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Abstract. In this paper, we propose Constrained Deep Neural Net-
work (CDNN) a simple deep neural model for answer sentence selection.
CDNN makes its predictions based on neural reasoning compound with
some symbolic constraints. It integrates pattern matching technique into
sentence vector learning. When trained using enough samples, CDNN
outperforms regular models. We show how using other sources of train-
ing data as a mean of transfer learning can enhance the performance
of the network. In a well-studied dataset for answer sentence selection,
our network improves the state of the art in answer sentence selection
significantly.
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1 Introduction

A typical Question Answering (QA) system consists of three basic components;
passage retrieval, sentence selection, and answer extraction [21]. Given a ques-
tion, different possible Information Retrieval (IR) methods can be used to extract
a relevant passage that hopefully contains the answer.

Given a question and all sentences in its passage, the job of sentence selection
component is to choose a subset of sentences as the answer of the question. If a
finer answer is expected, the third component (i.e. answer extraction) extracts
a word or a span of words from the selected sentences.

In the literature, the last two components are referred to as sentence-level
[23] and word-level [18] QA systems. The sentence selection component helps the
answer extraction component by eliminating non-relevant sentences and reducing
the search space. Moreover, it provides a sentence which can be used as an
evidence for the final answer. This formulation of QA has also other applications
such as paraphrase detection [27] or Recognizing Textual Entailment (RTE) [16].

Deep Neural Networks (DNN) have been shown to outperform traditional
machine learning algorithms in many Natural Language Processing (NLP) tasks.
A natural choice for sentence selection using DNNs is the hinge approximation
approach in which the weights associated to positive question-answer couples are
increased and those associated to negative couples are decreased [19] through
training. We extend this idea to integrate the number of shared patterns of
question-answer couples into the model.
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Such a large DNN has millions of parameters that should be trained prop-
erly. This requires a large number of samples which are not available in regular
datasets. In order to provide the network with enough training samples, we used
SQuAD [18] to train our model and we show that this out-sourced trained model
performs remarkably better than previous best models.

The main contributions of this paper are a DNN model for sentence selection
and integrating learning transfer into DNNs for this and other similar tasks.

2 Related Work

The emergence of DNNs in recent years has remarkably helped to improve the
performance of NLP applications including different kinds of QA systems. From
QA systems based on semantic parsing [4,13] to IR-based systems [24], from
cloze-type [9,10] to free-text systems [18] and from factoid [1–3] to reasoning-
type systems [11] all has been benefited from DNNs.

Before the introduction of DNNs, feature engineering based on knowledge
base data, n-grams or syntactic rules [6,14,22] was a common yet cumbersome
practice in QA systems. DNNs have helped QA systems in at least two ways; first,
to get rid of many time-consuming intermediate feature engineering processes,
and second, to reduce the need for domain-specific knowledge and to make trans-
fer learning possible and easier.

In DNN-based QA systems, instead of manual and hard-coded features,
DNNs learn an internal representation of both questions and sentences. One
common approach in learning the internal representation is to define the prob-
lem as a point-wise ranking problem [7,8,26,28]. In point-wise ranking approach,
a DNN is trained on tuples of questions and their correct sentences. In this way,
it learns a probability distribution over all sentences given each question.

A more intuitive approach to QA systems is to train a DNN on positive and
negative sentences at the same time [19]. Our model is similar to this one with two
differences. First, we defined the loss function to enforce the number of shared
patterns between questions and sentences as a hard constraint. Second, instead
of working with triplets (question, positive sample, negative sample), we used
tuples (question, positive sample) and (question, negative sample). Our approach
is more manageable especially when working with big datasets. Moreover, instead
of a convolution, we used an attention mechanism which is much faster and more
flexible with the length of sentences.

DNNs are very good at domain adaptation and transfer learning. There are
numerous successful cases for transfer learning such as object detection [29], lean-
ing word vectors (embeddings) [15] and most recently Question Answering [16].
Our work is similar to the latter experiment. However, we used exact match
and overlap measures to map SQuAD [18] questions to their answer sentences.
Besides, the use of the attention mechanism on sentences and our pattern con-
straint on the hinge approximation helped our model to outperform their models.



Constrained Deep Answer Sentence Selection 59

3 The Datasets

We tried our model on two widely used datasets namely TrecQA [25] and
SQuAD [18].

