With this
topological notions various interesting results can be shown, e.g. that the family
Cabs of all absolutely continuous copulas is of first category both in (C ,d∞) and in
(C ,D1). Considering completeness of (C ,d∞) and (C ,D1) it directly follows that
the family C c

abs = C \Cabs of all copulas with non-degenerated singular component
is co-meager and of second category in (C ,d∞) and in (C ,D1), i.e. a typical copula
has a non-degenerated singular component. As a matter of fact, the following much
stronger result holds (and can be extended to the general multivariate setting):

Theorem 14.5 ([6]). The family Csing of all purely singular copulas is co-meager
(hence of second category) in (C ,d∞).

In other words: A typical copula in (C ,d∞) has no absolutely continuous com-
ponent. It remains an open question if Csing is also co-meager in (C ,D1). As the
authors of [6] discovered recently, Theorem 14.5 is not even close to the end of the
story - the following striking result was proved already in 1968:

Theorem 14.6 ([17]). Cd is co-meager (hence of second category) in (C ,d∞).

Based on the elegant proof of Theorem 14.6 as given in [17] one gets the follo-
wing even more striking corollary, saying that in (C ,d∞) a typical copula is mutu-
ally completely dependent, without any difficulty:

Corollary 14.1. The family of all mutually completely dependent copulas is co-
meager (hence of second category) in (C ,d∞).

14.6 Sharp inequalities between Kendall’s τ and Spearman’s ρ

This section first recalls the main results from [29] and then sketches why ‘complete
dependence everywhere’ particularly holds true in the situation of Kendall’s τ and
Spearman’s ρ .

Suppose that X ,Y are random variables with continuous distribution functions
F and G respectively. Then Spearman’s ρ is defined as the Pearson correlation co-
efficient of the U (0,1)-distributed random variables U := F ◦X and V := G ◦Y
and Kendall’s τ is given by the probability of concordance minus the probability of
discordance, i.e.

ρ(X ,Y ) = 12
(
E(UV )− 1

4

)
τ(X ,Y ) = P

(
(X1−X2)(Y1−Y2)> 0)−P

(
(X1−X2)(Y1−Y2)< 0

)
,
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where (X1,Y1) and (X2,Y2) are independent and have the same distribution as (X ,Y ).
Clearly τ and ρ are the two most famous nonparametric measures of concordance.
Both measures are scale invariant and only depend on the underlying (uniquely de-
termined) copula A of (X ,Y ). It is well known and straightforward to verify (see
[25]) that τ(X ,Y ) and ρ(X ,Y ) can be expressed in terms of the underlying copula A
as

τ(X ,Y ) = 4
∫
[0,1]2

A(x,y)dμA(x,y)−1 =: τ(A) (14.18)

ρ(X ,Y ) = 12
∫
[0,1]2

xydμA(x,y)−3 =: ρ(A) (14.19)

Considering that τ and ρ quantify different aspects of the underlying dependence
structure, it is natural to ask how much they can differ. Since the 1950s two universal
inequalities between τ and ρ are known - the first one goes back to Daniels ([3]),
the second one to Durbin and Stuart ([8]); for proofs alternative to the original ones
see [19, 12, 25].

|3τ−2ρ| ≤ 1 (14.20)

(1+ τ)2

2
−1≤ ρ ≤ 1− (1− τ)2

2
(14.21)
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0.0
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1.0

−1.0 −0.5 0.0 0.5 1.0
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ρ

Fig. 14.4: The classical τ-ρ-region Ω0 and some copulas (distributing mass uni-
formly on the blue segments) for which the inequality by Durbin and Stuart is sharp.
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The inequalities together yield the setΩ0 (see Figure 14.4) which, following [29]
we will refer to as classical τ-ρ region in the sequel. Daniels’ inequality was known
to be sharp [25] whereas the first part of the inequality by Durbin and Stuart was
only known to be sharp at the points pn = (−1+ 2

n ,−1+ 2
n2 ) with n ≥ 2 (which,

using symmetry, is to say that the second part is sharp at the points −pn). Although
both inequalities were known since the 1950s and the interrelation between τ and
ρ keeps receiving much attention in recent years (particularly in the context of the
Hutchinson-Lai conjecture [11, 13]), only very recently a full characterization of the
exact τ-ρ region Ω , defined by

Ω =
{
(τ(X ,Y ),ρ(X ,Y )) : X ,Y continuous random variables

}
(14.22)

=
{
(τ(A),ρ(A)) : A ∈ C

}
,

was given in [29]. One direct consequence of this characterization is the fact that
inequality by Durbin and Stuart is not sharp outside the points ±pn.

Throughout the entire proof shuffles (hence complete dependence) played a cru-
cial role: The authors first calculated τ and ρ for so-called prototypes, which, loosely
speaking, are shuffles consisting of n−1 segments of equal length and a shorter one,
arranged in decreasing order similar to the shuffles depicted in Figure 14.4. Based
on these prototypes they defined Φn : [−1+ 2

n ,1]→ [−1,1] by

Φn(x) =−1− 4
n2 +

3
n
+

3x
n
− n−2√

2n2
√

n−1
(n−2+nx)3/2 (14.23)

and then set

Φ(x) =

{−1 if x =−1,

Φn(x) if x ∈
[

2−n
n , 2−(n−1)

n−1

]
for some n≥ 2. (14.24)

Based on Φ the set Ω can be characterized as follows (this characterization was
already conjectured by Manuel Úbeda-Flores in an unpublished working paper in
2011):

Theorem 14.7 ([29]). The following equality holds:

Ω =
{
(x,y) ∈ [−1,1]2 : Φ(x)≤ y≤−Φ(−x)

}
(14.25)

In particular, Ω is compact but not convex. For an animation showing for which
copulas A we have (τ(A),ρ(A))∈ ∂Ω , where ∂Ω denotes the topological boundary
of Ω , we refer to http://www.trutschnig.net/tau-rho-boundary.pdf

Returning to complete dependence, notice that continuity of τ and ρ with respect
to d∞ directly yields that {(τ(Ah),ρ(Ah)) : h ∈ Ts} is dense in Ω . The proof of
Theorem 14.7, however, produced the by-product that only for prototypes A∈Cd we
can have (τ(A),ρ(A)) ∈ ∂Ω . In fact, using a homotopy argument it was possible to
show the following corollary which underlines the importance of (mutual) complete
dependence yet again.

http://www.trutschnig.net/tau-rho-boundary.pdf
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Corollary 14.2. For every point (x,y)∈Ω there exists a transformation h∈Ts such
that we have (τ(Ah),ρ(Ah)) = (x,y).

