
Following the Blind Seer – Creating Better
Performance Models Using Less Information

Patrick Reisert, Alexandru Calotoiu, Sergei Shudler(B), and Felix Wolf

Technische Universität Darmstadt, 64289 Darmstadt, Germany
kpreisert@gmail.com, {calotoiu,shudler,wolf}@cs.tu-darmstadt.de

Abstract. Offering insights into the behavior of applications at higher
scale, performance models are useful for finding performance bugs and
tuning the system. Extra-P, a tool for automated performance modeling,
uses statistical methods to automatically generate, from a small number
of performance measurements, models that can be used to predict perfor-
mance where no measurements are available. However, the current ver-
sion requires the manual pre-configuration of a search space, which might
turn out to be unsuitable for the problem at hand. Furthermore, noise in
the data often leads to models that indicate a worse behavior than there
actually is. In this paper, we propose a new model-generation algorithm
that solves both of the above problems: The search space is built and
automatically refined on demand, and a scale-independent error metric
tells both when to stop the refinement process and whether a model
reflects faithfully enough the behavior the data exhibits. This makes
Extra-P easier to use, while also allowing it to produce more accurate
results. Using data from previous case studies, we show that the mean
relative prediction error decreases from 46% to 13%.

Keywords: Parallel computing · Performance tools · Performance mod-
eling

1 Introduction

As the computing world moves towards more and more parallelism and high-
performance computing (HPC) systems become ever larger, the complexity of
performance analysis is compounded. Understanding the performance of par-
allel programs at larger scale and getting correct insights requires prohibitive
resources. Developers and users must benchmark their applications at the full
extent of available parallelism to obtain the insights they desire. It requires both
expensive computing time and manpower. Performance modeling offers a way
to alleviate this problem by providing users with models (i.e., analytical expres-
sions) of the application behavior. With these models users are able to predict
application behavior at higher scale. One example of a performance model, which
can also help uncover scalability bottlenecks, is the expression of execution time
as a function of the number of processors.

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 106–118, 2017.
DOI: 10.1007/978-3-319-64203-1 8

Following the Blind Seer – Creating Better Performance Models 107

We distinguish between analytical and empirical performance modeling. Ana-
lytical performance models are constructed by experts that infer the laws that
govern application behavior as a function of a pre-selected parameter (e.g., the
number of processors). Not only is this a laborious process that requires intu-
ition and small-scale tests, but it might also require experts to apply this process
to every individual module of the application. Empirical performance modeling,
on the other hand, infers models automatically from a relatively small number
of measurements. It offers a practical way for common users to find scalabil-
ity bugs and bottlenecks [5], predict performance [11,16], compare algorithmic
alternatives [20], and understand the effects of resource contention [17].

Extra-P [1] is a tool to create such empirical performance models, primarily
scaling models, with one or more model parameters [4,5]. However, in its current
version it relies on a manually defined search space, requiring users either to
provide a large enough space to accommodate a wider range of models or to
have an initial guess as to how a model would look like. Both options have
their drawbacks since the former means increased computation costs, and the
latter means increased expertise on the user’s part. In addition, false positives
(i.e., models that indicate a worse behavior than there really is) can sometimes
occur due to artifacts in performance measurements. Although such artifacts can
usually be identified manually, actually doing it would substantially prolong the
performance modeling process. In this work, we make the following contributions
to address the aforementioned shortcomings:

– Automatic search-space configuration—in our new iterative model-generation
approach, we configure the search space on demand and iteratively raise the
accuracy of the model until no meaningful improvement can be made. In
this way, we increase both the tool’s ease of use and its range of application
without sacrificing accuracy.

– Significant reduction of false positives—by using a heuristic to increase Extra-
P’s resilience to noise in the measurements, we are able to save users from
wasting valuable time trying to analyze problems that do not really exist.

The remainder of the paper is organized as follows. In Sect. 2, we provide
the background on automatic performance modeling and the current technique
for model generation. Section 3 continues with a detailed description of the new,
iterative refinement approach, followed by an evaluation in Sect. 4. Finally, we
review related work in Sect. 5, before drawing our conclusion in Sect. 6.

2 Empirical Performance Modeling with Extra-P

In this section, we briefly introduce Extra-P and the way it generates empirical
performance models.

