
Families of Graph Algorithms: SSSP Case Study

Thejaka Amila Kanewala1,2(B), Marcin Zalewski2, and Andrew Lumsdaine2,3

1 School of Informatics and Computing, Indiana University, Bloomington, IN, USA
thejkane@indiana.edu

2 Pacific Northwest National Laboratory, Seattle, WA, USA
{marcin.zalewski,andrew.lumsdaine}@pnnl.gov

3 University of Washington, Seattle, WA, USA

Abstract. Single-Source Shortest Paths (SSSP) is a well-studied graph
problem. Examples of SSSP algorithms include the original Dijkstra’s
algorithm and the parallel Δ-stepping and KLA-SSSP algorithms. In
this paper, we use a novel Abstract Graph Machine (AGM) model to
show that all these algorithms share a common logic and differ from one
another by the order in which they perform work. We use the AGM
model to thoroughly analyze the family of algorithms that arises from
the common logic. We start with the basic algorithm without any order-
ing (Chaotic), and then we derive the existing and new algorithms by
methodically exploring semantic and spatial ordering of work. Our exper-
imental results show that new derived algorithms show better perfor-
mance than the existing distributed memory parallel algorithms, espe-
cially at higher scales.

Keywords: Single-source shortest paths (SSSP) · Distributed-memory
graph algorithms

1 Introduction

Given a graph problem, how many ways can it be solved in? In this paper, we
consider the seemingly simple problem of single-source shortest paths (SSSP),
where the task is to find the shortest path from a source vertex s to every
other vertex in the graph. A number of sequential algorithms exist. The well-
known Dijkstra’s algorithm [3] is “work optimal”, where vertices are ordered in
a priority queue based on their distance from the source s, and every edge is
traversed only once. Work optimality, however, comes at a cost of limited paral-
lelism and extensive synchronization. Subsequent development concentrated on
relaxing the strict ordering of the Dijkstra algorithm to make more work avail-
able in parallel at the cost of some “wasted work” that has to be invalidated and
repeated. For example, the Δ-stepping [9] algorithm groups vertices into Δ-sized
buckets, based on their distances from the source s, giving an approximation of
Dijkstra ordering. Vertices in a bucket are processed in parallel, and picking an
appropriate Δ ensures the right balance between parallelism and wasted work.

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 428–441, 2017.
DOI: 10.1007/978-3-319-64203-1 31

Families of Graph Algorithms: SSSP Case Study 429

The KLA-SSSP [6] algorithm is similar, but it uses topological distances instead
of shortest path distances from the source s to order work into buckets1.

Table 1. Orderings in SSSP algorithms.

Algorithm Ordering

Dijkstra’s Global priority queue

Δ-stepping Global distance
equivalence classes
defined by Δ

KLA Global topological
distance equivalence
classes defined by k

Chaotic None

Algorithm 1. The SSSP relax function

1: Input: Task (v, d), distances D
2: if d < D(v) then
3: D(v) ← d
4: ∀vn ∈ neighbors(G, v) :
5: Task(vn, dv + weight(v, vn))

In both Δ-stepping and KLA-SSSP, processing of the buckets inserts implicit
synchronization points, since processing of a bucket cannot begin until all pre-
vious buckets are finished. The Chaotic SSSP does away with synchronization
altogether by processing all the vertices in parallel in an arbitrary order, resulting
in maximum available parallelism at the cost of more wasted work.

Despite the variety of algorithms, analysis reveals that they are all based on
the same core logic of relaxation, as shown in Algorithm 1. Relaxation takes
as the input a vertex-distance pair and a distance map (D), and produces
more vertex-distance pairs if the distance was improved. These newly produced
pairs are further relaxed, and the algorithms differ by how these relaxations
are ordered (Table 1). In this paper, we methodically investigate this similar-
ity between the seemingly different SSSP algorithms. To do that, we model the
algorithms using the Abstract Graph Machine (AGM) [7]. An AGM represents a
graph algorithm as two distinct components: the processing function that models
the core functionality of the algorithm and an ordering of the work tasks that
define the characteristics of the algorithm (as in Table 1, for example). The work
ordering relation of an AGM is defined based on one or more attributes of work
tasks. For the SSSP algorithms, it can be the distance in vertex-distance pair,
or it can be an additional attribute introduced specifically for a given algorithm
(see the next section for details). The work ordering relation is a strict weak
ordering. It divides work into ordered equivalence classes, where work within an
equivalence class is unordered and can be executed in parallel, but work within
separate equivalence classes is executed according to an ordering induced by the
strict weak ordering relation.

