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Abstract. Advances in neural network models and deep learning mark
great impact on sentiment analysis, where models based on recur-
sive or convolutional neural networks show state-of-the-art results leav-
ing behind non-neural models like SVM or traditional lexicon-based
approaches. We present Tree-Structured Gated Recurrent Unit network,
which exhibits greater simplicity in comparison to the current state of
the art in sentiment analysis, Tree-Structured LSTM model.
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1 Introduction

Sentiment analysis is the problem of assigning sentiment to a document, sentence
or a phrase. A document may be a movie review or an opinion about a particular
product. Finding an accurate solution to the sentiment analysis problem has
strong economic justification, as it allows companies to find opinions about their
products and recognize their characteristics.

Currently neural network based models achieve the most competitive results
in sentiment analysis. One challenge for neural network architectures is handling
an input of variable length. Recurrent Neural Networks (RNNs) easily process
sequences of variable length, unfortunately are hard to train, due to vanishing
or exploding gradient problems. Long Short Term Memory (LSTM) units were
proposed [6] as a remedy to vanishing gradient, the most ubiquitous problem
encountered during RNNs training. Over the years, numerous extensions and
refinements of the original LSTM, including adding peephole cells, have been
developed [5].

Recently, significant simplification over LSTM, known as Gated Recurrent
Unit (GRU), was introduced [2]. GRUs contain less subcells and are described
by much simpler set of equations, thus require less computational power. Rela-
tion between GRU and LSTM effectiveness is an open issue and an area of
research. Evaluation of GRU-based neural networks on sequence modelling [3]
showed effectiveness similar to those build from LSTMs, while in [8] GRU out-
performed the LSTM on nearly all tasks except language modelling with the
naive initialization.
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K. Ekštein and V. Matoušek (Eds.): TSD 2017, LNAI 10415, pp. 74–82, 2017.
DOI: 10.1007/978-3-319-64206-2 9



Sentiment Analysis with Tree-Structured Gated Recurrent Units 75

This paper proposes the Tree-Structured Gated Recurrent Unit (TS-GRU)
model for sentiment analysis and compares it with the state-of-the-art Tree-
Structured Long Short Term Memory (TS-LSTM) [16] and other models in terms
of effectiveness. The model is evaluated on the Stanford Sentiment TreeBank
(SST) for the binary (number of classes, C = 2) and fine-grained (C = 5)
sentiment classification problems.

2 Related Work

The promising avenue of research in sentiment analysis opened up with expansive
growth of deep learning. A broad range of neural networks was already harnessed
to the sentiment analysis problem, including recurrent and recursive neural net-
works, convolutional neural networks, autoencoders and Restricted Boltzmann
Machines (RBMs). The common aspect of these models is that they do not rely
on man-made features.

Recursive autoencoders (RvAEs), introduced into sentiment analysis by
Socher [14], work over a parse tree of a sentence, build by an external parser.
RvAEs were further extended into Matrix-Vector Recursive Neural Networks
(MV-RNNs) [13]. The original idea of this model is that an embedding is not
represented by a vector, but by a (vector, matrix) pair. This increases repre-
sentational power of phrases, but very large number of additional parameters
introduced with matrices makes the model more prone to overfitting. The next
model, Recursive Neural Tensor Network (RNTN) [15], tries to alleviate this
problem. Embeddings are represented back with vectors only, but equations
define the model using tensors instead of matrices. Tensor multiplications give
the model enough representational power, at the same time solving the problem
with overfitting.

Current state of the art in the fine-grained sentiment analysis, measured on
the Stanford Sentiment TreeBank, is achieved by Tree-Structured LSTMs [16].
Similarly to other recursive neural networks, this approach uses a parse tree as
a backbone for sentiment signal propagation. An alternative to Tree-Structured
LSTMs way of combining in a parent node sentiment signals from children,
named S-LSTMs, was proposed in [19].

Document level sentiment can be determined by hierarchically building doc-
ument neural representation on the basis of neural representations of its sen-
tences. Gated recurrent neural networks with LSTM or convolutional compo-
nents achieve here state-of-the-art results, as measured on Yelp and IMBD
datasets [18].