2.1 The Performance Model Normal Form

A key concept underlying Extra-P is the performance model normal form
(PMNF). The PMNF models the effect of a single parameter (predictor) x on a

108 P. Reisert et al.

response variable of interest f(x), typically a performance metric such as execu-
tion time or a performance counter. It is specified as follows:

f(x) = c0 +
n∑

k=1

ck · xik · logjk
2 (x)

The PMNF allows building a function search space, which we then traverse to
find the member function that comes closest to representing the set of measure-
ments. This assumes that the true function is contained in this search space.
A possible assignment of all ik and jk in a PMNF expression is called a model
hypothesis. The sets I, J ⊂ Q from which the exponents ik and jk are chosen and
the number of terms n define the discrete model search space. Our experience
suggests that neither I and J nor n have to be particularly large to achieve a
good fit, but although a common default set of about 40 terms can be sufficient,
for some applications the search space needs to be tuned manually with the help
of domain experts and application developers. Having chosen the sets, we then
automatically determine the coefficients of all hypotheses using regression and
choose the hypothesis with the smallest error such that we get the most likely
model function.

For the above process to yield good results, the true function that is being
modeled should not be qualitatively different from what the normal form can
express. Discontinuities, piece-wise defined functions, and other behaviors that
cannot be modeled by the normal form will lead to sub-optimal results. There
are, however, many practical scenarios where programs change their behav-
ior. For example, modern MPI implementations switch from one algorithm to
another, depending on the message size, the number of processes, or the network
topology. Whether an application fits within the cache or not also affects perfor-
mance in a discontinuous manner. Ilyas et al. [10] introduce a novel method in
Extra-P to detect such segmentation before generating empirical models. Specif-
ically, the authors developed heuristics to successfully find segmentation in data
with as few as six points, and a method to estimate the change point. In this
way we can continue to use the PMNF on the level of individual segments.

2.2 Model Generation

Extra-P requires a set of performance profiles as input, representing runs where
one or more parameters are varied. These profiles can be obtained using exist-
ing performance measurement tools. Here, we use the performance measurement
system Score-P [14], which collects several performance metrics, including execu-
tion time and various hardware and software counters, broken down by call path
and process. Other data sources from other performance measurement tools are
equally possible and simply require some form of input format conversion.

Based on the profiles, we compute one model for each combination of target
metric and call path, enabling a very fine-grained scalability analysis even of
very complex applications.

Following the Blind Seer – Creating Better Performance Models 109

Past experience has shown that as few as five different measurements for one
parameter are enough for successful model generation, allowing the automatic
discovery of scalability bottlenecks at very low cost.

3 Approach

We now introduce our novel modeling algorithm, starting with some key ideas
and then presenting the algorithm as a whole. We focus here on the case of
single-parameter modeling. Calotoiu et al. [4] have shown that finding multi-
parameter models can be reduced to combining the best single-parameter models
in different ways and selecting the combination which fits the measurements
best. Therefore our approach can be used as a drop-in replacement in the multi-
parameter scenario while maintaining all the benefits shown in this paper.

3.1 The SMAPE Metric

A key component of our new approach is the symmetric mean absolute percentage
error (SMAPE) metric [12]. Previously, Extra-P used the residual sum of squares
(RSS) to compare the quality of generated models and model hypotheses. Given
N experiments with measurements yi(1 ≤ i ≤ N) for the parameter values xi,
the RSS of a model f(xi) is calculated as

∑N
i=1(yi − f(xi))2. One disadvantage

of the RSS is that its value depends on the scale of the data that are being
modeled. Smaller input values will lead to a smaller RSS, and the squaring of
the residuals amplifies this problem. Furthermore, the RSS does not have a well
defined range, so its value cannot be interpreted easily.

SMAPE is a scale-independent, relative error metric that overcomes the
shortcomings of the RSS. It originates from time series forecasting and is defined
as:

1
N

·
N∑

i=1

|yi − f(xi)|
(|yi| + |f(xi)|)/2

· 100%.

Taken apart, it is the mean of a ratio, expressed as a percentage. The SMAPE
value is always in a range of 0% to 200%, where 0% means no error at all. This
makes it a helpful error metric that can be easily interpreted by a user and
compared across models with different scales. In contrast to the slightly simpler
MAPE metric, SMAPE does not break down when any yi is 0.

