
Supporting the Xeon Phi Coprocessor in a
Heterogeneous Programming Model

Ana Moreton-Fernandez(B), Eduardo Rodriguez-Gutiez,
Arturo Gonzalez-Escribano, and Diego R. Llanos

Departamento de Informática, Edif. Tecn. de la Información,
Universidad de Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain

{ana,eduardo,arturo,diego}@infor.uva.es

Abstract. Supercomputers are becoming more heterogeneous. They are
composed by several machines with different computation capabilities
and different kinds and families of accelerators, such as GPUs or Intel
Xeon Phi coprocessors. Programming these machines is a hard task, that
requires a deep study of the architectural details, in order to exploit
efficiently each computational unit.

In this paper, we present an extension of a GPU-CPU heterogeneous
programming model, to include support for Intel Xeon Phi coprocessors.
This contribution extends the previous model and its implementation, by
taking advantage of both the GPU communication model and the CPU
execution model of the original approach, to derive a new approach for
the Xeon Phi. Our experimental results show that using our approach,
the programming effort needed for changing the kind of target devices
is highly reduced for several study cases. For example, using our model
to program a Mandelbrot benchmark, the 97% of the application code is
reused between a GPU implementation and a Xeon Phi implementation.

1 Introduction

Supporting computational accelerators such as GPUs or Xeon Phi coproces-
sors in current programming models is vital to exploit modern parallel plat-
forms. Different kinds and families of accelerators are used in modern high-
performance platforms, as we observe in the configuration of the TOP500 super-
computers [17]. However, programming solutions for an efficient deployment in
accelerator devices in general is a very complex task [12], that relies on the man-
ual management of memory transfers and execution configuration parameters.
For each different computing device, the programmer has to carry out a deep
study of the particular data needed to be computed at each moment, considering
architectural details to exploit efficiently the specific execution system [1].

Many works address the problem of heterogeneous systems management
(e.g. [3,4,15]) following two alternatives: automatically generating specific codes
from sequential or higher-level programming abstractions, or using runtime
libraries that make transparent the use of different device types. Using cur-
rent heterogeneous code generators or compilers, the code should be recompiled
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 457–469, 2017.
DOI: 10.1007/978-3-319-64203-1 33

458 A. Moreton-Fernandez et al.

for each different execution platform in order to better exploit the performance
capabilities of the system. One example is OpenAcc [19]. It provides a simple and
abstract programming framework for accelerators. However, the code should be
recompiled with their specific compilers for each different execution architecture
in order to achieve a good performance.

As for libraries, some works focused on specific kind of applications, address
the portability problem internally using several native programming models.
For example, MAGMA library [5] provides a unified programming environment
for heterogeneous systems using both CPUs and accelerators, such as GPUs or
Intel Xeon Phi, for dense linear algebra algorithms. However, most heteroge-
neous libraries rely on the OpenCL abstraction. OpenCL [16] is a widespread
programming framework to deal with heterogeneous devices. The OpenCL con-
text abstraction allows the memory management of multiple devices of the same
nature (using the same platform in OpenCL notation). The abstractions intro-
duced by OpenCL have been proved to prevent the obtaining of the same effi-
ciency as when using directly the vendor programming models, for several com-
mon situations [9]. Many state-of-the-art heterogeneous frameworks and libraries
with a high level of abstraction [2,7,8,14,18,20], that rely on OpenCL as execu-
tion layer, typically inherit some of these problems. Additionally, during the last
decade several high-performance libraries targeting specific accelerator devices or
CPU architectures, have been developed using the vendor specific programming
models, such as cuBLAS [13] or MKL. For making the most of such works, it is
advisable the use of such native or vendor programming models and compilers,
for each different kind of device.

