
Using Simulation to Evaluate and Tune
the Performance of Dynamic Load Balancing

of an Over-Decomposed Geophysics Application

Rafael Keller Tesser1(B), Lucas Mello Schnorr1, Arnaud Legrand2,
Fabrice Dupros3, and Philippe Olivier Alexandre Navaux1

1 Informatics Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
{rktesser,schnorr,navaux}@inf.ufrgs.br

2 Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France
arnaud.legrand@imag.fr
3 BRGM, Orléans, France

f.dupros@brgm.fr

Abstract. Finite difference methods are commonplace in scientific com-
puting. Despite their apparent regularity, they often exhibit load imbal-
ance that damages their efficiency. We characterize the spatial and tem-
poral load imbalance of Ondes3D, a seismic wave propagation simulator.
We reveal that this imbalance originates from the nature of the input
data and from low-level CPU optimizations. Such dynamic imbalance
should therefore be quite common and is intractable by any static app-
roach or classical code reorganization. An effective solution, with few
code modifications, combines domain over-decomposition and dynamic
load balancing (e.g., with AMPI), migrating data and computation at
the granularity of an MPI rank. It generally requires a careful tuning
of the over-decomposition level, the load balancing heuristic and fre-
quency. These choices are quite dependent on application and platform
characteristics. In this paper, we propose a methodology that leverages
the capabilities of the SimGrid framework to conduct such study at low
experimental cost. It combines emulation, simulation, and application
modeling that requires minimal code modification and yet manages to
capture both spatial and temporal load imbalance, faithfully predict-
ing its overall performance. We compare simulation and real executions
results and show how our strategy can be used to determine the best load
balancing configuration for a given application/hardware configuration.

Keywords: Load balancing and over-decomposition · Performance pre-
diction · Simulation · Geophysics FDM application

1 Introduction

The Ondes3D seismic wave propagation simulator [7], developed by computa-
tional science researchers at the French Geological and Mining Research Bureau

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 192–205, 2017.
DOI: 10.1007/978-3-319-64203-1 14



Using Simulation to Evaluate and Tune the Performance 193

(BRGM), is a typical iterative application tailored for homogeneous HPC plat-
forms. Unfortunately like many other similar applications, Ondes3D suffers from
scalability issues [6] due to the difficulty of evenly distributing the computational
load among processes. One of the contributions of this article is to demonstrate
that, despite the regularity of the finite difference method kernels it relies on,
Ondes3D presents both non-trivial spatial and temporal load imbalance.

The performance of Ondes3D could be improved by partially rewriting it
[13] to run on modern heterogeneous HPC platforms. The undesired side-effect
is that computational science researchers, the people who actually understand
the physics behind the code, often become incapable to contribute anymore.
An alternative way to improve performance with less intrusive modifications
is to rely on domain over-decomposition and runtimes that support dynamic
process migration, as implemented by Charm++ [11]. In the specific case of
legacy iterative MPI applications, one may employ Adaptive MPI (AMPI) [10],
which is a full-fledged MPI implementation built over the Charm++ runtime and
benefits from its load balancing infrastructure. AMPI encapsulates each MPI
rank in a task that can be dynamically migrated when necessary. The migration
phase is triggered when the MPI Migrate operation is called. The load balancer
decides the new task mapping based on previously collected load measurements.

Such porting has already been applied to Ondes3D in a previous work [12],
enabling spatial load imbalance to be dynamically mitigated. However, antic-
ipating performance gains when using such adaptive HPC runtimes is usually
difficult. Finding the best configuration for AMPI involves conducting real exper-
iments at scale to identify the best (a) over-decomposition level, (b) load bal-
ancing heuristic, (c) load balancing frequency, and (d) number of resources to
request. Such parameter tuning is platform-specific, and time-consuming.

In this paper, we propose a simulation-based methodology to evaluate the
potential performance benefits brought by adaptive MPI runtimes to legacy
codes. This methodology accelerates the evaluation of over-decomposition cou-
pled with dynamic load balancing with almost no modification of the target
application. Our approach relies on the SMPI emulation and trace replay mech-
anisms of SimGrid [5] to simulate the computation/communication behavior of
the application and to mimic the behavior of the load balancing heuristics. Our
methodology is faithful in terms of total makespan, as well as from the load
balancing perspective. The application has to be executed only once to obtain a
fine-grain trace that can be replayed multiple times to evaluate the best parame-
ter configuration for a given HPC platform. Since the replay is fast (usually less
than a minute on a laptop), it enables a quick inspection of many load balancing
parameters. Although our validation is conducted only with Ondes3D and two
earthquake scenarios (Chuetsu-Oki and Ligurian), we believe that it has nothing
specific to it. Our strategy could be applied to any iterative MPI application.