As pointed out in [29, Section 6] characterizing the exact τ-ρ-region for standard
subclasses of copulas may in some cases be even more difficult than determining Ω
was. The main reason for this fact is that not in all subclasses of C we may find
dense subsets consisting of elements B for which τ(B) and ρ(B) reduce to handy
formulas (as it is the case for shuffles of M). The author conjectures, however, that
the classical Hutchinson-Lai inequalities are not sharp for the class of all extreme-
value copulas and that it might be possible to derive sharper inequalities in the near
future.
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14. Iacò, M.R., Thonhauser, S., Tichy, R.F.: Distribution functions, extremal limits and optimal
transport. Indag. Math. (N.S.) 26(5), 823–841 (2015)

15. Kallenberg, O.: Foundations of modern probability, second edn. Probability and its Applica-
tions (New York). Springer-Verlag, New York (2002)



240 Wolfgang Trutschnig

16. Kamnitui, N., Santiwipanont, T., Sumetkijakan, S.: Dependence measuring from conditional
variances. Depend. Model. 3(1), 98–112 (2015)

17. Kim, C.W.: Uniform approximation of doubly stochastic operators. Pacific J. Math. 26, 515–
527 (1968)

18. Klenke, A.: Probability theory, second edn. Universitext. Springer, London (2014)
19. Kruskal, W.H.: Ordinal measures of association. J. Amer. Statist. Assoc. 53, 814–861 (1958)
20. Kuipers, L., Niederreiter, H.: Uniform distribution of sequences. Wiley-Interscience [John

Wiley & Sons], New York-London-Sydney (1974). Pure and Applied Mathematics
21. Lancaster, H.O.: Correlation and complete dependence of random variables. Ann. Math.

Statist. 34, 1315–1321 (1963)
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Chapter 15

Sklar’s theorem: The cornerstone of the Theory

of Copulas

Manuel Úbeda-Flores and Juan Fernández-Sánchez

Abstract In this contribution we present a complete study of the original proof of
Sklar’s theorem, provide an alternative proof by using Zorn’s lemma, and review
other proofs given in the literature.

15.1 Introduction

After the pioneering work of Maurice Fréchet in the study of the relationship be-
tween multivariate distribution functions and their one-dimensional marginals, Abe
Sklar introduced the concept of copula to explain such a relation in a theorem that
now bears his name. The proof of the theorem does not appear in Sklar’s paper
[21] and more than a decade had to pass before a proof was published in [22], even
though it is not provided in detail. Thanks to Sklar’s theorem, copulas are an es-
sential tool for creating mathematical models since they capture the scale-invariant
dependence properties of continuous random vectors. For a complete review on cop-
ulas, see [6, 16].

Although the original proof of Sklar’s theorem can be found in some works (see
[20, 22], for instance), we stress that these proofs are sketches, more or less ex-
tensive. Our aim in this work is to provide a complete proof of the theorem in the
n−dimensional case—a preliminary study is done in [23]. Furthermore, we also
review some alternative proofs which use different ideas.
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15.2 Preliminaries

We begin this section with some notations and definitions.
Let n be a positive integer. Let a = (a1,a2, . . . ,an) and b = (b1,b2, . . . ,bn) be two

points in R
n
(= [−∞,+∞]n). An n-dimensional box (briefly, n-box), J = [a,b], is any

cartesian product of n closed intervals of R, i.e., J = ∏n
i=1[ai,bi]. If there is some i,

1 ≤ i ≤ n, such that ai = bi, we say that J is a degenerated n−box; otherwise, we
say that J is a non-degenerated n−box.

Given an n−box J, we define the vertices of J as the points c = (c1,c2, . . . ,cn) in
R such that, for every i = 1,2, . . . ,n, we have ci = ai or ci = bi. We denote by v(J)
the set of all vertices of J.

If J = [a,b] is a non-degenerated n−box, then, for any vertix c of J, we define the
sign of c—denoted by sgn(c)—as follows: sgn(c) = 1 if ci = ai for an even number
of i′s, and sgn(c) = −1 if ci = ai for an odd number of i′s. If J is a degenerated
n−box, we define the sign of any vertix c as sgn(c) = 0.

Let D be a non-empty set of R
n
. Let G : D −→ R be a function and let J be an

n−box whose vertices belong to D. The G−volume of J is defined by

VG(J) = ∑
c∈v(J)

sgn(c)G(c).

Furthermore, G is said to be n−increasing if VG(J) ≥ 0 for any n−box J such that
v(J)⊂ D.

Definition 15.1. Let n be a natural number such that n ≥ 2. An n-dimensional sub-
copula (briefly, n−subcopula) is a function S : ∏n

i=1 Ai−→ I(= [0,1]), where Ai⊆ I,
such that Ai contains both 0 and 1 for all i = 1,2, . . . ,n, and fulfilling the following
conditions:

1. S(u) = 0 if ui = 0 for some i = 1,2, . . . ,n;
2. S(1, . . . ,1,ui,1, . . . ,1) = ui for all i = 1,2, . . . ,n and ui ∈ Ai; and
3. S is n−increasing.

Note that, as a consequence of Definition 15.1, any subcopula is non-decreasing
in each variable, is 1-Lipschitz, i.e., |S(u)−S(v)| ≤ ∑n

i=1 |ui− vi| for all u,v ∈
Dom(S), and, therefore, is uniformly continuous in its domain.

