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Abstract. Speech disorders are among the most common symptoms in
patients with Parkinson’s disease. In recent years, several studies have
aimed to analyze speech signals to detect and to monitor the progression
of the disease. Most studies have analyzed speakers of a single language,
even in that scenario the problem remains open. In this study, a cross-
language experiment is performed to evaluate the motor impairments of
the patients in three different languages: Czech, German and Spanish.
The i-vector approach is used for the evaluation due to its capability to
model speaker traits. The cosine distance between the i-vector of a test
speaker and a reference i-vector that represents either healthy controls
or patients is computed. This distance is used to perform two analyses:
classification between patients and healthy speakers, and the prediction
of the neurological state of the patients according to the MDS-UPDRS
score. Classification accuracies of up to 72% and Spearman’s correla-
tions of up to 0.41 are obtained between the cosine distance and the
MDS-UPDRS score. This study is a step towards a language indepen-
dent assessment of patients with neuro-degenerative disorders.

Keywords: Parkinson’s disease · i-vectors · UPDRS score · Language
independent assessment

1 Introduction

Parkinson’s disease (PD) is a neuro-degenerative disorder which produces several
motor and non-motor impairments. The motor symptoms include, among others
tremor, rigidity, slowed movement, postural instability, lack of coordination and
speech disorders [1]. Evaluating the condition of PD patients is difficult. Mobility
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problems make attending medical appointments burdensome, while speech dis-
orders may hinder the communication with the medical experts [2]. Currently,
the assessment of the disease in the motor capabilities is evaluated with the
third section of the Movement Disorder Society, Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS) [3]. This evaluation is subject to a clinical crite-
rion and its intra- and inter-rater variability could be high. The diagnosis could
be supported by computer aided systems, which could also improve the evalua-
tion of the disease progression. On the other hand, only two of the 33 items of
the MDS-UPDRS are related to the speech impairments of patients; however,
speech disorders are among the most prevalent, and an early sign of further
motor impairments [4]. In that way, speech signals could be used to assess the
motor symptoms of PD patients.

There has been interest in the scientific community to develop computer aided
tools to evaluate the condition of PD patients using information from speech.
In the 2015 INTERSPEECH Computational Paralinguistics Challenge (Com-
PARE) the task of predicting the MDS-UPDRS score of PD patients from speech
was addressed [5]. Speech recordings of 50 PD patients from the PC-GITA data-
base [6] were considered for the train and development subsets. Recordings from
eleven new patients were considered as the test set. All the speakers were native
Spanish speakers. A Spearman’s correlation coefficient of 0.39 was reported as
baseline of the challenge. The winners of the challenge [7] grouped the speech
tasks of each patient and used deep neural networks and Gaussian processes
for the prediction, obtaining a correlation coefficient of up to 0.69. In [8] the
authors classify the speech of PD patients vs. healthy controls (HC) speakers
in different languages. Cross-language experiments were performed using data
in three languages: Czech, German and Spanish. The reported accuracies range
from 60% to 77%, depending on the languages used for train and test sets.
In [9] a speaker model based on Gaussian mixture models-universal background
models (GMM-UBM) was proposed to monitor the neurological state of PD
patients. UBMs were trained with information from 61 PD and 50 HC speakers.
Specific GMMs were adapted for seven PD patients recorded in three sessions.
Then, the Bhattacharyya distance between the speaker models and the UBM
was computed and correlated with the MDS-UPDRS score of the patients. A
Pearson’s correlation of up 0.60 was reported by the authors. In [10] the authors
proposed a new regression method to track the progression of speech disorders.
The method is based on a non-parametric learning strategy based on a prob-
ability distance measure between the speakers from the test and training sets.
The authors consider data from 61 PD patients to predict the UPDRS score,
obtaining a Pearson’s correlation of up to 0.58.

