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Abstract. We propose a visual parametrization method for the task of
lipreading and audiovisual speech recognition from frontal face videos.
The presented features utilize learned spatiotemporal convolutions in a
deep neural network that is trained to predict phonemes on a frame
level. The network is trained on a manually transcribed moderate size
dataset of Czech television broadcast, but we show that the resulting
features generalize well to other languages as well. On a publicly available
OuluVS dataset, a result of 91% word accuracy was achieved using vanilla
convolutional features, and 97.2% after fine tuning – substantial state of
the art improvements in this popular benchmark. Contrary to most of
the work on lipreading, we also demonstrate usefulness of the proposed
parametrization in the task of continuous audiovisual speech recognition.
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1 Introduction

Automatic lipreading is a task of recognizing speech purely from a video of a
talking face. It is an inherently difficult task due to limited information content,
speech ambiguities and high speaker-dependence. Majority of the work in this
area has therefore traditionally concentrated on simplified applications such as
phrase or continuous digit recognition. An area closely related to lipreading is
audiovisual speech recognition (AVSR), where the main role of lipreading lies in
enhancing performance of acoustic decoders, typically under noisy conditions.
However, mainly due to the lack of publicly available data, large vocabulary
lipreading is scarcely investigated even when coupled with acoustic decoders.
For an overview of pre-deep learning advances in lipreading and AVSR see [14].

With its rapid advancement over the past decade, deep learning has grad-
ually found its way into visual speech recognition as well as other applied
research areas. One of its first applications in lipreading was in [6], where Ngiam
et al. employed deep autoencoder trained via layer-by-layer stacked Restricted
Boltzmann Machines. Purpose of the resulting deep belief network was to create
joint audio-video bottleneck parametrization, which Ngiam et al. subsequently
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used in a support vector machine (SVM) to classify videos of isolated letters and
digits on two popular datasets AVletters and CUAVE. Another example is [7],
where Noda et al. trained a convolutional neural network (CNN) on still images
of mouths to predict phonemes and classified 300 Japanese isolated words using
a hidden Markov model (HMM) trained on deep bottleneck features. A fully
end-to-end approach was taken by Wand et al. [12], where 51 isolated words
were classified using long short term memory (LSTM) recurrent network. Most
recently, two advanced end-to-end deep learning systems for lipreading sentences
were presented in [1,2]. Assael et al. [1] trained the system to recognize structured
sentences of the GRID corpus by optimizing connectionist temporal classifica-
tion (CTC) criterion and significantly improved state of the art word error rate
(WER) from 13.6% to 4.8% in a multi-speaker split, albeit with still only 51
word vocabulary. Chung et al. [2] designed a first end-to-end trained truly large
vocabulary deep learning system for lipreading sentences in the wild. To this
end, they utilized watch, listen, attend, and spell framework instead of CTC,
and were able to push the results on GRID even further down to 3.3%. Their
system was, however, pre-trained on a large proprietary dataset of BBC televi-
sion broadcast with over 100 thousands audiovisual utterances, not available to
other researchers.

In this work, we exploit the predictive power of deep learning methods
from a perspective of feature extraction for lipreading, similarly to e.g. [7]. We
employ spatiotemporal convolutional network in order to predict frame-level
labels, therefore also utilizing speech dynamics. As a basic visual speech unit,
we choose phonemes, as it has repeatedly been shown, see e.g. [11], that even for
purely visual tasks, visemes suffer from several key problems such as low ratio of
between to inner class variance and strong context dependence. We then utilize
the unnormalized log-probability, the network last layer’s output, as a visual
parametrization for a traditional HMM-based decoding system. In the experi-
ments section we show that despite the network being trained to predict Czech
phoneme set (PACZ) [8], the features achieve state of the art results on English
data too, demonstrating their generalization ability and robustness. Advantages
of this approach mainly include easy integration into existing frameworks, where
the visual information can be plugged into as an additional modality. The pro-
posed visual parametrization is evaluated in both lipreading and continuous
speech AVSR.

2 Convolutional Features

Spatiotemporal convolution has been proven successful in video classification
tasks, see e.g. [3]. It generalizes classic 2D convolution by also considering the
time dimension, i.e.