Let S denote the set of all n−subcopulas, and S ′ denotes the set of all
n−subcopulas with closed domain.

An n-dimensional copula (briefly, n-copula) C is an n−subcopula S with domain
In. Therefore, an n−copula C is an extension of S if it agrees with S on its domain.
We denote by Cn the set of all n−copulas.

We recall the concept of n−dimensional distribution function.

Definition 15.2. Let n be a positive integer. The function F from R
n

onto R is an
n−dimensional distribution function if it satisfies the following conditions:

1. F(+∞,+∞, . . . ,+∞) = 1;
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2. F(x1,x2, . . . ,xn) = 0 if xi =−∞ for some i, 1≤ i≤ n;
3. F is left-continuous in each variable; and
4. F is n−increasing.

We note that, for historic reasons, the distribution functions defined in Definition
15.2 are left−continuous, but the result is similar if we consider right−continuity.

If n≥ 2 and 1≤ i≤ n, the 1−dimensional (or univariate) i−marginal of F is the
distribution function Fi defined by

Fi(xi) = F(+∞, . . . ,+∞,xi,+∞, . . . ,+∞), xi ∈ R.

Similarly, for 1 < m < n, the m−dimensional marginals of F can be defined as the
distribution functions obtained by taking n−m variables equal to +∞.

Let F1,F2, . . . ,Fn be n univariate distribution functions. The Fréchet class as-
sociated with these functions, and which we denote by Γ (F1,F2, . . . ,Fn), is the
family of all n−dimensional distribution functions whose univariate margins are
F1,F2, . . . ,Fn. Fréchet studied this class (see [8]), and in 1959, with the aid of copu-
las, Sklar [21] provided the relationship between a multivariate distribution function
and its univariate marginals.

Theorem 15.1 (Sklar). Let F1,F2, . . . ,Fn be n univariate distribution functions.
Then F ∈ Γ (F1,F2, . . . ,Fn) if and only if there exists an n−copula C, which is
uniquely determined on ∏n

i=1 RangeFi, such that

F(x) =C (F1(x1),F2(x2), . . . ,Fn(xn)) , ∀x = (x1,x2, . . . ,xn) ∈ R
n
.

Furthermore, if F1,F2, . . . ,Fn are continuous, then C is unique.

We want to stress that in the original proof by Schweizer and Sklar [20], the
authors considered distribution functions defined on R

n
, but in most of the proba-

bilistic approaches to Sklar’s theorem—for example, in [15, 18]—the distribution
functions are defined on Rn. Here we consider R

n
.

15.3 Extension theorem

We begin this section with a preliminary lemma.

Lemma 15.1. Let F1,F2, . . . ,Fn be n univariate distribution functions and let F ∈
Γ (F1,F2, . . . ,Fn). Then we have

|F(y)−F(x)| ≤
n

∑
i=1
|Fi(yi)−Fi(xi)|

for all x,y in R
n
.
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Proof. Let i ∈ {1,2, . . . ,n}, let xi,yi be two points in R such that xi ≤ yi. First we
prove that

F(x1, . . . ,xi−1,yi,xi+1, . . . ,xn)−F(x1, . . . ,xi, . . . ,xn)≤ Fi(yi)−Fi(xi)

for x1, . . . ,xi−1,xi+1, . . . ,xn in R. For that, let k = 1, . . . , i−1, i+1, . . . ,n. If k < i, let
(xi)k−,(yi)k+ be the points

(xi)k− = (−∞, . . . ,−∞,xk,−∞, . . . ,−∞,xi,−∞, . . . ,−∞)

(yi)k+ = (+∞, . . . ,+∞,xk, . . . ,xi−1,yi,xi+1, . . . ,xn),

and if k > i, let (xi)
∗
k−,(yi)

∗
k+ be the points

(xi)
∗
k− = (−∞, . . . ,−∞,xi,−∞, . . . ,−∞,xk,−∞, . . . ,−∞)

(yi)
∗
k+ = (+∞, . . . ,+∞,yi,+∞, . . . ,+∞,xk, . . . ,xn).

We consider the following n−boxes:

Jk =

⎧⎨⎩
[
(xi)k−,(yi)(k+1)+

]
, if k < i[

(xi)
∗
k−,(yi)

∗
(k+1)+

]
, if k > i.

After some elementary computations, we have

VF (Jk) =

⎧⎨⎩F
(
(yi)(k+1)+

)−F ((yi)k+)−F
(
(xi)(k+1)+

)−F ((xi)k+) , if k < i

F
(
(yi)

∗
(k+1)+

)
−F
(
(yi)

∗
k+

)−F
(
(xi)

∗
(k+1)+

)
−F
(
(xi)

∗
k+

)
, if k > i,

and thus

n

∑
k=1
k �=i

VF (Jk) = Fi (yi)−F ((yi)1+)−Fi(xi)+F ((xi)1+)

= Fi (yi)−F (x1, . . . ,xi−1,yi,xi+1, . . . ,xn)−Fi(xi)+F (x) .

Since F is n−increasing, then F is non-decreasing in each variable and

Fi (yi)−F (x1, . . . ,xi−1,yi,xi+1, . . . ,xn)−Fi(xi)+F (x)≥ 0;

therefore,

|F (x1, . . . ,xi−1,yi,xi+1, . . . ,xn)−F (x)| ≤ |Fi(yi)−Fi(xi)|

for every i = 1,2, . . . ,n.
Now, note
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|F(y)−F(x)| = |F(y)−F(x1,y2, . . . ,yn)+F(x1,y2, . . . ,yn)

−F(x1,x2,y3, . . . ,yn)+F(x1,x2,y3, . . . ,yn)

−·· ·+F(x1,x2, . . . ,xn−1,yn)−F(x)|
≤

n

∑
i=1
|Fi(yi)−Fi(xi)|,

which completes the proof.

