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Abstract. Dimensionality reduction methods for visualization attempt
to preserve in the embedding as much of the original information as
possible. However, projection to 2-D or 3-D heavily distorts the data.
Instead, we propose a multipoint extension to neighbor embedding meth-
ods, which allows to express datapoints from a high-dimensional space as
sets of datapoints in a low-dimensional space. Cardinality of those sets
is not assumed a priori. Using gradient of the cost function, we derive
an expression, which for every datapoint indicates its remote area of
attraction. We use it as a heuristic that guides selection and placement
of additional datapoints. We demonstrate the approach with multipoint
t-SNE, and adapt the O(N log N) approximation for computing the gra-
dient of t-SNE to our setting. Experiments show that the approach brings
qualitative and quantitative gains, i.e., it expresses more pairwise sim-
ilarities and multi-group memberships of individual datapoints, better
preserving the local structure of the data.

Keywords: Manifold learning · Data visualization · t-SNE ·
Barnes-Hut algorithm

1 Introduction

The objective of dimensionality reduction is to construct a mapping from a
high-dimensional dataset X = {x1, . . . ,xN} to a low-dimensional dataset Y =
{y1, . . . ,yN} where typically xi ∈ R

S , yi ∈ R
s, and S � s. A special case of

dimensionality reduction is visualization where s = 2 or s = 3.
Non-linear methods perform better than linear at visualization, because it is

unlikely for high-dimensional data to lay in a linear subspace of such small dimen-
sionality. The class of Neighbor Embedding (NE) algorithms [15] is especially
useful in this task. We propose a multipoint extension to NE in which every data-
point xi is embedded as a set of low-dimensional datapoints Yi = {yi,y′

i,y
′′
i , . . .}

of equal importance. Cardinality of Yis is not assumed a priori, as the copies are
added as necessary. Replication of each y ∈ Yi is decided heuristically with a
scoring function. We demonstrate the extension on the example of multipoint
t-SNE, which is used during validation.
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1.1 Stochastic Neighbor Embedding

In Stochastic Neighbor Embedding (SNE) [7], the data is modeled with a distri-
bution P , where pi|j is a conditional probability of xi picking xj as its neighbor,
calculated by centering Gaussians at each xi. The embedding Y is modeled with
a probability distribution Q. Similarly, it is constructed by centering Gaussians
at each yi [7]

pi|j =
exp

(−‖xi − xj‖2/2σ2
i

)
∑

k �=i exp (−‖xi − xk‖2/2σ2
i )

, qi|j =
exp

(−‖yi − yj‖2
)

∑
k �=i exp (−‖yi − yk‖2) . (1)

The embedding is constructed by minimizing the cost defined as the sum of
Kullback-Leibler divergences

C(Y ) = KL(P ||Q) =
∑

i

∑

j

pi|j log
pi|j
qi|j

. (2)

In t-SNE [10] Gaussian distribution in Q is replaced with Student’s t distribution.

2 Visualization with Multipoint Embeddings

We demonstrate and analyze our approach with multipoint t-SNE. Because
we embed individual datapoints as sets of datapoints, we need to modify
Q. We replace the Euclidean metric in Q with a distance function, which
relates sets Yi with Yj through minimum distance between their elements
dij = min {‖yk − yl‖ : yk ∈ Yi ∧ yl ∈ Yj}. Please note that it breaks the tri-
angle inequality and is no longer a metric. Elements of Yi are not weighted,
and therefore are of equal importance to the embedding. The gradient can be
derived with the chain rule [10], differing only in ∂d2ij/∂yi calculated using a
subderivative of min.

