
 123

23rd International Conference
on Parallel and Distributed Computing
Santiago de Compostela, Spain, August 28 – September 1, 2017
Proceedings

Euro-Par 2017:
Parallel ProcessingLN

CS
 1

04
17

AR
Co

SS
Francisco F. Rivera
Tomás F. Pena
José C. Cabaleiro (Eds.)

Lecture Notes in Computer Science 10417

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, City University of Hong Kong
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Francisco F. Rivera • Tomás F. Pena
José C. Cabaleiro (Eds.)

Euro-Par 2017:
Parallel Processing
23rd International Conference
on Parallel and Distributed Computing
Santiago de Compostela, Spain, August 28 – September 1, 2017
Proceedings

123

Editors
Francisco F. Rivera
University of Santiago de Compostela
Santiago de Compostela
Spain

Tomás F. Pena
University of Santiago de Compostela
Santiago de Compostela
Spain

José C. Cabaleiro
University of Santiago de Compostela
Santiago de Compostela
Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-64202-4 ISBN 978-3-319-64203-1 (eBook)
DOI 10.1007/978-3-319-64203-1

Library of Congress Control Number: 2017947501

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-6728-9350
http://orcid.org/0000-0002-7622-4698
http://orcid.org/0000-0002-5674-5162

Preface

This volume contains the papers presented at Euro-Par 2017: the 23rd International
Conference on Parallel and Distributed Computing, held from 28 August to
1 September 2017 in Santiago de Compostela (Spain).

Euro-Par is a prestigious annual series of international conferences dedicated to
parallel and distributed computing. The topics covered by the conference include
aspects related to both software and hardware technologies and, in particular, appli-
cations in different hardware platforms, ranging from small embedded systems to cloud
computing and supercomputers. The specific topics on which the conference focuses
have been renewed along the years extending the state of the art in the field. Nowadays,
the challenges of building exascale performance computing systems and their pro-
gramming are among the main motivations in the parallel and distributed computing
community. This challenge opens opportunities to deal with issues related to health,
climate, security, and many more. Various topics are deeply impacted by this scenario
like energy optimization, scalability, heterogeneous computing, fault-tolerance, etc.

The main audience of Euro-Par are researchers in academic institutions, public and
private laboratories, and industrial organizations. Euro-Par’s main objective is to be the
primary choice of such professionals for the presentation of new results in the field.

Previous Euro-Par conferences took place in Stockholm, Lyon, Passau,
Southampton, Toulouse, Munich, Manchester, Paderborn, Klagenfurt, Pisa, Lisbon,
Dresden, Rennes, Las Palmas, Delft, Ischia, Bordeaux, Rhodes, Aachen, Porto, Vienna,
and Grenoble. This year Euro-Par 2017 was the 23rd conference and was organized in
Santiago de Compostela, Spain, by the IT Research Centre of the University of
Santiago de Compostela, called CiTIUS – Centro de Investigación en Tecnoloxías da
Información. The topics were organized into 12 tracks, namely: Support Tools and
Environments; Performance and Power Modelling, Prediction and Evaluation;
Scheduling and Load Balancing; High-Performance Architectures and Compilers;
Parallel and Distributed Data Management and Analytics; Cluster and Cloud Com-
puting; Distributed Systems and Algorithms; Parallel and Distributed Programming,
Interfaces, and Languages; Multicore and Manycore Parallelism; Theory and Algo-
rithms for Parallel Computation and Networking; Parallel Numerical Methods and
Applications; and Accelerator Computing. In all, 176 papers were submitted from 39
countries from all continents. Finally, only 50 papers were accepted in a selection
meeting in which all the global or local chairs, as well as three members of the Steering
Committee, participated. A selective rate of acceptance of 28.4% resulted: 691 reviews
were performed by 317 experts; 151 papers received four reviews, 19 papers were
reviewed by three experts, and 6 papers by five. The huge work of bringing many
innovative ideas by the Scientific Committee made that the evaluation and selection
processes proceed smoothly.

Apart from the parallel sessions to present the accepted papers, we were pleased to
present two keynotes talks of well-recognized colleagues, namely, David Padua
“High-Level Abstractions and Automatic Optimization Techniques for the Program-
ming of Irregular Algorithms,” and Jürgen Döllner “Software Analytics – Effectively
Managing Complex Software Systems,” as well as an invited paper by Ian Foster et al.
entitled “Computing Just What You Need: Online Data Analysis and Reduction at
Extreme Scales.” The program was complemented by two days of dedicated workshops
and tutorials on specialized topics. The huge task of managing them was efficiently
conducted by Dr. Dora B. Heras. The selected papers will be published in separated
proceedings volumes after the conference.

The Euro-Par conference in Santiago de Compostela would not have been possible
without the support of many individuals and organizations. We owe special thanks to
the authors of all the submitted papers, the members of the topic committees, in
particular the global and local chairs, as well as the reviewers for their contributions to
the success of the conference. We would also like to express our gratitude to the
members of the Organizing Committee and the local staff who helped us. Moreover, we
are indebted to the members of the Euro-Par Steering Committee, especially Christian
Lengauer, Luc Bougé, and Fernando Silva, for their trust, guidance, and support.
Finally, a number of institutional and industrial sponsors contributed to the organiza-
tion of the conference. Their names appear on the Euro-Par 2017 website.

It was a pleasure and an honour to organize and host Euro-Par 2017 in Santiago de
Compostela.

August 2017 Francisco F. Rivera
Tomás F. Pena

José C. Cabaleiro

VI Preface

Organization

Steering Committee

Full Members

Christian Lengauer (Chair) University of Passau, Germany
Luc Bougé (Vice-Chair) ENS Rennes, France
Emmanuel Jeannot LaBRI-Inria, Bordeaux, France
Christos Kaklamanis Computer Technology Institute, Patras, Greece
Paul Kelly Imperial College, London, UK
Thomas Ludwig University of Hamburg, Germany
Emilio Luque University Autonoma of Barcelona, Spain
Tomàs Margalef University Autonoma of Barcelona, Spain
Wolfgang Nagel Dresden University of Technology, Germany
Rizos Sakellariou University of Manchester, UK
Fernando Silva University of Porto, Portugal
Henk Sips Delft University of Technology, The Netherlands
Domenico Talia University of Calabria, Italy
Jesper Larsson Träff TU Vienna, Austria
Denis Trystram Grenoble Institute of Technology, France
Felix Wolf TU Darmstadt, Germany

Honorary Members

Ron Perrott Oxford e-Research Centre, UK
Karl Dieter Reinartz University of Erlangen-Nürnberg, Germany

Observers

Marco Aldinucci University of Turin, Italy
Francisco F. Rivera University of Santiago de Compostela, Spain

Euro-Par 2017 Organization

Chair

Francisco F. Rivera

Co-chairs

Tomás F. Pena
José C. Cabaleiro
Dora B. Heras

Proceedings

Tomás F. Pena
José C. Cabaleiro

Workshops

Dora B. Heras
Luc Bougé

Local Organization

Elisardo Antelo
Francisco Argüello
Antonio G. Loureiro
Juan C. Pichel
Natalia Seoane
David L. Vilariño

Web and Publicity

Tomás F. Pena

Program Committee

Topic 1: Support Tools and Environments

Chair

Matthias Müller RWTH Aachen University, Germany

Local Chair

Andrés Gómez CESGA, Spain

Members

Martin Schulz LLNL, Livermore, USA
Olivier Richard LIG/Inria, France
João M.P. Cardoso University of Porto, Portugal
Tomàs Margalef Universitat Autònoma de Barcelona, Spain
Michael Gerndt Technische Universität München, Germany

Topic 2: Performance and Power Modelling, Prediction,
and Evaluation

Chair

Petr Tůma Charles University, Czech Republic

VIII Organization

Local Chair

Basilio Fraguela University of A Coruña, Spain

Members

Ana Lucia Varbanescu University of Amsterdam, The Netherlands
Denis Barthou Inria, France
Lizy Kurian John University of Texas, USA
Marc González Tallada Universitat Politècnica de Catalunya, Spain
Andreas Knüpfer T.U. Dresden, Germany
Diwakar Krishnamurthy University of Calgary, Canada

Topic 3: Scheduling and Load Balancing

Chair

Florina Ciorba University of Basel, Switzerland

Local Chair

Ester Garzón University of Almería, Spain

Members

José Luis Bosque Orero University of Cantabria, Spain
Radu Prodan University of Innsbruck, Austria
José Gracia High-Performance Computing Center Stuttgart,

Germany
Ioana Banicescu Mississippi State University, USA
Julius Zilinskas Vilnius University, Lithuania
Bora Uçar CNRS and LIP ENS Lyon, France

Topic 4: High-Performance Architectures and Compilers

Chair

Christophe Dubach University of Edinburgh, UK

Local Chair

Juan Touriño University of A Coruña, Spain

Members

Aaron Smith Microsoft Research, USA
Louis-Nöel Pouchet Colorado State University, USA
Laura Pozzi University of Lugano, Switzerland
Jerónimo Castrillón TU Dresden, Germany
Thomas Fahringer University of Innsbruck, Austria
Chris Adeniyi-Jones ARM, UK

Organization IX

Topic 5: Parallel and Distributed Data Management and Analytics

Chair

Bruno Raffin Inria, France

Local Chair

David E. Singh Carlos III University of Madrid, Spain

Members

Julian Kunkel German Climate Computing Center, Germany
Lars Nagel Johannes Gutenberg University of Mainz, Germany
Toni Cortés Barcelona Supercomputing Center, Spain
Matthieu Dorier Argonne National Laboratory, USA
Wolfgang Frings Jülich Supercomputing Centre, Germany

Topic 6: Cluster and Cloud Computing

Chair

Alfredo Goldman University of São Paulo, Brazil

Local Chair

Patricia González University of A Coruña, Spain

Members

Laura Ricci University of Pisa, Italy
Luiz Bittencourt University of Campinas, Brazil
Ian Foster Argonne National Laboratory, USA
Frèderic Desprez Inria, France
Ivona Brandic Technische Universität Wien, Austria
Giorgio Lucarelli Inria, France
Rizos Sakellariou University of Manchester, UK
Ramón Doallo University of A Coruña, Spain

Topic 7: Distributed Systems and Algorithms

Chair

Luís Veiga INESC-ID, Portugal

Local Chair

Rafael Asenjo University of Málaga, Spain

X Organization

Members

Sonia Ben Mokhtar LIRIS CNRS, France
Óscar Plata González University of Málaga, Spain
Gheorghe Almasi IBM, USA
Rui Oliveira Universidade do Minho, Portugal
Javier Navaridas Palma The University of Manchester, UK
Fabio Kon University of São Paulo, Brazil

Topic 8: Parallel and Distributed Programming, Interfaces,
Languages

Chair

María Jesús Garzarán University of Illinois, USA

Local Chair

Vicente Blanco University of La Laguna, Spain

Members

Ma Ángeles González
Navarro

University of Málaga, Spain

Evelyn Duesterwald T. J. Watson Research Center, IBM, USA
Didem Unat Koç Universitesi, Turkey
Francisco Almeida University of La Laguna, Spain
Georges da Costa Irit, France
Marco Danelutto University of Pisa, Italy
Mary Hall University of Utah, USA

Topic 9: Multicore and Manycore Parallelism

Chair

Hans Vandierendonck Queen’s University, UK

Local Chair

Juan Carlos Pichel University of Santiago de Compostela, Spain

Members

Bingsheng He National University of Singapore, Singapore
Paul Harvey Queen’s University Belfast, UK
Michele Weiland EPCC at University of Edinburgh, UK
Yiannis Nikolakopoulos TU Chalmers, Sweden
Polyvios Pratikakis FORTH, Greece
Martin Burtscher Texas State University, USA

Organization XI

Georgios Goumas National Technical University of Athens, Greece
Rutger Hofman Vrije Universiteit Amsterdam, The Netherlands
Vania

Marangozova-Martin
Grenoble University, France

Topic 10: Theory and Algorithms for Parallel Computation
and Networking

Chair

Geppino Pucci University of Padua, Italy

Local Chair

Pedro Ribeiro University of Porto, Portugal

Members

Kieran T. Herley University College Cork, Ireland
Christos Zaroliagis University of Patras, Greece
Mauro Bianco Swiss National Supercomputing Centre, Switzerland
Henning Meyerhenke Karlsruher Institut für Technologie, Germany
Michele Scquizzato University of Houston, USA

Topic 11: Parallel Numerical Methods and Applications

Chair

Maya Neytcheva Uppsala University, Sweden

Local Chair

María Martín University of A Coruña, Spain

Members

Yvan Notay Université Libre de Bruxelles, Belgium
Peter Arbenz ETH Zürich, Switzerland
Enrique S. Quintana Jaime I University, Spain
Fred Wubs University of Groningen, The Netherlands
Osni Marques Lawrence Berkeley National Laboratory, USA

Topic 12: Accelerator Computing

Chair

Bertil Schmidt Johannes Gutenberg University of Mainz, Germany

Local Chair

Arturo González University of Valladolid, Spain

XII Organization

Members

Tobias Grosser ETH Zürich, Switzerland
Josef Weidendorfer Technische Universität München, Germany
Rob Van Nieuwpoort Netherlands eScience Center, The Netherlands
Seyong Lee Oak Ridge National Laboratory, USA
Jorge

González-Domínguez
University of A Coruña, Spain

Deming Chen University of Illinois, USA

Euro-Par 2017 Reviewers

Euro-Par is grateful to all the reviewers for their willingness and effort in providing
good feedback to authors and topic committees. All external reviewers are listed and
hereby thanked.

Abuín, José M.
Acosta, Alejandro
Aliaga, José Ignacio
Alonso, Pedro
Alonso-Monsalve, Saul
Amannejad, Yasaman
Amor, Margarita
Ananthanarayanan,

Ganesh
Andión, José M.
Andrade, Diego
Anzt, Hartwig
Aparício, David
Aral, Atakan
Arantes, Luciana
Argüello, Francisco
Arif, Mahwish
Arlandini, Claudio
Atalar, Aras
Azimi, Sahar
Baars, Sven
Baiardi, Fabrizio
Bamha, Mostafa
Barros Lourenço, Ricardo
Belviranli, Mehmet
Benedict, Shajulin
Benson, Austin
Bleuse, Raphaël
Boisvert, Sébastien
Boito, Francieli Zanon

Bonifaci, Vincenzo
Braghetto, Kelly Rosa
Brown, Jed
Brunie, Hugo
Buenabad-Chávez, Jorge
Calotoiu, Alexandru
Carlini, Emanuele
Caron, Eddy
Cała, Jacek
Cesar, Eduardo
Chard, Kyle
Chard, Ryan
Chau, Vincent
Chen, Lizhong
Cheng, Xuntao
Cheptsov, Alexey
Chowdhury, Anamika
Chowdhury, Mosharaf
Chuvelev, Michael
Coimbra, Miguel E.
Cojean, Terry
Collange, Sylvain
Comprés Ureña, Isaías
Coplin, Jared
Coppola, Massimo
Cordeiro, Daniel
Costa, Fabio
Dai, Dong
De Maio, Vincenzo
De Sande, Francisco

Dichev, Kiril
Dolgov, Sergey
Dorostkar, Ali
Dreher, Matthieu
Dufossé, Fanny
Durillo, Juan J.
Elafrou, Athena
Eleliemy, Ahmed
Erpen De Bona,

Luis Carlos
Espinosa, Toni
Expósito, Roberto R.
Farsarakis, Emmanouil
Fernández, Javier
Flegar, Goran
Flehmig, Martin
Foerster, Klaus-Tycho
Frangoudis, Pantelis
Fujita, Hajime
Gabriel, Edgar
Galante, Guilherme
García Blas, Javier
Garcia, Islene
Genez, Thiago
Georgakoudis, Giorgis
Ghimire, Amrita
Giannoula, Christina
Giménez, Domingo
Glantz, Roland
Gonçalves, Rui

Organization XIII

Gorman, Gerard
Grelck, Clemens
Greve, Fabiola
Grimley Evans, Edmund
Gschwandtner, Philipp
Guidi, Barbara
Gulur, Nagendra
Gupta, Abhishek
Gupta, Amit
Hager, Georg
Haine, Christopher
Hashemian Harandi,

Raoufehsadat
Hernández, Francisco
Herold, Christian
Herrera, Juan F.R.
Hijma, Pieter
Hirsch, Alex
Horký, Vojtěch
Huchant, Pierre
Huedo, Eduardo
Hugo, Andra-Ecaterina
Hundt, Christian
Hupp, Daniel
Hünich, Denis
Igumenov, Aleksandr
Ilic, Aleksandar
Iliev, Hristo
Ilsche, Thomas
Iosup, Alexandru
Jaiganesh, Jayadharini
Janetschek, Matthias
Jorba, Josep
Kalbasi, Amir
Kamienski, Carlos
Kanellou, Eleni
Karakostas, Vasileios
Katsogridakis, Pavlos
Kavoussanakis,

Konstantinos
Kecskemeti, Gabor
Kimovski, Dragi
Klinkenberg, Jannis
Kotselidis, Christos
Kruliš, Martin
Kumaraswamy, Madhura
Küstner, Tilman

Lachaize, Renaud
Lago, Daniel
Lan, Haidong
Lančinskas, Algirdas
Latham, Robert
Lebeane, Michael
Lee, Wooseok
Letsios, Dimitrios
Lirkov, Ivan
Liu, Yongchao
Liu, Zhengchun
Llanos, Diego
Llopis Sanmillán, Pablo
Lobeiras Blanco, Jacobo
Lopez Redondo, Juani
Lorenzo del Castillo,

Juan Ángel
Lujic, Ivan
Lulli, Alessandro
Luque, Emilio
Lèbre, Adrien
Madduri, Ravi
Madeira, Edmundo
Magni, Alberto
Maia, Francisco
Maleki, Saeed
Mandli, Kyle
Mantas Ruiz, J. Miguel
Marathe, Yashwant
Marinescu, María Cristina
Mathà, Roland
Mercier, Michael
Meyer, Marcel
Michelogiannakis, George
Mijaković, Robert
Milenkovic, Aleksandar
Miranda, Alberto
Mohammed, Ali
Mommessin, Clement
Moreno-Vozmediano,

Rafael
Moti, Nafiseh
Mounié, Grégory
Moure, Juan Carlos
Mouriño Gallego,

José Carlos
Mukherjee, Joydeep

Mulder, Thomas
Mäsker, Markus
Nachtmann, Mathias
Nadjaran Toosi, Adel
Nagarajan, Arthi
Nasre, Rupesh
Netto, Marco
Nickolay, Sam
Niethammer, Christoph
Nou, Ramon
Nussbaum, Lucas
O’Neil, Molly
Oeste, Sebastian
Ortega, Gloria
Padrón, Emilio
Pai, Sreepathi
Palka, Michal
Panda, Reena
Papadopoulou, Nikela
Papagiannis, Anastasios
Papakonstantinou,

Nikolaos
Pardo, Xoán C.
Parsons, Mark
Pascual, Fanny
Pascual, Jose A.
Passarella, Andrea
Paul, Johns
Pérez, Borja
Pérez Diéguez, Adrián
Pérez, Christian
Petcu, Dana
Phan, Tien-Dat
Pietri, Ilia
Pilla, Laércio L.
Polato, Ivanilton
Poquet, Millian
Prieto-Matias, Manuel
Prokosch, Thomas
Protze, Joachim
Prountzos, Dimitrios
Pruyne, Jim
Queralt, Anna
Reid, Fiona
Rexachs, Dolores
Reyes, Ruymán
Richard, Jerome

XIV Organization

Rico, Juan Antonio
Riedel, Morris
Ristov, Sasko
Rocki, Kamil
Rodríguez Gutiez,

Eduardo
Rodríguez Martínez,

Diego
Rodríguez, Gabriel
Ropars, Thomas
Ryoo, Jee Ho
Santana, Eduardo
Saurabh, Nishant
Schoene, Robert
Schuchart, Joseph
Schulz, Christian
Sclocco, Alessio
Sedaghati, Naser
Senger, Hermes
Seoane, Natalia
Shamakina, Anastasia
Shontz, Suzanne
Siakavaras, Dimitrios
Sikora, Anna

Silla, Federico
Silva, Miguel
Silva, Pedro Paulo
Singh, Shikhar
Sinnen, Oliver
Siqueira, Rodrigo
Sitchinava, Nodari
Skluzacek, Tyler
Solsona, Francesc
Song, Shuang
Srivastav, Abhinav
Srivastava, Srishti
Stafford, Esteban
Starikovicius, Vadimas
Strout, Michelle
Stylianopoulos,

Charalampos
Symeonidou, Christi
Tchoua, Roselyne
Terboven, Christian
Termier, Alexandre
Tomás, Andrés
Tonellotto, Nicola
Torquati, Massimo

Toss, Julio
Tschueter, Ronny
Tzovas, Charilaos
van der Plas, P
van Werkhoven, Ben
Vázquez, Álvaro
Verdi, Fabio
Walulya, Ivan
Wang, Feiyi
Wang, Jiajun
Weber, Matthias
Wellein, Gerhard
Werner, Matthias
Winkler, Frank
Wozniak, Justin
Yang, Chih-Chieh
Yang, Dai
Zafari, Afshin
Zangerl, Peter
Zhani, Mohamed Faten
Zhou, Huan
Zois, Georgios

Organization XV

Euro-Par 2017 Invited Talks

High Level Abstractions and Automatic Optimization Techniques
for the Programming of Irregular Algorithms

David Padua, University of Illinois at Urbana-Champaign, USA

High-performing irregular algorithms are typically implemented using simple opera-
tions and conventional control structures. In addition, due to today’s compilers inability
to manipulate these implementations, program tuning must usually be done by hand.
Better notations and automatic optimization would help improve programmer
productivity, portability, and maintainability. This talk will review high level notation
proposals for the description of irregular algorithms, as well as compiler and autotuning
techniques for the optimization of these algorithms. A short discussion of open research
problems and necessary conditions for adoption of these more advanced notations and
strategies will conclude the presentation.

Software Analytics – Effectively Managing Complex
Software Systems

Jürgen Döllner, Hasso-Plattner-Institute for IT Systems Engineering, Germany

Digital transformation and industry 4.0 are among the key terms that reference a
fundamental change in almost all branches of industry and society: Information
technologies become essential building blocks of systems, applications, and processes.
Access to and analytics for big data, along with machine learning, become key and
competitive factors for transforming businesses in the next decade.

In this talk, we focus on and reflect how methods and techniques of big data
analytics can be adapted and applied to the context of software engineering and IT
industry. Here, the so called “software crisis” yet persists regardless of the manifold
progress in programming concepts, languages, software modelling, software develop-
ment methodologies, etc. Software analytics aims at boosting effectiveness of software
development by providing new means of transparency within their corresponding
ecosystems.

Euro-Par 2017 Topics Overview

Topic 1: Support Tools and Environments

Matthias Müller, Andrés Gómez, Martin Schulz, Olivier Richard,
João M. P. Cardoso, Tomàs Margalef, Michael Gerndt

Hardware and software of high performance computing (HPC) platforms are evolving
every day. This evolution is very fast and is contributing to a very complex ecosystem.
Applications must cope with large systems, with thousands of cores (even with millions
in the largest HPC environments), several levels of memory hierarchy, hardware
accelerators, heterogeneity, etc. Even more, it is becoming of paramount importance to
extract the best performance with a strong control of the power consumption. Thus,
HPC designers and programmers must have the tools to manage this complex scenario.

The Euro-Par Support Tools and Environments is a privileged forum to show new
techniques and tools that allow all the stakeholders in the development and execution
of HPC applications to manage the complexity involved, focusing on main challenges
regarding programmability, resilience, performance and energy efficiency, monitoring,
correctness, etc.

This track received 10 papers. After a reviewing process involving all the track
TPC members and 21 external reviews, overall resulting in at least 4 reviews per paper,
we decided to accept 3 of the submitted papers.
We acknowledge here the work of the reviewers who provided important feedback to
the authors and helped us to select the best papers. Finally, we thank all authors who
submitted papers. They really make this conference a key world event for presenting
new Support Tools and Environments.

Topic 2: Performance and Power Modelling, Prediction,
and Evaluation

Petr Tůma, Basilio Fraguela, Ana Lucia Varbanescu, Denis Barthou,
Lizy Kurian John, Marc González Tallada, Andreas Knüpfer, Diwakar Krishnamurthy

In recent years, a range of novel methods and tools have been developed for the
evaluation, design, and modelling of parallel and distributed systems and applications.
At the same time, the term ‘performance’ has broadened to also include scalability and
energy efficiency, and touching reliability and robustness in addition to the classic
resource-oriented notions. The aim of the ‘performance’ topic is to gather researchers
working on different aspects of performance modelling, evaluation, and prediction, be
it for systems or for applications running on the whole range of parallel and distributed
systems (multi-core and heterogeneous architectures, HPC systems, grid and cloud
contexts etc.)

This year, the track proved very popular, receiving a large number of submissions.
Out of them, six papers were selected for presentation following a rigorous review
process in which each manuscript received four independent reviews, either from the
committee members or their subreviewers. We would like to thank all the authors who
submitted papers to this topic as well as the external reviewers, for their contribution to
the success of the conference.

Topic 3: Scheduling and Load Balancing

Florina M. Ciorba, Ester Garzón, José Luis Bosque Orero, Radu Prodan,
José Gracia, Ioana Banicescu, Julius Zilinskas, Bora Uçar

New computer systems offer an opportunity to improve the performance and the energy
consumption of the applications by the exploitation of several parallelism levels.
Heterogeneity and complexity are the main characteristics of modern computer
architectures. Thereby, the optimal exploitation of modern computing platforms
becomes a challenge. The scheduling and load balancing techniques are relevant topics
for the optimal exploitation of modern computers in terms of performance, energy
consumption, cost of using resources, and so on.

This topic covered all aspects related to scheduling and load balancing on parallel
and distributed systems, ranging from theoretical foundations for modelling and
designing efficient and robust strategies, to experimental studies, applications, and
practical tools and solutions. The main interest was focussed on modern
multi/many-core processors, distributed/cloud platforms and data centres. The propos-
als to improve the performance were centred on the simulation of dynamic load
balancing; scheduling based on genetic algorithms, approximations, and pinning;
resource co-allocation; communications optimization; and graph partitioning.

A total of seventeen full-length submissions were received in this track, each of
which received at least four reviews, from the eight program committee members
and/or from the thirty-five additional sub-reviewers. Following the thorough discussion
of the reviews, seven submissions have been accepted (42% acceptance rate), including
one that was nominated as distinguished paper.

The chair and local chair sincerely thank all the authors for their submissions, the
Euro-Par 2017 Organizing Committee for all their valuable help, and the reviewers and
sub-reviewers for their excellent review work. Each has contributed to making this
topic and Euro-Par an excellent forum to discuss Scheduling and Load Balancing
challenges.

Topic 4: High Performance Architectures and Compilers

Christophe Dubach, Juan Touriño, Chris Adeniyi-Jones, Jerónimo Castrillón,
Thomas Fahringer, Louis-Nöel Pouchet, Laura Pozzi, Aaron Smith

This topic deals with architecture design, languages, and compilation for parallel high
performance systems. The areas of interest range from microprocessors to large-scale
parallel machines (including multi-/many-core, possibly heterogeneous, architectures);

XX Euro-Par 2017 Topics Overview

from general-purpose to specialized hardware platforms (e.g., graphic coprocessors,
low-power embedded systems); and from architecture design to compiler technology
and language design.

On the compilation side, topics of interest include programmer productivity issues,
concurrent and/or sequential language aspects, vectorization, program analysis,
program transformation, automatic discovery and/or management of parallelism at all
levels, autotuning and feedback directed compilation, and the interaction between the
compiler and the system at large. On the architecture side, the scope spans system
architectures, processor micro-architecture, memory hierarchy, and multi-threading,
architectural support for parallelism, and the impact of emerging hardware
technologies.

The track received 13 submissions, all of which received, in a first stage, at least 3
reviews. In a second stage, all the papers and reviews were thoroughly discussed by all
PC members. As a result, three papers were finally accepted for the conference (23%
acceptance rate) covering both architecture and compiler topics.

Topic 5: Parallel and Distributed Data Management and Analytics

Bruno Raffin, David E. Singh, Julian Kunkel, Lars Nagel, Toni Cortés,
Matthieu Dorier, Wolfgang Frings

Many areas of science, industry, and commerce are producing extreme-scale data that
must be processed—stored, managed, analysed— in order to extract useful knowledge.
This topic seeks papers in all aspects of distributed and parallel data management and
data analysis. For example, HPC in situ data analytics, cloud and grid data-intensive
processing, parallel storage systems, and scalable data processing workflows are all in
the scope of this topic. More in detail, aspects in which this conference topic is
interested are:

– Parallel, replicated, and highly-available distributed databases
– Cloud and HPC storage architectures and systems
– Scientific data analytics (Big Data or HPC based approaches)
– Middleware for processing large-scale data
– Programming models for parallel and distributed data analytics
– Workflow management for data analytics
– Coupling HPC simulations with in situ data analysis
– Parallel data visualization
– Distributed and parallel transaction, query processing and information retrieval
– Internet-scale data-intensive applications
– Sensor network data management
– Data-intensive clouds and grids
– Parallel data streaming and data stream mining
– New storage hierarchies in distributed data systems
– Parallel and distributed knowledge discovery and data mining

Euro-Par 2017 Topics Overview XXI

Thirteen full-length papers were submitted to this topic, and each paper received
four reviews. After discussion with the reviewers and track chairs, two papers were
selected for publication, one related to distributed database design, the second one to
workload partitioning and scheduling algorithms for Apache Spark.

Topic 6: Cluster and Cloud Computing

Alfredo Goldman, Patricia González, Laura Ricci, Luiz Bittencourt, Ian Foster,
Frèderic Desprez, Ivona Brandic, Giorgio Lucarelli, Rizos Sakellariou,
Ramón Doallo

Cloud Computing is not a concept anymore, but a reality with many providers around
the world. The use of massive storage and computing resources accessible remotely in
a seamless way has become essential for many applications in various areas, including
High Performance Computing. While significant progresses have been achieved in the
past decade, the complete adoption of the Utility Computing paradigm is still facing
important challenges. There are still unsolved challenges related to performance,
reliability and energy efficiency of the infrastructures that should be addressed by
research. Moreover, up to this time fundamental capabilities and services are required
to achieve the goals of user-friendliness, security, privacy and service guarantees in
such environments. Finally, there are important trends as going from large centralized
infrastructures to smaller ones massively distributed at the edge of the network, and
also to execute more efficiently High Performance Computing applications on Clouds.

Topic 6 sought papers covering many aspects of Cluster and Cloud Computing
dealing with infrastructure layer challenges, such as performance/energy optimizations,
and security enhancements, as well as cloud-enabled applications, workflow manage-
ment and High Performance Computing on Clouds. This year, 26 papers have been
submitted to Topic 6. There were authors from 18 different countries from all the
continents. Four expert reviewers analysed each submission. Overall, more than 70
specialists were involved into the reviewing process. Finally, despite the high quality
of the submitted papers, only 7 papers were accepted for publication.

We would like to thank all the authors for their submissions, the PC members and
the reviewers for providing us with constructive and informative reviews, and the
Euro-Par 2017 Organizing committee for all the help that allows us to smoothly take
over the whole process.

Topic 7: Distributed Systems and Algorithms

Luís Veiga, Rafael Asenjo, Gheorghe Almasi, Sonia Ben Mokhtar, Fabio Kon,
Javier Navaridas, Rui Oliveira, Oscar Plata

Parallel computing today is increasingly related to and dependent on developments and
challenges of distributed systems. Problems including load balancing, asynchrony,
failures, malicious and selfish behaviour, long latencies, network partitions, discon-
nected operations, distributed computing models and concurrent data structures, and

XXII Euro-Par 2017 Topics Overview

heterogeneity are representative of typical distributed issues that often appear along the
design of parallel applications.

This track of Euro-Par provides a forum for both theoretical and practical research,
of interest to both academia and industry, on distributed computing, distributed
algorithms, distributed systems, distributed data structures, and parallel processing on
distributed systems, in particular in relation to efficient high performance computing.
This year, 8 complete papers have been submitted to this track. After a bidding phase,
each paper has been evaluated by 4 or 5 reviewers with high expertise. Overall, 14
experts have been involved into the review process. Finally, from this set of high
quality submitted papers, only three papers have been selected for publications.

The PC chairs, Luís Veiga (INESC-ID/IST, University of Lisbon, Portugal) and
Rafael Asenjo (Universidad de Málaga, Spain), are very grateful to all the authors, and
all researchers that have participated to the review process and permitted to select three
high-quality papers.

Topic 8: Parallel and Distributed Programming,
Interfaces, Languages

María Jesús Garzarán, Vicente Blanco, Didem Unat, Angeles Navarro, Mary Hall,
Evelyn Duesterwald, Marco Danelutto, Francisco Almeida, George Da Costa

Parallel and distributed applications require adequate programming abstractions and
models, efficient design tools, parallelization techniques and practices. This topic was
open for the submission of new results and practical experience in this domain: efficient
and effective parallel languages, interfaces, libraries and frameworks, as well as solid
practical and experimental validation.

It provides a forum for research on high-performance, correct, portable, and
scalable parallel programs via adequate parallel and distributed programming model,
interface and language support. Contributions that assess programming abstractions,
models and methods of usability, performance prediction, scalability, self-adaptations,
rapid prototyping and fault-tolerance, as is needed, for instance, in dynamic
heterogeneous parallel and distributed infrastructures, were accepted.

All twelve papers on this topic received four reviews that were further discussed
among all nine PC members. As a result, four strong papers were accepted for the
conference, covering important topics. One of them was proposed for the best paper
award.

Topic 9: Multicore and Manycore Parallelism

Hans Vandierendonck, Juan Carlos Pichel, Bingsheng He, Paul Harvey,
Michele Weiland, Yiannis Nikolakopoulos, Polyvios Pratikakis, Martin Burtscher,
Georgios Goumas, Rutger Hofman, Vania Marangozova-Martin

Over the last ten years the trend in processor design has been towards an
ever-increasing number of cores. The complexity of emerging many- and multi-core
architectures makes it increasingly hard to program these devices efficiently. Efficient

Euro-Par 2017 Topics Overview XXIII

algorithms must scale to large degrees of parallelism, use optimized data formats,
minimize runtime system overhead and must use efficient synchronization mechanisms.
Moreover, it is important to tune algorithms to the specific organization and dimensions
of the target processor. The breadth of approaches that are investigated to achieve
high-performance on multi- and many-core processors is a reflection of the complexity
of these processors and the difficulty of designing algorithms that match the
architecture of the processor.

This topic presents novel research contributions on a wide range of performance
optimization techniques that are indispensable to programming multi- and many-cores,
including efficient sparse matrix formats, optimization of linear algebra operations
through batching, optimization of the fast multipole method on Intel many-cores,
parallelization of remeshing algorithms, parallelization of model checking algorithms,
thread-level speculation using transactional memories, non-blocking algorithms for
radix trees, and concurrency-optimal search trees.

Eight papers out of 26 submissions were selected for publication in this track. All
papers received at least 3 reviews.

We thank the authors who submitted papers, the PC members and referees who
rigorously reviewed the submissions and provided constructive and informative
feedback. We also thank the organizing committee for creating a smooth process and
we look forward to an exciting edition of Euro-Par.

Topic 10: Theory and Algorithms for Parallel Computation
and Networking

Geppino Pucci, Pedro Ribeiro, Mauro Bianco, Kieran T. Herley,
Henning Meyerhenke, Michele Scquizzato, and Christos Zaroliagis

Parallel computing is everywhere, on smartphones, laptops; at online shopping sites,
universities, computing centres; behind the search engines. Efficiency and productivity
at these scales and contexts are only possible by scalable parallel algorithms using
efficient communication schemes, routing and networks. Theoretical tools enabling
scalability, modelling and understanding parallel algorithms, and data structures for
exploiting parallelism are more important than ever. Topic 10 solicits high quality,
original papers on the general topic of theory and algorithms for parallel computation
including communication and network algorithms.

Topic 10 received 10 submissions, all of which received 4 reviews, either from the
7 PC members or from their subreviewers. The papers and their reviews were discussed
extensively, and 2 submissions were eventually accepted.

XXIV Euro-Par 2017 Topics Overview

Topic 11: Parallel Numerical Methods and Applications

Maya Neytcheva, María Martín, Yvan Notay, Peter Arbenz, Enrique S. Quintana,
Fred Wubs, Osni Marques

The demand for high performance computations is driven by the need for large-scale
computer simulations in nearly all activity areas - science and engineering, finance, life
sciences etc. In turn, high performance computing goes hand in hand with the necessity
to develop highly scalable numerical methods and algorithms that are able to efficiently
exploit modern computer architectures and to fully utilize their computing power. The
scalability of these algorithms and methods and their suitability to efficiently utilize the
available high performance, but in general heterogeneous, computer resources, is a key
point to improve the performance of the target applications and enable fast and reliable
computer simulations.

This conference topic aims at presenting and discussing recent developments in
parallel numerical algorithms and their implementation on current parallel architec-
tures, including many-core and hybrid architectures.

This year the topic received 9 contributions. Each submission was reviewed by at
least four reviewers. Overall, 27 experts have been involved into the review process.
Finally, three papers were accepted for presentation. We thank all authors for their
valuable contributions, as well as the Program Committee members and the external
reviewers for investing their time, sharing their expertise and keeping the high scientific
level of the Euro-Par conference.

Topic 12: Accelerator Computing

Bertil Schmidt, Arturo González, Tobias Grosser, Josef Weidendorfer,
Rob Van Nieuwpoort, Seyong Lee, Jorge González-Domínguez, Deming Chen

The need for high-performance computing is constantly growing in all kind of
scenarios, from high-end scientific applications, to consumer electronics software.
Hardware manufactures are involved in a race to develop specialized hardware to cover
these critical demands.

Currently, hardware accelerators of various kinds offer a potential for achieving
massive performance in applications that can leverage their high degree of parallelism
and customization. Examples include graphics processors (GPUs), manycore
co-processors, as well as more customizable devices, such as FPGA-based systems
or streaming data-flow architectures.

The research challenge for this topic is to explore new directions for actually
realizing this potential. Significant advances in all areas related to accelerators are
considered, with special focus in architectures, algorithms, languages, compilers,
libraries, runtime systems, coordination of accelerators and CPU, debugging and
profiling tools, and application-related contributions that provide new insights into
fundamental problems or solution approaches in this domain.

Euro-Par 2017 Topics Overview XXV

The program committee of this topic was formed by seven members of different
backgrounds and specializations in the accelerators field, with the collaboration of
several other subreviewers. We received 13 contributions from researchers in many
different countries. After the review process and the general PC meeting, two
high-quality papers were selected for presentation in Euro-Par 2017 at Santiago de
Compostela. They are focused on important hot-topics: exploiting the GPUs potential
on sparse linear algebra, and the question of load balancing for performance or energy.

The committee members want to thank all the authors that submitted their work to
this track, the reviewers for their timely and constructive comments, and the
organization committee for the efforts to easy our task, and to provide a nice conference
environment in Santiago de Compostela for a high-quality discussion of research
results in this interesting topic.

XXVI Euro-Par 2017 Topics Overview

Contents

Invited Paper

Computing Just What You Need: Online Data Analysis and Reduction
at Extreme Scales . 3

Ian Foster, Mark Ainsworth, Bryce Allen, Julie Bessac,
Franck Cappello, Jong Youl Choi, Emil Constantinescu, Philip E. Davis,
Sheng Di, Wendy Di, Hanqi Guo, Scott Klasky, Kerstin Kleese Van Dam,
Tahsin Kurc, Qing Liu, Abid Malik, Kshitij Mehta, Klaus Mueller,
Todd Munson, George Ostouchov, Manish Parashar, Tom Peterka,
Line Pouchard, Dingwen Tao, Ozan Tugluk, Stefan Wild, Matthew Wolf,
Justin M. Wozniak, Wei Xu, and Shinjae Yoo

Support Tools and Environments

Scaling Energy Adaptive Applications for Sustainable Profitability 23
Fabien Hermenier, Giuliani Giovanni, Andre Milani,
and Sophie Demassey

Off-Road Performance Modeling – How to Deal with Segmented Data 36
M. Kashif Ilyas, Alexandru Calotoiu, and Felix Wolf

Online Dynamic Monitoring of MPI Communications 49
George Bosilca, Clément Foyer, Emmanuel Jeannot,
Guillaume Mercier, and Guillaume Papauré

Performance and Power Modeling, Prediction and Evaluation

Micro-benchmarking MPI Neighborhood Collective Operations 65
Felix Donatus Lübbe

Performance Characterization of De Novo Genome Assembly on Leading
Parallel Systems . 79

Marquita Ellis, Evangelos Georganas, Rob Egan, Steven Hofmeyr,
Aydın Buluç, Brandon Cook, Leonid Oliker, and Katherine Yelick

NVIDIA Jetson Platform Characterization . 92
Hassan Halawa, Hazem A. Abdelhafez, Andrew Boktor,
and Matei Ripeanu

http://dx.doi.org/10.1007/978-3-319-64203-1_1
http://dx.doi.org/10.1007/978-3-319-64203-1_1
http://dx.doi.org/10.1007/978-3-319-64203-1_2
http://dx.doi.org/10.1007/978-3-319-64203-1_3
http://dx.doi.org/10.1007/978-3-319-64203-1_4
http://dx.doi.org/10.1007/978-3-319-64203-1_5
http://dx.doi.org/10.1007/978-3-319-64203-1_6
http://dx.doi.org/10.1007/978-3-319-64203-1_6
http://dx.doi.org/10.1007/978-3-319-64203-1_7

Following the Blind Seer – Creating Better Performance Models
Using Less Information . 106

Patrick Reisert, Alexandru Calotoiu, Sergei Shudler, and Felix Wolf

An Accurate Simulator of Cache-Line Conflicts to Exploit the Underlying
Cache Performance . 119

Yukinori Sato and Toshio Endo

Shutdown Policies with Power Capping for Large Scale
Computing Systems. 134

Anne Benoit, Laurent Lefèvre, Anne-Cécile Orgerie, and Issam Raïs

Scheduling and Load Balancing

Partitioning Strategy Selection for In-Memory Graph Pattern Matching
on Multiprocessor Systems . 149

Alexander Krause, Thomas Kissinger, Dirk Habich, Hannes Voigt,
and Wolfgang Lehner

Efficient Dynamic Pinning of Parallelized Applications by Reinforcement
Learning with Applications. 164

Georgios C. Chasparis, Michael Rossbory, and Vladimir Janjic

Accelerating by Idling: How Speculative Delays Improve Performance
of Message-Oriented Systems . 177

Aleksandar Prokopec

Using Simulation to Evaluate and Tune the Performance of Dynamic
Load Balancing of an Over-Decomposed Geophysics Application 192

Rafael Keller Tesser, Lucas Mello Schnorr, Arnaud Legrand,
Fabrice Dupros, and Philippe Olivier Alexandre Navaux

Optimizing Egalitarian Performance in the Side-Effects Model
of Colocation for Data Center Resource Management 206

Fanny Pascual and Krzysztof Rzadca

Generic Algorithms for Scheduling Applications on Hybrid
Multi-core Machines . 220

Marcos Amaris, Giorgio Lucarelli, Clément Mommessin,
and Denis Trystram

Low-Cost Approximation Algorithms for Scheduling Independent
Tasks on Hybrid Platforms . 232

Louis-Claude Canon, Loris Marchal, and Frédéric Vivien

XXVIII Contents

http://dx.doi.org/10.1007/978-3-319-64203-1_8
http://dx.doi.org/10.1007/978-3-319-64203-1_8
http://dx.doi.org/10.1007/978-3-319-64203-1_9
http://dx.doi.org/10.1007/978-3-319-64203-1_9
http://dx.doi.org/10.1007/978-3-319-64203-1_10
http://dx.doi.org/10.1007/978-3-319-64203-1_10
http://dx.doi.org/10.1007/978-3-319-64203-1_11
http://dx.doi.org/10.1007/978-3-319-64203-1_11
http://dx.doi.org/10.1007/978-3-319-64203-1_12
http://dx.doi.org/10.1007/978-3-319-64203-1_12
http://dx.doi.org/10.1007/978-3-319-64203-1_13
http://dx.doi.org/10.1007/978-3-319-64203-1_13
http://dx.doi.org/10.1007/978-3-319-64203-1_14
http://dx.doi.org/10.1007/978-3-319-64203-1_14
http://dx.doi.org/10.1007/978-3-319-64203-1_15
http://dx.doi.org/10.1007/978-3-319-64203-1_15
http://dx.doi.org/10.1007/978-3-319-64203-1_16
http://dx.doi.org/10.1007/978-3-319-64203-1_16
http://dx.doi.org/10.1007/978-3-319-64203-1_17
http://dx.doi.org/10.1007/978-3-319-64203-1_17

High Performance Architectures and Compilers

Runtime-Assisted Shared Cache Insertion Policies Based
on Re-reference Intervals . 247

Vladimir Dimić, Miquel Moretó, Marc Casas, and Mateo Valero

Rewriting System for Profile-Guided Data Layout
Transformations on Binaries . 260

Christopher Haine, Olivier Aumage, and Denis Barthou

Hardware Support for Scratchpad Memory Transactions
on GPU Architectures . 273

Alejandro Villegas, Rafael Asenjo, Angeles Navarro, Oscar Plata,
Rafael Ubal, and David Kaeli

Parallel and Distributed Data Management and Analytics

Execution of Recursive Queries in Apache Spark . 289
Pavlos Katsogridakis, Sofia Papagiannaki, and Polyvios Pratikakis

Replica-Aware Partitioning Design in Parallel Database Systems. 303
Liming Dong, Weidong Liu, Renchuan Li, Tiejun Zhang,
and Weiguo Zhao

Cluster and Cloud Computing

A Simplified Model for Simulating the Execution
of a Workflow in Cloud. 319

Roland Mathá, Sasko Ristov, and Radu Prodan

Dealing with Performance Unpredictability in an Asymmetric
Multicore Processor Cloud . 332

Boris Teabe, Patrick Lavoisier Wapet, Alain Tchana,
and Daniel Hagimont

Deadline-Aware Deployment for Time Critical Applications in Clouds 345
Yang Hu, Junchao Wang, Huan Zhou, Paul Martin, Arie Taal,
Cees de Laat, and Zhiming Zhao

More Sharing, More Benefits? A Study of Library Sharing
in Container-Based Infrastructures . 358

José Bravo Ferreira, Marco Cello, and Jesús Omana Iglesias

An Efficient Communication Aware Heuristic for Multiple Cloud
Application Placement . 372

Pedro Silva and Christian Perez

Contents XXIX

http://dx.doi.org/10.1007/978-3-319-64203-1_18
http://dx.doi.org/10.1007/978-3-319-64203-1_18
http://dx.doi.org/10.1007/978-3-319-64203-1_19
http://dx.doi.org/10.1007/978-3-319-64203-1_19
http://dx.doi.org/10.1007/978-3-319-64203-1_20
http://dx.doi.org/10.1007/978-3-319-64203-1_20
http://dx.doi.org/10.1007/978-3-319-64203-1_21
http://dx.doi.org/10.1007/978-3-319-64203-1_22
http://dx.doi.org/10.1007/978-3-319-64203-1_23
http://dx.doi.org/10.1007/978-3-319-64203-1_23
http://dx.doi.org/10.1007/978-3-319-64203-1_24
http://dx.doi.org/10.1007/978-3-319-64203-1_24
http://dx.doi.org/10.1007/978-3-319-64203-1_25
http://dx.doi.org/10.1007/978-3-319-64203-1_26
http://dx.doi.org/10.1007/978-3-319-64203-1_26
http://dx.doi.org/10.1007/978-3-319-64203-1_27
http://dx.doi.org/10.1007/978-3-319-64203-1_27

Energy-Driven Straggler Mitigation in MapReduce 385
Tien-Dat Phan, Shadi Ibrahim, Amelie Chi Zhou, Guillaume Aupy,
and Gabriel Antoniu

Leveraging Cloud Heterogeneity for Cost-Efficient Execution
of Parallel Applications . 399

Eduardo Roloff, Matthias Diener, Emmanuell Diaz Carreño,
Luciano Paschoal Gaspary, and Philippe O.A. Navaux

Distributed Systems and Algorithms

A Consensus-Based Fault-Tolerant Event Logger for High
Performance Applications. 415

Edson Tavares de Camargo, Elias P. Duarte Jr., and Fernando Pedone

Families of Graph Algorithms: SSSP Case Study . 428
Thejaka Amila Kanewala, Marcin Zalewski, and Andrew Lumsdaine

SEMem: Deployment of MPI-Based In-Memory Storage for Hadoop
on Supercomputers . 442

Thanh-Chung Dao and Shigeru Chiba

Parallel and Distributed Programming, Interfaces, and Languages

Supporting the Xeon Phi Coprocessor in a Heterogeneous
Programming Model . 457

Ana Moreton-Fernandez, Eduardo Rodriguez-Gutiez,
Arturo Gonzalez-Escribano, and Diego R. Llanos

GLT: A Unified API for Lightweight Thread Libraries 470
Adrián Castelló, Sangmin Seo, Rafael Mayo, Pavan Balaji,
Enrique S. Quintana-Ortí, and Antonio J. Peña

PASCAL: A Parallel Algorithmic SCALable Framework
for N-body Problems . 482

Laleh Aghababaie Beni and Aparna Chandramowlishwaran

GASPI/GPI In-memory Checkpointing Library . 497
Valeria Bartsch, Rui Machado, Dirk Merten, Mirko Rahn,
and Franz-Josef Pfreundt

Multicore and Manycore Parallelism

Optimized Batched Linear Algebra for Modern Architectures 511
Jack Dongarra, Sven Hammarling, Nicholas J. Higham,
Samuel D. Relton, and Mawussi Zounon

XXX Contents

http://dx.doi.org/10.1007/978-3-319-64203-1_28
http://dx.doi.org/10.1007/978-3-319-64203-1_29
http://dx.doi.org/10.1007/978-3-319-64203-1_29
http://dx.doi.org/10.1007/978-3-319-64203-1_30
http://dx.doi.org/10.1007/978-3-319-64203-1_30
http://dx.doi.org/10.1007/978-3-319-64203-1_31
http://dx.doi.org/10.1007/978-3-319-64203-1_32
http://dx.doi.org/10.1007/978-3-319-64203-1_32
http://dx.doi.org/10.1007/978-3-319-64203-1_33
http://dx.doi.org/10.1007/978-3-319-64203-1_33
http://dx.doi.org/10.1007/978-3-319-64203-1_34
http://dx.doi.org/10.1007/978-3-319-64203-1_35
http://dx.doi.org/10.1007/978-3-319-64203-1_35
http://dx.doi.org/10.1007/978-3-319-64203-1_36
http://dx.doi.org/10.1007/978-3-319-64203-1_37

New Efficient General Sparse Matrix Formats for Parallel
SpMV Operations . 523

Jan Philipp Ecker, Rudolf Berrendorf, and Florian Mannuss

Lazy Parallel Kronecker Algebra-Operations on Heterogeneous Multicores. . . 538
Wasuwee Sodsong, Robert Mittermayr, Yoojin Park, Bernd Burgstaller,
and Johann Blieberger

Performance Evaluation of Computation and Communication Kernels
of the Fast Multipole Method on Intel Manycore Architecture 553

Mustafa Abduljabbar, Mohammed Al Farhan, Rio Yokota,
and David Keyes

Efficient Non-blocking Radix Trees. 565
Varun Velamuri

A Concurrency-Optimal Binary Search Tree . 580
Vitaly Aksenov, Vincent Gramoli, Petr Kuznetsov, Anna Malova,
and Srivatsan Ravi

Scalable Fine-Grained Metric-Based Remeshing Algorithm
for Manycore/NUMA Architectures . 594

Hoby Rakotoarivelo, Franck Ledoux, Franck Pommereau,
and Nicolas Le-Goff

Performance Evaluation of Thread-Level Speculation in Off-the-Shelf
Hardware Transactional Memories. 607

Juan Salamanca, José Nelson Amaral, and Guido Araujo

Theory and Algorithms for Parallel Computation and Networking

Addressing Volume and Latency Overheads in 1D-parallel Sparse
Matrix-Vector Multiplication . 625

Seher Acer, Oguz Selvitopi, and Cevdet Aykanat

Improving the Network of Search Engine Services Through
Application-Driven Routing . 638

Joe Carrión, Daniel Franco, Veronica Gil-Costa, Mauricio Marin,
and Emilio Luque

Parallel Numerical Methods and Applications

Accelerating the Tucker Decomposition with Compressed Sparse Tensors . . . 653
Shaden Smith and George Karypis

Shared Memory Pipelined Parareal . 669
Daniel Ruprecht

Contents XXXI

http://dx.doi.org/10.1007/978-3-319-64203-1_38
http://dx.doi.org/10.1007/978-3-319-64203-1_38
http://dx.doi.org/10.1007/978-3-319-64203-1_39
http://dx.doi.org/10.1007/978-3-319-64203-1_40
http://dx.doi.org/10.1007/978-3-319-64203-1_40
http://dx.doi.org/10.1007/978-3-319-64203-1_41
http://dx.doi.org/10.1007/978-3-319-64203-1_42
http://dx.doi.org/10.1007/978-3-319-64203-1_43
http://dx.doi.org/10.1007/978-3-319-64203-1_43
http://dx.doi.org/10.1007/978-3-319-64203-1_44
http://dx.doi.org/10.1007/978-3-319-64203-1_44
http://dx.doi.org/10.1007/978-3-319-64203-1_45
http://dx.doi.org/10.1007/978-3-319-64203-1_45
http://dx.doi.org/10.1007/978-3-319-64203-1_46
http://dx.doi.org/10.1007/978-3-319-64203-1_46
http://dx.doi.org/10.1007/978-3-319-64203-1_47
http://dx.doi.org/10.1007/978-3-319-64203-1_48

Nonintrusive AMR Asynchrony for Communication Optimization. 682
Muhammad Nufail Farooqi, Didem Unat, Tan Nguyen, Weiqun Zhang,
Ann Almgren, and John Shalf

Accelerator Computing

Balanced CSR Sparse Matrix-Vector Product on Graphics Processors 697
Goran Flegar and Enrique S. Quintana-Ortí

To Distribute or Not to Distribute: The Question of Load Balancing
for Performance or Energy . 710

Esteban Stafford, Borja Pérez, Jose Luis Bosque, Ramón Beivide,
and Mateo Valero

Author Index . 723

XXXII Contents

http://dx.doi.org/10.1007/978-3-319-64203-1_49
http://dx.doi.org/10.1007/978-3-319-64203-1_50
http://dx.doi.org/10.1007/978-3-319-64203-1_51
http://dx.doi.org/10.1007/978-3-319-64203-1_51

Invited Paper

Computing Just What You Need: Online Data
Analysis and Reduction at Extreme Scales

Ian Foster1,2(B), Mark Ainsworth3, Bryce Allen2, Julie Bessac1,
Franck Cappello1, Jong Youl Choi4, Emil Constantinescu1, Philip E. Davis5,

Sheng Di1, Wendy Di1, Hanqi Guo1, Scott Klasky3, Kerstin Kleese Van Dam6,
Tahsin Kurc7, Qing Liu8, Abid Malik6, Kshitij Mehta4, Klaus Mueller7,
Todd Munson1,2, George Ostouchov4, Manish Parashar5, Tom Peterka1,

Line Pouchard6, Dingwen Tao1, Ozan Tugluk3, Stefan Wild1, Matthew Wolf3,
Justin M. Wozniak1, Wei Xu6, and Shinjae Yoo6

1 Argonne National Laboratory, Lemont, IL, USA
foster@anl.gov

2 University of Chicago, Chicago, IL, USA
3 Brown University, Providence, RI, USA

4 Oak Ridge National Laboratory, Oak Ridge, TN, USA
5 Rutgers University, New Brunswick, NJ, USA

6 Brookhaven National Laboratory, Brookhaven, NY, USA
7 Stony Brook University, Stony Brook, NY, USA

8 New Jersey Institute of Technology, Newark, NJ, USA

Abstract. A growing disparity between supercomputer computation
speeds and I/O rates makes it increasingly infeasible for applications to
save all results for offline analysis. Instead, applications must analyze and
reduce data online so as to output only those results needed to answer
target scientific question(s). This change in focus complicates application
and experiment design and introduces algorithmic, implementation, and
programming model challenges that are unfamiliar to many scientists
and that have major implications for the design of various elements of
supercomputer systems. We review these challenges and describe meth-
ods and tools that we are developing to enable experimental exploration
of algorithmic, software, and system design alternatives.