Speaker models inspired by speaker verification and identification systems
have shown promising results in evaluating PD from speech. The most recent
breakthrough in speaker verification is the i-vector approach [11]. This strat-
egy has also proven to be effective in many other speech tasks. Specially, it has
shown excellent results in language identification [12,13]. Recently, i-vectors were
used to identify the native language of a speaker from recordings in a second
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Fig. 1. General methodology followed in this study.

language [14]. According to the reviewed literature, a language independent
strategy to evaluate the PD condition from speech has not been enough
addressed. Developing a computer aided system that can evaluate PD from
speech in different languages would be a major step towards an unified objective
assessment of the disease. Additionally, the use of i-vectors has been successfully
applied to model speaker traits in multiple languages, which indicates that it
could also be used to evaluate the PD condition from speech in a cross-language
approach. In this study, a strategy based on i-vectors is used to assess the PD
condition from speech in three languages: Spanish, German and Czech. Cross-
language experiments are performed, i.e., train the models with utterances from
one language, and test with the speech recordings from the other ones. The
proposed approach is tested in two scenarios: (1) classification of PD vs. HC
subjects, and (2) the prediction of the MDS-UPDRS score of the patients. Dif-
ferent i-vector extractors are trained with features related to specific dimensions
of speech, e.g., phonation, articulation and prosody with the aim of evaluating
the information provided by each dimension to represent the PD condition of
the patients.

2 Methods

The methodology proposed in this study comprises four steps: (1) several feature
sets are computed to analyze different speech dimension from speech, (2) a subset
of speakers are used to train an i-vector extractor, (3) the i-vectors of speech
signals are extracted, and (4) the cosine distance between a reference i-vector
and the speaker i-vector is computed. This process is summarized in Fig. 1.

2.1 Feature Extraction

Four feature sets were considered in this study to model the speech impairments
of PD patients. The first set comprises the Mel-Frequency Cepstral Coefficients
(MFCCs), which are the classical features used to train i-vectors. 19 MFCCs
and the log-energy extracted from 30 ms windows with time-shift of 15 ms were
used to form a 20-dimensional feature vector. Non-speech frames were discarded
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using an energy-threshold voice activity detector (VAD). The other feature sets
are formed with descriptors to assess the articulation, phonation, and prosody
dimensions of speech. To evaluate articulation, the energy content in 22 Bark
bands (BBE) in the voiced/unvoiced and unvoiced/voiced transitions were con-
sidered, as in [15]. The features considered to evaluate phonation and articulation
in voiced segments are: the log-energy, the fundamental frequency (F0), first and
second formants (F1 and F2) and their first and second derivatives. Addition-
ally, perturbation features such as Jitter and Shimmer are also included. These
descriptors form a 14-dimensional feature vector. These features were computed
from voiced segments using 30 ms long analysis frames with a time-shift of 5 ms.
To evaluate prosody we followed the approach introduced in [16]: The log-F0

and the log-energy contours within analysis frames were approximated using
Lagrange polynomials of order P = 5. Analysis frames of 200 ms with time-shift
of 50 ms were used as in [13]. A 13-dimensional feature vector is formed concate-
nating the six coefficients computed from the log-F0 and the log-energy contours,
along with the number of voiced frames in the utterance.

2.2 i-Vectors

In this approach, factor analysis is used to define a new low-dimensional space
known as the total variability space with the aim of modeling the speaker and the
channel variability [11]. For applications related to pathological speech analysis,
the speaker variability carries the information about the disorders in speech due
to the disease. In the total variability space, an utterance is represented by a
supervector M formed by concatenating the mean vectors of a GMM-UBM. The
total variability space is expressed according to Eq. 1, where m is a speaker and
channel independent supervector (the UBM), T is the total variability matrix
and w corresponds to the i-vector.

M = m + Tw (1)

The i-vectors are processed in five steps: (1) i-vectors extracted from training
speakers are normalized to zero mean and unit variance, i.e., Z-norm, (2) the
normalized i-vectors computed from different speech tasks of a given speaker
are averaged to obtain one i-vector per speaker, (3) the i-vectors of HC and PD

Fig. 2. i-vector processing.
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speakers are averaged to obtain HC and PD reference i-vectors, respectively,
(4) the i-vectors of a test speaker are normalized using the parameters from
the training i-vectors, (5) the normalized i-vectors per utterace are averaged to
obtain the speaker i-vector. Finally, the cosine distance between the HC/PD
reference i-vectors and the speaker i-vectors is computed. The process is sum-
marized in Fig. 2.