Remark 15.1. We want to stress that Lemma 15.1 is also true for functions defined
from R

n
onto R such that they only satisfy conditions 1,2 and 4 in Definition 15.2,

but we have adapted it for our purposes.

Now, in order to prove Sklar’s theorem, we first prove the following result.

Theorem 15.2. Let F1,F2, . . . ,Fn be n univariate distribution functions and let F ∈
Γ (F1,F2, . . . ,Fn). Then there is a unique n−subcopula S : ∏n

i=1 Range Fi −→ I such
that

F(x) = S(F1(x1),F2(x2), . . . ,Fn(xn)) (15.1)

for every x ∈ R
n
. The n−subcopula S is given by

S(u) = F
(

F(−1)
1 (u1),F

(−1)
2 (u2), . . . ,F

(−1)
n (un)

)
for all u∈∏n

i=1Range Fi, where, for each i∈ {1,2, . . . ,n}, F(−1)
i is the quasi-inverse

of Fi, i.e., F(−1)
i (t) = inf{x ∈ R : Fi(x)≥ t}.

Conversely, if S : ∏n
i=1 Ai −→ I is an n−subcopula such that RangeFi ⊆ Ai, for

every i=1,2, . . . ,n, then the function F defined by (15.1) satisfies F∈Γ(F1,F2, . . . ,Fn).

Proof. Suppose F ∈Γ (F1,F2, . . . ,Fn). From Lemma 15.1, if Fi(xi) = Fi(yi) for each
i = 1,2, . . . ,n, then F(x) = F(y) for x,y in R

n
, i.e., there is a unique function S such

that (15.1) holds.
We prove that S is an n−subcopula. Firstly, observe that both 0 and 1 are in

RangeFi for every i = 1,2, . . . ,n. Moreover, we have

S(F1(x1), . . . ,Fi−1(xi−1),0,Fi+1(xi+1), . . . ,Fn(xn))

= S(F1(x1), . . . ,Fi−1(xi−1),Fi(−∞),Fi+1(xi+1), . . . ,Fn(xn))

= F(x1, . . . ,xi−1,−∞,xi+1, . . . ,xn) = 0.

and

S(1, . . . ,1,Fi(xi),1, . . . ,1)
= S(F1(+∞), . . . ,Fi−1(+∞),Fi(xi),Fi+1(+∞), . . . ,Fn(+∞))

= F(+∞, . . . ,+∞,xi,+∞, . . . ,+∞) = Fi(xi)

for every xi ∈ R.
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Let J = [a,b] be a non-degenerated n−box whose vertices are in ∏n
i=1 RangeFi.

Then we have

VS ((F1(a1),F2(a2), . . . ,Fn(an)),(F1(b1),F2(b2), . . . ,Fn(bn))) =VF(J)≥ 0,

which proves that S is an n−subcopula.
Conversely, if S : ∏n

i=1 Ai −→ I is an n−subcopula with RangeFi ⊆ Ai, we define

F(x) = S (F1(x1),F2(x2), . . . ,Fn(xn))

for every x ∈ R
n
. We now prove that F ∈ Γ (F1,F2, . . . ,Fn). For that, note the fol-

lowing facts:

1. F(+∞,+∞, . . . ,+∞) = S(1,1, . . . ,1) = 1.
2. F(x1, . . . ,xi−1,−∞,xi+1, . . . ,xn) =

= S(F1(x1), . . . ,Fi−1(xi−1),Fi(−∞),Fi+1(xi+1), . . . ,Fn(xn)) = 0

since Fi(−∞) = 0.
3. Since Fi is left-continuous for every i and S is continuous, the composition is

left-continuous, and thus F is left-continuous in each variable.
4. F is n−increasing since S is n−increasing.

Moreover,

F(+∞, . . . ,+∞,xi,+∞, . . . ,+∞) = S(1, . . . ,1,Fi(xi),1, . . . ,1) = Fi(xi),

which completes the proof.

Observe that if the functions F1,F2, . . . ,Fn in Theorem 15.2 are continuous, the
function S is an n−copula. Therefore, to prove the Sklar’s theorem is equivalent
to prove that every n−subcopula can be extended to an n−copula, which is the
“hard” part. We call this result the Extension theorem. It appears for first time—
without proof—in [21]. Its proof can be found in [20] for the bivariate case, and
in [19, 22] for the n−dimensional case, although they are not made with the same
detail than ours. Other proofs concerning the next results—both the bivariate case
and the general case—can be found in [5, 13, 15, 24], even though their proofs are
provided in probabilistic terms and do not use either copulas or subcopulas.

Theorem 15.3 (Extension). Every n−subcopula can be extended to an n−copula,
i.e., given an n−subcopula S : ∏n

i=1 Ai −→ I, there exists an n−copula C such that
C|∏n

i=1 Ai = S.

To prove Theorem 15.3 we need some preliminary results which we now provide.
Given an n−box J = [a,b] and a function f : v(J)−→R, we define the standard

extension E from f to J as

E(x) = ∑
c∈v(J)

[
n

∏
i=1

K(ci,xi)

]
f (c)
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with x = (x1,x2, . . . ,xn) and c = (c1,c2, . . . ,cn), and where

K(ci,xi) =

⎧⎨⎩1− |ci− xi|
bi−ai

, if ai < bi

1, if ai = bi.

Observe that, for ai < bi, we have

K(ci,xi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
bi− xi

bi−ai
, if ci = ai

xi−ai

bi−ai
, if ci = bi.

Moreover, if ai < bi, then K(ai,xi)+K(bi,xi) = 1. Therefore, we have

E(x) = ∑
c∈v(J)

⎡⎢⎣∏
ci=ai
ai<bi

bi− xi

bi−ai
∏

ci=bi
ai<bi

xi−ai

bi−ai

⎤⎥⎦ f (c).

The next result shows that the standard extension uses one of the forms in which
every point of an n−box can be extended as a convex linear combination of the
vertices.