Section 2 presents a detailed analysis of the spatial and temporal load imbal-
ances in Ondes3D. Section 3 details our evaluation workflow and its validation
procedure. In Sect. 4, we compare our method against real executions, and
confirm the usefulness of our simulation for load balancing parameter tuning.



194 R.K. Tesser et al.

Section 5 presents related work on simulation-based tools, justifying our choices.
Section 6 concludes the paper, listing major contributions and future work. More
details on experiments, analysis, and simulation workflow can be found in an
extended version at https://hal.inria.fr/hal-01391401.

2 Ondes3D: A Typical Imbalanced MPI Code

Fig. 1. 3D rock medium, with a
4× 4 domain decomposition; each
process calculates a cuboid.

Ondes3D is a simulator to conduct seismic haz-
ard assessment at regional scale. It approxi-
mates the differential equations governing the
elastodynamics of rock medium using finite-
differences methods (FDM). The 3D domain
is statically partitioned in cuboids, as depicted
in Fig. 1. Each iteration (see Fig. 2a) corre-
sponds to a given time step and consists in
calling three macro kernels (Intermediates,
Stress, and Velocity) that apply a series of
micro kernels (example in Fig. 2b) to the whole
domain. Message passing consists in asyn-
chronous neighborhood communications inter-
twined with the three macro kernels. There is
no global barrier, each process evolves asyn-
chronously up to some extent.

Fig. 2. The Ondes3D application: (a) the three macro kernels of the main loop, with
intertwined neighborhood communications; (b) and the CPML4 micro kernel.

Ondes3D suffers from load imbalance that limits its scalability despite its
regularity (cuboids have the same geometry; code is always the same). Extra-
computation dealing with boundary conditions has been previously identified [6]

https://hal.inria.fr/hal-01391401


Using Simulation to Evaluate and Tune the Performance 195

as the main source of spatial imbalance. In Sect. 2.1, we report another source of
spatial imbalance caused by the heterogeneous rock substrate. Temporal imbal-
ances had been overlooked due to the regular shape of the code. In Sect. 2.1, we
show that temporal imbalance is stronger than the spatial one. Evidences of its
origin are related to low level optimizations taking place inside the CPU.

We have used a Mw6.3 earthquake workload [2] identified as Ligurian. Code
compilation uses GCC 6.1.1 with −O3 and PAPI [14] instrumentation. While
we report results only for this setup, we have observed the issues with other
workloads, CPUs (Xeon X3440, X5650, E5-2630, and i7 4600M), and compilers.

2.1 Identifying New Sources of Load Imbalance

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

X Domain Decomposition

Y 
D

om
ai

n 
D

ec
om

po
si

tio
n

0.02 0.03 0.04 0.05

Total Computational Load
[seconds]

Fig. 3. Spatial imbalance for the first iteration
represented by a color gradient for each rank
in a 16× 16 grid (256 processes). (Color figure
online)

Spatial Imbalance Due to
Heterogeneous Rock Medium.
Figure 3 depicts a 16 × 16 domain
decomposition where each cell in
the cartesian grid represents one of
the 256 processes, each in charge
of a cuboid subdomain. The color
in the heatmap indicates the total
computational load per process
during the first iteration, before
the main earthquake event that
originates in the (13, 5) subdomain
coordinate. Processes on the bor-
ders demonstrate a much higher
computational load (red color)
than those located inside the phys-
ical domain. Another, much more
subtle, source of spatial imbalance
(blue shades), depends mostly on
the rock multi-layer configuration
of the input (six layers for this sce-
nario). Although minor, such effect
exists and solely depends on the
substrate geometry.