However, we still use the RSS to decide which of two model hypotheses better
fits the data, simply because we use regression to fit the hypothesis to the data,
which relies on the least squares method and thus optimizes the RSS metric. We
have observed that in most cases1 both metrics agree as far as the relative order
is concerned, so if one hypothesis has a better RSS than another, it usually has
a better SMAPE value as well.
1 This is not generally true, which also makes the unimodality results presented in

Sect. 3.2 not hold for SMAPE, even though the plots shown there usually show the
same patterns when generated from SMAPE instead of the RSS.

110 P. Reisert et al.

Fig. 1. Error of fitted simplified PMNF models for measurements from three different
kernels, sampled with a resolution of 1

40
for both α and β. (Color figure online)

3.2 Revisiting the PMNF

Over time, we have accumulated experiences of common use cases and what
type of analyses and configurations yield the most insightful results [5,11,16,20].
Based on these experiences, we propose to simplify the PMNF itself so that not
only it fits the common use cases better, but also increases resilience to noise.

Given the cost of gathering measurements, users commonly provide less than
10 different data points per parameter. We have discovered that allowing more
than one term in addition to c0 almost always leads to modeling insufficiently
understood behavior unless there are significantly more data points available,
especially if the data is affected by noise. Therefore, we suggest to use the fol-
lowing simplified PMNF:

f(x) = c0 + c1 · xα · logβ
2 (x)

Since optimal values for c0 and c1 are determined by regression whenever α
and β have been fixed, the remaining challenge is to select the best exponents
α and β, where α = 0 and/or β = 0 is allowed. Following the observed behavior
of real applications [5,11,16,20], we can restrict α < 6 and β < 3.

To gain insights into the space spanned by α and β, we created heatmap plots,
where each point represents the RSS of an optimal (fitted) model hypothesis with
exponents α and β. A representative selection of such plots is presented in Fig. 1.
From these plots we can see that the hypotheses with minimal error run along
a line, which starts on the horizontal axis (β = 0) and goes upwards and to the
left, approaching the vertical axis (α = 0). In some cases (usually for data that
require a purely logarithmic model, as in Fig. 1b), the line first slightly bends to
the right before finally turning to the left. Thus, the function that assigns the
error of the best hypothesis to a choice of α and β has the following properties:

– It is unimodal (i.e., it has a single minimum, and the function value decreases
as you approach that minimum from either side) over α for any choice of β.

– It is unimodal over β for α = 0.
– It is generally not unimodal over β for α > 0.

This, together with the fact that the variation along the line of minimal error
is very small, is the reason for the choice of four one dimensional slices of this

Following the Blind Seer – Creating Better Performance Models 111

two dimensional space, along which we will search for a minimum. We define
these slices as β = 0, β = 1, β = 2 and α = 0.

Along each of these slices we can now search for appropriate values of α (for
the slices where β is fixed) or β (where α is fixed), respectively. When we say
appropriate, we do not necessarily mean optimal, as we want to find exponents
that are representable by (preferably simple) fractions. We consider a fraction2

to be simpler than another whenever it has a smaller denominator than the
other.3 We have developed an algorithm to find such exponents, which we shall
introduce in the following section.

3.3 Iterative Refinement

Our algorithm is based on the idea that we can start with integer exponents
(i.e., fractions with denominator 1) and then iteratively refine the search space
by increasing the denominators while approximating the true minimum. Search
space refinement has previously been proposed by Shudler et al. [16] who sug-
gested repeated halving of an initial interval, which resulted in denominators
that are always powers of two. However, a computational kernel simulating a
three dimensional process, for example, can actually require an exponent of n

3
to model its complexity.

For the sake of presentation, let us now first look only at the slice β = 0, where
no logarithmic term is involved and the algorithm tries to find an appropriate
value for α. We shall later expand on how the algorithm deals with multiple
slices. First, all hypotheses with integer exponents α = 0, . . . , 5 are computed and
compared. The exponent leading to the best model is stored, and its successor
and predecessor are used as initial upper and lower bounds, respectively. After
this initialization, the actual iterative refinement process, presented in Fig. 2,
starts. It constitutes a variant of the golden section search [15], but uses the
mediant instead of the golden section to determine new candidate exponents,
for reasons explained below. The mediant of two fractions n1

d1
and n2

d2
is defined

as n1 +n2
d1 + d2

and has the property that it always lies in between the two original
fractions [8]. For example, the mediant of 1

2 and 1 (represented as 1
1) is 2

3 .
In every iteration, two new hypotheses are computed from the two mediants

in between the currently best hypothesis and each of the two bounds, and their
errors are compared to the best hypothesis. If the left mediant has the smallest
error, we cut off the right part of the search space by using the left mediant
for the new best hypothesis. If the right mediant is the winner, we do the same
on the other side. If none of the mediants has a smaller error, then the best
hypothesis remains the same and we use the two mediants as new upper and
lower bounds.

