
Performance Evaluation of Computation
and Communication Kernels of the Fast
Multipole Method on Intel Manycore

Architecture

Mustafa Abduljabbar1(B), Mohammed Al Farhan1(B), Rio Yokota2,
and David Keyes1

1 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
{Mustafa.AbdulJabbar,mohammed.farhan,david.keyes}@kaust.edu.sa

2 Tokyo Institute of Technology, Tokyo, Japan
rioyokota@gsic.titech.ac.jp

Abstract. Manycore optimizations are essential for achieving perfor-
mance worthy of anticipated exascale systems. Utilization of manycore
chips is inevitable to attain the desired floating point performance of
these energy-austere systems. In this work, we revisit ExaFMM, the
open source Fast Multiple Method (FMM) library, in light of highly
tuned shared-memory parallelization and detailed performance analysis
on the new highly parallel Intel manycore architecture, Knights Landing
(KNL). We assess scalability and performance gain using task-based par-
allelism of the FMM tree traversal. We also provide an in-depth analy-
sis of the most computationally intensive part of the traversal kernel
(i.e., the particle-to-particle (P2P) kernel), by comparing its performance
across KNL and Broadwell architectures. We quantify different configu-
rations that exploit the on-chip 512-bit vector units within different task-
based threading paradigms. MPI communication-reducing and NUMA-
aware approaches for the FMM’s global tree data exchange are examined
with different cluster modes of KNL. By applying several algorithm- and
architecture-aware optimizations for FMM, we show that the N -Body
kernel on 256 threads of KNL achieves on average 2.8× speedup com-
pared to the non-vectorized version, whereas on 56 threads of Broadwell,
it achieves on average 2.9× speedup. In addition, the tree traversal ker-
nel on KNL scales monotonically up to 256 threads with task-based pro-
gramming models. The MPI-based communication-reducing algorithms
show expected improvements of the data locality across the KNL on-chip
network.

Keywords: AVX-512 · Fast multipole method · Intel knights landing

1 Preliminaries and Outline

Contemporary High-Performance Computing (HPC) systems are assembled from
thousands of shared-memory compute nodes, which are progressively metamor-
phosing from multicore to manycore architecture with a hybrid layered memory
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 553–564, 2017.
DOI: 10.1007/978-3-319-64203-1 40



554 M. Abduljabbar et al.

hierarchy. Emerging manycore processors feature energy efficient, low frequency
compute cores that support lightweight processing thread(s). For example, the
second generation Intel Xeon Phi “Knights Landing” (KNL) can accommodate,
in a single chip, up to 72 cores and 4 threads per core, which access an on-die
high bandwidth memory. This immense computational power can be exploited
by compute-intensive scientific algorithms.

The N -Body problem is used to sum up mutual interactions of discrete enti-
ties in O(N2) steps, which is a practical example of a compute-intensive kernel
that can utilize the emerging manycore hardware. Its importance stems from
the fact that it appears in many scientific applications such as electromagnet-
ics, electrostatics, fluid mechanics, and astrophysics. In the form of the Fast
Multipole Method (FMM), it is used either as a direct solver, or as an accelera-
tor within an iterative solver for particular matrix-vector multiplications arising
from the solution of Laplace or Helmholtz Partial Differential Equations (PDEs).
N -Body methods can be considered as “matrix-free” methods, where a matrix
is dynamically built before being multiplied by the source-point vector. This
makes them favorable when the geometry of a problem changes rapidly such as
particle-based methods where particles evolve every time step [15]. Tree codes
like Barnes-Hut [3] build a geometric quad/oct tree to bring the quadratic com-
plexity of N -body problem down to O(N log N). This is done by introducing
a cutoff distance beyond which particles interact as cells located at the center
of mass. FMM is an example of a tree code that uses hierarchical multipole
expansions to approximate the far-field interactions up to specific error bound
(ε) derived from the Multipole Acceptance Criteria (MAC) [7]. It solves the N -
Body problem in asymptotically linear time complexity (O(N)). FMM is a highly
computationally intensive algorithm that is favorable to manycore architectures.

1.1 Main Components of Parallel FMM

The general scheme of any parallel Fast Multipole solver consists of the several
modules specified below. These typically execute in a fork-join sequence, with
some exceptions mentioned in [2,17].