1 Introduction

Technology trends are creating a crisis in high performance computing. Com-
puter speeds are increasing much faster than are storage technology capaci-
ties and I/O rates. For example, the Mira supercomputer installed at Argonne
National Laboratory in 2012 has a peak compute rate of 10 petaflop/s (1016

op/s) and disk write rate of 500 GB/s (5×1011 bytes/s). By 2024, computers are
projected to compute at 1018 ops/sec but write to disk only at 1012 bytes/sec:
a compute-to-output ratio 50 times worse. Figure 1 provides another perspec-
tive on this trend. We can no longer output every piece of information that we
might ever possibly want. Instead, we need to output just the information that
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 3–19, 2017.
DOI: 10.1007/978-3-319-64203-1 1

4 I. Foster et al.

we need to answer some question(s). This new goal requires new thinking about
the design and implementation of both applications and system software.

Fig. 1. Total filesystem throughput of
leadership class facilities vs. total float-
ing point operations per second [25,32,
40]. I/O throughput scales more slowly
than computational speed.

In both purely computational and cou-
pled experimental–computational studies,
these growing disparities between com-
putational speeds and I/O rates demand
new application structures that link previ-
ously disjoint activities: experiment, sim-
ulation, data analysis, data reduction. Yet
while many algorithms and tools exist
to treat separate pieces of such prob-
lems, these capabilities are often inoper-
able or inaccessible to the research scien-
tist. Scientists need new tools for coupling
components and new methods for co-
optimizing the resulting workflows. These
tasks introduce algorithmic, implementa-
tion, and programming model challenges
that are unfamiliar to many scientists and
that have major implications for the design of various elements of high perfor-
mance systems.

The emerging exascale landscape offers many opportunities to address these
problems. Additional storage features such as non-volatile random access mem-
ory (NVRAM) will provide powerful caching and aggregation capabilities. A vari-
ety of operating systems, runtime, scheduling, and fault tolerance features may
become available to applications and middleware developers. Advanced workflow
systems, I/O frameworks, and data reduction techniques can be integrated to
construct efficient data processing pipelines. These features will be adopted by a
range of exascale-ready applications, so there is a unique window of opportunity
to develop solutions that are widely applicable, reusable, and beneficial.

The Co-design center for Online Data Analysis and Reduction (CODAR)
engages scientists at three national laboratories and five partner universities,
to address these challenges. Working closely with applications teams, CODAR
is undertaking a co-design process that targets both common data analysis
and reduction methods (e.g., feature and outlier detection, and compression)
and methods specific to particular data types and domains (e.g., particle and
structured finite-element methods). Our goal is to understand and guide trade-
offs in the development of computer systems, applications, and software frame-
works, given constraints relating to application development costs and fidelity,
performance portability, scalability, and power efficiency, and to answer these
questions:

Q1: What are the best data analysis and reduction algorithms for different appli-
cation classes, in terms of speed, accuracy, and resource needs? How can we
implement those algorithms for scalability and performance portability?

Computing Just What You Need: Online Data Analysis and Reduction 5

Q2: What are the tradeoffs in data analysis accuracy, resource needs, and overall
performance between online reduction and offline analysis vs. online analy-
sis? How do these tradeoffs vary with hardware and software choices?

Q3: How do we effectively orchestrate online data analysis and reduction to
reduce associated overheads? How can hardware and software help?

2 Related Work and Context

We are not the first to observe that both the growing disparity between com-
pute and I/O rates and the need for near-real-time feedback requires online
data analysis and reduction. Much work has been performed on “in-situ” and
“in-transit” analysis methods [4,9], motivated by a desire to conserve I/O band-
width, storage, and/or power; increase accuracy of data analysis results; and/or
make optimal use of parallel platforms [31], among other factors [2]. The need
to reduce output data volumes has also spurred various science teams to create
custom online data analysis and reduction techniques [16,22,26,27,34,36] and
also stimulated work on general-purpose methods [8,10,21].

Such work reveals complex relationships between application design, data
analysis and reduction methods, programming models, system software, hard-
ware, and other elements of extreme-scale systems, particularly given constraints
such as applicability, fidelity, performance portability, and power efficiency.

The community is far from completely understanding the many co-design
issues posed by online data analysis and reduction. For the broader community
to leverage and expand the knowledge gained by early adopters, they will require
an effective, usable and sustainable software infrastructure that allows scientists
to use the best techniques to extract the right information that can then be
pushed through the straw to the parallel file system. It is in this context that
we established the CODAR co-design project.

3 Example Applications

We use examples from climate, fusion, and materials science to motivate the
need for online data analysis and reduction.

3.1 Climate Science

Climate scientists want to run large ensembles of high-fidelity 1 km× 1 km sim-
ulations on exascale systems, with each instance simulating 15 years of climate
in 24 h of computing time. They estimate that outputting the full model state
for each ensemble member once per simulated day would generate 260 TB every
16 s across the ensemble, approximately 16× what can be written to the parallel
file system at the expected peak output rate of 1 TB/sec. (Currently, climate
models achieve much lower I/O rates, due to their relatively small model grids.)
Furthermore, even following data reduction to 1 TB/sec, such runs would output
85 PB per day, posing major storage and offline data analysis challenges.

6 I. Foster et al.

While 85 PB is a lot of data to output in a day’s computing, this quantity
represents just a small subset of the total data to be produced by the ensemble.
Outputting state just once per simulated day represents a highly lossy reduction,
given that the climate model time step may be just 100 simulated seconds, and
indeed some analyses may require access to the full state at higher frequency. For
example, feature detection (e.g., tracking cyclones, detecting areas of extreme
heat) may require access to model state once per simulated five minutes, a rate
24 × 12 = 288 times greater. Clearly, climate models need new online data
analysis and reduction methods that can both preserve more information than
once-per-day snapshots and produce considerably less data.

3.2 Fusion Science

Fig. 2. XGC fusion simulation results near
the plasma edge illustrates the need for
fidelity preserving data reduction. The full
data for the magnetic field ||B|| and the
scalar potential φ both show close approx-
imation to the full solution. However, in
the case of the derived fluid velocity ∇φ×B

‖B‖ ,
the adaptive method retains the four major
features from the full data; the uniform
method does not.

Fusion scientists are developing a
high-fidelity whole device model for
magnetically confined fusion plasmas,
for use in planning experiments on the
ITER facility and simulating future
experimental fusion devices [6]. The
X-point included Gyrokinetics Code
(XGC) [24], one potential compo-
nent of a whole device model, mod-
els the plasma edge. A single XGC
simulation can produce hundreds of
petabytes of data describing particle
positions and the state of the field
within which the particles move.

We use this example to illustrate
the need for application-aware data
reduction methods. To reduce this
data to manageable sizes, ultimately
allowing 100 PB to be reduced to
100 TB, a 1000:1 reduction, fusion sci-
entists and CODAR participants col-
laborated to devise a multistep data
reduction process. The first step was
to simply decrease output frequency.
However, this approach cannot be
taken beyond physically relevant time
scales; important information would be lost by decreasing the frequency further.
The second step was to use application knowledge to further reduce the data
without losing essential information. The XGC particles are assumed to follow
a Maxwellian distribution. Therefore, we fitted a distribution to the data and
saved the parameters for the distribution and the particles falling outside that
distribution (the “outliers”). For the field data, adaptive data reduction methods

Computing Just What You Need: Online Data Analysis and Reduction 7

were used to preserve features (see Fig. 2). Finally, generic compression meth-
ods were applied to achieve further data reduction. The reduced data was then
output and used for offline data analysis.

3.3 Materials Science

Materials scientists regularly run billion-atom atomistic simulations with fem-
tosecond time steps on leadership-class machines [33,37]. In order to understand
phenomena such as the structural properties of lignin-based macromolecules,
information essential for improving biofuel production, measurable vibrational
responses that arise at the tens of femtoseconds must be studied, requiring per-
time step data access. Yet folding and bonding properties arise only on the scale
of seconds. Saving the full state to simultaneously study both quantities would
generate exabytes on exascale computers. Intelligent, statistically valid spatial
and temporal data analyses and/or reductions that can be applied online are
needed to achieve accurate scientific characterizations with reduced data.

3.4 Real-Time Decisions and Data Assimilation

Increasing use of supercomputers for near-real-time decision making is another
factor motivating new thinking about application and system software design [1].
For example, both experimental fusion energy experiments and next-generation
light sources are moving to a new frontier where data must be processed rapidly
to enable near-real-time decisions.

In light source science, high-fidelity simulation models are used to fit para-
meters that describe sample structure [11]. Coupling emerging high-frame-rate,
high-resolution detectors with high-performance computing and networks allows
these models to be calibrated by streaming data from the experiment hall. Future
experiments may also be guided by active learning methods that prioritize obser-
vations that reduce error and uncertainty in the model. Due to the growth in
detector and simulation capabilities, it is no longer feasible to input experimen-
tal data, perform some computation (e.g., simulation of the experiment’s future
trajectory), and store results for later analysis. Data must be transmitted and
assimilated immediately to maximize the quality of the simulated model, process
significant events, and/or permit rapid feedback to the experiment.

International experimental fusion energy experiments are moving to a new
frontier where data needs to be processed as soon as possible to make near-real-
time decisions. Data sizes, rates, and durations are increasing faster than Moore’s
Law, and new software technologies are needed to cope with their ability to do
their science quickly and accurately. One critical challenges is to understand
which data need to be processed immediately (in near real rime), and we need
the ability to express this during the data generation, and to compose a work-
flow that can help scientist get the best out of their data with a given amount
of work.

8 I. Foster et al.

4 A High-Performance Co-design Architecture

Some science teams have already developed application-specific online data
analysis and/or reduction methods on petascale systems, methods they now need
to scale for exascale. Others face the prospect of having to integrate such meth-
ods from scratch as part of their preparation for exascale. In both cases, we want
to make it easy for them to integrate a variety of scalable online data analysis
and reduction methods into their existing infrastructure, so that they can easily
experiment with co-design alternatives and achieve performance portability.

4.1 The Need for Modular Implementations

A first key to achieving this goal of easy co-design, we argue, is to modularize
implementations so that analysis and reduction methods, resource allocations,
and coupling methods can be varied with little or no changes to an application. In
this way we facilitate experimentation with design alternatives and investigation
of co-design and performance portability questions.

The key to modular integration of applications with online data analysis
and reduction methods is access to both the application data of interest and
metadata describing that data’s structure. Once this access is enabled, it becomes
straightforward to access and exchange the data to be analyzed and/or reduced.
Our team has much experience in instrumenting applications to provide and
use such information, particularly in the context of the Adaptable IO System
(ADIOS) [17,43], the Swift [3,42] system, and in earlier work [12,44]. In many
cases, this instrumentation involves adding simple procedure calls, for example
via the ADIOS application program interface (API) [28], to the application to
indicate the data structures in question. A runtime system can then extract
the specified data and pass it to specified data analysis and reduction services.
Only the runtime implementation, not the application, needs to be modified to
explore alternative implementation strategies, such as processing on the same
or different nodes, using NVRAM, varying clock speeds for power efficiency, or
varying the number of data analysis nodes.

The characteristics of data in extreme scale simulations will be highly
dynamic with respect to volume and relative importance. For example, the
detection of a rare event in a simulation could trigger analysis of additional
complexity, or even require a different analysis routine to be loaded and exe-
cuted. Thus, the runtime must be highly reconfigurable. It must enable the user
to programmatically branch into new analysis pipelines or rebalance resources
among components. This will require a novel integration of high-level directives
and hints with low-level I/O reconfiguration features to allow the overall work-
flow to adapt to conditions that emerge during execution.

4.2 CODAR System Components

These considerations lead us to identify three major classes of CODAR co-
designed technologies. Figure 3 shows how they fit together.

Computing Just What You Need: Online Data Analysis and Reduction 9

First, the CODAR Data API allows applications to specify the data
to be analyzed and/or reduced, and its structure. We leverage the ADIOS
API [23], which has been integrated into more than thirty science applica-
tions [17,30,38,43]. One co-design question will be how to extend this API so
that applications can convey actionable information for exascale optimizations
relating to performance and power efficiency.

Second, CODAR Data Services provide scalable implementations of data
analysis and reduction methods, plus ancillary monitoring methods, all pack-
aged to permit their use by any application. The data reduction methods will
provide effective reduction of the simulation outputs, both the application state
and the results of online data analyses applied to that state, while retaining
simulation fidelity. Data monitoring is needed to verify that a particular data
reduction method is retaining the necessary information and to provide feedback
when the data reduction is either too aggressive or not aggressive enough (see
Fig. 2). These services will include a mix of those developed by us and those
imported from other sources. We are developing only a modest number of such
implementations ourselves, but our methods and co-design knowledge will be
broadly applicable. Anyone will be able to add generic or application-specific
data services. An important co-design question here concerns the methods and
support required for efficient execution of a broad range of such services.

Third, the CODAR Runtime provides methods for the deployment, config-
uration, execution, and computational monitoring of applications and associated
data analysis and reduction pipelines on exascale platforms. Given a specified
set of data analysis, reduction, and monitoring services, it will enable their effi-
cient composition and configuration; their deployment to appropriate nodes and
cores; efficient communication among them; computational monitoring of both
individual services and the complete computation; and adaptation of service
configurations and parameters.

We intend that these three co-designed technologies allow application teams
to instantiate versions of the Fig. 3 pipeline to address their specific science

Fig. 3. Prototypical data analysis and reduction pipeline, showing how a simulation
communicates to our services through an API that conveys data and their structure.

10 I. Foster et al.

goals. Lessons learned from experiments with diverse applications, methods, and
platforms will in turn feed back to ECP application projects, software projects,
vendors, and other stakeholders.

5 CODAR Data Services

We show in Fig. 3 a prototypical application pipeline in which an online data
analysis service consumes simulation data and produces extracted information
that is communicated back to the simulation and/or sent to a data reduction
service for further processing prior to storage on a parallel file system. A moni-
toring service can also be engaged to evaluate the quality of the data reduction
results. More generally, data analysis methods may extract information from
several states—for example, a sliding window of time—and use results from pre-
vious data analyses. We review some of the analysis, reduction, and monitoring
methods that we are studying in the CODAR project.

5.1 Analysis Services

Our initial catalog of data analysis methods concentrates on multidimensional
statistical and image analysis and outlier detection and extraction. We develop
this set based on application requirements and their relevance to important
co-design questions, such as the following. When should a data analysis be per-
formed online versus offline? How frequently can data analyses be performed
online, given a specified computational budget? How can data analyses make
use of increased CPU on-node concurrency? When do we use burst buffers to
stage and extend memory for online data analysis? How do we take advantage
of deep memory hierarchies for tracking changes over time?

Multidimensional Statistical Analysis. Application scientists frequently find it
useful to extract multidimensional statistics and geometrical characteristics from
simulations, since these analyses reflect properties on a larger scale than do point-
wise and time-instant measurements, and carry information about structures,
aggregated quantities, and statistical measurements.

We plan to build on our stochastic flow map [15], which provides understand-
ing of uncertain transport behavior. This map has been successfully applied to
climate [15,35] and weather [14] applications. We are further developing our
data analysis methods to model multivariate and multiscale features in statis-
tical ensembles using the concepts of specific mutual information between vari-
ables [5] and information flows based on association rules [29]. These methods
all have a wide range of applications including climate and combustion.

As an example, climate model ensembles produce a distribution of veloci-
ties, instead of a single velocity at each grid point. These distributions allow cli-
mate scientists to quantify the uncertainty in convergent and divergent transport
behaviors and in derived features such as eddies, flow segmentation, and large-
scale teleconnections. Tracking these features via stochastic flow maps enables
scientists to understand their evolution and advance their scientific mission.

Computing Just What You Need: Online Data Analysis and Reduction 11

Outlier Detection and Extraction. Outliers and rare events are the needles that
application scientists frequently seek in the massive haystack of exascale data.
We are developing semi-supervised machine learning techniques that incorpo-
rate existing prior knowledge (such as a Bayes classifier) within an unsupervised
learning algorithm to select the most relevant targets for later inspection and
addition to a corpus of information. We are integrating the iForest [20] unsuper-
vised machine learning algorithm to project data into a subspace where outliers
deviate sharply from the remaining data, and applying kernel-based signatures
to detect outliers [18–20]. This combination is particularly effective in the case
of complex data with extremely high dimensionality [19,20].

5.2 Reduction Services

As illustrated in Sect. 3, the communication, analysis and storage of data from
exascale simulations will only be possible through aggressive data reduction
capable of shrinking datasets by one or more orders of magnitude. Such data
reduction level is not feasible with lossless data reduction (e.g., lossless compres-
sion) that only typically achieve reduction factors of 2 (initial size/reduced size)
on scientific data. Only lossy data reduction has the potential to reach reduction
factors of orders of magnitude.

As shown in Fig. 3, online data reduction services consume both simulation
outputs and the results from online data analyses and prepare data to be written
to a file system. A crude but commonly used data reduction technique is to save
data only periodically (e.g., every n-th time step) and use linear interpolation
to approximate the missing values for offline data analysis. This technique can
achieve arbitrary reduction ratios, but it lacks control over the errors. While
we support this technique, our data reduction goal is to preserve the essential
information in the reduced output while satisfying resource constraints on I/O
bandwidth. Thus, we need reduction methods that provide control over errors.

The consumer big data domain is in advance of science in the systematic use
of lossy data reduction. Most photos taken on a smartphone are stored in lossy
compressed form, as are audio and video files. The projection made by CISCO
about the Internet traffic is striking: in 2025, 80% of the Internet traffic will be
video streaming; which means that more than 80% of the data transiting on the
Internet will be lossy compressed. Microsoft has already deployed FPGAs into
its data centers to accelerate JPEG compression (among other operations). An
important distinction between the scientific and consumer big data domains is
the specificity of the data reduction techniques. The consumer big data domain
relies on generic lossy compressors (e.g., JPEG for images, MP3 for audio and
MPEG4 for video). Many scientific applications at extreme scale already need
aggressive data reduction. Spatial sampling and decimation in time are used
to reduce data but these techniques also reduce significantly the quality of the
data analytics performed on the sampled or decimated datasets. Advanced lossy
compression techniques provide a solution to this problem by allowing the user
to better control the data reduction error. However, the adoption of lossy data

12 I. Foster et al.

reduction techniques in the scientific domain is still limited because of the lack of
comprehensive understanding of the errors introduced by lossy data reduction.

Although lossy data reduction is critical to evolve many scientific domains
to the next step, the technology of scientific data reduction and the under-
standing on how to use it are still in their infancy. The first evidence is the
lack of results in this domain: over the 26 years of the prestigious IEEE Data
Compression Conferences, only 12 papers identify an aspect of scientific data
in their title (floating-point data, data from simulation, numerical data, scien-
tific data). The second evidence is the poor data lossy reduction performance
on some datasets. Beyond the research on data reduction techniques, scientists
also need to understand how to use lossy data reduction. The classic features
of compressors (integer data compression, floating-point data compression, fast
compression and decompression, error bounds for lossy compressors) do not char-
acterize data reduction algorithms specifically with respect to their integration
into a high-performance computing and data analytics workflow.

The CODAR co-design project is addressing these two gaps by collecting
data reduction need from exascale application, investigating and developing new
lossy data reduction algorithms, collecting error assessment needs from appli-
cations and developing a tool, called Z-checker, to assess comprehensively the
error introduced by lossy data reduction.

One approach to lossy scientific data reduction is for application and system
developers to design application-specific lossy data reduction technique. This
approach is used, for example, at the Large Hadron Collider, where experiments
use specialized hardware and software to extract only “interesting” events from
TB/s data streams. An alternative approach is to design and use generic lossy
compressors for scientific data. Several teams have worked and are still working
on this problem. The difficulty here is to develop lossy compressors that provide
excellent data reduction performance for a large variety of scientific applications:
regular mesh, irregular mesh, particle simulation, instrument, etc.

Appropriately chosen reduction methods can improve the information con-
tent of output data. For example, the FLASH hydrodynamics simulation
code [13] is widely used to perform extremely large simulations. Convention-
ally, data are not output every time step, the remaining data are discarded. An
alternative curve-fitting technique exploits the fact that hydrodynamic flows are
mostly smooth and thus can be greatly reduced by lossy compressors that nev-
ertheless provide error bounds. Our SZ compressor [8], for example, can achieve
100:1 reduction for the BLAST2 hydrodynamics data [7].

Currently, the two leading lossy compressors for scientific data are SZ [8,39]
and ZFP [41]. They are error-bounded lossy compressors, meaning that they
respect user-specified error constraints. Each uses a completely different com-
pression strategy. One is based on a prediction method and the other one is
transform based. One is better than the other, depending on the application
and the dataset. Research in this domain aims to reach compression factors of
10 for hard to compress datasets and >100 for easy to compress ones. These
two lossy compressors as well as other generic lossy compressors for scientific

Computing Just What You Need: Online Data Analysis and Reduction 13

data work well for smooth datasets. They are less effective when the datasets
are very irregular and presents large variations. One important aspect of the
CODAR project is to understand what compression algorithm (or sequence of
algorithms) to use according to the characteristics of the datasets. We return to
this question in the next section.

5.3 Monitoring Services

Scientific and consumer big data are distinguished by their quite different qual-
ity requirements for reduced datasets. JPEG, MP3 and MPEG4 are not only
generic but universal: all users have the same perception of images and sound.
Thus, compression quality criteria can be defined that meet the needs of a large
population of users. In science, on the other hand, each combination of applica-
tion and data may involve different quality requirements. One open question is
the relevant set of quality criteria for scientific datasets. As illustrated in Fig. 2,
blindly applying a reduction method can result in a failure to capture features
that are essential for subsequent analysis. Users have already expressed needs
to assess spectral alteration, correlation alteration, the statistical properties of
the compression error, the alteration of first and second order derivatives, and
more. As the domain of lossy data reduction for scientific datasets grows, the
community will learn what metrics are relevant and needed.

Another open question is how to express quality requirements, in partic-
ular when there are many such requirements with interdependencies. Perhaps
the most important open question is the comprehensive assessment of the error
introduced by lossy data reduction. The classic lossy compressor assessment
metrics, PSNR (peak signal to noise ratio) and its extension, the rate distortion
diagram, are not enough to represent the potential impact of the error on scien-
tific datasets and the analyses that may be performed on them. Users may also
be interested in other distortions (spectral, derivative, distribution) and other
characterization of the error (autocorrelation, distribution).

To address these concerns, we are developing data monitoring services for
estimating data reduction errors and providing (1) feedback to the reduction
methods so that their tolerances can be adjusted and (2) reduction error maps for
the application scientist. These maps can be imported into offline data analysis
routines or visualized to observe the evolution of reduction errors.

Our first step is a simple monitoring service, Z-checker, that applies an exten-
sible set of metrics to assess both initial dataset properties and the alterations
introduced by lossy data reduction. The Z-checker is designed to permit the
integration of a wide range of analysis modules, in C, C++, Fortran, and R.
An initial set allow its use to characterize critical properties (such as entropy,
distribution, power spectrum, principle component analysis, auto-correlation)
of any dataset to improve compression strategies, detect the compression qual-
ity (compression ratio, bit-rate), and provide global distortion analysis compar-
ing the original data with the decompressed data (peak signal-to-noise ratio,
normalized mean square error, rate-distortion, rate-compression error, spectral,

14 I. Foster et al.

distribution, derivatives) and statistical analysis of the compression error (max-
imum/minimum/average error, autocorrelation, distribution of errors). Our ini-
tial Z-checker runs offline; it will evolve into an online application that can be
configured to run multiple user-specified analyses concurrently, either for the
purpose of online steering of data reduction or to produce assessment reports
that can be used to evaluate reduction performance under different settings.

As we gain experience with online use of Z-checker, important questions
to be answered include the following. How frequently should we estimate the
reduction error? What data analysis methods and metrics should we use for
this estimation? How quickly can we provide the refinement hints so that the
information provided is actionable? How effective are the refinement hints at
influencing the reduction error?

6 The CODAR Runtime

The CODAR Runtime provides methods for controlling the placement and con-
figuration of CODAR Data Services for purposes of co-design exploration and
performance optimization. The initial focus is on simple manual configuration
of service delivery choices; in later stages of the project, we will also provide
for automated configuration, once co-design strategies are better understood.
Figure 4 shows the initial set of components.

Savannah: Swift workflows coupled with ADIOS

Z-Check

dup

Multi-node workflow components communicate over ADIOS.

Application data

Cheetah
Experiment

configuration
and dispatch

User monitoring and
control of multiple
pipeline instances

Co-design data

Store
experiment
metadata

Chimbuko
captures co-design
performance data

Other co-design
output
(e.g., Z-Checker)

CODAR
campaign
definition

Analysis

ADIOS output

Job launch

Science
App

Reduce

Fig. 4. The CODAR co-design system, showing in particular the Cheetah experiment
management component and the Savannah runtime.

The Cheetah experiment management framework defines a set of conven-
tions and re-usable scripts for conducting parameter sweep experiments on dif-
ferent science applications. Such experiments are intended to be run on super-
computers, particularly on existing machines, but may also be run on local work-
stations for debugging. An ‘application’ may be a single science code or, more
typically, one or more science codes plus a set of online analysis and reduction

Computing Just What You Need: Online Data Analysis and Reduction 15

codes that are coupled with the science codes and each other. The goal of such
parameter sweep experiments is to determine the best set of parameters to use
to run the application as efficiently as possible on different target machines. This
‘best’ set of parameters usually varies over different machines.

The Savannah in situ runtime serves three purposes. It provides a tested
deployment framework for any application (or software technology) project to
use online data analysis and reduction; provides the infrastructure needed to
create a testing framework (Cheetah) to evaluate reduction and analysis func-
tions for performance on a variety of levels (application and platform); and
provides a reference approach for teams that have specialized needs that exceed
the infrastructure design constraints

Savannah is not intended to be the only possible way of deploying CODAR-
developed or vetted analytics and reduction functions; multiple cooperating
ecosystems are needed to make the total system thrive. However, Savannah offers
a convenient and straight-forward approach, making it easier for applications to
focus on the science, rather than the details of advanced scheduler settings,
RDMA network transfers, and other technical details that tend to interfere with
the deployment of online techniques.

Finally, the Chimbuko performance data capture suite captures, analyzes
and visualizes performance metrics for complex scientific workflows and relates
these metrics to the context of their execution on extreme-scale machines to
enable empirical performance studies. Because capturing performance metrics
can quickly escalate in volume and provenance can be highly verbose, Chimbuko
interfaces with (lossy) data compression modules specialized for high-velocity
performance data.

To quantify co-design tradeoffs involved in online data analysis and reduc-
tion for a particular application, an ensemble of executions would be run using
Cheetah and Savannah, each involving an application X plus an analysis A and
a reduction R (e.g., from Z-checker) with different specifications of the infor-
mation that needs to be saved when (e.g., different data reduction mechanisms
and parameters) and what work is to be placed where (e.g., different numbers of
nodes allocated to X, A, and R; X, A, and R allocated to the same or different
nodes; and different mechanisms used to transfer data between components).
Chimbuko would capture the performance information for each member of the
ensemble and enable analysis across the ensemble to answer co-design questions.

7 Conclusion

We have presented the rationale, technical approach, and some initial results for
the new Co-design center for Online Data Analysis and Reduction (CODAR).
This project is motivated by the growing disparity between compute and I/O
speeds on high-performance computers, and the consequent need to perform
data analyses and reductions increasingly online, while an application is running,
rather than offline. Such new computational structures in turn lead to new co-
design questions, such as which analysis and reduction methods to use in different

16 I. Foster et al.

contexts, how to construct such application–analysis–reduction computations,
and how to map and configure different components. CODAR is developing new
methods that will allow the principled investigation of such questions.

Acknowledgments. This research was supported in part by the Exascale Comput-
ing Project (17-SC-20-SC) of the U.S. Department of Energy (DOE), and by DOE’s
Advanced Scientific Research Office (ASCR) under contract DE-AC02-06CH11357.

References

1. Future Online Analysis Platform Workshop, April 2017. https://press3.mcs.anl.
gov/futureplatform/about

2. Ahrens, J.: Increasing scientific data insights about exascale class simulations under
power and storage constraints. IEEE Comput. Graph. Appl. 35(2), 8–11 (2015)

3. Armstrong, T.G., Wozniak, J.M., Wilde, M., Foster, I.T.: Compiler techniques for
massively scalable implicit task parallelism. In: International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2014 (2014)

4. Bauer, A.C., Abbasi, H., Ahrens, J., et al.: In situ methods, infrastructures, and
applications on high performance computing platforms. Comput. Graph. Forum
35(3), 577–597 (2016)

5. Biswas, A., Dutta, S., Shen, H.W., Woodring, J.: An information-aware framework
for exploring multivariate data sets. IEEE Trans. Vis. Comput. Graph. 19(12),
2683–2692 (2013)

6. Bonoli, P., McInnes, L.C.: Report of the workshop on integrated simulations
for magnetic fusion energy sciences (2015). https://www.burningplasma.org/
resources/ref/Workshops2015/IS/ISFusionWorkshopReport.11.12.2015.pdf

7. Colella, P., Woodward, P.R.: The piecewise parabolic method (PPM) for gas-
dynamical simulations. J. Comput. Phys. 54(1), 174–201 (1984)

8. Di, S., Cappello, F.: Fast error-bounded lossy HPC data compression with SZ. In:
IEEE International Parallel and Distributed Processing Symposium, pp. 730–739
(2016)

9. Dorier, M., Dreher, M., Peterka, T., Wozniak, J.M., Antoniu, G., Raffin, B.:
Lessons learned from building in situ coupling frameworks. In: 1st Workshop on
In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, pp.
19–24. ACM (2015)

10. Dreher, M., Raffin, B.: A flexible framework for asynchronous in situ and in transit
analytics for scientific simulations. In: 14th International Symposium on Cluster,
Cloud and Grid Computing, pp. 277–286. IEEE (2014)

11. Foster, I., Ananthakrishnan, R., Blaiszik, B., Chard, K., Osborn, R., Tuecke, S.,
Wilde, M., Wozniak, J.: Networking materials data: accelerating discovery at an
experimental facility. In: Big Data and High Performance Computing, pp. 117–132.
IOS Press (2015)

12. Foster, I., Kohr Jr., D.R., Krishnaiyer, R., Choudhary, A.: Double standards: bring-
ing task parallelism to HPF via the message passing interface. In: ACM/IEEE
Conference on Supercomputing, pp. 36–36 (1996)

13. Fryxell, B., Olson, K., Ricker, P., Timmes, F., et al.: FLASH: an adaptive mesh
hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys.
J. Suppl. Ser. 131(1), 273 (2000)

https://press3.mcs.anl.gov/futureplatform/about
https://press3.mcs.anl.gov/futureplatform/about
https://www.burningplasma.org/resources/ref/Workshops2015/IS/ISFusionWorkshopReport.11.12.2015.pdf
https://www.burningplasma.org/resources/ref/Workshops2015/IS/ISFusionWorkshopReport.11.12.2015.pdf

Computing Just What You Need: Online Data Analysis and Reduction 17

14. Guo, H., He, W., Peterka, T., Shen, H.W., Collis, S., Helmus, J.: Finite-time Lyan-
punov exponents and Lagrangian coherent structures in uncertain unsteady flows.
IEEE Trans. Vis. Comput. Graph. 22(6), 1672–1682 (2016)

15. Guo, H., He, W., Seo, S., Shen, H.W., Peterka, T.: Extreme-scale stochastic particle
tracing for uncertain unsteady flow analysis. Mathematics and Computer Science
Division, Argonne National Laboratory (2016, preprint). http://www.mcs.anl.gov/
papers/P6000-0416.pdf

16. Habib, S., Pope, A., Finkel, H., Frontiere, N., Heitmann, K., Daniel, D., Fasel, P.,
Morozov, V., Zagaris, G., Peterka, T., et al.: HACC: simulating sky surveys on
state-of-the-art supercomputing architectures. New Astron. 42, 49–65 (2016)

17. Herbein, S., Matheny, M., Wezowicz, M., Krogel, J., Logan, J., Kim, J., Klasky,
S., Taufer, M.: Performance impact of I/O on QMCPack simulations at the petas-
cale and beyond. In: 16th International Conference on Computational Science and
Engineering, pp. 92–99. IEEE (2013)

18. Huang, H., Qin, H., Yoo, S., Yu, D.: Local anomaly descriptor: a robust unsu-
pervised algorithm for anomaly detection based on diffusion space. In: 21st ACM
International Conference on Information and Knowledge Management, pp. 405–414
(2012). http://doi.acm.org/10.1145/2396761.2396815

19. Huang, H., Qin, H., Yoo, S., Yu, D.: A new anomaly detection algorithm based on
quantum mechanics. In: 12th IEEE International Conference on Data Mining, pp.
900–905 (2012). http://dx.doi.org/10.1109/ICDM.2012.127

20. Huang, H., Qin, H., Yoo, S., Yu, D.: Physics-based anomaly detection defined
on manifold space. ACM Trans. Knowl. Discov. Data 9(2), 14:1–14:39 (2014).
http://doi.acm.org/10.1145/2641574

21. Iverson, J., Kamath, C., Karypis, G.: Fast and effective lossy compression algo-
rithms for scientific datasets. In: Kaklamanis, C., Papatheodorou, T., Spirakis,
P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 843–856. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-32820-6 83

22. Jenkins, J., et al.: ALACRITY: analytics-driven lossless data compression for rapid
in-situ indexing, storing, and querying. In: Hameurlain, A., Küng, J., Wagner, R.,
Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) Transactions on Large-Scale Data- and
Knowledge-Centered Systems X. LNCS, vol. 8220, pp. 95–114. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-41221-9 4

23. Koziol, Q., Podhorszki, N., Klasky, S., Liu, Q., Tian, Y., Parashar, M., Schwan,
K., Wolf, M., Lakshminarasimhan, S.: ADIOS. In: High Performance Parallel I/O,
pp. 203–213. Chapman and Hall/CRC (2014)

24. Ku, S., Chang, C., Adams, M., Cummings, J., Hinton, F., Keyes, D., Klasky, S.,
Lee, W., Lin, Z., Parker, S., et al.: Gyrokinetic particle simulation of neoclassical
transport in the pedestal/scrape-off region of a Tokamak plasma. J. Phys: Conf.
Ser. 46(1), 87 (2006)

25. Kumaran, K.: Introduction to Mira. https://www.alcf.anl.gov/files/bgq-perfengr.
pdf

26. Lakshminarasimhan, S., Jenkins, J., Arkatkar, I., Gong, Z., Kolla, H., et al.:
ISABELA-QA: query-driven analytics with ISABELA-compressed extreme-scale
scientific data. In: International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC 2011, pp. 1–11. ACM (2011). http://doi.acm.
org/10.1145/2063384.2063425

27. Lakshminarasimhan, S., Shah, N., Ethier, S., Ku, S.H., Chang, C.S., Klasky, S.,
Latham, R., Ross, R., Samatova, N.F.: ISABELA for effective in situ compression
of scientific data. Concurr. Comput.: Pract. Exp. 25(4), 524–540 (2013)

http://www.mcs.anl.gov/papers/P6000-0416.pdf
http://www.mcs.anl.gov/papers/P6000-0416.pdf
http://doi.acm.org/10.1145/2396761.2396815
http://dx.doi.org/10.1109/ICDM.2012.127
http://doi.acm.org/10.1145/2641574
http://dx.doi.org/10.1007/978-3-642-32820-6_83
http://dx.doi.org/10.1007/978-3-642-41221-9_4
https://www.alcf.anl.gov/files/bgq-perfengr.pdf
https://www.alcf.anl.gov/files/bgq-perfengr.pdf
http://doi.acm.org/10.1145/2063384.2063425
http://doi.acm.org/10.1145/2063384.2063425

18 I. Foster et al.

28. Liu, Q., Logan, J., Tian, Y., Abbasi, H., Podhorszki, N., Choi, J.Y., Klasky,
S., et al.: Hello ADIOS: the challenges and lessons of developing leadership
class I/O frameworks. Concurr. Comput.: Pract. Exp. 26(7), 1453–1473 (2014).
http://dx.doi.org/10.1002/cpe.3125

29. Liu, X., Shen, H.: Association analysis for visual exploration of multivariate
scientific data sets. IEEE Trans. Vis. Comput. Graph. 22(1), 955–964 (2016).
http://dx.doi.org/10.1109/TVCG.2015.2467431

30. Liu, Z., Wang, B., Wang, T., Tian, Y., Xu, C., Wang, Y., Yu, W., Cruz, C.A.,
Zhou, S., Clune, T., et al.: Profiling and improving I/O performance of a large-
scale climate scientific application. In: 22nd IEEE International Conference on
Computer Communication and Networks, pp. 1–7 (2013)

31. Malakar, P., Vishwanath, V., Munson, T., Knight, C., Hereld, M., Leyffer, S.,
Papka, M.E.: Optimal scheduling of in-situ analysis for large-scale scientific simu-
lations. In: ACM International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC 2015 (2015)

32. Nowell, L.: Science at extreme scale: architectural challenges and oppor-
tunities (2014). http://www.mcs.anl.gov/∼hereld/doecgf2014/slides/ScienceAt
ExtremeScale DOECGF Nowell 140424v2.pdf

33. Perilla, J.R., Goh, B.C., Cassidy, C.K., Liu, B., Bernardi, R.C., Rudack, T., Yu,
H., Wu, Z., Schulten, K.: Molecular dynamics simulations of large macromolecular
complexes. Curr. Opin. Struct. Biol. 31, 64–74 (2015)

34. Peterka, T., Kwan, J., Pope, A., Finkel, H., Heitmann, K., Habib, S., Wang, J.,
Zagaris, G.: Meshing the universe: integrating analysis in cosmological simulations.
In: Ultrascale Visualization Workshop, SC 2012, pp. 186–195. IEEE (2012)

35. Peterka, T., Ross, R., Nouanesengsey, B., Lee, T.Y., Shen, H.W., Kendall, W.,
Huang, J.: A study of parallel particle tracing for steady-state and time-varying
flow fields. In: IEEE International Parallel and Distributed Processing Symposium,
pp. 580–591 (2011)

36. Schendel, E.R., Jin, Y., Shah, N., Chen, J., Chang, C.S., Ku, S.H., Ethier, S.,
Klasky, S., Latham, R., Ross, R., Samatova, N.F.: ISOBAR preconditioner for
effective and high-throughput lossless data compression. In: 28th International
Conference on Data Engineering, pp. 138–149, April 2012

37. Shekhar, A., Nomura, K.I., Kalia, R.K., Nakano, A., Vashishta, P.: Nanobubble
collapse on a silica surface in water: billion-atom reactive molecular dynamics sim-
ulations. Phys. Rev. Lett. 111(18), 184503 (2013)

38. Slawinska, M., Clark, M., Wolf, M., Bode, T., Zou, H., Laguna, P., Logan, J.,
Kinsey, M., Klasky, S.: A Maya use case: adaptable scientific workflows with ADIOS
for general relativistic astrophysics. In: ACM Conference on Extreme Science and
Engineering Discovery Environment: Gateway to Discovery, p. 54 (2013)

39. Tao, D., Di, S., Chen, Z., Cappello, F.: Significantly improving lossy compression
for scientific data sets based on multidimensional prediction and error-controlled
quantization. In: IEEE International Parallel and Distributed Processing Sympo-
sium (2017)

40. Thibodeau, P.: Coming by 2023, an exascale supercomputer in the U.S.
IEEE Spectrum. http://spectrum.ieee.org/computing/hardware/when-will-we-
have-an-exascale-supercomputer

41. Windstorm, P.: Fixed-rate compressed floating-point arrays. IEEE Trans. Vis.
Comput. Graph. 20(12), 2674–2683 (2014)

http://dx.doi.org/10.1002/cpe.3125
http://dx.doi.org/10.1109/TVCG.2015.2467431
http://www.mcs.anl.gov/~hereld/doecgf2014/slides/ScienceAtExtremeScale_DOECGF_Nowell_140424v2.pdf
http://www.mcs.anl.gov/~hereld/doecgf2014/slides/ScienceAtExtremeScale_DOECGF_Nowell_140424v2.pdf
http://spectrum.ieee.org/computing/hardware/when-will-we-have-an-exascale-supercomputer
http://spectrum.ieee.org/computing/hardware/when-will-we-have-an-exascale-supercomputer

Computing Just What You Need: Online Data Analysis and Reduction 19

42. Wozniak, J.M., Armstrong, T.G., Wilde, M., Katz, D.S., Lusk, E., Foster, I.T.:
Swift/T: Scalable data flow programming for distributed-memory task-parallel
applications. In: 13th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, pp. 95–102 (2013)

43. Wu, L., Wu, K., Sim, A., Churchill, M., Choi, J.Y., Stathopoulos, A., Chang, C.,
Klasky, S.: Towards real-time detection and tracking of blob-filaments in fusion
plasma big data. IEEE Trans. Big Data 2(3), 262–275 (2016)

44. Zhao, Y., Wilde, M., Foster, I.: Virtual data language: a typed workflow notation
for diversely structured scientific data. In: Taylor, I., Deelman, E., Gannon, D.,
Shields, M. (eds.) Workflows for e-Science, pp. 258–278. Springer, London (2007).
doi:10.1007/978-1-84628-757-2 17

http://dx.doi.org/10.1007/978-1-84628-757-2_17

Support Tools and Environments

Scaling Energy Adaptive Applications
for Sustainable Profitability

Fabien Hermenier1,2(B), Giuliani Giovanni3, Andre Milani3,
and Sophie Demassey4

1 Université Côte d’Azur, CNRS, I3S, Paris, France
fabien.hermenier@unice.fr

2 Nutanix Inc., San Jose, USA
fabien.hermenier@nutanix.com

3 Hewlett Packard Enterprise, Milano, Italy
{giuliani,andrea.milani}@hpe.com

4 Centre for Applied Mathematics – MINES ParisTech, PSL, Paris, France
sophie.demassey@mines-paristech.fr

Abstract. Energy efficiency in data centres is addressed through work-
load management usually to reduce the operational costs and as a by-
product, the environmental footprint. This includes to minimise total
power consumption or to minimise the power issued from non-renewable
energy sources. Hence, the performance requirements of the client’s appli-
cations are either totally overlooked or strictly enforced.

To encourage profitable sustainability in data centres, we consider the
total financial gain as a trade-off between energy efficiency and client
satisfaction. We propose Carver to orchestrate energy-adaptive appli-
cations, according to performance and environmental preferences and
given forecasts of the renewable energy production. We validated Carver
by simulating a testbed powered by the grid and a photovoltaic array
and running the Web service HP LIFE.

1 Introduction

Energy efficiency in data centre is a major topic over the last decade. The ear-
liest approaches focused on spatial optimisation using workload consolidation.
The use of renewable energies led to temporal optimisation where the workload
is shifted to periods of green and cheap energy [1,6,7,9,10]. In parallel, applica-
tions moved from monolithic to elastic then to energy-adaptive [4,8,12] designs to
align their performance with explicit energy concerns. Finally, smart city energy
authorities pressure data centre managers to reduce their environmental foot-
print, conflicting with the data center client’s performance expectations. While
clients and energy authorities have competing objectives, they both interact
with the data centre through financial agreements and their associated penal-
ties. Energy-adaptive applications should then be scaled according to economic
concerns when looking either for service or sustainability or both.

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 23–35, 2017.
DOI: 10.1007/978-3-319-64203-1 2

24 F. Hermenier et al.

In this paper, we present Carver, a tool to reach profitable sustainability for
data centre managers inside a smart city. Carver orchestrates energy-adaptive
applications on a 24-h horizon, based on performance level, the variable avail-
ability of renewable energies, and the variable price of multiple power sources. It
adjusts the application’s working modes to minimise a financial cost combining
the power cost and penalties for not complying with the client’s performance
and the smart city authority’s expectations in terms of renewable energy use.

We validated Carver benefits by simulating a real testbed powered by the
grid and a photovoltaic array and running the application HP LIFE. Carver
reduced running costs by 34.71% compared to the current scenario, which runs
the applications at peak performance. In practice, it reduced incomes by 2.17%
to increase the use of renewables by 3.48%. Carver also reduced running costs by
52.40% compared to a scenario that maximises the usage of renewable energies,
by decreasing the use of renewables by 1.61% to increase incomes by 52.35%.

The rest of this paper is organised as follows: Sect. 2 presents Carver’s archi-
tecture. Section 3 details the implementation. Section 4 evaluates our prototype.
Section 5 describes related works and Sect. 6 presents our conclusions.

2 CARVER Overview

Carver orchestrates energy-adaptive applications for profitable sustainability.
At regular intervals, it analyses the forecasts of the energy providers powering
the data centre, the application’s characteristics and the smart city authority’s
expectations in terms of sustainable development, to compute an economically
viable way to run the applications. In this section, we introduce Carver’s archi-
tecture and detail the supported application’s characteristics. We finally present
Carver’s general behaviour.

2.1 Architecture

Carver is a Web service written in Java. It interacts with energy providers, a
smart city authority, and energy-adaptive applications using Rest APIs.

The energy providers characterise the power sources that are connected to the
data centre. This includes commercial energy providers, through power distrib-
ution grids, but also a local production using a photovoltaic array for example.
Each energy provider comes up with forecasts on a typical two-day horizon of the
variable energy pricing and availability, as well as the proportion that comes from
renewable sources. Pure renewable sources such as photovoltaic arrays display a
constant 100% proportion while the power grid usually exhibits a variable ratio
over time. Forecasting issues are outside the scope of this paper. We consider
that the data supplier possesses its own algorithms or existing ones [14].

The smart city authority draws up agreements to regulate the energy used
by consumers inside a smart city. An agreement declares a sustainable objective
to reach and the financial penalties to pay in case of failure. By default, Carver

Scaling Energy Adaptive Applications for Sustainable Profitability 25

supports agreements stating a minimal percentage of renewable energy to con-
sume. It is however extensible enough to support other kinds of energy-related
agreements.

The energy-adaptive applications form the auto-scalable workload of the
data centre. Each application can run under different working modes that vary
in performance and power consumption. Carver interacts with the applications
through an Energy Adaptive Software Controller (EASC) connected to each of
them. This controller enables developers to make their application adaptive to
variable energy availability and sets out the application’s characteristics in a
textual description [4].

2.2 The EASC Description Script

A script describes the scalability characteristics of an application and its service-
level objectives.

The Service Level Objective (SLO) is a business objective to reach over a
validity period, and a pricing model. Carver currently supports cumulative and
instant performance models. Cumulative models mainly concern batch-oriented
applications that must achieve a given amount of work within a given time
frame. Instant models concern interactive applications, such as a Web service
that fulfills a given amount of requests per second that vary over the day.

The pricing model defines the base price the client pays when the objective
is achieved, as well as a list of modifiers, i.e. financial penalties refund to the
client depending on the gap between the actual and target performance levels.
Each price modifier specifies a threshold and a flat or linear penalty. When the
objective is not reached, the penalty to apply is given by the modifier with the
largest threshold that is below or equal to the performance achieved. A flat
penalty value is subtracted once from the base price, while a linear value is
expressed as a price per performance unit.

The Working modes correspond to the possible deployments of the applica-
tion (e.g. by a variable number of running replicas). It is described by a per-
formance level, a power consumption, and a shell command to use to start the
reconfiguration. When the application switches to a new working mode, it may
temporary undergo a performance loss that depends on the previous working
mode. A matrix indicates these transition costs. We assume that establishing
the working modes it is done manually during a training phase, or using auto-
mated methods [3].

2.3 General Workflow

Carver schedules the application execution on a time frame spanning from 24 to
48 h. The time frame is discretised into time slots of 15 min and its duration is
computed to include the complete validity period of each contract established
between the data centre business service, the smart city authority and the appli-
cation owners. Each contract starts at midnight and imposes a validity period

26 F. Hermenier et al.

of 24 h. Accordingly, the time frame covers the ongoing day only when Carver is
called at midnight; otherwise it covers the period from the present time to the
end of the following day.

By default, Carver is called every 15 min. This means that future decisions
can be revised with regards to the refinement of the forecasts made by the
energy providers. Carver first computes the time frame duration, then requests
the forecasts from the energy providers, the smart city authority objective, and
the EASC descriptions. Using this data, Carver computes, for each time slot of
the time frame, the most suitable working mode for each application in order
to maximise the data centre’s profits. Once the computation is done, it informs
each EASC of the schedule to follow.

3 Implementation

We refer to the optimisation problem computed by Carver as the EASC Allo-
cation Problem (EascAP). The basic EascAP with only one power source, two
modes per application, no smart city objectives, no instant performance goals,
and no transition costs is already NP-hard in the strong sense as it contains Bin
Packing as a special case because of the limited amount of power available at each
time slot. As a consequence, no simple algorithm exists to solve real instances of
the EascAP. The situation naturally becomes even more complicated when the
instances exhibit all of the problem facets and heterogeneous components.

Carver relies on constraint programming to solve EascAP, using the Choco
solver1. Constraint programming (CP) is a declarative paradigm to solve com-
binatorial decision problems. [13] We choose CP over alternative declarative
approaches, such as mathematical or logic programming, because it tends to be
more efficient on allocation and scheduling problems, and even more so with
composite aspects: its higher-level modelling language enables the direct encod-
ing of a wide variety of constraints and prevents the aggregated model from
becoming intractable because of its size.

Applications and SLO. The execution of an application a ∈ A is defined
by its working mode m ∈ Ma during each time slot t ∈ T . This is mod-
elled as a sequence of decision variables modea = (modeat)t∈T , each having
an initial domain Ma. Each variable-value assignment modeat = m is asso-
ciated with the amount of work done by application a in mode m, possibly
lowered by the transition cost incurred by a mode switch at time t, i.e. when
modea(t−1) = m′ �= m. Let Wa(m′,m) denote the resulting value. The total
instant and cumulative performance penalty costs over the time frame T can
be respectively computed as icosta =

∑
t∈T KI(Wa(modea(t−1), modeat)) and

ccosta = KC(
∑

t∈T Wa(modea(t−1), modeat)) where KI and KC describe any
penalty functions associated with the non-achievement of the instant and cumu-
lative performance goals.

1 http://choco-solver.org.

http://choco-solver.org

Scaling Energy Adaptive Applications for Sustainable Profitability 27

The two later relations could be encoded as such in a CP model. However,
we obtain a deeper inference if they are grouped into one multicost-regular con-
straint [11]. This constraint captures the dependence of the mode transitions on
the penalty values. This constraint is specified with a weighted finite automa-
ton, over the variable sequence modea and two numerical variables perfa and
icosta, and enforces that: (1) sequence modea has no forbidden mode switches
if any exist, (2) perfa is the cumulative performance of application a over time
frame T , i.e. perfa =

∑
t∈T Wa(modea(t−1), modeat), and (3) icosta is the total

instant penalty cost of application a.
The instant penalty function KI is directly modelled by this constraint,

within the pre-computed automaton weights. Since the cumulative penalty cost
depends on the entire sequence, function KC must be modelled with an extra
constraint relating the cumulative performance to the penalty cost variable:

ccosta = KC(perfa) (1)

Without any assumption on the nature of the function KC , we model Eq. (1)
with the element constraint after calculating the penalty costs associated with
every possible value of perfa.

Power Sources and Consumption. The data centre is powered with a dedi-
cated set of power sources S. Each source s ∈ S is available in a limited amount
at each period t ∈ T . We introduce a variable psrcst stating the power usage and
a constant kst stating the unit energy price of source s at time t. Equation (2)
models the total energy cost pcost of the data centre over one day:

pcost =
∑

t∈T

∑

s∈S

psrcst × kst (2)

The power consumption of application a ∈ A during time slot t is modelled as
a variable pappat and its value only depends on the current working mode modeat.
This relation is modelled using an element constraint. Finally, Eq. (3) link the
power consumed by the applications to the power provided by the sources at
each time slot:

∀t ∈ T,
∑

a∈A

pappat =
∑

s∈S

psrcst (3)

Smart City Objective. The smart city authority controls the minimum rate
of renewable energy consumed by the data centre. According to the energy fore-
casts, i.e. the percentage rst of green power provided by any source s at time t,
the total ratio is a variable rpart computed as:

rpart =
∑

t∈T

∑
s∈S psrcst × rst

∑
t∈T

∑
s∈S psrcst

(4)

The penalty cost is again modelled by an element constraint, whatever the
applied penalty function KR:

rcost = KR(rpart) (5)

28 F. Hermenier et al.

Economic Profit. The daily net benefits for the data centre are given as the
base revenue for running the applications minus the energy cost and the penal-
ties incurred for violating the application performance goals and the smart city
objective. The optimisation criterion is then to minimise the sum of the expenses:

min
∑

a

(ccost + icost) + pcost + rcost (6)

4 Evaluation

The goal of Carver is to minimise the total running costs of a data centre inside
a smart city so that its sustainability-oriented investments are viable. To eval-
uate its practical benefits in as realistic an environment as possible, we used a
simulator to replay a 4-day trial inside a company data centre powered by the
grid and a photovoltaic array set from 16 to 20 January 2015. We replayed the
environment and the production workload with different solar profiles and com-
pared the running cost obtained by Carver with the scaling used in production,
and another one focusing on maximising the use of renewable energy.

4.1 Environment Setup

The simulated environment reproduces the testbed of the HP Innovation Lab in
Milan. The testbed is composed of 20 Moonshot cartridges2 that have a power
consumption in the range of 20 Watt-peaks each. Such a size in terms of node
stay representative in the context of a private cloud. Indeed Cano et al. [2]
studied more than 2,000 private cloud installations. They observed their size
vary between 3 and 40 servers, with an average of 6.18 nodes per cluster.

The testbed is powered by the grid and a photovoltaic array. The grid pro-
vides energy at a price of 0.16e/kWh. The photovoltaic array produces 1 kWatt
peak. Because the trial represents a negligible period compared to the array’s
lifespan, we ignore the investment cost for the photovoltaic array and assume
an energy production cost of zero. The solar irradiation and the percentage of
renewable energy in the grid vary on a daily basis. The supply of dual energy
is simulated using 4 characteristic pre-defined profiles for each source, extracted
from a 7-month history using the methodology in [15].

The testbed runs the HP LIFE project, a highly available Web-based
e-learning platform spread over the globe. The platform is composed of 3 energy-
adaptive applications whose characteristics are summarised in Table 1. The Web-
site application has 6 working modes and uses from 10 to 17 cartridges. The
unused ones are turned off to save power. The 10 cartridges that are always
running host the database replicas and the load balancers to ensure high avail-
ability. This results in high consumption in the lowest working mode relative to
its low performance. The E-learning and G-learning applications are responsi-
ble for indexing the content of the Website application. Each uses 1 cartridge,
2 http://www8.hp.com/us/en/products/servers/moonshot/.

http://www8.hp.com/us/en/products/servers/moonshot/

Scaling Energy Adaptive Applications for Sustainable Profitability 29

Table 1. HP LIFE project characteristics. The Website application is the 3-tier Web
service that delivers static and dynamic contents. The E-learning and G-learning appli-
cations are responsible for indexing Website content.

Application Performance Power (W) Working modes Cartridges

Website 1050–3250 Req/s 360–550 6 10–17

G-learning 0–565 kPages/h 6–33 3 1

E-learning 0–60 kPages/h 6–33 3 1

has 3 working modes, and a number of concurrent crawlers that increases with
the working mode performance. The applications are deployed statically on the
cartridges without any virtualisation layer or co-location. The trial workload is
based on the scenarios used by the operation team of the HP LIFE project. For
the Website, we analysed the production traces to identify the day on which
the highest request rate was observed. This load was multiplied by a correction
factor to cope with the higher computing power of the Moonshots compared to
the production cluster. The workload for E-learning and G-learning consists in
crawling 200,000 then 300,000 pages.