Lemma 15.2. Let J = [a,b] be an n−box, and let x be a point in J. Then we have

x = ∑
c∈v(J)

c ·
n

∏
i=1

K(ci,xi).

Proof. Let j ∈ {1,2, . . . ,n}. If J is a non-degenerated n−box, then

∑
c∈v(J)

c j

n

∏
i=1

K(ci,xi)

= ∑
c∈v(J)
c1=a1

c jK(a1,x1)
n

∏
i=2

K(ci,xi)+ ∑
c∈v(J)
c1=b1

c jK(b1,x1)
n

∏
i=2

K(ci,xi).

Since

∑
c∈v(J)
c1=a1

c j

n

∏
i=2

K(ci,xi) = ∑
c∈v(J)
c1=b1

c j

n

∏
i=2

K(ci,xi),

we have
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∑
c∈v(J)

c j

n

∏
i=1

K(ci,xi) = [K(a1,x1)+K(b1,x1)] ∑
c∈v(J)
c1=a1

c j

n

∏
i=2

K(ci,xi)

= ∑
c∈v(J)
c1=a1

c j

n

∏
i=2

K(ci,xi).

By using similar arguments—by repeating the same process or by induction—we
have

∑
c∈v(J)

c j

n

∏
i=1

K(ci,xi) = ∑
c∈v(J)

(c1,c2,...,ck)=(a1,a2,...,ak)

c j

n

∏
i=k+1

K(ci,xi)

as long as k < j, and

∑
c∈v(J)

c j

n

∏
i=1

K(ci,xi) = ∑
c∈v(J)

(c1,c2,...,c j−1)=(a1,a2,...,a j−1)

c j

n

∏
i= j

K(ci,xi)

= ∑
c∈v(J)

(c1,c2,...,c j−1,c j)=(a1,a2,...,a j−1,a j)

[
K(a j,x j)

n

∏
i= j+1

K(ci,xi)

]
a j

+ ∑
c∈v(J)

(c1,c2,...,c j−1,c j)=(a1,a2,...,a j−1,b j)

[
K(b j,x j)

n

∏
i= j+1

K(ci,xi)

]
b j

= [a jK(a j,x j)+b jK(b j,x j)] ∑
c∈v(J)

(c1,c2,...,c j)=(a1,a2,...,a j)

[
n

∏
i= j+1

K(ci,xi)

]

=

[
a j

b j− x j

b j−a j
+b j

x j−a j

b j−a j

]
∑

c∈v(J)
(c1,c2,...,c j)=(a1,a2,...,a j)

[
n

∏
i= j+1

K(ci,xi)

]

= x j ∑
c∈v(J)

(c1,c2,...,c j)=(a1,a2,...,a j)

[
n

∏
i= j+1

K(ci,xi)

]
.

By continuing the process for (c1,c2, . . . ,ck) = (a1,a2, . . . ,ak), with k > j, we easily
obtain the result.

If J is degenerated, then there exists i∈ {1,2, . . . ,n} such that ai = bi and, in such
a case, there is a unique K(ci,xi) for that i, and K(ci,xi) = 1; therefore, we obtain
the same result, which concludes the proof.

We now give an interesting property of the standard extension.
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Lemma 15.3. Let J = [a,b] be an n−box, let f : v(J) −→ R be a function, and let
E be a standard extension from f to J. If 1≤ j ≤ n is such that a j < b j, then

E(x) =
b j− x j

b j−a j
E(xa j)+

x j−a j

b j−a j
E(xb j).

where xc j = (x1, . . . ,x j−1,c j,x j+1, . . . ,xn) for c j = a j,b j.

Proof. Firstly, note

K(c j,a j) =

{
1 si c j = a j

0 si c j = b j
and K(c j,b j) =

{
0 si c j = a j

1 si c j = b j,

so that

b j− x j

b j−a j
E(xa j)+

x j−a j

b j−a j
E(xb j) = K(a j,x j) ∑

c∈v(J)
c j=a j

⎡⎢⎣ n

∏
i=1
i �= j

K(ci,xi)

⎤⎥⎦ f (c)

+K(b j,x j) ∑
c∈v(J)
c j=b j

⎡⎢⎣ n

∏
i=1
i�= j

K(ci,xi)

⎤⎥⎦ f (c)

= ∑
c∈v(J)

[
n

∏
i=1

K(ci,xi)

]
f (c) = E(x),

which completes the proof.

Remark 15.2. We want to stress that Lemma 15.3 provides an important fact: When
making the standard extension from f to any n−box J, that extension is compati-
ble with all the extensions of 1-boxes that could be done in J; and, thus, it is also
compatible with the extensions that can be done with m-boxes, m < n, in J.

We are now in position to prove Theorem 15.3.

Proof (of Theorem 15.3). Let S : ∏n
i=1 Ai −→ I be an n−subcopula. To extend S to

an n−copula C, we follow five steps:

1. We extend S to ∏n
i=1 Ai by continuity, where Ai denotes the closure of Ai). This

extension will be an n−subcopula as well.
We know that ∏n

i=1 Ai is non-empty set since both 0 and 1 are in Ai for every
i = 1,2, . . . ,n. Let x ∈∏n

i=1 Ai—note that ∏n
i=1 Ai = ∏n

i=1 Ai. Then there exists
a sequence {αm} = {(a1,a2, . . . ,an)m} of elements of ∏n

i=1 Ai such that {αm}
converges to x—denoted by {αm} → x. It is clear that {αm} is a Cauchy se-
quence and, since S is uniformly continuous, we have that {S(αm)} is a Cauchy
sequence in I. Since I is a complete set, there exists u∈ I such that {S(αm)}→ u.
We note that u depends only on x, since if {βm}= {(b1,b2, . . . ,bn)m} is another
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sequence of elements of ∏n
i=1 Ai such that {βm}→ x and {S(βm)}→ z ∈ I, then