Temporal Imbalance Due to Low-Level CPU Optimizations. The
Ondes3D code does not exhibit any structure (convergence loops, refinements,
thresholds) that could lead to an evolution of computation load along simula-
tion iterations. There are conditional branches (see Fig. 2b), but they are related
solely to absorbing boundary conditions. Yet, as illustrated in Fig. 4a, one can
observe a variability in computational costs along iterations that is even higher
than the spatial variability incurred by the absorbing conditions. This figure
details the behavior of all 64 processes (each box in the 8 × 8 grid), showing



196 R.K. Tesser et al.

Fig. 4. Load imbalances for the Ligurian workload: (a) spatial load imbalance; (b)
temporal load imbalance for three kernels; and (c) CPML4 substrate values evaluating
to distinct values.

(in the vertical axis of each box) the total number of cycles (PAPI TOT CYC) per
macro kernel as a function of the iteration (horizontal axis). The number of
cycles seems to follow the earthquake shock progression, standing out around
the eightieth iteration.

We take the CPML4 kernel (see Fig. 2b) to explain the origin of this dynamic
computational cost. CPML4 represents well all the 24 small inlined kernels. It is
called by the Intermediates macro kernel that iterates over the cuboid sub-
domain with three nested loops. For each subdomain’s cell, the CPML4 kernel
is called nine times with different parameters, resulting in many calls for each
process and time step. The values dx and dt are constants, while variables x1,
x2, x3, and x4 represent how the rock medium state unfolds along the iterations.

Let us consider the x1, x2, x3, and x4 arguments of the CPML4 kernel (Fig. 2b).
They are used in the return statement, considered by the FPU for arithmetic
evaluation. We instrumented the CPML4 kernel to count how many times per
time step and per process these differences are equal to zero (let us name these
numbers n0

2,1 for x2-x1 and n0
4,3 for x4-x3). The difference |n0

2,1 −n0
4,3| (Fig. 4b)

perfectly correlates with the computational load change (Fig. 4a) and with the
growth of the branch miss-prediction counters. Intuitively, this value measures
how often only one of the two differences is zero. This hypothesis has been con-
firmed with a manual instrumentation of the CPML4 kernel, recording its duration
for each call (in cycles) along with the result of the two differences (x2-x1 and
x4-x3). The observed duration increase originates from the combination of both
a speed-up of multiplications by zero and of branch miss-predictions in the FPU



Using Simulation to Evaluate and Tune the Performance 197

incurred by the irregular sequence of zeros and non-zeros. All other small inlined
kernels share the same structure of CPML4. It is thus the aggregated contribution
of all these small additional cycles that generates the temporal load variation.

2.2 Need for Dynamic Load Balancing: The AMPI Approach

Modeling and predicting the Ondes3D load imbalance is hard, as it strongly
depends on the initial and evolving conditions of the earthquake simulations.
Even if we could rewrite Ondes3D to allow uneven domain decomposition, some
periodic data/computation re-balancing would still be required to cope with
temporal load imbalance. We thus employ a simpler approach by mixing load
balancing at runtime with over-decomposition, using Charm++’s Adaptive MPI
[10] (AMPI). This framework enables over-decomposition, i.e., dividing the prob-
lem domain in more tasks than the number of available cores. Each task becomes
a user-level thread suitable for migration. Load balancing heuristics, sensitive to
load variations from the near past, can periodically redistribute load.

Porting from MPI to AMPI requires three application changes. First, there
should be no global or static variables, to avoid data sharing among tasks. Sec-
ond, Pack-and-Unpack functions are necessary to make data migrations possible.
And third, the application must call MPI Migrate to indicate when the applica-
tion has no active communications or open files, and is ready for load balancing.

2.3 Costly Tuning of Load Balancing Parameters in Real Platforms

Many parameters influence the effectiveness of the load balancing. Some load
balancing heuristics are more scalable than others (e.g., centralized vs distrib-
uted). The level of over-decomposition defines the granularity for the load
balancer. As over-decomposition increases, we also increase the communication
cost. At some point, such cost exceeds the benefit of load balancing. Likewise,
the number of processors is a critical parameter in the overall performance.
Finally, fine-tuning the frequency of load balancing is essential to obtain
good performance since frequent calls might become overhead, hiding any load
balancing benefits. Moreover, since calling MPI Migrate incurs a global barrier,
it may also destroy any natural compensation of load imbalance throughout
iterations afforded by asynchronous neighborhood communications.