The Website SLO requires the first working mode that can absorb the average
hourly load, and uses a piecewise linear penalty function with a penalty of up to
2e when the request rate is below the expectations by at least 800 requests per
second. Inside the simulator, we consider that the request rate is constant per
time slot, and equal to its SLO. Accordingly, the simulated behaviour slightly
exaggerates the power consumption. This simplification does not impact the
evaluation as the simulated conditions are constant for the whole experiment.

The SLOs for the G-learning and the E-learning require to crawl all of the
Website pages, their penalty functions being linear with the number of missing
indexations. For G-learning and E-learning, they equal 0.2e and 0.01e per 1000
missing indexations, respectively. For each time slot, these applications always
run at peak performance within the limits of their working mode. Inside the
simulator we then assume a constant power consumption and performance.

Finally, we stated that the smart city authority’s objective requires that the
data centre use at least 65% of renewable energy every day, with a penalty of
100e per missing percent point. These values were chosen to evaluate Carver in
situations where it is not always possible to attain the expected threshold, and
with a penalty high enough to evaluate Carver trade-off decisions.

We evaluated the simulator accuracy in [15] and reported the amount of
renewable energy used in reality and in the simulator deviated by less than a
percent point. We ran the evaluation on a MacBook Pro with 3.1 GHz Intel Core
i7 and 16 GB RAM and gave Carver 15 s to compute the best solution possible.
As Carver is called every 15 min by default, it is possible to increase the time
limit. However, we observed that usually Carver reaches a local optimum in less
than 15 s.

30 F. Hermenier et al.

We compared Carver with two representative scenarios named perf and
green that were also executed using the simulator to avoid any comparison
bias. perf mimics the scaling used in production. The working mode used for
the Website is the one that ensures the SLO while using the least power. The
G-learning and E-learning applications are launched at 00:00 and 03:00, respec-
tively; a common time for background jobs. Each runs at peak performance
until it reaches its SLO. In the green scenario, the applications are scaled to
use as much renewable energy as possible. For this scenario, we ran Carver with
a heuristic that selects the most efficient working mode when the photovoltaic
array produces enough energy to power the entire testbed, and the least effi-
cient working mode otherwise. Furthermore, each time a solution is computed,
Carver must compute a new solution that provides a better renewable energy
percentage.

4.2 Results

The resulting power profiles for the three scenarios are depicted in Figs. 1a to
c. We observe that the profiles vary with the scenario despite identical work-
loads. This confirms that the applications were scaled differently depending the
photovoltaic array production.

Figure 2 depicts the achieved daily renewable energy percentage per scenario.
We first observe that the percentages vary depending on the day and the scenario
with a maximum margin of 3.5 percentage points. This shows that perf provides
a respectable value even when the renewable energy availability is ignored. First,
this is because the servers have low power consumption and because the photo-
voltaic array can supply the entire testbed at peak period. Second, the Website,
which is the biggest energy consumer, delivers pages upon request from daytime
workers. Its workload, so its power consumption, is thus naturally aligned with
the solar irradiation. Finally, its flexibility in terms of energy proportionality is
limited, as its lowest working mode uses only 34.5% less energy than the most
efficient one, and yet is 67.7% less efficient.

We also observe that Carver improves the daily percentage by 3.48% on
average compared to perf, while green exhibits a 1.61% increase with regards to
Carver. Figure 1a to c explain this increase. Indeed, the power profiles of Carver
and green indicate that the two indexing applications were deferred to periods
with maximum renewable energy, while the Website was scaled down during the
evenings of 18 to 20 January to cope with the low share of renewables. Finally,
the extra gain obtained in green is justified by its aggressive scale down of the
Website to its minimal working mode each time that energy was not provided
by the photovoltaic array. In terms of energy consumption, perf was the highest
energy consumer, while green was the lowest one. Carver consumed 5.21% less
than perf and 6.01% more than green.

Figure 3 shows the daily incomes. This income equals the cost of running
the HP LIFE project (estimated at 1 euro per user per year by the HP LIFE
managers), reduced by the penalties the data centre must pay to the application
owner when the SLO is not reached. As expected, perf provides the maximum

Scaling Energy Adaptive Applications for Sustainable Profitability 31

0

100

200

300

400

500

16/01 17/01 18/01 19/01 20/01
Date

W
at

ts

application
E−learning

G−indexing

Website

(a) perf scenario

0

200

400

16/01 17/01 18/01 19/01 20/01
Date

W
at

ts

application
E−learning

G−indexing

Website

(b) green scenario

0

200

400

16/01 17/01 18/01 19/01 20/01
Date

W
at

ts

application
E−learning

G−indexing

Website

(c) Carver

Fig. 1. Power profiles depending on the running scenario. The line indicates the share
of renewable energy used.

17/01/15 18/01/15 19/01/15 20/01/15

64.2 65.6
67.7

55.6
57.9 58.5

53.9
56.7 57.3

45.7 46.8 47.4

40

50

60

70

pe
rf

Carv
er

gre
en pe

rf

Carv
er

gre
en pe

rf

Carv
er

gre
en pe

rf

Carv
er

gre
en

re
ne

w
ab

le
 %

Fig. 2. Daily usage of renewable energy. The expected threshold is 65%.

incomes as the applications are scaled manually and statically to ensure the
SLOs. Green provides the lowest income. This is explained by its unique objective
of maximising the renewable percentage, without any consideration of the SLOs.
We finally observe that Carver establishes a trade-off with these two baselines.

32 F. Hermenier et al.

17/01/15 18/01/15 19/01/15 20/01/15

1999

1466

1999 1999

1352

1933 1999

1305

1936 1999

1072

1955

0

500

1000

1500

2000

pe
rf

gre
en

Carv
er pe

rf
gre

en

Carv
er pe

rf
gre

en

Carv
er pe

rf
gre

en

Carv
er

S
LO

 p
en

al
ty

 (e
ur

os
)

Fig. 3. Daily incomes

It provides an income 2.17% lower than perf but 52.48% higher than green.
This exhibits the consequences of not having scaled down the Website during
the evenings of 18 to 20 January.

17/01/15 18/01/15 19/01/15 20/01/15

0

1000

2000

pe
rf

gre
en

Carv
er pe

rf
gre

en

Carv
er pe

rf
gre

en

Carv
er pe

rf
gre

en

Carv
er

R
un

ni
ng

 c
os

t (
eu

ro
s)

expense
energy

SLO

SMA

Fig. 4. Data centre running costs

Figure 4 summarises the daily running cost per scenario. This cost is the sum
of the energy to be paid for and any financial penalties paid to the smart city
authority and to the HP LIFE project owner. We first observe that energy does
not play a significant role here. This is explained by the pricing model. For a data
centre business manager, it is important to be sure that it is always economically
viable to host a client’s application even when the SLO is not achieved, to avoid
bankruptcy. The incomes must then always cover energy expenses or the payment
of human resources. For example, Amazon refunds its clients a maximum of 30%
of their bill3. We observe that Carver provides the lowest daily running costs.
This shows that Carver found a valuable compromise between prioritising the HP
LIFE application or the smart city authority. Compared to perf, Carver reduced
incomes by 2.17% to increase renewable energy use by 3.48% and the resulting
running costs by 34.71%. Contrary to green, Carver did not over-commit on
the smart city objective. It traded 1.61% of renewable energy to increase the
incomes by 52.48% and the resulting running costs by 52.35%.

3 https://aws.amazon.com/fr/ec2/sla/.

https://aws.amazon.com/fr/ec2/sla/

Scaling Energy Adaptive Applications for Sustainable Profitability 33

It is worth noting that the running costs of Carver and perf are close on the
first and the last days. The difference on the first day is justified by the high
solar irradiation as stated earlier. The difference on the last day is explained by
the lack of flexibility in terms energy consumption for the Website application
coupled with the low solar irradiation. Indeed, the objective was unrealistic and
the high power consumption of the Website, even in its lowest working mode,
precludes paying a small SLO penalty to avoid paying a high one to the smart
city authority. In addition to validating the benefits of Carver, this evaluation
also confirms the important of employing energy-adaptive applications with high
variable working modes.

5 Related Works

Initial solutions to address energy efficiency focused on minimising the number of
online servers, the power consumption, and gas emissions. With the democratisa-
tion of renewable energies, solutions have evolved to integrate their intermittent
nature. Accordingly, the community integrated a temporal dimension going as
far as to leave the spatial dimension to the underlying resource manager.

Li et al. [9] propose a scheduler for batch and service jobs that dynamically
adjusts the number of online servers to maximise the usage of a purely renewable
power source. Contrary to Carver, SLOs are not explicitly considered and the
proposed scheduler presumes non-elastic jobs.

Goiri et al. propose with GreenSlot [5] and Greenswitch [6] a job sched-
uler that reduces the grid’s electricity cost when the grid is up and reduces
the performance degradation otherwise. The proposed scheduler is devoted to
a modified version of Hadoop, called GreenHadoop [7] that supports deferrable
and non-deferrable jobs, and the performance degradation denotes the amount
of the workload to process. Lui et al. [10] consider the cooling costs along with
the energy cost and the renewable share. The SLO represents a certain response
time for interactive applications, or a completion time for the batch jobs. How-
ever, the proposed scheduler forces SLO satisfaction. Similarly to these works,
Carver supports deferrable and non-deferrable applications through cumulative
and instant SLOs while the penalty model is flexible enough to support their
notion of performance degradation, but also instantaneous performance metrics.
Carver does not integrate a cooling model, but does include the flexibility offered
by constraint programming, and the economic objective provides the required
entry points to integrate this concern. Most importantly, Carver offers the ben-
efits of elastic applications, while its economic objective helps identify which of
the clients or smart city authority is likely to minimise the total running costs.

Recently, Wang et al. [16] proposed a game-based, cloud-pricing framework
to maximise the cloud profit regarding energy costs. Carver also addresses profit
maximisation but at a lower level. While these authors centre on computing a
pricing model that guides clients to profitable periods, Carver focuses on scaling
applications with regards to their pricing model and trade-off possibilities.

34 F. Hermenier et al.

In terms of energy-adaptive applications, Oliviera and Ledoux [12] proposed
applications that revise their design with regards to their current performance
expectations and an energy regulation imposed by the underlying resource man-
ager that focuses on maximising data centre revenue. Similarly, Carver supports
variadic application architectures with the notion of working modes and trading
possibilities to minimise running costs. However, Carver differs through its inte-
gration of the temporal dimension of the problem to integrate intermittent power
sources. This makes it possible to study the energy dispatch over time, support
cumulative performance models, and take care of transition costs. Hasan et al. [8]
provides green awareness in interactive cloud applications. Their controllers
increase revenues through better response times, and decrease renewable and
non-renewable energy use. Carver also scales interactive applications. Thanks
to an explicit manipulation of the temporal dimension, it also supports non-
interactive applications and join the business and the energy-awareness dimen-
sions using an economical model to reach a sustainable profitability.

6 Conclusion

Energy efficiency in data centres is addressed through workload management to
reduce the environmental footprint or operational costs. Recent approaches take
also into account the intermittent nature and lower prices of renewable energy
sources and aim to limit the brown energy input by shaving or shifting the load.
In doing so, they often overlook the performance requirements of the client’s
applications, even though the economic return of a data centre depends on these
two factors. Our approach is driven by a broader view: (1) data centre managers
are encouraged to adopt environmental measures, if these measures translate in
terms of financial gain; and (2) financial gain results from a trade-off between
energy consumption and client satisfaction.

We proposed Carver, a tool to orchestrate on a 24-h horizon, energy-adaptive
applications according to their performance level, the variable availability of
renewable energies, and the variable price of multiple power sources. Carver
adjusts the application’s working modes in order to minimise a global financial
cost combining the power cost and penalties for not complying with the client
service level objectives and the smart city authority’s requirements in terms of
renewable energy use. Carver currently supports performance models for batch-
and service-oriented applications, and flexible penalty functions that go beyond
standard piecewise linear models.

We validated Carver by simulating a 4-day execution of a testbed powered by
the grid and a photovoltaic array. The simulator mimicked the production work-
load of the e-learning application HP LIFE. Carver provided the best incomes for
the data centre provider by balancing the SLOs the smart-city authority penal-
ties with regards to the workload and the availability of renewable energies.

Scaling Energy Adaptive Applications for Sustainable Profitability 35

References

1. Aksanli, B., Venkatesh, J., Zhang, L., Rosing, T.: Utilizing green energy prediction
to schedule mixed batch and service jobs in data centers. SIGOPS OSR 45(3),
53–57 (2012)

2. Cano, I., Aiyar, S., Krishnamurthy, A.: Characterizing private clouds: a large-
scale empirical analysis of enterprise clusters. In: Proceedings of the Seventh ACM
Symposium on Cloud Computing, SoCC 2016. ACM, New York (2016). http://
doi.acm.org/10.1145/2987550.2987584

3. Colmant, M., Kurpicz, M., Felber, P., Huertas, L., Rouvoy, R., Sobe, A.: Process-
level power estimation in VM-based systems. In: Proceeding of the Tenth EuroSys.
ACM (2015)

4. Dupont, C., Sheikhalishahi, M., Facca, F.M., Hermenier, F.: An energy aware
framework for virtual machine placement in cloud federated data centres. In: 8th
IEEE/ACM International Conference on Utility and Cloud Computing, December
2015

5. Goiri, I.N., Katsak, W., Le, K., Nguyen, T.D., Bianchini, R.: Parasol and
GreenSwitch: managing datacenters powered by renewable energy. In: SIGARCH
Computer Architecture News, vol. 41, no. 1, March 2013

6. Goiri, I.N., Le, K., Haque, M.E., Beauchea, R., Nguyen, T.D., Guitart, J., Torres,
J., Bianchini, R.: Greenslot: scheduling energy consumption in green datacenters.
In: Proceedings of International Conference for High Performance Computing, Net-
working, Storage and Analysis. ACM (2011)

7. Goiri, I.N., Le, K., Nguyen, T.D., Guitart, J., Torres, J., Bianchini, R.: Green-
Hadoop: leveraging green energy in data-processing frameworks. In: Proceeding of
the 7th ACM Eurosys. ACM (2012)

8. Hasan, M.S., de Oliveira, F.A., Ledoux, T., Pazat, J.L.: Enabling green energy
awareness in interactive cloud application. In: 2016 IEEE International Conference
on Cloud Computing Technology and Science (CloudCom), pp. 414–422, December
2016

9. Li, Y., Orgerie, A.C., Menaud, J.M.: Opportunistic scheduling in clouds partially
powered by green energy. In: IEEE International Conference on GreenCom (2015)

10. Liu, Z., Chen, Y., Bash, C., Wierman, A., Gmach, D., Wang, Z., Marwah, M.,
Hyser, C.: Renewable and cooling aware workload management for sustainable
data centers. In: Proceeding of the 12th ACM SIGMETRICS. ACM (2012)

11. Menana, J., Demassey, S.: Sequencing and counting with the multicost-regular
constraint. In: Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547,
pp. 178–192. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01929-6 14

12. de Oliveira Jr., F.A., Ledoux, T.: Self-management of cloud applications and
infrastructure for energy optimization. SIGOPS OSR 46(2), 10 (2012)

13. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming,
Foundations of Artificial Intelligence, vol. 2. Elsevier, Amsterdam (2006)

14. Sharma, N., Sharma, P., Irwin, D., Shenoy, P.: Predicting solar generation from
weather forecasts using machine learning. In: IEEE International Conference on
Smart Grid Communications, October 2011

15. The DC4Cities Consortium: D6.3 - Report on the experimentation phase 2. Eval-
uation report on the second trial cycle (2015). http://www.dc4cities.eu/

16. Wang, C., Nasiriani, N., Kesidis, G., Urgaonkar, B., Wang, Q., Chen, L.Y., Gupta,
A., Birke, R.: Recouping energy costs from cloud tenants: tenant demand response
aware pricing design. In: Proceedings of the 6th International Conference on Future
Energy Systems. ACM (2015)

http://doi.acm.org/10.1145/2987550.2987584
http://doi.acm.org/10.1145/2987550.2987584
http://dx.doi.org/10.1007/978-3-642-01929-6_14
http://www.dc4cities.eu/

Off-Road Performance Modeling – How to Deal
with Segmented Data

M. Kashif Ilyas(B), Alexandru Calotoiu, and Felix Wolf

Technische Universität Darmstadt, 64289 Darmstadt, Germany
cashif.pk@gmail.com, {calotoiu,wolf}@cs.tu-darmstadt.de

Abstract. Besides correctness, scalability is one of the top priorities
of parallel programmers. With manual analytical performance model-
ing often being too laborious, developers increasingly resort to empirical
performance modeling as a viable alternative, which learns performance
models from a limited amount of performance measurements. Although
powerful automatic techniques exist for this purpose, they usually strug-
gle with the situation where performance data representing two or more
different phenomena are conflated into a single performance model. This
not only generates an inaccurate model for the given data, but can also
either fail to point out existing scalability issues or create the appear-
ance of such issues when none are present. In this paper, we present an
algorithm to detect segmentation in a sequence of performance measure-
ments and estimate the point where the behavior changes. Our method
correctly identified segmentation in more than 80% of 5.2 million syn-
thetic tests and confirmed expected segmentation in three application
case studies.

Keywords: Parallel computing · Performance tools · Performance
modeling

1 Introduction

The increasing number of processors in our computing hardware poses new chal-
lenges to developers. Increasing software parallelism challenges traditional ways
of writing and debugging programs. Badly designed parallel programs may fail
to reach the expected performance when run on a larger number of processors.
Therefore, finding and removing scalability bugs is key to the achievement of
sustainable parallel performance. The term scalability bug refers to those parts
of a program whose scaling behavior is unintentionally poor, i.e., which perform
worse than expected when using a larger number of processors [2]. As scalability
bugs do not become manifest unless the program is actually run at larger scales,
it is very difficult for developers to discover them. Often, they are found when
the software is already deployed and changes are more expensive.

One approach capable of finding such bugs early and easily is empirical per-
formance modeling: a performance model of a program is built from measure-
ments of relevant performance metrics. We can do this even for individual regions
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 36–48, 2017.
DOI: 10.1007/978-3-319-64203-1 3

Off-Road Performance Modeling – How to Deal with Segmented Data 37

of the code, henceforth called kernels. Typically, we run the program on different
numbers of processors p and measure the metric m of interest for each run, cre-
ating for each kernel data points of the form (p,m). These data points are then
analyzed using regression and turned into a mathematical performance model of
the kernel. Empirical models are not necessarily as accurate as analytical models
but are good enough to show the scaling trend of the kernel. Problematic kernels
can then be examined by the developer in more detail. The whole process can
be automated to obtain empirical models for all possible kernels of a program,
hence avoiding the risk of overlooking any critical kernel, at least for the given
input set.

Extra-P [2] is an automatic tool that implements the above approach. It
generates empirical models for each kernel (i.e., call path) of a program in a
human-readable form. Extra-P also extrapolates performance to a chosen target
scale such that it can be compared with developer expectations. While Extra-P’s
workflow is quite effective in finding scalability bugs, it fails if the input data
represents two or more distinct behaviors of a program. Extra-P assumes that
the performance of a kernel can be characterized by a single function, however,
some kernels do not follow a single trend in every situation. There are many
practical scenarios where programs change their behavior. For example, modern
MPI implementations switch from one algorithm to another, depending on the
message size, the number of processes, or the network topology [9]. Overlooking
such segmentation not only results in the creation of inaccurate models but also
poses the risk of ignoring potential scalability bugs or confusing the user with
false positives.

In this paper, we introduce a novel method to detect such segmentation
before generating empirical models. Driven by the requirements of performance
modeling in HPC, where trial runs can be quite expensive, a particular challenge
our method addresses is the low number of data points. Specifically, we propose

– an algorithm to find segmentation in data with as few as six points, and
– a method to estimate the change point.

Our approach (i) correctly identified segmentation in more than 80% of more
than five million randomly generated datasets and (ii) confirmed expected seg-
mented behavior in three realistic use cases, including a climate code, a simple
matrix multiplication benchmark, and several MPI collective operations.

In the next section, we review the existing workflow of Extra-P and explain
how it struggles with segmented data. In Sect. 3, we explain our approach with
the help of an example. We demonstrate its effectiveness in Sect. 4. In Sect. 5, we
compare it to related work and argue why it fits our purpose best. We conclude
the paper in Sect. 6, where we also discuss future work.

2 Performance Modeling with Extra-P

As our work is intended to improve Extra-P, we briefly review how it generates
models from performance data.

38 M.K. Ilyas et al.

Extra-P exploits the observation that performance models of most practical
programs can be expressed as n terms involving logarithms and powers of the
model parameter p, which is usually the number of processors but can also
be something different like the input size. Hence, performance models can be
represented in the performance model normal form (PMNF):

f(p) =
n∑

k=1

ck · pik · logjk2 (p)

As identification of scalability bugs rather than prediction accuracy is the
primary objective of Extra-P, the sets I and J from which ik and jk are selected,
do not need to be arbitrarily large to obtain reasonably accurate models. The
authors suggest n = 2, I =

{
0
2 , 1

2 , 2
2 , 3

2 , 4
2 , 5

2 , 6
2

}
and J = {0, 1, 2} as default. The

generation algorithm starts with a set of simple (i.e., short) candidate models and
chooses the winner using K-fold validation. The size of the candidates is gradually
increased until either the maximum of n is reached or signs of overfitting appear.

This approach works as long as all the performance measurements represent
a single behavior. However, if a certain kernel exhibits segmented behavior, i.e.,
its performance trend changes after a certain point, the resulting model will
be inaccurate. To clarify our point, we consider an example of segmented data
and the corresponding model generated by Extra-P, which are shown in Fig. 1.
The data was generated using the functions f1(p) = p2 for p ∈ {1, 2, ..., 5} and
f2(p) = 30 + p for p ∈ {6, 7, ..., 10}.

With these data as input, Extra-P generates the model f(p) = 1.65 + 3.97 ·
log22(p). This is misleading because the actual functions are quadratic and linear,
but not logarithmic. At p = 1024, the prediction error of the model is almost 62%.

2 4 6 8 10

0

20

40

(1, 1) (2, 4)

(3, 9)

(4, 16)

(5, 25)

(6, 36)

(7, 37) (8, 38)

(9, 39) (10, 40)

Number of processors (p)

R
u
n
ti
m
e

p2

30 + p

log2
2(p)

Fig. 1. Data points from two different functions (solid lines) and the model generated
by Extra-P (dashed line).

Off-Road Performance Modeling – How to Deal with Segmented Data 39

Performance
profiles

Performance
profiles

Performance
profiles

Create
subsets

Subsets
s1, ..., sr

Subsets
s1, ..., sr

Subsets
s1, ..., sr

Generate
models

Models
m1, ..., mr

Models
m1, ..., mr

Models
m1, ..., mr

Match?
Analyze
pattern

Change
point
Change
point
Change
pointsNot

Segmented

Yes

No

Fig. 2. Steps involved in segematation detection and change-point identification.

3 Approach

Our algorithm is designed to help Extra-P detect segmentation in the data before
models are generated. Its input is a set of performance measurements, while the
output indicates whether the given measurements show segmented behavior or
not. If the data turns out to be segmented, the algorithm tries to identify the
change point. With this information, Extra-P can generate separate models for
each segment and/or request new measurements if any segment is too small for
model generation. Figure 2 highlights the different steps of our algorithm. Below,
we discuss each step in detail and apply it to the example from Sect. 2.

3.1 Detecting Segmentation

Our algorithm rests on the observation that models generated from homogeneous
subsets of the input data set (i.e., subsets representing a single behavior), will
differ from models created from heterogeneous subsets (i.e., subsets representing
multiple behaviors). In this work we focus on subsets defined by consecutive data
points corresponding to subintervals of the input parameter.

As an example, we try to divide the segmented data from Fig. 1 into subsets
representing five consecutive values of the model parameter p. We use a sliding
window of five measurement points to create subsets which results in a total
of six subsets, each containing five points. The first subset s1 contains the first
five points {1, 4, 9, 16, 25}, the second subset s2 contains the five points starting
from second point {4, 9, 16, 25, 36}, and so on. All these subsets are listed in
Table 1. Note that the subsets s1, s2, and s6 are homogeneous, as they exhibit a
single behavior while the subsets s3, s4, and s5 are heterogeneous, mixing points
from the two behaviors. Then, we create models m1, . . . ,mr for each of the
subsets s1, . . . , sr, respectively. The number of subsets r depends on the number
of input data points and on the number of values each subset is allowed to
contain. Ideally, each subset should contain five data points, as recommended in
the original research work by Calotoiu et al. [2]. Below, we introduce two model
properties that can be used to decide whether a subset is segmented or not.

Absolute nRSS. We define a generalized error value for each model, which is
a normalized form of the common RSS. Residual Sum of Squares (RSS) is a
measure of the discrepancy between the data and an estimation model and is

40 M.K. Ilyas et al.

Table 1. Subsets created for the data from Fig. 1, their respective models, and their
nRSS values. Heterogeneous subsets are highlighted.

SSRnledoMtesbuS ε

s1 = {1, 4, 9, 16, 25} p2 ≈ 0 −
s2 = {4, 9, 16, 25, 36} p2 ≈ 0 ≈ 1
s3 = {9, 16, 25, 36, 37} −49.41 + 33.45 · √

p 0.18 5 · 1018
s4 = {16, 25, 36, 37, 38} −28.53 + 23.17 · log2(p) 0.19 1.05
s5 = {25, 36, 37, 38, 39} −6.19 + 14.83 · log2(p) 0.16 0.84
s6 = {36, 37, 38, 39, 40} 30 + p ≈ 0 ≈ 0

used to measure the goodness of a model. The normalized residual sum of squares
(nRSS) is calculated by dividing the square root of the RSS by the mean of the
points used to generate the models:

nRSS =
√

RSS

ȳ

Calculating the nRSS for each subset yields r error terms e1, . . . , er. For our
example data from Fig. 1, we get six models and their corresponding nRSS values,
which are shown in Table 1. The nRSS of the heterogeneous subsets is much
higher than the one of the homogeneous subsets because a well-fitting model
cannot be found for such diverse data. We identify a subset si as potentially
heterogeneous if its nRSS ei > 0.1 and homogeneous otherwise. We classify
a data set as segmented if the maximum absolute value of the nRSS across all
subsets exceeds a threshold of θ = 0.5, an empirically determined value reflecting
our experiences after analyzing more than five million synthetic data sets. In
most cases, using θ = 0.5 correctly identifies segmented behavior if it exists,
while producing only few false positives (i.e., non-segmented behavior falsely
identified as segmented).

Relative nRSS. The secondary indicator is the relative nRSS, which is the ratio
of the nRSS values of two consecutive subsets. It is applied only when 0.1 ≤
nRSS ≤ 0.5. The relative nRSS ε can be mathematically expressed as εi =
ei+1/(ei + η). η is a minimal non-zero value added to avoid division by zero.
This criterion has the advantage that it rules out false positives that occur when
noise lifts all errors above the threshold. It also covers those scenarios where
the absolute nRSS values are smaller than the threshold but the heterogeneous
subsets still show a much higher nRSS than the homogeneous ones. We found
that ε > 4 provides a good additional criterion to determine segmentation when
0.1 ≤ nRSS ≤ 0.5.

In our example from Table 1, it is clear that the heterogeneous subsets s3,
s4 and s5 have much higher absolute nRSS values than the homogeneous ones,
but the maximum resides still below the threshold. However, because ε3 >> 4
we still conclude correctly that the data is segmented.

Off-Road Performance Modeling – How to Deal with Segmented Data 41

s3

s4

s5

Fig. 3. Selection of points for the subsets s3, s4 and s5. Squares and circles represent
data points from different behaviors, the sixth point is common to both behaviors.

3.2 Identifying the Change Point

Identifying the change point goes beyond a binary decision whether the data is
segmented or not. If a change point can be detected, then a separate model for
each behavior, divided by the change point, can be determined, provided enough
data points are available. To accomplish this, we tag each subset with a zero if
its nRSS classifies it as homogeneous and with a one otherwise. For the data
from Table 1, we obtain the pattern 001110.

For the sake of simplicity, we assume that there is a single change point in
the data, but the same method can be extended to multiple change points via
recursion. Since we create subsets containing five points and we assume that
only two different behaviors are present in the data, at most four subsets can
be heterogeneous (one point representing the first behavior combined with four
points representing the second one, then two combined with three, and so forth).
If the two behaviors share a common data point such as in the example, only
three such subsets will exist. Therefore, each sequence of values corresponding to
the series of subsets will contain either three or four ones, preceded and followed
by an arbitrary number of zeros.

The location of the change point can therefore be deduced by examining
only the pattern of ones. Practically, we select the subset corresponding to the
second one in the pattern. If a common data point for both behaviors exists and
therefore the pattern contains three ones, then the change point will be the third
data point of that subset. If no common data point for both behaviors exists,
then the change point will be between the third and the fourth data point of
that subset. In the example, the relevant subsets are s3, s4, and s5, thus the
change point is p = 6, as shown in Fig. 3. In most cases, we do not see a single
change point, but two points between which the change happens.

4 Evaluation

To ensure our method correctly distinguishes segmented from non-segmented
behavior, we first applied it to millions of synthetic data sets. After that, we
tested it with application data known to be segmented, which we correctly iden-
tified as such without producing false positives.

4.1 Synthetic Data

We ran our algorithm on data from two categories of randomly generated
functions:

42 M.K. Ilyas et al.

0 5 10

0

0.5

1

·105

Number of processors (p)

M
et

ri
c

o
f
in

te
re

st
67 + 63 · p0.125 · log22(p)
93 + 64 · p1.67 · log32(p)

(a) True positive

0 5 10

0

1

2

3
·104

Number of processors (p)

M
et

ri
c

o
f
in

te
re

st

97 + 12 · p · log52(p)
79 + 85 · p0.43 · log42(p)

(b) False negative

Fig. 4. Two examples from synthetic data set used for evaluation of the algorithm.
Both functions were generated with random coefficients and exponents and a 5% of
noise was added. In first case, the segmentation was correctly detected while the second
case is a false negative because algorithm failed to detect segmentation.

– Functions guaranteed to be within the search space, with randomly generated
coefficients and exponents chosen at random from those present in the search
space. These functions can be exactly matched by the algorithm and errors
will only appear due to noise or segmentation.

– Functions not guaranteed to be within the search space, with randomly gen-
erated exponents and coefficients. These functions are unlikely be matched
exactly and likely to have larger overall errors, therefore making the detection
of segmented behavior harder.

For each category, we generated tests using data from one function, which
should not be marked as segmented, and from two different functions, which
should be marked as segmented. A failure in the first case is a false positive,
while a failure in the second case is a false negative. Additionally, to observe the
accuracy of our algorithms under production conditions, we applied different
levels of noise ranging from 0% to 15%. For a noise level of x%, we added a ran-
domly selected percentage of noise between −x and x to the original value. For
each noise level, Fig. 5a presents the percentages where the algorithm correctly
identified the data as segmented or not segmented. The algorithm was always
provided with ten data points, either all from one function or equally divided
among two different functions. Figure 4a shows an example where randomly

Off-Road Performance Modeling – How to Deal with Segmented Data 43

0% 5% 10% 15%

0

20

40

60

80

100

Noise

C
o
rr

ec
t

re
su

lt
s

[%
]

Non-segmented data in search space Segmented data in search space

Non-segmented data not in search space Segmented data not in search space

(a) Fraction of correct results for different noise levels.

10
(5

− 5)

8
(5

− 3)

6
(5

− 1)

8
(3

− 5)

6
(1

− 5)

8
(4

− 4)

7
(4

− 3)

7
(3

− 4)

6
(3

− 3)

0

20

40

60

80

100

Point combinations

C
o
rr

ec
t

re
su

lt
s

[%
]

(b) Fraction of correct results for different point combinations with 5% noise. The
x-axis shows the total number of points used. The numbers in brackets represent the
split of points between the different behaviors.

Fig. 5. Fractions of correctly classified data sets (i.e., neither falsely positive nor falsely
negative) for different levels of noise. Each bar was created by analyzing 100,000 syn-
thetic data sets.

generated data was correctly detected as segmented while Fig. 4b represents a
case of false negative.

Apart from different noise levels, we also tested the accuracy of our algo-
rithm for different numbers and combinations of measurement points. We used
a maximum of ten and a minimum of six points and tried various combina-
tions of contributions from each function. In general, our algorithm works best
when there are ten or more data points with at least five data points from each
function. If there are less than five data points from either of the functions, the
percentage of true positives decreases. Figure 5b shows the fractions of point
combination where data was correctly identified as segmented or not segmented.

For functions within the search space, the algorithm correctly found the
location of the change point in about 90% of the cases. However, the percentage

44 M.K. Ilyas et al.

decreases with increasing noise. In those cases where the functions were not
guaranteed to be in the search space, the algorithm correctly found the location
of the change point around 70% of the time.

Our approach generates less than 1% false positives for a noise level of upto
5%, sparing the user unnecessary confusion and work. With as few as six data
points, or one measurement more than usually required by Extra-P, our approach
correctly identifies more than 50% of the occurrences of segmented data, and this
percentage increases sharply if more measurements are made available. The user
can therefore obtain significant gains at very little additional cost.

4.2 Case Studies

In this section, we present three cases studies where we correctly identify
expected segmentation in real performance measurements. One of the presented
applications, HOMME [4], had already been studied before and has a known
segmentation in performance measurements while the other two, namely matrix
multiplication and MPI collective operations, are expected to exhibit such a
behavior based on how they work.

HOMME. This code is the dynamical core of the Community Atmosphere Model
(CAM). The scalability of HOMME was studied by Calotoiu et al. [2] and in
addition to identifying scalability issues, they found certain kernels to exhibit
segmentation. We used performance measurements with processor counts p ∈
{600, 1176, 2400, 4056, 7776, 11616, 13824, 14406, 15000, 16224, 23814, 31974,
43350, 54150} which were taken on the IBM Blue Gene/Q system Juqueen in
Jülich according to developer recommendations.

Our algorithm identified 25 out of 664 kernels as segmented and estimated the
change point each time to lie between 15, 000 and 16, 224. The execution time
of one such kernel, laplace sphere wk, was previously characterized as f(p) =
27.7 + 2.23 · 10−7 · p2 using the non-segmented algorithm. Using the segmented
approach, we came up with the following segmented model:

fseg(p) =

{
49.36 p ≤ 15, 000
20.8 + 2.3 · 10−7 · p2 p ≥ 16, 224

Figure 6a shows the measured execution times and both segmented and non-
segmented models for this kernel. The reason for this segmentation is a ceil-
ing term in the code, causing those kernels to be called only once when using
15,000 processors or less, hence resulting in constant time. However, beyond
15,000 processors, the kernels are called quadratically, causing quadratic models
to appear. This case study illustrates the advantage of our algorithm, which can
detect such segmentation automatically without any user intervention.

Matrix Multiplication. A practical scenario of abrupt change in behavior is the
effect of cache spilling. The runtime of a memory-bound program heavily depends
on the time required to fetch data from the memory. If the data is small enough to

Off-Road Performance Modeling – How to Deal with Segmented Data 45

0 2 4 6
·104

0

200

400

600

Number of processors (p)

R
u
n
ti

m
e

(s
)

(a) Kernel laplace sphere wk of HOMME

0 200 400 600 800

50

60

70

Matrix size (floats)

E
x
ec

u
ti

o
n

ti
m

e
/

F
L
O

P
s

(n
se

c)

(b) Matrix multiplication

0 200 400

0

50

Number of processors (p)

R
u
n
ti

m
e

(µ
s)

(c) IntelMPI MPI Allreduce

0 200 400

0

200

400

Number of processors (p)

R
u
n
ti

m
e

(µ
s)

(d) OpenMPI/MPI Gather

Fig. 6. Graphs showing measurement points, non-segmented models (dashed lines)
and segmented models (solid lines). Estimated locations of change points are shown by
vertical lines.

fit in the cache, the runtime stays very small. However, as soon as the amount of
data exceeds the size of the cache and memory access time becomes the limiting
factor, the runtime changes abruptly and follows a completely different pattern.

We used a sequential naive matrix multiplication to observe this effect and
see whether our algorithm can correctly identify the change. We ran our program
with increasing matrix sizes and measured the runtime for each matrix size on
an Intel Core i5 processor with 2 cores, one 256 kB L2 cache per core, and a
3 MB shared L3 cache. We then divided the runtime by the number of FLOPs to
measure the influence of the memory-access time. As the matrix reached a size
large enough to not fit in the L2 cache, we saw a sudden drop in the performance

46 M.K. Ilyas et al.

Table 2. MPI collective operations which exhibit segmentation. While the left model
is listed for all operations, the right model is listed only for those where we had enough
data points to create one.

Library Collective operation Segmented models

Left Right

IntelMPI MPI Gather 4.80 + 0.06 · p · log2(p) Not enough points

MPI Allreduce −1.71 + 5.50 · √
p Not enough points

OpenMPI MPI Gather −23.3 + 11.17 · log2(p) −23.11 + 16.95 · √
p

(Fig. 6b). We not only detected the segmentation of data but also identified the
change point between a matrix size of 244 kB and 295 kB, which roughly matches
the size of the L2 cache. Overall, the segmented model much better reflects the
memory hierarchy than the more inaccurate unified model.

MPI Collective Operations. The performance of MPI collective operations highly
depends on the network topology, the number of processes, and the size of mes-
sages. Some algorithms perform very well on short messages but fail to perform
the same way on larger messages while others behave the opposite way [10]. To
maximize performance in every situation, modern MPI libraries offer a wide vari-
ety of algorithms for each collective operation and switch between them accord-
ing to the environment [5,9]. Of course, switching between algorithms leads to
segmented performance behavior.

To study this, we measured the runtimes of selected MPI collective oper-
ations from Open MPI and Intel MPI for different numbers of processes p ∈
{16, 32, 64, 128, 256, 512} on the Lichtenberg Cluster of TU Darmstadt. We found
that MPI Allreduce and MPI Gather from Intel MPI change their behavior after
256 and 128 processes, respectively. With Open MPI, such behavior was only
noticed for MPI Gather after 64 processes, as shown in Table 2. The change
point was in agreement with the threshold found in the code base of Open MPI,
at which the default decision function switches the gather algorithm from lin-
ear to binomial. The performance measurements and both the segmented and
the non-segmented models are shown in Fig. 6c and d. Despite restricting the
segmentation analysis to only six data points in this case study, our algorithm
provides valuable feedback on the performance variability of these collectives. By
looking at the results of the analysis, the user can know which extra measure-
ment points he needs to provide to improve model accuracy. It is also evident
from Fig. 6 that the non-segmented models predicted by Extra-P would result
in misleading predictions at higher scales.

5 Related Work

The change point estimation problem has been discussed in the literature since
1966. Several algorithms have been suggested and used by researchers since then

Off-Road Performance Modeling – How to Deal with Segmented Data 47

and are being further improved to this day. Auger and Lawrance [1] suggested
an algorithm in 1989 to find segmented neighborhoods in the data collected by
the experiments of molecular biology. The algorithm runs in O(kn2) time, where
k is the maximum number of change points. The algorithm was later improved
by Jackson et al. [6] to decrease the time complexity to O(n2). In 2012, Killick
et al. [7] proposed a variation of the same algorithm that runs in linear time in the
best case, but incurs quadratic cost in the worst case. All the above mentioned
methods are collectively called optimal partitioning methods and give the exact
location of the change point. However, these algorithms are too slow and need
much more points than we have in our experiments.

Another popular method and the most similar one to ours was suggested
by Scott and Knott [8] in 1944 and is known as binary segmentation. It is a
recursive algorithm that finds the change points by first finding a point and then
recursively dividing and reapplying the method to each segment. It continues to
do so until no more change points can be found. To tackle multiple change points,
our method could be used in a similar way, but in general too few data points
are provided to justify its recursive application. The main difference, however,
is that our change-point identification scheme is much simpler and faster.

Chang et al. [3] used fuzzy c-partitioning as a way to find change points
in data. They argue that finding change points is similar to arranging data in
clusters and hence fuzzy logic can be applied. Similarly, Zhang et al. [11] used the
sparse group lasso (SGL) method to estimate change points. In SGL, two penalty
terms of the fitting function make sure to find the best fit for the data. Both of
the methods, however, require much more data points than our method to give
any reasonable answers. It is important to mention that all of those methods
are generic and do not take advantage of the small search space resulting from
the performance model normal form like our method does and hence, are much
slower, more complicated, and need more data points than our method does.

6 Conclusion

The results of our synthetic data tests as well as the case studies confirm that
the proposed algorithm can be used as an effective way to find segmentation in
performance data when creating empirical performance models. The suggested
algorithm does not require any extra effort on the user’s side, is very simple to
implement, and can work very well on as few as six points. The algorithm has
correctly identified segmented behavior, and did not signal such behavior when
none was present in more than 80% of 5.2 million test cases. Hence, it is capable
of finding segmentation in the majority of cases, where it would go unnoticed
otherwise and leave the user with inaccurate models. We plan to integrate our
approach into the next release of Extra-P.

Acknowledgements. This work was supported in part by the German Research
Foundation (DFG) through the Priority Programme 1648 Software for Exascale Com-
puting (SPPEXA) and the Programme Performance Engineering for Scientific Soft-
ware. Additional support was provided by the German Federal Ministry of Education

48 M.K. Ilyas et al.

and Research (BMBF) under Grant No. 01IH16008, and by the US Department of
Energy under Grant No. DE-SC0015524. Finally, we would like to thank the Univer-
sity Computing Center (Hochschulrechenzentrum) of TU Darmstadt for providing us
with access to the Lichtenberg Cluster.

References

1. Auger, I., Lawrance, C.: Algorithms for the optimal identification of segment neigh-
borhoods. Bull. Math. Biol. 51(1), 39–54 (1989)

2. Calotoiu, A., Hoefler, T., Poke, M., Wolf, F.: Using automated performance mod-
eling to find scalability bugs in complex codes. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis,
SC 2013, November 2013

3. Chang, S., Lu, K., Yang, M.: Fuzzy change-point algorithms for regression models.
IEEE Trans. Fuzzy Syst. 23, 2343–2357 (2015)

4. Dennis, J.M., Edwards, J., Evans, K.J., Guba, O., Lauritzen, P.H., Mirin, A.A.,
St-Cyr, A., Taylor, M.A., Worley, P.H.: CAM-SE: a scalable spectral element
dynamical core for the community atmosphere model. Int. J. High Perform. Com-
put. Appl. 26, 74–89 (2012)

5. Fagg, G.E., Pjesivac-grbovic, J., Bosilca, G., Dongarra, J.J., Jeannot, E.: Flexible
collective communication tuning architecture applied to OpenMPI. In: 2006 Euro
PVM/MPI (2006)

6. Jackson, B., Sargle, J.D., Barnes, D., Arabhi, S., Alt, A., Gioumousis, P., Gwin, E.,
Sangtrakulcharoen, P., Tan, L., Tsai, T.T.: An algorithm for optimal partitioning
of data on an interval. Sig. Process. Lett. 12(2), 105–108 (2005)

7. Killick, R., Fearnhead, P., Eckley, I.: Optimal detection of change points with a
linear computational cost. J. Am. Stat. Assoc. 107, 1590–1598 (2012)

8. Scott, A., Knott, M.: A cluster analysis method for grouping means in the analysis
of variance. Biometrics 30, 507–512 (1974)

9. Steve, H.: Intel R© MPI library collective optimization on the Intel Xeon Phi
coprocessor using environment variable collective operation control (2015). https://
software.intel.com/en-us/articles/intel-mpi-library-collective-optimization-on-int
el-xeon-phi

10. Thakur, R., Gropp, W.D.: Improving the performance of collective operations
in MPICH. In: Dongarra, J., Laforenza, D., Orlando, S. (eds.) EuroPVM/MPI
2003. LNCS, vol. 2840, pp. 257–267. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-39924-7 38

11. Zhang, B., Geng, J., Lai, L.: Change-point estimation in high dimensional linear
regression models via sparse group LASSO. In: 53rd Annual Allerton Conference
on Communication, Control, and Computing (Allerton), pp. 815–821 (2015)

https://software.intel.com/en-us/articles/intel-mpi-library-collective-optimization-on-intel-xeon-phi
https://software.intel.com/en-us/articles/intel-mpi-library-collective-optimization-on-intel-xeon-phi
https://software.intel.com/en-us/articles/intel-mpi-library-collective-optimization-on-intel-xeon-phi
http://dx.doi.org/10.1007/978-3-540-39924-7_38
http://dx.doi.org/10.1007/978-3-540-39924-7_38

Online Dynamic Monitoring of MPI
Communications

George Bosilca1, Clément Foyer2(B), Emmanuel Jeannot2(B),
Guillaume Mercier2,3, and Guillaume Papauré4

1 Innovative Computing Laboratory, University of Tennessee, Knoxville,
Knoxville , USA

bosilca@icl.utk.edu
2 Inria, LaBRI, CNRS Univ. Bordeaux , Talence, France

{clement.foyer,emmanuel.jeannot}@inria.fr
3 Bordeaux INP, Talence, France

guillaume.mercier@bordeaux-inp.fr
4 Echirolles, France

guillaume.papaure@atos.net

Abstract. As the complexity and diversity of computer hardware and
the elaborateness of network technologies have made the implementa-
tion of portable and efficient algorithms more challenging, the need to
understand application communication patterns has become increasingly
relevant. This paper presents details of the design and evaluation of a
communication-monitoring infrastructure developed in the Open MPI
software stack that can expose a dynamically configurable level of detail
concerning application communication patterns.

Keywords: MPI · Monitoring · Communication pattern · Process
placement

1 Introduction

With the expected increase of applications concurrency and input data size, one
of the most important challenges to be addressed in the forthcoming years is
data transfer and locality (i.e., how to improve data accesses and transfers in
the application). Among the various aspects of locality, one issue stems from the
memory and the network. Indeed, the transfer time of data exchanges between
processes of an application depends on both the affinity of the processes and
their location. A thorough analysis of the application‘s behavior and of the target
underlying execution platform combined with clever algorithms and strategies
have the potential to dramatically improve the application communication time,
making it more efficient and robust in the midst of changing network conditions
(e.g., contention).

The general consensus is that the performance of many existing applications
could benefit from improved data locality [9].

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 49–62, 2017.
DOI: 10.1007/978-3-319-64203-1 4

50 G. Bosilca et al.

Hence, to compute an optimal – or at least an efficient – process placement
we need to understand the underlying hardware characteristics (including mem-
ory hierarchies and network topology) and how the application processes are
exchanging messages. The two inputs of the decision algorithm are therefore
the machine topology and the application communication pattern. The machine
topology information can be gathered through existing tools or be provided by
a management system. Among these tools Netloc/Hwloc [4] provides a (nearly)
portable way to abstract the underlying topology as a graph interconnecting
the various computing resources. Moreover, the batch scheduler and system
tools can provide the list of resources available to the running jobs and their
interconnections.

To address the second point and understand the data exchanges between
processes, precise information about the application communication patterns is
needed. Existing tools are either addressing the issue at a high level and thus
failing to provide accurate details, or they are intrusive and deeply embedded
in the communication library. To confront these issues, we designed a light and
flexible monitoring interface for MPI applications with the following features.
First, the need to monitor more than simply two-sided communications interac-
tions in which the source and destination of the message are explicitly invoking
an API for each message is becoming prevalent. As such, our monitoring support
is capable of extracting information about all types of data transfers: two-sided,
one-sided (or remote memory access), and I/O. In the scope of this paper, we
will focus our analysis on one- and two-sided communications.

We recorded the number of messages, the sum of message sizes, and the
distribution of the sizes between each pair of processes. We also recorded how
these messages have been generated by direct user calls via the two-sided API or
automatically generated as a result of collective algorithms, a process related to
one-sided messages. Second, we provided mechanisms for the MPI applications
themselves to access this monitoring information through the MPI tool informa-
tion interface. This allowed the monitoring—which may involve recording only
specific parts of the code or recording only during particular time periods—to be
dynamically enabled or disabled, and it gave the ability to introspect the appli-
cation behavior. Last, the output of this monitoring provides different matrices
describing this information for each pair of processes. Such data is available
both online (i.e., during the application execution) and off-line (i.e., for the
post-mortem analysis and optimization of a subsequent run).

We conducted experiments to assess the overhead of this monitoring
infrastructure and to demonstrate its effectiveness as compared with other solu-
tions from the literature.

In Sect. 2 of this paper we present the related work; in Sect. 3, the required
background; in Sect. 4, the design; in Sect. 5, the implementation; in Sect. 6, the
result; and in Sect. 7, the conclusion.

Online Dynamic Monitoring of MPI Communications 51

2 Related Work

Monitoring an MPI application can be achieved in many ways but in general
relies on intercepting the MPI API calls and delivering aggregated information.
We present here some examples of such tools.

PMPI is a customizable profiling layer that allows tools to intercept MPI
calls. Therefore, when a communication routine is called, keeping track of the
processes involved and the amount of data exchanged is possible. This approach
has drawbacks, however. First, managing MPI datatypes is awkward and requires
a conversion at each call. Also, PMPI cannot comprehend some of the most crit-
ical data movements, because an MPI collective is eventually implemented by
point-to-point communications, and yet the participants in the underlying data
exchange pattern cannot be guessed without knowledge of the collective algo-
rithm implementation. A reduce operation is, for instance, often implemented
with an asymmetric tree of point-to-point sends/receives in which every process
has a different role (i.e., root, intermediary, and leaves). Known examples of
stand-alone libraries using PMPI are DUMPI [10] and mpiP [15].

Another tool for analyzing and monitoring MPI programs is Score-P [13]. It
is based on different but partially redundant analyzers that have been gathered
within a single tool to allow both online and offline analysis.

Score-P relies on MPI wrappers and call-path profiles for online monitoring.
Nevertheless, the application monitoring support offered by these tools is kept
outside of the library, which means access to the implementation details and the
communication pattern of collective operations once decomposed is limited.

PERUSE [12] takes a different approach, in that it allows the application to
register callbacks that will be raised at critical moments in the point-to-point
request lifetime. This method provides an opportunity to gather information on
state-changes inside the MPI library and gain detailed insight on what type of
data (i.e., point-to-point or collectives) is exchanged between processes, as well
as how and when. This technique has been used in [5,12].

Tools that provide monitoring that is both light and precise (e.g., showing
collective communication decomposition) do not exist.

3 Background

The Open MPI Project [8] is a comprehensive implementation of the MPI 3.1
standard [7] that was started in 2003 and takes ideas from four earlier institu-
tionally based MPI implementations. Open MPI is developed and maintained
by a consortium of academic, laboratory, and industry partners and is distrib-
uted under a modified BSD open-source license. It supports a wide variety of
CPU and network architectures used in HPC systems. It is also the base for a
number of commercial MPI offerings from vendors, including Mellanox, Cisco,
Fujitsu, Bull, and IBM. The Open MPI software is built on the Modular Com-
ponent Architecture (MCA) [1], which allows for compile or runtime selection of
the components used by the MPI library. This modularity enables experiments

52 G. Bosilca et al.

with new designs, algorithms, and ideas to be explored while fully maintaining
functionality and performance. In the context of this study, we take advantage
of this functionality to seamlessly interpose our profiling components along with
the highly optimized components provided by the stock Open MPI version.

MPI Tool Information Interface has been added in the MPI-3 standard [7].
This interface allows the application to configure internal parameters of the
MPI library and get access to internal information from the MPI library. In
our context, this interface will offer a convenient and flexible way to access the
monitored data stored by the implementation and control of the monitoring
phases.

Process placement is an optimization strategy that takes into account the
affinity of processes (represented by a communication matrix) and the machine
topology to decrease the communication costs of an application [9]. Various
algorithms to compute such a process placement exist, one being TreeMatch [11]
(designed by a subset of the authors of this article). We can distinguish between
static process placement, which is computed from traces of previous runs, and
dynamic placement computed during the application execution (see the experi-
ments in Sect. 6).

4 Design

Monitoring generates the application communication pattern matrix. The order
of the matrix is the number of processes, and each (i, j) entry gives the amount
of communication between process i and process j. Monitoring outputs several
values and, hence, several matrices: the number of bytes and the number of
messages exchanged. Moreover, it distinguishes between point-to-point commu-
nications and collective or internal protocol communications.

It is also able to keep track of collective operations after their transition
to point-to-point communications. Therefore, monitoring requires interception
of the communication inside the MPI library itself instead of relinking weak
symbols to a third-party dynamic one, which allows this component to be used
in parallel with other profiling tools (e.g., PMPI).

For scalability reasons, we can automatically gather the monitoring data into
one file instead of dumping one file per rank.

In summary, we plan to cover a wide spectrum of needs while employing dif-
ferent levels of complexity for various levels of precision. Our design provides an
API for each application to enable, disable, or access its own monitoring infor-
mation. Otherwise, an application can be monitored without any modification of
its source code by activating the monitoring components at launch time; results
are retrieved when the application completes.

We also supply a set of mechanisms to combine monitored data into commu-
nication matrices. They can be used either at the end of the application (when
MPI Finalize is called) or post-mortem. For each pair of processes, a histogram
of geometrically increasing message sizes is available.

Online Dynamic Monitoring of MPI Communications 53

5 Implementation

The precision required for the results prompted us to implement the solution
within the Open MPI stack1. The component described in this article was
developed in a branch of Open MPI (available at [14]) and now is available
in the development version of Open MPI, and on all stable versions after 3.0.
Because we were planning to intercept all types of communications—two-sided,
one-sided, and collectives—we exposed a minimalistic common API for the pro-
filing as an independent engine and then linked all the MCA components doing
the profiling with this engine. Due to the flexibility of the MCA infrastructure,
the active components can be configured at runtime either via mpirun argu-
ments or via the API (implemented with the MPI Tool Information Interface).
All implementation details are available at [3].

To cover the wide range of operations provided by MPI, we added four com-
ponents to the sofware stack: one in the collective communication layer (COLL),
one in the one-sided layer (remote memory accesses, OSC), one in the point-to-
point management layer (PML), and one common layer capable of orchestrating
the information gathered by the other layers and record data. When activated
at launch time (through the mpiexec option --mca pml monitoring enable
x), this enable all monitoring components, as indicated by the comma-separated
value of x.

The design of Open MPI allows for easy distinctions between different types
of communication tags, and x allows the user to include or exclude tags related
to collective communications or to other internal coordination (these are called
internal tags as opposed to external tags, which are available to the user via the
MPI API).

Specifically, the PML layer sees communications after collectives have been
decomposed into point-to-point operations. COLL and OSC both work at a
higher level to be able to record operations that do not go through the PML layer
(e.g. when dedicated drivers are used). Therefore, as opposed to the MPI stan-
dard profiling interface (PMPI) method where the MPI calls are intercepted, we
monitored the actual point-to-point calls that are issued by Open MPI, which
yields much more precise information. For instance, we can infer the underlying
topologies and algorithms behind the collective algorithms (e.g. the tree topol-
ogy used for aggregating values in an MPI Reduce call). However, this comes at
the cost of a possible redundant recording of data for collective operations when
the data-path goes through the COLL and the PML components2.

For an application to enable, disable or access its own monitoring, we imple-
mented a set of callback functions using the MPI Tool Information Interface.

The functions make knowing the amount of data exchanged between a pair of
processes possible at any time and in any part of the applications code. An exam-
ple of such code is given in Fig. 1. The call to MPI T pvar get index provides

1 A proof-of-concept version of this monitoring has been implemented in MPICH.
2 Nevertheless, a precise monitoring is still possible with the use of the monitoring

API.

54 G. Bosilca et al.

the index (e.g., the key) of the performance variable. This variable is allocated
and attached to the communicator with a call to MPI T pvar handle alloc.
This starts a monitoring phase that resets the internal monitoring state. Then,
an MPI T session is started with the MPI T pvar start call. When neces-
sary, the monitored values are retrieved with MPI T pvar read. Last, a call to
MPI Allreduce allows each processes to get the maximum of each value.

Furthermore, the final summary dumped at the end of the application gives
us a detailed output of the data exchanged between processes for each point-
to-point, one-sided, and collective operation. The user is then able to refine the
results.