In this paper, we extend a programming model for heterogeneous platforms
that is not based on the use of OpenCL. The original proposal, named Con-
troller [11], is presented as a library that internally exploits vendor-specific pro-
gramming models available on the platform. It introduces an abstract entity to
allow the transparent launching of series of tasks on a GPU or on a CPU. It
exploits their native or vendor specific programming models, thus enabling the
potential performance obtained by them. In this work we present an extension
of this Controller heterogeneous programming model that includes the support
for Intel Xeon Phi coprocessors, also known as Many Integrated Cores (MICs).
The model is based on the mix of the communication model originally designed
for GPUs in the Controller library with the execution model originally designed
for groups of CPU cores. We develop a complete runtime execution system that
includes methods for task launching, transparent data transfers between the MIC
accelerator and the host, and a queue system to manage the kernel executions
with a customized grain choice. It perfectly fits with the previous Controller
library, thus standardizing and abstracting to the programmer the issues related
to the programming of different kinds of accelerators. It provides a MIC runtime
support for a heterogeneous programming model, that unifies the programming
for heterogeneous systems composed by MIC coprocessors, GPUS, or CPUs, also
obtaining the same performance than using their native programming models.

Supporting the Xeon Phi Coprocessor 459

We also present an experimental study with four study cases. We show that
our approach is highly flexible, with minimum programming effort for changing
the kind of target devices. Moreover, the performance results show that our
implementation does not introduce significant performance penalties compared
with reference codes which use the native/vendor programming models directly.

Fig. 1. Left: previous Controller model, only supporting CPU and GPU. Right: the
MIC Controller proposed model, mixing features from the GPU-CPU submodels.

2 Approach to Support MIC Accelerators

The work presented in [11] proposed the Controller, a simple heterogeneous
programming model to deal with the issues of hybrid computation in an abstract
way to the programmer. This model defines an object able to transparently
manage either a group of CPU cores or a GPU accelerator using internally
native programming techniques (OpenMP and CUDA respectively).

For our new proposal, we distinguish two internal parts in the Controller,
which provide support for each kind of computational device: Execution and
communication management models (see left of Fig. 1). The abstract device
formed by CPU-cores shares the memory space with the host. Thus, the con-
troller object only has to provide an execution model that manages a task queue
and that adapts the fine-grain computations used in the Controller model to a
coarser granularity, more appropriate for CPU threads. On the other hand, for
GPUs, the CUDA programming model already provides an execution system to
enqueue and launch kernels with the same granularity level used in the Con-
troller model. However, the communication operations across different memory
spaces on host and GPUs required the implementation of a more sophisticated
mechanism to integrate different policies and techniques in the Controller model.

In this work we understand as independent parts in the Controller abstraction
both, the execution and the communication management models from different
kind of devices. Thus, we propose their mixture to support a new type of accel-
erator such as the MIC coprocessors. In order to do that, we use: (1) In terms of
execution, the Controller model for groups of CPU cores, that blends blocks of
fine grained kernels into coarse CPU tasks, is appropriated for MIC coprocessors.
(2) In terms of memory management, the abstract model for data communica-
tions needed for the MIC coprocessors is equivalent to the GPU communication
model in the old Controller approach.

460 A. Moreton-Fernandez et al.

The application of this idea leads to a homogeneous programming model for
heterogeneous systems including MIC coprocessors, where the issues related to
the programming of different types of accelerators are transparent for the pro-
grammer. In this work we show the implementation of this idea in the Controller
library, to support computational devices such as MIC coprocessors, GPUs, and
groups of CPU-cores, without redesigning or changing the high-level program-
ming model and interface.

3 Programming with the Controller Model

In this section we describe the concepts related to programming using the Con-
troller model. It introduces the reader to Hitmap [6], the library used for the
managing of data-structures, and the properties of the Controller model [11]
abstract interface and its programming methodology.

Hitmap Library. Hitmap is the library used in the Controllers to provide a
common interface for the data management inside the generic portable kernels.
Hitmap defines the HitTile structure, an abstract entity for n-dimensional arrays
and array tiles of arbitrary size. A HitTile structure is a handler to store array
meta-data, along with the pointer to the actual memory space. There are only
three functions of Hitmap needed to work with the Controller library. The func-
tion hit tileDomainAlloc is used to declare the index domains of a tile array
and allocate the data memory. The function hit tileFree is used to free the data
memory and clean the handler. The function hit tileElem is used in the host or
kernel codes to access the elements of a tile. It receives a tile name, a number of
dimensions, and the indexes values of the desired element. The data are accessed
in row major order in all cases, independently of the device implementation.