TrecQA is compiled using the data in TREC 8–13 QA tracks. There is a mod-
ified version of TrecQA available in which unanswered questions and questions
with only one positive and negative sentences are removed from the development
set and the test set divisions. The training questions in both the original and
the modified versions are the same.

SQuAD is a dataset for QA in the context of machine comprehension. It
includes 107,785 question-answer pairs posed by crowd workers on 536 Wikipedia
articles. The answers in SQuAD can be any span of consecutive words in a
paragraph which comes with each question. SQuAD is not designed for sen-
tence selection models. However, it is a good source of data for transfer learning
experiments [16].

Although SQuAD is not designed originally for answer sentence selection,
it can be used for these experiments with some trivial modifications. For this
purpose, we first extracted sentences that contain the answer given each question
using exact matching.

Each question in SQuAD is mapped to a paragraph. Some paragraphs con-
tain tens of different sentences, and hence by exact matching a question can be
mapped to more than one sentence. We assumed that each question has just one
positive answer sentence. In order to make sure that each question is mapped to
the best possible sentence, in the next step, among sentences which contain the
answer, we selected the sentence that has the maximal n-gram overlap with the
question. These n-grams were kept limited to uni, bi and trigrams.

To obtain negative sentences, we used two different settings, which seem to
cause no real difference in the final results. In the first setting, given a question,
we detected the positive sentence as explained above and used the other sentences
in the same paragraph as negative samples. In the other setting, we sampled
negative sentences for a given question from all the paragraphs disregarding
witch paragraph the question belongs to. At the end, we had one positive and
up to five negative samples for each question.

The original test set of SQuAD is unseen and is not available online. Hence,
for our experiments, we used the original training set for both training and
development purposes. For testing purpose, we used the original development
set. Table 1 shows the number of the questions in each dataset. Since this is
the first time that SQuAD is being tested in a sentence selection experiment,
we established a simple baseline for sentence selection in our test set by count-
ing the number of shared uni, bi and trigrams in each question and sentence
and assigning the sentence with the highest number of shared patterns to the
question.
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Table 1. Datasets statistics

Train set Dev. set Test set

Original TrecQA 1229 82 100

Modified TrecQA 1229 65 68

SQuAD 68983 17245 10778

4 The Approach

The task in a sentence selection experiment is to estimate a probability distri-
bution over all sentences given each question and to get the sentence with the
highest probability.

sbest = argmaxs p(s|q) (1)

For learning the probability associated with each question and sentence or,
in other words, for learning the association between questions and their correct
sentences, training on negative sentences are informative as training on positive
ones. In order to feed both negative and positive sentences into the network at
the same time, we defined a loss function that not only considers the similarity
between questions and their sentences but also enforces their pattern similarity
as a hard constraint.

loss = max{0,m − α ∗ Sim(q, s+) + β ∗ Sim(q, s−)} (2)

This loss decreases with the similarity between a question and its positive
samples and increases with the similarity between a question and its negative
samples.

Parameter m is the margin between positive and negative sentences. There
is a trade off between the margin and the number of mistakes in positive and
negative classification in the model. A margin between 0.01 and 0.1 usually gives
good results in this model. s+ are correct sentences and s− are wrong ones.
α and β are the numbers of shared patterns between a question and its positive
and negative sentences, respectively. Finally, Sim is the similarity function that
computes the similarity between questions and sentences.

Among various techniques for measuring the similarity between two sen-
tences, we adopted Geometric mean of Euclidean and Sigmoid Dot product
(GESD) [5] which seems to outperform other similarity measures in this model.
GESD linearly combines two other similarity measures called L2-norm and inner
product. L2-norm is the forward-line semantic distance between two sentences
and inner product measures the angle between two sentences vectors.

GESD(q, s) =
1

1 + exp (−(q · s)) ∗ 1
1 + ‖q, s‖ (3)

In order to provide the loss function with its inputs, we should train three
vectors; question, positive sample and negative sample vectors. Similar to [20],
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Fig. 1. Abstract model architecture. Numbered components in the figure are:
1-Forward LSTM, 2-Backward LSTM, 3-Forward Attentive LSTM, 4-Backward Atten-
tive LSTM, 5-Backward max-pooling, 6-Forward max-pooling, 7-Question vector,
8-Positive sample vector, 9-Negative sample vector

we defined an embedding, an LSTM with attention layer, a max pooling and a
loss function in four separate layers as illustrated in Fig. 1.