Internally, these components use an internal process identifier (ids) and a
single associative array employed to translate sender and receiver ids into their
MPI COMM WORLD counterparts. Our mechanism is, therefore, oblivious to com-
municator splitting, merging, or duplication. When a message is sent, the sender
updates three arrays: the number of messages, the size (in bytes) sent to the
specific receiver, and the message size distribution. Moreover, to distinguish
between external and internal tags, one-sided emitted and received messages,
and collective operations, we maintain five versions of the first two arrays. Also,
the histogram of message sizes distribution is kept for each pair of ids, and goes
from 0 byte messages to messages of more than 264 bytes. Therefore, the memory
overhead of this component is at maximum 10 arrays of N 64 bits elements, in
addition to the N arrays of 66 elements of 64 bits for the histograms, with N
being the number of MPI processes. These arrays are lazily allocated, so they
exist for a remote process only if communications occur with it.

In addition to the amount of data and the number of messages exchanged
between processes, we keep track of the type of collective operations issued on
each communicator: one-to-all operations (e.g., MPI Scatter), all-to-one opera-
tions (e.g., MPI Gather) and all-to-all operations (e.g., MPI Alltoall). For the
first two types of operations, the root process records the total amount of data
sent and received respectively and the count of operations of each kind. For all-
to-all operations, each process records the total amount of data sent and the
count of operations. All these pieces of data can be flushed into files either at
the end of the application or when requested through the API.

6 Results

We conducted out the experiments on an Infiniband cluster (HCA: Mellanox
Technologies MT26428 (ConnectX IB QDR)). Each node features two Intel
Xeon Nehalem X5550 CPUs with 4 cores (2.66 GHz) per each CPU.

6.1 Overhead Measurement

One of the main issues of monitoring is the potential impact on the application
time-to-solution. As our monitoring can be dynamically enabled and disabled,
we can compute the upper bound of the overhead by measuring the impact with

Online Dynamic Monitoring of MPI Communications 55

Fig. 1. Monitoring code snippet.

56 G. Bosilca et al.

the monitoring enabled on the entire application. We wrote a micro benchmark
that computes the overhead induced by our component for various kinds of MPI
functions and measured this overhead for both shared- and distributed-memory
cases. The number of processes varies from 2 to 24, and the amount of data
ranges from 0 up to 1 MB. Figure 2 displays the results as heatmaps (the median
of a thousand measures). Blue nuances correspond to low overhead, and yellow
colors to higher overhead. As expected, the overhead was more visible on a shared
memory setting, where the cost of the monitoring is more significant compared
with the decreasing cost of data transfers. Also, as the overhead is related to
the number of messages and not to their content, the overhead decreases as the
size of the messages increased. Overall, the median overhead is 4.4% and 2.4%
respectively for the shared- and distributed-memory cases, which proves that
our monitoring is cost effective.

Fig. 2. Monitoring overhead for MPI Send, MPI Alltoall and MPI Put operations. Left:
distributed memory, right: shared memory. (Color figure online)

Online Dynamic Monitoring of MPI Communications 57

To measure the impact on applications, we used some of the NAS parallel
benchmarks—namely BT, CG and LU. These tests have the highest number
of MPI calls, and so we chose them to maximize the potential impact of the
monitoring on the application. Table 1 shows the results, which are an average
of 20 runs. Shaded rows mean that the measures display a statistically significant
difference (using the Student’s t-Test on the measures) between a monitored
run and non-monitored one. Overall, we see that the overhead is consistently
below 1% and on average around 0.35%. Interestingly, for the LU kernel, the
overhead seems lightly correlated with the message rate, meaning the larger the
communication activity, the higher the overhead. For the CG kernel, however,
the timings are so small that it is hard to see any influence of this factor beyond
measurements noise.

We have also tested the Minighost mini-application [2] that computes a sten-
cil in various dimensions to evaluate the overhead. An interesting feature of this

Table 1. Overhead for the BT, CG and LU NAS kernels

58 G. Bosilca et al.

0

1

2

3

0% − 25% 25% − 50% 50% − 75% 75% − 100%
Ratio of communication

M
ed

ia
n

ov
er

he
ad

 p
er

ce
nt

ag
e

Fig. 3. Minighost application overhead as a function of the communication percentage
of the total execution time.

mini-application is that it outputs the percentage of time spent to perform com-
munication. In Fig. 3, we depict the overhead depending on this communication
ratio. We ran 114 different executions of the MiniGhost application and split
those runs into four range categories depending on the percentage of time spent
in communications (0%–25%, 25%–50%, 50%–75% and 75%–100%). A point rep-
resents the median overhead (in percent) and the error bars represent the first
and third quantile. We see that the median overhead is increasing with the per-
centage of communication. Indeed, the more time you spend in communication
the more visible the overhead for monitoring these communications. However,
the overhead accounts for only a small percentage.

6.2 MPI Collective Operations Optimization

In these experiments we have executed an MPI Reduce collective call on 32 and
64 ranks (on 4 and 8 nodes respectively), with a buffer that ranged from 1.106

to 2.108 integers and a rank of 0 acting as the root. We took advantage of the
Open MPI infrastructure to block the dynamic selection of the collective algo-
rithm and instead forced the reduce operation to use a binary tree algorithm.
Because we monitored the collective communications after they have been bro-
ken down into point-to-point communications, we were able to identify details
of the collective algorithm implementation and expose the underlying binary
tree algorithm (see Fig. 4b). This provided a much more detailed understanding
of the underlying communication pattern compared with existing tools, where
the use of a higher-level monitoring tool (e.g., PMPI) completely hides the col-
lective algorithm communications. With this pattern, we used the TreeMatch
algorithm to compute a new process placement and compared it with the place-
ment obtained using a high-level monitoring method (that does not see the tree
and hence is equivalent to the round-robin placement). Results are shown in
Fig. 4a. We see that the optimized placement is much more efficient than the

Online Dynamic Monitoring of MPI Communications 59

10

100

1000

10000
15000

10

100

1000

10000
15000

N
P

 = 32
N

P
 = 64

1000 2000 5000 10000 20000 50000 1e+05 2e+05
Buffer size (1000 int)

M
ed

ia
n

Ti
m

e
(m

s)
High−level monitoring PML Monitoring

MPI_Reduce time at root after process placement

10 20 30 40 50 60

10
20

30
40

50
60

MPI_Reduce Pattern, NP= 64

Sender rank

R
ec

ei
ve

r r
an

k

Fig. 4. MPI Reduce optimization.

one based on high-level monitoring. For instance with 64 ranks and a buffer of
5.106 integers the walltime is 338 ms vs. 470 ms (39% faster).

6.3 Use Case: Fault Tolerance with Online Monitoring

In addition to the usage scenarios mentioned above, the proposed dynamic moni-
toring tool has been demonstrated in our recent work. In [6] we used the dynamic
monitoring feature to compute the communication matrix during the execution
of an MPI application. The goal was to perform elastic computations in case of
node failures or when new nodes are available. The runtime system migrated MPI
processes when the number of computing resources changed. To this end, the
authors used the TreeMatch [11] algorithm to recompute the process mapping
onto the available resources. The algorithm decides how to move processes based
on the applications gathered communication matrix: the more two processes
communicate, the closer they are remapped onto the physical resources. Gather-
ing the communication matrix was performed online using the callback routines
of the monitoring: such a result would not have been possible without the tool
proposed in this paper.

6.4 Static Process Placement of Applications

We tested the TreeMatch algorithm for performing static placement to show that
the monitoring provides relevant information allowing execution optimization.
To do so, we first monitored the application using the proposed monitoring tool
of this paper. Second, we built the communication matrix (here using the num-
ber of messages) and then applied the TreeMatch algorithm on this matrix and

60 G. Bosilca et al.

64
1

64
4

64
20

64
40

128
1

128
4

128
10

128
20

128
40

0.98
1

1.1

1.2

1.4

0.981
1.1
1.2

1.4

2

3

TM
 vs. R

ound R
obin

TM
 vs. R

andom
1_

21

1_
23

1_
24

10
_2

1

10
_2

3

10
_2

4

1_
21

1_
23

1_
24

10
_2

1

10
_2

3

10
_2

4

10
_2

1

10
_2

3

10
_2

4

1_
23

1_
24

10
_2

1
10

_2
3

10
_2

4
70

_2
1

70
_2

3

1_
21

1_
23

1_
24

10
_2

1
10

_2
3

10
_2

4
95

_2
1

95
_2

3

1_
21

1_
23

1_
24

10
_2

1

10
_2

3

10
_2

4

55
_2

1
55

_2
3

55
_2

4
79

_2
1

79
_2

3
79

_2
4

95
_2

1
95

_2
3

95
_2

4

10
_2

1

10
_2

3

10
_2

4

10
_2

1
10

_2
3

10
_2

4
55

_2
1

55
_2

3
55

_2
4

79
_2

1
79

_2
3

79
_2

4
95

_2
1

95
_2

3
95

_2
4

Grid size and stencil type

G
ai

n
(a

vg
 v

al
ue

s)
Group by Number of proc, Number of variables and affinity metric type

Fig. 5. Average gain of TreeMatch placement vs. Round Robin and random placements
for various MiniGhost runs.

the topology of the target architecture. Finally, we re-executed the application
using the newly computed mapping. Different settings (kind of stencil, the sten-
cil dimension, number of variables per stencil point, and number of processes)
are shown in Fig. 5. We see that the gain is up to 40% when compared with
round-robin placement (the standard MPI placement) and 300% against ran-
dom placement. The decrease of performance is never greater than 2%.

7 Conclusion

Parallel applications tend to use a growing number of computational resources
connected via complex communication schemes that naturally diverge from
the underlying network topology. Optimizing the performance of applications
requires any mismatch between the application communication pattern and the
network topology to be identified, and this demands a precise mapping of all
data exchanges between the application processes.

In this paper we proposed a new monitoring framework to consistently track
all types of data exchanges in MPI applications. We implemented the tool as
a set of modular components in OPEN MPI that allow fast and flexible low-
level monitoring (with collective operation decomposed to their point-to-point
expression) of all types of communications supported by the MPI-3 standard
(including one-sided communications and I/O). We also provided an API based
on the MPI Tool Information Interface standard for applications to monitor their
state dynamically, with a focus on only the critical portions of the code. The basic
use of this tool does not require any change in the application nor any special

Online Dynamic Monitoring of MPI Communications 61

compilation flag. The data gathered can be provided at different granularities,
either as communication matrices or as histograms of message sizes. Another
significant feature of this tool is that it leaves the PMPI interface available
for other usages, allowing additional monitoring of the application using more
traditional tools.

Microbenchmarks show that the overhead is minimal for intra-node commu-
nications (over shared memory) and barely noticeable for large messages or dis-
tributed memory. After being applied to real applications, the overhead remain
hardly visible (at most, a few percentage points). Having such a precise and
flexible monitoring tool opens the door to dynamic process placement strate-
gies and could lead to highly efficient process placement strategies. Experiments
show that this tool enables large gain for dynamic or static cases. The fact that
the monitoring records the communication after collective decomposition into
point-to-points allows optimizations that were not otherwise possible.

Acknowledgments. This work is partially funded under the ITEA3 COLOC project
#13024, and by the USA NSF grant #1339820. The PlaFRIM experimental testbed
is being developed with support from Inria, LaBRI, IMB, and other entities: Conseil
Régional d’Aquitaine, FeDER, Université de Bordeaux, and CNRS.

References

1. Barrett, B., Squyres, J.M., Lumsdaine, A., Graham, R.L., Bosilca, G.: Analy-
sis of the component architecture overhead in open MPI. In: Martino, B., Kran-
zlmüller, D., Dongarra, J. (eds.) EuroPVM/MPI 2005. LNCS, vol. 3666, pp. 175–
182. Springer, Heidelberg (2005). doi:10.1007/11557265 25

2. Barrett, R.F., Vaughan, C.T., Heroux, M.A.: MiniGhost: a miniapp for exploring
boundary exchange strategies using stencil computations in scientific parallel com-
puting. Sandia National Laboratories, Technical report SAND2011-5294832 (2011)

3. Bosilca, G., Foyer, C., Jeannot, E., Mercier, G., Papauré, G.: Online dynamic
monitoring of MPI communications: scientific user and developper guide. Research
Report RR-9038, Inria Bordeaux Sud-Ouest, March 2017. https://hal.inria.fr/
hal-01485243

4. Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier,
G., Thibault, S., Namyst, R.: hwloc: a generic framework for managing hardware
affinities in HPC applications. In: 2010 18th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP), pp. 180–186. IEEE
(2010)

5. Brown, K.A., Domke, J., Matsuoka, S.: Tracing data movements within MPI
collectives. In: Proceedings of the 21st European MPI Users’ Group Meeting,
EuroMPI/ASIA 2014, pp. 117:117–117:118. ACM, New York (2014). http://doi.
acm.org/10.1145/2642769.2642789

6. Cores, I., Gonzalez, P., Jeannot, E., Mart́ın, M., Rodriguez, G.: An application-level
solution for the dynamic reconfiguration of MPI applications. In: 12th International
Meeting on High Performance Computing for Computational Science (VECPAR
2016), Porto, Portugal, June 2016 (to appear)

7. Forum, M.P.I.: MPI: A Message-Passing Interface Standard. http://www.
mpi-forum.org/

http://dx.doi.org/10.1007/11557265_25
https://hal.inria.fr/hal-01485243
https://hal.inria.fr/hal-01485243
http://doi.acm.org/10.1145/2642769.2642789
http://doi.acm.org/10.1145/2642769.2642789
http://www.mpi-forum.org/
http://www.mpi-forum.org/

62 G. Bosilca et al.

8. Gabriel, E., et al.: Open MPI: goals, concept, and design of a next genera-
tion MPI implementation. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.)
EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 97–104. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-30218-6 19

9. Hoefler, T., Jeannot, E., Mercier, G.: An overview of topology mapping algorithms
and techniques in high-performance computing. In: High-Performance Computing
on Complex Environments, pp. 73–94 (2014)

10. Janssen, C.L., Adalsteinsson, H., Cranford, S., Kenny, J.P., Pinar, A., Evensky,
D.A., Mayo, J.: A simulator for large-scale parallel computer architectures. In:
Technology Integration Advancements in Distributed Systems and Computing, p.
179 (2012)

11. Jeannot, E., Mercier, G., Tessier, F.: Process placement in multicore clusters: algo-
rithmic issues and practical techniques. IEEE Trans. Parallel Distrib. Syst. 25(4),
993–1002 (2014)

12. Keller, R., Bosilca, G., Fagg, G., Resch, M., Dongarra, J.J.: Implementation and
usage of the PERUSE-interface in open MPI. In: Mohr, B., Träff, J.L., Worrin-
gen, J., Dongarra, J. (eds.) EuroPVM/MPI 2006. LNCS, vol. 4192, pp. 347–355.
Springer, Heidelberg (2006). doi:10.1007/11846802 48

13. Knüpfer, A., et al.: Score-P: a joint performance measurement run-time infrastruc-
ture for Periscope, Scalasca, TAU, and Vampir. In: Brunst, H., Müller, M., Nagel,
W., Resch, M. (eds.) Tools for High Performance Computing 2011, pp. 79–91.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31476-6 7

14. Open MPI development repository. https://github.com/open-mpi/ompi
15. Vetter, J.S., McCracken, M.O.: Statistical scalability analysis of communication

operations in distributed applications. In: ACM SIGPLAN Notices, vol. 36, pp.
123–132. ACM (2001)

http://dx.doi.org/10.1007/978-3-540-30218-6_19
http://dx.doi.org/10.1007/11846802_48
http://dx.doi.org/10.1007/978-3-642-31476-6_7
https://github.com/open-mpi/ompi

Performance and Power Modeling,
Prediction and Evaluation

Micro-benchmarking MPI Neighborhood
Collective Operations

Felix Donatus Lübbe(B)

Research Group for Parallel Computing, TU Wien, Vienna, Austria
luebbe@par.tuwien.ac.at

Abstract. In this article, performance expectations for MPI neighbor-
hood collective operations are formulated as self-consistent performance
guidelines. A microbenchmark and an experimental methodology are
presented to assess these guidelines. Measurement results from a large,
InfiniBand-based cluster, the Vienna Scientific Cluster (VSC), as well
as from a small commodity cluster computer are shown and discussed
to illustrate the methodology and to gain first insights into the perfor-
mance of current MPI implementations. Results show that the examined
libraries seem to be sensitive to the order in which topological neigh-
bors are specified, and that in some cases Cartesian topologies can be
outperformed by simulating them with distributed graph topologies.

Keywords: MPI · Process topology · Neighborhood collectives ·
Performance guidelines · Benchmarking

1 Problem Statement

Neighborhood collective operations have been introduced to the MPI standard
in version 3.0 [5]. Not only could they simplify the code of, for example, multidi-
mensional stencil computations, but also offer a performance benefit over naive
handwritten exchange algorithms using MPI Send and MPI Recv.

So far no microbenchmarks are available to assess the performance of MPI
neighborhood collectives on virtual topologies. Intel MPI Benchmarks 20171,
OSU Micro-Benchmarks 5.3.22 and SKaMPI 5.0.43 [6] do not offer such func-
tionality at all. While NBCBench 1.14 [2] can measure LibNBC’s nonblocking
neighborhood Alltoall(v) algorithms, it has not been extended and used to mea-
sure the corresponding MPI operations. Further, the used neighborhood is built
using the deprecated operation MPI Graph create. The only parameter available
for topology construction is the number of neighbors per process. The structure
of the neighborhood can not be varied further.
1 https://software.intel.com/en-us/articles/intel-mpi-benchmarks, last checked 2017-

05-26.
2 http://mvapich.cse.ohio-state.edu/benchmarks/, last checked 2017-05-26.
3 http://liinwww.ira.uka.de/∼skampi/, last checked 2017-05-26.
4 http://htor.inf.ethz.ch/research/nbcoll/perf/, last checked 2017-05-26.

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 65–78, 2017.
DOI: 10.1007/978-3-319-64203-1 5

https://software.intel.com/en-us/articles/intel-mpi-benchmarks
http://mvapich.cse.ohio-state.edu/benchmarks/
http://liinwww.ira.uka.de/~skampi/
http://htor.inf.ethz.ch/research/nbcoll/perf/

66 F.D. Lübbe

In [9] a microbenchmark has been used to compare the durations of a new
family of sparse collective operations, which work on isomorphic neighborhoods,
to those of the corresponding MPI neighborhood collectives. However, while the
MPI operations served as a baseline to explicate performance expectations for
the new operations, no expectations for the MPI functions have been formulated
and assessed there.

In this article, performance expectations for MPI neighborhood collective
operations, as well as for the topology creation functions MPI Cart create, MPI -
Dist graph create and MPI Dist graph create adjacent are motivated and
semiformalized using the concept of self-consistent performance guidelines [7].
A microbenchmark based on the one used in [9] is described in detail, which is
able to semiautomatically assess these guidelines and generate plots of violations,
partly using the concepts presented in [4]. Setup and results of first measurements
on two different cluster computers, as well as the assessment of a subset of the
presented guidelines are shown to illustrate the methodology and to gain first
insights into the performance of current MPI libraries.

Section 2 describes performance guidelines for neighborhood collectives and
topology creation functions. In Sect. 3 the benchmark is introduced. Section 4
details the experimental setup of the measurements carried out. The results
of the experiments are shown and analyzed in Sect. 5. Section 6 concludes the
article.

2 Performance Guidelines for Neighborhood Collectives

Self-consistent performance guidelines are a means to express performance
expectations for MPI in a semiformal way by relating the durations of differ-
ent (combinations of) MPI operations which yield the same effect. Since the
MPI standard does not impose any performance requirements, the guidelines
are argued for on the basis of self-evident user expectations, which are repre-
sented by a set of metarules in [7].

A guideline of the form a � b means that operation a shall not be slower
than operation b, given all common parameters of both operations are equal [7].
Accordingly, a ≈ b means a and b shall perform similar. The relation is required
to hold in the average case for many runs, while isolated counterexamples pos-
sibly due to lazy initialization or disturbing factors during the measurement are
not considered a violation. If a � b is violated, performance would increase if
the user replaced a with b in the violating scenario.

In this section, the following performance guidelines will be motivated:

Cart create � Dist graph create adjacentCart (GL1)
Dist graph create adjacent � Dist graph create (GL2)

X createreorder=0 � X createreorder=1 (GL3)
Neigh allgather(v) � Neigh alltoall(v) (GL4)

Micro-benchmarking MPI Neighborhood Collective Operations 67

Neigh allgather � Neigh allgatherv (GL5)
Neigh alltoall � Neigh alltoallv

� Neigh alltoallw (GL6)
Allgather(v)full � Neigh allgather(v)full (GL7)

Alltoall(v/w)full � Neigh alltoall(v/w)full (GL8)
Neigh xCart � Neigh xGraph adj(Cart) (GL9)

Neigh xGraph adj ≈ Neigh xGraph (GL10)

Neigh xrank list ordering 1 ≈ Neigh xrank list ordering 2 (GL11)

Neigh xreorder=1 � Neigh xreorder=0 (GL12)

GL1 states that if a Cartesian-shaped topology is constructed, the specialized
MPI Cart create should not be slower than MPI Dist graph create adjacent,
which can construct topologies of arbitrary shape (cf. metarule 3).

A DISTGRAPH topology can be created either by MPI Dist graph create
or by MPI Dist graph create adjacent. While in a call to MPI Dist graph -
create every process may specify an arbitrary set of edges of the topology graph,
MPI Dist graph create adjacent imposes the precondition that every process
passes exactly its incident edges. Because of this additional requirement, MPI -
Dist graph create adjacent shall not be slower (GL2, cf. metarule 2).

GL3 asserts that allowing a topology constructor to change the mapping of
rank numbers to actual processes by setting the reorder flag to 1 should not
speed up the actual creation, since reordering would be beneficial for subsequent
communication operations on the topology and disabling it is, from a perfor-
mance point of view, only reasonable to save extra cost during communicator
creation.

MPI Neighbor allgather could be mimicked by MPI Neighbor alltoall, if
the send buffer is copied locally n times, and should therefore not be slower. The
same is true for the respective vector variants (GL4). MPI Neighbor allgatherv
and MPI Neighbor alltoallv/-w can mimick their regular counterparts, which
should therefore not be slower (GL5, GL6, cf. metarule 3).

The neighborhood collectives can be used to simulate the global collectives
MPI Allgather(v) and MPI Alltoall(v/w), if a fully connected graph topology
is created. While neighborhood collectives support any topology, global collec-
tives always follow a complete graph and because of this specialization should
not be slower (GL7, 8, cf. metarule 3).

If a Cartesian-shaped topology is created using one of the distributed graph
constructors, neighborhood collectives should not get faster compared to the
semantically stricter Cartesian topology created by MPI Cart create (GL9,
cf. metarule 2). However, their performance for any DISTGRAPH topology should
be independent of the constructor, because DISTGRAPH constructors produce
semantically equivalent topologies (GL10).

GL11 states that neighborhood collectives should perform similar on isomor-
phic topologies, independent of the ordering of the list of ranks passed to the

68 F.D. Lübbe

topology constructor to define edges. If this was not respected by an MPI library,
the user would be tempted to find the “sweet” ordering herself, possibly breaking
performance portability between libraries. If the implementations of the neigh-
borhood collectives of a specific library had such sweet orderings, the topology
constructor should reorder its input lists accordingly.

Allowing the ranks to be reordered during communicator creation shall not
slow down any neighborhood collective since the whole point with reordering is
optimizing communication performance (GL12).

3 The Benchmark

The microbenchmark used for the experiments comprises a kernel executing the
actual measurements and a framework of scripts responsible for control flow,
input generation and output analysis. It makes use of findings from [3,4,9].

The main goal of the benchmark is to help identify performance problems of
MPI implementations in specific environments. Although some decision metrics
are defined to enable automatically finding violations of performance guidelines,
the quantification of a violation is of less interest than the fact that a violation
has been found. While the question for the severeness of a certain violation might
uncover sensational answers, it will not help much solving it, except maybe to
set priorities for which one to tackle first. In fact, investigating its cause by, for
example, looking into algorithms and parameters of the MPI implementation is
the step meant to follow the use of the benchmark.

3.1 Kernel

The kernel implements measurement setups for different MPI operations, follow-
ing the form of Algorithm1. All input parameters are read from a CSV input file
with each line describing one experiment. Apart from the parameters specific to
the topology and explained below, an experiment description includes the com-
munication operation to use, the MPI datatype, the message length, the number
of consecutive repetitions nrep and a 64-bit integer w which is decremented down
to 0 in a loop written in inline assembler to accurately simulate local computation
of specific CPU time when measuring the overlap of nonblocking operations.

The synchronization is implemented as a handwritten dissemination barrier
like in [9] to improve comparability between different MPI implementations,
which might use different algorithms for their MPI Barrier. MPI Wtime is used
to retrieve wall clock time with high resolution. The maximum duration of all
parallel processes is output as the result time Δt[i] of each single repetition i.

Currently, four different types of neighborhoods are supported, three of which
can be described using a similar mask of relative coordinates for each process
and a mapping of process ranks to a virtual Cartesian grid of variable dimen-
sionality: The Cartesian neighborhood just uses the MPI Cart create topology
constructor, giving the simplest form of a multidimensional isomorphic neigh-
borhood by only including the two immediate neighbors along each dimension

Micro-benchmarking MPI Neighborhood Collective Operations 69

40

63

100

158

251

25
6
36

2
51

2
72

4
10

24
14

48
20

48
28

96
40

96
57

92
81

92
11

58
5

16
38

4
23

17
0

32
76

8

Message size [Byte]

D
ur

at
io

n,
 m

ed
 o

f m
ed

s
[m

s]
 (l

og
)

Alltoall

N_alltoall

0.7

0.8

0.9

1.0

1.1

1.2

N
or

m
al

iz
ed

 d
ur

at
io

n

Alltoall

N_alltoall

Fig. 1. Results comparing Alltoall to Neigh alltoall, campaign full-rand-jupiter,
35 × 16 processes, Full neighborhood with RAND ordering and reorder = 0, outliers
removed.

Algorithm 1. Measurement procedure in the kernel
for all experiment descriptions in input file do

Create topology communicator
for i = 0 to nrep − 1 do

Barrier synchronization
t0 ← Wtime

MPI (I)Neighbor X

Simulate work: Count from w down to 0
(MPI Wait)
Δt[i] ← Wtime − t0
Barrier synchronization

end for
Free topology communicator
MPI Reduce(Δt[], length i, maximum, to rank 0)
Output Δt[] at rank 0

end for

in the Cartesian grid. The Moore neighborhood of radius r, on the other hand,
includes all ranks in the grid within a hypercube with edges of length 2r + 1
around the process. The von Neumann neighborhood of radius r is a subset of
the Moore neighborhood, including only those ranks with relative coordinates c
with a Manhattan distance ≤ r from the process, i.e.

∑ndim
i=1 |ci| ≤ r.

70 F.D. Lübbe

The communicators for Moore and von Neumann neighborhoods are con-
structed using MPI Dist graph create or MPI Dist graph create adjacent.
The relative coordinates are computed and then translated to a list of source-
and destination ranks respectively using an intermediate Cartesian communi-
cator and MPI Cart rank. The list of source ranks is coordinatewise inverse to
the list of destination ranks. MPI Dist graph create adjacent constructs the
topology using both lists. In case MPI Dist graph create is used, each process
only passes its destination list, leaving the ordering of any internal processwise
source list within the communicator to the MPI implementation.

Input parameters for Cartesian, Moore and von Neumann neighborhoods are
the number of dimensions ndim, the number of finite dimensions nfin, i.e. how
many of the dimensions are nontoroidal, and the reorder flag of the MPI topol-
ogy constructor specifying whether the MPI library is allowed to change the
mapping of rank numbers to processes to better fit the actual network topol-
ogy and accelerate communication. This flag does not affect the intermediate
Cartesian communicator used to construct Moore and von Neumann neighbor-
hoods, whose reorder flag is always set to 0.

Further parameters for Moore and von Neumann neighborhoods include the
radius r and the ordering of the list of relative coordinates before transla-
tion to rank numbers. Possible orderings are first- and last-coordinate-major
(FMAJ, LMAJ) and randomized (RAND). FMAJ (LMAJ) means coordinatewise sorted
in ascending order with first (last) coordinate changing last. RAND means the list
is permuted using a different random seed for each process.

The dimensions of the Cartesian grid in case of Cartesian, Moore and von
Neumann neighborhoods are calculated using the TUW Dims create function
implementing the algorithm described in [8], as the result of MPI Dims create
has proven to break portability between MPI libraries in the past.

The fourth neighborhood type, the Full neighborhood, connects all processes
in a complete graph, i.e. every process is neighbor of all other processes. Like with
Moore and von Neumann neighborhoods, it can be selected whether MPI Dist -
graph create or MPI Dist graph create adjacent is used as the constructor.
Input parameters further include the reordering flag and the ordering of the
sources- and destinations list. LINEAR ordering means all rank numbers starting
from the process itself are enumerated incrementally (sources) and decremen-
tally (destinations) modulo the total number of processes. RAND ordering means
both sources and destinations array are randomized independently and with a
different random seed for each process. If MPI Dist graph create is used, only
the destinations array is passed.

3.2 Framework Scripts

Control flow of a measurement campaign is programmed in bash scripts, which
offer an immediate way to automatize calling programs and manage input- and
output files. The work flow to run a measurement campaign is semiautomatized
by encapsulating five user-invoked steps: (1) building the kernel, (2) creating

Micro-benchmarking MPI Neighborhood Collective Operations 71

input files and job scripts, (3) submitting the job scripts to the scheduling sys-
tem, (4) archiving the results, (5) analyzing results for performance guideline
violations and drawing plots of detected violations.

The files to configure a measurement campaign include a campaign configu-
ration file, in which a list of process deployments is specified, e.g. [2 × 8, 4 × 8]
for 2 and 4 nodes with 8 processes each. The number of distinct calls to the
kernel, nrun, is set, as well as a maximum run time, after which the scheduler
will kill the job. A separate environment configuration is referenced, containing
all machine specific settings like paths and the syntax of the mpirun command.

The input to the kernel, i.e. the actual experiments carried out, is generated
in step (2) using a Python script, which makes modelling all kinds of relations
between different input parameters easy, e.g. “for all ndim create experiments
with nfin ∈ {0, 1, . . . , ndim}”. For each run of the kernel, a separate input file is
created with a different random permutation of the same set of experiments to
mitigate systematic bias by disturbing factors.

Processing results and assessing the guidelines is done in an R script in step
(5). Some assessment configuration needs to be set up by the user: all parameters
of the campaign must be subdivided into a guideline parameter, a varied para-
meter and grouping parameters. The guideline parameter contains the levels to
be compared within a guideline – if Neigh allgather and Neigh alltoall are
to be compared, the guideline parameter would be the measurement setup. A
list of guidelines of the form a � b, with a, b being levels of the selected guideline
parameter, must be provided. The varied parameter will be on the x axis of
subsequently generated plots and could, for example, be the message size. All
remaining parameters, e.g., neighborhood type, ndim, nfin, . . . , are considered
grouping parameters, with every combination of their levels implying a unique
group. For each group containing at least one violation, plots will be generated.
The script must be rerun for every different guideline parameter.

The script will first calculate the median mr
l := med(dropOutliers(Δtrl [0],

. . . ,Δtrl [nrep − 1])) of the nrep single durations of each run r and each combi-
nation of parameter levels l after filtering outliers. This results in nrun medians
m0

l , . . . ,m
nrun−1
l for each combination of parameter levels l. Outliers are values

outside of [q1 −1.5(q3 −q1), q3 +1.5(q3 −q1)], with quartiles q1, q3, like suggested
by Tukey [1, Subsect. 3.2.4].

For each guideline a � b and each unique combination of the grouping para-
meters and the varied parameter, the nrun medians for a and b are selected.
The Wilcoxon rank sum test is then carried out to test whether the medians of
a are shifted to the right of b [1,4, Subsect. 7.4.6]. Further, the violation ratio
v := med(m0

a,...,m
nrun−1
a)

med(m0
b ,...,m

nrun−1
b)

is computed to quantify the difference between a and b.
a � b is considered violated for the selected parameter levels, if v ≥ vthres and
the test returns a p-value ≤ pthres. pthres, vthres are set by the user. The threshold
for v filters very small violations considered significant by the statistical test.

For each violation, an overview plot of the affected group is created, which
shows the medians of the medians of the result times for both parameter levels
a, b in absolute numbers on a log scale, with the varied parameter, e.g. the

72 F.D. Lübbe

message size, on the x axis. Further, for each violation, a focus plot is generated,
which shows the distributions of the raw results within the individual runs as box
plots, normalized to the median of the medians of the durations of a. Figures 1a
and 2a give examples for overview plots, Figs. 1b and 2b for focus plots.

4 Experimental Setup

Five measurement campaigns on two different cluster computers have been car-
ried out to assess a subset of the formulated guidelines (see Table 2). In the
nbhcoll campaigns, neighborhood collective operations have been executed on
Cartesian topologies, as well as on von Neumann and Moore neighborhoods of
radius 1, which could all be used in real-world applications performing stencil
computations [9]. In the full campaigns, a complete graph is used as topology,
making the neighborhood collectives behave like their global collective coun-
terparts, which have been measured here as well. Campaigns full-rand-jupiter
and full-tuned-jupiter have been set up and executed because of findings from
full-jupiter ; see Sect. 5 for details.

The von Neumann neighborhood of radius 1 exactly resembles a Cartesian
topology; the subsequently used notation Cart � Vneum refers to GL9. GL11 is
tested by comparing neighbor list orderings FMAJ and LMAJ (nbhcoll) or LINEAR
(full) to RAND. The term reorder=1 � reorder=0 refers to GL12.

Table 2 lists all parameters of the executed experiments together with the
parameter levels used in the respective campaigns. For example, in campaign
nbhcoll-jupiter, the two operations Neigh allgather and Neigh alltoall have
each been measured with 15 different message sizes, on three different topologies,
with four different numbers of dimensions, two different values for the number
of finite dimensions, three different orderings of the list of neighbors in case of
von Neumann and Moore neighborhoods (Cartesian topologies do not have an
ordering), and both possible values for the reorder flag during communicator
creation. This makes a total of 3360 unique combinations of parameter levels,
which are experimentally measured nrep = 50 times in each of nrun = 30 runs. If,
for example, the guideline Neigh allgather � Neigh alltoall is evaluated, i.e.
the measurement setup is chosen as the guideline parameter, the statistical test
is executed for the 3360

2 = 1680 unique combinations of the remaining parameter
levels. Since the varied parameter is the message size, results are presented in
1680
15 = 112 groups.

The first system, Jupiter, has 36 nodes with two AMD Opteron 6134 8-
core processors at 2.3 GHz and 32 GB memory each, connected via a Mellanox
MT4036 InfiniBand QDR crossbar switch. The second system is VSC3 at the
Vienna Scientific Cluster, consisting of 2020 nodes with two Intel Xeon E5-
2650v2 8-core processors at 2.6 GHz and 64 GB memory each. The nodes are
connected by an InfiniBand QDR-80 fat tree architecture. On Jupiter, both
nodes and network links involved in the measurements were dedicated to the
benchmark. On VSC3, only the nodes were dedicated, while network switches
were possibly shared with other jobs. The benchmark has been compiled and run

Micro-benchmarking MPI Neighborhood Collective Operations 73

using gcc 4.4.7 and Open MPI 2.0.1 on Jupiter and gcc 5.3.0 and Intel MPI 2017.1
on VSC3.

The dimensions of the virtual Cartesian grid of processes for the different
process deployments and number of dimensions in the nbhcoll campaigns are
listed in Table 1.

Table 1. Dimensions array returned by TUW Dims create for different ndim and nprocs.

ndim Process deployment

10 × 16 20 × 16 35 × 16

2 {16, 10} {20, 16} {28, 20}
3 {8, 5, 4} {8, 8, 5} {10, 8, 7}
4 {5, 4, 4, 2} {5, 4, 4, 4} {7, 5, 4, 4}

5 Results

Table 3 lists the numbers of violations of different guidelines for the nbhcoll
campaigns on Jupiter and VSC3. Each cell contains two rows: first, the total
numbers of violations and tests, second the numbers of groups containing at least
one violation as well as the total number of groups. In a group, all parameters are
similar except the message length (varied parameter) and the respective guideline
parameter. The threshold values for the assessment are set to pthres = 0.001 and
vthres = 1.03. Different thresholds have been tried, but for higher p-values and
lower violation ratios, violations were often not clearly visible in the plots.

In the nbhcoll campaigns, the guideline Neigh allgather � Neigh alltoall
was only violated for the smaller numbers of processes. On Jupiter, violations
occurred for ndim ∈ {2, 4} and nfin = 0, on all three neighborhoods, for all order-
ings of the neighborhood coordinates, with ratios up to 1.049. The two violations
on VSC3 occurred with a fourdimensional Moore neighborhood, nfin = 4, LMAJ
ordering, reorder ∈ {0, 1} and a message size of 4 KB. Their exceptionally high
ratio of about 13.8 each stems from a peculiar effect observed on VSC3 for dif-
ferent measurements: the relative dispersion of many runs is in the same order of
magnitude like the violation ratio, with the quartiles of many runs spanning from
the median of medians of the Neigh allgather times to the median of medians
of the Neigh alltoall times. Usually, dispersion was much lower, like in the
figures from Jupiter in this article. Unfortunately, due to time restrictions, this
effect could not be investigated further for this article. The measurements should
be rerun with a different node allocation to eliminate a possible interdependency
between node allocation, virtual topology and communication algorithm. Note
that temporary network effects can already be excluded as a cause due to the
randomization of experiments.

74 F.D. Lübbe

T
a
b
le

2
.
M

ea
su

re
m

en
t

ca
m

p
a
ig

n
s

re
fe

re
n
ce

d
in

th
is

a
rt

ic
le

.

Micro-benchmarking MPI Neighborhood Collective Operations 75

On Jupiter, the guideline Cart � Vneum has been violated only with four-
dimensional neighborhoods, while the violation ratio did not exceed 1.045. On
VSC3, most violations happened for ndim = 4 as well, including the most severe
ones with ratios up to 1.222. For 35×16, violations occurred only with ndim = 4,
for 20 × 16 with ndim ∈ {3, 4}, and for 10 × 16 even with ndim ∈ {2, 3, 4}.

The guideline FMAJ � RAND was violated only by Moore neighborhoods with
ndim ∈ {2, 3, 4} on Jupiter, with a ratio of up to 1.147. LMAJ � RAND was violated
by both Moore and von Neumann neighborhoods, but only for ndim = 4, nfin = 0
and 10 × 16 processes. Moore neighborhoods yielded a ratio of up to 1.206.
On VSC3, violations of both guidelines occurred for all values of the grouping
parameters. The biggest ratio observed in all experiments, 141.9, occurred for
FMAJ � RAND, Neigh alltoall, a Moore neighborhood with ndim = 2, nfin = 2,
independent of reordering and for a message size of 11585 B. This enormous
ratio was due to the same effect on VSC3 mentioned above. However, most of
the other reported violations did not suffer from this effect.

The only guideline violated in campaign full-jupiter was LINEAR � RAND and
most violations were quite clear. Top ratios increased with number of processes
from 1.083 (10 × 16) to 1.828 (35 × 16). While for 10 × 16 processes, only the
smaller message sizes up to 1448 B were affected, for 30×16 processes violations
occurred in the whole spectrum of the message sizes used.

In the full-jupiter campaign, to save time, the global collectives were only
executed on topologies with LINEAR ordering because ordering was assumed to
make no difference for them. Since the architecture of the benchmark only allows
for the levels of one parameter being compared to each other, with all other para-
meters being the same, comparing neighborhood collectives with RAND orderings
to global collectives was not possible in this campaign. However, the fact that
the guideline LINEAR � RAND was violated so often together with the observation
of Alltoall and Neigh alltoall performing similar with LINEAR ordering for
small message sizes lead to the assumption that Alltoall � Neigh alltoall
could be violated on full RAND topologies. Therefore, campaign full-rand-jupiter
was set up and executed, and indeed showed the expected violations for small
message sizes (cf. Fig. 1).

A closer look into Open MPI revealed that the algorithm for Alltoall is
changed by default at a message size of 3000 B. The so called MCA parameters
allow to change such thresholds at runtime. In the campaign full-tuned-jupiter,
the violations could be healed by setting the threshold message size to 256 B (cf.
Fig. 2). In the case of LINEAR ordering, Alltoall now was considerably faster
than Neigh alltoall as well.

In the three campaigns nbhcoll-jupiter, nbhcoll-vsc3 and full-jupiter, the
reorder=1 � reorder=0 guideline was never violated and the reordering flag
did not seem to have an effect on violations of the other guidelines (cf. Tables 3
and 4). Subsequent experiments just creating the topologies used in the cam-
paigns with reordering enabled and checking for a change in process-to-rank
mapping in the new communicator confirmed this conjecture. Campaigns full-
rand-jupiter and full-tuned-jupiter have therefore been set up with reordering
disabled in general.

76 F.D. Lübbe

25

40

63

100

158

251

25
6
36

2
51

2
72

4
10

24
14

48
20

48
28

96
40

96
57

92
81

92
11

58
5

16
38

4
23

17
0

32
76

8

Message size [Byte]

D
ur

at
io

n,
 m

ed
 o

f m
ed

s
[m

s]
 (l

og
)

Alltoall

N_alltoall

0.8

1.2

1.6

2.0

2.4

N
or

m
al

iz
ed

 d
ur

at
io

n

Alltoall

N_alltoall

Fig. 2. Results comparing Alltoall to Neigh alltoall, campaign full-tuned-jupiter,
35 × 16 processes, Full neighborhood with RAND ordering and reorder = 0, outliers
removed.

Table 3. Number of guideline violations in experiments with different neighborhoods
of radius 1 on Jupiter and VSC3. Format: nvioTests/ntests (nvioGroups/ngroups).

nbhcoll-jupiter nbhcoll-vsc3

10 × 16 20 × 16 35 × 16 10 × 16 20 × 16 35 × 16

Neigh allgather �
Neigh alltoall

15/1680
(15/112)

1/1680
(1/112)

0/1680
(0/112)

2/1680
(2/112)

0/1680
(0/112)

0/1680
(0/112)

Cart � Vneum 19/480
(8/32)

2/480
(2/32)

1/480
(1/32)

117/480
(20/32)

36/480
(13/32)

9/480
(7/32)

FMAJ � RAND 81/960
(16/64)

118/960
(20/64)

104/960
(14/64)

87/960
(36/64)

276/960
(36/64)

25/960
(13/64)

LMAJ � RAND 27/960
(7/64)

0/960
(0/64)

0/960
(0/64)

198/960
(33/64)

208/960
(35/64)

14/960
(13/64)

reorder=1 �
reorder=0

0/1680
(0/112)

0/1680
(0/112)

0/1680
(0/112)

0/1680
(0/112)

0/1680
(0/112)

0/1680
(0/112)

Micro-benchmarking MPI Neighborhood Collective Operations 77

Table 4. Number of guideline violations in campaign full-jupiter. Format:
nvioTests/ntests (nvioGroups/ngroups).

Full-jupiter

10×16 20×16 35×16

Allgather �
Neigh allgather

0/30
(0/2)

0/30
(0/2)

0/30
(0/2)

Alltoall �
Neigh alltoall

0/30
(0/2)

0/30
(0/2)

0/30
(0/2)

Neigh allgather �
Neigh alltoall

0/60
(0/4)

0/60
(0/4)

0/60
(0/4)

LINEAR � RAND 22/60
(4/4)

30/60
(4/4)

50/60
(4/4)

reorder=1 �
reorder=0

0/90
(0/6)

0/90
(0/6)

0/90
(0/6)

6 Conclusion and Outlook

Performance guidelines help to express expectations for neighborhood collec-
tives in a formal way, to enable computers to automatically check them on a
large number of measurements. Results show that current MPI implementations
probably have room for improvement of their performance, although admittedly,
not every violation can easily be attributed to the MPI implementation in the
complex environment of a cluster computer without further investigation. Still,
especially the cases where simulating a Cartesian with a similar DISTGRAPH topol-
ogy increases performance are surprising, since algorithms could benefit from
the fixed structure of Cartesian topologies. This, together with the violations
of GL11, suggests that the examined MPI implementations are sensitive to the
ordering of neighbors.

In the future it would be interesting to execute similar campaigns on fur-
ther cluster computers, especially such with a network topology resembling a
Cartesian grid. Measuring with bigger neighborhoods could be interesting as
well, although the question arises whether there are problems from the real
world which would be affected by the results. Of course, the remaining guide-
lines formulated, but not evaluated in this article should be tested – especially
those dealing with different methods of communicator creation. Since some MPI
implementations nowadays promise true asynchronous progress, guidelines for
nonblocking neighborhood collectives should be formulated and assessed as well.

Acknowledgments. This work was supported by the Austrian Science Fund (FWF):
P25530. The author would like to thank Alexandra Carpen-Amarie, Sascha Hunold,
Jesper Larsson Träff and Thomas Worsch for helpful discussions concerning this article,
as well as the anonymous reviewers for their valuable feedback.

78 F.D. Lübbe

References

1. Hedderich, J., Sachs, L.: Angewandte Statistik, 15th edn. Springer Spektrum,
Heidelberg (2016)

2. Hoefler, T., Lumsdaine, A., Rehm, W.: Implementation and performance analysis
of non-blocking collective operations for MPI. In: Proceedings of 2007 International
Conference on High Performance Computing, Networking, Storage and Analysis,
SC 2007. IEEE Computer Society/ACM, November 2007

3. Hunold, S., Carpen-Amarie, A.: Reproducible MPI benchmarking is still not as
easy as you think. IEEE Trans. Parallel Distrib. Syst. 27(12), 3617–3630 (2016).
http://dx.doi.org/10.1109/TPDS.2016.2539167

4. Hunold, S., Carpen-Amarie, A., Lübbe, F.D., Träff, J.L.: Automatic verification of
self-consistent MPI performance guidelines. In: Dutot, P.-F., Trystram, D. (eds.)
Euro-Par 2016. LNCS, vol. 9833, pp. 433–446. Springer, Cham (2016). doi:10.1007/
978-3-319-43659-3 32

5. MPI Forum: MPI: a message-passing interface standard, version 3.0, September
2012

6. Reussner, R.H., Sanders, P., Träff, J.L.: SKaMPI: a comprehensive benchmark for
public benchmarking of MPI. Sci. Program. 10(1), 55–65 (2002). http://content.
iospress.com/articles/scientific-programming/spr00094

7. Träff, J.L., Gropp, W.D., Thakur, R.: Self-consistent MPI performance guide-
lines. IEEE Trans. Parallel Distrib. Syst. 21(5), 698–709 (2010). http://dx.doi.org/
10.1109/TPDS.2009.120

8. Träff, J.L., Lübbe, F.D.: Specification guideline violations by MPI Dims create. In:
Proceedings of 22nd European MPI Users’ Group Meeting, EuroMPI 2015, 21–23
September 2015, Bordeaux, France, pp. 19:1–19:2 (2015). http://doi.acm.org/10.
1145/2802658.2802677

9. Träff, J.L., Lübbe, F.D., Rougier, A., Hunold, S.: Isomorphic, sparse MPI-like col-
lective communication operations for parallel stencil computations. In: Proceed-
ings of 22nd European MPI Users’ Group Meeting, EuroMPI 2015, 21–23 Septem-
ber 2015, Bordeaux, France, pp. 10:1–10:10 (2015). http://doi.acm.org/10.1145/
2802658.2802663

http://dx.doi.org/10.1109/TPDS.2016.2539167
http://dx.doi.org/10.1007/978-3-319-43659-3_32
http://dx.doi.org/10.1007/978-3-319-43659-3_32
http://content.iospress.com/articles/scientific-programming/spr00094
http://content.iospress.com/articles/scientific-programming/spr00094
http://dx.doi.org/10.1109/TPDS.2009.120
http://dx.doi.org/10.1109/TPDS.2009.120
http://doi.acm.org/10.1145/2802658.2802677
http://doi.acm.org/10.1145/2802658.2802677
http://doi.acm.org/10.1145/2802658.2802663
http://doi.acm.org/10.1145/2802658.2802663

Performance Characterization of De Novo
Genome Assembly on Leading Parallel Systems

Marquita Ellis1,2(B), Evangelos Georganas1,2,5, Rob Egan3, Steven Hofmeyr2,
Aydın Buluç1,2, Brandon Cook4, Leonid Oliker2, and Katherine Yelick1,2

1 EECS Department, University of California, Berkeley, USA
mme@eecs.berkeley.edu

2 Computational Research Division, Lawrence Berkeley National Laboratory,
Berkeley, USA

3 Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
4 National Energy Research Scientific Computing Center, Berkeley, USA

5 Parallel Computing Lab, Intel Corp., Santa Clara, USA

Abstract. De novo genome assembly is one of the most important
and challenging computational problems in modern genomics; further, it
shares algorithms and communication patterns important to other graph
analytic and irregular applications. Unlike simulations, it has no float-
ing point arithmetic and is dominated by small memory transactions
within and between computing nodes. In this work, we focus on the
highly scalable HipMer assembler and identify the dominant algorithms
and communication patterns, also using microbenchmarks to capture the
workload. We evaluate HipMer on a variety of platforms from the lat-
est HPC systems to ethernet clusters. HipMer performs well on all single
node systems, including the Xeon Phi manycore architecture. Given large
enough problems, it also demonstrates excellent scaling across nodes in
an HPC system, but requires a high speed network with low overhead
and high injection rates. Our results shed light on the architectural fea-
tures that are most important for achieving good parallel efficiency on
this and related problems.

1 Introduction

De novo genome assembly is essential to understanding the genomic structure of
plants, animals and microbial communities and has applications in health, the
environment, and energy. It involves constructing long genomic sequences from
short, overlapping and possibly erroneous DNA fragments produced by modern
sequencers. Due to the continued exponential increase in the size (multi-terabyte)
and complexity of the sequence datasets, massive parallelism is required to over-
come the huge memory and computational requirements, but efficient paral-
lelization is challenging. The genome assembly computation, not unlike other
graph analytic and irregular applications, involves graphs and hash tables and
is dominated by irregular memory access patterns and fine-grained synchroniza-
tion. Many assemblers therefore target shared memory hardware, where assembly
problems are limited in size and may run for days or even weeks.
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 79–91, 2017.
DOI: 10.1007/978-3-319-64203-1 6

80 M. Ellis et al.

In this study we present the first cross-architectural analysis of HipMer [8],
an extreme scale distributed memory genome assembler. HipMer produces bio-
logically equivalent results to a serial assembler called Meraculous [3], which
has been exhaustively studied for quality and found to excel relative to other
assemblers in most metrics [6]. Our HipMer performance evaluation includes a
broad range of platforms, ranging from a supercomputer with Intel Xeon Phi
processors and a custom HPC network to off-the-shelf Ethernet clusters. HipMer
stresses the communication fabric of these systems using communication pat-
terns that are increasingly important for irregular applications. These include
all-to-all exchanges, fine-grained lookups, and global atomic operations. Our
work presents a detailed analysis of these communication patterns and points
to requirements for future architectural designs for scalability on this important
class of codes.

2 The Parallel HipMer Assembly Pipeline

In this section we describe the basic algorithms used in the pipeline, our par-
allelization strategy, and the consequent communication patterns. Although we
focus on HipMer, the algorithms are relevant to all de novo assembly pipelines
that are based on de Bruijn graphs [14]. We describe four major stages of Hipmer
(see Fig. 1-Left), k-mer analysis, contig generation, read-to-contig alignment and
scaffolding, as well as gap closing, which is part of the scaffolding stage. Other
stages implemented in HipMer assist these main computations and are included
in the experimental results. The input to the pipeline is a set of reads, which are
short, erroneous sequence fragments of 100–250 letters sampled at random from
a genome. The sampling is redundant at a depth of coverage d, so on average
each position (base) in the genome is covered by d reads. This redundancy is
used to filter out errors in the first stage (k-mer analysis). The k-mer analysis can
work with relatively high error rates in the data (2.5%, k = 40+); the user may
also choose to decrease k when given data with higher error rates. Sequencers
produce reads in pairs with a known distance between them, a fact which is
exploited later in the pipeline (scaffolding) to improve the assembly.

reads

contigs

k-mers
1

2

3

scaffolds

alignments

4

GAT ATC TCT CTG TGA

AAC

ACC

CCG

AAT

ATG

TGC

GAA

Contig 1: GATCTGA

Contig 2: AACCG

Contig 3: AATGC

Fig. 1. Left: the HipMer de novo assembly pipeline. Right: a de Bruijn graph of k-mers
with k = 3.

Performance Characterization of De Novo Genome Assembly 81

2.1 k-mer Analysis

In this step, the input reads are processed to exclude errors. Each processor reads
a portion of the reads and chops them into k-mers, which are formed by a sliding
window of length k. A deterministic function is used to map each k-mer to a
target processor, assigning all the occurrences of a particular k-mer to the same
processor, thus eliminating the need for a global hash table. The k-mers are com-
municated among the processors using irregular all-to-all communication,
which is performed when each processor fills up out of its outgoing buffers and
is repeated until all k-mers have been redistributed. A total of Θ(Gd

L (L−k +1))
k-mers need to be communicated, where G is the genome size (number of charac-
ters in the output) and L is the read length (number of characters in the input).
Next, all the k-mers are counted, and those that appear fewer times than a
threshold are discarded as erroneous. This filtering is enabled by the redundancy
d in the read data set: k-mers that appear close to d times are likely error-free,
whereas k-mers that appear infrequently are likely erroneous. k-mer counting
is challenging for large datasets because an error in just a single base creates k
erroneous k-mers, and it is not uncommon to have over 80% of all distinct k-mers
erroneous; as a result the memory footprint increases substantially. We address
this problem [10] through the use of Bloom filters, which results in irregular
all-to-all communication. Also, highly complex plant genomes, such as wheat,
are extremely repetitive and it is not uncommon to see some k-mers occurring
millions of times. Such high-frequency k-mers create a significant load imbalance
problem, since the processors assigned to high-frequency k-mers require signifi-
cantly more memory and processing times. We deal with these “heavy hitters”
using a streaming algorithm, described further in [8] that does not require any

Table 1. Major communication operations in the HipMer pipeline. G is the genome
size, L is the read length L, d is the coverage, a is the average number of contigs that
each read aligns onto (with a < L − k + 1), and γ is the fraction of reads that are not
assembled into contigs.

Stage Communication pattern Volume of data

k-mer analysis All-to-all exchange Θ(Gd · (L − k + 1)/L)

Contig generation All-to-all exchange Θ(G)

Irregular lookups Θ(G)

Global atomics Θ(G)

Sequence alignment All-to-all exchange Θ(G)

Irregular lookups Θ(Gd · a)

Scaffolding All-to-all exchange Θ(G)

Irregular lookups Θ(G)

Global atomics Θ(dG/L · e−d)

Gap closing All-to-all exchange Θ(γGd/L)

Irregular lookups Θ(γGd/L)

82 M. Ellis et al.

additional communication since it is merged into the initialization of the Bloom
filters. Additionally, for each k-mer, the extensions are recorded: these are the
two left and right neighboring bases in the original reads. If multiple extensions
occur, the most likely one is used; if there is no obvious agreement then none
is recorded. The result of k-mer analysis is a set of k-mers and their extensions
that with high probability include no errors. This set contains Θ(G) k-mers,
and is a compressed representation of the original read dataset because multiple
occurrences of a k-mer have been collapsed to a single instance.

2.2 Contig Generation

The k-mers are assembled into longer sequences called contigs, which are error-
free (with high probability) sequences that are typically longer than the original
reads. In HipMer, Contig generation utilizes a de Bruijn graph, which is a spe-
cial graph that represents overlaps in sequences. The k-mers are the vertices in
the graph and two k-mers are connected by an edge if they overlap by k − 1
consecutive bases and have corresponding extensions that are compatible (see
Fig. 1-Right for a de Bruijn graph example with k = 3).

A hash table is used to store a compact representation of the graph: A vertex
(k-mer) is a key in the hash table and the incident vertices are stored implicitly as
a two-letter code [ACGT][ACGT] that indicates the unique bases that immediately
precede and follow the k-mer in the read dataset. By combining the key and the
two-letter code, the neighboring vertices in the graph can be identified. These
graphs can require terabytes of memory for storing large genomes (e.g. pine or
wheat [4]), and traditionally have required specialized, very large shared-memory
machines. We overcome this limitation by employing the global address space of
Unified Parallel C [11] (UPC) in order to transparently store the hash table in
distributed memory, thereby utilizing the memory of many individual machines
in a unified address space.