u = z, because S is uniformly continuous and, for every ε > 0, there exists δ > 0
such that if ||x−y||< δ then |S(x)−S(y)|< ε/3. Now then, there also exists a
natural number m1 such that if m > m1, then ||αm−x||< δ/2 and ||βm−x||<
δ/2. Therefore, ||βm−αm||< δ and thus |S(αm)−S(βm)|< ε/3 for m>m1. On
the other hand, there exists another natural number m2 such that if m > m2 then
|S(αm)−u| < ε/3 and |S(βm)− z| < ε/3. In short, if m > m0 = max{m1,m2},
then we have |u− z| ≤ |u− S(αm)|+ |S(αm)− S(βm)|+ |S(βm)− z| < ε for
all ε > 0, that is, u = z. We denote by S∗(x) the unique element u obtained
from x; so that we can extend S to a function S∗ : ∏n

i=1 Ai −→ I. Since S is
an n−subcopula and S∗ extends to S by continuity, we obtain that S∗ is an
n−subcopula.

2. For every non−degenerated n−box J of In such that all its vertices—and only
its vertices—belong to ∏n

i=1 Ai, we extend S∗ to S2 according the standard ex-
tension. The same process is done with S2 and the degenerated n−boxes in
which ai = bi for a unique i; and so on up to complete the extension to In.

3. All possible extensions from the previous step, and taking into account Lemma
15.3, lead to an extension C defined on In for which the values of the extension
coincide where two n−boxes overlap.

4. We check that C satisfies the boundary conditions of a copula.
Let (a1,a2, . . . ,an) be a point in In such that ai = 0 for some i. Suppose there
exists a unique h ∈ {1,2, . . . ,n} such that ah is not in Ah. Then we have

ah =
w−ah

w− t
t +

ah− t
w− t

w,

where t = max{x ∈ Ah|x < ah} and w = min{x ∈ Ah|x > ah}. Note that both t
and w are in Ah. Suppose h < i (similarly if h > i). Then, by applying Lemma
15.3, we have

C(a1, . . . ,ah, . . . ,ai−1,0,ai+1, . . . ,an)

=
w−ah

w− t
S∗(a1, . . . , t, . . . ,ai−1,0,ai+1, . . . ,an)

+
ah− t
w− t

S∗(a1, . . . ,w, . . . ,ai−1,0,ai+1, . . . ,an)

=
w−ah

w− t
0+

ah− t
w− t

0 = 0,

since C coincides with S∗ in those points whose coordinates belong to Ah. When
the number of h′s such that ah is not in Ah is greater than one, we lead to the
same conclusion by induction.
Consider now a point (1, . . . ,1,ah,1, . . . ,1) in In such that ah is not Ah (if ah is
in Ah, there is nothing to prove). Then we have
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C(1, . . . ,1,ah,1, . . . ,1)

=
w−ah

w− t
S∗(1, . . . ,1, t,1, . . . ,1)+

ah− t
w− t

S∗(1, . . . ,1,w,1, . . . ,1)

=
w−ah

w− t
t +

ah− t
w− t

w =
ah(w− t)

w− t
= ah.

5. We check that C is n−increasing.
Let Is be the class of the intervals [a,b] such that a and b are in As, and let Js be
the class of the intervals that are not in Is. Let J = [a,b] be a non−degenerated
n−box in In, [as,bs] is in Js, t = max{x ∈ As|x≤ as}, u = min{x ∈ As|x≥ as},
v = max{x ∈ As|x ≤ bs}, and w = min{x ∈ As|x ≥ bs}. It is clear t < w, t ≤ v,
and u ≤ w. Then, to prove that C is n−increasing, we apply induction on the
number of intervals [as,bs] in Js of the n−box J. For k = 0, we have that
[as,bs] is in Is for all s, so that VC(J) =VS∗(J)≥ 0, since S∗ is an n−subcopula.
Suppose now the result is true for k = i < n, and let us check that it also
holds for k = i+ 1. In this case, J has i+ 1 intervals [as,bs] in Js, and sup-
pose that [a j,b j] is in J j. We study two cases, where we use the notation
x j,y = (x1, . . . ,x j−1,y,x j+1, . . . ,xn), for x = a,b,c and y = a j,b j, t,u,v,w.

a. A j ∩ (a j,b j) = /0.
In this case, we have t ≤ a j < b j ≤ w. Then, by applying Lemma 15.3, we
obtain

VC(J) = ∑
c∈v(J)

sgn(c)C(c)

= ∑
c∈v(J)

sgn(c)
[

w− c j

w− t
C (c j,t)+

c j− t
w− t

C (c j,w)

]
.

Therefore,

VC(J) = ∑
c∈v(J)
c j=a j

sgn(c)
[

w−a j

w− t
C (c j,t)+

a j− t
w− t

C (c j,w)

]

+ ∑
c∈v(J)
c j=b j

sgn(c)
[

w−b j

w− t
C (c j,t)+

b j− t
w− t

C (c j,w)

]
.

Consider the n−box Jt,w = [a j,t ,b j,w], which has only i intervals satisfying
[as,bs] ∈ Js, and whose vertices are c j,t and c j,w. For the first sum we
have sgn(c) = sgn(c j,t) = −sgn(c j,w), and for the second sum we have
sgn(c) =−sgn(c j,t) = sgn(c j,w)—note that the sign of c is considered with
respect to the n−box J, while the signs of c j,t and c j,w are considered with
respect to the n−box Jt,w. Thus, we obtain
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VC(J) = ∑
c j,t∈v(Jt,w)

sgn(c j,t)C (c j,t)

[
w−a j

w− t
− w−b j

w− t

]

+ ∑
c j,w∈v(Jt,w)

sgn(c j,w)C (c j,w)

[
b j− t
w− t

− a j− t
w− t

]

=
b j−a j

w− t
VC(Jt,w)≥ 0,

by hypothesis of induction.
b. A j ∩ (a j,b j) �= /0.