Controller Features. The Controller model provides a systematic program-
ming methodology together with several important features: (1) A mechanism
to define from common kernels reusable across different types of devices, to
specialized kernels for specific device kinds; (2) A transparent mechanism of
memory management, including optimized communications of the data struc-
tures between the host and the corresponding images in the accelerators; (3) An
optimization system to select proper values for kernel-launching configuration
parameters (such as the threadblock geometry), guided by simple qualitative
code characterization provided by the programmer. These features makes the use
of our proposal adaptable to the programmer knowledge. Thus, for non-experts
users, it is possible to program a generic approach achieving good performance.
On the other hand, a user with programming experience in the execution plat-
form can take advantage of this knowledge and achieve better results.

Kernel Definitions. In the Controller library, a kernel is declared by using the
primitive KERNEL <type>. Where type may be empty to indicate a kernel usable

Supporting the Xeon Phi Coprocessor 461

on any kind of device, or may be a specific value for a given type of device indicat-
ing a specialized code. The original library supported declarations KERNEL GPU
for CUDA code targeting NVIDIA’s GPUs, KERNEL CPU for host machine code
targeting sets of CPU cores, and KERNEL GPU WRAPPER, KERNEL CPU WRAPPER,
for code to execute in the host which includes calls to specialized GPU or CPU
libraries, such as cuBLAS or MKL routines.

1 /* Matrix addition: Generic kernel code for any type of device */
2 KERNEL(MatAdd, 3,
3 OUT, , C, IN, , A, IN, , B){
4 x = thread.x; y = thread.y;
5 hit_tileElem(C, 2, x, y) = hit_tileElem(A, 2, x, y) +
6 hit_tileElem(B, 2, x, y);
7 }
8 /* Host program using the Controller library */
9 main(){

10 SIZE = 10000;
11 /* Stage 1: Controller creation */
12 Cntrl comm;
13 CntrlCreate(&comm, CNTRL_GPU, 0);
14 /* Stage 2: Data structures creation and initialization */
15 A; B; C;
16 hit_tileDomainAlloc(&A, , 2, SIZE, SIZE);
17 hit_tileDomainAlloc(&B, , 2, SIZE, SIZE);
18 hit_tileDomainAlloc(&C, , 2, SIZE, SIZE);
19 initMatrices(&A, &B, &C);
20 /* Stage 3: Data structures attachment */
21 CntrlAttach(&comm, &A); CntrlAttach(&comm, &B); CntrlAttach(&comm, &C);
22 /* Stage 4: Kernel launching */
23 Thread threadsSpace;
24 ThreadInit(threads, 2, SIZE, SIZE);
25 CntrlLaunch(comm, MatAdd, threadsSpace, 3, &A, &B, &C);
26 /* Stage 5: Data structures detachment */
27 CntrlDetach(&comm, &C);
28 }

Fig. 2. Kernel definition and configuration, and host program of a matrix addition
using the Controller library.

We can see a kernel definition in lines 2–7 of Fig. 2. The kernel-definition
primitive specifies in brackets the number of parameters of the kernel, with a
tuple of information for each parameter. The parameter information includes its
type, name, and input/output role.

Programming Methodology. Building a Controller host program follows sim-
ple development guidelines: (1) The Controller entity creation, associating to this
object the computational device to be managed. A Controller entity should be
created for each computational device that will be used for computation. (2)
The attachment of the data structures to the Controller object. Data structures
that will be accessed by a kernel should be previously attached to the Controller
entity. (3) The launching of the computational kernels on the Controller object.
(4) The detachment of the data structures.

Figure 2 shows a matrix addition implementation that performs the com-
putation on a GPU using the Controller model. In the main program, first, a

462 A. Moreton-Fernandez et al.

Controller object is created, assigning a GPU to the object (lines 12 to 13). Data
structures are created and initialized on the host (lines 15 to 19). After that,
these data structures are attached to the previously created Controller (line 21).
In the step 4, the program launches the kernel MatAdd. It uses a Thread object
to specify the number and index space of the threads to be launched. In this
example a thread is launched for each element of the matrix C (lines 23 to 25).
Finally, the program detaches the matrix with the results (line 27).

In this paper, we propose a method to integrate the support of MIC coproces-
sors in this model, that allows the efficient execution of this program on the Xeon
Phi, only by changing the CNTRL GPU parameter by a new CNTRL XPHI parameter
on the line 13 of the code.