– Partitioning stage: Domain-decomposes the input while maximizing locality
across processes. Foundations can be found in [12].

– Oct/Quad tree construction.
– Upward pass: A bottom-up sweep of the tree to execute the Particle-to-

Multipole (P2M) and Multipole-to-Multipole (M2M) kernels. FMM kernels
are explained in [7].

– Traversal: A depth-first local and global tree traversal to calculate near-field
interaction by calling the Particle-to-Particle (P2P) or aggregate multipoles
to local expansions for the far-field (i.e., Multipole-to-Local (M2L)).

– Communication: The far-field cells are propagated to other processes in a
sender-initiated fashion.

– Downward pass: A top-down traversal that reduces local expansions using
Local-to-Local (L2L) and Local-to-Particle (L2P).



Performance Evaluation of Computation and Communication Kernels 555

Sections 2 through 4 briefly explain the P2P, traversal and communication
modules, which contribute to the bulk of the total execution time, in the context
of manycore parallelism.

Major fundamental and incremental contributions describe parallel FMM
algorithms and implementations on shared and distributed memory [6]. Among
these contributions are parallel FMM libraries that include PVFMM [13], pfa-
clON, PEPC and ExaFMM [16]. Our choice for this paper is ExaFMM due
to its reported efficient shared-memory optimizations, which range from adapt-
ability to different task-based threading models to low-level Advanced Vector
eXtension (AVX) vectorization. On a single socket Intel Xeon X560, ExaFMM
outperforms the traditional FMM libraries [14]. Furthermore, Bédorf et al. pro-
vide an implementation and analysis of a gravitational N -Body tree code, that
has been redesigned to run on top of the GPU architecture [4]. This results in a
processing rate of 2.8 million particles/second.

1.2 Paper Contributions

The main contributions of this paper are:

– Exploit aggressive Single Instruction Multiple Data (SIMD) optimizations to
vectorize the N -Body kernel, and also optimize the outer and the inner loop
via certain loop tiling techniques with a specific stride size.

– Perform performance comparisons and analysis of the N -Body kernel
between: (1) handwritten vectorization code using Intel Intrinsics and the
compiler’s auto-vectorization, and (2) inner and the outer loop tiling, on the
state-of-the-art manycore and multicore Intel architectures.

– Carry out in-depth performance analysis and benchmarking of different task-
based programming paradigms to parallelize the Tree Traversal kernel of
FMM on KNL architecture.

– Analyze the performance of various MPI-based NUMA-aware communication
algorithms of FMM within a single node to overcome the hurdles of cache line
transfer inside the on-chip network of KNL, and study multiple cluster modes
of KNL.

2 Direct N-Body Kernel on Modern Intel Architectures

The direct N -Body Kernel is manifested as the P2P near-field interactions within
FMM. Along with the M2L kernel, P2P contributes to the bulk of execution time
by performing the largest share of FMM computations [9]. The number of Float-
ing Point Operations (FLOPs) per each P2P call is 20×ni ×nj , where ni is the
size of the target cell (outer loop), nj is the size of the source cell (inner loop),
and 20 is the number of operations needed to calculate: (1) the smoothed Laplace
potential (φi =

∑N
j=1

mj

rij
), (2) the accelerations (ai = ∇φi = −∑N

j=1
mjrij
r3ij

), and

(3) the distance between bodies located at xi and xj , given ε as the smoothing
factor (rij =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 + ε2). We store source and



556 M. Abduljabbar et al.

target fields in separate vectors to avoid loop conflict dependencies. This facil-
itates automatic and handwritten SIMD optimizations to exploit each core’s
two Vector Processing Units (VPUs) [10]. The outer loop is parallelized using
OpenMP and the effect of hyperthreading is explored with two and four threads
per a KNL core. A classical question that arises in the situation of nested for
loops is at which level the loop should be vectorized. Along with the SIMD opti-
mization techniques, this question is addressed thoroughly in the subsequent
results section.