During the parallel hash table construction, the input k-mers are hashed
and sent to the proper (potentially remote) bucket of the hash table by lever-
aging the one-sided communication capabilities of UPC. We avoid fine-grained
communication and excessive locking on the hash table buckets with a dynamic
aggregation algorithm [10]. This algorithm dynamically aggregates the k-mers
in batches before they are sent to the appropriate processors. The pattern here
is similar to k-mer analysis but is done asynchronously, where a single proces-
sor will send an aggregation of remote hash table inserts without waiting for
other processors. Unlike k-mer analysis, the total number of k-mers that have
to be communicated is Θ(G), since multiple occurrences of k-mers have been
collapsed during the k-mer analysis stage and this condensed k-mer set has size
proportional to the genome size.

The resulting de Bruijn subgraph is traversed in parallel to identify the con-
nected components, which are linear chains of k-mers, since we have excluded
all the vertices that do not have unique neighbors in both directions. Traditional
parallelization strategies of the traversal would not scale to large concurrencies
due to the size and shape of this high diameter graph (extremely long chains).

Performance Characterization of De Novo Genome Assembly 83

First, the de Bruijn subgraph is sparse (e.g. for human the de Bruijn graph would
be a 3 ·109 ×3 ·109 adjacency matrix with 2–8 eight non-zeros per row). Second,
the de Bruijn graph has also extremely high diameter (the connected compo-
nents in theory can have size up to the length of chromosomes, which is order
tens of millions of bases). In our specialized parallel traversal algorithm [10], a
processor Pi chooses a random k-mer as seed and initializes with it a new subcon-
tig. Then Pi attempts to extend the subcontig towards both of its endpoints by
performing lookups for the neighboring vertices in the distributed hash table.
The extending process continues until no more new edges can be found, or there
are forks in the graph (e.g. the vertex GAA in Fig. 1-Right represents a fork). The
access pattern in the distributed hash table consists of irregular, fine-grained
lookup operations. If two processors work on the same connected component
(i.e. both selected seed k-mers from the same contig), race conditions are avoided
via a lightweight synchronization scheme [10] based on remote atomics and
we have proved that our synchronization scheme scales to massive concurrencies
(thousands of compute nodes). The parallel traversal is terminated when all the
connected components in the de Bruijn graph are explored. Since the size of
the de Bruijn graph is proportional to the genome size, the traversal involves
accessing Θ(G) vertices via atomics and irregular lookup operations.

2.3 Read-to-Contig Sequence Alignment

For the alignment phase, we do not use alternative aligners, because, unlike
other aligners, HipMer’s parallel alignment scales to extreme concurrencies. It
also outputs all possible alignments, rather than a pruned subset, as input to
the scaffolding phase. HipMer’s alignment phase [9] maps the original reads onto
the contigs to provide information about the relative ordering and orientation of
the contigs, which is used in the final step of the assembly pipeline. First, each
processor stores a distinct subset of the contigs in the global address space so
that any other processor can access them. Then, substrings of length k, called
seeds, are extracted in parallel from the contigs and stored in the seed index,
which is a distributed hash table. Although seeds are conceptually the same as k-
mers, the value of k may be different than in earlier phases, and have a somewhat
different purpose. Each hash table entry has a seed as the key and a pointer to
the corresponding source contig as the value. There are Θ(G) seeds in total,
because the contigs constitute a fragmented version of the genome. The seed
index is constructed via an irregular all-to-all communication step similar to
the hash table construction in the contig generation phase. The seed index is then
used to align reads onto contigs. Each read of length L contains L − k + 1 seeds
of length k. For each seed s in a read, a fine-grained lookup in the global seed
index produces a set of candidate contigs that contain s. Although an exhaustive
lookup of all possible seeds would require a total of Θ(Gd

L (L − k + 1)) lookups,
in practice we perform Θ(Gd

L · a) lookups where a < L − k + 1, through the use
of optimizations that identify properties in the contigs during the seed index
construction [9]. Finally, after locating a candidate contig that has a matching
seed with the read under consideration, the Smith-Waterman algorithm [17] is

84 M. Ellis et al.

executed in order to perform local sequence alignment between the contig and
the read. The output of this stage is a set of reads-to-contig alignments.

2.4 Scaffolding and Gap Closing

The scaffolding step aims to “stitch” together contigs into sequences called scaf-
folds by assessing the paired-end information from the reads and the reads-to-
contigs alignments. Figure 2(a) shows three pairs of reads that map onto the same
pair of contigs i and j, creating a link that connects contigs i and j. A graph of
contigs can be created by generating links for all the contigs that are supported
by pairs of reads (see Fig. 2(b)). The contig graph is stored in a distributed hash
table, which requires irregular all-to-all communication for construction.
The graph of contigs (and consequently the number of links among them) is
orders of magnitude smaller that the k-mer de Bruijn graph because the con-
nected components in the k-mer graph are contracted to single vertices in the
contig-graph. According to the Lander-Waterman statistics [5], the expected
number of contigs is Θ(dG/L · e−d). A parallel traversal of the contig graph is
then performed to identify and remove “bubbles”, which are localized structures
involving divergent paths. This requires irregular lookups and global atom-
ics. A final traversal is done by selecting start vertices in order of decreasing
contig length (this heuristic tries to first stitch together “long” contigs) and
therefore it is inherently serial. At smaller scales, this will not have much of an
impact since the contig graph is relatively small compared to the k-mer graph.
At larger scales, the serial component will become the bottleneck. It is likely
that there will be gaps between the contigs within a scaffold (see Fig. 2(b)). An
attempt is made to close these gaps using the read-to-contig alignments, which
are processed in parallel and projected into the gaps. A distributed hash table is
used to localize the unassembled reads onto the appropriate gaps. Construction
of the table uses an irregular all-to-all communication pattern, but access-
ing the information in the table requires irregular lookups. Assuming that a
fraction γ of the genome is not assembled into contigs, this communication step
involves Θ(γGd/L) reads. Finally, the gaps are divided into subsets and each set
is processed by a separate thread, in a parallel phase. The localized reads are
used to attempt to close the gaps via a mini-assembly algorithm (an algorithm
that performs only k-mer analysis and contig generation on a strict subset of
the reads). The outcome of this step is a set of scaffolds (possibly with some
remaining gaps), constituting the result of the HipMer assembly pipeline. For
simplicity, we do not go into further detail on HipMer’s algorithms for diploid
assembly.

2.5 Summary of Communication Patterns

Table 1 summarizes the main communication patterns along with the corre-
sponding volume of communication for each stage. These communications pat-
terns govern the efficiency of the parallel pipeline at large scale, where most
of the stages are communication bound. The different communication patterns

Performance Characterization of De Novo Genome Assembly 85

contig i contig j

contig 1 contig 2 contig 3

contig 4 contig 5

link i j

link 1 2 link 2 3

link 4 5

scaffold 1

scaffold 2

(a) (b)

Fig. 2. (a) A link between contigs i and j that is supported by three read pairs. (b)
Two scaffolds formed by traversing a graph of contigs.

have, however, vastly different overheads. For example, the all-to-all communi-
cation exchange is typically bounded by the bisection bandwidth of the system,
assuming that the partial messages are large enough and there is enough con-
currency to saturate the available bandwidth. Conversely, fine-grained, irregular
lookups and global atomics are typically latency-bound. Although conventional
wisdom would suggest that these sorts of communication patterns are prohibitive
for distributed memory systems, we have shown that HipMer can strong scale
effectively [7], because there are fewer communication operations on the critical
path as concurrency increases.

3 Experimental Results and Analysis

Our experiments are conducted on 5 computing platforms, including the Cori II
Cray XC40 and Edison Cray XC30 supercomputers at NERSC, the Cray XK7
MPP at the Oak Ridge National Lab (CPU only), the Genepool heterogenous
Mellanox InfiniBand NERSC cluster, and an Ethernet Cluster consisting of 3
SunFire x4600 servers networked via 1 Gb shared switch as well as 10 Gb fiber
optic patch. Architectural details are presented in Table 2.

For the experimental evaluation, we used 2 datasets. The first dataset,
referred to as chr14, consists of 36.5 million paired-end reads from the fragment

Table 2. Evaluated platforms. ∗128 byte Get message latency in microseconds. †Using
the optimal number of cores per node. ‡Measured over approx. 2K cores or maximum
(128 for ethernet cluster). §MB/s with 8K message sizes. αCPU nodes only

Processor Cori II Cray XC40 Edison Cray

XC30

Titan Cray

XK7α
Genepool Ethernet

cluster

Intel Xeon-Phi

(Knights Landing)

Intel Xeon

(Ivy Bridge)

AMD Opteron

16-Core

Intel Xeon

(Haswell)

AMD Opteron

8376 HE

Freq (GHz) 1.4 2.4 2.2 2.3 2.3

Cores/node 68 24 16 32 32

Intranode LAT†∗ 3.3 0.8 1.1 2.7 0.6

BW/node †‡§ 57.3 436.2 99.2 113.0 1.2

Memory (GB) 96 64 32 256 512

Network and topology Aries Dragonfly Aries

Dragonfly

Gemini 3D

Torus

Infiniband

Mellanox

Ethernet 1Gb

and 10Gb

86 M. Ellis et al.

library of human chromosome 14, also used in the GAGE [15] evaluation. The
reads are 101 bp (base pair) in length and the fragment library has mean insert
size 155 bp. This relatively small dataset will be used to investigate the single
node performance and scalability at small scales. The second dataset, referred
as human, is a member of the CEU HapMap population (identifier NA12878)
sequenced by the Broad Institute. The genome contains 3.2 Gbp assembled from
2.9 billion reads, which are 101 bp in length, from a paired-end insert library
with mean insert size 395 bp. This dataset which is two orders of magnitude
bigger than chr14 will be used for the evaluation of the pipeline at larger scales,
although it is still relatively small compared to the genome size of some plants
and microbial communities.

3.1 Single-Node Performance Analysis

First, we examine the on-node scalability of HipMer on Cori II (our largest mul-
ticore node with 68 cores). HipMer attains perfect single node scaling (see Fig. 3)
between 1 and 68 threads (1 thread per core) on the chr14 dataset (37,609.7 s
on a single thread and 556.5 s on 68 threads, yielding a 67.6× speedup). If we
enable hyper-threading and use 2 threads per core on 64 cores, we observe a
reduction in the execution time by 19%. If we further use 4 threads per core we
observe an additional 3% reduction in the execution time. These results suggest
that hyper-threading can help on a single node. However, our benchmarking
revealed that the increased concurrency due to hyper-threading on a single node
affects severely the efficiency of the off-node communication operations. There-
fore we configure all the experiments in this paper with 1 thread per core (no
hyper-threading).

Figure 4 displays the total runtime per stage on the chr14 dataset for one
and two nodes of each machine utilizing all cores. For now, we consider only the
performance bars that correspond to the single node experiments. Examining
single node total runtimes, shows that the ratio between the slowest (Titan, AMD

Fig. 3. Cori II single KNL
node speedup up to 68 cores
for the small chr14 dataset.

Fig. 4. Cross-architecture single-node and two-node
performance by stages.

Performance Characterization of De Novo Genome Assembly 87

Opteron) and fastest (Cori II, Intel KNL) systems is a factor of 2.4×. Across
architectures, each stage of the pipeline takes similar portion of the respective
total execution time. The most time consuming part is k-mer analysis, followed
by the sequence alignment stage, confirming our analysis in Sect. 2.

These results also highlight the idiosyncrasies of the genome assembly work-
load; it does not include any arithmetic computations, instead it heavily relies
on irregular memory accesses and string and integer operations. As such, the
modern trends in multicore processor design with wider vectors accommodating
higher arithmetic throughput do not result in substantial performance improve-
ments (e.g. the single node Cori II execution is only slightly faster than the single
node Edison experiment). Efficient vectorization of the key string computations
can increase performance, but the major improvements on a single node come
from the increased concurrency/parallelism and the ability of the memory sub-
system to facilitate concurrent irregular memory accesses. At the same time, the
simpler core design in conjunction with the decreased clock frequency results
in worse single core performance for Knights Landing compared to the other
processors.

3.2 Scalability from Single Node to Multiple Nodes

Having examined HipMer’s single node performance, we now examine how it
scales to multiple nodes, again using the chr14 dataset - one small enough for
single nodes. Figure 4 shows the performance difference by stage as we scale
from 1 to 2 nodes. For all machines, we observe speedups well under 2×. The
speedup is between 1.12× and 1.18× for Cori II, Edison, and Genepool. Titan
has the highest speedup at 1.6×; however note, in absolute runtime, its single
node performance is 2.1× slower than Edison’s (for example), and due to its
relatively limited on-node memory and parallelism (see Table 2), it has the most
to benefit from additional node resources. Its relative internode latency is also a
significant factor, as we will discuss momentarily. The Ethernet Cluster, ran for
810 s on a single node and with either a 1 Gb or a 10 Gb interconnect, actually
has a 18.2× and 10.6× slowdown respectively (not shown due to scale).

This behavior is justified via a detailed analysis of each stage. The k-mer
analysis step typically is computation bound because its communication involves
efficient collective all-to-all exchanges with large messages (see Table 1) which
effectively utilizes the available bandwidth. For example, on 2 Cori II nodes, 6%
of the k-mer analysis time is spent in communication, and we observe almost lin-
ear scaling of the k-mer analysis step. On the other hand, the sequence alignment
step does not speedup and in some cases actually slows down. The communica-
tion pattern necessitated in the alignment stage consists of irregular, fine-grained
lookups implemented with get operations. Such operations are latency bound and
their efficiency depends on the underlying machine/network. Consequently, we
expect the alignment phase to be communication bound. For example, the get
latency for small messages on a fully occupied Edison node is 0.75µs, while
the average latency for two nodes is 2.39µs (measured via microbenchmarks).
We refer to “average” latency in the latter case because, under such a setting,

88 M. Ellis et al.

half the get operations are expected to result in on-node communication and
the remaining in off-node communication. Note, the number of lookups on the
critical path can be calculated from the number of reads assigned to each proces-
sor. Even though the number of threads is increased by a factor of two and the
number of irregular lookups on the critical path is decreased by a factor of two,
each of those operations is 3.2× more expensive, eventually yielding larger over-
all communication time in the alignment step. However, on Titan the respective
get latencies for small messages are 1.10µs for a single node and 1.79µs for 2
nodes. As a result we expect a speedup in the alignment phase, which is con-
firmed in Fig. 4. The same scaling argument holds for the remaining parallel
algorithms that rely on fine-grained irregular lookups and atomics (see Table 1).
For a description of the microbenchmarks used, see [7]; we were not able to
include our microbenchmarking data for all machines due to space limitations.

Figure 5 shows the strong scaling results for all machines on the chr14
dataset. Efficiency (the y axis) is calculated as T1/(Tp · p) where T1 is the total
runtime on a single node, p is the number of nodes (x axis), and Tp is the total
runtime on p nodes. From 1 to 2 nodes, Cori II, Edison, and Genepool’s effi-
ciencies decrease down to 55–60%. This behavior is explained in the previous
paragraph. As we scale from 2 to 8 nodes, the respective parallel efficiencies
drop at most by 26%. At this range of node counts most of the irregular accesses
in the parallel algorithms are off-node and as such the efficiency levels should
remain the same as we strong scale. This is the regime where we can observe
good strong scaling. Titan has the smallest parallel efficiency decrease between 1
and 2 nodes (20%), but it is still the most significant decrease in its series (which
continues to decrease roughly by 10% as the number of nodes doubles). While
its relative efficiency is higher than other machines, its absolute runtime is much
worse, and improves significantly with more memory and compute cores (hence,
higher speedups, as discussed in the previous section). The Ethernet Cluster
drops in efficiency by 95% or more from 1 to 2 nodes; because the Ethernet
cluster has only 3 nodes, we do not present further data. These trends show
that parallelizing the computation across some minimum number of nodes is
necessary to overcome the overhead incurred by internode communication. This
minimum number is dependent on the network and node characteristics. Beyond
this minimum number, the application can scale efficiently to large number of
nodes. We emphasize here that for realistically large datasets, one might have to
use multiple nodes to acquire the necessary aggregate memory. In such scenarios
the baseline performance is of that of multiple nodes and as such the strong
scaling efficiency is even better as we will see in the next subsection.

Another interesting feature in the data presented in Fig. 5, is the cross-over
in efficiency between Edison and Cori II at 64 nodes. Between 1 and 32 nodes,
the two machines maintain relatively close levels of efficiency (≤4% difference).
At 64 nodes onwards, Edison maintains a higher level of efficiency by roughly
10%. The key factors here are the higher core count of the Cori II nodes (64
versus 24 on Edison nodes) and the relatively small size of the dataset. At 64
nodes, the workload is parallelized over 4 K cores on Cori II, while Edison has

Performance Characterization of De Novo Genome Assembly 89

Fig. 5. Strong scaling efficiency for the
small chr14 dataset

Fig. 6. Execution time for the
human dataset

1.5 K cores at that same node count. Because the data set is relatively small, at
the concurrency of 4 K cores, Cori II lacks sufficient work per thread that can be
efficiently parallelized, especially during the scaffolding and gapclosing phases.

3.3 Large Scale Experimental Results

Finally, we present results from running HipMer at scale on the human dataset.
In Fig. 6, we show the total runtime of the pipeline (y axis) over the number
of nodes (x axis) for Cori II, Edison, and Titan. Not shown are the Ethernet
Cluster results, which ran for 22.56 h on a single node and on two nodes took
approximately 280 h and 161 h on the 1 Gb and 10 Gb interconnects respectively a
12.4× and 7.1× slowdown. Genepool results are also not shown since sufficiently
many nodes for this data set were not reservable.

The first thing to observe is the different node count that constitutes the
baseline for each machine. Since the memory requirement of the human dataset,
and the communication data structures for its effective distribution are quite
large, we need at least 32, 64, and 128 nodes on Cori II, Edison, and Titan,
respectively, to obtain the minimum required aggregate memory (approximately
4TB, see Table 2). On Cori II we scale up to 512 nodes (32,768 cores) with 47%
strong scaling efficiency, on Edison up to 1,024 nodes (24,576 cores) with 49%
efficiency and on Titan up to 1024 nodes (16,384 cores) with 37% efficiency. After
these levels of parallelism, the parallel efficiency drops substantially because the
work per thread is not sufficient. Other factors influencing the pipeline’s scala-
bility is the serial traversal in the scaffolding step and the initial I/O overhead to
load the input data. As the scale increases, the percentage of the total runtime
spent in the serial scaffolding traversal also increases. For example, on Cori II
at 512 nodes 29% of the total execution time is spent in the serial part of the
scaffolding while the corresponding serial component takes only 4% of the overall
execution time at 32 nodes.

90 M. Ellis et al.

4 Related Work

Our performance study in this paper captures the workload of other assemblers,
and here we described the most closely related ones that also use distributed
memory parallelism. Ray [2] is an end-to-end parallel de novo genome assembler
that utilizes MPI and exhibits strong scaling up to a modest number of nodes.
It produces both contigs and scaffolds directly from raw sequencing reads. One
drawback of Ray is the lack of parallel I/O support for reading and writing files.
ABySS [16] was the first de novo assembler written in MPI that also exhibits
strong scaling. Unfortunately, only the first assembly step of contig generation
is fully parallelized with MPI, and the subsequent scaffolding steps must be
performed on a single shared memory node. Spaler [1] is a contig generating
assembler based on Spark and GraphX. Results from Spaler have been given for
our smaller data set, chr14, and it shows good scaling. PASHA [12] is another
partly MPI based de Bruijn graph assembler, though not all steps are fully
parallelized as its algorithm, like ABySS, requires a large-memory single node
for the last scaffolding stages. SWAP 2 [13] is a parallelized MPI based de Bruijn
assembler that has been shown to assemble contigs efficiently for the human
genome, however it does not provide parallel scaffolding modules.

5 Conclusion

This work presents a cross-architectural evaluation of large-scale genome assem-
bly, a first study of its kind. The algorithms described in Sect. 2, are relevant for
all de novo assembly pipelines based on de Bruijn graphs [14], and is character-
ized by a workload dominated by fine-grained irregular memory accesses, with
no floating point arithmetic. Nonetheless, as shown in Sect. 3, HipMer attains
both excellent single node and distributed multinode scalability. We identified
the key computation and communication patterns, and associated architecture
and network characteristics, for achieving such effective scalability; namely all-to-
all exchanges (bisection bandwidth bounded), fine-grained irregular lookups and
global atomics (latency bounded). Further, we find the key to on-node scalability
for this type of workload is the available concurrency coupled with the memory
subsystems’ performance. We expect that these insights will help impact future
implementations of irregularly structured parallel methods and the underlying
architectural designs targeting these classes of computations.

Acknowledgments. All authors at Lawrence Berkeley National Laboratory (LBNL)
were supported by Department of Energy (DOE) Offices of Advanced Scientific Com-
puting Research (ASCR) and Biological and Environmental Research (BER), both
under contract number DE-AC02-05CH11231. This includes funding to BER’s Joint
Genome Institute, the ASCR-funded Exascale Computing Project, and the ASCR
Mathematics and Computer Science Research Programs. This word used resources
of ASCR’s National Energy Research Scientific Computing Center (NERSC) under
the same LBNL contract and ASCR’s Oak Ridge Leadership Facility (OLCF) under
Contract No. DE-AC05-00OR22725.

Performance Characterization of De Novo Genome Assembly 91

References

1. Abu-Doleh, A., Catalyurek, U.V.: Spaler: Spark and GraphX based de novo genome
assembler. In: 2015 IEEE International Conference on Big Data (Big Data), Octo-
ber 2015

2. Boisvert, S., Laviolette, F., Corbeil, J.: Ray: simultaneous assembly of reads from
a mix of high-throughput sequencing technologies. J. Comput. Biol. 17(11), 1519–
1533 (2010)

3. Chapman, J.A., Ho, I., Sunkara, S., Luo, S., Schroth, G.P., Rokhsar, D.S.: Mer-
aculous: de novo genome assembly with short paired-end reads. PLoS ONE 6(8),
e23501 (2011)

4. Chapman, J.A., Mascher, M., Buluç, A., Barry, K., Georganas, E., Session, A.,
Strnadova, V., Jenkins, J., Sehgal, S., Oliker, L., Schmutz, J., Yelick, K.A., Scholz,
U., Waugh, R., Poland, J.A., Muehlbauer, G.J., Stein, N., Rokhsar, D.S.: A whole-
genome shotgun approach for assembling and anchoring the hexaploid bread wheat
genome. Genome Biol. 16, 26 (2015)

5. Deonier, R.C., Tavaré, S., Waterman, M.: Computational Genome Analysis: An
Introduction. Springer Science & Business Media, New York (2005). doi:10.1007/
0-387-28807-4

6. Earl, D., Bradnam, K., St John, J., Darling, A., et al.: Assemblathon 1: a com-
petitive assessment of de novo short read assembly methods. Genome Res. 21(12),
2224–2241 (2011)

7. Georganas, E.: Scalable parallel algorithms for genome analysis. Ph.D. thesis,
EECS Department, University of California, Berkeley (2016)

8. Georganas, E., Buluç, A., Chapman, J., Hofmeyr, S., Aluru, C., Egan, R., Oliker,
L., Rokhsar, D., Yelick, K.: HipMer: an extreme-scale de novo genome assembler.
In: International Conference for High Performance Computing, Networking, Stor-
age and Analysis (SC 2015) (2015)

9. Georganas, E., Buluç, A., Chapman, J., Oliker, L., Rokhsar, D., Yelick, K.: mer-
Aligner: a fully parallel sequence aligner. In: Proceedings of the IPDPS (2015)

10. Georganas, E., Buluç, A., Chapman, J., Oliker, L., Rokhsar, D., Yelick, K.: Par-
allel de Bruijn graph construction and traversal for de novo genome assembly.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC 2014) (2014)

11. Husbands, P., Iancu, C., Yelick, K.: A performance analysis of the Berkeley UPC
compiler. In: Proceedings of International Conference on Supercomputing, ICS
2003, pp. 63–73. ACM, New York (2003)

12. Liu, Y., Schmidt, B., Maskell, D.L.: Parallelized short read assembly of large
genomes using de Bruijn graphs. BMC Bioinform. 12(1), 354 (2011)

13. Meng, J., Seo, S., Balaji, P., Wei, Y., Wang, B., Feng, S.: Swap-assembler 2: opti-
mization of de novo genome assembler at extreme scale. In: 45th International
Conference on Parallel Processing (ICPP), pp. 195–204. IEEE (2016)

14. Miller, J.R., Koren, S., Sutton, G.: Assembly algorithms for next-generation
sequencing data. Genomics 95(6), 315–327 (2010)

15. Salzberg, S.L., Phillippy, A.M., Zimin, A., Puiu, D., et al.: GAGE: a critical evalu-
ation of genome assemblies and assembly algorithms. Genome Res. 22(3), 557–567
(2012)

16. Simpson, J.T., Wong, K., et al.: ABySS: a parallel assembler for short read sequence
data. Genome Res. 19(6), 1117–1123 (2009)

17. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
J. Mol. Biol. 147(1), 195–197 (1981)

http://dx.doi.org/10.1007/0-387-28807-4
http://dx.doi.org/10.1007/0-387-28807-4

NVIDIA Jetson Platform Characterization

Hassan Halawa, Hazem A. Abdelhafez(B), Andrew Boktor, and Matei Ripeanu

The University of British Columbia, Vancouver, Canada
{hhalawa,hazem,boktor,matei}@ece.ubc.ca

Abstract. This study characterizes the NVIDIA Jetson TK1 and TX1
Platforms, both built on a NVIDIA Tegra System on Chip and combin-
ing a quad-core ARM CPU and an NVIDIA GPU. Their heterogeneous
nature, as well as their wide operating frequency range, make it hard
for application developers to reason about performance and determine
which optimizations are worth pursuing. This paper attempts to inform
developers’ choices by characterizing the platforms’ performance using
Roofline models obtained through an empirical measurement-based app-
roach as well as through a case study of a heterogeneous application
(matrix multiplication). Our results highlight a difference of more than
an order of magnitude in compute performance between the CPU and
GPU on both platforms. Given that the CPU and GPU share the same
memory bus, their Roofline models’ balance points are also more than
an order of magnitude apart. We also explore the impact of frequency
scaling: build CPU and GPU Roofline profiles and characterize both plat-
forms’ balance point variation, power consumption, and performance per
watt as frequency is scaled.

The characterization we provide can be used in two main ways. First,
given an application, it can inform the choice and number of processing
elements to use (i.e., CPU/GPU and number of cores) as well as the
optimizations likely to lead to high performance gains. Secondly, this
characterization indicates that developers can use frequency scaling to
tune the Jetson Platform to suit the requirements of their applications.
Third, given a required power/performance budget, application develop-
ers can identify the appropriate parameters to use to tune the Jetson
platforms to their specific workload requirements. We expect that this
optimization approach can lead to overall gains in performance and/or
power efficiency without requiring application changes.

1 Introduction

Optimizing software based on the underlying platform is non-trivial. This is due
to complex interactions between the application code, the compiler, and the
underlying architecture. Typically it is difficult to reason about the achievable
application performance and decide on the best potential optimizations to apply.
The problem becomes much harder for heterogeneous systems consisting of mul-
tiple processing elements of different types each with unique properties that
make them suitable for different kinds of computing patterns and optimizations.

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 92–105, 2017.
DOI: 10.1007/978-3-319-64203-1 7

NVIDIA Jetson Platform Characterization 93

Thus, figuring out how best to distribute work over the different processing ele-
ments, what the best optimizations are, and how to manage the communication
overhead due to data transfer between the processors, represent key challenges
for the development of efficient heterogeneous applications.

NVIDIA introduced their own embedded heterogeneous systems in the form
of the Jetson TK1 (in 2014) and, recently, the TX1 (in 2015) Platforms. Two
characteristics make those systems stand out compared to most commodity het-
erogeneous architectures. First, their integrated nature: the various computing
elements share the same memory bus; and second the wide range (one order
of magnitude) of frequency scaling. These characteristics, as well as their low
power consumption, makes them a great choice for today’s embedded applica-
tions and outline a possible future path for tomorrow’s high-performance plat-
forms. However, their performance characteristics are still not well understood
and optimizing applications to make full use of their heterogeneous capabilities
is non-trivial.

One method to characterize the performance of a platform is through a
bound-and-bottleneck analysis. Such an analysis aims to provide simple and
insightful performance bounds on applications. An example of such an approach
is the Roofline model [10] which ties together peak computation capability (e.g.,
floating-point compute rate) and the memory bandwidth of a platform with the
observed application performance. The Roofline model provides a visual guide-
line which can help explain the observed application performance, relate it to the
peak performance obtainable, help determine whether an application is compute-
or memory-bound, and guide the reasoning of which/whether further investment
in performance optimization is worthwhile (Sect. 5).

This paper presents a performance characterization of the NVIDIA Jetson
TK1 and TX1 based on the Roofline model. We use an empirical measurement-
based approach1 (Sect. 2) with the aim of achieving a more reliable characteriza-
tion as opposed to merely relying on back-of-the-envelope calculations based on
theoretical peak performance. Moreover, due to the complexity of the underly-
ing hardware, the theoretical peak may not even be achievable in practice (e.g.,
due to power caps, as we demonstrate using our empirical Roofline profiles).
Additionally, given the wide operating frequency range offered, we investigate
and characterize the impact of frequency scaling on floating-point performance,
power consumption, balance point, and performance per watt (Sect. 3). Finally
we present our experience with tuning a matrix multiplication kernel, a crucial
component of many scientific and HPC applications, for both platforms. Our
aim is to provide application developers with the necessary data to allow them
to tune the Jetson Platforms to suit the requirements of their applications. Such
an optimization approach could lead to increases in performance and/or energy
efficiency without requiring any application changes as we discuss in Sect. 6.

1 Our benchmarks are available online at: https://bitbucket.org/nsl europar17/
benchmarks.

https://bitbucket.org/nsl_europar17/benchmarks
https://bitbucket.org/nsl_europar17/benchmarks

94 H. Halawa et al.

Table 1. Jetson TK1 and TX1 platform specifications as reported by the running OS
and collected from relevant documentation such as [4,5]

TK1 platform TX1 platform

CPU 4+1-core 32-bit ARM
Cortex-A15

4+4-core 64-bit
ARM Cortex-A57

Architecture ARMv7-A ARMv8-A

L1/L2 cache 32 KB/512 KB 32KB/2 MB

Main core frequency range 204 MHz → 2.3205 GHz 102MHz → 1.734 GHz

Power-saving core frequency range 51 MHz → 1.092GHz N/A

Peak theoretical FLOPS 74.26 GFLOPS 55.48 GFLOPS

GPU Kepler (192 CUDA
Cores)

Maxwell (256
CUDA Cores)

L2 Cache 128 KB 256KB

Frequency range 72 MHz → 852MHz 76.8 MHz → 998.4 MHz

Peak theoretical FLOPS 327 GFLOP/s 511 GFLOP/s

DRAM 2 GB DDR3L RAM
(933 MHz, 2 Channels)

4GB LPDDR4
RAM (1.6 GHz, 2
Channels)

Data bus width 64 bit 64 bit

Peak theoretical bandwidth 14.93 GB/s 25.6 GB/s

2 Methodology

Table 1 presents in detail the TK1 and TX1 specifications. To construct the
empirical Roofline profiles we developed two approaches: the first, similar to
that proposed in [7], relies on hardware counters (available for the CPUs only),
while the second obtains the same level of information for the GPUs by using
microbenchmarking techniques similar to those used by Wong et al. [11]. We
rely on an empirical measurement-based approach as opposed to one just based
on peak performance calculations for two main reasons. First, the presented
empirical results arguably provide a more realistic, and reliable characteriza-
tion. Secondly, the theoretical peaks may not even be achievable in practice due
to various complexities in the underlying hardware and power caps. We demon-
strate this disparity between the two approaches as part of our evaluation in
Sect. 3.

2.1 CPU Micro-Benchmarks

The ARM Cortex A15 and A57 both support various types of floating-point
operations including fused multiply-add (FMA) and SIMD operations. Typical
scalar floating-point operations are handled by the ARM core’s Vector Floating-
Point (VFP) unit whereas vector floating-point operations (SIMD) are handled

NVIDIA Jetson Platform Characterization 95

by the ARM core’s NEON 128 bit SIMD engine. The VFP and NEON units
share the same floating-point registers.

We designed a micro-benchmark in assembly that can operate with a user-
defined variable operational intensity (i.e., a variable ratio between floating-
point and memory operations). This micro-benchmark mixes SIMD double-word
store instructions (using an unrolled loop of store instructions operating on 2
single-precision floating-point operands) as well as SIMD floating-point opera-
tions (using the NEON SIMD unit to compute an FMA of 4 single-precision
floating-point operands). By varying the ratio between the store instructions
and the SIMD floating-point instructions, we vary the operational intensity of
the micro-benchmark to generate the Roofline profiles.

The Cortex-A15 and Cortex-A57 include a Performance Monitor Unit (PMU)
that provides access to six hardware counters. We used the counters to estimate:
the number of Floating-Point Instructions, the number of Vector (SIMD) Instruc-
tions, and the number of Loads and Stores. We then used this to derive the rate
of Floating-Point Operations (FLOPS) as well as the memory bandwidth.

2.2 GPU Micro-Benchmarks

To obtain the Roofline profile for the GPU, where no hardware counters are
available, we developed a benchmark with variable compute intensity (from 0.125
FLOPs/Byte to 1024 FLOPs/Byte). The benchmark loads 3 values from mem-
ory, performs a variable number of FMA operations on them, then stores the
results. We disassembled the binary and verified that the benchmark contains
exactly the intended number of memory and FMA operations.

We built two additional benchmarks: a memory bandwidth benchmark and a
FLOPS benchmark. The memory bandwidth benchmark performs a vector add
operation and is completely memory-bound. We use this benchmark to compute
the memory bandwidth for the GPU and compare it to a similar benchmark on
the CPU since memory is shared. The FLOPS benchmark is a high compute
intensity benchmark, performing around a hundred thousand FMA instructions
for each 4 float values loaded from memory. We use it to estimate the max-
imum achievable FLOPS. The results of those two benchmarks validate our
variable intensity benchmark which approaches those asymptotes but does not
cross them.

2.3 Other Methodology Notes

Scaling. The Jetson platforms offer a wide range of configuration options that
include: the number of operational CPU cores, the CPU cores’ operating fre-
quency, as well as the number of application threads to execute. Each configu-
ration point changes the performance characteristics in terms of single-precision
floating-point performance, memory bandwidth, and power consumption.

Power Consumption. We use a Watts Up? PRO Power Meter [2] connected
via USB to the Jetson development boards. This allows us to collect power

96 H. Halawa et al.

consumption statistics (at 1 Hz) during our benchmarks. As a baseline for the
subsequent power consumption measurements, we measured the idle power con-
sumption with the default dynamic frequency scaling and power-saving profiles.
The idle power draw was ≈3.1 W for TK1 and ≈3.8 W for TX1.

3 Platform Characterization

3.1 CPU Characterization

Roofline Profiles. Figure 1 shows the theoretical peak as well as the measured
Roofline profiles for both platforms (at peak frequency and with the number
of application threads equal to the number of cores). For the TK1, the maxi-
mum single-precision FLOPS rate achieved was 73.02 GFLOPS. This represents
≈98.3% of the theoretical peak and defines the upper limit for a compute-bound
application. The maximum observed memory bandwidth was 13.72 GByte/Sec
which represents ≈91.9% of the theoretical peak and defines the upper bound
for memory-bound applications. The intersection of the two bounds defines the
balance point (i.e., the point where an application spends the same amount of
time fetching data from memory and computing on it) at 5.32 FLOPS/Byte. For
the TX1, the maximum FLOPS rate achieved was 54.31 GFLOPS (≈97.8% of
the theoretical peak), the maximum observed memory bandwidth was 20.2 GB/s
(≈78.9% of the theoretical peak), and the balance point is at 2.68 FLOPS/Byte.

Figure 1 highlights that, on the one hand, the measured peak TX1 FLOPS
rate is lower than that of the TK1 (by ≈25.6%). This can be attributed to
its lower maximum frequency while using the same 128-bit wide SIMD engine.
On the other hand, the measured peak TX1 memory bandwidth is higher than
that for the TK1 (by ≈47.2%). This difference is caused by the higher DRAM
frequency for the TX1 (1.6 GHz) compared to the TK1 (933 MHz) given that
both utilize dual channel DRAM with the same 64-bit wide data bus. These
differences cause the balance point to shift from 5.32 FLOPS/Byte for the TK1
to 2.68 FLOPS/Byte for the TX1. Thus, the TX1 CPU is more suitable for
memory-bound applications (given its higher memory bandwidth and lower bal-
ance point).

The Impact of Frequency Scaling on Power Consumption and Roofline
Profiles. We investigated the performance characteristics of both platforms for
all CPU frequency scaling configurations. Due to space constraints we present
only a subset of the results for the TK1 (Fig. 2). There are two important obser-
vations: firstly, frequency scaling has a larger impact on the FLOPS rate achieved
than on memory bandwidth, and, secondly, the platform has a large dynamic
power range (3.2x from 3.4 W to 10.8W). Using the power-saving core (labelled
0c in the figure) increases the power range to 3.6x. It can also be observed
that the power-saving core does not offer a good power/performance trade-off:
when running the TK1’s power-saving core at 204 MHz compared to all 4 high-
performance cores at the same frequency, a power-saving of ≈11.7% is achieved
but at the cost of a ≈78.4% decrease in performance.

NVIDIA Jetson Platform Characterization 97

Fig. 1. CPU Roofline profiles:
theoretical peak and measured
CPU performance for the TK1
(blue) and TX1 (red). (Color
figure online)

Fig. 2. TK1 Roofline profiles for the power-saving
core (labelled 0c) and all normal cores (labelled
4c). We also vary the number of threads (labels 1t
vs. 4t). Each line label includes measured power
consumption.

The Impact of Frequency Scaling on the Balance Point. For each fre-
quency, we compute the balance point. Surprisingly, in Fig. 3, we observe that
the TK1 can be configured to cover a wider range of balance points, a potentially
useful feature when attempting to match hardware capabilities to the application
demand as we discuss in Sect. 6.

The Impact of Frequency Scaling on Power-Normalized Computa-
tional Rate (FLOPS/Watt). Figure 4 examines the power consumption (left
y-axis) and performance per watt (right y-axis) for all possible CPU frequencies
for a compute intensive application. It can be seen that the TK1 typically con-
sumes less power across the entire frequency range compared to the TX1. This,
in addition to its higher floating-point performance, results in a higher energy
efficiency (performance per watt) across the entire frequency range.

Fig. 3. The impact of frequency scaling on
the balance point (4 cores, 4 threads) for
TK1 (blue) and TX1 (red). (Color figure
online)

Fig. 4. Power and performance per
Watt while scaling CPU frequency (4
cores, 4 threads) for TK1 (blue) and
TX1 (red). (Color figure online)

98 H. Halawa et al.

Fig. 5. TX1 Maxwell GPU Roofline: the-
oretical (solid line) and achieved (dots).
(Color figure online)

Fig. 6. GPU power and performance
per watt for a compute-bound bench-
mark.

3.2 GPU Characterization

Roofline Profiles. Figure 5 shows the Roofline profiles constructed for the TX1
GPU (TK1 profiles are similar, not shown here to conserve space). We find
that, in some cases, the theoretical peak is unattainable even with highly tuned
benchmarks. We therefore use our benchmarks to estimate the Roofline bounds
(solid lines in the figures). The Kepler GPU on the TK1 is able to achieve up to
218 GFLOP/s while the Maxwell GPU on the TX1 achieves 465 GFLOP/s. The
memory bandwidth is at 12 GB/s and 17.3 GB/s respectively (similar to the
CPU results). For better readability, we only show a subset of the frequencies.

The Impact of Frequency Scaling: Power-Normalized Computational
Rate (FLOPS/Watt). NVIDIA focused on power efficiency when designing
the TX1’s Maxwell GPU. Our results confirm this: TX1 provides 3x higher
performance per watt compared to TK1 (Fig. 6). Note the impressive 6x (TK1)
and 20x (TX1) higher FLOPS/Watt for GPUs compared to CPUs.

The Impact of Frequency Scaling on the GPU Balance Point, Peak
FLOPS Rate, and Peak Bandwidth. We observe similar behaviors on both
platforms in Fig. 7: at low GPU frequencies, both memory and compute band-
width increase linearly as the frequency is scaled. The memory bandwidth at

Fig. 7. The impact of frequency scaling on the TK1 (left) and TX1 (right) balance
point (left y-axis), peak bandwidth (left y-axis), and peak FLOPS rate (right y-axis).
Note the different scales on the y-axes.

NVIDIA Jetson Platform Characterization 99

low frequencies is bottlenecked by the ability of the processor to issue instruc-
tions fast enough to saturate the memory bus. After ≈300–400 MHz, the peak
FLOPS rate continues to increase linearly with frequency, however, the memory
bandwidth stops increasing linearly and becomes constant. As such, the bal-
ance point is constant for the lower frequencies while for higher frequencies the
balance point increases linearly as the frequency is scaled.

It is worth noting that the platforms offer a different range for the balance
point: on the TK1, the GPU balance point ranges between 6 and 18 FLOPs/Byte
while on the TX1 it ranges from 11 to 27. This is largely due to the superior
performance of the Maxwell architecture. In contrast with the CPU results, the
TK1’s Kepler GPU can be better tuned for applications with lower intensity
while the TX1’s Maxwell GPU can be better tuned for applications with higher
intensity. However, due to the TX1’s higher memory bandwidth and higher com-
pute rate we find that its GPU provides equal or better performance regardless
of the application’s arithmetic intensity. In other words, the TX1’s GPU pro-
vides better performance than that on the TK1 for all intensities, despite the
fact that it is operating sub-optimally at the lower ones.

4 Case Study: Matrix Multiplication

To study the effect of frequency scaling on performance/energy beyond micro-
benchmarks, we developed a tuned matrix multiplication kernel that can be run
on the CPU only, the GPU only, or be partitioned on the heterogeneous platform.
We chose matrix multiplication as it is an operation that is essential in many
scientific and HPC applications.

Our CPU implementation is based on the OpenBLAS matrix multiplication
single precision subroutine (SGEMM). For OpenBLAS, we enable optimization
flags for the ARMV8 architecture to support the advanced features present in the
processor. This enables the use of NEON SIMD instructions for performing vec-
tor floating point operations. The library also implements matrix tiling (block-
ing) optimized for the multi-level caches of each processor and loop unrolling.
For the NVIDIA GPUs we use the cuBLAS [6] library, a BLAS implementation
optimized for NVIDIA GPUs. Our developed heterogeneous matrix multiplica-
tion kernel can partition the matrices between the CPU and the GPU to take
advantage of the optimizations by OpenBLAS and cuBLAS.

Collecting Results: In each run we measure the performance in terms of
FLOPS and power consumed. The number of floating point operations in a
matrix multiplication routine is independent of the underlying hardware or the
processor used. Assuming square matrices of size n× n, then matrix multiplica-
tion generates 2 × n3 FLOPS. We measure the running time which we then use
to obtain the computation rate (GFLOPS).

Configurations: We used different matrix sizes to cover the fit-in-cache and
non-fit in cache cases, this shows the effect of matrix tiling (blocking) on perfor-
mance. In the heterogeneous case, for space limitations, we selected the lowest

100 H. Halawa et al.

and highest frequencies for each of the CPU and GPU. Moreover, we fixed the
matrix size to 4096 and limited the cpuColumns to be a value out of (16, 128,
512) columns. From our experience, increasing the cpuColumns to more than 512
degrades the performance as the computation is heavily unbalanced between the
CPU and the GPU.

CPU/GPU Only Experiments: Figures 8 and 9 present the energy efficiency
(GFLOPS/Watt) while scaling frequency. The figures show a sample of the
results that covers fit-in-cache (matrix sizes 32 and 64) and non-fit in cache
(matrix sizes 128, 512 and 4096) cases. We note that efficiency saturates (or
even decreases) above 1428 MHz for the CPU and 691 MHz for the GPU: scaling
up frequency, while improving runtime, leads to higher power consumption and
thus lower energy efficiency.

Heterogeneous (CPU and GPU): The CUDA toolkit v8.0, deployed on the
TX1, offers multiple software-level mechanisms to use the shared global physical
memory between the CPU and the GPU such as the Unified Memory Archi-
tecture (UMA). Using UMA allows us to allocate and initialize the matrix on
the shared memory with no need for explicit memory transfers. At first glance,
one would think that with UMA and shared memory, an efficient heterogeneous
matrix multiplication can be easily implemented. However, NVIDIA’s documen-
tation [1, J2.2] states that for GPUs with compute capability less than 6.x (the
TX1’s is 5.3), it is not possible for the CPU and GPU to access (read or write)
a memory location allocated using UMA simultaneously.2

After evaluating the alternatives, we settled on the following solution: to
compute A × B = C, we split matrices B and C by columns. We specify the
number of columns that the CPU will process as cpuColumns and the rest is
processed on the GPU. The allocation is performed using UMA to avoid copying

Fig. 8. CPU power efficiency values for dif-
ferent matrix sizes

Fig. 9. GPU power efficiency for differ-
ent matrix sizes

2 We tried several alternative techniques such as using mprotect() which changes mem-
ory access permissions on a specific memory range. The NVIDIA driver locks the
memory accessed by the GPU kernels until they complete. Therefore, it is not possi-
ble to have a shared matrix object accessed at the same time by the CPU and GPU
even when we use UMA, even if all accesses are read-only.

NVIDIA Jetson Platform Characterization 101

Fig. 10. Run-time configurations effect on performance and power consumption

the results back from the GPU. With this approach, we eliminated any write
conflict between the GPU and the CPU on the shared memory, at the cost
of wasting memory by duplicating matrix A (imposed by the limited compute
capability).

Figure 10, plots a chart that highlights the value of the configurable frequency
scaling of the TX1. The figure highlights the multiple criteria that can be used to
select a configuration (CPU/GPU frequencies, cpuColumns values). For exam-
ple, in situations where capping power is the limiting factor one can determine
the best frequency configuration that meets the power cap. Alternatively, in
situations where meeting a runtime constraint is important, one can select the
most energy efficient configuration that meets the imposed runtime deadline. It
is worth noting that that the observed operational space varies over a wide range
along the performance and power dimensions (over one order of magnitude on
performance and 4x on power).

5 Related Work

The Roofline Model [10], is a visual model that makes it easier to reason
about bounds to attainable performance. It combines the operational intensity
(FLOPS per Byte), floating-point performance (FLOPS) and memory band-
width (Bytes per Second) together into a two-dimensional plot that outlines the
performance bounds of the platform (defined by a Roofline profile which acts as
an envelope). Moreover, such a bound-and-bottleneck characterization approach
provides insights into the primary factors affecting the performance of individ-
ual applications based on their position on the plot with respect to the Roofline

102 H. Halawa et al.

profile (e.g., whether they are compute-bound or memory-bound depending on
their operational intensities) and thus allows application developers to prioritize
which optimizations to pursue to improve performance.

Roofline Model Uses. Ofenbeck et al. [7] take a practical approach to apply-
ing the Roofline model. They use measured data based on benchmarks to reason
about the performance in a way similar to the methodology we employ to gener-
ate our CPU Roofline. However, this study focuses on an Intel architecture with
access to fine-grained event counters through the Performance Monitoring Unit.
Wong et al. [11] use a carefully crafted set of benchmarks to discover the microar-
chitecture of GPUs. Their approach is to craft microbenchmarks that amplify
the different microarchitecture parameters and make them visible at runtime
to uncover detailed information about GPU internals. We use similar bench-
mark design to compute the GPU Roofline. Lo et al. [3] developed the Empirical
Roofline Tool and use it to empirically construct Roofline models for a variety of
accelerated architectures (including multicore, manycore, and GPU-accelerated
architectures). The toolkit makes use of instrumented microbenchmarks imple-
mented in MPI, OpenMP, and CUDA. Our methodology is similar to that used
in the Empirical Roofline Tool to construct the GPU Roofline, however, we rely
on hardware performance counters to generate the CPU Roofline.

NVIDIA Jetson Platform Characterization. Although there are many
applications that use the unique capabilities of the studied platforms (partic-
ularly TK1 such as [8,9]), to the best of our knowledge, we are the first to
carry out a complete characterization. In [8], the authors employ an application:
a distributed MPI-based neural network simulation, to compare a distributed
embedded platform (based on several interconnected TK1s) with a server plat-
form (based on an Intel quad-core dual socket system). The authors show that
the distributed embedded platform’s instantaneous power consumption is 14.4x
lower despite the server platform being 3.3x faster (in terms of execution time).
Another study [9] evaluates the TK1 in an HPC context as a cloud offload unit
for a discrete Tesla K40 GPU. The study shows that such a cluster approach
offers superior power efficiency compared to using a separate discreet GPU, while
offering substantially better performance than using the TK1 by itself.

6 Summary and Discussion

We characterized the performance of the NVIDIA Jetson TK1 and TX1 Plat-
forms by presenting Roofline profiles for both the CPU and the GPU on each
platform. When comparing the CPU vs. GPU performance, our Roofline profiles
showed a difference of more than an order of magnitude on compute performance
suggesting that the GPU on the Jetson Platforms is preferable for compute inten-
sive applications. Since the CPU and GPU share the same memory bandwidth,
the balance points are also more than an order of magnitude apart. Addition-
ally, we explored the impact of frequency scaling on floating-point performance,
balance point, power consumption, and efficiency (GFLOPS/watt).

NVIDIA Jetson Platform Characterization 103

The data provided by this study offers application developers a starting point
when tuning the platforms to their applications’ requirements (by choosing the
optimal operational frequency on the CPU/GPU) and indicates that net gains
in performance and/or power efficiency without any modifications to the appli-
cations can be obtained.

We discuss below the key implications of our observations for application
developers and device manufacturers.

6.1 Implications for Application Developers

Modular Application Design and the Division of Work. The asymmetric nature
of the CPU and GPU can be harnessed by application developers during runtime
for optimum performance and energy efficient computing. Highly parallelizable
portions of the application are more suited for deployment on the GPU with
its larger number of SIMD units while the less parallelizable parts (or those
requiring a more complex processor pipeline) can be executed on the CPU. As
such, developers should design their applications in a modular way so as to allow
for the efficient distribution of work across the available asymmetric cores.

A Free Lunch? Reducing Power Consumption without Performance Degradation.
If an application’s computational intensity is below the platform’s balance point,
then the application could potentially be able to save energy without sacrificing
performance by scaling the frequency down until the balance point is equal to its
required intensity. This works only down to the point where the system becomes
bottle-necked on the memory bandwidth. Beyond this point, further reduction
of frequency will result in performance degradation.

Tuning the Platform, an Alternative Method to Optimize Application Perfor-
mance. Typically application developers apply various optimizations to their
code in order to try to attain the maximum performance possible on the target
platform. We propose that application developers can alternatively tune the plat-
form to the operational intensity of the developed application in order to achieve
optimum compute performance and/or power-saving. One way to do this is for
application developers to statically determine the appropriate frequency scaling
for their applications and then set the CPU/GPU to this frequency at runtime.
Our analysis suggests that application developers can tune the Jetson Platforms
to the applications’ requirements to achieve net gains in application performance
and/or energy efficiency without the need to modify the application itself.

Full System Power. In addition to the other benefits provided by the shared
memory architecture on the Jetson platform, we find that the emphasis on low
full system power has important implications. The platform was designed for
embedded applications, thus, emphasis was placed on optimizing its idle power
as well as the power consumed by supporting components. At idle, we find that
both platforms consume less than 3W. This is negligible when compared to
traditional machines that host a CPU and/or a GPU. As a result, under load,

104 H. Halawa et al.

close to all of the power consumed goes to the active components (CPU, GPU
and DRAM), and makes the full system’s power efficiency much better compared
to other platforms.

6.2 Implications for Device Manufacturers

Simplify Application Development. In order to increase the adoption of heteroge-
neous compute platforms, device manufacturers should focus on simplifying the
application development process as well as the tools available to developers. The
promise of such platforms is higher performance and better energy efficiency but,
in our experience, this potential is not currently attainable without significant
effort by application developers.

This is currently a major drawback of the NVIDIA Jetson platform. In order
to provide implementations optimized for the CPU and the GPU, application
developers need to rewrite their applications specifically for each processor. For
the CPU, almost any general purpose programming language can be utilized but
typically a low-level programming language such as C or Assembly is used to
extract the maximum performance possible. While for the GPU, CUDA must be
used in order to make full use of the features and libraries provided by NVIDIA.
There is little reuse of application code between optimized CPU and GPU imple-
mentations with this development approach. The significant development effort
and costs involved represent a high barrier to entry.

Better Dynamic Frequency Scaling. In theory, manufacturers could potentially
instrument the hardware to dynamically estimate the running application’s
arithmetic intensity. Based on the computed intensity, the device can apply
dynamic frequency scaling to reduce the consumed power even under 100% uti-
lization. A good guess for the frequency that would work best can be based on
trying to match the hardware balance point with the application’s intensity. Fol-
lowing such an approach could potentially lead to reduced power consumption
as well as increased performance per watt without any changes to the running
applications.

Memory Bandwidth at Lower Frequencies. Based on our findings, the memory
bandwidth becomes a performance bottleneck at lower operating frequencies.
Device manufacturers can try to avoid this bottleneck by designing the hardware
to support the full memory bandwidth even at the lowest frequencies. This would
allow a wider range of achievable balance points and, in turn, lead to larger
power-savings for applications with low computational intensity.

References

1. NVIDIA CUDA toolkit v8.0: https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#um-unified-memory-programming-hd.
Accessed 16 Feb 2017

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd

NVIDIA Jetson Platform Characterization 105

2. Watts-up: https://www.wattsupmeters.com/. Accessed 23 Aug 2016
3. Lo, Y.J., Williams, S., Van Straalen, B., Ligocki, T.J., Cordery, M.J., Wright,

N.J., Hall, M.W., Oliker, L.: Roofline model toolkit: a practical tool for architec-
tural and program analysis. In: Jarvis, S.A., Wright, S.A., Hammond, S.D. (eds.)
PMBS 2014. LNCS, vol. 8966, pp. 129–148. Springer, Cham (2015). doi:10.1007/
978-3-319-17248-4 7

4. NVIDIA: Technical brief NVIDIA Jetson TK1 development kit: bringing GPU-
accelerated computing to embedded systems. Technical report, April 2014

5. NVIDIA: Tegra X1: NVIDIA’s new mobile superchip. Technical report, January
2015

6. NVIDIA: CUBLAS library. Technical report, September 2016
7. Ofenbeck, G., et al.: Applying the Roofline model. In: ISPASS 2014, pp. 76–85,

March 2014
8. Paolucci, P.S., et al.: Power, energy and speed of embedded and server multi-cores

applied to distributed simulation of spiking neural networks: ARM in NVIDIA
Tegra vs Intel Xeon quad-cores. CoRR abs/1505.03015 (2015)

9. Ukidave, Y., et al.: Performance of the NVIDIA Jetson TK1 in HPC. In: 2015
IEEE International Conference on Cluster Computing (CLUSTER), pp. 533–534,
September 2015

10. Williams, S., et al.: Roofline: an insightful visual performance model for multicore
architectures. Commun. ACM 52(4), 65–76 (2009)

11. Wong, H., et al.: Demystifying GPU microarchitecture through microbenchmark-
ing. In: ISPASS 2010, pp. 235–246. IEEE (2010)

https://www.wattsupmeters.com/
http://dx.doi.org/10.1007/978-3-319-17248-4_7
http://dx.doi.org/10.1007/978-3-319-17248-4_7

Following the Blind Seer – Creating Better
Performance Models Using Less Information

Patrick Reisert, Alexandru Calotoiu, Sergei Shudler(B), and Felix Wolf

Technische Universität Darmstadt, 64289 Darmstadt, Germany
kpreisert@gmail.com, {calotoiu,shudler,wolf}@cs.tu-darmstadt.de

Abstract. Offering insights into the behavior of applications at higher
scale, performance models are useful for finding performance bugs and
tuning the system. Extra-P, a tool for automated performance modeling,
uses statistical methods to automatically generate, from a small number
of performance measurements, models that can be used to predict perfor-
mance where no measurements are available. However, the current ver-
sion requires the manual pre-configuration of a search space, which might
turn out to be unsuitable for the problem at hand. Furthermore, noise in
the data often leads to models that indicate a worse behavior than there
actually is. In this paper, we propose a new model-generation algorithm
that solves both of the above problems: The search space is built and
automatically refined on demand, and a scale-independent error metric
tells both when to stop the refinement process and whether a model
reflects faithfully enough the behavior the data exhibits. This makes
Extra-P easier to use, while also allowing it to produce more accurate
results. Using data from previous case studies, we show that the mean
relative prediction error decreases from 46% to 13%.