4 Integrating MIC coprocessors in the Controller library

The original version of the Controller library supports the deployment of kernels
on GPUs or virtual computational devices formed by groups of CPU-cores. In
this section we present the support of the MIC devices in the Controller library.
We implement the MIC controller object containing several functionalities,
such as the identification, initialization and management of MIC devices, an
adapted internal queue to manage the asynchronous kernel executions, and a
method to lock accesses to the HitTile data structures on the host while they
are managed in the device memory.

1 /* Internal attach function */
2 attachToXPHI(CntrlXPHI* cntrl,
3 HitTile *tile){
4 Lock(tile, cntrl);
5 MIC= cntrl->MIC;
6 *data = (*)(*tile).data;
7 numBytes = hit_tileSize(tile);
8 #pragma offload target(mic:MIC) \
9 in(data:length(numBytes) \

10 alloc_if(1) free_if(0))
11 }

1 /* Internal detach function */
2 detachToXPHI(CntrlXPHI* cntrl,
3 HitTile *tile){
4 MIC= cntrl->MIC;
5 *data = (*)(*tile).data;
6 numBytes = hit_tileSize(tile);
7 #pragma offload target(mic:MIC) \
8 in(data:length(0) \
9 alloc_if(0) free_if(0)) \

10 out(data:length(numBytes) \
11 alloc_if(0) free_if(1))
12 Unlock(tile, cntrl);
13 }

Fig. 3. Excerpts of the Controller internal code that perform data transfers of a HitTile
object. Left: from the host to a MIC coprocessor. Right: from a MIC coprocessor to
the host.

4.1 Attaching and Detaching Data Structures on the MIC

In computational devices such as GPUs or MIC coprocessors, where their mem-
ory spaces are separated from the host memory space, the attachment/detach-
ment operation also implies a data transfer.

Supporting the Xeon Phi Coprocessor 463

We have implemented two internal functions to perform the data transfers
to/from the MIC coprocessor, using the Intel Language Extensions for Offload
(LEO). These functions are executed internally when the program invokes an
attachment or a detachment operation respectively. Figure 3 shows a summarized
version of the code of both functions.

On the left, we see the code used to attach a tile to a MIC controller object
(represented in the figure by the CntrlXPHI type). In this function, first the
attached tile is locked on the host. Second, the code extracts: (1) The MIC
identifier assigned to the controller object (line 5); (2) The pointer to the
actual data (line 6); and (3) The number of bytes to be transferred (line 7);
After that, the function performs the actual data transfer from the host to the
MIC, ensuring that there is allocated memory space in the target device (using
alloc if(1)), and that after this offloading the actual data will be maintained
(using free if(0)).

On the right, we show the code used to detach a tile whose data have been
modified from a MIC controller object. As in the attachment, first the code
extracts the information about the data transfer (lines 4 to 6). Second, the actual
data transfer from the coprocessor to the host is specified using a pragma. For
determining the pointer of the data previously transferred, the program uses
the in modifier to make the data pointer available in the Xeon Phi, and sets
the length to 0 to prevent any data from being copied (lines 8 to 9). Once the
pointer is available on the MIC, the pragma also specifies the data transfer and
the freeing of the MIC space memory (lines 10 to 11). Finally, the data structure
is unlocked on the host.

1 /* Auxiliar macros for kernels with one parameter */
2 STRINGIFY(a) #a
3 XPHI_WRAPPER_PARAMS1(io1, type1, value1) \
4 type1 value1
5 XPHI_WRAPPER_VALUES1(io1, type1, value1) \
6 value1
7 XPHI_WRAPPER_CAST1(io1, type1, value1) \
8 type1 value1_p = (type1)args[2]; \
9 HitTile value1_t = *(HitTile*)value1_p; \

10 *data_tile1= (*) (value1_t).data;
11 \)1eulav,1epyt,1oi,CIM(1SMARAP_DAOLFFO_IHPX
12 offload target(mic:MIC) in(threads:length(3)) in(value1_t) \
13 in(data_tile1:length(0) alloc_if(0) free_if(0))
14 XPHI_POINTERS1(io1, type1, value1) \
15 HitTile value1 = value1_t; \
16 value1.data = data_tile1;

Fig. 4. Auxiliary macros defined for a one parameter kernel.