3 Task-Based Traversal of ExaFMM

As mentioned in Sect. 1.1, the traversal stage calculates near-field or self inter-
actions (P2P); whereas far-field potentials are aggregated to well-separated cells
through M2L kernel calls. The essential difference between pure tree codes and
FMM is that the former usually constructs the tree using a linked-list data struc-
ture; the tree is traversed in a recursive top-down manner, and well-separated
cells are identified by applying the MAC. In contrast, adaptive FMM does not
traverse the tree, nor does it construct a linked-list between parent and child cells.
It, however, constructs a Hilbert/Morton key by interleaving bits of X − Y − Z
cell coordinates. Typically the parent’s neighbor’s child cell is considered well-
separated. Nonetheless, there are several downsides of this technique, which are
highlighted in [14].

Due to potential task-based parallelism, we configure ExaFMM to use Dual-
Tree-Traversal (DTT), which traverses the source and target cells at the same
time. Classical OpenMP threading is not applicable for the lack of an outer-
loop over target cells. DTT takes a source and a target cell, and expands the
larger until either MAC is satisfied or both are leaf cells. Algorithms 1 and 2
demonstrate the general structure of DTT code. Nested task-parallelism can be
effectively incorporated by passing an integer nspawn that indicates the size of
cells that can spawn a task as shown in Line 8 of Algorithm2.

Algorithm 1. DualTreeTraversal(Ci, Cj)

1 if Ci > Cj then
2 foreach ci in Cj .Children do
3 Interact (ci,Cj)

4 else
5 foreach cj in Ci.Children do
6 Interact (Ci,cj)



Performance Evaluation of Computation and Communication Kernels 557

Algorithm 2. Interact(Ci, Cj)

1 if Ci and Cj are leafs then
2 P2P(Ci,Cj)
3 else
4 if Ci and Cj satisfy MAC then
5 M2L(Ci,Cj)
6 else
7 if SizeOf (Ci,Cj)> nspawn then
8 Spawn (DualTreeTraversal (Ci,Cj))
9 else

10 DualTreeTraversal (Ci,Cj)

4 NUMA-Aware Communication Reducing Algorithms

The local essential tree (LET) is the union of trees representing the entire domain
as perceived by the local process. LET communication is known to be the major
factor that hinders FMM’s perfect scaling. References [1,8] describe specific com-
munication protocols named HSDX and NBX respectively. They provide opti-
mizations that are specific to distributed sparse data exchange, which generally
suits the communication structure of FMM’s global tree. We explore the effect
of different communication strategies within the KNL chip. Note that we imple-
mented all of these strategies on an ExaFMM branch [16]. Table 1 briefly high-
lights various techniques that we benchmark. Note that “Hierarchical” protocol
means that the data is aggregated along a structured hierarchy such as graphs
and trees, whereas “sparse-aware” protocol avoids direct communication with
partitions without or with very little data to exchange (almost negligible). In
the context of NUMA systems, hierarchical protocols tend to maximize locality
of the data within each local caches, and in the case of data exchange, each
process requires the data only from its neighboring MPI ranks. Hence, the com-
munication is mostly localized inside the NUMA socket. However, if the required
data happens to be in different NUMA socket, then MPI would communicate
the cache line from the socket’s memory, which is very negligible in proportion
to locality maximizing communication protocols.

5 Results and Discussions

5.1 Experimental Setup

For KNL experiments, we used two Linux servers that run CentOS Linux
7.3.1611 Operating System. Both servers are powered by Intel Xeon Phi CPU
7210, which is equipped with 64 hardware cores that execute at 1.30 GHz clock
frequency, and both have access to 116 GB of DRAM. The typical specifications
of the KNL chip that we used here can be found in [10]. For Broadwell experi-
ments, we used a Linux server that runs Ubuntu 14.04.5 LTS Operating System.