NE methods have plausible interpretation as physical systems of springs [6].
The gradient of t-SNE can be decomposed into a difference of terms interpreted
as attractive and repulsive forces [9,15]

∂C

∂yi
= 4

∑

j

∂d2ij
∂yi

pij

(1 + d2ij)
− 4

∑

j

∂d2ij
∂yi

qij

(1 + d2ij)
= Fattr − Frep . (3)

Because of the heavy tail of Student’s t distribution used to construct Q, the
repulsive force Frep acting on yi comes from all datapoints. Conversely, because
of the light tail of the Gaussian used to construct P , the attractive force Fattr

comes only from those datapoints, which are close neighbors of xi in X.
Optimization of t-SNE cost function in Eq. (2) is hard, as the function is

highly non-convex [7,10]. Minimization of the cost with gradient methods moves
the datapoints slightly at every gradient update. In practice, a misplaced data-
point yi might be repulsed by dissimilar datapoints with a force which balances
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(a) (b) (c) (d)

Fig. 1. Relationships between two sets Yi (blue Xs) and Yj (green Os) which
embed xi,xj ∈ X. Similar datapoints are in the same color. (a) A datapoint pre-
vented from reaching the area of attraction (pointed by γ(yi)) by dissimilar datapoints,
(b) Redundant pairwise relations, (c) Relations limited to, for every yi ∈ Yi, only the
closest yj ∈ Yj , (d) The correct relation as the shortest distance between Yi and Yj .
Best viewed in color.

the attractive force from a distant, similar datapoint (Fig. 1a). Thus the opti-
mization might get stuck in a local optimum, where forces reach a spurious
equilibrium.

Several strategies were proposed to remedy this problem, helping a datapoint
to take a leap over dissimilar datapoints with a small increase in the cost in
Eq. (2). For instance, a temporary dimension might be added to the embedding,
weight of the datapoint might be lowered, or the whole embedding might be kept
close early in the optimization [7,10].

2.1 Replication of Datapoints

Instead of encouraging the datapoints to move to remote areas, we propose
a two-stage heuristic process, which happens during optimization. Firstly, we
heuristically recognize obstructed datapoints, and place their copies in their
remote areas of attraction. Secondly, we recognize and discard unused copies.
This way a datapoint might be copied, but also moved by first being copied and
then discarded.

Formally, for each yi, we compute its potential γ(yi)

γ(yi) = 4
∑

pij>qij

∂d2ij
∂yi

(pij − qij). (4)

We derive γ by multiplying the cost function of t-SNE in Eq. (3) by the (1+d2ij)
term to cancel it out, because it promotes closer pairs of datapoints. Interestingly,
γ becomes the gradient of the cost function of symmetric SNE (excluding the
pij > qij restriction). It also has a physical interpretation, under which (pij −qij)
may be treated as a spring constant, and ∂d2ij/∂yi as spring length [5]. We
interpret vector γ(yi) as the direction of a promising region, and ‖γ(yi)‖ as the
magnitude of its attraction.

We score each datapoint y with ‖γ̂(y)‖, and replicate a fraction of top scoring
ones. The copies are initialized one by one, through line search along the direction
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of γ(yi), so that they would minimize the cost in Eq. (2) (Fig. 1a). Placement
may be approximate, as the optimization will be continued. For instance, 10% of
datapoints might be replicated every 100 iterations up to total of 1000 iterations.

During cleanup, we discard misplaced datapoints, which experience little
attractive force. Probability mass

∑
j pij induces attractive force Fattr which

acts on Yi in Eq. (3). Because each pij is modeled by exactly one yk ∈ Yi,
we can distribute it among all elements in Yi and normalize to a probability
distribution rki. It can be interpreted as probability of yk ∈ Yi being the closest
datapoint from Yi to a random neighbor of Yi. All datapoints with low rki should
be discarded, as they experience small attractive force, and thus will likely be
repelled from the embedding into infinity. Distribution r may also be interpreted
as a weighting function for datapoints in Yi.
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Fig. 2. Precision (in information retrieval sense) of reconstruction of k-NNs
(higher is better). Decimal numbers denote how many maps/mixture components
remained at the end (1.85 denotes ending up with 185% of initial datapoints etc.). For
fairness of comparison, we select indexes of k highest entries in Q for a given yi, and k
highest in P for a xi. The method is equivalent to selecting k closest datapoints w.r.t.
the Euclidean distance for SNE and t-SNE, as their P and Q neighborhood functions
monotonically decrease with the distance. Best viewed in color.