4.2 New Kernel Definitions

A kernel definition specifies the device that fits with the contained code by
declaring it using the primitive KERNEL <type>. We extent the Controller frame-
work to support also MIC kernel definitions. A MIC kernel definition is rewritten

464 A. Moreton-Fernandez et al.

1 /* Macro of the kernel definition */
2 KERNEL_XPHI(name, nparams, params...) \
3 /* Single-element function declaration */ \
4 __attribute__((target(mic))) \
5 kernel_xphi_##name(Thread threadId, XPHI_WRAPPER_PARAMS##nparams(params)); \
6 \
7 /* Parallel coarse-grained function */ \
8 inline wrapper_xphi_##name(** args){ \
9 MIC=cntrl->MIC; \

10 CntrlXPHI* cntrl = (CntrlXPHI*) args[0]; \
11 Thread* threads = (Thread*)args[1]; \
12 XPHI_WRAPPER_CAST##nparams(params); \
13 _Pragma(STRINGIFY(XPHI_OFFLOAD_PARAMS##nparams(MIC, params))) \
14 { \
15 XPHI_POINTERS##nparams(params); \
16 _Pragma("omp "){ \
17 i,j,k; \
18 Thread threadId; \
19 _Pragma("omp for private(i,j,k)") \
20 (i=0; i<=threads->x; i++){ \
21 (j=0; j<=threads->y; j++){ \
22 (k=0; k<=threads->z; k++){ \
23 threadId.x = i; \
24 threadId.y = j; \
25 threadId.z = k; \
26 kernel_xphi_##name(threadId, XPHI_WRAPPER_VALUES##nparams(params)); \
27 } } } \
28 }} \
29 \
30 /* Task addition function */ \
31 \,daerhtdaerhT,lrtnc*IHPXlrtnC(ihpx_##eman
32 XPHI_WRAPPER_PARAMS##nparams(params)){ \
33 CntrlXPHIAddTask(cntrl, wrapper_xphi_##name, thread, nparams, \
34 XPHI_WRAPPER_VALUES##nparams(params)); \
35 } \
36 /* Single-element function definition */ \
37 __attribute__((target(mic))) \
38 kernel_xphi_##name(Thread threadId, XPHI_WRAPPER_PARAMS##nparams(params)) \

Fig. 5. Functions internally generated by the MIC kernel definition: (1) Function
to be executed by each fine-grain virtual thread: kernel xphi ##name; (2) Function
that executes a dequeued kernel, grouping virtual threads in coarse-grained OpenMP
threads: wrapper xphi ##name; (3) Function to enqueue a kernel-launching request:
name## xphi.

as three functions using macro functions. We show examples of the code of the
three resulting functions in Fig. 5.

Fine-Grain Virtual Thread Function: The first function implements the
kernel code that the programmer defined to execute for one index element of the
fine-grain virtual threads space. In most array operations, it is used to compute
one data element. The function is named kernel xphi ##name, where ##name
is the kernel name, taken from the first parameter of the kernel definition prim-
itive. It is defined as a MIC function using the attribute target(mic). The
parameters are a multi-dimensional index represented by a Thread object, that
represents a point in the execution domain, and the actual kernel parameters. In
Fig. 5, lines 4 to 5 show the function declaration and lines 37 to 38 the function
definition.

Supporting the Xeon Phi Coprocessor 465

Parallel Coarse-Grained Function: The second one (wrapper xphi ##name)
performs the offloaded coarse-grained parallel computation in the MIC device. It
receives a variable number of parameters. The first one is the controller object,
the second one the domain of fine-grain thread indexes to compute and the rest
are the data structures corresponding to the real parameters. Lines 10 to 12
of Fig. 5 show how the information is extracted from the parameters (auxiliary
macros for the transformations were defined in Fig. 4). The rest of the body of
the function defines the offload region. The offload pragma transfers the data-
structure handlers, the domain represented by a Thread object, and the pointer
to the actual data for each HitTile. As in the detachment operation, in order
to determine the data previously transferred, the offload pragma uses the in
modifier to make the data pointer available in the Xeon Phi, and sets the length
to 0 to prevent any data from being copied (see line 13 of Fig. 4). Inside the offload
region, the HitTile handlers update their data pointer to the actual offloaded
data (line 15). After that, the parallel computation is performed on the specified
domain (lines 16 to 28), grouping virtual thread indexes in actual coarse-grained
threads, by using an OpenMP parallel loop.