Using real executions to evaluate the load balancing benefits present several
difficulties. The optimal configuration often depends on application and platform
characteristics. Running the same earthquake simulation many times at scale on
a production system solely to determine such parameters is both resource and
time consuming. To overcome this, we propose a lightweight simulation workflow
to avoid the burden of real executions. Performance gains are evaluated with
few code changes (even before AMPI porting), and the application needs to be
executed only once. Such approach saves development and evaluation time.



198 R.K. Tesser et al.

3 Simulated Adaptive MPI (SAMPI)

Our workflow relies on SimGrid’s SMPI, which offers two key features we have
built upon. First, SMPI’s flexibility allows to study MPI applications either in
emulation mode or through trace-replay. In emulation, unmodified MPI applica-
tions are sequentially executed on top of the simulator, in a controlled way. In trace
replay, the events of an MPI application are replayed on top of the simulator, in
a small fraction of the time it takes to finish a normal run at full scale. Second,
SMPI builds on the hybrid flow-level network models of SimGrid [4] that allow to
faithfully model network contention, which is essential in our context.

SMPI has been modified to simulate AMPI in three ways. (1) The API is
extended with the non-standard MPI Migrate function both in the emulation
mode (to generate an event in the trace) and in the trace replay. When replay-
ing with load-balancing, this function calls the MPI Barrier function, the load
balancing heuristic to define a new mapping, and simulates all task migrations.
(2) We have manually extracted and slightly adapted two centralized load bal-
ancers (LB) by hand: GreedyLB and RefineLB. We removed internal refer-
ences to the original Charm++ implementation, making sure that the heuristic
remains intact. A few trace replay routines also had to be modified to collect the
load data that is fed to these heuristics. (3) The migration payload is estimated
by trapping malloc function calls in emulation, which is prone to migration cost
understimation. We rely on SimGrid’s contention-aware network models when
sending the data of the migrated task from its original location to its destination.

Tracing one workload requires to run the code for real, hence it takes 3–
5 h with SMPI’s emulation on a laptop. Then, while exploring parameters, it
can be replayed many times with SAMPI and an LB configuration (frequency,
heuristic). Each configuration simulation takes only a few minutes on a laptop.

4 Experimental Results and Evaluation

Several issues should be solved to correctly validate the accuracy of predictions
obtained in simulation. Solely comparing the (predicted) makespan of simula-
tions with the one of real-life executions on a few examples is insufficient to be
fully trusted. Yet, comparing detailed execution traces (e.g., with Gantt charts)
of an application as complex as Ondes3D is simply impossible. Other adhoc
intermediate and aggregated representations are thus needed. In our context,
iterations and load imbalance are of primary importance. Therefore, we decided
to track the resource usage per processor and per iteration and to study its evolu-
tion both temporally and spatially. We use this performance metric, to compare
reality and simulation both qualitatively and quantitatively.

Real measurements have been collected in 16 nodes of the Parapluie cluster
(part of Grid’5000 [3]). Each node has two 12-core 1.7 GHz AMD Opteron 6164
HE processors, interconnected through a 20 G Infiniband 4x QDR network.

We tested two very different earthquake scenarios in Ondes3D. The first one
is the Mw6.6 Niigata Chuetsu-Oki (2007) from Japan [1]. Running the full sim-
ulation (6000 time steps) takes an unreasonable amount of time, mainly because



Using Simulation to Evaluate and Tune the Performance 199

many runs are needed to obtain statistically significant results. We limited this
simulation to the first 500 time steps to keep a reasonable experimental time.
We also reduced the number of cells to 300 × 300 × 150. The second simulated
scenario is the same used in Sect. 2, with 500 × 350 × 130 cells.

4.1 Validation: Comparing SAMPI (Simulation) Against AMPI

In our validation experiments, we fix the domain decomposition to 64 tasks
(always mapped to 16 processes) and call MPI Migrate every 20 time steps.
From our experience, this configuration is relatively good and allows to focus
our evaluation on sound scenarios. The comparison of SAMPI with AMPI for
situations without load balancer, with GreedyLB and with RefineLB, is depicted
for the two workloads: Chuetsu-Oki in Fig. 5, and Ligurian in Fig. 6.