558 M. Abduljabbar et al.

Table 1. MPI-based communication paradigms

Name MPI calls Complexity Hierarchical Sparse-aware

Alltoallv MPI Alltoallv MPI specific Yes No

Hierarchical Alltoallv MPI Comm Split

MPI Alltoallv

MPI specific Yes No

Point-to-Point MPI Isend

MPI Irecv

MPI Wait

O(P ) No No

Hypercube MPI Comm Split

MPI Isend

MPI Irecv

O(logP ) Yes Yes

NBX MPI Ssend

MPI Srecv

MPI Ibarrier

O(logP ) No Yes

HSDX MPI Distgraph create

MPI Neighbor alltoallv

Ω(logP ) O(log2 P ) Yes Yes

One-sided MPI Win create

MPI Get

O(P ) No No

The server is powered by dual sockets of Intel Xeon CPU E5-2680 v4, each of
which is equipped with 14 hardware cores that execute at 2.40 GHz clock fre-
quency. Each socket has access to a single address space of size 64 GB of DRAM.
Therefore, the server has a NUMA node of in total 28 hardware cores and 128 GB
of DRAM. For KNC experiments, we used a Linux server that runs Scientific
Linux release 6.4 (Carbon) Operating System. The server is powered by two
Intel Xeon Phi 7120P coprocessors, each of which is equipped with 61 hardware
cores that run at 1.238 GHz clock frequency, and each has access to 16 GB of
DRAM. The typical specifications of the KNC chip that we used here can be
found in [5]. The two KNC chips are hosted by a dual socket Intel Sandy Bridge
E5-2670 CPU. Each socket consists of 8 hardware cores (in total 16 cores). The
CPU clock speed is 2.6 GHz. Both sockets share a 64 GB DRAM (32 GB per
socket). All of the experiments here were run with Intel Parallel Studio XE 2017
as the main software stack that comes with Intel ICC, MPI, TBB, OpenMP, and
Cilk. The data sets are based on a single precision Laplace kernel with Cartesian
coordinates, and the FMM order of expansion is set to 4. For the KNL results,
all of the experiments are ran with -xMIC-AVX512, and for KNC, we use -mmic
compiler option. For Broadwell, on the other hand, we use -xHost compiler flag.
All of the experiments are compiled with -O3 compiler optimization flag. All of
the experiments here are summarized using the arithmetic mean of the CPU
wall clock time across 10 independent runs, which forms the sample space, and
an error bar is drawn to show the +/− standard deviation of the mean for each
experimental sample.

5.2 SIMD Optimizations of the N-Body Kernel

The N -Body kernel is constructed with two nested for loops. The outer
loop is the target loop and the inner loop is the source loop. We explore loop



Performance Evaluation of Computation and Communication Kernels 559

57 (Broadwell) 256 (KNL)
Number of Threads

0

10

20

30

40

50

60

M
ea

n 
T

im
e 

[s
]

Target-Intrin
Source-Intrin
Target-Auto
Source-Auto
No-Vec

Fig. 1. Direct N -Body kernel running on two Intel architectures, KNL (quadrant clus-
ter and flat memory modes) and Broadwell [Problem Size: 1 million Particles]

tiling on each loop, with 16 stride size for KNL. Therefore, in a single CPU
cycle, each OpenMP thread fetches 16 bytes of data into the vector unit. In
the case of two threads per core, each thread processes 16 bytes simultane-
ously utilizing the two vector units per core of KNL. However, if one thread
per core is running, the next 16 bytes are pipelined in the second vector unit,
and the thread scheduler alternates between them in a serialized manner, which
keeps the core busy as much as possible. Furthermore, when the full number
of threads per core are running, the threads are pipelined to process the data
of both vector units. Therefore, with four threads per core, KNL utilizes both
vector units and the pipelining potentials available in the out-of-core execution
of the core’s instruction pipeline. We observe that tiling targets’ as opposed
to sources’ wins consistently in KNL; in each outer loop iteration, cache lines
pertaining to elements in the target vector are loaded only once to AVX512
register using mm512 load ps intrinsic. This in turn does not require calling
mm512 reduce add ps after iterating over sources, which must be done other-
wise because vectorizing effects of source fields must eventually be reduced to
one value at target. Note that this kernel is run independent of FMM to explore
the effect of the used techniques in detail, hence the chosen problem sizes are rel-
atively small due to the quadratic compute and memory complexities. Figure 1
presents the performance of the N -Body kernel running on KNL comparing five
different optimization techniques: (1) Target-Intrin: N -Body outer-loop tiling.
(2) Source-Intrin: N -Body inner-loop tiling. (3) Target-Auto: outer-loop wrap-
ping with #pragma simd. (4) Source-Auto: inner-loop wrapping with #pragma
simd. (5) No-vec: scaler code.