We present AGM models for all the algorithms listed in Table 1, and we
show that they change by the way in which they order work. Then we show
that new algorithms can be developed by methodically discovering new order-
ings. We introduce extended AGM (EAGM) that incorporates information about
spatial distribution into algorithms modeled in AGM. With EAGM, we develop
1 KLA-SSSP with single-hop buckets is equivalent to the Bellman-Ford algorithm [1].

430 T.A. Kanewala et al.

variations of algorithms presented in Table 1 with additional ordering at dif-
ferent spatial levels of architecture such as node (process), numa (non-uniform
memory access) region, and thread, resulting in nine different SSSP algorithms.
We compare the weak scaling performance of the new algorithms with exist-
ing distributed memory parallel algorithms and also with the SSSP algorithm
in PowerGraph [5] and in Parallel Boost Graph Library (PBGL) [4] for a per-
formance base line. Our results show that some of the new variations of SSSP
algorithms perform better than the well-known algorithms, especially at large
scales.

In summary, our main contributions are generalizing SSSP algorithms using
the AGM formulation, an approach to generate variations of primary distributed
SSSP algorithms listed in Table 1 using EAGM, and experimental evaluation
showing that algorithm variations generated by EAGM specification perform
better compared to the well-known algorithms listed in Table 1.

w4 w7

w8

<condition (C)>

S1
S2
S3

<constructor (N)>

.

.

.

.

w1

w2
w3

w5 w6

T
F <state_update (U)>

Ordering

nil

The Processing Function ()π

Last

First

equivalence class
order

Fig. 1. An overview of the Abstract Graph Machine execution.

2 Abstract Graph Machine (AGM)

The Abstract Graph Machine (AGM) approach captures the core logic of an
algorithm and the semantic work ordering that impacts the performance of the
algorithm. Such principled approach allows discovery of families of algorithms
by varying work ordering where it affects the performance but not semantics of
an algorithm. In this section, we introduce AGM framework, and in Sect. 3 we
apply it to the SSSP algorithms.

At the heart of AGM is the processing function that captures the logic of an
algorithm. A processing function takes a single workitem, the smallest unit of
work performed in the algorithm, and it generates zero or more new workitems
from the input workitem. The processing function can access the graph and per-
vertex and per-edge state when computing new workitems. The set of all the
workitems generated by an algorithm is denoted using WorkItem. In other words,
the WorkItem represent all the workitems generate during the whole lifetime of
the algorithm’s execution. The order of execution of workitems generated by
processing functions is dictated by a strict weak ordering relation defined on
the WorkItem. Figure 1, shows an overview of the AGM. An AGM consists of a
definition of a Graph, a definition of a WorkItem set, a set of states, a processing
function, a strict weak ordering relation, and of an initial workitem set.

Families of Graph Algorithms: SSSP Case Study 431

Graph Definition. The graph definition takes the form, G=(V, E, vmaps,
emaps), where V is the set of vertices and E ⊆ V ×V is the set of edges. vmaps
is a set of functions each of the form f : V −→ X, and emaps is another set
of functions each of the form f : E −→ X. For example, a weighted graph is
represented as G = (V,E, {}, {weight : E −→ R}).