If we kept computing mediants in this way, we would obtain a sequence of
fractions with ever increasing denominators, ever more accurately approximating
the true minimum. This sequence is a path in the Stern-Brocot tree, an infinite
2 We are only concerned with fully reduced (also called irreducible) fractions here.
3 This is in line with a simplicity metric presented by Guthery [8, p. 163].

112 P. Reisert et al.

Fig. 2. Example showing three iterations of our refinement algorithm. In the first
iteration, the search space is cut on the right side, because the left mediant has the
smallest error; in the second iteration, it is cut on the left side; in the third iteration,
it is cut on both sides, because no mediant has a smaller error. Orange curved lines
indicate the calculation of the mediant. (Color figure online)

binary tree that enumerates all positive rational numbers [8]. Hence, when we
arrive at a fraction ni

di
in our algorithm, no fraction in between with a denomina-

tor less than di was missed, because such a fraction would have appeared earlier
along the path in the tree.

However, we want to stop after a small number of iterations (usually 1 to 3) to
keep the exponents readable and more intuitive. In order to decide when to stop,
we can draw on the benefits of the SMAPE metric, as it allows our algorithm
to make decisions based on the relative improvement of its value. Thus, the
SMAPE improvement will serve as a termination criterion in our algorithm.
Moreover, we have observed that most models which have a SMAPE value that
is not at least twice as good (where smaller is better) as that of the constant
model do not justify the choice of a non-constant model. After manual inspection
of the underlying data, in the vast majority of cases the data appears roughly
constant, with small deviations in both directions that can be explained by noise.
Since any model will fit the data better than the constant model in such a case
(because the constant model cannot bend in any way), we penalize the choice
of the non-constant model to reduce false positives. We can now outline the full
algorithm:

Step 1. For each slice, find and remember the best integer exponent.

Step 2. Refine each slice according to the previously described method. All
slices execute one iteration of the algorithm before the next iteration is started.
In each iteration, the best model hypothesis among all slices is considered as a
candidate for the globally best hypothesis. To be accepted it needs to provide an
improvement over the previously accepted best hypothesis that is large enough
to justify a finer grained exponent. We use SMAPE to measure this improvement
and define an acceptance threshold of 1.5 (i.e., an improvement of at least 50%)

Following the Blind Seer – Creating Better Performance Models 113

per iteration. The search terminates when in a single iteration no slice improves
its SMAPE value by at least a factor of 2 (we call this the termination threshold).

Step 3. After the iterative refinement has terminated, the winner hypothesis
from the previous step is compared to the constant model and accepted only
if the SMAPE value has improved by at least a factor of 2 (the non-constancy
threshold), otherwise, as discussed earlier, it is rejected in favor of the simpler
constant model.

4 Evaluation

We have evaluated our algorithm in two different ways. First, to gauge the accu-
racy of the algorithm, we evaluated it on synthetic data with known underlying
functions. We compared the results with the output of the original algorithm, for
which the following default search space was used, matching the one suggested
in the latest publication by Calotoiu et al. [4]: n = 2, I = { 0

4 , 1
4 , . . . , 12

4 }, and
J = {0, 1, 2}. Second, to understand how helpful the new algorithm is in practice
and the improvements it offers, we evaluated it on measured data collected in
previous case studies. The latter results, however, are more difficult to interpret
because the ground truth (i.e., the true underlying functions, which the modeling
ideally should recover) is with few exceptions practically inaccessible.

4.1 Synthetic Data

Figure 3 presents evaluation results based on randomly generated synthetic data.
Because we have found most real models to be constant or very simple—the
common case that our method is primarily designed for and that matches the
asymptotic complexities of many known algorithms—we defined different classes
of functions based on the following classification of terms:

– Common: x, x2, x3, log2(x)
– Rare: x

i
2 for i ∈ {1, 3, 5}, x

i
3 for i ∈ {1, 2, 4, 5, 7, 8}, log22(x)

– Exotic: x
i
4 for i ∈ {1, 3, . . . , 11}, x

i
5 for i ∈ {1, . . . , 14} \ {5, 10}, log

1
2
2 (x),

log
3
2
2 (x)

A function classified as rare may contain terms classified as common, but it
must contain at least one rare term. Likewise, exotic functions might contain
terms from the other classes, but must contain at least one of the exotic terms,
which are terms that we have not observed so far in real applications but we
assume that they could occur.