We note that the handwritten vectorization does not improve much over auto-
vectorization in KNL. It even appears that the ICC compiler was able to detect
the event of reciprocal square root known as mm512 rsqrt28 ps. Overall, vec-
torization benefits the kernel and shows significant improvements compared to



560 M. Abduljabbar et al.

10 12 14 16 18
log 2 N

0

500

1000

1500

2000

2500

G
Fl

op
s

Target-Intrin
Source-Intrin
Target-Auto
Source-Auto

(a) KNL - 256 Threads

10 12 14 16 18
log 2 N

0

200

400

600

800

1000

1200

1400

1600

G
Fl

op
s

Target-Intrin
Source-Intrin
Target-Auto
Source-Auto

(b) KNC - 244 Threads

Fig. 2. FLOP/s performance across the 2 Intel manycore generations, KNL (quadrant
cluster and flat memory modes) and KNC

the non-vectorized version of the code. This is not entirely the case in Broadwell;
the variations are not proportional to their rivals in KNL, which suggests that
outer-loop manual tiling cannot be avoided in Broadwell. We infer that KNL’s
AVX512 has a more sophisticated mechanism of matching correct vectorization
than AVX2.

Figure 2 draws a comparison between floating point applicabilities of the 2
manycore generations by Intel, namely KNC and KNL, in terms of the aforemen-
tioned vectorization techniques. Error bars suggest reasonable stability in clock-
ing frequency in both generations. Auto-vectorization in KNL reaches maximum
FLOPs rate in an at least four times smaller problem, which strongly suggest
that it utilizes local caches in a much more efficient manner. The drop in perfor-
mance for slow versions happens exactly at the time when the performance of
manual target vectorization saturates. This also suggests that the drop happens
when prefetching and cache reuse could no more hide the overhead caused by
source vectorization [5], which is 215 in KNL (Fig. 2a) and 214 in KNC (Fig. 2b).

5.3 Dual Tree Traversal with Task-Based Threading

Figure 3 shows traversal scalability using several threading libraries. The pur-
pose of this test is to assess the DTT (Algorithm 1) performance using task-
based/lightweight threading libraries on manycore architectures. Error bars are
hardly observable, because frequency scaling has been disabled on KNL to sta-
bilize performance. As expected, there is a general loss of scalability aspect
when hyperthreading is enabled. Intel TBB perfectly scales up to 64 threads (1
thread/core). Scaling to the full chip, i.e., 256 threads, its relative speedup is
14, 94, with an efficiency of 0.469, compared to 0.4249 in Intel Cilk and 0.1912 in
OpenMP tasks. It is observed that there is a weak separation between user-level
and OS-level threads in OpenMP tasks. This is due to the very marginal perfor-
mance gain from enabling hyperthreading in OpenMP tasks [5] (1.1× speedup



Performance Evaluation of Computation and Communication Kernels 561

8 16 32 64 128 256
Number of Threads

10 1

10 2

M
ea

n 
Ti

m
e 

[s
]

Intel TBB
Intel Cilk Plus
OpenMP Tasks
Perfect Scaling

Fig. 3. Dual tree traversal using different task threading models. [Problem Size: 100
million Particles]

between 64 and 128 threads). Intel TBB, therefore, has the lowest task creation
overhead, due to its efficient performance for heavily recursive tasks. However,
Cilk does not seem to pose significant degradation in performance although it has
minimal development time since it is integrated as a C++ language extension
in modern Intel compilers.

5.4 Communication Reducing on KNL

As compute nodes are packaged with more low frequency cores, it is essential
that MPI communication scales within main memory or across the NUMA sock-
ets. Therefore, we apply various MPI communication reducing algorithms from
Table 1 to FMM’s tree communication. Results that are shown in Fig. 4 are exe-
cuted with 64 MPI ranks, and a single thread per each rank, so that the effect
of locality-maximizing behavior can be clearly observed.

HSDX (Distgraph) performs better that the others, and this is due to
restricting exchanges to neighbors only, which makes it potentially NUMA-aware
and yields acceptable on-chip performance. In other words, in HSDX algorithm,
we tend to maintain a load balance between the KNL tiles, so that each tile acts
like a sender and receiver of the cache lines. Thus, this model of communication
prevents any long distance cache line transfer inside the chip, and maintains load
balance of the cache line distributions across the tiles. To further prove this, we
investigate this phenomena when we change the cluster mode of KNL. As you
can see in Fig. 5, the HSDX the cluster modes of KNL do not have significant
performance impact on the algorithm, and the performance differences between
different modes are very negligible. Note that SNC-2 and SNC-4 modes are still
experimental modes [11].