The Set, WorkItem. A workitem(∈ WorkItem) is a tuple. The first element of
the tuple is a vertex, and the remainder are the state and the ordering attribute
values. For example, the Chaotic SSSP algorithm stores a vertex and a distance
in a workitem. The size of the tuple is determined by the states and the ordering
attributes used in the AGM formulation of a given algorithm. The workitem
tuple elements are accessed using the bracket operator ; e.g., if w ∈ WorkItem
and w = 〈v, p0, p1 . . . , pn〉, then w[0] = v, w[1] = p0, w[2] = p1, and so on. The
workitem data (i.e., the tuple elements) are used by the processing function to
generate new work items and update state.

States. An AGM maintains state values as mappings. The domain of the state
mappings is the set V . The co-domain depends on the possible values that can
be held in states. For example, in Dijksta’s SSSP algorithm the state mapping
is distance : V −→ R. In AGM terminology, accessing a state value associated
with a vertex (or edge) “v” is denoted as “mapping[v]” (e.g., distance[v]).

Processing Function. A processing function π : WorkItem −→ P(WorkItem)2

takes a workitem as an argument and produces zero or more workitems. The
body of the processing function consists of a set of statements (Sts). A statement
contains a condition C : WorkItem −→ Bool based on input workitem, an
update to states U : WorkItem −→ Bool , and a constructor N : WorkItem −→
P(WorkItem) describing how new output workitems should be constructed. The
condition C is evaluated first. If it evaluates to True, state update U is evaluated.
If both are True, the constructor N is invoked. The C indicates whether a St
is applicable to a workitem, and the U evaluates to True if states are changed
when processing the input workitem. The N of a statement is evaluated only
if its C and U both evaluate to True. States are not explicit parameters to
the processing function, and changes to state are treated as side effects. An
implementation of an AGM must ensure that state updates happen atomically.
To define a processing function statement, the condition (C), state update (U),
and the workitem constructor (N) must be provided.

We use notation loosely based on set-comprehension notation to represent
processing functions. The format of a processing function π : WorkItem −→
P(WorkItem) takes the form π(w) = {{wn|〈N (w)〉, 〈U (w)〉, 〈C (w)〉}, . . . }. In
this notation, wn is the new workitem generated by N from the input workitem
w. U and C represent the state update and the condition. This notation describes
one statement. For processing functions where there are more than one state-
ments, the notation can be duplicated for each statement and separate each
2 We denote a powerset of a set A as P(A).

432 T.A. Kanewala et al.

statement using a comma. Note that we use angle brackets (〈. . .〉) to deliminate
parts of processing function. This is not a standard notation in set comprehen-
sion, but it makes parts of the processing function clear. Furthermore, we will
provide the U part of AGM as a side effect, but we will treat it as a boolean
(True when the side effect occurs, False if it does not).

Strict Weak Ordering Relation. The workitems generated by a process-
ing function are ordered according to a strict weak ordering relation (repre-
sented using <wis) defined on WorkItem, which induces equivalence classes on
workitems. The workitems in an equivalence class are not comparable to each
other, but any two workitems in different equivalence classes are. In the AGM,
the workitems belonging to the same equivalence class can be processed by the
processing function in parallel, but workitems belong to different equivalence
classes are ordered according to the ordering on equivalence classes.

Initial Work Item Set. The initial workitem set contains workitems that
represent the input to the algorithm. For example, for SSSP, the initial set of
workitems will contain the workitem corresponding to the source vertex s.

The AGM. Having defined all supporting concepts we now give the definition
of an AGM in Definition 1.

Definition 1. An Abstract Graph Machine (AGM) is a 6-tuple (G, WorkItem,
Q, π, <wis , S), where

1. G = (V,E, vmaps, emaps) is the input graph,
2. WorkItemSet ⊆ (V ×P0×P1 · · ·×Pn) where each Pi represents a state value

or an ordering attribute,
3. Q - Set of states represented as mappings,
4. π : WorkItem −→ P(WorkItem) is the processing function,
5. <wis : WorkItem × WorkItem - Strict weak ordering relation on workitems,
6. S ⊆ WorkItem - Initial workitem set.

3 SSSP Algorithms in AGM

In this section, we present AGM models for algorithms discussed in Table 1. To
specify these models, we need to provide AGM elements from Definition 1. First,
we provide the input graph, the WorkItem, the set of states, the processing func-
tion, and the initial workitem set. Then, we show that adding different orderings
to the AGM models, we get existing distributed SSSP algorithms.