(x � w)t0,u0,v0,c0 =
l∑

t=0

m∑

u=0

n∑

v=0

C∑

c=1

wc0,t,u,v,cxt+t0,u+u0,v+v0,c + bc0 (1)
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where x represents a 4D input video sequence of l frames with m×n pixels and
C channels (e.g. RGB images), w is a bank of d 4D convolution kernels, and b
is an added bias.

Here, we exploit its representational power to classify short video chunks x
into one of 48 Czech phoneme classes including silences. The chunks consist of
7 or 11 frames of 64× 64 RGB region of interest (ROI) that cover the speaker’s
mouth and its closest surroundings. We stack four blocks of spatiotemporal con-
volutions (1), batch normalization, spatiotemporal max-pooling and rectified
linear unit, with each new layer having twice more convolution kernels than
the previous one. In order to produce probability for each class, a linear layer
with output dimension equal to the number of phonemes is added after the last
convolution. See Fig. 1 for the details.

Fig. 1. Spatiotemporal convolutional network architecture

The optimal parameters θ∗ (i.e. weights and biases) of the network are esti-
mated by minimizing a softmax cross entropy loss of the network output vector
f(x;θ) against ground truth labels r, i.e.

minimize
θ

∑

x,r∈X
−f(x;θ)r + log

∑

j

ef(x;θ)j (2)

where X is a training set consisting of labeled pairs (x, r). For the optimiza-
tion, we employ the mini-batch stochastic gradient descent algorithm with a
momentum of 0.9.

After the network is trained, we use its output vector f(xi;θ∗), whose j-th
element represents an unnormalized logarithmic probability of the j-th phoneme,
as a robust visual parametrization for the i-th frame. In order to deal with
borderline cases, the input video is padded with the first and last frames on its
respective ends.

The features are post-processed by concatenating parametrization vectors for
several consecutive frames and reducing their dimensionality via linear discrimi-
nant analysis (LDA). Delta features computed as a difference between two frame
feature vectors may be appended to the resulting parametrization. The length
of the neighborhood for concatenation or inclusion of delta features are treated
as hyperparameters and are cross validated as per splits in Table 1.
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Table 1. Overview of datasets used in this work

Dataset # speakers Voc. size Training set Validation set

TV-data ∼50 26197 6.47 h 2.2 h

OuluVS 20 10 19 speakers
(∼29 min)

1 speaker
(∼1.5min)

TULAVD-isol 54 366 45 speakers
(∼1 h)

9 speakers
(∼12min)

TULAVD-cont 54 366 45 speakers
(∼3.1 h)

9 speakers
(∼40min)

3 Data

Deep convolutional networks usually require large amount of data to train from
scratch. In areas such as image classification, the preferred way often is to use a
pre-trained model and then fine-tune it for specific purposes. In our case, this is
not an option, since there are no publicly available spatiotemporal models that
would be close to our application.

3.1 TV-data

In order to train the network, we utilize a manually transcribed dataset of Czech
television broadcast. The complete dataset contains over 800 h of video content,
most of which, however, is not suitable for training of our lipreading system.
We process it in following way. Faces in each frame of every video are detected
using histogram of oriented gradients (HOG) based deformable part model as
implemented in the dlib library [5]. Also, for every frame precise locations of 68
landmarks describing facial shape of each face are predicted using the Ensemble
of Regression Trees (ERT) algorithm [4]. We then pick a small subset of the
complete data such that the resulting sequences are at least 3 s long and have only
a single frontal facing talking speaker for the whole length. In order to achieve
scale invariance we define the size of the region of interest (ROI) relative to the
normalized mean facial shape. The coordinates of the ROI in the input image
are then found by computing Euclidean transformation between the normalized
shape and the detected one via least squares minimization.