Kernel Launch Request: The third one is named name## xphi. It is the
internal implementation of a kernel launch for a MIC. In its body, the func-
tion implements the enqueuing of the kernel execution request in the Controller
object. The information needed is: The controller object, the pointer to the
coarse-grained parallel computation function, and its real parameters (the index
space where the application will be executed, the number of kernel parameters,
and the actual kernel parameters). See lines 31 to 35 of Fig. 5.

4.3 Queue Management and Kernel Launching

As opposite as the CUDA programming model, the offloading MIC coprocessor
programming model does not provide a queue system to manage asynchronous
kernel launchings. We have developed a queue system for the asynchronous exe-
cution of several kernel launches on the MIC coprocessor, currently using a FIFO
policy in our prototype. When a MIC controller object is created, an asynchro-
nous OpenMP task is launched. This task uses OpenMP locks to block until there
are kernel-launching requests in the queue. Then, it dequeues the request and
dispatches/executes it. The execution of a task on the MIC is carried out by
simply executing the already offloaded parallel wrapper xphi ##name generated
function, specified in the request structure, that contains pointers to the function
and parameters. The Controller destructor enqueues a special request that noti-
fies to the OpenMP queue-controlling task that it should release the Controller
resources and finish.

5 Experimental Study

We perform an experimental study to evaluate the potential advantages and
constraints of the integration of the MIC coprocessor in the original Controller

466 A. Moreton-Fernandez et al.

library. The section includes: (1) A description of the considered study cases,
(2) a performance study of our proposal, and (3) a development effort compari-
son between programming using the new Controller extension and using device
vendor programming models.

5.1 Study Cases

We select four benchmarks to test our approach and implementation.

Matrix Addition. It implements a sum of two matrices, storing the result in a
third one: C = A+B. For the Controller version, we use the same generic kernel
implementation tested in previous works for CPU-cores and GPUs, without any
modification.

Black-Scholes. The Black-Scholes formula is based on a mathematical model
of a financial market. The result estimates the price of European-style options.
The original program, obtained from the CUDA Toolkit Samples, independently
applies the formula to the input values of an array, calculating and storing their
results. Again, the Controller version uses the same generic kernel definition for
both GPUs, and MICs accelerators.

Matrix Multiplication. It computes the product of two matrices, storing the
result in a third one: C = A ∗ B. The read patterns on A and B matrices
should be adapted to exploit coalescence and shared memory in GPUs, and
to properly exploit caches and vectorization on MICs. These features lead to
different optimizations in both types of accelerators. Thus, the Controller version
declares different specialized and optimized kernels for each kind of device.

Mandelbrot Algorithm. The Mandelbrot algorithm is used to compute fractal
geometric images. The Controller version uses a single generic kernel definition
for both GPUs and MICs accelerators.

Table 1. Performance results (seconds) comparing LEO reference codes with Controller
codes for different input sizes (left/right). Experiments executed on a Intel Xeon E5-
2620 v2 @2.1 GHz, 32 Gb DDR3 main memory, and with the Xeon Phi Knights Corner
3120A coprocessor. Compiler used: ICC 17.0.0 version with the flags -O3, and -openmp.

Supporting the Xeon Phi Coprocessor 467

Table 2. Measurements of development effort metrics for the codes of the study cases.
Left: comparison of number of code lines, code tokens, and cyclomatic complexity
between the Controller version and the version using native programming models.
Right: comparison in terms of the percentage of words that are common and can be
reused, should be deleted, or should be changed, when porting codes between GPU
and MIC versions using the native models, or the Controller library.