The input graph for the SSSP problem is a weighted graph: G =
(V,E, vmaps = {}, emaps = {weight}). The basic workitem includes a ver-
tex and its distance and WorkItem for SSSP is defined as WorkItemsssp ⊆
(V ×Distance). The basic workitem is extended by additional ordering attributes

Families of Graph Algorithms: SSSP Case Study 433

when necessary (e.g., in KLA-SSSP). The set of states includes a single mapping
distance for storing the distance from the source vertex. The distance mapping
is defined as distance : V −→ R

∗
+. The processing function for SSSP changes the

distance state if the input workitem’s distance for a given vertex is less than what
is already stored for that vertex in the distance map. The list of adjacent ver-
tices of a given vertex are accessed through the neighbors : V −→ P(V) function.
The basic (it will be extended with additonal functionality for some algorithms)
processing function for the SSSP graph problem is defined in Definition 2.

Definition 2. πsssp : WorkItemsssp → P(WorkItemsssp)

πSSSP (w) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{wn|〈wn[0] ∈ neighbors(w[0])
and wn[1] = w[1] + weight(w[0], wn[0])〉,

〈distance(w[0]) ←− w[1]〉,
〈if w[1]<distance(w[0])〉}

The SSSP processing function (πsssp) has a single statement. The statement
is executed only if the input workitem, ws’ distance is less than the value stored
in the distance map for the vertex in the workitem (w[0], the first element of
the workitem tuple). Constructor of the statement specifies how to construct the
new workitem wn. The processing function defines the core logic that needs to
be achieved by any SSSP algorithm. Some of the algorithms discussed in Table 1
extend this definition because of the way they order workitems.

Chaotic SSSP. The Chaotic SSSP algorithm does not order workitems. There-
fore, the strict weak ordering relation is defined in such a way that no two
workitems are related (defined in Definition 3).

Definition 3. <ch : WorkItemsssp × WorkItemsssp is a binary relation where
∀w1, w2 ∈ WorkItemsssp : w1 ≮ch w2.

This relation induces only one equivalence class, and all the workitems in this
class can be executed in parallel. The AGM model for Chaotic SSSP algorithm is
given in Proposition 1. The presented AGM uses the strict weak ordering defined
in Definition 3.

Proposition 1. Chaotic Algorithm is an instance of an AGM where

1. G = (V,E, vmaps = {}, emaps = {weight}) is the input graph,
2. WorkItem = WorkItemsssp,
3. Q = {distance} is the state (initially ∀v ∈ V, distance(v) = ∞),
4. π = πsssp,
5. Strict weak ordering relation <wis = <ch ,
6. S = {<vs, 0>} where vs ∈ V and vs is the source vertex.

Dijkstra’s SSSP. The Dijkstra’s SSSP algorithm globally orders workitems by
their associated distances (Definition 4).

434 T.A. Kanewala et al.

Definition 4. <dj : WorkItemsssp × WorkItemsssp is a relation where ∀w1,
w2 ∈ WorkItemsssp : w1<djw2 iff w1[1]<w2[1].

The AGM formulation for Dijkstra’s SSSP is same as the AGM formulation in
Proposition 1 except for the strict weak ordering. In <dj , two workitems belong
to the same equivalence class if they have the same distance. In general, the
equivalence classes generated by <dj are small, hence the parallelism available
in Dijkstra’s SSSP algorithm is limited.

<< level >>

π
sssp

<dj <ch

SSSP

Chaotic
SSSP<skla

KLA-SSSP

πkla

 -Stepping
SSSP

Δ

Δ<

Fig. 2. Summary of AGMs for
SSSP algorithms.