2.2 Fast Gradient Approximation

Barnes-Hut (B-H) algorithm for t-SNE [9,15] approximates a low-dimensional n-
body simulation [1], allowing to compute the gradient of the cost in O(N log N)
steps instead of O(N2). The space is partitioned with a quad- or oct-tree, tra-
versed in a depth-first manner. Nodes (cells) which meet the B-H condition [1]
are treated as approximate summaries of its contents. Direct application of the
B-H algorithm to multipoint t-SNE would overestimate Frep by counting all
pairwise relations (Fig. 1b) instead of only those between closest of datapoint
replicas (Fig. 1d). We prevent it in two ways.

Firstly, we compute ∂C/∂yi for all yi ∈ Yi in parallel. For each pair (Yi, Yj)
only the closest yk ∈ Yj should interact with Yi. We traverse the quadtree in
a depth-first manner and assign each cell to the closest yi ∈ Yi if it meets the
B-H condition. Instead of immediately updating the gradient with those cells,
we store them in lists, keeping one list for each yi ∈ Yi. When traversal is over,
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we sort the list for each yi based on the distance of those cells from yi. However,
Frep is still overestimated (Fig. 1c).

Secondly, we correct the number ki of datapoints in the ith traversed cell.
For each yj in a cell, we would like to check if any of its replicas already inter-
acts with Yi, and if so, subtract 1 from ki. We call such situation a collision. Let
αi denote the estimated number of collisions within a cell and kc =

∑
j<i kj

total number of datapoints in previously processed cells. Then1 αi = ki +
N

(
N − 1

N

)kc
[(

1 − 1
N

)ki − 1
]
. Knowing the exact number of collisions

∑
j kj−N ,

we normalize αi as as α̂i = αi∑
j αj

(∑
j kj − N

)
. The proposed approximation is

applicable when repulsive weights are equal, i.e., every datapoint repels the others
with the same force.

Fig. 3. Partial multipoint t-SNE embedding of word associations. Lines con-
nect copies of the same datapoint (in red). 3-NNs were plotted for each copy. Overview
of the complete embedding is shown in the lower right corner. Best viewed in color.

3 Related Work

To promote sparseness of the embedding, NE methods repulse all pairs of close
datapoints. Weighted symmetric SNE (ws-SNE) [16] weights points in the repul-
sive term. Elastic Embedding (EE) [4] expresses the penalty with a simplified
cost function.

1 αi amounts to expected number of collisions in a hash table of N locations when insert-
ing ki elements, after having inserted kc elements.
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Mixture SNE [7] embeds a single datapoint in multiple locations. The initial
probability mass of a datapoint is distributed among its copies through weights.
From the beginning of optimization, each datapoint has a fixed number of copies.
Contrary, in our approach the copies are equally weighted, and their number
varies.

Cook et al. [5] proposed visualization of pairwise similarities with mixtures of
m 2-D maps, where each one is fitted with symmetric SNE. Multiview SNE [2]
combines the data from t heterogeneous maps into a single embedding map.
Each qij is a linear combination of input pijs, resulting in a single embedding of
each datapoint.

4 Experiments

We demonstrate our approach with multipoint t-SNE. In experiments on small
datasets, we compare multipoint t-SNE, multi-map t-SNE, mixture SNE and
mixture t-SNE. The last one is created by switching Gaussian neighborhoods
to Student’s t neighborhoods in the distribution Q of mixture SNE. On larger
datasets, we compare multipoint t-SNE with plain t-SNE, both using Barnes-Hut
approximations.

In all experiments the datasets were reduced to d = 50 dimensions with Prin-
cipal Component Analysis, and perplexity of Gaussians in the data space was
set to 50. We optimize with Adam [8] using learning rate η = 3.5. In our experi-
ence it often works better than gradient descent with momentum. In subsequent
stages of optimization, we reuse previous values of moments m, v. For mixture
approaches, we found gradient descent with momentum and L-BFGS-B [3] to
perform slightly better.