For each of the seven distinct cases shown in Fig. 3, we generated 1000 random
functions and evaluated them for each of four different sets of x values that are
representative for Extra-P’s use cases ({2, 4, 8, 16, 32}, {8, 16, 32, 64, 128}, {32,
64, 128, 256, 512}, and {128, 256, 512, 1024, 2048}). To each function value we
added ±2% of noise, drawn from a uniform distribution, before using the values
as input for the modeling algorithms.

114 P. Reisert et al.

Fig. 3. Comparison of the original and our new algorithm using values of randomly
generated functions with ±2% of noise as input. The functions are built according to
the PMNF with n = 1 or n = 2, and their coefficients c0, c1 and c2 are calculated by
sampling a ∈ [−2, 3] uniformly and then computing 10a. (Color figure online)

We then checked whether (1) the resulting model’s exponents were matching
exactly the expected lead order exponents of the input function and/or (2) the
model’s prediction for an x value that is four times as large as the largest value
used for modeling is within the ±2% noise level of the actual function value. For
functions with two additive non-constant terms, we define the lead order term to
be the one that contributes to the function more than the other when evaluated
at an x value that is four times as large as the largest one used for modeling.

For constant, common, and rare functions, our algorithm shows improve-
ments upon the original one with respect to both the amount of exactly matched
exponents as well as the number of accurate predictions, even when that algo-
rithm is restricted to model only a single term. While the results for the exotic
functions are less favorable, the old algorithm is not able to produce significantly
better results with either n = 1 or n = 2, and we still have to find such functions
in practice.

4.2 Case Studies

We used measurements from previous case studies to evaluate our new algo-
rithm on measured data. The measurements include a variety of call paths (i.e.,
kernels) and different metrics, such as runtime, number of function calls, mem-
ory footprint, and network traffic. Whereas the evaluation using synthetic data
gives us confidence that the method works in principle, the evaluation with real
applications shows its practical benefit.

The results of the comparison, which are presented in Table 1, show that
when the last (i.e., largest) measured data point is excluded from the data used to
calculate the model, the model produced by our new algorithm allows for a better

Following the Blind Seer – Creating Better Performance Models 115

Table 1. Comparison of the original and our improved algorithm, using data from
previous case studies, showing the quality of predictions of the last data point when
that point is not used for modeling.

Benchmark Number
of points

Model
count

Model predictions
(percentage of all models)

Mean relative
prediction error [%]

Better Same Worse Before Now

Sweep3D [5] 7 96 26.04 56.25 17.71 17.26 6.31

HOMME [5] 9 670 18.81 68.51 12.69 3.69 3.03

MILC [5] 9 1496 30.95 56.48 12.57 36.71 14.53

UG4 [20] 5 2026 52.62 38.01 9.38 68.30 15.58

MPI collect. [16] 7–8 26 65.38 7.69 26.92 52.53 15.89

BLAST [4] 5 103 31.07 41.75 27.18 34.92 10.38

Kripke [4] 5 36 36.11 38.89 25.00 33.05 8.32

Total 5–9 4453 39.12 49.11 11.77 45.71 12.97

prediction of the last point in 19%–65% of the cases, which corresponds to 53%–
85% of those models that changed in each benchmark. Although some predictions
do get worse, the mean relative prediction error, which we computed using the
SMAPE formula (but this time averaging over the last data point of all models
instead of all data points of a single model), decreases across all applications, in
all but one case even significantly. We use this metric here for reasons similar to
those discussed in Sect. 3.1: We need a scale-independent error metric because
the scale of the data varies heavily among the different benchmarks and modeled
performance metrics.

Not shown in the table is the number of models that are constant, which
has considerably increased in every single case study (from 44% to 76% overall).
Because the synthetic evaluation has shown that our new algorithm is able to
recognize constant functions more reliably, this indicates that the previous algo-
rithm might have modeled noise or tried to fit a PMNF function to inaccurate
measurements.