One-sided communication has a large overhead for shared window creation
using MPI Win create, which requires soft locking prior to data access. This
latency cannot be hidden when fetching sparse data either from the memory or



562 M. Abduljabbar et al.

Hall
toa

ll

Dist
gr

ap
h

OneS
ided

AllT
oA

ll
NBX

P2P
0

0.5

1

1.5

M
ea

n 
T

im
e 

[s
]

Fig. 4. Comparison of different MPI communication algorithms of LET communication
kernel running on KNL (quadrant cluster/flat memory modes) [Problem Size: 80 million
Particles]

Quad
ra

nt

All2
All

SNC-4

SNC-2

Hem
isp

her
e

0

0.2

0.4

0.6

0.8

1

1.2

M
ea

n 
T

im
e 

[s
]

Fig. 5. Comparison of different cluster modes of KNL running Distgraph communica-
tion algorithm with 64 MPI ranks and 1 TBB Thread per MPI rank [problem size is
80 million particles]

from the other L2 caches. Even though, KNL has a great support for AVX512
prefetching instructions, locking the window before accessing the data imposes
an implicit synchronization barrier on every data read. This creates a significant
overhead on a cache-coherent systems.

6 Conclusion and Future Work

Facing manycore processors with high degree of fine-grained thread parallelism
within a single shared-memory compute node, practitioners are now compelled
to investigate strong thread scaling. In this paper, we present optimizations and
thorough analysis of an FMM code on a modern high performance Intel manycore



Performance Evaluation of Computation and Communication Kernels 563

architecture, KNL. We extract the potential SIMD and thread-level parallelisms
of three different computationally intensive kernels, namely P2P, tree traver-
sal, and LET communication kernels. We demonstrate several shared-memory
optimizations on these kernels, including different task-based threading para-
digms, vectorization, loop tiling, and NUMA-aware communication-reducing.
Our shared-memory optimizations present significant improvements that are
reflected on the N -Body kernel compare to the out-of-the-box compilation of the
non-optimized version. These feature in excess of 2.8x speedup on two Intel multi
and many architectures, KNL and Broadwell. Furthermore, the task-based paral-
lelism of the tree traversal kernel shows almost linear scaling, within a massively
parallel single compute node, up to 64 thread contexts of KNL. With hyper-
threading the performance gain becomes slightly monotonic. The NUMA-aware
communication algorithm based on optimizing MPI alltoall communication pro-
tocol to maintain load balancing and shorter cache line transfers within a chip
are explored. It is found that HSDX performs considerably faster than any
other communication models; even across different cluster modes of KNL it still
maintains marginally the same performance.

In the future, we plan to carry out a comprehensive comparison study across
other FMM codes optimized for multi and manycore architectures. We are
extending the study to include other x86 architectures, including IBM POWER8,
and the bleeding edge release of Intel Xeon (i.e., Skylake). In addition, we
are exploring multiple problem sizes to study the performance effects of work-
load variations on KNL. We are applying certain algorithmic optimizations to
improve the performance of FMM on KNL, especially to overcome the stag-
nation and saturation of performance with hyperthreading enabled. To exploit
the MCDRAM, we are working on optimizing the tree traversal kernels, which
include the N -Body kernel. This is achieved by issuing simultaneous memory
accesses throughout the kernel execution and utilizing the AVX512 prefetching
instructions. Finally, we are building an extensive performance model to analyze
the behavior of hybrid programming paradigms (MPI+TBB) on KNL. Multiple
strategies are being developed to extract the best combinations of different pro-
gramming models within a chip. These include thread/task pinning to a thread,
core, tile, quadrant, and node, through low-level programming interfaces.