Δ-Stepping Algorithm. Δ-Stepping [9]
SSSP algorithm arranges vertex-distance
pairs into distance buckets) of size Δ ∈ N and
executes buckets in order. Within a bucket,
vertex-distance pairs can be executed in any
order. Processing a bucket may produce extra
work for the same bucket or for successive
buckets. The strict weak ordering relation for
Δ-stepping algorithm is given in Definition 5.
As for Dijkstra’s algorithm, Δ-stepping AGM
is as in Proposition 1 with ordering replaced
by <Δ.

Definition 5. <Δ : WorkItemsssp×WorkItemsssp is a relation where ∀w1, w2 ∈
WorkItemsssp : w1<Δw2 iff
w1[1]/Δ�<
w2[1]/Δ�.
KLA-SSSP Algorithm. The K-Level Asynchronous (KLA) paradigm [6]
processes vertices up to k topological levels asynchronously (k can be var-
ied). Correspondingly, the KLA-SSSP AGM orders workitems by their level.
To do this, workitems include an additional ordering attribute. The KLA-SSSP
WorkItem is defined as WorkItemkla ⊆ V × Distance × Level where Level ⊆ N.
The processing function also is extended to populate the level attribute (Defin-
ition 6).

Definition 6. πkla : WorkItemkla −→ P(WorkItemkla)

πkla(w) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{wn|〈wn[0] ∈ neighbors(w[0])
and wn[1] = w[1] + weight(w[0], wk[0])
and wn[2] = w[2] + 1〉,

〈distance(w[0]) ←− w[1]〉,
〈if w[1]<distance(w[0])〉}

The workitems within consecutive k levels can be executed in parallel. The
strict weak ordering relation for KLA-SSSP is given in Definition 7. The AGM
for KLA-SSSP algorithm is as AGM in Proposition 1 except for the processing
function, which is replaced with πkla, and for the strict weak ordering, which is
replaced with <skla defined in Definition 7.

Definition 7. <skla : WorkItemkla×WorkItemkla is a relation where ∀w1, w2 ∈
WorkItemkla : w1<sklaw2 iff
w1[2]/K�<
w2[2]/K�.

Families of Graph Algorithms: SSSP Case Study 435

Family of SSSP Algorithms. The SSSP AGMs are summarized in Fig. 2.
Dijkstra’s, Δ-stepping, and Chaotic algorithms share the same processing func-
tion but with different orderings. Both Dijkstra’s algorithm and Δ-stepping algo-
rithm use distance to define their strict weak orderings. KLA-SSSP uses levels
to order workitems. The only difference between πsssp and πkla is that πkla has
logic to update level attribute in newly generated workitems. In Fig. 2, we rep-
resent this with a dashed arrow to indicate that πkla is an extended version of
πsssp. Because all the algorithms use the same processing function (with ordering
extension for KLA-SSSP), they form an algorithm family.

4 Extended Abstract Graph Machine

AGMs are abstract and independent of implementation details. However, dis-
tributed graph algorithms are strongly impacted by properties of the distributed
architecture they run on. To capture that impact, we introduce extended AGM
(EAGM) that represents spacial distribution on a distributed memory platform.
Currently, we recognize 4 hierarchical levels of distribution that roughly match
modern distributed systems (arrows indicate inclusion):

Global −→ Process −→ Numa −→ ThreadTable 2. Thread ordered,
numa ordered and process
ordered EAGMs for Δ-
stepping, KLA and Chaotic
AGMs.