Per-Process Computational Load Analysis. The heatmaps in Figs. 5a
(Chuetsu-Oki) and 6a (Ligurian) show the computational load (as a color gradi-
ent) for each core (in the vertical axis) along the Ondes3D iterations. A reddish
color represents higher computational load, while blue represents idleness. Each
heatmap corresponds to an execution, either real (AMPI in the top row) or sim-
ulated (SAMPI in the bottom), with a given load balancer (no load balancing
on the left column, Greedy in the center, and Refine on the right). The real and
simulated load distribution are very similar, showing the ability of our workflow
to capture the complex behavior of AMPI in simulation.

Figure 5a shows that for Chuetsu-Oki, the case without load balancing leads
to many underutilized resources (white and bluish regions). Both LB seem to
significantly improve this situation by making processes 2 to 13 receive more load.
GreedyLB achieves a much better load balancing than RefineLB (being more
conservative) and this is visible in simulation as well as in real execution traces.
The load structure for the Ligurian workload is quite different (see Fig. 6a).
There seems to exist an alternating load irregularity in processes whose ranks
belong to the center of the domain decomposition (those with white and bluish
colors without load balancing). The Greedy and Refine load balancers are again
effective to redistribute the load. We observe a much more even computational
load across processes but not as good as for the Chuetsu-Oki workload.

The heatmap views are based on one run for each case. Any new execution
(either real or in simulation from a new trace) leads to slightly different outcomes.
Thus, focusing on the load of a given core at a given time-step is not really
meaningful. From such view, it seems that GreedyLB is the best choice from the
load balancing perspective, but communication (both from the application and
load balancer) should also be taken into account. In the following, we provide
makespan analyses using the average load as a function of the execution time.

Average Load and Makespan Comparison Analysis. The plots in Figs. 5b
(Chuetsu-Oki) and 6b (Ligurian) depict the evolution of the average load for each
core. This metric (in vertical axis) is drawn as a function of time (horizontal)
for both SAMPI (blue) and AMPI (red). The points along the lines indicate the



200 R.K. Tesser et al.

None GreedyLB RefineLB

AM
PI

SAM
PI

100 300 500 100 300 500 100 300 500

0

3

6

9

12

15

0

3

6

9

12

15

Ondes3D Iteration Number

R
es

ou
rc

e 
Id

en
tif

ic
at

io
n

0.4 0.6 0.8 1.0Computational Load [percentage]

SAMPI

AMPIAMPI

Average SAMPI
Precision: −7.40%

SAMPI

AMPI

Average SAMPI
Precision: −8.20%

SAMPI

AMPI

Average SAMPI
Precision: −8.90%

None GreedyLB RefineLB

0 250 500 750 0 250 500 750 0 250 500 750
0%

20%

40%

60%

80%

100%

Time [seconds]

Av
er

ag
e 

Lo
ad

Fig. 5. Comparison of SAMPI (simulation) against AMPI (reality) for the Chuetsu-Oki
workload; the top row shows six heatmaps (no LB, Greedy, and Refine) illustrating the
computation load (color gradient) for each iteration and all 16 processes; the bottom
row shows the average aggregated load along time, with the makespan of multiple runs.
(Color figure online)

moments when the metric is computed (when MPI Migrate starts, at the end of
the LB interval); lines show the trend. Horizontal facetting indicates the metric
without load balancing, with GreedyLB and with RefineLB.



Using Simulation to Evaluate and Tune the Performance 201

None GreedyLB RefineLB

AM
PI

SAM
PI

100 200 300 100 200 300 100 200 300

0

3

6

9

12

15

0

3

6

9

12

15

Ondes3D Iteration Number

R
es

ou
rc

e 
Id

en
tif

ic
at

io
n

0.4 0.6 0.8 1.0Computational Load [percentage]

SAMPI

AMPI

Average SAMPI
Precision: −1.00%

AMPI

SAMPI

Average SAMPI
Precision: +0.70%

AMPI

SAMPI

Average SAMPI
Precision: +7.50%

None GreedyLB RefineLB

0 500 1000 0 500 1000 0 500 1000
0%

20%

40%

60%

80%

100%

Time [seconds]

Av
er

ag
e 

Lo
ad

Fig. 6. Comparison of SAMPI against AMPI for the Ligurian workload. (Color figure
online)

For the Chuetsu-Oki workload (Fig. 5b), GreedyLB performs better than
RefineLB, both in simulation as in real life. One could expect GreedyLB to be
worse instead, due to the larger amount of migrations. It seems however that,
in this case, the default overload tolerance of 1.05 used by RefineLB is too high.
Regarding the comparison of SAMPI against the real AMPI, we see that SAMPI
is slightly too optimistic across several runs. That being said, such inaccuracy
would not affect our choice of load balancer. There is a significant variability



202 R.K. Tesser et al.

in real executions (perfect isolation is tough to achieve on a cluster), being
generally larger than in the simulations. Simulation variability comes from the
use of different inputs to trace replay. For the Ligurian workload (Fig. 6b), as on
the previous scenario, both simulation and real life have similar load unfolding,
except for RefineLB, where SAMPI is slightly more pessimistic than real life.