All videos have been manually checked whether the visible face really is the
speaker, or, for example, only serves for illustration purposes, such as when the
studio host actually talks over the phone. The complete clean subset then con-
tains approximately 11 h of audiovisual data, which have been split into training,
validation, and test set in 0.6 : 0.2 : 0.2 respective ratio. See Table 1 for details.
The phoneme class labels for each frame are produced by force-aligning a pre-
trained acoustic model on mel frequency cepstral (MFCC) parametrization of
the synchronized audio stream.
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3.2 OuluVS

We demonstrate the performance of our proposed visual features on more
restricted datasets that are better suited to video-only lipreading. OuluVS [13]
is a popular and widely used publicly available dataset containing 20 speakers
(17 male, 3 female), each of which utters 10 different short phrases five times.
Examples of such phrases are for instance “Hello!” or “How are you?”. The videos
were recorded at 25 fps with resolution of 720 × 576 pixels in an interlaced mode.
Even though OuluVS ships with four different kinds of pre-extracted ROIs, we
use our own extraction procedure similar of Sect. 3.1.

3.3 TULAVD

TULAVD [9] contains data from 54 speakers, of which 23 are female and 31 male
with age ranging from 20 to 70 years. Each speaker uttered 50 isolated words and
100 sentences in Czech language, which were automatically selected according
to phonetic balance. First 50 sentences are common for all speakers, whereas the
second 50 differ. Audiovisual utterances were captured by two Logitech C920
FullHD webcams and Microsoft Kinect, which also offers depth stream that is
fully synchronized with the video. In this work, we only consider 640×480 pixels
RGB data from the Kinect. The visual pre-processing pipeline is similar to the
other two considered datasets.

4 Experiments

First we evaluate our proposed spatiotemporal convolutional features for lipread-
ing in simpler and more restricted task of purely visual isolated unit recognition.
To this end, videos are parametrized using the 48-dimensional output of our
spatiotemporal convolution network, as trained on the TV-data dataset. On
top of these features, a hidden Markov model with Gaussian mixture emissions
(HMM/GMM) is constructed for each possible unit, i.e. a word on the TULAVD
dataset, or a phrase in case of OuluVS. In case of TULAVD, we perform a 6-fold
cross validation and report the average score. With OuluVS, we follow a speaker-
independent leave-one-out cross validation scheme that is compatible with most
existing research on this dataset.

Table 2 then presents the achieved word accuracy and compares the proposed
parametrization to other popular methods, namely discrete cosine transforma-
tion (DCT) of the ROI, principal component analysis (PCA), active appearance
model (AAM), spatiotemporal local binary pattern descriptor (LBPTOP) [13],
dynamic histogram of oriented gradients [9], and random forest manifold align-
ment [10]. Input chunks of length 7 (k = 3) and 11 (k = 5) were evaluated
in the experiments. As we can see, the former performs much better than the
latter. Although longer sequences offer more context and discriminative infor-
mation, they also represent more specific cases, and training models on longer
inputs therefore is more prone to overfitting and sensitive to mismatch between
training and testing sets.
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Table 2. Recognition of isolated words and phrases

Parametrization TULAVD [%] OuluVS [%]

50 words 10 phrases

DCT 72.5 79.2

PCA 73.9 77.9

AAM 74.1 82.1

LBPTOP [13] 74.2 82.5

HOGTOP [9] 86.4 85.7

Random forest manifold alignment [10] - 89.7

phoneme-3D-CNN-k3 90.6 91.0

phoneme-3D-CNN-k5 74.4 -

phoneme-3D-CNN-k3 (fine-tuned) 91.0 97.2

Interestingly, parametrization trained on Czech data also performs very well
in recognition of English phrases. We achieved state of the art result on the
OuluVS of 91% correctly recognized phrases in speaker-independent lipreading.
Moreover, the model could be further fine-tuned to different phoneme set by
appending additional linear layer on top of the original output to produce unnor-
malized log-probabilities of each of the 33 English phonemes that are uttered
within this dataset. Note that 20 different models had to be fine-tuned for every
respective training set of the leave-one-out protocol in order to preserve the
speaker independence. By applying the fine-tuned model, the best score reached
as high as 97.1%. It is fair to note however, that the result mainly is due to
low language variability caused by a small vocabulary, i.e. phonemes only have
limited context options, making the chunks easier to classify. Improvement of
fine-tuning on TULAVD is marginal, as the score increased by a mere 0.4%.