Firstly, we write the C−volume of the n−box J as

VC(J) = ∑
c∈v(J)
c j=a j

sgn(c)C(c)+ ∑
c∈v(J)
c j=b j

sgn(c)C(c).

Now, suppose a j,b j /∈ A j, then t < a j < u ≤ v < b j < w. By applying
Lemma 15.3 we have

C
(
c j,a j

)
=

u−a j

u− t
C (c j,t)+

a j− t
u− t

C (c j,u) (15.2)

and
C
(

c j,b j

)
=

w−b j

w− v
C (c j,v)+

b j− v
w− v

C (c j,w) . (15.3)

Thus, we obtain

VC(J) = ∑
c∈v(J)
c j=a j

sgn(c)
u−a j

u− t
C (c j,t)+ ∑

c∈v(J)
c j=a j

sgn(c)
a j− t
u− t

C (c j,u)

+ ∑
c∈v(J)
c j=b j

sgn(c)
w−b j

w− v
C (c j,v)+ ∑

c∈v(J)
c j=b j

sgn(c)
b j− v
w− v

C (c j,w) .

Consider the following n−boxes: Jt,u = [a j,t ,b j,u], Ju,v = [a j,u,b j,v] and
Jv,w = [a j,v,b j,w]. Note that the n−boxes Jt,u and Jv,w are non-degenerated,
but Ju,v may be degenerated if u = v. The three n−boxes have exactly i in-
tervals satisfying that [as,bs] is in Js. We denote by ct,u, cu,v and cv,w their
respective vertices, and by (cp,q) j the element of cp,q in position j. Then,
clearly
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∑
c∈v(J)
c j=a j

sgn(c)
u−a j

u− t
C (c j,t) =

u−a j

u− t ∑
ct,u∈v(Jt,u)
(ct,u) j=t

sgn(ct,u)C (c j,t)

=
u−a j

u− t

⎡⎢⎢⎢⎣VC (Jt,u)− ∑
ct,u∈v(Jt,u)
(ct,u) j=u

sgn(ct,u)C (c j,u)

⎤⎥⎥⎥⎦
and

∑
c∈v(J)
c j=b j

sgn(c)
b j− v
w− v

C (c j,w) =
b j− v
w− v ∑

cv,w∈v(Jv,w)
(cv,w) j=w

sgn(cv,w)C (c j,w)

=
b j− v
w− v

⎡⎢⎢⎢⎣VC (Jv,w)− ∑
cv,w∈v(Jv,w)
(cv,w) j=v

sgn(cv,w)C (c j,v)

⎤⎥⎥⎥⎦ .
Moreover,

∑
c∈v(J)
c j=a j

sgn(c)
a j− t
u− t

C (c j,u) =
a j− t
u− t ∑

ct,u∈v(Jt,u)
(cu,v) j=u

−sgn(ct,u)C (c j,u)

and

∑
c∈v(J)
c j=b j

sgn(c)
w−b j

w− v
C (c j,v) =

w−b j

w− v ∑
cv,w∈v(Jv,w)
(cv,w) j=v

−sgn(cv,w)C (c j,v) .

Thus, by summing the four previous terms, we obtain
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VC(J) =
u−a j

u− t
VC (Jt,u)+

b j− v
w− v

VC (Jv,w)

−

⎡⎢⎢⎢⎣ ∑
ct,u∈v(Jt,u)
(ct,u) j=u

sgn(ct,u)C (c j,u)

⎤⎥⎥⎥⎦
(

u−a j

u− t
+

a j− t
u− t

)

−

⎡⎢⎢⎢⎣ ∑
cv,w∈v(Jv,w)
(cv,w) j=v

sgn(cv,w)C (c j,v)

⎤⎥⎥⎥⎦
(

b j− v
w− v

+
w−b j

w− v

)

=
u−a j

u− t
VC (Jt,u)+

b j− v
w− v

VC (Jv,w)

+ ∑
cu,v∈v(Ju,v)
(cu,v) j=u

sgn(cu,v)C (c j,u)

+ ∑
cu,v∈v(Ju,v)
(cu,v) j=v

sgn(cu,v)C (c j,v)

=
u−a j

u− t
VC (Jt,u)+VC (Ju,v)+

b j− v
w− v

VC (Jv,w)≥ 0,

by hypothesis of induction.
Note that the previous reasoning has been done by assuming that the n−box
J2 is non-degenerated, i.e., with u < v. A light modification in the proof
leads to the same result when u = v.
On the other hand, we observe that the proof would be simplified in the case
that a j or b j belong to A j. If a j is in A j, then the decomposition (15.2) would
not be necessary, since t = a j = u; if b j ∈ A j, it would not be necessary to
apply (15.3); and the rest of the proof would be similar.

The proof is complete.

Remark 15.3. We stress that not only does Theorem 15.3 show that an n−subcopula
S can be extended to an n−copula, but also C; the result shows that if a j =
max

{
x : x ∈ A j and x≤ x j

}
and b j = min

{
x : x ∈ A j and x j ≤ x

}
, then

C(x) = ∑
c∈v(Jx)

∏
ci=ai
ai<bi

bi− xi

bi−ai
∏

ci=bi
ai<bi

xi−ai

bi−ai
S∗(c)

is an extension of S, where Jx := ∏n
i=1[ai,bi] (the empty product is interpreted as 1).
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15.3.1 An alternative proof of Extension theorem by using Zorn’s
lemma

Along the proof of Theorem 15.3, it has been essential the use of the linear interpo-
lation in one variable showed in Lemma 15.3. Next, we sketch out—we refer [11]
for a complete study—that if we use this interpolation in an alternative way, the
proof of Theorem 15.3 can be shortened by using the Zorn’s lemma, although we
do not obtain an explicit expression for the n−copula C. This is what it happens
with the rest of the known proofs of the Sklar’s theorem that we discuss in the last
section of this chapter.