Our simulation mimics in a realistic way the evolution of the load distribution
of real executions, which is one of the main aspects we are trying to obtain.
There remains some minor inaccuracies in absolute time prediction: ≈9% for all
configurations of the Chuetsu-Oki workload, and varying from ≈1% to ≈8% in
the Ligurian. We are currently investigating their origin. Yet, since the trends
remain correct, this does not affect the identification of the optimal load balancer
in the two investigated scenarios. In the next section, we demonstrate how the
SAMPI simulator can be used to explore different load balancing parameters.

4.2 Tuning Load-Balancing Parameters with Simulation

We investigate the parameter space of AMPI using our SAMPI workflow. We
measure four configurations for load balancing interval; and five levels of over-
decomposition. We focus on the Ligurian workload, since it is much larger than
the Chuetsu-Oki and parameter tuning is likely to be more useful.

The Influence of Load Balancing Frequency. We measure the makespan of
Ondes3D with different load balancing intervals. A call to MPI Migrate is present
for each task at the end of every time step. During the simulation with SAMPI,
we control and enforce a different load balancing frequency by actually calling the
barrier and the load balancing, for example, only every 10, 20, 30 or 40 iterations.
Intuitively, the more frequent the calls, the better the load balancing but also
the more important the barrier and data migration overhead. Figure 7 shows
the influence of the load balancing frequency (horizontal axis) on the makespan
(vertical axis) of a 16 × 4 task configuration. In this setting, it turns out that
LB frequency has no or little influence in the performance attained when using
GreedyLB or RefineLB. Even though GreedyLB balances the load carelessly
whereas RefineLB is much more conservative, the communication performance
of the system is sufficiently good to hide the migration costs.

The Influence of Decomposition Level. Another important performance
affecting parameter is the over-decomposition level. The influence of over-
decomposition on the makespan of Ondes3D, when calling MPI Migrate every
20 time steps, is depicted in Fig. 7 (right plot). The average makespan (vertical
axis) is shown as a function of five over-decomposition configurations (horizon-
tal). In the absence of load balancing (None), over-decomposing is, as expected,
generally deterring since this creates extra-communication between tasks. Yet
having more and smaller tasks allows for a better redistribution of the load. The
RefineLB sweet spot is reached with a 16 × 8 decomposition (≈13% gain over
the original version). However, for GreedyLB the decomposition level should be



Using Simulation to Evaluate and Tune the Performance 203

Fig. 7. Simulated makespan predictions for the Ligurian earthquake simulation with
(left) four load balancing intervals (in number of iterations) and (right) with six over-
decomposition levels (1, 2, 3, 4, 8, and 16) on 16 cores.

as small as possible (which leads to ≈19% gain over the original version), which
is again explained by the fact that its careless migrations scale very badly. In
the end, the 16 × 2 GreedyLB configuration is slightly better than the 16 × 4
RefineLB configuration but exhibits quite different load balancing behaviors.

From a series of similar simple studies using SAMPI, it appears that, for this
application, RefineLB executed every 20 time steps with an over-decomposition
level of 8 provides, in general, a decent performance and gracefully handles a
larger number of nodes. This parameter combination has been tested a real
execution of the Chuetsu-Oki simulation on a 12-node cluster (288 cores) at
BRGM. We obtained an ≈36% faster execution than the original unbalanced
execution. Further tuning can be done at low cost using SAMPI to guide the
analyst toward a better configuration.