2.3 Cosine Distance

The cosine distance is used to compare two i-vectors w1 and w2. The distance is
defined by Eq. 2. In this study, the i-vector of a single speaker is compared with
a reference i-vector that represents the HC or PD population.

dc(w1,w2) = 1 − w1 ·w2

||w1||||w2|| . (2)

2.4 Evaluation

The cosine distance between the test speaker i-vector and the reference i-vector is
compared to a threshold to discriminate between PD patients and HC speakers.
The development set is used to find the threshold that maximizes the accu-
racy. The prediction of the neurological state of a patient is evaluated using the
Spearman’s correlation coefficient between the real MDS-UPDRS score and the
distance measure.

3 Data

Spanish- The PC-GITA database [6] is used in this study. It contains recordings
of 50 PD patients and 50 healthy control (HC) speakers. All of them are native
Colombian Spanish speakers. During the recordings, the participants were asked
to perform different speech tasks including reading ten isolated sentences, and
the repetition of /pa-ta-ka/, a diadochokinetic (DDK) exercise.

German- The German data contain recordings from 88 PD patients and 88 HC
subjects. The speakers perform several speech tasks, including the repetition of
/pa-ta-ka/, and reading five isolated sentences [17].

Czech- The Czech data are formed with recordings from 20 PD patients and 15
HC subjects. The patients were recorded at the time of diagnosis with PD, and
none of them had been medicated before or during the recording session. The
speech tasks performed by the speakers include the rapid repetition of /pa-ta-
ka/, and several repetitions of a sentence [4].
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4 Experiments and Results

Two speech tasks were analyzed independently in these experiments: the rapid
repetition of /pa-ta-ka/, and read sentences. Data from the three languages are
used in turn as training, development and test sets. All possible combinations
are tested. The training data are used for several processes: (1) to train the UBM
and the i-vector extractor, (2) to compute the normalization parameters, and
(3) to obtain the HC and PD reference i-vectors. UBMs with different number
of Gaussian components were trained in a range from M = 2 to M = 29 into
powers of 2. The dimension of the i-vector dimw was chosen following the relation
dimw = log2(M) · dimf , where M is the number of Gaussian components in the
UBM and dimf is the dimension of the feature vector.

Table 1. Accuracies (%) for the classification task.

Train Lang. Test Lang. HC reference PD reference

MFCCs Art. Phon. Pros. MFCCs Art. Phon. Pros.

DDK

Czech German 47.4 47.4 52.6 53.7 47.4 47.4 52.6 53.7

Spanish 43.0 48.0 44.0 50.0 43.0 48.0 44.0 50.0

German Czech 58.8 47.1 67.6 58.8 58.8 47.1 67.6 58.8

Spanish 50.0 48.0 60.0 50.0 50.0 48.0 60.0 50.0

Spanish Czech 61.8 47.1 58.8 61.8 61.8 47.1 58.8 61.8

German 52.6 40.6 50.9 53.7 52.6 40.6 50.9 53.7

Sentences

Czech German 55.1 54.0 57.4 53.4 55.1 54.0 57.4 53.4

Spanish 60.0 50.0 50.0 50.0 60.0 50.0 50.0 50.0

German Czech 72.2 58.3 44.4 55.6 63.9 58.3 47.2 55.6

Spanish 68.0 55.0 50.0 50.0 55.0 55.0 50.0 50.0

Spanish Czech 50.0 72.2 50.0 63.9 50.0 72.2 50.0 63.9

German 60.2 39.8 52.8 57.4 60.2 39.8 52.8 57.4

Table 1 shows the results for the classification of PD vs. HC speakers. For
the DDK speech task, only the test in Czech language shows accuracies higher
than 65%. This could be explained due to Czech patients being diagnosed at
the time of the recording and being in an earlier state of the disease than the
patients from the other two languages. Accuracies below 50% could be explained
by the fact that ranges of the cosine distance are likely to be different in the
development and test sets. On the other hand, for the sentences, the i-vectors
extracted with MFCCs and articulation-based features show the best results in
most of cases. The 50% results when Spanish is used for test can be explained by
the mismatch of cosine distance ranges in the development and test sets. For this
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case, the threshold could be set so all speakers in the test dataset are classified
either as PD or HC. The similar results found using the HC and PD reference
i-vectors may be due to both vectors being antiparallel.