As multipoint t-SNE adds variables, it takes longer to converge, and we run
the optimization for total of 2000 to 4000 gradient updates. In all experiments
pij values were multiplied by 4 (or 12 in the case of large datasets [9]) for the first
250 gradient updates. In all experiments the datapoints were replicated in four
stages, with replication of the top scoring 25% during each and an immediate
cleanup of those yk ∈ Yi with low probability mass rki < 0.2.

4.1 Pairwise Relationships Datasets

We adopt the word similarities dataset [13] (size 5000 × 5000) and the NIPS co-
authorships dataset (size 1418×1418) from studies on multiple maps t-SNE and
aspect maps [5,11]. Both datasets come in form of square matrices of pairwise
relations. The former describes word similarities judged by human volunteers,
the latter is a co-occurrence matrix of paper authors of two or more contributions
accepted to NIPS in years 1988–2009. Quality of the embeddings can be scored
with mean precision [11] or mean precision/recall [16] of k-nearest neighbors
between X and Y. For every datapoint in X, k closest datapoints in X and
Y are selected based on their Euclidean distances. For fairness of comparison,
we select them based on their P and Q values. Both approaches are equivalent
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for SNE and t-SNE. However, the latter scores higher methods where each q is
composed of many datapoints in Y , for instance through weights in mixture SNE.

Multipoint t-SNE achieves higher mean precision for k < 15 (Figs. 2a and b).
This is due to better modeling of small neighborhoods. Moreover, 2-D visual-
izations with multipoint t-SNE are better in this regard than 3-D visualizations
with t-SNE. Figure 3 shows a portion of the word association embedding, namely
selected copies of datapoints and their 3-NNs. Words like move, break, free end up
in different, natural contexts, or even among different parts of speech like reason.

4.2 Vector Datasets

Figure 4 shows embeddings of the COIL-20 dataset [14] (size 1440 × 16384).
The dataset consists of B&W photos of a number of small objects, taken under
different angles. Typically t-SNE embeds the images as closed, separated loops,
sometimes torn or incomplete. In multipoint t-SNE, the lines between replicas
connect certain areas of the embedding and pointing out imperfections, making
for a more informative visualization.

Next, we visualize 10000 Google News dataset word embeddings2 [12]
of the most frequent words3 and compare mean precision of multipoint
t-SNE and t-SNE (d = 2 and d = 3), all using Barnes-Hut approximation with
θ = 0.2. Figure 2c shows the results. Multipoint t-SNE better preserves small
neighborhoods in 2-D embeddings than t-SNE in 2-D and 3-D, outperforming
them by a large margin.
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Fig. 4. Embeddings constructed with t-SNE and multipoint t-SNE. Copies of
datapoints are shown in red. Lines connect copies of the same datapoints (only 10%
of lines shown to avoid clutter). Copies of datapoints allow more clusters to form and
reduce the number of satellite datapoints on the edges of embedding, by placing them
in denser areas. Best viewed in color.

2 Taken from https://code.google.com/archive/p/word2vec/.
3 We exclude top 100 as mostly stop words or containing non-letter symbols.

https://code.google.com/archive/p/word2vec/
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Figure 4 compares t-SNE and multipoint t-SNE embeddings. Lines connect-
ing datapoints with their copies form a dense network which connects remote
areas of the embedding. Additional copies of datapoints allow small, isolated
groups to form. They also seem to reduce the number of evenly spaced satellite
datapoints on the verge of the embedding, which typically do not fit elsewhere.

5 Discussion

We have introduced the multipoint extension to NE methods and showed its
effectiveness with multipoint t-SNE. It naturally extends NE methods through
sensible addition of copies of certain datapoints during optimization. More-
over, the extension does not raise the complexity, and we have implemented
the Barnes-Hut approximation.4 The approach allows to preserve small neigh-
borhoods better than multiple maps and mixture approaches, and even better
than 3-D t-SNE. Embeddings constructed with multipoint t-SNE have fewer mis-
placed datapoints on the edge of the embedding, as well as crisper clusters data-
points inside. Datapoints are not weighted, but weights may be derived through
analysis of their neighborhoods. Natural directions of future work include analy-
sis of optimization stages and out-of-sample extension, i.e., embedding points
not seen during training.
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