5 Related Work

The SAMPI workflow we propose mostly depends on two factors. First, a faithful
model of modern HPC networks and MPI implementations are essential since
communications play a crucial role in the load balancing trade-offs. Second, the
ability to run simulations both in trace-replay and emulation modes is helpful
to select the approach most suited to the resources at hand. There is a plethora
of simulation tools to study MPI applications [5] and at least four of them sup-
port both modes and could thus have been modified: BigSim [17], SST/Macro
[15], xSim [8], and SimGrid [5] (through SMPI). BigSim is part of Charm++,
thus supporting the AMPI applications simulation, such as our Ondes3D code.
Although linked to Charm++, BigSim is uncapable to change the load balanc-
ing parameters during trace replay and this would require major code modifi-
cations. SST-Macro allows both trace replay through the DUMPI module and
emulation through skeletonization. Although SST-macro is flexible with many
network models, including flow-based ones, its emulation support still seems



204 R.K. Tesser et al.

unsufficiently mature to run an application as complex as Ondes3D. Finally,
xSim mostly focuses on extreme-scale executions and its validity remains ques-
tionable at small scale [9]. Furthermore, the source code of xSim is currently
unavailable.

For this work, we therefore chose to rely on the free software SimGrid, whose
SMPI interface allows both emulation and trace replay of MPI applications.
SMPI leverages SimGrid’s thoroughly validated flow communication models [16],
while also accounting for specific characteristics of MPI implementations [5].
Hence, SMPI allows us to collect accurate execution traces from emulation, and
its replay mechanism allows us to quickly simulate one execution many times.

6 Conclusion

We propose a simulation based approach for the performance evaluation and
tuning of dynamic load balancing applied to iterative MPI applications. Our
approach allows the estimation of performance gains from load balancing at low
cost, both in terms of time and of resource requirements. Although we apply it to
a geophysics application (Ondes3D), its structure is very typical among legacy
MPI applications. Therefore, we believe the usefulness of our approach is not
limited to Ondes3D. Our contributions are three-fold: (a) An in-depth analysis
of the spatial and temporal load balancing issues found in Ondes3D. The lat-
ter demonstrates how dynamic load imbalance can arise even when there is no
indication of temporal variability in the code. (b) A validated simulator called
SAMPI that simulates over-decomposition and AMPI load balancing. This sim-
ulator is integrated in the open-source SimGrid framework, and allows the fast
and faithful exploration of different load balancing scenarios from a single execu-
tion trace. (c) A sensibility analysis showing both the importance of activating
a load balancer (≈20–30% gains), and the rather low influence of specific load
balancing parameters in the Ondes3D makespan.

As future work, we plan to build on other Ondes3D characteristics to under-
stand how spatial aggregation and trace extrapolation can be used together to
further accelerate the simulations.

Acknowledgements. We thank CAPES/Cofecub 764-13, FAPERGS/Inria ExaSE,
FAPERGS Green-Cloud, CNPq 447311/2014-0, CNRS/LICIA Intl. Lab, the EU H2020
Programme and from MCTI/RNP-Brazil under the HPC4E Project, grant 689772.
Some experiments were carried out at the Grid’5000 platform (https://www.grid5000.
fr), with support from Inria, CNRS, RENATER and several other organizations.

References

1. Aochi, H., Ducellier, A., Dupros, F., Delatre, M., Ulrich, T., Martin, F., Yoshimi,
M.: Finite difference simulations of seismic wave propagation for the 2007 mw 6.6
Niigata-ken Chuetsu-Oki earthquake: Validity of models and reliable input ground
motion in the near-field. Pure Appl. Geophys. 170(1–2), 43–64 (2013)

https://www.grid5000.fr
https://www.grid5000.fr


Using Simulation to Evaluate and Tune the Performance 205

2. Aochi, H., Ducellier, A., Dupros, F., Terrier, M., Lambert, J.: Investigation of
historical earthquake by seismic wave propagation simulation: source parameters of
the 1887 M6.3 Ligurian, north-western Italy, earthquake. In: 8ème colloque AFPS,
Vers une maitrise durable du risque sismique. p. 6, September 2011

3. Balouek, D., et al.: Adding virtualization capabilities to the Grid’5000 testbed. In:
Ivanov, I.I., Sinderen, M., Leymann, F., Shan, T. (eds.) CLOSER 2012. CCIS, vol.
367, pp. 3–20. Springer, Cham (2013). doi:10.1007/978-3-319-04519-1 1

4. Bédaride, P., et al.: Toward better simulation of MPI applications on Eth-
ernet/TCP networks. In: Jarvis, S.A., Wright, S.A., Hammond, S.D. (eds.)
PMBS 2013. LNCS, vol. 8551, pp. 158–181. Springer, Cham (2013). doi:10.1007/
978-3-319-10214-6 8

5. Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile, scalable,
and accurate simulation of distributed applications and platforms. Parallel Distrib.
Comput. 74(10), 2899–2917 (2014)

6. Dupros, F., Do, H.T., Aochi, H.: On scalability issues of the elastodynamics equa-
tions on multicore platforms. In: International Conference on Computer Science,
Procedia Computer Science, p. 9. Elsevier, Barcelone, June 2013

7. Dupros, F., Martin, F.D., Foerster, E., Komatitsch, D., Roman, J.: High-
performance finite-element simulations of seismic wave propagation in three-
dimensional nonlinear inelastic geological media. Parallel Comput. 36(5–6), 308–
325 (2010)

8. Engelmann, C.: Scaling to a million cores and beyond: using light-weight simulation
to understand the challenges ahead on the road to exascale. Future Gener. Comput.
Syst. 30, 59–65 (2014)

9. Engelmann, C., Naughton, T.: A network contention model for the extreme-scale
simulator. In: Press, A. (ed.) 34th IASTED International Conference on Modelling,
Identification and Control (MIC) (2015)

10. Huang, C., Lawlor, O., Kalé, L.V.: Adaptive MPI. In: Rauchwerger, L. (ed.) LCPC
2003. LNCS, vol. 2958, pp. 306–322. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24644-2 20

11. Kalé, L., Krishnan, S.: CHARM++: a portable concurrent object oriented system
based on C++. In: Proceedings of OOPSLA 1993, pp. 91–108. ACM Press (1993)

12. Keller Tesser, R., Lima Pilla, L., Dupros, F., Navaux, P., Mehaut, J.F., Mendes,
C.: Improving the performance of seismic wave simulations with dynamic load
balancing. In: International Conference Parallel, Distributed and Network-Based
Processing (2014)

13. Martinez, V., Michéa, D., Dupros, F., Aumage, O., Thibault, S., Aochi, H., Navaux,
P.O.A.: Towards seismic wave modeling on heterogeneous many-core architectures
using task-based runtime system. In: SBAC-PAD. IEEE Computer Society (2015)

14. Mucci, P.J., Browne, S., Deane, C., Ho, G.: PAPI: a portable interface to hardware
performance counters. In: Proceedings of the Department of Defense HPCMP Users
Group Conference, pp. 7–10 (1999)

15. Rodrigues, A.F., Hemmert, K.S., Barrett, B.W., Kersey, C., Oldfield, R., Weston,
M., Risen, R., Cook, J., Rosenfeld, P., CooperBalls, E., et al.: The structural
simulation toolkit. ACM SIGMETRICS Perform. Eval. Rev. 38(4), 37–42 (2011)

16. Velho, P., Schnorr, L.M., Casanova, H., Legrand, A.: On the validity of flow-level
TCP network models for grid and cloud simulations. ACM Trans. Model. Comput.
Simul. 23(4), 23:1–23:26 (2013)

17. Zheng, G., Kakulapati, G., Kale, L.: Bigsim: a parallel simulator for perfor-
mance prediction of extremely large parallel machines. In: Parallel and Distributed
Processing Symposium, Proceedings, 18th International, p. 78, April 2004

http://dx.doi.org/10.1007/978-3-319-04519-1_1
http://dx.doi.org/10.1007/978-3-319-10214-6_8
http://dx.doi.org/10.1007/978-3-319-10214-6_8
http://dx.doi.org/10.1007/978-3-540-24644-2_20
http://dx.doi.org/10.1007/978-3-540-24644-2_20

	Using Simulation to Evaluate and Tune the Performance of Dynamic Load Balancing of an Over-Decomposed Geophysics Application
	1 Introduction
	2 Ondes3D: A Typical Imbalanced MPI Code
	2.1 Identifying New Sources of Load Imbalance
	2.2 Need for Dynamic Load Balancing: The AMPI Approach
	2.3 Costly Tuning of Load Balancing Parameters in Real Platforms

	3 Simulated Adaptive MPI (SAMPI)
	4 Experimental Results and Evaluation
	4.1 Validation: Comparing SAMPI (Simulation) Against AMPI
	4.2 Tuning Load-Balancing Parameters with Simulation

	5 Related Work
	6 Conclusion
	References