Keywords: Parallel computing · Performance tools · Performance mod-
eling

1 Introduction

As the computing world moves towards more and more parallelism and high-
performance computing (HPC) systems become ever larger, the complexity of
performance analysis is compounded. Understanding the performance of par-
allel programs at larger scale and getting correct insights requires prohibitive
resources. Developers and users must benchmark their applications at the full
extent of available parallelism to obtain the insights they desire. It requires both
expensive computing time and manpower. Performance modeling offers a way
to alleviate this problem by providing users with models (i.e., analytical expres-
sions) of the application behavior. With these models users are able to predict
application behavior at higher scale. One example of a performance model, which
can also help uncover scalability bottlenecks, is the expression of execution time
as a function of the number of processors.

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 106–118, 2017.
DOI: 10.1007/978-3-319-64203-1 8

Following the Blind Seer – Creating Better Performance Models 107

We distinguish between analytical and empirical performance modeling. Ana-
lytical performance models are constructed by experts that infer the laws that
govern application behavior as a function of a pre-selected parameter (e.g., the
number of processors). Not only is this a laborious process that requires intu-
ition and small-scale tests, but it might also require experts to apply this process
to every individual module of the application. Empirical performance modeling,
on the other hand, infers models automatically from a relatively small number
of measurements. It offers a practical way for common users to find scalabil-
ity bugs and bottlenecks [5], predict performance [11,16], compare algorithmic
alternatives [20], and understand the effects of resource contention [17].

Extra-P [1] is a tool to create such empirical performance models, primarily
scaling models, with one or more model parameters [4,5]. However, in its current
version it relies on a manually defined search space, requiring users either to
provide a large enough space to accommodate a wider range of models or to
have an initial guess as to how a model would look like. Both options have
their drawbacks since the former means increased computation costs, and the
latter means increased expertise on the user’s part. In addition, false positives
(i.e., models that indicate a worse behavior than there really is) can sometimes
occur due to artifacts in performance measurements. Although such artifacts can
usually be identified manually, actually doing it would substantially prolong the
performance modeling process. In this work, we make the following contributions
to address the aforementioned shortcomings:

– Automatic search-space configuration—in our new iterative model-generation
approach, we configure the search space on demand and iteratively raise the
accuracy of the model until no meaningful improvement can be made. In
this way, we increase both the tool’s ease of use and its range of application
without sacrificing accuracy.

– Significant reduction of false positives—by using a heuristic to increase Extra-
P’s resilience to noise in the measurements, we are able to save users from
wasting valuable time trying to analyze problems that do not really exist.

The remainder of the paper is organized as follows. In Sect. 2, we provide
the background on automatic performance modeling and the current technique
for model generation. Section 3 continues with a detailed description of the new,
iterative refinement approach, followed by an evaluation in Sect. 4. Finally, we
review related work in Sect. 5, before drawing our conclusion in Sect. 6.

2 Empirical Performance Modeling with Extra-P

In this section, we briefly introduce Extra-P and the way it generates empirical
performance models.

2.1 The Performance Model Normal Form

A key concept underlying Extra-P is the performance model normal form
(PMNF). The PMNF models the effect of a single parameter (predictor) x on a

108 P. Reisert et al.

response variable of interest f(x), typically a performance metric such as execu-
tion time or a performance counter. It is specified as follows:

f(x) = c0 +
n∑

k=1

ck · xik · logjk
2 (x)

The PMNF allows building a function search space, which we then traverse to
find the member function that comes closest to representing the set of measure-
ments. This assumes that the true function is contained in this search space.
A possible assignment of all ik and jk in a PMNF expression is called a model
hypothesis. The sets I, J ⊂ Q from which the exponents ik and jk are chosen and
the number of terms n define the discrete model search space. Our experience
suggests that neither I and J nor n have to be particularly large to achieve a
good fit, but although a common default set of about 40 terms can be sufficient,
for some applications the search space needs to be tuned manually with the help
of domain experts and application developers. Having chosen the sets, we then
automatically determine the coefficients of all hypotheses using regression and
choose the hypothesis with the smallest error such that we get the most likely
model function.

For the above process to yield good results, the true function that is being
modeled should not be qualitatively different from what the normal form can
express. Discontinuities, piece-wise defined functions, and other behaviors that
cannot be modeled by the normal form will lead to sub-optimal results. There
are, however, many practical scenarios where programs change their behav-
ior. For example, modern MPI implementations switch from one algorithm to
another, depending on the message size, the number of processes, or the network
topology. Whether an application fits within the cache or not also affects perfor-
mance in a discontinuous manner. Ilyas et al. [10] introduce a novel method in
Extra-P to detect such segmentation before generating empirical models. Specif-
ically, the authors developed heuristics to successfully find segmentation in data
with as few as six points, and a method to estimate the change point. In this
way we can continue to use the PMNF on the level of individual segments.

2.2 Model Generation

Extra-P requires a set of performance profiles as input, representing runs where
one or more parameters are varied. These profiles can be obtained using exist-
ing performance measurement tools. Here, we use the performance measurement
system Score-P [14], which collects several performance metrics, including execu-
tion time and various hardware and software counters, broken down by call path
and process. Other data sources from other performance measurement tools are
equally possible and simply require some form of input format conversion.

Based on the profiles, we compute one model for each combination of target
metric and call path, enabling a very fine-grained scalability analysis even of
very complex applications.

Following the Blind Seer – Creating Better Performance Models 109

Past experience has shown that as few as five different measurements for one
parameter are enough for successful model generation, allowing the automatic
discovery of scalability bottlenecks at very low cost.

3 Approach

We now introduce our novel modeling algorithm, starting with some key ideas
and then presenting the algorithm as a whole. We focus here on the case of
single-parameter modeling. Calotoiu et al. [4] have shown that finding multi-
parameter models can be reduced to combining the best single-parameter models
in different ways and selecting the combination which fits the measurements
best. Therefore our approach can be used as a drop-in replacement in the multi-
parameter scenario while maintaining all the benefits shown in this paper.

3.1 The SMAPE Metric

A key component of our new approach is the symmetric mean absolute percentage
error (SMAPE) metric [12]. Previously, Extra-P used the residual sum of squares
(RSS) to compare the quality of generated models and model hypotheses. Given
N experiments with measurements yi(1 ≤ i ≤ N) for the parameter values xi,
the RSS of a model f(xi) is calculated as

∑N
i=1(yi − f(xi))2. One disadvantage

of the RSS is that its value depends on the scale of the data that are being
modeled. Smaller input values will lead to a smaller RSS, and the squaring of
the residuals amplifies this problem. Furthermore, the RSS does not have a well
defined range, so its value cannot be interpreted easily.

SMAPE is a scale-independent, relative error metric that overcomes the
shortcomings of the RSS. It originates from time series forecasting and is defined
as:

1
N

·
N∑

i=1

|yi − f(xi)|
(|yi| + |f(xi)|)/2

· 100%.

Taken apart, it is the mean of a ratio, expressed as a percentage. The SMAPE
value is always in a range of 0% to 200%, where 0% means no error at all. This
makes it a helpful error metric that can be easily interpreted by a user and
compared across models with different scales. In contrast to the slightly simpler
MAPE metric, SMAPE does not break down when any yi is 0.

However, we still use the RSS to decide which of two model hypotheses better
fits the data, simply because we use regression to fit the hypothesis to the data,
which relies on the least squares method and thus optimizes the RSS metric. We
have observed that in most cases1 both metrics agree as far as the relative order
is concerned, so if one hypothesis has a better RSS than another, it usually has
a better SMAPE value as well.
1 This is not generally true, which also makes the unimodality results presented in

Sect. 3.2 not hold for SMAPE, even though the plots shown there usually show the
same patterns when generated from SMAPE instead of the RSS.

110 P. Reisert et al.

Fig. 1. Error of fitted simplified PMNF models for measurements from three different
kernels, sampled with a resolution of 1

40
for both α and β. (Color figure online)

3.2 Revisiting the PMNF

Over time, we have accumulated experiences of common use cases and what
type of analyses and configurations yield the most insightful results [5,11,16,20].
Based on these experiences, we propose to simplify the PMNF itself so that not
only it fits the common use cases better, but also increases resilience to noise.

Given the cost of gathering measurements, users commonly provide less than
10 different data points per parameter. We have discovered that allowing more
than one term in addition to c0 almost always leads to modeling insufficiently
understood behavior unless there are significantly more data points available,
especially if the data is affected by noise. Therefore, we suggest to use the fol-
lowing simplified PMNF:

f(x) = c0 + c1 · xα · logβ
2 (x)

Since optimal values for c0 and c1 are determined by regression whenever α
and β have been fixed, the remaining challenge is to select the best exponents
α and β, where α = 0 and/or β = 0 is allowed. Following the observed behavior
of real applications [5,11,16,20], we can restrict α < 6 and β < 3.

To gain insights into the space spanned by α and β, we created heatmap plots,
where each point represents the RSS of an optimal (fitted) model hypothesis with
exponents α and β. A representative selection of such plots is presented in Fig. 1.
From these plots we can see that the hypotheses with minimal error run along
a line, which starts on the horizontal axis (β = 0) and goes upwards and to the
left, approaching the vertical axis (α = 0). In some cases (usually for data that
require a purely logarithmic model, as in Fig. 1b), the line first slightly bends to
the right before finally turning to the left. Thus, the function that assigns the
error of the best hypothesis to a choice of α and β has the following properties:

– It is unimodal (i.e., it has a single minimum, and the function value decreases
as you approach that minimum from either side) over α for any choice of β.

– It is unimodal over β for α = 0.
– It is generally not unimodal over β for α > 0.

This, together with the fact that the variation along the line of minimal error
is very small, is the reason for the choice of four one dimensional slices of this

Following the Blind Seer – Creating Better Performance Models 111

two dimensional space, along which we will search for a minimum. We define
these slices as β = 0, β = 1, β = 2 and α = 0.

Along each of these slices we can now search for appropriate values of α (for
the slices where β is fixed) or β (where α is fixed), respectively. When we say
appropriate, we do not necessarily mean optimal, as we want to find exponents
that are representable by (preferably simple) fractions. We consider a fraction2

to be simpler than another whenever it has a smaller denominator than the
other.3 We have developed an algorithm to find such exponents, which we shall
introduce in the following section.

3.3 Iterative Refinement

Our algorithm is based on the idea that we can start with integer exponents
(i.e., fractions with denominator 1) and then iteratively refine the search space
by increasing the denominators while approximating the true minimum. Search
space refinement has previously been proposed by Shudler et al. [16] who sug-
gested repeated halving of an initial interval, which resulted in denominators
that are always powers of two. However, a computational kernel simulating a
three dimensional process, for example, can actually require an exponent of n

3
to model its complexity.

For the sake of presentation, let us now first look only at the slice β = 0, where
no logarithmic term is involved and the algorithm tries to find an appropriate
value for α. We shall later expand on how the algorithm deals with multiple
slices. First, all hypotheses with integer exponents α = 0, . . . , 5 are computed and
compared. The exponent leading to the best model is stored, and its successor
and predecessor are used as initial upper and lower bounds, respectively. After
this initialization, the actual iterative refinement process, presented in Fig. 2,
starts. It constitutes a variant of the golden section search [15], but uses the
mediant instead of the golden section to determine new candidate exponents,
for reasons explained below. The mediant of two fractions n1

d1
and n2

d2
is defined

as n1 +n2
d1 + d2

and has the property that it always lies in between the two original
fractions [8]. For example, the mediant of 1

2 and 1 (represented as 1
1) is 2

3 .
In every iteration, two new hypotheses are computed from the two mediants

in between the currently best hypothesis and each of the two bounds, and their
errors are compared to the best hypothesis. If the left mediant has the smallest
error, we cut off the right part of the search space by using the left mediant
for the new best hypothesis. If the right mediant is the winner, we do the same
on the other side. If none of the mediants has a smaller error, then the best
hypothesis remains the same and we use the two mediants as new upper and
lower bounds.

If we kept computing mediants in this way, we would obtain a sequence of
fractions with ever increasing denominators, ever more accurately approximating
the true minimum. This sequence is a path in the Stern-Brocot tree, an infinite
2 We are only concerned with fully reduced (also called irreducible) fractions here.
3 This is in line with a simplicity metric presented by Guthery [8, p. 163].

112 P. Reisert et al.

Fig. 2. Example showing three iterations of our refinement algorithm. In the first
iteration, the search space is cut on the right side, because the left mediant has the
smallest error; in the second iteration, it is cut on the left side; in the third iteration,
it is cut on both sides, because no mediant has a smaller error. Orange curved lines
indicate the calculation of the mediant. (Color figure online)

binary tree that enumerates all positive rational numbers [8]. Hence, when we
arrive at a fraction ni

di
in our algorithm, no fraction in between with a denomina-

tor less than di was missed, because such a fraction would have appeared earlier
along the path in the tree.

However, we want to stop after a small number of iterations (usually 1 to 3) to
keep the exponents readable and more intuitive. In order to decide when to stop,
we can draw on the benefits of the SMAPE metric, as it allows our algorithm
to make decisions based on the relative improvement of its value. Thus, the
SMAPE improvement will serve as a termination criterion in our algorithm.
Moreover, we have observed that most models which have a SMAPE value that
is not at least twice as good (where smaller is better) as that of the constant
model do not justify the choice of a non-constant model. After manual inspection
of the underlying data, in the vast majority of cases the data appears roughly
constant, with small deviations in both directions that can be explained by noise.
Since any model will fit the data better than the constant model in such a case
(because the constant model cannot bend in any way), we penalize the choice
of the non-constant model to reduce false positives. We can now outline the full
algorithm:

Step 1. For each slice, find and remember the best integer exponent.

Step 2. Refine each slice according to the previously described method. All
slices execute one iteration of the algorithm before the next iteration is started.
In each iteration, the best model hypothesis among all slices is considered as a
candidate for the globally best hypothesis. To be accepted it needs to provide an
improvement over the previously accepted best hypothesis that is large enough
to justify a finer grained exponent. We use SMAPE to measure this improvement
and define an acceptance threshold of 1.5 (i.e., an improvement of at least 50%)

Following the Blind Seer – Creating Better Performance Models 113

per iteration. The search terminates when in a single iteration no slice improves
its SMAPE value by at least a factor of 2 (we call this the termination threshold).

Step 3. After the iterative refinement has terminated, the winner hypothesis
from the previous step is compared to the constant model and accepted only
if the SMAPE value has improved by at least a factor of 2 (the non-constancy
threshold), otherwise, as discussed earlier, it is rejected in favor of the simpler
constant model.

4 Evaluation

We have evaluated our algorithm in two different ways. First, to gauge the accu-
racy of the algorithm, we evaluated it on synthetic data with known underlying
functions. We compared the results with the output of the original algorithm, for
which the following default search space was used, matching the one suggested
in the latest publication by Calotoiu et al. [4]: n = 2, I = { 0

4 , 1
4 , . . . , 12

4 }, and
J = {0, 1, 2}. Second, to understand how helpful the new algorithm is in practice
and the improvements it offers, we evaluated it on measured data collected in
previous case studies. The latter results, however, are more difficult to interpret
because the ground truth (i.e., the true underlying functions, which the modeling
ideally should recover) is with few exceptions practically inaccessible.

4.1 Synthetic Data

Figure 3 presents evaluation results based on randomly generated synthetic data.
Because we have found most real models to be constant or very simple—the
common case that our method is primarily designed for and that matches the
asymptotic complexities of many known algorithms—we defined different classes
of functions based on the following classification of terms:

– Common: x, x2, x3, log2(x)
– Rare: x

i
2 for i ∈ {1, 3, 5}, x

i
3 for i ∈ {1, 2, 4, 5, 7, 8}, log22(x)

– Exotic: x
i
4 for i ∈ {1, 3, . . . , 11}, x

i
5 for i ∈ {1, . . . , 14} \ {5, 10}, log

1
2
2 (x),

log
3
2
2 (x)

A function classified as rare may contain terms classified as common, but it
must contain at least one rare term. Likewise, exotic functions might contain
terms from the other classes, but must contain at least one of the exotic terms,
which are terms that we have not observed so far in real applications but we
assume that they could occur.

For each of the seven distinct cases shown in Fig. 3, we generated 1000 random
functions and evaluated them for each of four different sets of x values that are
representative for Extra-P’s use cases ({2, 4, 8, 16, 32}, {8, 16, 32, 64, 128}, {32,
64, 128, 256, 512}, and {128, 256, 512, 1024, 2048}). To each function value we
added ±2% of noise, drawn from a uniform distribution, before using the values
as input for the modeling algorithms.

114 P. Reisert et al.

Fig. 3. Comparison of the original and our new algorithm using values of randomly
generated functions with ±2% of noise as input. The functions are built according to
the PMNF with n = 1 or n = 2, and their coefficients c0, c1 and c2 are calculated by
sampling a ∈ [−2, 3] uniformly and then computing 10a. (Color figure online)

We then checked whether (1) the resulting model’s exponents were matching
exactly the expected lead order exponents of the input function and/or (2) the
model’s prediction for an x value that is four times as large as the largest value
used for modeling is within the ±2% noise level of the actual function value. For
functions with two additive non-constant terms, we define the lead order term to
be the one that contributes to the function more than the other when evaluated
at an x value that is four times as large as the largest one used for modeling.

For constant, common, and rare functions, our algorithm shows improve-
ments upon the original one with respect to both the amount of exactly matched
exponents as well as the number of accurate predictions, even when that algo-
rithm is restricted to model only a single term. While the results for the exotic
functions are less favorable, the old algorithm is not able to produce significantly
better results with either n = 1 or n = 2, and we still have to find such functions
in practice.

4.2 Case Studies

We used measurements from previous case studies to evaluate our new algo-
rithm on measured data. The measurements include a variety of call paths (i.e.,
kernels) and different metrics, such as runtime, number of function calls, mem-
ory footprint, and network traffic. Whereas the evaluation using synthetic data
gives us confidence that the method works in principle, the evaluation with real
applications shows its practical benefit.

The results of the comparison, which are presented in Table 1, show that
when the last (i.e., largest) measured data point is excluded from the data used to
calculate the model, the model produced by our new algorithm allows for a better

Following the Blind Seer – Creating Better Performance Models 115

Table 1. Comparison of the original and our improved algorithm, using data from
previous case studies, showing the quality of predictions of the last data point when
that point is not used for modeling.

Benchmark Number
of points

Model
count

Model predictions
(percentage of all models)

Mean relative
prediction error [%]

Better Same Worse Before Now

Sweep3D [5] 7 96 26.04 56.25 17.71 17.26 6.31

HOMME [5] 9 670 18.81 68.51 12.69 3.69 3.03

MILC [5] 9 1496 30.95 56.48 12.57 36.71 14.53

UG4 [20] 5 2026 52.62 38.01 9.38 68.30 15.58

MPI collect. [16] 7–8 26 65.38 7.69 26.92 52.53 15.89

BLAST [4] 5 103 31.07 41.75 27.18 34.92 10.38

Kripke [4] 5 36 36.11 38.89 25.00 33.05 8.32

Total 5–9 4453 39.12 49.11 11.77 45.71 12.97

prediction of the last point in 19%–65% of the cases, which corresponds to 53%–
85% of those models that changed in each benchmark. Although some predictions
do get worse, the mean relative prediction error, which we computed using the
SMAPE formula (but this time averaging over the last data point of all models
instead of all data points of a single model), decreases across all applications, in
all but one case even significantly. We use this metric here for reasons similar to
those discussed in Sect. 3.1: We need a scale-independent error metric because
the scale of the data varies heavily among the different benchmarks and modeled
performance metrics.

Not shown in the table is the number of models that are constant, which
has considerably increased in every single case study (from 44% to 76% overall).
Because the synthetic evaluation has shown that our new algorithm is able to
recognize constant functions more reliably, this indicates that the previous algo-
rithm might have modeled noise or tried to fit a PMNF function to inaccurate
measurements.

5 Related Work

In recent years, performance modeling of HPC applications has become a very
active field of study [3,4,6,7,13,17,19]. Previous work explored regression-based
approaches for predicting program scalability [2,7]. In one case [2], Barnes et
al. used linear regression to fit the measured execution time to a second-order
polynomial. In a different study [7], the authors used Active Learning to improve
regression-based models they produced from measured data. Active Learning
is a group of machine learning techniques in which the learner can decide to
query the information source, at some additional cost, to label a datapoint that
is otherwise hard to label. It means that to improve the initial performance
model the technique would decide in which configuration it should run the next

116 P. Reisert et al.

experiment so that the result produces the best improvement in the model with
minimal cost. Active Learning complements our methodology by starting with
a small set of measurements and deciding which experiments to run next. In
contrast to regression-based techniques, our methodology produces simplified
PMNF models that are based on combinations of logarithmic and linear terms
one often finds in common algorithms. It provides the user with more insights
into the behavior of the modeled applications.

A number of previous studies [3,9] relied on semi-analytical modeling to pro-
duce performance models. However, unlike semi-analytical approaches, empirical
performance modeling focuses on a common user, who might not have the neces-
sary expertise to construct the initial model. The refinement algorithm advances
this concept even further by relieving the user from the burden of providing the
terms for the model search space.

Aspen [18] and Palm [19] are both top-down analytical modeling approaches.
The former offers a domain-specific language and the latter source-code anno-
tations. While both of these approaches produce accurate models, they are not
empirical and therefore can miss potential bottlenecks and scalability limitations.

Meswani et al. [13] present a different modeling approach that focuses only
on hybrid CPU-GPU systems. Another approach which focuses only on shared
memory machines is ESTIMA [6]. It measures the number of stalled cycles on a
small number of cores and estimates the slowdown on a higher number of cores.
Although both approaches predict future scalability of applications, they do not
offer the same degree of flexibility as Extra-P does.

6 Conclusion

In this paper, we propose a novel algorithm for empirical performance modeling
as part of the Extra-P tool. In contrast to previous work, we remove the need
for a predefined search space and also significantly reduce the number of false
positives by being more resilient to noisy measurements of constant behavior. Yet
most of the models generated with our algorithm are able to make predictions
that are equally or even more accurate than before, which we demonstrate with
experiments using both synthetic and real data. Thus, our work opens the way
for a performance modeling workflow that is more automated than ever and
equips developers with a tool that helps them efficiently find scalability bugs in
large applications.

Acknowledgements. This work was supported in part by the German Research
Foundation (DFG) through the Priority Programme 1648 Software for Exascale Com-
puting (SPPEXA) and the Programme Performance Engineering for Scientific Soft-
ware. Additional support was provided by the German Federal Ministry of Education
and Research (BMBF) under Grant No. 01IH16008, and by the US Department of
Energy under Grant No. DE-SC0015524. Finally, we would like to thank the Univer-
sity Computing Center (Hochschulrechenzentrum) of TU Darmstadt for providing us
with access to the Lichtenberg Cluster.

Following the Blind Seer – Creating Better Performance Models 117

References

1. Extra-P - automated performance-modeling tool.
www.scalasca.org/software/extra-p

2. Barnes, B.J., Rountree, B., Lowenthal, D.K., Reeves, J., de Supinski, B., Schulz,
M.: A regression-based approach to scalability prediction. In: Proceedings of the
International Conference on Supercomputing (ICS), pp. 368–377. ACM (2008)

3. Bauer, G., Gottlieb, S., Hoefler, T.: Performance modeling and comparative analy-
sis of the MILC lattice QCD application Su3 Rmd. In: Proceedings of the 2012
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-
ing (CCGRID), pp. 652–659. IEEE Computer Society (2012)

4. Calotoiu, A., Beckingsale, D., Earl, C.W., Hoefler, T., Karlin, I., Schulz, M., Wolf,
F.: Fast multi-parameter performance modeling. In: Proceedings of the 2016 IEEE
International Conference on Cluster Computing (CLUSTER), pp. 1–10. IEEE
Computer Society (2016)

5. Calotoiu, A., Hoefler, T., Poke, M., Wolf, F.: Using automated performance
modeling to find scalability bugs in complex codes. In: Proceedings of the 2013
ACM/IEEE Conference on Supercomputing (SC), pp. 45:1–45:12. ACM (2013)

6. Chatzopoulos, G., Dragojević, A., Guerraoui, R.: ESTIMA: extrapolating scalabil-
ity of in-memory applications. In: Proceedings of the ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP), pp. 27:1–27:11. ACM
(2016)

7. Duplyakin, D., Brown, J., Ricci, R.: Active learning in performance analysis. In:
Proceedings of the 2016 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 182–191. IEEE Computer Society (2016)

8. Guthery, S.B.: A Motif of Mathematics. Docent Press, Boston (2011)
9. Hoefler, T., Gropp, W., Thakur, R., Träff, J.L.: Toward performance models of

MPI implementations for understanding application scaling issues. In: Keller, R.,
Gabriel, E., Resch, M., Dongarra, J. (eds.) EuroMPI 2010. LNCS, vol. 6305, pp.
21–30. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15646-5 3

10. Ilyas, K., Calotoiu, A., Wolf, F.: Off-road performance modeling - how to deal with
segmented data. In: Rivera, F.F., et al. (eds.) Euro-Par 2017. LNCS, vol. 10417,
pp. 36–48. Springer, Cham (2017)

11. Iwainsky, C., Shudler, S., Calotoiu, A., Strube, A., Knobloch, M., Bischof, C., Wolf,
F.: How many threads will be too many? On the scalability of OpenMP implemen-
tations. In: Träff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015. LNCS, vol.
9233, pp. 451–463. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48096-0 35

12. Kreinovich, V., Nguyen, H.T., Ouncharoen, R.: How to estimate forecasting qual-
ity: a system-motivated derivation of symmetric mean absolute percentage error
(SMAPE) and other similar characteristics. Technical report, Paper 865, University
of Texas at El Paso (2014)

13. Meswani, M.R., Carrington, L., Unat, D., Snavely, A., Baden, S., Poole, S.: Mod-
eling and predicting performance of high performance computing applications on
hardware accelerators. Int. J. High Perform. Comput. Appl. 27(2), 89–108 (2013)

14. an Mey, D., et al.: Score-P: a unified performance measurement system for petas-
cale applications. In: Bischof, C., Hegering, H.G., Nagel, W., Wittum, G. (eds.)
Competence in High Performance Computing 2010, pp. 85–97. Springer, Heidel-
berg (2011). doi:10.1007/978-3-642-24025-6 8

15. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes:
The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge
(2007)

http://www.scalasca.org/software/extra-p
http://dx.doi.org/10.1007/978-3-642-15646-5_3
http://dx.doi.org/10.1007/978-3-662-48096-0_35
http://dx.doi.org/10.1007/978-3-642-24025-6_8

118 P. Reisert et al.

16. Shudler, S., Calotoiu, A., Hoefler, T., Strube, A., Wolf, F.: Exascaling your library:
will your implementation meet your expectations? In: Proceedings of the Interna-
tional Conference on Supercomputing (ICS), pp. 165–175. ACM (2015)

17. Shudler, S., Calotoiu, A., Hoefler, T., Wolf, F.: Isoefficiency in practice: configuring
and understanding the performance of task-based applications. In: Proceedings of
the ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP), pp. 1–13. ACM (2017)

18. Spafford, K.L., Vetter, J.S.: Aspen: a domain specific language for performance
modeling. In: Proceedings of the 2012 ACM/IEEE Conference on Supercomputing
(SC), pp. 84:1–84:11. IEEE Computer Society Press (2012)

19. Tallent, N.R., Hoisie, A.: Palm: easing the burden of analytical performance model-
ing. In: Proceedings of the 28th ACM International Conference on Supercomputing
(ICS), pp. 221–230. ACM (2014)

20. Vogel, A., Calotoiu, A., Strube, A., Reiter, S., Nägel, A., Wolf, F., Wittum, G.:
10,000 performance models per minute – scalability of the UG4 simulation frame-
work. In: Träff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015. LNCS, vol. 9233,
pp. 519–531. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48096-0 40

http://dx.doi.org/10.1007/978-3-662-48096-0_40

An Accurate Simulator of Cache-Line Conflicts
to Exploit the Underlying Cache Performance

Yukinori Sato(B) and Toshio Endo

Tokyo Institute of Technology, Tokyo 152-8550, Japan
yukinori@el.gsic.titech.ac.jp, endo@is.titech.ac.jp

Abstract. This paper describes a cache-line conflict profiling method
that advances the state of the art performance tuning workflow by accu-
rately highlighting the sources of conflicts. The basic idea behind this is
the use of cache simulators as a diagnosis tool for cache-line conflicts.
We also propose a mechanism that enables to identify where line con-
flict misses are incurred and the reasons why the conflicts occur. We
evaluate our conflict simulator using some of the benchmark codes used
in the HPC field. From the results, we confirm that our simulator can
accurately model the cache behaviors that cause line conflicts and reveal
the sources of them during the execution. Finally, we demonstrate that
optimizations assisted by our mechanism contribute to improving per-
formance for both of serial and parallel executions.

Keywords: Accurate cache simulation · Conflict miss detection ·
Performance tuning · Array padding

1 Introduction

Recently, compiler technologies have made significant progress in automatic
vectorization and thread-level parallel execution techniques. However, further
source code refactoring for performance tuning is often required to obtain per-
formance close to the versions manually optimized by expert programmers [15].
Primary sources that cause this inefficiency are derived from memory subsys-
tems composed of caches. To increase effective memory bandwidth, or to reduce
the latency for a memory access, we need to make good use of cache memories.
However, current compilers are often oblivious to cache-conscious optimizations
needed to fully utilize the locality in the application. As shown later in this
paper, executable binary generated by a compiler does not always fit well to the
underlying cache memories. Mostly this is caused by cache-line conflict misses,
which often degrade performance significantly.

In this paper, we strive to eliminate performance degradation or performance
variability due to line conflict misses. Modern CPU systems typically have highly
associative cache structures to avoid conflict misses as much as possible. One
example seen in Intel Sandy Bridge CPU is that the L3 cache is organized as a
20-way associative cache. Even in the lower L1 and L2 caches, their associativity
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 119–133, 2017.
DOI: 10.1007/978-3-319-64203-1 9

120 Y. Sato and T. Endo

is 8-way. However, in some of applications that intensively access a particular
set in the associative cache, the number of elements mapped onto the same set
can easily exceed the degree of associativity [5] and cause conflict misses. Since
this often impacts on performance seriously, we should avoid it by refactoring
the source code.

The actual behavior of cache memories within a real system is normally
invisible from software. Hence, we provide a way to diagnose avoidable cache
misses and a simple workflow to get rid of them. To diagnose cache behaviors,
we propose a cache-line conflict simulator called C2Sim and attempt to mimic
the occurrence of cache-line conflicts by concurrent dual cache simulations. For
accurate line conflict detection, we simulate fully-associative (FA) caches as a
subsidiary simulation of the underlying set-associative (SA) caches. Furthermore,
to assist a performance tuning workflow, we provide a mechanism that reveals the
sources of cache-line conflicts and attempts to ease the actual code modification
process.

The primary contributions of this paper are as follows:

– We develop C2Sim for identifying cache-line conflict misses effectively. We
show that C2Sim provides practically accurate detection of conflicts based on
its advanced cache modeling.

– We present a mechanism that can monitor the actual locations of code where
line conflict misses are incurred and the reasons why the conflicts occur.

– We show that cache-line conflict misses can be avoided by padding to the
appropriate arrays suggested through our mechanism, and such optimizations
also contribute to scalable performance improvements on parallel executions.

2 Modeling Cache Structures in Modern CPUs

Driven by semiconductor technology scaling, capacity and associativity of cache
memories is continuously increasing. On the other hand, the complexity of algo-
rithms and applications is increasing year by year, which often makes their
memory access patterns complicated. Under these situations, cache memories
are desired to be useful in all the situations. However, there are no universal
cache structures that can exploit locality of references for everything. This is
why the underlying cache performance is sensitive to memory access patterns
derived from application-specific characteristics and the underlying hierarchical
caches and memories.

Therefore, we need to perform source code refactoring to improve cache per-
formance. However, it is hard for skilled programmers to estimate application-
specific cache behaviors and apply these to the performance tuning. One of the
solutions for this situation is to build a simulator of modern x86 64 CPU caches
for performance tuning. Formulating the cache model as a simulator, we can
monitor time-varying behaviors of cache memories, which are normally invisible
from software. By analyzing sequences of particular events during the simula-
tion, we can detect how the cache miss occurs and whether it could be avoidable
or not.

An Accurate Simulator of Cache-Line Conflicts 121

In this paper, we focus on simulating occurrences of cache-line conflicts and a
reasoning mechanism upon it for assisting cache performance tuning. Situations
where massive amount of requests to a particular set of a cache causes conflict
misses are also called cache thrashing. Since it results in serious performance
degradation, it should be avoided as much as possible. While cache thrashing is
considered to be obvious only in caches that have low associativity, we reveal that
it occurs even in current high associative cache structures. Especially, it is seen in
typical scientific computing applications that calculate large multi-dimensional
arrays.

Here, we investigate how such conflicts normally invisible from application
programmers are detected precisely from actual execution. Collins and Tullsen
attempted to identify line conflict misses by storing the history of replaced cache
lines using an FIFO for every set of caches [4]. In their method, when the miss
to a cache set matches a previously evicted tag stored in the FIFO, then it is
identified as a line conflict miss. However, as we show later in this paper, this
sometimes leads false detections due to the sensitivity to the number of entries of
the FIFO. Since this approach fundamentally includes under- or overestimation
of conflicts, this is impossible to detect conflicts precisely. To resolve this issue,
we propose a detection scheme based on comparison to FA (fully-associative)
cache behavior.

3 Cache-Line Conflict Simulator

3.1 FA Cache Based Conflict Detection

We propose a cache-line conflict simulator called C2Sim. The key idea for accu-
rate line conflict detection is to conduct FA cache simulation as side simulation
to the baseline cache simulation for the target configuration. We also provide a
mechanism that identifies where and why line conflict misses occurs.

A cache-line conflict occurs when the number of accessed data elements map-
ping to the same set exceeds the degree of associativity. In this situation, the
original cache line to be accessed was replaced before it is requested again. Such
a cache line conflict miss consequently appears only in SA (set-associative) or
direct-mapped structures where the number of cache lines within a set is limited.
Here, we define a conflict miss as a miss that could be avoided in the FA cache
with the same capacity. Since for FA cache there are no limits of associativity, its
behavior is a theoretical upper bound for optimization that completely avoids
cache-line conflicts. From this definition, when an access to the FA cache hits
whereas that for the SA cache misses, it is classified as a conflict miss. When an
access both for the FA cache and the SA cache simultaneously misses, it is clas-
sified as a capacity miss. Based on these, we implement an FA cache simulator
and compare its behavior with the SA cache simulator having the same capacity
so that we can detect conflict misses.

It is believed that simulating actual FA caches that maintains true LRU order
incurs much overhead compared with a typical SA cache simulation because FA

122 Y. Sato and T. Endo

Fig. 1. An efficient FA cache simulation method.

cache needs tag comparison across all entries1. To reduce this overhead, we
develop an efficient algorithm for FA cache simulation as illustrated in Fig. 1.
Instead of using an O(N) or a non-linear algorithm for keeping a true LRU order,
we use a hash and a list structure for it. Here, we can directly map a tag to the
corresponding entry of the hash with an O(1) lookup unless the entry is heavily
shared by other tags (hash collision). If the tag cannot be found in the first entry
of the hash, we search the following list structure. After the corresponding tag
is found, we have a pointer to the LRU list. This list is implemented using a
doubly linked list and maintains a true LRU order. The maximum length of this
list corresponds to the number of cache lines and is decided by the capacity of
the cache.

3.2 Reasoning Around Line Conflicts

A straightforward conflict detection mechanism discussed above is still insuffi-
cient to assist a performance tuning workflow done by programmers. Because
the said mechanism only returns how many conflicts appear in the execution,
programmers need to read source code carefully and find out where and why the
conflicts occur. To improve the productivity of this process, we present a new
interface that maps simulation results as clues for performance tuning. We also
provide a new mechanism that reveals the locations where and why line-conflict
misses occur.

In order to keep track of these, we propose LT-WET (Last Time Who EvicT):
a data structure that records key events at instruction level granularity. Figure 2
illustrates how we monitor cache-line conflicts using the LT-WET structure. The
key idea here is to store which memory reference instruction triggers a cache-
line eviction, and to resolve the reason when a conflict miss for the same set is
detected in future. The details are as follows: First, when a cache miss occurs
in the SA cache, we store the tag of evicted line to the EvictedTag field and
cache miss instruction’s address to the Originator field respectively as shown in
Fig. 2(a). At the same time, when the memory access is identified as a conflict
miss, we search the tag corresponding to the current memory reference instruc-
tion from the EvictedTag field. We then identify the miss originator that had

1 Here, we focus only on true LRU replacement policy for both of FA and SA caches.

An Accurate Simulator of Cache-Line Conflicts 123

Fig. 2. How to find out where and why the conflict occurs.

caused the last eviction to the current miss as shown in Fig. 2(b). Here, the LT-
WET structure is implemented using a hash structure similar to the one used
in FA cache simulation to reduce the time for searching tags.

The conflict miss instruction coupled with its originator indicates where and
why the conflict miss occurs. The instructions that cause conflict miss can easily
be traced back to the source code through debug information that compilers
embed inside application binaries.

We also perform memory object relative profiling, which correlates every
memory reference to the objects in memory layout appearing in the actual exe-
cution. To obtain accessed memory regions, we monitor the ranges (min, max)
of accessed memory addresses for all memory reference instructions. Then, each
memory region is mapped to a symbol found inside the program. We extract sta-
tic symbols such as global variables and constants by analyzing the executable-
and-linkable (ELF) code. To obtain the symbols of memory regions allocated
at runtime, we monitor the memory map at ‘/proc/pid/maps’ for stack regions
and hook functions for memory allocators such as malloc. Finally, these memory
access related information are consolidated and outputted as results of memory
object relative profiling.

3.3 Advanced Cache Modeling for Accurate Simulation

To prevent false conflict detections due to cache modeling inaccuracy, we develop
the following advanced simulation mechanisms to C2Sim: a virtual to physical
address translation, and a slice mapping mechanism for an L3 cache.

The first mechanism, virtual to physical address translation, enables C2Sim
to model Physically Indexed Physically Tagged (PIPT) caches for L2 and L3,
and a Virtually Indexed Physically Tagged (VIPT) cache for L1. Here, when the
total capacity per associativities is greater than the page size, the mapping for
physical address affects cache indexing. This is seen in the typical L2 and L3
caches when using a default 4 KB page. To reflect the actual physical addresses in
our simulation, we monitor the mapping table located at ‘/proc/pid/pagemap’
provided by Linux OS when a new page is accessed and record them in a hash
table.

The second one, a slice mapping algorithm for L3 cache, is needed to model
L3 caches accurately. An L3 cache in modern Intel CPUs is known to be divided

124 Y. Sato and T. Endo

into pieces, usually referred to as slices [6]. The number of slices matches the
number of physical cores, and each slice contains 2048 sets, which are equal to
2.5 MB in 20 way set associative configurations. Dividing an L3 cache into slices
will spread the traffic almost evenly across the slices and prevent conflicts inside
an L3 cache. Therefore, knowing the details of the slice selection algorithm is
crucial for building accurate cache simulators. In [6], the authors recover the
slice selection algorithm used in modern Intel CPUs based on the Prime+Probe
side channel technique. In this paper, following the hash function in [6] (for 8
core CPUs in Table 2), we model the slice selection and mapping mechanism.

As far as we know, C2Sim is the first cache simulator that implements phys-
ical address translation and L3 slice mapping algorithm. In Sect. 4, we will val-
idate the accuracy of C2Sim by comparing its cache miss ratio with the one
obtained using hardware performance counters in the actual CPUs.

4 Evaluation

4.1 Methodology

In this section, we evaluate our cache-line conflict simulator, C2Sim, using a
typical x86 64 Linux server running CentOS 6.7 with two of Intel Xeon E5-2680
CPUs. We implement C2Sim on the top of Pin tool set [9]. For the baseline
cache simulation, we set up the same configuration as the underlying CPU, that
is L1 = 32 KB 8way, L2 = 256 KB 8way and L3 = 20 MB 20way. Here, we model
three level data caches with true LRU replacement where L3 is managed with
inclusion policy and L2 is with non-inclusive policy. In the current implementa-
tion, C2Sim does not model a shared L3 cache and coherence protocols among
different cores, and it just simulates cache behaviors without any delays for cache
coherence and communication among other levels.

We use the following benchmarks in HPC field: PolyBench/C 4.2, 3D-FDTD
and Himeno benchmark. The PolyBench is a benchmark suite composed of 30
numerical computation kernels in various application domains such as linear
algebra computations, image processing, physics simulation, dynamic program-
ming, statistics [3]. Here, we set the data type to double and use LARGE dataset.
3D-FDTD is a benchmark code that evaluates three-dimensional finite-difference
time-domain method which is widely used in high-frequency electromagnetic field
analysis for the design of electrical devices [10]. Himeno benchmark is composed
of a kernel code used in incompressible fluid analysis [2], and one of well-known
memory bottleneck applications. We generate executable binary code of these
target applications using GNU gcc 4.4.7 with ‘-O3 -g’ option, and first examine
cache behaviors for single thread execution. To examine effectiveness for parallel
code, we generate multithreaded code with ‘-fopenmp’ option and evaluate their
effects for scalability.

In this evaluation, we apply the concept of sampling based cache simula-
tion technique [12] to C2Sim in order to reduce the overheads of on-line cache
simulation. Here, we set 100M instructions for the warm-up phase and 500M
instructions for the evaluation phase after skipping 4G clock cycles for the first

An Accurate Simulator of Cache-Line Conflicts 125

forward phase. We also note that we turn off the hardware prefetch implemented
in the CPU when we examine the cache statistics using our simulator. While the
hardware prefetch affects cache behaviors and in most cases results in perfor-
mance improvements, it sometimes obscures fundamentals of cache conflicts.
This is why we turn off the hardware prefetch for evaluating cache behaviors.

4.2 Verification of Our Simulator

Next, we validate accuracy of C2Sim by comparing the cache miss ratio with
that from Performance Monitoring Unit (PMU) implemented in the underlying
CPU2. We note that these cache miss ratios are observed during whole the exe-
cution. Here, we use PolyBench suite for this evaluation and measure cache miss
ratios during whole the execution. We exclude the programs whose native exe-
cution time is less than 0.8 s (gemver, gesummv, atax, bicg, mvt, durbin, trisolv,
deriche, jacobi-1d) since a short measurement interval tends to be unsound for
sampling simulation.

Table 1. Evaluating our cache simulator with statistics obtained from PMU.

Native

time [s]

C2Sim

overheads

PMU C2Sim Maximum

abs. error

L1 miss L2 miss L3 miss L1 miss L2 miss L3 miss

floyd-warshall 122.62 27.45 6.24% 50.00% 100.00% 6.25% 50.06% 99.98% 0.06%

correlation 3.98 209.87 66.97% 52.00% 0.00% 66.45% 51.63% 0.02% 0.52%

3mm 5.20 138.85 38.24% 11.00% 1.00% 37.51% 11.12% 0.26% 0.74%

gemm 2.04 81.20 3.15% 100.00% 1.00% 3.13% 100.00% 0.17% 0.83%

ludcmp 39.08 73.50 31.39% 37.00% 22.00% 32.59% 38.28% 20.53% 1.47%

2mm 4.04 150.58 38.06% 12.00% 1.00% 36.27% 11.50% 0.31% 1.79%

covariance 4.00 116.09 67.01% 53.00% 0.00% 66.42% 51.18% 0.02% 1.82%

trmm 1.13 330.67 60.00% 7.00% 2.00% 61.06% 7.62% 0.08% 1.92%

lu 39.55 72.75 29.29% 37.00% 23.00% 29.63% 38.84% 20.97% 2.03%

cholesky 37.55 55.56 25.44% 13.00% 80.00% 25.07% 13.19% 83.20% 3.20%

gramschmidt 3.84 140.91 57.05% 13.00% 1.00% 57.16% 17.20% 0.05% 4.20%

heat-3d 21.08 20.89 9.99% 100.00% 46.00% 6.37% 99.84% 50.66% 4.66%

jacobi-2d 11.29 30.49 3.69% 48.00% 93.00% 8.35% 50.00% 100.00% 7.00%

nussinov 9.36 80.03 34.47% 12.00% 19.00% 34.21% 12.24% 26.34% 7.34%

symm 2.14 110.14 33.96% 29.00% 3.00% 33.36% 21.46% 1.65% 7.54%

fdtd-2d 11.60 26.51 7.91% 85.00% 66.00% 7.73% 87.23% 75.13% 9.13%

syrk 1.16 274.93 23.96% 23.00% 2.00% 23.71% 13.19% 0.26% 9.81%

syr2k 2.29 225.06 33.77% 23.00% 4.00% 33.48% 12.48% 1.61% 10.52%

doitgen 0.92 87.75 33.95% 3.00% 14.00% 34.23% 2.71% 2.80% 11.20%

adi 21.23 37.10 16.77% 43.00% 81.00% 17.03% 30.56% 79.75% 12.44%

seidel-2d 34.98 10.57 8.35% 48.00% 93.00% 3.75% 33.37% 100.00% 14.63%

Table 1 shows the time for native execution of the program and the simulation
overheads (slowdown factor) calculated by measuring the time needed for cache
2 Here, we measure L2/L3 cache miss ratio by Intel PCM, and L1 miss ratio by LIK-

WID using counters such as L1D REPLACEMENT and MEM UOPS RETIRED.

126 Y. Sato and T. Endo

simulation for the same program. While the simulation overheads have a wide
range of variation, the average overhead is 109. To compare the other simulators,
we calculate MIPS (Million Instructions Per Second) rates for simulating these
programs. The resultant average MIPS rate is 40.06. This is several orders of
magnitude faster than typical microarchitectural simulators and the state of the
art cache simulators [17].

The result in Table 1 also shows the accuracy of cache modeling on our C2Sim
compared with the statistics obtained from PMU. Here, we calculate the average
maximum absolute errors of all programs and use it as a criterion for accuracy.
The maximum absolute error of each program is obtained by picking up the
maximum one among three cache levels after calculating absolute errors between
PMU and C2Sim for each cache level. From the results, we find the maximum
absolute errors of half of these programs are less than 5%. For all of the programs,
the observed maximum absolute error is less than 15%. In average, it is 5.37%.
These results indicate that C2Sim is accurate and practical enough to model the
performance of hierarchical caches implemented in modern CPUs.

Table 2. Effects of physical address translation and L3 slice mapping.

VA PA VA + slice PA+ slice PA+ slice sampling

Avg. max abs error 48.76% 40.73% 9.33% 5.18% 5.37%

Table 2 shows the accuracy of simulation compared with that of the real
machine. Here, VA represents simulations only using virtual addresses; PA rep-
resents ones with physical address translation. ‘PA + slice (sampling)’ indicates
typical C2Sim configuration. All of the maximum absolute errors are average of
21 PolyBench programs listed above. From these results, we observe that the L3
slice mapping is an important factor for accurate simulation. It contributes to
reducing the average maximum absolute error to 5.37%. It is also observed that
even if we enable sampling simulation, the error just increases slightly (0.19%).
We also observe that the simulation speed becomes 1.6 times faster if we enable
sampling. Therefore, we can understand that coupling these three techniques
(PA + slice and sampling) contributes to building an accurate and light-weight
cache simulator. These results indicate that our simulator is accurately model
the performance of hierarchical caches implemented in modern CPUs.

4.3 Accuracy for Line Conflict Detection

Next, we show the advantages of C2Sim over the existing conflict detection
mechanism. Here, we compare the FIFO-based method in [4,17] with C2Sim,
where the number of FIFO entries is set to the twice the number of associativities
as seen in these papers. Table 3 shows the ratios of line conflicts to the total
misses detected in each level. We calculate absolute errors among them and

An Accurate Simulator of Cache-Line Conflicts 127

Table 3. Detected line conflicts in the FIFO-based mechanism and C2Sim.

FIFO-based C2Sim Maximum abs. error

L1conflict L2conflict L3conflict L1conflict L2conflict L3conflict

gemm 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

covariance 0.00% 88.04% 0.00% 0.00% 88.04% 0.00% 0.00%

correlation 0.00% 88.03% 0.00% 0.00% 88.01% 0.00% 0.02%

doitgen 87.62% 98.90% 0.00% 87.68% 98.90% 0.00% 0.06%

symm 10.12% 37.14% 0.73% 10.04% 37.30% 0.73% 0.16%

2mm 0.29% 0.41% 0.00% 0.00% 0.42% 0.00% 0.29%

gramschmidt 0.00% 84.19% 0.00% 0.00% 84.57% 0.00% 0.38%

syr2k 9.84% 0.26% 2.02% 0.53% 0.27% 2.02% 9.31%

nussinov 21.23% 0.05% 24.78% 0.45% 0.02% 5.89% 20.78%

lu 2.51% 71.45% 21.42% 1.76% 71.58% 0.07% 21.35%

ludcmp 2.51% 71.04% 21.38% 1.74% 71.12% 0.02% 21.36%

3mm 23.17% 0.00% 0.00% 0.00% 0.00% 0.00% 23.17%

trmm 25.75% 2.25% 0.00% 0.62% 2.01% 0.00% 25.13%

syrk 45.08% 0.00% 0.00% 0.06% 0.00% 0.00% 45.02%

floyd-warshall 49.98% 0.00% 0.11% 0.00% 0.08% 0.03% 49.98%

heat-3d 0.00% 47.02% 50.69% 0.00% 0.00% 0.00% 50.69%

fdtd-2d 12.51% 0.00% 73.26% 0.00% 0.00% 5.36% 67.90%

adi 11.91% 6.20% 81.34% 1.09% 6.21% 0.99% 80.35%

cholesky 0.01% 0.12% 87.47% 0.00% 0.51% 0.24% 87.23%

seidel-2d 66.63% 0.00% 95.90% 0.00% 0.00% 0.00% 95.90%

jacobi-2d 50.00% 0.00% 100.00% 0.00% 0.00% 0.00% 100.00%

represent the maximum one across all three level as Maximum abs. error. All
the elements are sorted by the field of Maximum abs. error.

From the results, we observe that the FIFO-based mechanism approximates
C2Sim’s FA-based behaviors in 7 programs (gemm, covariance, correlation,
symm, doitgen, 2mm, gramschmidt) with less than 1% absolute errors. How-
ever, the rest of them contains a lot of false judgments, where the FIFO-based
classifies a miss to a conflict but actually it should be classified to a capacity
miss (not to conflict). Since the cache miss behavior of FA caches is a theoretical
lower bound that excludes any possible conflict misses, C2Sim can detect the
accurate number of cache-line conflicts by combining it with the underlying SA
caches.

On the other hand, the FIFO-based method is a kind of approximation of
such an FA cache behavior. These judgments cause the difference of 33.3% in
average of the maximum absolute errors. The evaluation done by Collins and
Tullsen in [4] also showed that their FIFO-based method could identify 88% of
conflict misses on the direct-mapped or the 2-way associative cache. From our
preliminary evaluation, we observed that the number of FIFO entries is sensitive
to the detection accuracy especially for configurations with highly associative
caches. Hence, there are no way to completely exclude false judgments in the
FIFO-based method. On the contrary, C2Sim accurately models the behavior of
cache conflicts based on their definition, and it is robust for highly associative
cache structures (such as 20 ways) in modern CPUs.

128 Y. Sato and T. Endo

Considering the actual use cases against performance tuning, the false judg-
ments should be avoided as much as possible to correctly provide the opportunity
for cache optimization. For instance, the FIFO-based method correctly reveals
the conflicts in covariance while it completely fails in jacobi-2d. If the program-
mers who perform cache optimization use the wrong target information created
by the FIFO-based method, they will never achieve the performance gain from
any memory layout optimizations related to line conflicts. On the other hand,
our C2Sim can productively reach the precise targets in the performance tuning
workflow.

4.4 Reasoning Around Line Conflicts for Performance Tuning

To examine where and why the conflicts occur and to apply these for an
actual performance tuning workflow, we pick up three programs (doitgen from
PolyBench, 3D-FDTD, Himeno). Figure 3(a) summarizes their cache conflicts
detected by C2Sim. Here, we observe conflicts in L1 cache for these programs.
For doitgen, we observe conflicts in L2 cache.

Memory object-relative view:
malloc[#3] total=336299057 conflictMissPC= 4008a2

--> malloc[#3] cnt= 308503621, 17620466, 0, originPC= 4008a2
--> malloc[#1] cnt= 9951731, 107283, 0, originPC= 400898
--> malloc[#2] cnt= 0, 115952, 0, originPC= 400888 4008c8
--> Stack(7fff72dde2c4, 4) cnt= 0, 4, 0, originPC= 4008ee

malloc[#1] total=10603920 conflictMissPC= 400898 4008ce
--> malloc[#3] cnt= 10603920, 0, 0, originPC= 4008a2

malloc[#2] total=115953 conflictMissPC= 400888 4008c8
--> malloc[#3] cnt= 0, 115953, 0, originPC= 4008a2

===
Reason classification view:

sum inter-array intra-array scalar unknown
#conflict 347018930: 20894839 326124087 4 0
Ratio 6.02% 93.98% 0.00% 0.00%

(b) A snapshot of observed sources of conflicts (doitgen)(a) Detected cache-line conflicts by C2Sim

Conflicts [%]
L1 L2 L3

doitgen 87.68% 98.44% 0.00%
3D-FDTD (1) 37.45% 0.00% 0.00%
Himeno (2) 92.94% 0.00% 1.76%

(1) FDTD: 128x128x64, timestep=50,
of mediums (prescribed by array ‘id’)=10

(2) Himeno Benchmark: OpenMP, C_Dynamic, size=S

Fig. 3. The detected conflicts and their sources.

To investigate the sources of conflicts further, we analyze the data recorded in
the LT-WET structure. Figure 3(b) shows the observed sources of line conflicts
during the execution of doitgen. Here, we represent the sources in the following
two manners: memory object-relative view and reason classification view. In the
memory object-relative view, we track the appearances of conflicts using sym-
bols that represent the memory objects. Here, we see that the malloc[#3] (the
thirdly invoked malloc in this execution) causes 336M conflicts at the instruction
0x4008a2. In the following four lines, four of its miss originators are represented
with the number of L1, L2, L3 conflicts and their miss originate PCs. Here, we
observe that the most significant miss originator is malloc[#3], the same object
as the one that causes the miss, and then find the primary reason is intra-
array conflict. Similarly, we find the other three originators are caused by inter-
array conflict. In the reason classification view, we collect the total number of

An Accurate Simulator of Cache-Line Conflicts 129

intra- and inter-array conflicts for the program execution. From these results, we
find that the intra-array conflicts within malloc[#3] are dominant in doitgen.

These information assists us in making strategies for avoiding the unnecessary
conflict misses and improving the potential performance of caches. Table 4(a)
shows the actual strategies formulated in this paper. While padding is a tra-
ditional technique and some existing papers build analytical models to decide
the amount of padding [5], the locations to be padded are heuristically deter-
mined by hands of expert programmers. Therefore, we propose a workflow that
inserts padding to the appropriate arrays suggested through our source analysis
mechanism.

Table 4. Cache tuning conducted for doitgen, 3D-FDTD, Himeno.