Table 2 shows the results for the prediction of the MDS-UPDRS. For this
case, articulation-based features provide the best result when evaluating the
DDK speech task. Phonation features show good results in some cases, specially
when the Spanish language is used for test, but show poor results when testing on
Czech. This maybe due to the fact that Spanish is a more voiced language than
the other two languages, but further experimentation is required. Correlations
with the MDS-UPDRS score of up to 0.4 were achieved. Slightly higher correla-
tions were obtained using the DDK speech task due to the fact that such a task is
language independent, i.e., the speakers in the corpora uttered the same sounds.
Good results were also obtained when analyzing isolated sentences, which is a
language dependent speech task. This is encouraging and indicates that other
speech tasks could also be analyzed in a cross-language setting.

Table 2. Spearman’s correlation for the prediction task.

Train Lang. Test Lang. HC reference PD reference

MFCCs Art. Phon. Pros. MFCCs Art. Phon. Pros.

DDK

Czech German −0.14 −0.25 0.14 −0.06 0.14 0.25 −0.14 0.05

Spanish 0.32 0.23 0.20 −0.13 −0.32 −0.29 −0.17 0.17

German Czech 0.26 0.38 −0.09 0.11 −0.30 −0.38 0.16 −0.25

Spanish 0.04 0.20 0.24 0.09 0.25 −0.21 −0.39 0.31

Spanish Czech −0.32 0.41 −0.19 −0.48 0.45 −0.25 0.12 0.16

German 0.15 −0.14 0.11 −0.24 −0.17 0.14 −0.11 0.14

Sentences

Czech German 0.06 0.11 −0.14 0.15 −0.06 −0.11 0.14 −0.15

Spanish 0.16 −0.15 −0.01 0.12 −0.15 0.15 0.01 −0.12

German Czech 0.18 −0.11 −0.30 −0.02 −0.21 0.13 0.32 0.07

Spanish 0.26 0.08 0.37 0.02 −0.27 −0.08 −0.37 −0.02

Spanish Czech −0.02 0.29 0.05 0.36 0.05 −0.29 −0.05 −0.36

German 0.10 0.04 0.11 0.04 −0.10 −0.04 −0.19 −0.04

For comparison, language dependent results using the same Spanish database
and the same i-vector methodology can be found in [18].

5 Conclusion

In this work we address the task of cross-language evaluation of Parkinson’s
Disease speech using the i-vector approach. Data in Czech, German and Spanish
were used. One of the languages is used for train, while the other two were
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used for parameter selection and test. All possible combinations were considered.
Two reference i-vectors were created. These reference i-vectors represent the
population of HC speakers or PD patients. Then, the cosine distance between
one of these reference i-vectors and the i-vector of a test speaker was computed.
This distance was used in two experiments: to classify PD patients and HC
speakers, and to assess the prediction of the neurological state of the patients.
Results are promising, with classification rates around 70% when using MFCCs
and articulation features. Similar classification results were obtained using both
reference i-vectors. In many cases, a positive correlation between the labels and
the cosine distance to the HC reference i-vector was found. This means that
the more affected the speech, the larger the difference to healthy speakers. A
similar reasoning can be followed for the negative correlations when comparing
test speakers with respect to the PD reference i-vector, i.e., the more affected
the speech, the lower the difference to the PD speakers. Future work includes
evaluating the use of techniques that can eliminate the variability of language in
the i-vector space with the aim of improving the results and obtain a language
independent method to evaluate the condition of patients with neurodegenerative
disorders.
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