buffer threadq numaq nodeq

Δ
-s
te
p
p
in
g

<Δ

↓
<Δ

↓
<Δ

↓
<Δ

↓
<ch

↓
<ch

↓
<ch

↓
<dj

↓
<ch

↓
<ch

↓
<dj

↓
<ch

↓
<ch <dj <ch <ch

K
L
A
-S

S
S
P

<kla

↓
<kla

↓
<kla

↓
<kla

↓
<ch

↓
<ch

↓
<ch

↓
<dj

↓
<ch

↓
<ch

↓
<dj

↓
<ch

↓
<ch <dj <ch <ch

C
h
a
o
ti
c

<ch

↓
<ch

↓
<ch

↓
<ch

↓
<ch

↓
<ch

↓
<ch

↓
<dj

↓
<ch

↓
<ch

↓
<dj

↓
<ch

↓
<ch <dj <ch <ch

Given the spatial hierarchy, we use EAGMs
to specify spatial orderings for AGM graph
algorithms. Spatial orderings apply non-semantic
ordering on workitems throughout the spatial
hierarchy of a distributed machine. The ordering
at the Global level is the same as in the under-
lying AGM, keeping the semantics of an AGM
intact. Since the global ordering maintains the
equivalence classes of AGM, workitems can be fur-
ther ordered at the lower levels of the hierarchy.
For example, two different EAGM spatial order-
ings for Δ-stepping are <Δ → <ch → <ch →
<ch and <Δ → <ch → <ch → <dj where
each ordering corresponds to the EAGM level (the
orderings are as defined in the previous section).
The first spatial ordering enforces <Δat the global
level, but leaves execution in buckets unordered
(<ch). The second spatial ordering applies Dijk-
stra’s ordering at the Thread level (<dj), which

means that workitems at every thread are ordered in a priority queue as they
reach the thread in the spatial distribution. In summary, an EAGM consists of
an AGM and a spatial architecture hierarchy annotated by spatial orderings.

436 T.A. Kanewala et al.

In Table 2, we apply Dijkstra’s strict weak ordering relation (Definition 4)
to spatial hierarchy levels of Process (nodeq), Numa (numaq), and of Thread
(threadq) to derive EAGMs for algorithms in Table 1. The buffer represents the
original algorithm without spatial level orderings. The table shows orderings for
each combination of ordering and AGM, where the ordering chain corresponds
to the archtectural hierarchy given at the beginning of this section. Each EAGM
generates a variation of the main algorithm defined by its corresponding AGM.
By methodical application of spatial ordering, we derive a family of SSSP algo-
rithms. In the next section, we evaluate the performance of different EAGMs.

5 Experiments and Results

In this section, we implement and compare the weak scaling performance of
each derived EAGM in Table 2. In addition, we also compare the performance of
the EAGMs to the performance of SSSP algorithms available in two well-known
graph processing frameworks PowerGraph [5] and PBGL [4].

Weak scaling performance is measured on two types of synthetic R-MAT [2]
graphs: RMAT1 graphs with R-MAT parameters A = 0.57, B = C = 0.19,D =
0.05 and with edge weights ranging 0–100, and RMAT2 graphs with R-MAT
parameters A = 0.5, B = C = 0.1,D = 0.3 and with edge weights 0–255.
All experiments were carried out on Cray XE6/XK7 nodes, each with 2 AMD
Opteron Abu Dhabi CPUs (for total of 32 cores), and 64 GB of memory per
node (4 numa domains, 2 per CPU).

The algorithms are implemented in AM++ [14], a light-weight active mes-
saging framework. Graph vertices are equally distributed among distributed
processes and in-node graph structure is stored in compressed sparse row for-
mat. Disjktra’s orderings is implemented using concurrent priority queues at the
process and the numa levels, and using standard priority queue at the thread
level.

5.1 Scaling Results

The weak scaling results are presented in Figs. 3, 4 and 5. Experiment results for
basic AGMs are represented using the buffer designator. As in Table 2, EAGMs
with thread-level, node-level and numa-level Dijkstra orderings are represented
using threadq, nodeq and, numaq designators. We tested the performance of
Δ-stepping EAGMs for three delta values (Δ = 3, 5, 7) and KLA-SSSP EAGMs
with three k values (k = 1, 2, 3). In the following, we discuss results in detail.

Δ-Stepping Variations. The basic Δ-stepping (buffer) algorithm performs
the best in-node (up to 32 cores). Since no communication is involved, the addi-
tional ordering provided by the other implementations does not provide a suffi-
cient benefit for its overhead. In general, the threadq variation is the fastest in
the distributed setting for both RMAT1 and RMAT2 graph inputs. The nodeq
and the numaq variations perform better with increasing deltas, but they are not
competitive with the buffer implementation.