3 Tree-Structured GRU Model

3.1 LSTM and GRU

Let x be an input sequence of length T , i.e., x = (x(1), x(2), . . . , x(T )), and let
N be dimensionality of its elements, i.e., each x(t) ∈ R

N .
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LSTMs are able to remember long-term dependencies due to the presence of
memory cell s(t). The flow of a signal is controlled by three gates: input gate i(t),
forget gate f (t) and output gate o(t). Cell g(t) denotes candidate hidden state on
the basis of which hidden state h(t) is computed. Dimensionality of h(t) and other
LSTM components equals M . Values of LSTM cells and gates are determined
according to the following equations (� denotes the element-wise multiplication
– the Hadamard product):

⎡
⎢⎢⎣

g(t)

i(t)

f (t)

o(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

tanh
σ
σ
σ

⎤
⎥⎥⎦ W

[
x(t)

h(t−1)

]
+ b

s(t) = g(t) � i(t) + s(t−1) � f (t)

h(t) = tanh(s(t)) � o(t)

(1)

where W ∈ R
4M×(N+M), bias b ∈ R

4M and σ is the sigmoid logistic function.
Structure of GRU, shown in Fig. 1, is simpler than the LSTM one. GRU

contains only two gates: reset gate r ∈ R
M and update gate z ∈ R

M . Compared
to LSTM, GRU does not have an output gate and is defined by a simpler set of
equations:

z = σ
(
U zx(t−1) + V zh(t−1)

)

r = σ
(
U rx(t−1) + V rh(t−1)

)

h̄ = tanh
(
Uhx(t−1) + V h(h(t−1) � r)

)

h(t) = (1 − z) � h̄ + z � h(t−1)

(2)

Before computing hidden state h(t) ∈ R
M , candidate hidden state h̄ ∈ R

M

must be determined. Vector 1 denotes M -dimensional vector composed of ones.

Fig. 1. Structure of Gated Recurrent Unit. Source: [2]

3.2 Model

GRU is designed for work with linear structures like sequences coped with RNNs.
GRU version adjusted to operations on branching structures, called grConv, was
proposed and applied to machine translation [1].
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Fig. 2. Tree-Structured GRUs network over a parse tree

Tree-Structured GRU extension proposed in the paper is able to cope with
recursive structures like parse trees (Fig. 2). The model is determined by parame-
ters θ: W x ∈ R

M×N ; U z1, V z1, U z2, V z2, U r, V r, Uh, V h ∈ R
M×M ; W y ∈ R

C×M ;
and F ∈ R

N×#W , where #W is the number of different words in the training
set.

Tree-Structured GRU is governed by the following equations:

zi = σ
(
U zih1 + V zih2

)
, i = 1, 2

r = σ
(
U rh1 + V rh2

)

h̄ = tanh
(
Uh(h1

� r) + V h(h2
� r)

)

h = (1 −
2∑

i=1

zi) � h̄ +
2∑

i=1

zi � hi

(3)

States h1 and h2 denote hidden states of the left and right child unit of a parent
GRU. Gate z was implemented as two binary gates z1 and z2.

The model works as follows. At first, each element x ∈ R
N of input sequence x,

represented with a GloVe vector [11], is projected onto the input hidden state
h ∈ R

M :
h = tanh

(
W xx

)
. (4)

Hidden states are propagated up the tree according to TS-GRU definition (3).
On the basis of the hidden state, h, each GRU computes its output signal,
log p ∈ R

C , with the logsoftmax function according to (6). To improve network
effectiveness regularization dropout layer (5) is applied in-between h and p. In
experiments dropout ratio was set to 1/2.

h̃ = dropout
(
h
)

(5)

p = softmax(W yh̃) =
exp(W yh̃)∑
j′ exp(W y

j′·h̃)
(6)

ĉ = arg max
k

pk (7)
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Output signal is compared with the true sentiment and error is backpropagated
down a parse tree. At the input, error signal is backpropagated through fine-
tuning matrix F to pre-input storing fine-tuned version of the input vectors.

The cost function J(θ) used as the training criterion is defined for one sen-
tence as follows:

J(θ) = − 1
K

K∑
i=1

log p(i)c +
λ

2
||θ||22, (8)

where sum goes over all nodes of a parse tree. The number of such nodes, K,
equals 2T −1, as the network is spanned over a binary constituency tree. Weight
decay parameter, λ, determines the importance of the regularization term ||θ||22.

Vector p(i) (6) contains probabilities a word or phrase belongs to each of
C classes, and p

(i)
c is just the probability corresponding to the true class c ∈

{1, . . . , C}, denoting the correct word or phrase sentiment read from the SST
gold standard. The sentiment class ĉ of a word or phrase returned by the model
is determined according to (7).

4 Experiments and Results

Experiments were conducted on the Stanford Sentiment TreeBank (SST) [15],
containing movie reviews. SST consists of 11 855 sentences parsed with the Stan-
ford Parser into 239 232 phrases. Each sentence and phrase goes with the assigned
sentiment, s, being a real number in interval [0,1]. Using appropriate cutoffs, this
number can be mapped into one of 5 fine-grained sentiment classes: very nega-
tive, negative, neutral, positive and very positive. Removing neutral opinions and
merging together very negative and negative classes into one class, and similarly
merging positive and very positive classes we obtain coarse-grained, binary sen-
timent classification version of the problem. The mapping is done with functions
fV and fII :

fV (s) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, for s ∈ [0, 0.2)
2, for s ∈ [0.2, 0.4)
3, for s ∈ [0.4, 0.6)
4, for s ∈ [0.6, 0.8)
5, for s ∈ [0.8, 1]

and fII (s) =

{
1, for s ∈ [0, 0.4)
2, for s ∈ [0.6, 1]

(9)

SST comes with the predefined split to the training, optimization, and test
set, containing 8544, 1101 and 2210 sentences respectively for the fine-grained
version. In the binary sentiment classification 6920, 872 and 1821 sentences from
SST were used, respectively.