5.2 Performance Study

In this section we show how low is the performance overhead produced by the
implementation of our proposed MIC library extension. Table 1 shows the total
times spent (including computation and data transfers) by the four benchmarks
with two different problem sizes. Codes have been implemented with our pro-
posal, and directly with the Intel Language Extensions for Offload (LEO) and
OpenMP. A similar comparison for groups of CPU-cores and GPUs were pre-
sented in [11]. Both studies indicate only a small constant penalty performance
due to the management of the queue system, that is only noticeable in the results
for the smaller problem sizes presented on the left of Table 1. For bigger problem
sizes, some performance gain is obtained due to Hitmap optimizations in the
internal management of the data structures. In general terms, the performance
obtained by using our approach is similar to the native programming models.

5.3 Development Effort Measures

This section includes two development effort comparisons. First, between the
proposed Controller implementation and the reference codes (using LEO and
OpenMP for MIC, and CUDA for GPUs). Secondly, comparing measures of the
code changes needed to port a GPU implementation to a MIC implementation,
using the Controller or the native programming models.

The results of the first comparison are presented on the left of Table 2. We
measure three classical development effort metrics: Number of lines of code;
Number of tokens, and McCabe’s cyclomatic complexity [10]. The measured
codes include kernel definitions, kernel characterizations, the coordination host
code, and data structures management. We observe that the use of the Controller
library implies less cyclomatic complexity, but more number of lines and tokens.

468 A. Moreton-Fernandez et al.

However, the goal of the library is to provide an homogeneous interface to deal
with any kind of accelerator. For this reason, we also compare the effort needed
for transforming GPU codes in order to port them to a MIC device. See results on
the right of Table 2. We analyze the percentage of words of each implementation
that are common and can be reused, should be deleted, or should be changed.
The largest changes are on the matrix multiplication benchmark, because of
the implementation of different optimized kernels for each device. For the other
benchmarks, we see that using our proposal the programming effort needed to
change the target computational device is extremely low. These measures show
the level of abstraction and standardization achieved by our proposal.

6 Conclusions

In this paper we propose an extension to support the Intel Xeon Phi (MIC)
coprocessors in a CPU-GPU homogeneous programming model for heteroge-
neous systems, that is implemented as a compiler agnostic library. To provide
support for MIC coprocessors, our approach reuses and mixes the internal execu-
tion features for CPU-cores, and the internal memory and communication man-
agement features of the original GPU model. We have completely integrated the
support for a MIC coprocessor in the library, without adding any constraint to
the programming model. The experimental study shows the high flexibility of
our approach, that implies a minimum programming effort for changing the exe-
cution target devices, without significatively penalizing the performance. Future
work includes the integration of scientific libraries, such as MKL, as kernels
in the Controller implementation, and an evaluation with applications of other
domains.

Acknowledgments. This research has been partially supported by MICINN (Spain)
and ERDF program of the European Union: HomProg-HetSys project (TIN2014-58876-
P), CAPAP-H6 (TIN2016-81840-REDT), and COST Program Action IC1305: Network
for Sustainable Ultrascale Computing (NESUS).

References

1. Contassot-Vivier, S., Vialle, S.: Algorithmic scheme for hybrid computing with
CPU, Xeon-Phi/MIC and GPU devices on a single machine. Parallel Comput.:
Road Exascale 27, 25–34 (2016)

2. Deepika, H., Mangala, N., Babu, S.C.: Automatic program generation for heteroge-
neous architectures. In: 2016 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), pp. 102–109. IEEE (2016)

3. Diogo, M., Grelck, C.: Towards heterogeneous computing without heterogeneous
programming. In: Loidl, H.-W., Peña, R. (eds.) TFP 2012. LNCS, vol. 7829, pp.
279–294. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40447-4 18

4. Dolbeau, R., Bihan, S., Bodin, F.: HMPP: a hybrid multi-core parallel program-
ming environment. In: Workshop on General Purpose Processing on Graphics
Processing Units (GPGPU 2007), vol. 28 (2007)

http://dx.doi.org/10.1007/978-3-642-40447-4_18

Supporting the Xeon Phi Coprocessor 469

5. Dongarra, J., Gates, M., Haidar, A., Jia, Y., Kabir, K., Luszczek, P., Tomov, S.:
HPC programming on Intel many-integrated-core hardware with Magma port to
Xeon Phi. Sci. Program. 2015(9), 1–11 (2015)