Families of Graph Algorithms: SSSP Case Study 437

Fig. 3. Timing results of Δ-stepping. Shaded region indicates single node runs.

For RMAT1 graph inputs, PoweGraph shows better distributed performance
for small scale graphs. However, for larger graph inputs, PowerGraph does not
scale well. All the Δ-stepping EAGMs outperform PowerGraph at higher scales,
especially for RMAT2. The threadq EAGM shows better performance than
PBGL on RMAT2 graphs, and for RMAT1 graphs, all EAGMs outperform
PBGL.

In summary, while in-node performance is dominated by the basic Δ-stepping
algorithm (excluding PowerGraph and PBGL results), the distributed execution
shows significant improvement with the threadq EAGM. Although the numaq
and nodeq variations provide more ordering than the threadq variation, the over-
head of the concurrent ordering reduces the performance of numaq and nodeq.

438 T.A. Kanewala et al.

Fig. 4. Timing results of KLA. Shaded region indicates single node runs.

KLA Variations. KLA variations show different performance characteristics
than Δ-stepping. For KLA, the nodeq and the numaq variations perform the
best at scale, with K = 1. At greater K values, the performance of threadq
is comparable to nodeq and numaq, but, in absolute terms, the performance at
higher K values is worse than at K = 1. The numaq and nodeq provide the best
potential ordering by ordering the most items. The overheads are kept at bay
because at K = 1 all the writes to the next level’s queue occur before all the
reads. For higher K values, writes and reads get more mixed, and the advan-
tage of numaq and nodeq becomes less pronounced. In KLA, for both RMAT1
and RMAT2 inputs, all EAGM variations (threadq, nodeq and numaq) perform
better compared to the basic buffer variation.

Families of Graph Algorithms: SSSP Case Study 439

Fig. 5. Timing results of the Chaotic EAGM. Shaded region indicates single node
runs.

For RMAT1 graph inputs, PowerGraph outperforms almost all the KLA
EAGMs. However, PowerGraph execution time tends to increase with the scale,
but KLA-SSSP EAGM variations tend to scale well with the increasing scale. For
RMAT2 graph inputs, all the KLA-SSSP EAGM variations, except for buffer,
outperform PowerGraph in distributed execution. However, for RMAT2, PBGL
outperforms almost all EAGMs, and numaq and nodeq tend to perform better at
higher scales with K = 1. All the EAGMs show better performance than PBGL
for RMAT1 graphs.

Chaotic Variations. For chaotic EAGMs, the thread-level ordering shows
good performance, specially in distributed execution. For RMAT2, threadq weak
scales almost perfectly in distributed execution. In addition, the threadq vari-
ation outperforms GraphLab and PBGL for both RMAT1 and RMAT2 graphs
in distributed execution. Furthermore, the threadq Chaotic EAGM is faster
than all other EAGMs in terms of absolute performance, demonstrating how the
structured (E)AGM approach may result in new, highly performant algorithms.

6 Related Work

Abstract Models–For shared memory systems ordering in graph algorithms
is studied as schedulers. Nguyen and Pingali synthesized concurrent schedulers
in [11]. Pingali et al. ([12] and [13]) discussed a data-centric formulation, that
treats graphs as abstract data types, called operator formulation. Ordering is
achieved using an operator called “ordered set iterator”. The AGM formulations’
processing function works at the workitem level while operator formulation is
applied on the graph. In addition, their ordering formulation is different from
the AGM ordering formulation.

440 T.A. Kanewala et al.

Spatial Ordering–Though, parallel processing in SSSP is well studied, spatial
level orderings for SSSP problem are not common. Pingali et al.has done research
on shared memory systems with Galois [10] scheduler, OBIM [8] that include spa-
tial characteristics of the machine. In summary, shared memory models may not
extend to distributed memory immediately due to cost factors that are significant
in distributed memory than in shared memory (e.g., low compute/communica-
tion ratios, overhead of barriers, overhead of subgraph computations etc.,). The
AGM model is designed to minimize such overheads.