We begin with some basic definitions. Let P be a poset (partially ordered set),
i.e., a (non-empty) set taken together with a partial order “≤” on it. A chain in P is a
totally ordered subset, i.e., a subset in which any two elements are comparable. An
element m ∈ P is called maximal if there is no x ∈ P with x > m.

We now recall Zorn’s lemma [14].

Lemma 15.4 (Zorn). Let P be a poset in which every chain has an upper bound.
Then P has at least one maximal element.

Given two subcopulas S1 and S2 with respective domains D1 and D2 in In, we
say that S2 extends S1 if D1 ⊂ D2 and S1(u) = S2(u) when u ∈ D1.

Let A1,A2, . . . ,An be n subsets of I containing 0 and 1. Given an n−subcopula
T : ∏n

i=1 Ai −→ I, let ST denote the set of all n−subcopulas which extend T . Then
we have the following lemma, whose proof can be found in [11].

Lemma 15.5. In ST , every chain has an upper bound.

As a consequence of Lemmas 15.4 and 15.5, we have the following result.

Corollary 15.1. ST has at least one maximal element.

The next result shows how to extend an n−subcopula to another n−subcopula.

Lemma 15.6. Let S : ∏n
i=1 Ai(= D) −→ I be an n−subcopula such that D �= In.

Then S can be extended to an n−subcopula S′ with D � Dom(S′).

Proof. If D is not a closed set, then we extend the n−subcopula S to an n−subcopula
S′ on its closure.

If D is a closed set, there exists an index i such that Ai �= I—otherwise, Sklar’s
theorem would be proved. Suppose, without loss of generality, i = 1. Let p,q be two
real numbers such that both are in A1 and ]p,q[∩A1 = /0. We define r = (p+ q)/2,
A′1 = A1∪{r}, and the function S′ : A′1×∏n

i=2 Ai −→ I given by

S′(u) =

⎧⎪⎨⎪⎩
S(u), u1 �= r,

S(p,u1)+S(q,u1)

2
, u1 = r,



256 Manuel Úbeda-Flores and Juan Fernández-Sánchez

where u1 = (u2, . . . ,un). It is easy to check that VS(B) = VS′(B) when the n−box
B has its vertices in D. In the case that B = [(r,u1),u

∗], we consider the n−boxes
B′1 = [(p,u1),(q,u∗1)], B1 = [(r,u1),(q,u∗1)], and B2 = [(q,u1),u

∗)], it is clear that
B = B1∪B2 and int(B1)∩ int(B2) = /0, and we have

VS′(B) =VS′(B1)+VS(B2) =
VS(B′1)

2
+VS(B2)≥ 0.

If B = [u∗,(r,u1)], by using a similar reasoning, we obtain the same result, and we
conclude that S′ is an n−subcopula.

From Corollary 15.1, we know that there exists a maximal element C which
extends an n−subcopula S. If C is not an n−copula, then, from Lemma 15.6, C can
be extended, but this contradicts the maximality of C; thus, we obtain again Sklar’s
theorem.

15.4 Other proofs of Sklar’s theorem

After Schweizer and Sklar’s works in [20, 22], different proofs of Sklar’s theorem
have been published in the literature. These publications use a wide variety of view-
points and mathematical tools that we now review.

The first one is due to Moore and Spruill [15], and is based on probabilis-
tic arguments (see also [5]). Similar ideas can be found in the proof given by
Rüschendorf [18] (see [17] for additional details of this proof). Specifically, let
X = (X1,X2, . . . ,Xn) be a random vector on a probability space (Ω ,A ,P) with dis-
tribution function F , and let V1,V2, . . . ,Vn be n independent random variables uni-
formly distributed on I and independent of X. Then the basis of the proof is that the
distribution functions of the random variables Ui = (1−Vi)Fi(X−i ) +ViFi(Xi) are
uniformly distributed on I.

A novel idea appears in the work due to Carley and Taylor [4] (see also [2]). It
deals with the use of the compactness of Cn endowed with the topology induced
by the uniform metric d. For that, a sequence {Cn} of copulas (checkerboard) is
constructed by using the subcopula S given in Theorem 15.2. The compactness of
(Cn,d) implies that there exists, at least, a copula C which is the limit of a sub-
sequence of the sequence of approximations of S. The copula C has the property
of extending to S, and thus obtaining Sklar’s theorem. Another proof based on the
compactness of (Cn,d) can be found in [9].

Another idea of proof, which uses the compactness as well, is based on the regu-
larization of distribution functions. This idea appears in the works due to Durante et
al. [7] (see also [8]) and Faugeras [10]. In [7], the convolutions of F with the func-
tions ϕm(x) := mnϕ (mx) is used, where m is a positive integer and ϕ : R

n −→ R

is the function defined by ϕ(x) := k exp
(

1
|x|2−1

)
1B1(0)(x), where 1B1(0)(x) denotes

the characteristic function of the unit open ball and the constant k is such that the
L1 norm ‖ϕ‖1 of ϕ is equal to 1. In [10], the regularization is given by a continuous
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random variable Z, independent of a random variable X and the definition of the
random variables Xm = X +hmZ, hm ∈ R, hm ↓ 0.

In the context of rearrangement inequalities, Burchard and Hajaiej [3] prove a
result which contains as a particular case the Sklar’s theorem. The proof is based on
the reiterated application of an univariate result. To be exact, let g be a nondecreasing
real-valued function defined on an interval I. Then, for every nondecreasing function
f on I satisfying | f (z)− f (y)| ≤ K(g(z)− g(y)) for all points y < z ∈ I with some
constant K, there exists a Lipschitz continuous nondecreasing function h : R −→
[inf f ,sup f ] such that f = h◦g.

The last proof can be found in [1], altough this paper has not been published yet.
As main tool, it uses the density of the subcopulas defined on a net of points in the
metric space (S ′,ξ ), where, for every S1 and S2 in S , it is defined

ξ (S1,S2) := dH (Graph(S1) ,Graph(S2)) ,

where Graph(S) denotes the graph of S and dH is the Hausdorff distance.
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