We also performed experiments continuous speech recognition on the
TULAVD dataset. To this end, spatiotemporal features were linearly up-sampled
to 100 Hz and concatenated with 39 mel-frequency cepstral coefficients (MFCC)
that had been extracted from the audio stream. An HMM model was trained
for each phoneme of the PACZ set. Simple bi-gram language model (LM) pre-
trained on an external Czech newspaper corpus was applied and filtered for the
366 words in the test utterances. Again the proposed convolutional features per-
form the best, albeit with much smaller margin than in previous experiments.
This is to be expected, as generally visual signal contains much less information
than the acoustic one, which will be exploited by the decoder.

Table 3 presents the results of recognition of 50 test sentences of the TULAVD
dataset with vocabulary size of 366 words for selected visual features. Results
are represented by word accuracy (WAcc) and word correctness (WCor), which
differ in that WCor ignores insertions errors. We can observe that under good
acoustic conditions, visual parametrization adds relatively little improvement,
which is of no surprise. The only two parametrizations increasing the resulting
score are LBPTOP and our proposed spatiotemporal convolutional features.
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Table 3. Recognition of continuous speech on TULAVD dataset

Parametrization WAcc [%] WCor [%]

MFCC 76.7 84.0

MFCC+DCT 42.7 67.6

MFCC+AAM 74.4 83.8

MFCC+LBPTOP [13] 77.7 86.5

MFCC+HOGTOP [9] 75.4 86.2

MFCC+phoneme-3D-CNN-k3 79.2 86.9

4.1 Error Analysis

It is interesting to look at the errors the network makes on the character level.
When taking the maximum of the log-probabilities, the average phoneme accu-
racy on the validation set of the TV-data reached 25.2%. But the correct label
is among the top 5 scoring classes more than 60% of the time, and among the
top 10 almost 80% of the time. This suggests that even though the correct class
on average still achieves high log-probability, which is important for purposes of
parametrization, there are lots mismatches between phonemes of similar corre-
sponding visemic classes. Indeed, by examining the confusion matrix we observed
that the most common errors occur e.g. between long and short ‘o’ (0.65), ‘ts’
(pronunciation of ‘c’ in Czech) and ‘s’ (0.49), or ‘f’ and ‘v’ (0.35). Note that,
however, switching to prediction of visemes does not help due to problems men-
tioned in Sect. 1.

Figure 2 shows per-phoneme accuracy for 28 phonemes (excluding noise) that
attained at least 1% frame-wise relative frequency in the validation set of the
TV-data. It can be seen that clearly visible and on average longer vowels such as
‘aa’, ‘o’, or ‘u’, or visually distinctive consonants such as ‘m’, ‘p’, ‘s’, or ‘v’ are

Fig. 2. Per-phoneme accuracy of the spatiotemporal network. The phoneme label con-
vention follows PACZ [8]. Blue: top-1, red: top-5. (Color figure online)
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predicted by the network with higher accuracy than e.g. ‘x’ (PACZ [8] label for
Czech digraph ‘ch’, pronounced as voiceless velar fricative), ‘nj’, or ‘tj’. As many
of the easily distinguishable phonemes are shared between Czech and English,
by capturing characteristic lip motion in its output the network generalizes well
to the latter language as well.

5 Conclusion

We have presented a new method of feature extraction for lipreading suitable for
both recognition of isolated unit as well as continuous speech. The features are
based on learned spatiotemporal convolutions in a deep network trained to pre-
dict phonemes on a frame level. The proposed parametrization method can be
utilized in traditional or hybrid decoders based on hidden Markov model as well
as end-to-end trained deep learning systems. Compared to traditional parame-
trization methods, we have achieved superior performance on two datasets with
different languages, demonstrating feature representativeness and robustness
against input variability. On the popular OuluVS speaker-independent bench-
mark, state of the art word error rate was substantially reduced from 10.3% to
2.8%. Also, unlike many other popular parametrization methods, our features
also generalize well to recognizing continuous speech jointly with audio, even
in clean environment without acoustic noise. Our efforts in the nearest future
will focus on developing end-to-end learned lipreading system for spontaneous
speech using spatiotemporal features and attention mechanism.
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12. Wand, M., Koutńık, J., Schmidhuber, J.: Lipreading with long short-term memory.
CoRR abs/1601.08188 (2016). http://arxiv.org/abs/1601.08188
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