5 Related Work

In recent years, performance modeling of HPC applications has become a very
active field of study [3,4,6,7,13,17,19]. Previous work explored regression-based
approaches for predicting program scalability [2,7]. In one case [2], Barnes et
al. used linear regression to fit the measured execution time to a second-order
polynomial. In a different study [7], the authors used Active Learning to improve
regression-based models they produced from measured data. Active Learning
is a group of machine learning techniques in which the learner can decide to
query the information source, at some additional cost, to label a datapoint that
is otherwise hard to label. It means that to improve the initial performance
model the technique would decide in which configuration it should run the next

116 P. Reisert et al.

experiment so that the result produces the best improvement in the model with
minimal cost. Active Learning complements our methodology by starting with
a small set of measurements and deciding which experiments to run next. In
contrast to regression-based techniques, our methodology produces simplified
PMNF models that are based on combinations of logarithmic and linear terms
one often finds in common algorithms. It provides the user with more insights
into the behavior of the modeled applications.

A number of previous studies [3,9] relied on semi-analytical modeling to pro-
duce performance models. However, unlike semi-analytical approaches, empirical
performance modeling focuses on a common user, who might not have the neces-
sary expertise to construct the initial model. The refinement algorithm advances
this concept even further by relieving the user from the burden of providing the
terms for the model search space.

Aspen [18] and Palm [19] are both top-down analytical modeling approaches.
The former offers a domain-specific language and the latter source-code anno-
tations. While both of these approaches produce accurate models, they are not
empirical and therefore can miss potential bottlenecks and scalability limitations.

Meswani et al. [13] present a different modeling approach that focuses only
on hybrid CPU-GPU systems. Another approach which focuses only on shared
memory machines is ESTIMA [6]. It measures the number of stalled cycles on a
small number of cores and estimates the slowdown on a higher number of cores.
Although both approaches predict future scalability of applications, they do not
offer the same degree of flexibility as Extra-P does.

6 Conclusion

In this paper, we propose a novel algorithm for empirical performance modeling
as part of the Extra-P tool. In contrast to previous work, we remove the need
for a predefined search space and also significantly reduce the number of false
positives by being more resilient to noisy measurements of constant behavior. Yet
most of the models generated with our algorithm are able to make predictions
that are equally or even more accurate than before, which we demonstrate with
experiments using both synthetic and real data. Thus, our work opens the way
for a performance modeling workflow that is more automated than ever and
equips developers with a tool that helps them efficiently find scalability bugs in
large applications.

Acknowledgements. This work was supported in part by the German Research
Foundation (DFG) through the Priority Programme 1648 Software for Exascale Com-
puting (SPPEXA) and the Programme Performance Engineering for Scientific Soft-
ware. Additional support was provided by the German Federal Ministry of Education
and Research (BMBF) under Grant No. 01IH16008, and by the US Department of
Energy under Grant No. DE-SC0015524. Finally, we would like to thank the Univer-
sity Computing Center (Hochschulrechenzentrum) of TU Darmstadt for providing us
with access to the Lichtenberg Cluster.

Following the Blind Seer – Creating Better Performance Models 117

References

1. Extra-P - automated performance-modeling tool.
www.scalasca.org/software/extra-p

2. Barnes, B.J., Rountree, B., Lowenthal, D.K., Reeves, J., de Supinski, B., Schulz,
M.: A regression-based approach to scalability prediction. In: Proceedings of the
International Conference on Supercomputing (ICS), pp. 368–377. ACM (2008)

3. Bauer, G., Gottlieb, S., Hoefler, T.: Performance modeling and comparative analy-
sis of the MILC lattice QCD application Su3 Rmd. In: Proceedings of the 2012
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-
ing (CCGRID), pp. 652–659. IEEE Computer Society (2012)

4. Calotoiu, A., Beckingsale, D., Earl, C.W., Hoefler, T., Karlin, I., Schulz, M., Wolf,
F.: Fast multi-parameter performance modeling. In: Proceedings of the 2016 IEEE
International Conference on Cluster Computing (CLUSTER), pp. 1–10. IEEE
Computer Society (2016)

5. Calotoiu, A., Hoefler, T., Poke, M., Wolf, F.: Using automated performance
modeling to find scalability bugs in complex codes. In: Proceedings of the 2013
ACM/IEEE Conference on Supercomputing (SC), pp. 45:1–45:12. ACM (2013)