References

1. Abduljabbar, M., Markomanolis, G.S., Ibeid, H., Yokota, R., Keyes, D.: Commu-
nication reducing algorithms for distributed hierarchical N-body problems with
boundary distributions. In: Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.)
ISC 2017. LNCS, vol. 10266, pp. 79–96. Springer, Cham (2017). doi:10.1007/
978-3-319-58667-0 5

2. AbdulJabbar, M., Yokota, R., Keyes, D.: Asynchronous execution of the fast mul-
tipole method using CHARM++. arXiv preprint arXiv:1405.7487 (2014)

3. Barnes, J., Hut, P.: A hierarchical o(n logn) force-calculation algorithm. Nature
324(6096), 446–449 (1986)

http://dx.doi.org/10.1007/978-3-319-58667-0_5
http://dx.doi.org/10.1007/978-3-319-58667-0_5
http://arxiv.org/abs/1405.7487


564 M. Abduljabbar et al.

4. Bédorf, J., Gaburov, E., Zwart, S.P.: A sparse octree gravitational N-body code
that runs entirely on the GPU processor. J. Comput. Phys. 231(7), 2825–2839
(2012)

5. Farhan, M.A.A., Kaushik, D.K., Keyes, D.E.: Unstructured computational aerody-
namics on many integrated core architecture. Parallel Comput. 59, 97–118 (2016).
Theory and Practice of Irregular Applications

6. Greengard, L., Gropp, W.D.: A parallel version of the fast multipole method.
Comput. Math. Appl. 20(7), 63–71 (1990)

7. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput.
Phys. 73(2), 325–348 (1987)

8. Hoefler, T., Siebert, C., Lumsdaine, A.: Scalable communication protocols for
dynamic sparse data exchange. In: Proceedings of the 15th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP 2010, pp.
159–168. ACM, New York (2010). http://doi.acm.org/10.1145/1693453.1693476

9. Ibeid, H., Yokota, R., Keyes, D.: A performance model for the communication in
fast multipole methods on high-performance computing platforms. Int. J. High
Perform. Comput. Appl. 30, 423–437 (2016)

10. Jeffers, J., Reinders, J., Sodani, A.: Intel Xeon Phi Processor High Performance
Programming (Knights Landing Edition), 2nd edn. Morgan Kaufmann, Boston
(2016)

11. Ramos, S., Hoefler, T.: Capability models for manycore memory systems: a case-
study with xeon phi KNL. In: Proceedings of the 31st IEEE International Parallel
& Distributed Processing Symposium (IPDPS 2017). IEEE, May 2017

12. Warren, M.S., Salmon, J.K.: A fast tree code for many-body problems. Los Alamos
Sci. 22(10), 88–97 (1994)

13. Ying, L., Biros, G., Zorin, D., Langston, H.: A new parallel kernel-independent fast
multipole method. In: 2003 ACM/IEEE Conference Supercomputing, p. 14. IEEE
(2003)

14. Yokota, R.: An FMM based on dual tree traversal for many-core architectures. J.
Algorithms Comput. Technol. 7(3), 301–324 (2013)

15. Yokota, R., Abduljabbar, M.: N-body methods. In: Reinder, J., Jeffers, J. (eds.)
High Performance Parallelism Pearls - Multicore and Many-Core Programming
Approaches, Chap. 10, pp. 175–183. Elsevier, Amsterdam (2014). 1 edn

16. Yokota, R., et al.: ExaFMM (2016). https://github.com/exafmm/exafmm
17. Zandifar, M., Abdul Jabbar, M., Majidi, A., Keyes, D., Amato, N.M., Rauchw-

erger, L.: Composing algorithmic skeletons to express high-performance scientific
applications. In: Proceedings of the 29th ACM on International Conference on
Supercomputing, ICS 2015, pp. 415–424. ACM (2015)

http://doi.acm.org/10.1145/1693453.1693476
https://github.com/exafmm/exafmm

	Performance Evaluation of Computation and Communication Kernels of the Fast Multipole Method on Intel Manycore Architecture
	1 Preliminaries and Outline
	1.1 Main Components of Parallel FMM
	1.2 Paper Contributions

	2 Direct N-Body Kernel on Modern Intel Architectures
	3 Task-Based Traversal of ExaFMM
	4 NUMA-Aware Communication Reducing Algorithms
	5 Results and Discussions
	5.1 Experimental Setup
	5.2 SIMD Optimizations of the N-Body Kernel
	5.3 Dual Tree Traversal with Task-Based Threading
	5.4 Communication Reducing on KNL

	6 Conclusion and Future Work
	References