6. Gonzalez-Escribano, A., Torres, Y., Fresno, J., Llanos, D.R.: An extensible system
for multilevel automatic data partition and mapping. IEEE Trans. Parallel Distrib.
Syst. 25(5), 1145–1154 (2014)

7. Grasso, I., Pellegrini, S., Cosenza, B., Fahringer, T.: A uniform approach for pro-
gramming distributed heterogeneous computing systems. J. Parallel Distrib. Com-
put. 74(12), 3228–3239 (2014)

8. Hijma, P., Jacobs, C.J., van Nieuwpoort, R.V., Bal, H.E.: Cashmere: heteroge-
neous many-core computing. In: 2015 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 135–145. IEEE (2015)

9. Karimi, K., Dickson, N.G., Hamze, F.: A performance comparison of CUDA and
OpenCL. arXiv preprint (2010). arXiv:1005.2581

10. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 4, 308–320 (1976)
11. Moreton-Fernandez, A., Ortega-Arranz, H., Gonzalez-Escribano, A.: Controllers:

an abstraction to ease the use of hardware accelerators. Int. J. High Perform.
Comput. Appl. (2017). http://dx.doi.org/10.1177/1094342017702962

12. NESUS, Network for Sustainable Ultrascale Computing (Cost Action IC1305): A
roadmap for research in sustainable ultrascale systems, October 2016

13. NVIDIA Corporation: Cublas library. NVIDIA Corporation, Santa Clara, Califor-
nia, vol. 15, no. 27 (2008)

14. Pérez, B., Bosque, J.L., Beivide, R.: Simplifying programming and load balancing
of data parallel applications on heterogeneous systems. In: Proceedings of the 9th
Annual Workshop on General Purpose Processing using Graphics Processing Unit,
pp. 42–51. ACM (2016)

15. Riebler, H., Vaz, G., Plessl, C., Trainiti, E.M., Durelli, G.C., Del Sozzo, E., San-
tambrogio, M.D., Bolchini, C.: Using just-in-time code generation for transparent
resource management in heterogeneous systems. In: 2016 IEEE 2nd International
Forum on Research and Technologies for Society and Industry Leveraging a Better
Tomorrow (RTSI), pp. 1–5. IEEE (2016)

16. Stone, J.E., Gohara, D., Shi, G.: OpenCL: a parallel programming standard for
heterogeneous computing systems. Comput. Sci. Eng. 12(1–3), 66–73 (2010)

17. TOP500.org: Top500 supercomputing sites, January 2017. http://www.top500.
org/

18. Viñas, M., Fraguela, B.B., Andrade, D., Doallo, R.: Towards a high level approach
for the programming of heterogeneous clusters. In: 2016 45th International Con-
ference on Parallel Processing Workshops (ICPPW), pp. 106–114. IEEE (2016)

19. Wienke, S., Springer, P., Terboven, C., Mey, D.: OpenACC—first experiences with
real-world applications. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G.
(eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 859–870. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-32820-6 85

20. Wu, S., Dong, X., Chen, H., Dang, B.: OCLS: a simplified high-level abstrac-
tion based framework for heterogeneous systems. In: Park, J., Yi, G., Jeong, Y.S.,
Shen, H. (eds.) Advances in Parallel and Distributed Computing and Ubiqui-
tous Services. LNEE, vol. 368, pp. 57–65. Springer, Singapore (2016). doi:10.1007/
978-981-10-0068-3 7

http://arxiv.org/abs/1005.2581
http://dx.doi.org/10.1177/1094342017702962
http://www.top500.org/
http://www.top500.org/
http://dx.doi.org/10.1007/978-3-642-32820-6_85
http://dx.doi.org/10.1007/978-981-10-0068-3_7
http://dx.doi.org/10.1007/978-981-10-0068-3_7

	Supporting the Xeon Phi Coprocessor in a Heterogeneous Programming Model
	1 Introduction
	2 Approach to Support MIC Accelerators
	3 Programming with the Controller Model
	4 Integrating MIC coprocessors in the Controller library
	4.1 Attaching and Detaching Data Structures on the MIC
	4.2 New Kernel Definitions
	4.3 Queue Management and Kernel Launching

	5 Experimental Study
	5.1 Study Cases
	5.2 Performance Study
	5.3 Development Effort Measures

	6 Conclusions
	References