6. Chatzopoulos, G., Dragojević, A., Guerraoui, R.: ESTIMA: extrapolating scalabil-
ity of in-memory applications. In: Proceedings of the ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP), pp. 27:1–27:11. ACM
(2016)

7. Duplyakin, D., Brown, J., Ricci, R.: Active learning in performance analysis. In:
Proceedings of the 2016 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 182–191. IEEE Computer Society (2016)

8. Guthery, S.B.: A Motif of Mathematics. Docent Press, Boston (2011)
9. Hoefler, T., Gropp, W., Thakur, R., Träff, J.L.: Toward performance models of

MPI implementations for understanding application scaling issues. In: Keller, R.,
Gabriel, E., Resch, M., Dongarra, J. (eds.) EuroMPI 2010. LNCS, vol. 6305, pp.
21–30. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15646-5 3

10. Ilyas, K., Calotoiu, A., Wolf, F.: Off-road performance modeling - how to deal with
segmented data. In: Rivera, F.F., et al. (eds.) Euro-Par 2017. LNCS, vol. 10417,
pp. 36–48. Springer, Cham (2017)

11. Iwainsky, C., Shudler, S., Calotoiu, A., Strube, A., Knobloch, M., Bischof, C., Wolf,
F.: How many threads will be too many? On the scalability of OpenMP implemen-
tations. In: Träff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015. LNCS, vol.
9233, pp. 451–463. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48096-0 35

12. Kreinovich, V., Nguyen, H.T., Ouncharoen, R.: How to estimate forecasting qual-
ity: a system-motivated derivation of symmetric mean absolute percentage error
(SMAPE) and other similar characteristics. Technical report, Paper 865, University
of Texas at El Paso (2014)

13. Meswani, M.R., Carrington, L., Unat, D., Snavely, A., Baden, S., Poole, S.: Mod-
eling and predicting performance of high performance computing applications on
hardware accelerators. Int. J. High Perform. Comput. Appl. 27(2), 89–108 (2013)

14. an Mey, D., et al.: Score-P: a unified performance measurement system for petas-
cale applications. In: Bischof, C., Hegering, H.G., Nagel, W., Wittum, G. (eds.)
Competence in High Performance Computing 2010, pp. 85–97. Springer, Heidel-
berg (2011). doi:10.1007/978-3-642-24025-6 8

15. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes:
The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge
(2007)

http://www.scalasca.org/software/extra-p
http://dx.doi.org/10.1007/978-3-642-15646-5_3
http://dx.doi.org/10.1007/978-3-662-48096-0_35
http://dx.doi.org/10.1007/978-3-642-24025-6_8

118 P. Reisert et al.

16. Shudler, S., Calotoiu, A., Hoefler, T., Strube, A., Wolf, F.: Exascaling your library:
will your implementation meet your expectations? In: Proceedings of the Interna-
tional Conference on Supercomputing (ICS), pp. 165–175. ACM (2015)

17. Shudler, S., Calotoiu, A., Hoefler, T., Wolf, F.: Isoefficiency in practice: configuring
and understanding the performance of task-based applications. In: Proceedings of
the ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP), pp. 1–13. ACM (2017)

18. Spafford, K.L., Vetter, J.S.: Aspen: a domain specific language for performance
modeling. In: Proceedings of the 2012 ACM/IEEE Conference on Supercomputing
(SC), pp. 84:1–84:11. IEEE Computer Society Press (2012)

19. Tallent, N.R., Hoisie, A.: Palm: easing the burden of analytical performance model-
ing. In: Proceedings of the 28th ACM International Conference on Supercomputing
(ICS), pp. 221–230. ACM (2014)

20. Vogel, A., Calotoiu, A., Strube, A., Reiter, S., Nägel, A., Wolf, F., Wittum, G.:
10,000 performance models per minute – scalability of the UG4 simulation frame-
work. In: Träff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015. LNCS, vol. 9233,
pp. 519–531. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48096-0 40

http://dx.doi.org/10.1007/978-3-662-48096-0_40

	Following the Blind Seer -- Creating Better Performance Models Using Less Information
	1 Introduction
	2 Empirical Performance Modeling with Extra-P
	2.1 The Performance Model Normal Form
	2.2 Model Generation

	3 Approach
	3.1 The SMAPE Metric
	3.2 Revisiting the PMNF
	3.3 Iterative Refinement

	4 Evaluation
	4.1 Synthetic Data
	4.2 Case Studies

	5 Related Work
	6 Conclusion
	References