7 Conclusions

Using the AGM abstraction, we showed that existing distributed graph algo-
rithms; Dijkstra’s SSSP, Δ-stepping SSSP and KLA-SSSP has the same process-
ing logic but with different orderings. These orderings generate different equiva-
lence class either based on distance or based on the level. We also showed, pro-
posed EAGM model generates more fine-grained orderings at less synchronized
spatial levels. Results of our experiments showed that some of the generated
algorithms perform better compared to standard distributed memory, parallel
SSSP algorithms under different graph inputs.

Acknowledgments. This research is based upon work supported by the National
Science Foundation under grant 1319520. Access to computational resources was sup-
ported in part by Lilly Endowment, Inc., through its support for the Indiana University
Pervasive Technology Institute, and in part by the Indiana METACyt Initiative. The
Indiana METACyt Initiative at IU was also supported in part by Lilly Endowment,
Inc. Significant part of this work was performed while the authors were affiliated with
Indiana University.

References

1. Bellman, R.: On a routing problem. Technical report, DTIC Document (1956)
2. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph

mining. In: SDM, vol. 4, pp. 442–446. SIAM (2004)
3. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.

1(1), 269–271 (1959)
4. Edmonds, N., Breuer, A., Gregor, D., Lumsdaine, A.: Single-source shortest paths

with the parallel boost graph library. In: The Ninth DIMACS Implementation
Challenge: The Shortest Path Problem, Piscataway, NJ, pp. 219–248 (2006)

5. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph: distrib-
uted graph-parallel computation on natural graphs. In: OSDI, vol. 12, p. 2 (2012)

6. Harshvardhan, Fidel, A., Amato, N.M., Rauchwerger, L.: KLA: a new algorithmic
paradigm for parallel graph computations. In: Proceedings of 23rd International
Conference on Parallel Architectures and Compilation, pp. 27–38. ACM (2014)

7. Kanewala, T.A., Zalewski, M., Lumsdaine, A.: Abstract graph machine. arXiv
preprint arXiv:1604.04772 (2016)

http://arxiv.org/abs/1604.04772

Families of Graph Algorithms: SSSP Case Study 441

8. Lenharth, A., Nguyen, D., Pingali, K.: Priority queues are not good concurrent
priority schedulers. The University of Texas at Austin, Department of Computer
Sciences. Technical report TR-11-39 (2011)

9. Meyer, U., Sanders, P.: δ-stepping: a parallelizable shortest path algorithm. J.
Algorithms 49(1), 114–152 (2003)

10. Nguyen, D., Lenharth, A., Pingali, K.: A lightweight infrastructure for graph ana-
lytics. In: Proceedings of 24th ACM Symposium on Operating Systems Principles,
pp. 456–471. ACM (2013)

11. Nguyen, D., Pingali, K.: Synthesizing concurrent schedulers for irregular algo-
rithms. In: ACM SIGPLAN Notices, vol. 46, pp. 333–344. ACM (2011)

12. Pingali, K., Nguyen, D., Kulkarni, M., Burtscher, M., Hassaan, M.A., Kaleem,
R., Lee, T.H., Lenharth, A., Manevich, R., Méndez-Lojo, M., et al.: The tao of
parallelism in algorithms. ACM SIGPLAN Not. 46(6), 12–25 (2011)

13. Prountzos, D., Manevich, R., Pingali, K.: Elixir: a system for synthesizing concur-
rent graph programs. ACM SIGPLAN Not. 47(10), 375–394 (2012)

14. Willcock, J.J., Hoefler, T., Edmonds, N.G., Lumsdaine, A.: AM++: a generalized
active message framework. In: Proceedings of 19th Internatational Conference on
Parallel Architectures and Compilation Techniques, pp. 401–410. ACM (2010)

	Families of Graph Algorithms: SSSP Case Study
	1 Introduction
	2 Abstract Graph Machine (AGM)
	3 SSSP Algorithms in AGM
	4 Extended Abstract Graph Machine
	5 Experiments and Results
	5.1 Scaling Results

	6 Related Work
	7 Conclusions
	References