(a) Strategies for avoiding cache-line conflicts

Tuning strategy
Opt.1 Intra-array padding insertion
Opt.2 Use of hugetlbfs (2MB page)
Opt.3 Inter-array padding insertion

(b) Cache optimizations in doitgen

Speedup
Original 1.00
Opt.3 1.32

Speedup
Original 1.00
Opt.1 1.19

Opt.1+Opt.2 1.21
Opt.2 1.02

HW PF Speedup (**)

1 thread off 1.62
on 1.75

16 threads off 1.50
on 1.70

(c) Cache optimizations in 3D-FDTD

(d) Scalability for parallel threads and
sensitivity to HW prefetch in Himeno

(**) Opt.3 is performed

Table 4(b) shows cache optimizations performed for doitgen and their resul-
tant performance gains. Since the intra-array conflicts within malloc[#3] is the
dominant source of conflicts, we insert an extra space within the first dimension
of the corresponding 2D array ‘C4’ in the program. Here, we set 8 elements (64
Bytes) as the amount of intra-array padding to insert an extra space equivalent
to one cache-line size. After this optimization (Opt.1), we observe 1.19 times
speedup from its original code.

Next, we check whether the conflicts are resolved using C2Sim. The results
show that conflicts in L2 still remain although these in L1 are completely elimi-
nated. Here, this phenomenon is derived from the page size used for evaluation.
When we use a default 4KB page, the lower 12 bits of memory addresses becomes
offsets within the page. Also, for the L1 cache indexing, the lower 12 bits are
used. Therefore, all of L1 indexing can be done within a page. However, the L2
and the L3 cache need to use the upper parts of these 12 bits for their indexing,
and these are affected by physical address mapping. Since typical linux systems
randomize its address space layout through ASLR, the upper parts of the indexes
are fragmented. These random index generation makes the effect of intra-array
padding diminished. To avoid this, we set 2MB pages through hugetlbfs and con-
trol the cache indexing for L2 and L3. After this optimization (Opt.1 + Opt.2),
the conflicts within L2 cache are eliminated, and this results in a further speedup.

130 Y. Sato and T. Endo

Here, we note that we cannot achieve such performance improvement if we just
adopt hugetlb without intra-array padding (Opt.2).

Then, we shift to the cache optimization for 3D-FDTD. From the result of
conflict source analysis using C2Sim, we observe that the conflicts found in L1 are
dominated by inter-array conflicts across 7 arrays. Based on this, we insert extra
spaces to these arrays. To distribute positions of sets in the L1 cache, we arrange
the amount of the padding as interPad+=LineSize×�N#sets/N#arrays�. This
means that M × 64× 9 bytes padding is inserted at the beginning of Mth array,
where N#sets = 64, N#arrays = 7. From this intra-array padding (Opt.3), we
can achieve 1.32 times speedup as shown in Table 4(c).

Next, we examine scalability for multithread executions. Table 4(d) shows the
speedup obtained from the original code using an OpenMP version of Himeno.
First, we analyze cache miss behaviors for serial and 16-thread execution using
C2Sim and observe that both of them are dominated by L1 inter-array conflicts
across 7 major arrays3. Then, we insert inter-padding by displacing the starting
position of each array 64 × 9 bytes from the adjacent arrays similar to the case
of 3D-FDTD. Additionally, to validate feasibility in the actual use cases, we
compare the speedup with the configuration that enables the hardware prefetch.
From the results, we observe that the performance gain due to the padding is
kept even if the number of threads is increased to 16. It is also observed that
additional speedup can be obtained when we turn on the HW prefetch. Here, we
observe that 1.75x speedup in 1 thread and 1.70x speedup in 16 threads can be
achieved compared with their baseline before the padding. From these, we can
understand that the optimal padding decision assisted by C2Sim contributes to
scalable performance improvement for multithread programs.

We note that the workflow consisting of three strategies (Opt.1 to Opt.3)
presented in this Section could be performed automatically by feeding back the
dominant source of conflicts to the code generation or runtime parts implemented
as a software stack composed of compilers and memory management systems.
As a future work, we plan to enhance our C2Sim for a basis of fully automated
tuning system.

5 Related Works

C2Sim is a simulation-driven model for detecting cache-line misses to exploit the
underlying cache performance. The core part of C2Sim is similar to the algo-
rithm used in cachegrind [1,11], which models SA caches, aligned and unaligned
memory accesses and true LRU replacement policy on the top of a dynamic
binary translator. In addition to the model found in cachegrind, we implement
mechanisms for identifying cache-line conflicts and model more detailed cache
structures such as three level caches, physical address translation, and a slice
mapping mechanism.

3 The 16-thread execution might underestimates conflicts in a shared L3 cache because
we assume 16 independent L3 caches in the current C2Sim implementation.

An Accurate Simulator of Cache-Line Conflicts 131

CMP$im [7] is a cache simulator implemented using the Pin tool set like ours.
While it models details of cache structures across a multi-core CPU, it does not
provide any mechanisms to reveal line conflict misses in their original form. On
the other hand, C2Sim provides a concurrent dual cache simulation mechanism
to accurately identify cache-line conflicts and their sources.

The authors of [19] implement a comprehensive cache simulator that pro-
vides cache performance data needed for code optimization. They focus on reuse
distance and define conflict miss as follows: If the reuse distance of an access is
smaller than the number of cache lines, the resulted miss is regarded as a conflict
miss. However, their definition based on reuse distance is a kind of approxima-
tion like the FIFO-based method [4,17]. The judgments for conflicts depend on
their threshold distance and this leads errors for the detection.

A profiler called DProf presented in [13] uses CPU performance counters to
categorize types of cache misses. They attempt to identify line conflict misses
(associativity miss in that paper) by finding repeated cycles of the same address
in a single associativity set. However, it is not clear how accurate they classify
the type of miss using information from hardware performance counters. On the
other hand, our C2Sim models line-conflict misses based on theoretical upper
bound using FA cache and detect them accurately.

Seshadri et al. proposed a special hardware mechanism called Evicted-
Address Filter (EAF) to mitigate cache-line conflicts [18]. They classify line
conflict into cache pollution and cache thrashing and attempt to record them on
EAF. While their approach can prevent line conflicts to some extent by adjusting
cache insertion policy, theirs are hardware-based approach and require modifi-
cation of hardware.

To the best of our knowledge, this paper is the first one that presents cache-
line conflict detection within actual programs using software-based advanced
cache simulation techniques. The essential part of this is to reveal detail cache
behavior normally invisible from software. Therefore, our simulator is capable of
evaluating the impact of different cache organization and strategies like prefetch-
ing and replacement policy in addition to cache conflicts focused on this paper.

Padding is a traditional performance optimization technique to avoid cache
line conflict misses [5,16]. For inserting pads appropriately, we need to inves-
tigate where the extra spaces should be inserted and how much space is good
for performance. While some existing papers build analytical models to decide
the amount of padding [5,8,14], the locations to be padded are heuristically
determined by hands of expert programmers. On the other hand, our C2Sim
provides practically accurate sources of conflict and their locations. We believe
this dramatically eases the actual performance tuning workflow.

6 Conclusions

In this paper, we have presented a method that reveals cache-line conflicts during
the actual execution. Here, we developed a cache-line conflict simulator called
C2Sim. C2Sim is capable to simultaneously simulate both ideal fully associative

132 Y. Sato and T. Endo

caches and realistic baseline caches derived from existing architectures. We also
proposed a mechanism that enables users to identify where and why line conflict
miss occurs. We have shown that cache-line conflict misses can be avoided by
padding the appropriate arrays as suggested by our C2Sim analysis. We also
showed that these clues manifest themselves in improved execution performance
in both serial and parallel executions.

C2Sim is available at https://github.com/YukinoriSato/ExanaPkg as a part
of Exana tool kit. We encourage researchers and developers to download it as a
basis for productive performance tuning.

Acknowledgments. This work was supported by CREST, Japan Science and
Technology Agency.

References

1. Cachegrind. http://valgrind.org/docs/manual/cg-manual.html
2. Himeno benchmark. http://accc.riken.jp/en/supercom/himenobmt/
3. PolyBench. https://sourceforge.net/projects/polybench/
4. Collins, J.D., Tullsen, D.M.: Runtime identification of cache conflict misses: the

adaptive miss buffer. ACM Trans. Comput. Syst. 19(4), 413–439 (2001)
5. Hong, C., et al.: Effective padding of multidimensional arrays to avoid cache conflict

misses. In: Proceedings of the 37th ACM Conference on Programming Language
Design and Implementation, PLDI 2016, pp. 129–144 (2016)

6. Irazoqui, G., Eisenbarth, T., Sunar, B.: Systematic reverse engineering of cache
slice selection in Intel processors. In: 2015 Euromicro Conference on Digital System
Design (DSD), pp. 629–636, August 2015

7. Jaleel, A., Cohn, R., Luk, C.-K., Jacob, B.: CMP$im: a pin-based on-the-fly multi-
core cache simulator. In: Proceedings of the Fourth Annual Workshop on Modeling,
Benchmarking and Simulation (MOBS 2008) (2008)

8. Li, Z.: Simultaneous minimization of capacity and conflict misses. J. Comput. Sci.
Technol. 22(4), 497–504 (2007)

9. Luk, C.-K., et al.: Pin: building customized program analysis tools with dynamic
instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pp. 190–200 (2005)

10. Minami, T., Hibino, M., Hiraishi, T., Iwashita, T., Nakashima, H.: Automatic
parameter tuning of three-dimensional tiled FDTD kernel. In: Daydé, M., Marques,
O., Nakajima, K. (eds.) VECPAR 2014. LNCS, vol. 8969, pp. 284–297. Springer,
Cham (2015). doi:10.1007/978-3-319-17353-5 24

11. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: Proceedings of the 28th ACM Conference on Programming
Language Design and Implementation, PLDI 2007, pp. 89–100 (2007)

12. Nikoleris, N., Eklov, D., Hagersten, E.: Extending statistical cache models to sup-
port detailed pipeline simulators. In: 2014 IEEE International Symposium on Per-
formance Analysis of Systems and Software, pp. 86–95, March 2014

13. Pesterev, A., Zeldovich, N., Morris, R.T.: Locating cache performance bottlenecks
using data profiling. In: Proceedings of the 5th European Conference on Computer
Systems, EuroSys 2010, pp. 335–348 (2010)

https://github.com/YukinoriSato/ExanaPkg
http://valgrind.org/docs/manual/cg-manual.html
http://accc.riken.jp/en/supercom/himenobmt/
https://sourceforge.net/projects/polybench/
http://dx.doi.org/10.1007/978-3-319-17353-5_24

An Accurate Simulator of Cache-Line Conflicts 133

14. Rivera, G., Tseng, C.-W.: Tiling optimizations for 3D scientific computations. In:
Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, SC 2000
(2000)

15. Satish, N., et al.: Can traditional programming bridge the Ninja performance gap
for parallel computing applications? Commun. ACM 58(5), 77–86 (2015)

16. Sato, S., Sato, Y., Endo, T.: Investigating potential performance benefits of mem-
ory layout optimization based on roofline model. In: Proceedings of the 2nd Inter-
national Workshop on Software Engineering for Parallel Systems, SEPS 2015, pp.
50–56 (2015)

17. Sato, Y., Sato, S., Endo, T.: Exana: an execution-driven application analysis tool
for assisting productive performance tuning. In: Proceedings of the 2nd Interna-
tional Workshop on Software Engineering for Parallel Systems, SEPS 2015, pp.
1–10 (2015)

18. Seshadri, V., et al.: The evicted-address filter: a unified mechanism to address
both cache pollution and thrashing. In: 21st International Conference on Parallel
Architectures and Compilation Techniques (PACT), pp. 355–366 (2012)

19. Tao, J., Karl, W.: Detailed cache simulation for detecting bottleneck, miss reason
and optimization potentialities. In: Proceedings of the 1st International Conference
on Performance Evaluation Methodolgies and Tools, VALUETOOLS 2006 (2006)

Shutdown Policies with Power Capping
for Large Scale Computing Systems

Anne Benoit1, Laurent Lefèvre1(B), Anne-Cécile Orgerie2, and Issam Räıs1

1 Univ. Lyon, Inria, CNRS, ENS de Lyon, Univ. Claude-Bernard Lyon 1, LIP,
Lyon, France

{Anne.Benoit,laurent.lefevre}@ens-lyon.fr, issam.rais@inria.fr
2 CNRS, IRISA, Rennes, France
anne-cecile.orgerie@irisa.fr

Abstract. Large scale distributed systems are expected to consume
huge amounts of energy. To solve this issue, shutdown policies consti-
tute an appealing approach able to dynamically adapt the resource set
to the actual workload. However, multiple constraints have to be taken
into account for such policies to be applied on real infrastructures, in par-
ticular the time and energy cost of shutting down and waking up nodes,
and power capping to avoid disruption of the system. In this paper, we
propose models translating these various constraints into different shut-
down policies that can be combined. Our models are validated through
simulations on real workload traces and power measurements on real
testbeds.

Keywords: Large scale distributed systems · Energy models ·
Shutdown policies · Simulations

1 Introduction

Reducing the energy consumption of large scale distributed systems (high perfor-
mance computing centers, networks, datacenters) is a mandatory step to address,
in order to build a sustainable digital society. Since more than a decade, sev-
eral technological solutions have been made available by system designers to
help reducing power, like shutdown and slowdown approaches. The first and
most explored solution consists in shutting down and waking up some resources
depending on platform usage. In this paper, the question on how resource
providers and managers can be helped to validate their constraints while reducing
the energy consumption using only the shutdown and wake-up of large amount
of resources is addressed.

Resource providers and managers can be human who are responsible of
the administration of large supercomputers, but they can also be software
components that deal with resources (schedulers, resource management frame-
works, etc.). Nowadays, hardware components of a datacenter or supercomputer
(servers, network switches, data storage, etc.) are not yet energy proportional.
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 134–146, 2017.
DOI: 10.1007/978-3-319-64203-1 10

Shutdown Policies with Power Capping for Large Scale Computing Systems 135

In fact, the static part (i.e., the part that does not vary with workload) of the
energy consumed for example by computing units, represents a high part of
the overall energy consumed by the node. Therefore, shutting unused nodes or
routers, that are idle and not expected to be used in a predicted duration, could
lead to non negligible energy savings. This paper focuses on shutting down and
waking up any kind of resources like servers, network devices, memory banks,
cores, etc. For clarity’s sake, here, the proposed models and validations focus on
servers (called nodes).

Off-the-shelf software eco-systems are nowadays integrating (mainly basic)
shutdown policies. Data center resource managers propose techniques or hooks
to configure such capabilities. For example, Slurm [16], an open-source cluster
management system, introduces a SuspendTime1 that represents the minimum
idle time after which it allows the node to be switched off. Then, the resource
manager is responsible for deciding when to switch on and off servers. It takes
decisions either based on pre-determined policy [16], on workload predictions [8],
on queuing models [5] or on control theory approach [15].

Overall, shutdown seems to be an interesting leverage to save energy (referred
to as OnOff leverage). But this technique cannot be applied at large scale if
no constraint is respected on the target system. This is especially true if the
resource providers take into account several types of constraints, such as the
cost of shutdown and wake-up (in time and energy), or power-capping constraints
imposed to the whole system. In particular, shutting down too many nodes could
cause the power consumption to be under the minimum power capping decided
with the electricity provider. Likewise, if too many nodes are waked up, and if
providers take into account the energy consumed during shutdown and wake-up
sequences (which is far from being free), limits fixed by the electricity provider
can be greatly exceeded. If providers do not take into account such constraints,
they can put into danger machines composing the studied computing facility.

In this paper, we propose several models of shutdown that can be used under
actual and future supercomputer constraints, and that takes into account the
impact of shutting down and waking up nodes (time, power and energy) and the
Idle and Off states observed after such actions as they impact the power usage.
Our formalization allows for a mono or combined usage of models in order to
help resource managers and providers respect several constraints at the same
time. Several shutdown models that can be handled by resource providers and
that deal with infrastructure constraints are explored:

• The basic models allow comparisons with several related works where shutting
down and waking up nodes can either be free and immediate, or not allowed.

• The sequence-aware models account for the cost of shutting down or waking
up nodes, in terms of time or energy.

• The power-capping models aim at respecting power capping requirements.

The models are used as follows: knowing that there is an idle interval of
length Tgap on a given node, the model decides whether the node should be shut
down, given the enforced constraints.
1 http://slurm.schedmd.com/power save.html.

http://slurm.schedmd.com/power_save.html

136 A. Benoit et al.

The paper is organized as follows. Section 2 presents the modeling of the
various shutdown (OnOff) policies for basic models, sequence-aware models, and
finally models dealing with power-capping. It also deals with the usage and
combination of these models. The experimental setup is described in Sect. 3 and
experimental results are analyzed in Sect. 4. Section 5 presents related work on
shutdown techniques for large scale systems. Section 6 concludes and presents
future work.

2 Modeling Shutdown Policies

This section presents our characterization of the impact of shutting down and
waking up a node in terms of time and power consumption. It also introduces
models acting on the OnOff leverage.

2.1 Model Inputs

To monitor nodes’ wake-up and shutdown sequences, an external power moni-
toring allowing us to trace power consumption of nodes is used. It has a rate of
one power value per second. The sequences have been monitored to detect when
every event happened. For the wake-up sequence, unfortunately, no information
could be extracted between BIOS (Basic Input Output System) bootstrap and
GRUB (Grand Unified Bootloader) loading. The first monitorable event in this
sequence is the Kernel launch; this is displayed on Fig. 1, which shows how the
power evolves with time during a monitored boot sequence on a node. The time
where kernel starts has been recovered with the dmesg tool (which is a logging of
what happened during the launch of the kernel). The INIT monitoring is made
by modifying the runlevel scripts.

These monitored profiles are modeled by a sequence for each node. For node i,
Seqi = {(t0;AvrgP0), . . . , (tn;AvrgPn)} is the set of timestamps and average
power consumption measurements of a wake-up (or Off→On sequence) or shut-
down (or On→Off sequence), where t0 and tn represent the starting and ending
time respectively of sequence Seq on node i. The length of the sequence is there-
fore tn − t0, and at time-step tk (1 ≤ k ≤ n), AvrgPk is the average power
consumption of node i.

2.2 Model Definitions

Basic Models. Two basic models are used by most papers in the literature:
either the nodes are never shut down (No-OnOff model), or there is no cost
(time, energy, power) to wake up or shutdown a node (LB-ZeroCost-OnOff
model: Lower-Bound Zero-Cost OnOff Model), making it very simple to shut-
down a node (but very far from reality). In this context, the node consumes
nothing when executing an On→Off or Off→On sequence. Thus, there is no cost
nor time spent to switch state, and no power peak observed during the sequence.
In this context, no influence could be derived from waking up or shutting down
nodes. This LB-ZeroCost-OnOff model therefore provides a theoretical upper
bound on the gains that can be achieved by shutting down nodes.

Shutdown Policies with Power Capping for Large Scale Computing Systems 137

Fig. 1. Monitored boot sequence of a node running Linux: BIOS-MBR-GRUB period
in red; Kernel in green; INIT in gray. (Color figure online)

Sequence-Aware Models. The sequence-aware models make sure that the
sequence observed on a node or set of nodes during On→Off or Off→On
sequences fits in time or are beneficial in energy. Therefore, information for every
node composing the studied case needs to be recorded, in particular a record of
the Off→On and On→Off sequences.

Time Constrained. The first model, Seq-Aw-T (Sequence-Aware-Time), checks
whether there is enough time to perform an On→Off sequence followed by an
Off→On sequence on a node, given the available time when the node is idle. Let
Tgap be the size of the “gap”, i.e., the interval of idle time of the node. Then,
Seq-Aw-T will allow the addition of sequences in this time slot if and only if
TOnOff + TOffOn ≤ Tgap, where TOnOff (resp. TOffOn) is the time spent by the
node during an On→Off (resp. Off→On) sequence.

Energy Constrained. The Seq-Aw-E model (Sequence-Aware-Energy) further
refines Seq-Aw-T by checking whether changing the state of the node is bene-
ficial in terms of energy. The minimum time Ts of the gap is now further con-
strained by the energy savings:

Ts = max
(

TOnOff + TOffOn,
EOnOff + EOffOn − Poff(TOnOff + TOffOn)

Pidle − Poff

)
,

where:

– Pidle is the power consumption when the node is in the Idle state (unused,
but powered on);

– Poff is the power consumption when the node is switched off (typically not
null and lower than Pidle);

– EOnOff is the energy consumed during the On→Off sequence;
– EOffOn is the energy consumed during the Off→On sequence.

The first term states, as for Seq-Aw-T, that at least a time TOnOff + TOffOn

is needed to shutdown the node (and to wake it up) during the idle interval.
The second term ensures that there will be gains in energy: the energy saved
by running at Poff rather than Pidle is Ts(Pidle − Poff) during the interval, but
the additional energy due to the On→Off and Off→On sequences is EOnOff +

138 A. Benoit et al.

EOffOn − Poff(TOnOff + TOffOn). Therefore, if Tgap > Ts, then it is beneficial to
shutdown (at the beginning of the gap) and to wake up (at the end of the gap)
the node, in terms of energy consumption.

Power-Capping-Aware Models. The Power-Cap model (Power-Capping-
Aware) aims at maintaining an average power budget and guaranteeing minimal
or maximal electrical power consumption. Indeed, shutting down and waking up
components could lead to hard power-capping disruptions. Such actions energet-
ically stress the node, whether it is in an upper or lower way. Here, information
about the power capping that should be respected is provided.

A minimum power capping (PC Min) represents a constraint set by the elec-
trical provider, and is defined by providing a lower bound on power. A maximum
power capping (PC Max) represents power limit fixed by the electrical provider,
and it is defined by an upper limit on power. These minimum and maximum
power capping values may be a function of the time, i.e., the requirements may
change in time.

We introduce the function PowerSum(X, t), which returns the sum of the
power consumed by nodes in set X at time-step t. We denote by ALL the set of all
nodes. Nodes in X can be shut down or waked up only if PowerSum(ALL, t) ≥
PC Min and PowerSum(ALL) ≤ PC Max at all time during the sequence.

2.3 Model Usages

Several models have been derived, assuming that local knowledge about the
node reservations is available, i.e., the current state of each node: On (Working
or Idle) or Off. At current time-step Tc, a model aims at deciding whether this
node can be shut down and then waked up, while respecting the constraints of
the system. If the node is neither in a Working or Off state, it is in an Idle
interval of length Tgap. Therefore, an entity giving advice on changing the state
of a node (or set of nodes) is provided, making sure that the overall system
responds to the described constraints.

3 Experimental Setup

To instantiate our models in various configurations, we developed a simulator
capable of replaying a real datacenter trace, with real node and job calibra-
tions (time, power, energy). Grid’5000 [1], a large-scale and versatile testbed
for experiment-driven research in all areas of computer science, was used as a
testbed. Grid’5000 deploys clusters linked with dedicated high performance net-
works in several cities in France (Lille, Nancy, Sophia, Lyon, Nantes, Rennes,
Grenoble). On the Lyon site, the energy consumption of every node from all
available clusters (Orion, Taurus, Sagittaire) is monitored through a dedicated
wattmeter, exposing one power measurement per second with a 0.125 W accu-
racy. Therefore, detailed traces concerning the energy consumption of jobs at any
time step are available. An average power consumption of each job was obtained.

Shutdown Policies with Power Capping for Large Scale Computing Systems 139

Thanks to these traces, realistic replays of jobs with their corresponding energy
consumption is performed. Taurus nodes were monitored to calibrate in time,
energy and power the Off→On and On→Off sequences, as explained in Sect. 2
(see Table 1).

Table 1. Calibration nodes’ characteristics and energy parameters for On→Off and
Off→On sequences (average on 50 experimental measurements).

Taurus Features Parameters Values

Server model Dell PowerEdge R720 EOffOn (Joules) 23,683

CPU model Intel Xeon E5-2630 TOffOn (seconds) 182

Number of CPU 2 EOnOff (Joules) 1,655

Cores per CPU 6 TOnOff (seconds) 15

Memory (GB) 32 Pidle (Watts) 91

Storage (GB) 2 × 300 (HDD) Poff (Watts) 8

Ts (seconds) 286.29

For our evaluation, two real workload traces of the Grid’5000 Lyon site
were extracted. Traces only contain nodes that received jobs during the cho-
sen period to avoid doping of the energy saving results with nodes that will
potentially always be shutdown. The first one runs from October 24, 2016 at
7 pm to November 1, 2016 at 8 am, thus representing approximately one week
of resource utilization on this site. During this period, the number of used nodes
is 76. The second one runs from October 29, 2016 at 7 pm to December 1, 2016
at 3 am, thus representing approximately one month of resource utilization. The
number of used nodes is 69. Nodes are considered homogeneous concerning the
Pidle, Poff characteristics, Off→On and On→Off sequences. This study is focused
on shutting down nodes, scheduled jobs are considered fixed. Moreover, we only
add sequences if possible, thus not impacting nor overlaying scheduled jobs. For
the week trace, there are 1,768 jobs with an average power consumption of 167.5
Watts and an average job size of 13,776.96 s (approximately four hours). For the
month trace, there are 5,505 jobs with an average power consumption of 166.5
Watts and an average job size of 14,203.42 s (approximately four hours). Yet,
these traces exhibit high workload variations as shown on Figs. 2 and 3, where
the upper curve corresponds to the No-OnOff model.

4 Experimental Validation

This section presents the simulation results for the proposed setup as proposed
in Sect. 3. All graphs represent a trace replay of the application of one or multiple
combined models of Sect. 2. Table 2 presents the energy consumption in Joules
of all models in the figures included in this section. This section presents results

140 A. Benoit et al.

of the simulator on the extracted traces with calibration of Taurus nodes while
applying previously defined models. The first trace, which spreads over one week,
will be used to extensively study behavior of models. The second trace, over one
month, will validate observations and model tendencies at a larger scale.

For the experiments involving Power-Cap, Seq-Aw-T is always combined
with this model to ensure that the node is in the On state when a scheduled job
starts. Shutting down a node is allowed only when it can be waked up before
the end of the idle time interval, to ensure that no job is delayed.

Table 2. Trace replay’s energy consumption (in Joules), number of added dou-
ble sequences (On→Off and Off→On), and percentage of energy saved compared to
No-OnOff replay.

Model Total energy consumed # (On→Off and Off→On) % Saved

Grid’5000 trace, 1 week

No-OnOff 6,083,698,688 0 0.0

LB-ZeroCost-OnOff 3,983,408,384 1794 34.52

Seq-Aw-T 4,015,736,064 964 33.99

Seq-Aw-E 4,015,201,024 844 34.00

Power-Cap 2000 min 4,401,067,520 855 27.65

Power-Cap 4000 min 4,593,668,096 761 24.49

Power-Cap 6000 min 5,059,857,408 617 16.82

Grid’5000 trace, 1month

No-OnOff 22,866,315,264 0 0.0

LB-ZeroCost-OnOff 12,935,132,160 5,559 43.43

Seq-Aw-T 13,038,270,464 3,819 42.9804

Seq-Aw-E 13,037,558,784 3,605 42.9835

Power-Cap 4000 min 17,864,194,048 2,376 21.87

4.1 Sequence-Aware Models: Seq-Aw-T and Seq-Aw-E

Figures 2 and 3 show results of the different models, namely No-OnOff, Seq-
Aw-T, Seq-Aw-E, and LB-ZeroCost-OnOff on, respectively, one week and
one month traces. Between the two sequence-aware models, minor differences
can be witnessed on the complete replay. For example on Fig. 2, for October 31
at 4:40 am, Seq-Aw-T allows more Off→On sequences to be scheduled. Both
of these models lead to major energy savings, respectively 34.00% and 39.9%
of energy savings on the one week trace compared to No-OnOff, as shown in
Table 2. In comparison with the No-OnOff trace replay, major power peaks are
witnessed because of the application of these models. For instance, in the one
week trace, for October 31 at 12:00 pm, after a peak of work around 12,000 W, a
very low peak is witnessed under 1,000 W. Such a behavior could be witnessed in
an amplified way on Fig. 3 for instance around November 12, November 3, and

Shutdown Policies with Power Capping for Large Scale Computing Systems 141

November 21. Such behaviors could lead to abrupt thermal changes and thus to
hot and cool spots, so to possible deterioration of the nodes.

LB-ZeroCost-OnOff, the model with immediate On→Off with zero cost
is also presented for comparison. There is no significant difference in energy
consumption observed when the cost of On→Off and Off→On sections are accu-
rately described. However, the number of On→Off that are effectively triggered
is significantly lower, implying that LB-ZeroCost-OnOff allows the addition
of sequences when Tgap is smaller that TOnOff + TOffOn.

Fig. 2. Replay for a week of Grid’5000 trace with No-OnOff (NO) and with Seq-Aw-T
(SAT), Seq-Aw-E (SAE), LB-ZeroCost-OnOff (LB) models.

Fig. 3. Replay for a month of Grid’5000 trace with No-OnOff (NO) and with Seq-
Aw-T (SAT), Seq-Aw-E (SAE), LB-ZeroCost-OnOff (LB) models.

142 A. Benoit et al.

4.2 Power-Capping Model

Next, a focus on the Power-Cap model is made. A maximum and a mini-
mum power cap is set throughout the simulation. Modulation of the minimum
power cap to see how it acts with the trace replay is then simulated. Recall that
since only the OnOff leverage is evaluated, scheduled jobs are fixed. Therefore,
maximum power cap does not vary because it highly depends on jobs and also
because the difference between Pidle and Poff is more important than the dif-
ference between the peaks witnessed during the Off→On or On→Off sequences
and Pidle.

Figure 4 shows results of No-OnOff, Seq-Aw-T and Power-Cap with var-
ious PC Min scenarios (2000, 4000 and 6000) during the one week trace. Even
with the highest minimum power cap, here 6,000 W, important energy savings
(around 16.82 % compared to No-OnOff) are made. The stratified power usage
for every respected power cap was expected. In fact, a lower power cap per-
mits more sequences to be scheduled and thus, more energy savings. The lowest
cap constraint (2,000 W) shows that a minimum power capping could be always
respected and would still have a close to minimum consumption. Finally, Fig. 5
shows results for larger scale replay (one month) on No-OnOff, Seq-Aw-T and
Power-Cap with 4,000 as PC Min, and leads to the same conclusions.

Fig. 4. Replay for a week of Grid’5000 trace with No-OnOff (NO) and with Power-
Cap (with PC Min = 2000, 4000, 6000), Seq-Aw-T (SAT) models.

5 Related Work

Pioneering work on studying the energy-related impacts of shutdown techniques
started in 2001 [2,11]. These early efforts did not consider any transition cost for
switching between Idle and Off states, but they nonetheless showed the potential
impact of such techniques. Yet, aggressive shutdown policies are not always the
best solution to save energy [9].

Shutdown Policies with Power Capping for Large Scale Computing Systems 143

Fig. 5. Replay for a month of Grid’5000 trace with No-OnOff (NO) and with Power-
Cap (with PC Min = 4000), Seq-Aw-T (SAT) models.

Demaine et al. examine the power minimization problem where the objective
is to minimize the total transition costs plus the total time spent in the active
state [3]. They develop a (1+2α)-approximation algorithm, with α the transition
cost. However, the parameters considered for this transition cost highly vary
across the literature. Gandhi et al. take into account the energy cost of waking up
servers (no shutting down cost as it is estimated to be negligible in comparison
with the waking-up cost) [5]. This energy cost is assumed to be equal to the
transition time multiplied by the power consumption while in the Idle state. Lin
et al. take into account the energy used for the transition, the delay in migrating
connections or data, the increased wear-and-tear on the servers, and the risk
associated with server toggling [7]. We go one step beyond and carefully assess
the cost of shutting down or waking up a node, in terms of time, power and
energy.

Moreover, supporting shutdown and wake-up of large amount of resources
can be risky as it impacts the whole infrastructure of supercomputers, such as
the cooling system [18]. Shutdown techniques can also be used for limiting the
dark silicon effect, i.e., the under-utilization of the device integration capacity
due to power and temperature effects [4]. This issue has lead to the introduction
of user-specified, dynamic, hardware-enforced processor power bounds, as for the
Intel’s Sandy Bridge family of processors for instance [13]. At a data center level,
it translates into power budgeting, where the total power budget is partitioned
among the cooling and computing units, and where the cooling power has to
be sufficient to extract the heat of the computing power. Given the computing
power budget, Zhan and Reda propose an optimal computing budgeting tech-
nique based on knapsack-solving algorithms to determine the power caps for the
individual servers [17].

Shutdown policies are often combined with consolidation algorithms that
gather the load on a restricted number of servers to favor the shutdown of the
others. Employing either reactive or proactive scheduling options [6,10], consol-
idation algorithms increase the energy gains brought by shutdown techniques at

144 A. Benoit et al.

a cost of a trade-off with performance [14]. The rich diversity in power man-
agement techniques and levers can lead to substantial issues if they are not
coordinated at the data center level [12]. In this paper, shutdown policies (i.e.,
when to shutdown) are studied, without combining them to scheduling algo-
rithms and consolidation approaches in order to evaluate the impacts of such
policies without interfering with the workload of real platforms and with the
users’ expected performance.

6 Conclusion

In this paper, the OnOff leverage is explored as a technique to save energy
on large scale computing systems. While it is often assumed that nodes can
change state at no cost, realistic scenarios are explored where several constraints
(time and energy of changing the state of a node, global power capping on the
platform) may prevent us from shutting down a node at a given time. This
paper presents a formal definition of such models, targeting various scenarios on
selected architectures.

A possible application of these models, either alone or combined, is pro-
vided through a set of simulations on real workload traces, showing the gain in
energy that can be achieved, given the constraints on the platform, and pro-
viding clear guidelines about when a node can change state. Overall, the gain
of the non-realistic model, where nodes are instantaneously shutdown during
an idle period, is very small over the sequence-aware model, that shutdowns
a node only if there is time to wake it up again before the next computation
(Seq-Aw-T), and accounts for the power consumption during the Off→On and
On→Off sequences (Seq-Aw-E). On top of previous models, power-capping con-
straints (Power-Cap) could be enforced, thus reducing the number of added
On-Off sequences, and hence leading to losses in energy, but fully respecting the
imposed constraints.

We plan to further add several models by considering for example a cooling-
aware model that accounts for the system temperature in order to avoid abrupt
thermal changes (and thus hot and cool spots), provoked by changing the state
of a large number of nodes. We also plan to deeply analyze combinations of
shutdown models in order to jointly take into account more realistic constraints
imposed to supercomputers.

Acknowledgements. This work is integrated and supported by the ELCI project, a
French FSN (“Fond pour la Société Numérique”) project that associates academic and
industrial partners to design and provide software environment for high performance
computing. Experiments presented in this paper were carried out using the Grid’5000
testbed, supported by a scientific interest group hosted by Inria and including CNRS,
RENATER and several Universities as well as other organizations (see https://www.
grid5000.fr).

https://www.grid5000.fr
https://www.grid5000.fr

Shutdown Policies with Power Capping for Large Scale Computing Systems 145

References

1. Bolze, R., et al.: Grid’5000: a large scale and highly reconfigurable experimen-
tal Grid testbed. Int. J. High Perform. Comput. Appl. 20(4), 481–494 (2006).
https://hal.inria.fr/hal-00684943

2. Chase, J.S., Anderson, D.C., Thakar, P.N., Vahdat, A.M., Doyle, R.P.: Managing
energy and server resources in hosting centers. In: ACM Symposium on Operating
Systems Principles (SOSP), pp. 103–116 (2001)

3. Demaine, E.D., Ghodsi, M., Hajiaghayi, M.T., Sayedi-Roshkhar, A.S., Zadi-
moghaddam, M.: Scheduling to minimize gaps and power consumption. In: ACM
Symposium on Parallel Algorithms and Architectures (SPAA), pp. 46–54 (2007)

4. Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K., Burger, D.: Power
limitations and dark silicon challenge the future of multicore. ACM Trans. Comput.
Syst. (TOCS) 30(3), 11:1–11:27 (2012)

5. Gandhi, A., Gupta, V., Harchol-Balter, M., Kozuch, M.A.: Optimality analysis of
energy-performance trade-off for server farm management. Perform. Eval. 67(11),
1155–1171 (2010)

6. Gmach, D., Rolia, J., Cherkasova, L., Kemper, A.: Resource pool management:
reactive versus proactive or let’s be friends. Comput. Netw. 53(17), 2905–2922
(2009)

7. Lin, M., Wierman, A., Andrew, L.L.H., Thereska, E.: Dynamic right-sizing for
power-proportional data centers. IEEE/ACM Trans. Netw. (TON) 21(5), 1378–
1391 (2013)

8. Orgerie, A.C., Lefèvre, L.: ERIDIS: energy-efficient reservation infrastructure for
large-scale distributed systems. Parallel Process. Lett. 21(02), 133–154 (2011)

9. Orgerie, A.C., Lefèvre, L., Gelas, J.P.: Save watts in your grid: green strategies for
energy-aware framework in large scale distributed systems. In: IEEE International
Conference on Parallel and Distributed Systems (ICPADS), pp. 171–178 (2008)

10. Pernici, B., et al.: Setting energy efficiency goals in data centers: the GAMES
approach. In: Huusko, J., de Meer, H., Klingert, S., Somov, A. (eds.) E2DC
2012. LNCS, vol. 7396, pp. 1–12. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33645-4 1

11. Pinheiro, E., Bianchini, R., Carrera, E.V., Heath, T.: Load balancing and unbal-
ancing for power and performance in cluster-based systems. In: Workshop on Com-
pilers and Operating Systems for Low Power, pp. 182–195 (2001)

12. Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z., Zhu, X.: No “power”
struggles: coordinated multi-level power management for the data center. In: ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pp. 48–59 (2008)

13. Rountree, B., Ahn, D.H., de Supinski, B.R., Lowenthal, D.K., Schulz, M.: Beyond
DVFS: a first look at performance under a hardware-enforced power bound. In:
IEEE International Parallel and Distributed Processing Symposium Workshops
PhD Forum (IPDPSW), pp. 947–953, May 2012

14. Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud comput-
ing. In: USENIX Conference on Power Aware Computing and Systems (HotPower),
pp. 1–5 (2008)

15. Urgaonkar, R., Kozat, U.C., Igarashi, K., Neely, M.J.: Dynamic resource allocation
and power management in virtualized data centers. In: IEEE Network Operations
and Management Symposium (NOMS), pp. 479–486, April 2010

https://hal.inria.fr/hal-00684943
http://dx.doi.org/10.1007/978-3-642-33645-4_1
http://dx.doi.org/10.1007/978-3-642-33645-4_1

146 A. Benoit et al.

16. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple linux utility for resource
management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). doi:10.1007/10968987 3

17. Zhan, X., Reda, S.: Techniques for energy-efficient power budgeting in data centers.
In: ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–7, May 2013

18. Zhang, W., Wen, Y., Wong, Y.W., Toh, K.C., Chen, C.H.: Towards joint optimiza-
tion over ICT and cooling systems in data centre: a survey. IEEE Commun. Surv.
Tutor. 18(3), 1596–1616 (2016)

http://dx.doi.org/10.1007/10968987_3

Scheduling and Load Balancing

Partitioning Strategy Selection for In-Memory
Graph Pattern Matching on Multiprocessor

Systems

Alexander Krause(B), Thomas Kissinger(B), Dirk Habich(B), Hannes Voigt,
and Wolfgang Lehner

Database Systems Group, Technische Universität Dresden, Dresden, Germany
{alexander.krause,Thomas.Kissinger,dirk.habich,hannes.voigt,

wolfgang.lehner}@tu-dresden.de

Abstract. Pattern matching on large graphs is the foundation for a
variety of application domains. The continuously increasing size of the
underlying graphs requires highly parallel in-memory graph processing
engines that need to consider non-uniform memory access (NUMA) and
concurrency issues to scale up on modern multiprocessor systems. To
tackle these aspects, a fine-grained graph partitioning becomes increas-
ingly important. Hence, we present a classification of graph partition-
ing strategies and evaluate representative algorithms on medium and
large-scale NUMA systems in this paper. As a scalable pattern matching
processing infrastructure, we leverage a data-oriented architecture that
preserves data locality and minimizes concurrency-related bottlenecks on
NUMA systems. Our in-depth evaluation reveals that the optimal par-
titioning strategy depends on a variety of factors and consequently, we
derive a set of indicators for selecting the optimal partitioning strategy
suitable for a given graph and workload.

1 Introduction

Recognizing comprehensive patterns on large graph-structured data is a prereq-
uisite for a variety of application domains such as fraud detection [11], biomolec-
ular engineering [8], scientific computing [13], or social network analytics [9]. Due
to the ever-growing size and complexity of the patterns and underlying graphs,
pattern matching algorithms need to leverage an increasing amount of avail-
able compute resources in parallel to deliver results with an acceptable latency.
Since modern hardware systems feature main memory capacities of several ter-
abytes, state-of-the-art graph processing systems (e.g., Ligra [12], Galois [7] or,
Green-Marl [4]) tend to store and process graphs entirely in main memory, which
significantly improves scalability, because hardware threads are not limited by
disk accesses anymore. To reach such high memory capacities and to provide
enough bandwidth for the compute cores, modern servers contain an increasing
number of memory domains resulting in a non-uniform memory access (NUMA).
For instance, on a multiprocessor system each processor maintains at least one

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 149–163, 2017.
DOI: 10.1007/978-3-319-64203-1 11

150 A. Krause et al.

separate memory domain that is accessible for other processors via a communi-
cation network. However, efficient data processing on those systems faces several
issues such as the increased latency and the decreased bandwidth when accessing
remote memory domains. To further scale up on those NUMA systems, pattern
matching on graphs needs to carefully consider these issues as well as the limited
scalability of synchronization primitives such as atomic instructions [18].

To scale up pattern matching on those NUMA systems, we employ a fine-
grained data-oriented architecture (DORA) in this paper, which turned out to
exhibit a superior scalability behavior on large-scale NUMA systems as shown
by Pandis et al. [10] and Kissinger et al. [6]. This architecture is characterized
by implicitly partitioning data into small partitions that are pinned to a NUMA
node to preserve a local memory access. In contrast to the bulk synchronous
parallel (BSP) processing model [15], which is often used for graph processing,
the data partitions are processed by local worker threads that communicate
asynchronously via a high-throughput message passing layer. Hence, the overall
performance of the pattern matching mainly depends on the graph partitioning.

In this paper, we systematically evaluate the influence of different graph par-
titioning strategies on the performance of pattern matching using a data-oriented
architecture. Therefore, we introduce a novel classification of graph partitioning
strategies and evaluate performance aspects of representative partitioning algo-
rithms for each class. Our exhaustive evaluation on medium (4 sockets) and
large-scale (64 sockets) NUMA systems reveals that the selection of the appro-
priate partitioning strategy depends on a multitude of factors such as graph
characteristics, query pattern, the number of partitions, and worker threads.
Thus, we argue that there is no one-size-fits-all strategy for partitioning graphs
within a NUMA system and identify key features that shall guide partitioning
strategy selection process.

Contributions. Our contributions are summarized as follows:

(1) We present a graph pattern matching processing model that is based on a
fine-grained data-oriented architecture that is designed to operate on large
scale-up NUMA systems (Sect. 2).

(2) We provide a classification of graph partitioning strategies that arranges
the individual strategies based on a partitioning criterion and a balancing
criterion. Moreover, we describe instances of the respective classes that we
consider for our evaluations (Sect. 3).

(3) We exhaustively evaluate our identified partitioning strategies for different
graphs and patterns on a medium and large-scale NUMA system and rea-
son about the results. Our investigations show that the optimal partition
strategy depends on a variety of factors (Sect. 4).

(4) Based on our evaluations, we derive a set of indicators that should be consid-
ered in the process of selecting the optimal partitioning strategy for pattern
matching on graphs (Sect. 4.3).

Finally, we will give an overview of the related work (Sect. 5) and conclude the
paper (Sect. 6).

Partitioning Strategy Selection for In-Memory Graph Pattern Matching 151

2 Graph Pattern Matching on NUMA Systems

Within this paper, we focus on edge-labeled multigraphs as a general and widely
employed graph data model [8,9,11]. An edge-labeled multigraph G(V,E, ρ,Σ, λ)
consists of a set of vertices V , a set of edges E, an incidence function ρ : E →
V × V , and a labeling function λ : E → Σ that assigns a label to each edge.
Hence, edge-labeled multigraphs allow any number of labeled edges between a
pair of vertices. A prominent example for edge-labeled multigraphs is RDF [3].

Pattern matching is a declarative topology-based querying mechanism where
the query is given as a graph-shaped pattern and the result is a set of match-
ing subgraphs [14]. For instance, the query pattern depicted on the left hand
side of Fig. 1 searches for all vertices that have two outgoing edges resulting in
three matching subgraphs for the given underlying graph. A well-studied mecha-
nism for expressing such query patterns are conjunctive queries (CQ) [17], which
decompose the pattern into a set of edge predicates each consisting of a pair of
vertices and an edge label. Assuming a wildcard label, the exemplary query
pattern is decomposed into the conjunctive query {(V1V1V1, ∗, V2), (V1V1V1, ∗, V3)}.

Fig. 1. Scalable graph pattern matching based on a data-oriented architecture [6,10].

To scale up graph pattern matching on large multiprocessor systems, we
employ an approach that is based on a data-oriented architecture (DORA) [10],
which is known for its superior scalability on NUMA systems [6]. As illustrated
on the right hand side of Fig. 1, the graph is implicitly split into a set of disjoint
partitions. Each partition is placed in the local memory of a specific processor
that runs workers on its local hardware threads. These workers are limited to
operate exclusively on local graph partitions and leverage a high-throughput
message passing layer for the inevitable communication. Only one worker is
allowed to access a partition at a time to avoid costly fine-grained lockings
of the data structures. Consequently, the number of workers is limited to the
available local hardware threads and the number of local partitions can be chosen
arbitrarily. An integral part of the message passing layer is the routing table,
which keeps track of the partitioning and thus, maps the partitioning criteria (cf.,
Sect. 3) to the corresponding partition using a hash table. The overall goal of this

152 A. Krause et al.

architecture is (1) to restrict the access of threads to data structures in the local
main memory, (2) to reduce the necessity of locks or atomic instructions, and
(3) to hide remote memory latency using the high-throughput message passing
layer.

To actually process conjunctive queries on such a data-oriented architecture,
the edge predicates – CQs are consisting of – are evaluated one after another.
Every time an edge predicate matches within a partition, a new message is
generated by the worker thread to evaluate the successive edge predicate unless
the predicate was the last one of the CQ. These messages are either sent to
a single partition (unicast) or to all partitions (broadcast) depending on the
edge predicate and partitioning criterion. Due to the topology-driven nature of
pattern matching and the comprehensive structure of graphs, the appropriate
selection of a partitioning strategy for a specific combination of query pattern and
underlying graph is crucial for such an architecture as we will show throughout
this paper.

3 Graph Partitioning Strategies

In this section, we provide a classification of known graph partitioning strategies
and detail on our heuristic implementations of the individual strategies that we
consider for further evaluation. We restrict our considerations to one representa-
tive algorithm per partitioning strategy, where partitioning strategies generate a
disjoint set of graph partitions and leave redundancy for future work. As shown
in Fig. 2, our classification spans two dimensions:

Balancing Criterion

Pa
r

on
 C

rit
er

io
n

Gr
an

ul
ar

ity

Fig. 2. Classification of graph partitioning strategies and representative algorithms.

(1) The partitioning criterion that denominates the basic unit of the graph a
partitioning strategy is operating on.

(2) The balancing criterion describing the unit of the graph that is balanced to
achieve an equal utilization of the parallel compute resources.

For both dimensions those units are either fine-grained edges (E), vertices (V),
or coarse-grained components (C) naming a connected set of vertices. Hence, a
partitioning strategy is a combination of a partitioning criterion and a balancing
criterion. Partitioning a graph at a specific granularity implies that more coarse-
grained balancing criteria are not applicable (i.e., E/V, E/C, and V/C strategy).

Partitioning Strategy Selection for In-Memory Graph Pattern Matching 153

To the best of our knowledge, there are no known viable representatives for the
C/E and C/C strategy. In the following, we detail on the feasible strategies and
describe our heuristic implementations that we use for our evaluation:

E/E Strategy. This partitioning strategy works on the most fine-grained level.
We implemented this strategy using the round-robin (RR) algorithm, which
evenly distributes edges to partitions in a lightweight fashion. This strategy
is likely to distribute many or all outgoing edges of one vertex to multiple
partitions. This decomposition leads to the necessity of broadcasts for the
evaluation of all edge predicates.

V/V Strategy. This strategy partitions a graph by its vertices and balances
the amount of vertices per partition. Hence, our round-robin vertices (RRV)
algorithm is a specific implementation of this strategy and distributes every
vertex and all of its outgoing edges to the partitions using the lightweight
round-robin method. The advantage with regard to our pattern matching
processing model (cf., Sect. 2) is that all outgoing edges of a vertex belong to
a single partition being listed in the routing table. Thus, each edge predicate
with a known source vertex can be routed to a single partition (unicast).

V/E Strategy. Similar to the RRV strategy, the graph is partitioned by its
vertices. However, this partitioning strategy balances the number of edges. We
consider two specific algorithms as implementation of this strategy: balanced
edges (BE) and distributed skew (DS). Both algorithms sort the vertices by the
number of outgoing edges in a descending order. The BE algorithm iterates
over this sorted list and assigns each vertex and all of its outgoing edges
to the currently smallest partition to greedily balance the edges across the
partitions. Thus, all outgoing edges of a vertex belong to the same partition,
which once again results in a unicast for edge predicates with a known source
vertex. The DS algorithm is a state-of-the-art approximation for handling
skewed data in distributed joins [2] and extends the BE algorithm. To relieve
highly connected vertices, DS equally distributes the edges of vertices that
have significantly more outgoing edges compared to the average vertex across
all partitions. Nevertheless, edge predicates aiming at those source vertices
require a broadcast to all partitions. Because most real world graphs exhibit
a non-uniform edge per vertex distribution, all vertex-oriented partitioning
strategies (RRV, BE and DS) lead to different partitioning results.

C/V Strategy. The goal of a component-oriented strategy is to preserve locality
by storing strongly connected vertices within the same partition. We leverage
the well-known state-of-the-art multilevel k-Way algorithm as representative,
which tries to balance the vertices among the partitions. In this paper, we
use the k-Way implementation from the METIS library 5.1 [5]. Similar to the
vertex-oriented strategies, we store all outgoing edges of a vertex in the same
partition to avoid broadcasts during the pattern matching process.

4 Experimental Evaluation

To investigate the influence of the partitioning strategies (c.f, Sect. 3) on the
pattern matching performance, we conducted an exhaustive evaluation on a

154 A. Krause et al.

medium and large-scale multiprocessor system. We use four test data graphs,
each representing an individual application domain, that are generated with the
graph benchmark framework gMark [1]. Additionally, we defined two conjunctive
queries as depicted in Fig. 3: (1) the V query shapes a V with five vertices and
four edges and (2) the Quad query is a rectangle, which consists of four vertices
and four edges. For both queries, four edge predicate evaluations are necessary.
Based on the query semantics, the evaluation of the edge predicates happens as
follows:

A B

E D

C

Predicate 1
(Broadcast)

Predicate 4
(Broadcast)

A D

B C

Request 3

Re
qu

es
t 2

(U
ni

ca
st

)

A D

B CRe
qu

es
t 2

(U
ni

ca
st

)

(a) V Query

A D

B C

Predicate 1
(Broadcast)

Predicate 3
(Broadcast)

Pr
ed

ic
at

e
2

(U
ni

ca
st

)

Predicate
4

(U
nicast)

A D

B C

(b) Quad Query (c) Graph meta information

Fig. 3. Query patterns and test graphs for the medium-scale system.

V Query. The first edge predicate evaluation is broadcasted to all partitions,
because only the edge label is known and not the source vertex. The inter-
mediate result is a set of end vertices, which are used as source vertices for
the second request. Depending on the partitioning strategy, the second edge
request is evaluated using either unicast or broadcast messages (cf., Sect. 3).
The intermediate result is a set of destination vertices, which are destina-
tion vertices for the third edge predicate. Hence, the third request needs to
be broadcasted to all partitions, because the source vertex is unknown. The
same applies for the fourth edge predicate evaluation.

Quad Query. The edge predicate evaluation of the Quad query is similar to
the one of the V query with the difference that the evaluation of the fourth
edge predicate depends on the partitioning strategy. Thus, this predicate can
mostly be evaluated without the need of a broadcast.

As the edge predicate evaluation of our two queries suggests, pattern matching
is a combination of unicasts and broadcasts within a partitioned environment.
On the one hand, broadcasts distribute the evaluation of edge predicates to
all partitions favoring edge-balanced partitions for an efficient execution. On
the other hand, unicast messages assign edge predicate evaluations to single
partitions, which – in contrast – favors vertex-balanced partitions.

For all of our experiments, we loaded the graph-under-test into main memory,
partitioned it, and evenly distributed the partitions across the sockets and exe-
cuted both pattern queries for all partitioning strategies and all possible system

Partitioning Strategy Selection for In-Memory Graph Pattern Matching 155

configurations (SCs). In our case a system configuration denominates a combi-
nation of the active workers and the total number of partitions. We repeated
each experiment 20 times and calculated the average over all runs.

4.1 Evaluation on a Medium-Scale Multiprocessor System

Our medium-scale multiprocessor system consists of 4 sockets each equipped
with an Intel Xeon CPU E7-4830 – resulting in 32 physical cores and 64 hard-
ware threads – and 128 GB of main memory. Because of the possible size of
intermediate results during the pattern matching process, it is advisable to have
sufficient main memory, even if the stored graphs size is rather small, compared
to the total amount of memory. For this system, we use the graphs with the
characteristics listed in Fig. 3(c).

Partitioning Results. Figure 4 shows an overview of partitioning results for
the different strategies and our test graphs. Since we have 64 hardware threads,
we split the graphs into 64 partitions. The plots show the distribution of vertices
and edges over the 64 partitions using box plots. From these plots and our
experiments with a varying number of partitions, we can derive the following
observations:

(a) Vertex distribution. (b) Edge distribution.

Fig. 4. Partitioning results for 64 partitions.

(1) The partitioning and balancing criteria of the respective strategies are ful-
filled independently of the graphs. For instance, our round-robin vertices
(RRV) algorithm partitions the graphs by vertices and ideally balances the
vertices among the 64 partitions, i.e., the vertices are evenly distributed over
the partitions as depicted in Fig. 4(a). The same applies for balanced edges
(BE) and distributed skew (DS), which perfectly balance the edges among
the partitions, as shown in Fig. 4(b).

(2) Depending on the strategy, balancing is done either by vertices or edges. This
can lead to an imbalance on the non-balancing criterion depending on the
underlying graph. For instance, BE and DS balance the partitions on edges.

156 A. Krause et al.

However, there are few partitions with a much higher number of vertices than
the others (illustrated as single dots in Fig. 4(a)). These outliers depend on
the graph data. For DS outlier partitions exist for Uniprot and Social, but
not for Biblio and Shop. The same effect is observable for RRV, however the
imbalance on the edges over the partitions is not as remarkable.

(3) The k-Way algorithm partitions graphs by components and balances the
vertices. On the one hand, this leads to an even distribution of the vertices
over the partitions for our test graphs as shown in Fig. 4(a). This potentially
leads to an imbalanced number of edges per partition and this imbalance is
very different for the four test graphs, as visible in Fig. 4(b).

(4) The E/E strategy performs worst. The round-robin distribution of the edges
among all partitions leads to the necessity of broadcasts during all edge
predicate evaluations, which massively inhibits the system. Therefore, we
omit the E/E results henceforward.

To summarize, each partitioning strategy is able to successfully maintain its
respective balancing criterion while partitioning the graph into the considered
number of partitions. However, the quality of the result is different for each
case. Depending on the graph, there are partitions that vary greatly from the
majority.

Number of Partitions and Workers. If we compare the partitioning results
of Fig. 4 for the Biblio graph, we find that the V/V strategy (RRV) achieves
the best partitioning result in terms of balanced partitions for both vertices and
edges. Generally, such partitioning is very beneficial for our pattern matching.