Question vectors are generated by passing through these four layers. Embed-
ding layer in our model is a static layer. Word vectors in this layer are initialized
with pre-trained 100-dimensional Glove vectors [17]. During training, they were
held fixed as we observed no improvements in the performance of the model
on the validation set. We also observed no noticeable effect on the performance
by increasing the dimensionality of the embeddings to 200 or 300-dimensional
vectors.

In the next layer, two LSTM cells are allocated to each token in questions
to form a forward and a backward LSTM. Given a question, in forward LSTM,
each LSTM cell receives the output of its previous cell as the input layer. It
happens from left to right to cover all the tokens. The first LSTM receives the
embedding layer output as its input and the output of the last LSTM is fed into
the max-pooling layer.

In the backward LSTM, the same question is fed into the same LSTM, but
in reverse order (i.e. from right to left). The outputs of forward and backward
LSTMs then go through a column-wise max-pooling layer. Similar to [20], the
max-pooling layer is a column-wise max operator that estimates the importance
of each token given the surrounding context. Max-pooling is applied on both
forward and backward LSTMs and the resulting vectors are concatenated to
form the final vectors.
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For generating positive and negative vectors, positive and negative samples
are passed through the same network, where instead of regular LSTM, attention
LSTM cells over corresponding questions are used. For this part we used the
attentive LSTM model proposed by [20].

Having a couple of questions and sentences, we first compute their vectors and
then compute their similarity, which is parameterized by the parameters of the
network. Now, by putting the similarity of positive and negative couples into the
loss function which was mentioned above, we can train the network to maximize
the similarity between questions and the corresponding correct sentences and to
minimize the similarity between questions and wrong sentences.

At the end, we rearrange the scores generated by the model by a coefficient of
question-sentence shared patterns similar to what we used in the loss function.

5 Experimental Results

For training, we used Adam [12] to optimize the parameters using SGD. We
used LSTM with 128 layer size and set the margin of the loss to 0.05. Since the
number of the samples in our training set is very large, a couple of iterations
over all the samples is enough for training the model.

The questions in TrecQA has more than one positive and negative samples
and the output of the model is an ordered list of sentences. Therefore, for evalu-
ation purposes the most suitable measures are Mean Average Precision (MAP)
and Mean Reciprocal Rank (MRR).

However, the questions in SQuAD are limited only to one positive answer
and a couple of negative ones. For this reason, we used Accuracy to evaluate
the performance of the model for SQuAD dataset. It should be mentioned that
Accuracy measure is the floor measure for the performance of this system1.
Table 2 shows the experimental results.

This research demonstrated that transferring learned models which are
trained on large datasets to be test on small ones can be beneficial. However,

Table 2. Experimental results. TrecQA-org is the original TrecQA, TrecQA-mod is
the modified TrecQA and state-of-the-art refers to [19]

Trained on Test set MRR MAP ACC

State-of-the-art TrecQA TrecQA-mod 87.7 80.1 -

State-of-the-art TrecQA TrecQA-org 83.4 78.8 -

Current paper SQuAD + TrecQA TrecQA-mod 86.2 73.2 -

Current paper SQuAD + TrecQA TrecQA-org 89.5 79.5 -

Baseline SQuAD SQuAD - - 69

Current paper SQuAD SQuAD 93.4 90.1 86

1 Compared to MRR and MAP, Accuracy is a pessimistic measure for this experiment,
because it just considers the first selected answer and disregards the others.
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the opposite does not seem to be valid. It seems that adding training data to a
large dataset distorts its true distribution. In our experiment, we get significantly
better results when we included SQuAD in TrecQA for training, but including
TrecQA in SQuAD for training decreased the model performance on SQuAD.

6 Conclusion

We proposed CDNN as a network which is able to enforce hard constraints on
the parameters of a deep neural network. We also showed that applying transfer
learning technique on a model with enough learning capacity can obtain state-
of-the-art results without dependence on any external resource or doing any
time-consuming feature designing procedure.
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research funding, and GAUK 207-10/250098 of Charles University in Prague.
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