There are 24860 different words in SST, of which 15665 were initialized with
GloVe vectors and remaining words, not present in the GloVe dictionary, got
random initialization. The model parameters, θ, were initialized from the uniform
distribution U(− 1√

D
, 1√

D
), where D is a dimension of the given layer input,
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i.e., D = N for W x, D = M for U r, etc. The size of GloVe embedding was fixed
to N = 300.

The best model was selected through the full grid search of the following
hyperparameters: learning rate ε ∈ {0.005, 0.05, 0.1}, size of the hidden layer
M ∈ {40, 60, 80, 100, 150, 200}, and weight decay λ ∈ {10−4, 2 · 10−4, 10−3}.
Both in the binary and fine-grained problem the highest effectiveness on the
optimization set was achieved for hyperparameters ε = 0.05, M = 100, and
λ = 10−4.

The network was trained with the AdaGrad algorithm in mini-batches of
25 samples. The optimization algorithm itself was model selected from 3 algo-
rithms: SGD, AdaGrad and Adam. The error signal was propagated with the
Backpropagation Through Structure (BTS) algorithm [4]. The parameters of the
optimal model, θ, were found for the network trained 4 epochs (the fine-grained
problem) and 6 epochs (the binary problem), when the highest accuracy was
achieved on the optimization set.

Accuracy of various approaches to sentiment classification is compared in
Table 1. For sentences TS-GRU achieved 49.28% accuracy in the fine-grained
classification and 76.16% accuracy in the binary classification. Analysis of senti-
ment of phrases is always simpler, TS-GRU classified them with 66.50% (fined-
grained sentiment) and 77.80% (binary sentiment) accuracy.

TS-GRUs revealed significant impact of proper initialization of input vec-
tors – initialization with subsequently fine-tuned GloVe vectors showed over
6% improvement over a random initialization. This behaviour is similar to TS-
LSTMs, where 7% improvement was achieved. Exact impact of input vector
initialization on sentiment accuracy is shown in Table 2.

Table 1. Accuracy of sentiment classification of sentences on the test set of SST, [%]

Method Fine-grained Binary

TS-LSTM [16] 51.0 88.0

TS-GRU 49.2 76.1

S-LSTM [19] 48.0 n/a

Bidirectional LSTM [16] 49.1 87.5

CNN-multichannel [10] 47.4 88.1

DCNN [9] 48.5 86.8

CharSCNN [12] 48.3 85.7

Deep RvNN [7] 49.8 86.6

RNTN [15] 45.7 85.4

MV-RNN [15] 44.4 82.9

RvAE [15] 43.2 82.4

Näıve Bayes [15] 41.0 81.8

SVM [15] 40.7 79.4
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Table 2. Impact of initialization of input tokens on sentiment classification accu-
racy, [%]

Gate Representation Fine-grained Binary

GRU GloVe fine-tuned 49.2 76.1

GRU GloVe fixed 48.9 74.1

GRU Random 42.8 73.3

LSTM GloVe fine-tuned 51.0 88.0

LSTM GloVe fixed 49.7 87.5

LSTM Random 43.9 82.0

The number of parameters of the TS-GRU network for C = 5 equals 8M2 +
MN + CM + N · #W , i.e., 7568500 parameters when fine-tuning is applied and
8M2 + MN + CM , i.e., 110500 parameters when fixed vectors are used. The
corresponding TS-LSTM network [16] needed 316800 parameters for the input
represented with N = 300 dimensional GloVe vectors.

5 Conclusions

In this paper we proposed the TS-GRU network, which adapts GRU to recursive
networks, spanned over a parse tree. The model was inspired by the TS-LSTM
network and the gated recursive convolutional neural network (grConv).

TS-GRU network achieved high accuracy on the binary sentiment classifica-
tion, ranking third, behind TS-LSTM and Deep RvNN, although it performed
badly on the fine-grained sentiment classification. Without input vectors fine-
tuning, the TS-GRU network needed, however, three times less parameters than
the TS-LSTM network.

Obtained accuracies are also comparable with human judgments, which vary
between 70%–90% effectiveness, in particular [17] reports 83.6%–87.9% human
accuracy on a different evaluation set.
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