In the first set of experiments, we use that setting to investigate the influ-
ence of the system configuration on the pattern matching performance for the
V query. Thus, we varied the number of active workers between 8 and 64 and
used 8 to 256 partitions. The heat map from Fig. 5 shows the slowdown factors
compared to the optimal configuration. The optimal configuration uses 32 par-
titions and 32 workers. Generally, the pattern matching scales well for physical
hardware threads, which is indicated by the coloring trend from orange to green

8 16 32 64
8 2.46 2.11 2.04 3.02

16 2.31 1.38 1.01 1.49
32 2.30 1.46 1.00 1.17
64 2.36 1.23 1.02 1.35

128 2.59 1.40 1.16 1.44
256 2.99 1.72 1.26 1.52

Pa
r

on
s

Worker

Fig. 5. System configuration heat map
for RRV. V query on Biblio graph.
(Color figure online)

Fig. 6. Messages per partitioning algo-
rithm. V query on Biblio graph.

Partitioning Strategy Selection for In-Memory Graph Pattern Matching 157

between the columns for 8 and 32 workers. In this case, 64 workers are not ben-
eficial, because the V query employs two broadcasting requests at the end and
the hyper-threads do not provide as much performance as their physical siblings.

Partitioning Strategies. After examining the query performance for a sin-
gle graph partitioning strategy, we conducted the same experiments with the
remaining strategies to show the influence of the different partitioning strategies
in detail. The resulting heat maps are depicted in Fig. 7. From these heat maps,
we derive the following three facts:

(1) The V/E strategy, represented by the BE and DS algorithms, performs
comparatively bad. This happens because the query massively hits the ver-
tex outlier partition, which can be seen in Fig. 4(a). Hence, this partition
becomes a bottleneck for the second edge predicate of the V query.

(2) The k-Way partitioning results in a better query performance and utilizes
the whole system with its optimal system configuration being 64 partitions
by 64 workers. The advantage of k-Way is the partitioning and balancing of
components. For the Biblio graph this results in even distribution of vertices
and an almost even distribution of edges among the partitions. Furthermore,
connected vertices are partitioned together, which is not necessarily the case
for RRV as illustrated in Fig. 6. For the k-Way partitioning, the system cre-
ates mostly socket local messages and only a few remote messages, whereas
the V/V strategy results in many remote messages as connected vertices are
distributed among partitions on remote sockets.

From these results, we can conclude that the C/V partitioning strategy results
in partition population that allows the system to scale up to its full potential.

8 16 32 64
8 3.39 3.36 3.36 5.18

16 3.41 1.98 1.68 2.54
32 3.48 1.95 1.04 1.48
64 3.34 2.02 1.09 1.00

128 3.54 1.98 1.07 1.09
256 3.91 2.18 1.20 1.13

Worker

Pa
r

on
s

(a) C/C: k-Way

8 16 32 64
8 4.15 3.56 3.44 5.10

16 3.90 2.33 1.71 2.52
32 3.88 2.46 1.69 1.98
64 3.98 2.08 1.73 2.27

128 4.38 2.35 1.96 2.44
256 5.04 2.90 2.13 2.56

Worker

Pa
r

on
s

(b) V/V: RRV

8 16 32 64
8 16.13 16.43 16.61 25.77

16 16.02 16.43 16.30 24.79
32 15.98 16.48 15.77 24.88
64 15.36 15.86 15.61 23.91

128 16.93 15.80 15.70 23.79
256 16.14 15.95 15.59 24.21

Pa
r

on
s

Worker

(c) V/E: BE

8 16 32 64
8 15.86 16.20 16.27 24.43

16 15.45 16.68 16.25 24.89
32 15.55 15.96 15.95 24.57
64 15.32 15.95 15.41 23.55

128 15.75 15.68 16.07 23.96
256 15.71 15.86 16.20 23.34

Worker

Pa
r

on
s

(d) V/E: DS

Fig. 7. System configuration heat map. V query on Biblio graph. Color shadings rela-
tive to the global optimum (k-Way 64/64). (Color figure online)

158 A. Krause et al.

Varying Graphs. After thoroughly examining the influences of different parti-
tioning strategies on one graph, we conducted the same experiments for all other
graphs from Fig. 3(c). Figure 8 presents the best system configurations per par-
titioning strategy and highlights the overall optimum. We showed that the C/C
strategy performs best for the V query on the Biblio graph by utilizing the whole
system and therefore should be used as the best strategy. However, when query-
ing the Shop graph with a k-Way partitioning, the query performance drops by
a factor of 2.3 while employing 32/32 as its optimal system configuration. The
slowdown can be explained by the massive imbalance of edges within the par-
titions of k-Way as shown in Fig. 4(b). The other strategies show well balanced
edges per partition, therefore all of them result in equal query performance. The
same holds for the Social graph. The Uniprot graph is special in terms of the
intermediate results, which are shown in Fig. 11. Compared to the Biblio graph,
the V query produces a huge number of broadcasts for the Uniprot graph in the
third edge predicate (c.f. Fig. 3(a)), which inhibts the system from scaling well,
and therefore yields better performance for less workers. We conclude that the
behavior of the query is strongly tied to the underlying graph.

Varying Queries. The previous paragraph concluded our test series for the
V query. Now we want to show the performance implications of all considered
influence factors for a second query type, namely the Quad query from Fig. 3(b).
The results for all system configurations, graphs and partitioning strategies are
shown in the heat maps of Figs. 9 and 10. The optimal configurations are now
always tied to 32 Workers with a varying number of partitions. We see the same
run time behavior as for the V query, except for the V/E strategy. The Quad
query does not hit the vertex outlier partitions (c.f. Fig. 4(a)), which enables
the BE and DS partitionings to compete with RRV and k-Way. The Shop and
Social graphs show an equal slowdown for C/V, compared to the other strategies.
However, the Uniprot graph now scales well with the hardware threads, since
there are more intermediate results in the Unicast edge predicate.

4.2 Evaluation on a Large-Scale Multiprocessor System

Our large multiprocessor system is an SGI UV 3000 with 64 sockets each
equipped with an Intel Xeon CPU E5-4655 v3 and a total of 8 TB main mem-

V/V: RRV 32/32 65 32/32 11790 32/32 665 8/8 884

V/E: BE 32/128 838 32/32 12387 16/16 666 8/8 878

V/E: DS 8/16 849 32/32 11964 32/32 673 8/8 890

C/V: k-Way 64/64 48 32/32 27376 32/32 864 8/8 885

Fig. 8. Optimal system configurations
per graph and partitioning strategy for
the V query.

V/V: RRV 32/32 2663 32/64 5773 32/32 102 32/32 22

V/E: BE 32/32 2617 32/64 5850 16/16 132 32/32 21

V/E: DS 32/32 2682 32/64 5982 32/32 94 32/32 22

C/V: k-Way 32/32 2254 64/128 15217 32/64 304 32/32 24

Fig. 9. Optimal system configurations
per graph and partitioning strategy for
the Quad query.

Partitioning Strategy Selection for In-Memory Graph Pattern Matching 159

8 16 32 64
8 1.61 1.64 1.67 2.56

16 2.15 1.32 1.36 2.12
32 3.27 1.78 1.00 1.70
64 5.75 3.16 2.09 2.31

128 10.00 5.88 3.89 4.06
256 10.00 10.00 7.81 7.93

Pa
r

on
s

Worker
8 16 32 64

8 1.67 1.67 1.69 2.48
16 2.25 1.22 1.33 1.87
32 3.39 1.78 1.18 1.66
64 5.80 3.28 2.03 2.30

128 10.00 5.86 3.85 4.28
256 10.00 10.00 7.75 8.41

Pa
r

on
s

Worker

C/V: k-Way V/V: RRV

8 16 32 64
8 1.69 1.68 1.70 2.51

16 2.26 1.23 1.33 1.87
32 3.32 1.78 1.16 1.68
64 5.80 3.25 1.92 2.34

128 10.00 5.87 3.88 4.31
256 10.00 10.00 7.79 8.36

Worker

Pa
r

on
s

8 16 32 64
8 1.74 1.74 1.77 2.52

16 2.21 1.25 1.40 1.91
32 3.31 1.82 1.19 1.71
64 5.79 3.32 2.07 2.35

128 10.00 6.03 3.93 4.34
256 10.00 10.00 8.09 8.52

Pa
r

on
s

Worker

SD:E/VEB:E/V

Fig. 10. System configuration heat maps. Quad query on Biblio graph.

299,488 971

117 970

267 294,932

837 10.320

Unicast Broadcast Final result

Fig. 11. Intermediate results for each edge predicate of the V query

ory. We conducted the same experiments as for Sect. 4.1 and used gMark to
scale up all graphs from Fig. 3(c) by a factor of 10 while preserving all other
graph properties. All in all, we found that the entirety of our experiments on the
large-scale system confirmed our observations from the medium-scale system.
Figure 12 illustrates the heat maps for the Quad query on the Social graph for
the SGI system. As for the medium-scale system, we see that using the hyper-
threads is also not feasible on the SGI system. However, utilizing all physical
cores leads to optimal performance in many cases, which underlines that our
processing scales well with the employed hardware. In contrast to the medium-
scale system, we see more variations in the heat maps, which is explained by the
bigger number of sockets and the increasing influence of the NUMA effect on
query performance.

160 A. Krause et al.

64 128 192 256 320 384 768
64

128
192
256
320
384
768

1536

Workers
Pa

r
on

s

x

(a) C/V: k-Way

64 128 192 256 320 384 768
64

128
192
256
320
384
768

1536

Pa
r

on
s

Workers

x

(b) V/V: RRV

64 128 192 256 320 384 768
64

128
192
256
320
384
768

1536

Workers

Pa
r

on
s

x

(c) V/E: BE

64 128 192 256 320 384 768
64

128
192
256
320
384
768

1536

Workers

Pa
r

on
s

x

(d) V/E: DS

Fig. 12. System configuration heat maps. Quad query on Social graph.

4.3 Lessons Learned

Employing an optimal partitioning strategy is crucial for query performance. To
find out the best strategy for a given query, we found that weighing the amount
of broadcasts against unicasts, which result from the query pattern, is important.

Dominant Unicasts. It is desirable to partition the graph using a strategy
which balances both edges and vertices. We argue that employing the C/V
strategy is beneficial, even if there is a minor edge imbalance, since the unicast
part of the query will benefit from the locality property of adjacent graph
partitions. However, if the edge imbalance exceeds a certain limit, we suggest
switching to the V/V strategy.

Dominant Broadcasts. Each partitioning strategy performs well. However it
is desirable to achieve a balanced amount of edges between the partitions.
As edges represent the amount of data records per partition, balancing them
results in a more evenly distributed work in the system. All of the evalu-
ated partition strategies have proven to be viable for graph pattern matching
on a data-oriented architecture, except for the E/E strategy because of its
broadcast-only nature.

The challenge is to adequately estimate the influences of broadcasts and unicasts
due to their dependency on the underlying graph. Our experiments showed, that
the optimal system configuration varies among the different workloads. As a rule
of thumb, we found that it is beneficial to not use hyper threads in most cases
and directly map the number of graph partitions to the number of workers.

Partitioning Strategy Selection for In-Memory Graph Pattern Matching 161

5 Related Work

Many graph systems like Ligra [12] or Galois [7] often only state that the data will
be partitioned but omit the reasoning behind the selected graph partitioning.
We have shown that using one specific partitioning scheme for all graphs or
workloads is not the optimal solution and may result in huge slowdown factors,
compared to the possibly best system configuration.

Verma et al. [16] examine different graph partitioning strategies of existing
systems and suggest which strategy is to be used for specific analytical algo-
rithms. In contrast to the authors, we generally categorize graph partitioning
strategies based on their partitioning and balancing criterion. Also, we don’t
evaluate specific algorithms but whole graph partitioning categories with respect
to their influence on the query performance.

Graph processing on NUMA systems is considered by a broad community.
There are many studies on optimizing the data partitioning for a Breadth First
Search (BFS) on a NUMA machine as Yasui et al. show in [18]. We have shown
that it is not always the best practice to always utilize the maximum number of
available cores, depending on the executed query.

Running BFS is furthermore considered by the authors of Polymer [19], who
argue that using an edge-balanced partitioning is the best way to go. However,
this is only true if the edges are directly addressed instead of the vertices. We
found that, for our architecture, direct addressing of vertices is more important.
Thus we argue that the partitioning scheme is also dependent on the processing
system. However, we also found that having an evenly distributed workload, i.e.
the employment of a suitable partitioning, is crucial for optimal performance.

6 Conclusions and Future Work

In this paper, we could show a plethora of dependencies for graph partitioning
and processing on NUMA systems. We could show for the variety of our tested
domains and the employed graph partitioning strategies, that there is no one-
size-fits-all strategy in terms of a good combination of a system configuration and
partitioning algorithms out of the box. As outlined in Sect. 3, we see a need to
examine the effects of optimization measures such as vertex or edge replication.

Acknowledgments. This work is partly funded within the Collaborative Research
Center SFB 912 (HAEC).

References

1. Bagan, G., Bonifati, A., Ciucanu, R., Fletcher, G.H.L., Advokaat, N.: Gener-
ating flexible workloads for graph databases. PVLDB 9(13), 1447–1460 (2016).
http://www.vldb.org/pvldb/vol9/p1457-bagan.pdf

http://www.vldb.org/pvldb/vol9/p1457-bagan.pdf

162 A. Krause et al.

2. Cheng, L., Kotoulas, S., Ward, T.E., Theodoropoulos, G.: Efficiently handling
skew in outer joins on distributed systems. In: 14th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, CCGrid 2014, Chicago, IL,
USA, 26–29 May 2014, pp. 295–304 (2014)

3. Decker, S., Melnik, S., van Harmelen, F., Fensel, D., Klein, M.C.A., Broekstra, J.,
Erdmann, M., Horrocks, I.: The semantic web: the roles of XML and RDF. IEEE
Internet Comput. 4(5), 63–74 (2000)

4. Hong, S., Chafi, H., Sedlar, E., Olukotun, K.: Green-Marl: a DSL for easy and
efficient graph analysis. In: Proceedings of the 17th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASP-
LOS 2012, London, UK, 3–7 March 2012, pp. 349–362 (2012)

5. Karypis, G., Kumar, V.: MeTis: unstructured graph partitioning and sparse matrix
ordering system, version 5.1 (2013). http://www.cs.umn.edu/∼metis

6. Kissinger, T., Kiefer, T., Schlegel, B., Habich, D., Molka, D., Lehner, W.: ERIS: a
NUMA-aware in-memory storage engine for analytical workload. In: International
Workshop on Accelerating Data Management Systems Using Modern Processor
and Storage Architectures - ADMS 2014, Hangzhou, China, 1 September 2014, pp.
74–85 (2014). http://www.adms-conf.org/2014/adms14 kissinger.pdf

7. Nguyen, D., Lenharth, A., Pingali, K.: A lightweight infrastructure for graph ana-
lytics. In: ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP
2013, Farmington, PA, USA, 3–6 November 2013, pp. 456–471 (2013)

8. Ogata, H., Fujibuchi, W., Goto, S., Kanehisa, M.: A heuristic graph comparison
algorithm and its application to detect functionally related enzyme clusters. Nucleic
Acids Res. 28(20), 4021–4028 (2000)

9. Otte, E., Rousseau, R.: Social network analysis: a powerful strategy, also for the
information sciences. J. Inf. Sci. 28(6), 441–453 (2002)

10. Pandis, I., Johnson, R., Hardavellas, N., Ailamaki, A.: Data-
oriented transaction execution. PVLDB 3(1), 928–939 (2010).
http://www.comp.nus.edu.sg/ vldb2010/proceedings/files/papers/R83.pdf

11. Pandit, S., Chau, D.H., Wang, S., Faloutsos, C.: Netprobe: a fast and scalable
system for fraud detection in online auction networks. In: Proceedings of the
16th International Conference on World Wide Web, WWW 2007, Banff, Alberta,
Canada, 8–12 May 2007, pp. 201–210 (2007)

12. Shun, J., Blelloch, G.E.: Ligra: a lightweight graph processing framework for shared
memory. In: ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2013, Shenzhen, China, 23–27 February 2013, pp. 135–146
(2013)

13. Tas, M.K., Kaya, K., Saule, E.: Greed is good: optimistic algorithms for bipartite-
graph partial coloring on multicore architectures. CoRR abs/1701.02628 (2017).
http://arxiv.org/abs/1701.02628

14. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candi-
dates for efficient keyword search on graph-shaped (RDF) data. In: Proceedings
of the 25th International Conference on Data Engineering, ICDE 2009, Shanghai,
China, 29 March–2 April 2009, pp. 405–416 (2009)

15. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

16. Verma, S., Leslie, L.M., Shin, Y., Gupta, I.: An experimental comparison of par-
titioning strategies in distributed graph processing. Proc. VLDB Endow. 10(5),
493–504 (2017)

17. Wood, P.T.: Query languages for graph databases. SIGMOD Rec. 41(1), 50–60
(2012)

http://www.cs.umn.edu/~metis
http://www.adms-conf.org/2014/adms14_kissinger.pdf
http://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/R83.pdf
http://arxiv.org/abs/1701.02628

Partitioning Strategy Selection for In-Memory Graph Pattern Matching 163

18. Yasui, Y., Fujisawa, K., Goh, E.L., Baron, J., Sugiura, A., Uchiyama, T.: NUMA-
aware scalable graph traversal on SGI UV systems. In: Proceedings of the ACM
Workshop on High Performance Graph Processing, HPGP@HPDC 2016, Kyoto,
Japan, 31 May 2016, pp. 19–26 (2016)

19. Zhang, K., Chen, R., Chen, H.: NUMA-aware graph-structured analytics. In: Pro-
ceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2015, San Francisco, CA, USA, 7–11 February 2015,
pp. 183–193 (2015)

Efficient Dynamic Pinning of Parallelized
Applications by Reinforcement Learning

with Applications

Georgios C. Chasparis1(B), Michael Rossbory1, and Vladimir Janjic2

1 Software Competence Center Hagenberg GmbH,
Softwarepark 21, 4232 Hagenberg, Austria

{georgios.chasparis,michael.rossbory}@scch.at
2 School of Computer Science, University of St Andrews, Scotland, UK

vj32@st-andrews.ac.uk

Abstract. This paper describes a dynamic framework for mapping the
threads of parallel applications to the computation cores of parallel sys-
tems. We propose a feedback-based mechanism where the performance
of each thread is collected and used to drive the reinforcement-learning
policy of assigning affinities of threads to CPU cores. The proposed
framework is flexible enough to address different optimization criteria,
such as maximum processing speed and minimum speed variance among
threads. We evaluate the framework on the Ant Colony optimization par-
allel benchmark from the heuristic optimization application domain, and
demonstrate that we can achieve an improvement of 12% in the execu-
tion time compared to the default operating system scheduling/mapping
of threads under varying availability of resources (e.g. when multiple
applications are running on the same system).

1 Introduction

Resource allocation is an indispensable part of the design of any engineering
system that consumes resources, such as electricity power in home energy man-
agement [1], access bandwidth and battery life in wireless communications [10],
computing bandwidth under certain QoS requirements [2] and computing band-
width and memory in parallelized applications [4]. In this paper, we are focusing
on the problem of allocating CPU cores to the tasks/threads of a parallel applica-
tion (sometimes referred to as mapping). When resource allocation is performed
online and the number, arrival and departure times of the tasks are not known
a priori, the role of a resource manager is to guarantee the efficient operation
(according to some criteria) of all tasks by appropriately allocating resources
to them. This requires formulation of a centralized optimization problem (e.g.,
mixed-integer linear programming formulations [2]). However, it is usually diffi-
cult to formulate the problem precisely, and the methods to solve the resulting
optimization problem are typically computationally very expensive. Addition-
ally, most of the currently used allocation strategies [5,11,15] encounter issues

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 164–176, 2017.
DOI: 10.1007/978-3-319-64203-1 12

Efficient Dynamic Pinning of Parallelized Applications 165

when dealing with dynamic environments (e.g., varying availability of resources),
such as information complexity involved in retrieving the exact affinity relations
during runtime and slow response to irregular application behaviour (e.g. degra-
dation of performance due to presence of other applications). Such environ-
ments are suitable for learning-based optimization techniques, where the map-
ping/scheduling policy is updated based on performance measurements from the
running threads. Through such learning-based scheme, we can (i) reduce infor-
mation complexity when dealing with a large number of possible thread/memory
bindings, since only performance measurements need to be collected during run-
time; and, (ii) adapt to uncertain/irregular application behavior.

In our previous work [8], we have proposed a novel dynamic, reinforcement-
learning based scheme for optimal allocation of parallel applications’ threads to
a set of available CPU cores. In this scheme, each thread responds to its cur-
rent performance independently of other threads, requiring minimal information
exchange. Furthermore, it exhibits robustness and is able to adapt to possible
irregularities in the behavior of a thread (such as sudden drop of performance)
or to possible changes in the availability of resources. In this paper, we extend
the work presented there in two main directions:

– we introduce a new type of reinforcement-learning dynamics that allows faster
adjustment towards better allocations;

– we evaluate the reinforcement-learning scheme on a real-world application
(Ant Colony Optimization), demonstrating the reduction in application com-
pletion time of 12% compared to the default Linux Operating System sched-
uler.

These results are very encouraging, taking into account that our mechanisms
does not require any input from the user.

The paper is organized as follows. Section 2 describes the overall framework
and objective. Section 3 presents a reinforcement-learning algorithm for dynamic
placement of threads. Section 4 presents experiments of the proposed algorithm
in a Linux platform and comparison tests with the operating system’s perfor-
mance. Finally, Sect. 5 presents concluding remarks.

2 Problem Formulation and Objective

A substantial body of work has demonstrated the importance of the appropriate
thread-to-core bindings in achieving a good performance of parallel applications.
For example, Klug et al. [11] describe a tool that checks the performance of each
of the available thread-to-core bindings and searches for an optimal placement.
Unfortunately, this employs exhaustive search, which is usually prohibitively
expensive. Broquedis et al. [5] combine the problem of thread scheduling with
scheduling hints related to thread-memory affinity issues. These hints are able to
accommodate load distribution given information for the application structure
and the hardware topology. Scheduling itself is hierarchical, with work steal-
ing [3] being used within neighboring cores to maintain data locality, while at

166 G.C. Chasparis et al.

α∗ = (α∗
1, α

∗
2, ..., α

∗
n)

.
= arg maxα∈A f(α, w)

T1 T2 Tn· · ·

1 2 3 · · · m

α∗
1 α∗

2 α∗
n

w1 w2 w3 wm

α∗
1 α∗

2 α∗
n

Fig. 1. Schematic of static resource allocation framework.

the memory-node level, the thread scheduler deals with larger groups of threads.
A similar scheduling policy is also implemented by [14].

In this paper, we are interested in the problem of dynamic pinning of a set
of threads I = {1, 2, . . . , n} that comprise a parallel application to the set of
(not necessarily homogeneous) CPU cores J = {1, 2, . . . ,m}. We denote the
assignment of a thread i to an available CPU by αi ∈ Ai

.= J , i.e., αi denotes
the id of the CPU to which this thread has been assigned. Let also α = {αi|i ∈ I}
denote the assignment profile, which takes values on the Cartesian product A .=
A1 × . . .×An. The resource manager (RM) periodically checks the performance
of each thread and makes decisions about their pinning to CPUs so that a (user-
specified) objective is maximized. Throughout the paper, we will assume that:

(i) The internal properties and details of the threads are not known to the
resource manager. Instead, the resource manager may only have access to
measurements related to their performance (e.g., their processing speed).

(ii) Threads may not be suspended and their execution cannot be postponed.
Instead, the goal of the resource manager is to assign the currently available
resources to the currently running threads.

(iii) Each thread may only be assigned to a single CPU core.

2.1 Static Optimization and Issues

Let vi = vi(α,w) denote the processing speed of thread i, which depends on
both the overall assignment α, as well as external parameters aggregated within

Efficient Dynamic Pinning of Parallelized Applications 167

w. The parameters w summarize, for example, the impact of other applications
running on the same platform or other irregularities of the applications. The
centralized objective for optimization is of the form

max
α∈A

f(α,w). (1)

In this paper, we will consider two different objectives, in order to show the
flexibility of the proposed resource allocation scheme to address different opti-
mization criteria. The considered objectives are the following:

(O1) f(α,w) .=
∑n

i=1 vi/n, corresponds to the average processing speed of all
threads;

(O2) f(α,w) .=
∑n

i=1[vi − γ(vi − ∑n
�=1 v�/n)2]/n, for some γ > 0, corresponds

to the average processing speed minus a penalty that is proportional to the
speed variance among threads.

In the objective (O1), the goal is to minimize the average processing speed
over all threads, and in the objective (O2) the goal is to achieve an optimal
combination of processing speed and speed variance among threads.

Any solution to (1) corresponds to an efficient assignment. Figure 1 presents
a schematic of a static resource allocation framework, where the centralized
objective (1) is solved by the RM upfront, and then the optimal assignment (or
mapping) is communicated to threads.

However, there are two significant issues when posing an optimization prob-
lem in the form of (1). In particular,

1. the function vi(α,w) is unknown and it may only be approximated through
measurements of the processing speed, denoted ṽi;

2. the external influence w is unknown and may vary with time, thus the optimal
assignment may not be fixed with time.

2.2 Measurement- or Learning-Based Optimization

We wish to target the objective (1) through a measurement-based (or learning-
based) optimization approach. In such approach, the RM reacts to the approx-
imation of the function f(α,w) that is obtained by measuring the processing
speed of threads. Measurements are taken at time instances k = 1, 2, . . . , and
the approximation of function f at the time instance k is denoted by f̃(k). For
example, in the case of objective (O1), f̃(k) .=

∑n
i=1 ṽi(k)/n. Given the approxi-

mation f̃(k) and the current assignment of threads to cores, α(k), the RM selects
the next assignment α(k+1) so that the measured objective approaches the true
optimum of the unknown function f(α,w). In other words, the RM employs an
update rule of the form:

{(ṽi(1), αi(1)), . . . , (ṽi(k), αi(k))}i �→ {αi(k + 1)}i (2)

according to which prior pairs of measurements and assignments for each thread
i are mapped into a new assignment αi(k + 1) that will be employed during the
next evaluation interval.

168 G.C. Chasparis et al.

{(ṽi(1), αi(1)), ..., (ṽi(k), αi(k))}i {→� αi(k + 1)}i

T1 T2 Tn· · ·

1 2 3 · · · m

ṽ1(k)

α1(k + 1)

ṽ2(k)

α2(k + 1)

ṽn(k)

αn(k + 1)

α1(k) α2(k) αn(k)

w1 w2 w3 wm

Fig. 2. Schematic of dynamic resource allocation framework.

The overall framework is illustrated in Fig. 2, describing the flow of information
and steps executed. In particular, at any given time instance k = 1, 2, . . ., each
thread i communicates to the RM its current processing speed ṽi(k). Then the
RM updates the assignment, αi(k + 1), and communicates it to i.

2.3 Objective

The goal of our work is to utilize a distributed learning framework for dynamic
(adaptive) pinning of threads to cores. Each thread constitutes an independent
decision maker. It selects the CPU core to which it is pinned independently
of others, using its own preference criterion. The job of the RM is to collect
performance information and send it to the threads so that they can make the
placement decisions. Our goal is to design a preference criterion and a selec-
tion rule for each thread so that maximizing the thread’s own criterion ensures
certain overall performance for the parallel application. Furthermore, the selec-
tion criterion of each thread should be adaptive and robust to possible resource
variations. In the next section, we present such a (distributed) learning scheme.

3 Reinforcement Learning (RL)

The question that naturally emerges is how should threads choose CPU cores
based only on their available measurements, so that eventually an efficient assign-
ment is established for all threads. We achieve this by using a learning frame-
work, perturbed learning automata, that is based on the reinforcement learning

Efficient Dynamic Pinning of Parallelized Applications 169

algorithm introduced by the authors in [6,7]. It belongs to the general class of
learning automata [13]. The basic idea behind reinforcement learning is rather
simple. Each agent i (in this case, a thread), keeps track of a strategy vector
that holds its estimates over the best choice (in this case, the CPU core). We
denote this strategy by σi = [σij]j∈Ai

∈ Δ (|Ai|), where Δ (m) denotes the prob-
ability simplex of size m, i.e., the set of probability vectors in Rm. To provide
an example, consider the case of 3 available CPU cores, i.e., Ai ≡ J = {1, 2, 3}.
In this case, the strategy σi ∈ Δ (3) of thread i may take the following form:

σi =

⎛

⎝
0.2
0.5
0.3

⎞

⎠ ,

which denotes that there is 20% probability of assigning the thread i to the CPU
core 1, 50% probability of assigning the thread i to the CPU core 2 and 30%
probability of assigning the thread i to the core 3. We will denote the assignment
selection by αi = randσi

[Ai] .
Note that if σi is a unit vector ej , with 0 in all places except for the j-th,

and 1 in the j-th place, then the thread i will be mapped to the core j with
probability one. Such a strategy is usually called pure strategy.

3.1 Strategy Update

According to the perturbed reinforcement learning [6,7], the probability that a
thread i selects action j at time k = 1, 2, . . . is:

σij(k) = (1 − λ)xij(k) − λ

|Ai| (3)

where λ > 0 corresponds to a perturbation term (or mutation) and xi = [xij]j
corresponds to the nominal strategy of thread i. The nominal strategy is updated
according to the following recursion formula:

xi(k + 1) =

{
xi(k) + ε · ui(α(k)) · [eαi(k) − xi(k)], ui(α(k)) > ūi(k)
xi(k), ui(α(k)) ≤ ūi(k),

(4)

for some constant step size ε > 0, where ūi(k) denotes the running-average
performance at time k and ui(α(k)) is the utility of thread i at time k, defined
as ui(α(k)) = f̃(k). In other words, each thread is assigned a performance index
that coincides with the overall objective function (identical interest). In words,
according to (4), if the performance of thread i at time k, when placed on
core αi(k), is higher than the average performance, i.e., ui(α(k)) > ūi(k), then
at time k + 1 we increase the probability of that thread being placed on the
same core and proportionally to the thread utilisation. So the better the thread
performs, the more likely it is to be assigned to the same core. Otherwise, if
the performance of the thread is the same or worse than the average, we do not
change preference for its placement (the second case in (4)). In comparison to

170 G.C. Chasparis et al.

our previous work [6,7], here we use the constant step size ε > 0 (instead of a
decreasing step-size sequence). This increases the adaptivity and robustness of
the algorithm to possible changes in the environment. This is because a constant
step size provides a fast transition of the nominal strategy from one pure strategy
to another. Compared to [8], here we use a different reinforcement direction. In
the Eq. (4), the strategy vector is only adjusted when a performance is higher
than the running-average performance ūi, which provides a faster adjustment
towards better assignments. The perturbation term λ provides the possibility
for the nominal strategy to escape (suboptimal) pure strategy profiles. Setting
λ > 0 is essential for providing an adaptive response of the algorithm to changes
in the environment.

The convergence properties of this class of dynamics can be derived following
the exact same reasoning used for the learning dynamics presented in [8]. In fact,
it can be shown that the dynamics approach asymptotically a set of allocations
that includes the solutions of the centralized optimization (1). Such a set may in
fact include sub-optimal allocations; however, as we shall see in the forthcoming
evaluation section, they are still notably better that the allocations provided by
the default operating system scheduler.

As a final notice, the algorithm is augmented with a reset strategy when a
thread becomes inactive (e.g., due to termination), in which case the assignment
profile is reset based on a round-robin initialization strategy.

3.2 Discussion

The reinforcement-learning algorithm of Eq. (4) provides a performance-based
optimization. No a-priori knowledge of the type of the application or the under-
lying hardware is necessary. Furthermore, its memory complexity is minimal,
since at any update instance of the resource manager, only the strategy vectors
of each one of the threads needs to be kept in memory, whose size is linear to the
number of the CPU cores. Furthermore, for each thread, the dynamics exhibit
linear complexity to the number of CPU cores.

4 Experiments

In this section, we present an experimental study of the proposed reinforcement
learning scheme for dynamic pinning of threads of parallel applications. The
experiments were conducted on 20×Intel c©Xeon c©CPU E5-2650 v3 2.30 GHz
running Linux Kernel 64bit 3.13.0-43-generic. The machine divides the physical
cores into two NUMA nodes (Node 1: CPUs 0–9, Node 2: CPUs 10–19). As an
example application, we consider a parallel implementation of the Ant Colony
Optimization heuristic for solving NP-complete optimization problems. The pro-
posed reinforcement learning dynamics is implemented in scenarios under which
the availability of resources may vary with time. We compare the overall perfor-
mance of the algorithm, with respect to the completion time of the application.

Efficient Dynamic Pinning of Parallelized Applications 171

4.1 Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) [9] is an optimization algorithm used for solv-
ing NP-hard combinatorial optimization problems. The metaheuristics, given in
Algorithm 1, consist of a number of iterations. In each iteration, each individual
agent (ant) independently finds a solution to a given problem. The solution is
biased by a pheromone trail (t), which is stronger along previously successful
routes. After all ants have computed their solution, the best solution is chosen
and, if needed, the pheromone trail is updated according to the quality of the
new best solution. After that, the next iteration starts. The metaheuristics are
applied to a specific problem by providing the objective function, evaluate the
solution and update the pheromone trail.

Data: Ants - a set of ants
p - a set of problem parameters
t - pheromone trail
Result: best result
initialization;
for i = 0 to i < num iter do

foreach a ∈ Ants do
a = find one solution(p,t);

end
best=choose best solution(Ants);
t = update pheromone trail(best, t);

end

Algorithm 1. Pseudocode of metaheuristics in ACO.

In this paper, we apply ACO to the Single Machine Total Weighted Tardiness
Problem (SMTWTP). We are given n jobs. Each job, i, is characterised by its
processing time, pi (p in the code below), deadline, di (d in the code below),
and weight, wi (w in the code below). The goal is to find the schedule of jobs
that minimizes the total weighted tardiness, defined as

∑
wi · max{0, Ci − di}

where Ci is the completion time of the job, i. The pheromone trail is defined
as a matrix τ , where τ [i, j] is a real number between 0 and 1 that represents
preference of putting job i at the j-th place in the schedule. The pseudocode for
a function to find one solution is given in Algorithm2. It iterates over the posi-
tions in the schedule. For each position, first an auxiliary function ε is applied
for each job to compute the probability of that job being assigned to that posi-
tion. This probability is then further tuned to take into account the pheromone
trail τ . Then, according to some probability, one of the two actions are taken -
either the job with the highest probability or a random job (according to the
calculated probabilities). The latter is done to add a degree of randomisation to
the solutions, in order to escape possible local maxima.

172 G.C. Chasparis et al.

Data: p - a set of problem parameters
τ - initial pheromone trail
Result: schedule
for k = 0 to num jobs do

foreach unscheduled job i do
// probability of selecting job i as the k-th in the schedule
prob[i] = ε(i, p)β · τ [k, i];

end
q = rand();
if q < Q then

job = select the job with the highest probability, according to prob;
else

job = select a random job, according to probabilities in prob;
end
schedule[k] = job;

end

Algorithm 2. Pseudocode for find one solution function for SMTWTP
instance of ACO.

4.2 Parallelization and Experimental Setup

The ACO metaheuristics can be parallelized by dividing ants into groups and
computing the find one solution function in Algorithm1 for groups of ants in
parallel. We consider a uniform division of ants to threads (task farm parallel
pattern). Parallelization is performed using the pthreads parallel library.

Throughout the execution, and with a fixed period of 0.2 s, the RM col-
lects measurements of the total instructions per sec (using the PAPI profiling
library [12]) for each of the threads separately. Taking into account these mea-
surements, the update rule of Eq. (4) under (O2) is executed by the RM. Pinning
of the threads to the available CPUs is achieved with the sched.h library (in
particular, the pthread setaffinity np function). In the following, we evalu-
ate the completion time of the test application under the reinforcement-learning
scheme, compared to the time achieved under the Linux Operating System (OS)
default scheduling mechanism. We compare them for different values of γ ≥ 0 in
order to investigate the influence of more balanced speeds to the overall running
time.

In all the forthcoming experiments, the RM is executed by the master thread
which is always running on CPU 0. Furthermore, in all experiments, only the
first one of the two NUMA nodes are utilized, since our intention is to investigate
the benefit of efficient placement of thread to cores without taking into account
effects of non-uniform memory layout on the execution speed.

4.3 Experiment 1: ACO Under Uniform CPU Availability

In the first experiment, we consider the ACO application consisting of 20 threads
and utilizing 7 CPU cores. Table 1 shows the completion times under the OS

Efficient Dynamic Pinning of Parallelized Applications 173

and reinforcement-learning (RL) for different values of γ > 0, with ε = 0.01 and
λ = 0.03 in formulas (3) and (4). We select a step size and perturbation that are
not so small in order to allow a rather fast adaptation (via ε > 0) and a rather
often experimentation (via λ > 0).

Table 1. Statistical results regarding the completion time (in sec) of OS and RL under
Experiment 1.

ε = 0, λ = 0 ε = 0.01, λ = 0.03

Run # OS RL (γ = 0) RL (γ = 0) RL (γ = 0.02) RL (γ = 0.04)

1 138.39 139.41 142.08 142.69 141.69

2 138.57 137.60 143.28 141.69 141.27

3 138.80 138.39 142.87 142.10 140.92

4 138.38 137.97 144.08 143.47 142.71

5 138.78 138.40 143.28 142.65 141.28

Aver. 138.58 138.35 143.12 142.52 141.57

s.d. 0.20 0.67 0.73 0.68 0.69

We observe that the RL scheduler can almost match the completion time
by the OS scheduler. The RL scheduler with γ = 0.04 gives just about 2.12%
worse completion time, compared to the OS scheduler. This difference can be
attributed to the necessary adaptation and experimentation incorporated into
the scheduler. To see this, note that when the scheduler sticks with the initial
round-robin static initialization of the assignments, i.e., when ε = λ = 0, then the
completion time matches very accurately the time achieved by the OS scheduler
(Table 1). Such experimentation is absolutely necessary for the dynamic sched-
uler to be able to react to variations in the availability of resources, as it will
become obvious in the following experiments.

Another interesting observation comes from the fact that as γ increases, the
overall completion time of the application decreases. In other words, when penal-
izing high speed variance among threads, the overall completion time decreases.
Such conclusion may not necessarily be generalized beyond this experimental
setup of identical threads and uniform resource availability; however, it indi-
cates a potential benefit that needs to be further investigated.

4.4 Experiment 2: ACO Under Non-uniform CPU Availability

In the second experiment, the execution speed of the CPU cores is not uniform.
To achieve this variation, we have another (exogenous) application running on
some of the available CPU cores. In particular, this exogenous application places
equal work-load to the first three CPU cores. The exogenous application already
runs when the ACO starts running. Figure 3 shows the running average process-
ing speed under OS and RL, which is further supported by the statistical data of

174 G.C. Chasparis et al.

Table 2. The RL achieves a significant speed improvement that results in about
12% reduction in completion time.

0 50 100 150 200 250
6

8

10

12

14

Time (sec)

R
un

.
A

ve
r.

Sp
ee

d
(

1
0
8
·
#

in
st

ru
c
ti
o
n
s

/
se

c
/
th

re
a
d
)

RL

OS

Fig. 3. Running average execution speed for OS and RL (γ = 0.04) under
Experiment 2.

4.5 Experiment 3: ACO Under Time-Varying CPU Availability

This is an identical experiment to Experiment 2, except for the fact that the
exogenous application starts running 30 s after ACO starts running. This form
of test examines the ability of RL to respond after a significant variation in the
availability of some of the CPU cores. Figure 4 illustrates the evolution of the
running-average processing speed under OS and RL for this experiment.

0 50 100 150 200

10

15

Time (sec)

R
un

.
A

ve
r.

Sp
ee

d
(

1
0
8
·
#

in
st

ru
c
ti
o
n
s

/
se

c
/
th

re
a
d
)

RL

OS

Fig. 4. Running average execution speed for OS and RL (γ = 0.04) under
Experiment 3.

It is evident in Fig. 4 that the RL dynamic scheduler is able to better react
to variations in the availability of resources, and achieves a shorter completion
time by about 10%. This is also supported by the statistical data of Table 2.

Efficient Dynamic Pinning of Parallelized Applications 175

Table 2. Statistical results of the completion time (in sec) under OS and RL in Exper-
iments 2 and 3, respectively.

Experiment 2 Experiment 3

Run # OS RL (γ = 0.04) OS RL (γ = 0.04)

1 241.30 207.33 218.48 193.30

2 239.10 201.92 218.70 196.45

3 240.90 220.11 218.88 201.92

4 241.11 221.54 219.27 195.88

5 241.51 210.09 218.52 193.41

Aver. 241.06 212.20 218.77 196.19

s.d. 0.99 8.42 0.33 3.50

5 Conclusions and Future Work

We proposed a measurement-based reinforcement learning scheme for addressing
the problem of efficient dynamic pinning of threads of a parallel application to
the processing units. According to this scheme, a centralized objective is decom-
posed into thread-based objectives, where each thread is assigned its own utility
function. A resource manager updates a strategy for each of the threads corre-
sponding to its beliefs over the most beneficial CPU placement for this thread.
Updates are based on a reinforcement learning rule, where prior actions are rein-
forced proportionally to the resulting utility. Besides its reduced computational
complexity, the proposed scheme is adaptive and robust to possible changes in
the environment. We further demonstrated that in the ACO metaheuristics algo-
rithm, the proposed scheduler may reduce the completion time up to 12% under
varying resource availability. This is a significant result, as the reinforcement-
learning based scheduler does not require any input from the user, nor it requires
any information from the application itself, therefore it can be readily plugged
in instead of the default operating system scheduler. In future, we plan to inves-
tigate the effect of non-uniform memory layout to our scheduler and to adapt
the scheduling policies for these kind of systems.

Acknowledgments. This work has been partially supported by the European Union
grant EU H2020-ICT-2014-1 project RePhrase (No. 644235).

References

1. De Angelis, F., Boaro, M., Fuselli, D., Squartini, S., Piazza, F., Wei, Q.: Optimal
home energy management under dynamic electrical and thermal constraints. IEEE
Trans. Ind. Inform. 9(3), 1518–1527 (2013). doi:10.1109/TII.2012.2230637. ISSN
1551-3203

2. Bini, E., Buttazzo, G.C., Eker, J., Schorr, S., Guerra, R., Fohler, G., Årzén,
K.E., Vanessa, R., Scordino, C.: Resource management on multicore systems: the
ACTORS approach. IEEE Micro 31(3), 72–81 (2011)

http://dx.doi.org/10.1109/TII.2012.2230637

176 G.C. Chasparis et al.

3. Blumofe, R., Leiserson, C.: Scheduling multithreaded computations by work steal-
ing. In: Proceedings of SFCS 1994, pp. 356–368 (1994)

4. Brecht, T.: On the importance of parallel application placement in NUMA mul-
tiprocessors. In: Proceedings of the Symposium on Experiences with Distributed
and Multiprocessor Systems (SEDMS IV), San Deigo, CA, pp. 1–18, July 1993

5. Broquedis, F., Furmento, N., Goglin, B., Wacrenier, P.A., Namyst, R.: Forest-
GOMP: an efficient OpenMP environment for NUMA architectures. Int. J. Parallel
Program. 38, 418–439 (2010)

6. Chasparis, G.C., Shamma, J.S., Rantzer, A.: Nonconvergence to saddle boundary
points under perturbed reinforcement learning. Int. J. Game Theory 44(3), 667–
699 (2015)

7. Chasparis, G., Shamma, J.: Distributed dynamic reinforcement of efficient out-
comes in multiagent coordination and network formation. Dyn. Games Appl. 2(1),
18–50 (2012)

8. Chasparis, G.C., Rossbory, M.: Efficient Dynamic Pinning of Parallelized Applica-
tions by Distributed Reinforcement Learning. arXiv:1606.08156 [cs], June 2016

9. Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Company, Scituate
(2004)

10. Inaltekin, H., Wicker, S.: A one-shot random access game for wireless networks.
In: International Conference on Wireless Networks, Communications and Mobile
Computing (2005)

11. Klug, T., Ott, M., Weidendorfer, J., Trinitis, C.: autopin - automated optimization
of thread-to-core pinning on multicore systems. In: Stenstrom, P. (ed.) Transactions
on High-Performance Embedded Architectures and Compilers III. LNCS, vol. 6590,
pp. 219–235. Springer, Berlin Heidelberg (2011). doi:10.1007/978-3-642-19448-1 12

12. Mucci, P.J., Browne, S., Deane, C., Ho, G.: PAPI: A portable interface to hardware
performance counters. In: Proceedings of the Department of Defense HPCMP Users
Group Conference, pp. 7–10 (1999)

13. Narendra, K., Thathachar, M.: Learning Automata: An introduction. Prentice-
Hall, Upper Saddle River (1989)

14. Olivier, S., Porterfield, A., Wheeler, K.: Scheduling task parallelism on multi-socket
multicore systems. In: ROSS 2011, Tuscon, Arizona, USA, pp. 49–56 (2011)

15. Thibault, S., Namyst, R., Wacrenier, P.-A.: Building portable thread schedulers
for hierarchical multiprocessors: the bubblesched framework. In: Kermarrec, A.-M.,
Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 42–51. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74466-5 6

http://arxiv.org/abs/1606.08156
http://dx.doi.org/10.1007/978-3-642-19448-1_12
http://dx.doi.org/10.1007/978-3-540-74466-5_6

Accelerating by Idling: How Speculative Delays
Improve Performance of Message-Oriented

Systems

Aleksandar Prokopec(B)

Oracle Labs, Zurich, Switzerland
aleksandar.prokopec@gmail.com

Abstract. We propose a technique called speculative lagging, which
improves performance by dynamically adding periods of idle execution
into the message-oriented system. The speculation is guided by a statis-
tical model, which predicts context switches that benefit from delays. We
analytically derive the expected speedup, which, for a fixed confidence,
allows identifying lagging opportunities in O(1) time, without a perfor-
mance overhead. We describe the corresponding speculation algorithm
and use it to extend an existing scheduler. Comparison with other actor
frameworks on standard benchmarks shows improvements of up to 2.1×.

1 Introduction

Consider a system with concurrent processes that communicate by exchanging
messages. We call these processes actors. When a message arrives, it is placed
on the message queue of the corresponding actor, and we say that it is available.
The system is tasked with assigning CPUs to any number of actors with avail-
able messages. An actor cooperatively yields the CPU back to the system after
emptying its message queue. Assigning and yielding is called context switching –
this is the period of time required to switch the CPU between two actors.

The main question in this paper is the following: can the overall performance
of a message-based system be improved by slowing down individual actors with
periods of idle execution? Generally, adding extra execution cycles to a program
slows it down, so the first reaction is to say no. Counter-intuitively, this paper
shows that selectively adding periods of idle execution improves performance.
The essential idea is that it can be less costly to wait for another message, than
it is to undergo a context switch when there are no messages. The key difficulty
addressed in the paper is to quickly detect (at runtime) that a program benefits
from delays, apply those delays selectively to some actors, and do so without
compromising the performance of programs that do not benefit from delays.

This paper brings forth the following contributions:

– A probabilistic model of speculative lagging, a new runtime technique that
increases program performance by O((1+δ−P)−1), where P is the probability
that a relative delay δ is beneficial for a given program (Sect. 2), along with
a decision criteria for applying speculative lagging (Sect. 2.2).

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 177–191, 2017.
DOI: 10.1007/978-3-319-64203-1 13

178 A. Prokopec

– A sampling strategy that, for some fixed confidence α, when speculation is
beneficial, is expected to correctly decide in O(1) time, and when delays
are not beneficial, concludes this in O(ϕ−1) time, where ϕ is the allowed
performance overhead from sampling (Sects. 2.1 and 2.3).

– An algorithm and an implementation of speculative lagging (Sect. 3).
– An evaluation on standard actor benchmarks [12], where we identify spe-

cific benchmarks on which speculative lagging achieves up to 2.1× speedups,
without any noticeable performance overhead otherwise (Sect. 4).

2 A Model of Speculative Lagging

In this section, we construct a model of speculative lagging. The speculation is
based on the bet that a context switch is expensive, and that another message
will arrive between the start and the end of the context switch. We investigate
how each actor determines the minimal number of messages to receive before
making a speculation decision, how it decides whether to speculate or not, and
how to minimize the time until making the decision.

2.1 Determining the Sample Size

To decide whether speculation is beneficial, an actor must have a sample – a set
of delayed context switches. We start by estimating the necessary sample size.

Definition 1. Consider an actor that, upon processing a message at some time
t, waits for a fixed duration of time d before returning control to the scheduler.
A speculation hit is the event in which at least one other message arrives in
the time interval 〈t, t + d〉. A speculation miss is the event in which no message
arrives in the interval 〈t, t + d〉.
Definition 2 (Delay sampling). Consider a sampling strategy in which an
actor, before context switching, waits some fixed time d with a probability ϕ, and
counts speculation hits. We call this process speculation hit sampling.

Theorem 1 (Speculation hit estimate). Consider a speculation hit sampling
process that estimates the probability P of a speculation hit, which is independent
between speculation hits. Let n be the sample size, and hi a random variable, equal
to 1 if there was a speculation hit in the i-th sampling iteration, and 0 otherwise.
The sampled probability p̂ = p = 1

nΣihi is a consistent estimate for P .

An estimate p̂ is consistent for the value P if p̂ → P when n → ∞. We
assumed that the probability P is independent between speculation hits, a
method which is called simple random sampling [5]. It was shown in the related
work [5] that p̂ is in this case a consistent estimate for P .

Theorem 2 (Sample size). Consider a speculation hit sampling process that
estimates the speculation hit probability P with p = 1

nΣihi. Let α be the probabil-
ity that a normally distributed value is within the ±z1−α/2 range (α uniquely

defines z1−α/2). The minimum sample size is at least
z2
1−α/2

4·e2 , for the probability
α that the estimated probability P is approximately within the range 〈0.1, 0.9〉.

Accelerating by Idling: How Speculative Delays Improve Performance 179

Proof. We are sampling speculation hits with replacement, so the number of
observed speculation hits follows the binomial distribution. It was shown that
in this case, the confidence interval e can be approximated with z1−α/2 ·√

p̂(1 − p̂)/n, where n is the sample size [5]. The term p̂(1− p̂) is maximized for
p̂ = 0.5, which allows deriving the worst case n from e. ��

The result in Theorem 2 allows us to calculate the minimum number of sam-
ples required for deciding, with a specific confidence α, the interval of the possible
values of the speculation probability P . As we show later, this allows deciding
whether speculation improves program performance or not.

2.2 Estimating Speculation Benefits

Theorem 2 shows how to pick the sample size, but does not mention the delay
time d. The probability P , and the estimated speculation hit probability p̂, both
depend on the chosen delay d. In this section, we investigate how to find the
optimal value for the delay d. We first show that d is not unbounded – an actor
only needs to search through a finite interval to find the optimal value d.

Definition 3. The setup cost cs is the time between the point when the scheduler
assigns an actor to a processor, and the point when the actor starts processing
the first pending message. The teardown cost ct is the time between the point
when the actor finishes processing the last pending message, and the point when
the actor returns control to the scheduler. We define the context-switch cost c
as the sum cs + ct of the setup and teardown cost.

Definition 4. An actor speculates with a delay d if, after processing the last
available message, it spends an additional time d waiting for the arrival of
another message. The speculation efficiency Ψspec = Tspec/Tbase is the ratio
between the total actor execution time with speculation Tspec and the time with-
out speculation Tbase, and its inverse value Sspec = Ψ−1

spec is the speculation
speedup.

Lemma 1 (Delay bound). Consider an actor that speculates with a delay d.
Let there always exist at least one inactive actor with an available message. Then
for every d > c, the program execution time is not optimal.

Proof. Assume that there is some time d0 > c for which the execution is opti-
mal. Consider a specific actor R that, at some point in the execution schedule
E0, speculates with d0. By assumption, when R starts speculating, there exists
another actor Q with an available message. Consider now an alternative execu-
tion schedule E1 in which the actor R does not speculate, but instead releases
the processor. The scheduler can then assign the processor time to another actor
Q, after a context switch with duration c. The execution schedule E1 is at least
d0 − c faster than E0. By contradiction, E0 is not optimal. ��

180 A. Prokopec

Tspec(N)

c w d

1 − P

dmax = c

ϕ P · · ·
Tspec(N − 1)

· · ·
Tspec(N − 1)

P

c
· · ·

Tspec(N − 1)

1 − ϕ

c
· · ·

Tspec(N − 1)

1 − P

Fig. 1. Probability tree for the running time with speculative lagging

Lemma 1 states that there exists an upper bound on the benefits from spec-
ulatively delaying the context switch. Consequently, the sampling plan needs to
focus only on the values of d in the interval 〈0, c〉. We now investigate how to
choose d from this interval to maximize the benefits.

Lemma 2 (Speculative running time). Consider an actor that speculates
with a delay d, and with probability ϕ � 1, prior to context switching, samples
speculation hits. The time required to receive and process N messages is then
Tspec(N) = [(1−P) · c+w + d] ·N , where P is the speculation hit probability for
the delay d, c is the context switch time, and w is the time to process a message.

Proof. Consider the execution of an actor in Fig. 1, which has one message avail-
able at the beginning, and still has to process N messages. The time required
to process these messages is Tspec(N). The actor spends w time to process the
first message, and d time speculating for the next message. During the time d,
another message arrives with probability P , which brings the actor into a state
with one available message, where the remaining execution time is recursively
Tspec(N − 1). Alternatively, with a probability 1 − P , another message does not
arrive during the time d. In this case, the actor may decide to return control
to the scheduler with a probability 1 − ϕ (i.e. not to sample speculation hits)
and spend c time in a context switch. Alternatively, with a probability ϕ, the
actor spends additional dmax = c units of time sampling speculation hits. When
the sampling ends, another message will appear with probability that is at least
P , bringing the actor into the state with an available message – the remaining
execution time is here Tspec(N − 1). Alternatively, with probability 1 − P , no
message arrives, and the actor spends c time in a context switch.

Putting this together, we get the following execution time recurrence:

Tspec(N) = w+d+
(
(1−P) ·ϕ+(1−P) · (1−ϕ)+(1−P)2 ·ϕ

)
·c+Tspec(N −1)

This recurrence has the following closed-form solution:

Tspec(N) = (w + d + (1 − P) · (1 + ϕ − ϕ · P) · c) · N (1)

Under the assumption that sampling is done infrequently, that is, ϕ � 1, the
term 1 + ϕ − ϕ · P becomes 1, and the claim follows. ��

Accelerating by Idling: How Speculative Delays Improve Performance 181

Theorem 3 (Speculation efficiency and speedup). Let c be the context
switch duration, w the time required to process a message, and p be the sampled
speculation hit rate. Define δ = d/c ∈ 〈0, 1〉 and η = w/c as ratios between
the delay, the work and context switch time. Then, the expected efficiency of
speculative lagging is Ψspec = 1+ δ−p

1+η , and the expected speedup Sspec > 1+η
1+η+δ−p .

Proof. The expected efficiency is defined as E[Ψspec] = E[Tspec(N)/Tbase(N)],
where Tbase(N) is the time required to process N messages without speculation,
and Tspec(N) is the same time with speculation.

Without speculation, in the worst case, an actor always processes only a single
message before returning control to the scheduler. The time without speculation
is then Tbase(N) = (c + w) · N . By Lemma 2, expected time with speculation is
Tspec(N) = [(1 − P) · c + w + d] · N . Since Tbase(N) does not depend on random
variables, linearity of expectation gives us:

Ψspec = E[Ψspec] =
N · [(1 − E[P]) · c + w + d]

N · (c + w)
(2)

Using E[P] = p from Theorem 1, this further simplifies to:

Ψspec = 1 +
δ − p

1 + η
(3)

By expressing the inverse Ψ−1
spec of Ψspec with its Taylor series, it can be shown

that Sspec = E[Sspec] = E[Ψ−1
spec] > E[Ψspec]−1, as noted previously [9]. ��

The result from Theorem 3 provides a way to decide whether speculative
lagging improves performance. This is captured with the following corollary.

Corollary 1 (Speculation decision). An actor that speculates with a relative
delay δ = d/c ∈ 〈0, 1〉 improves program performance when δ ≤ p.

Proof. Program performance is expected to improve when the expected speedup
Sspec > 1. Using the result from Theorem 3, we have:

Sspec >
1 + η

1 + η + δ − p
≥ 1 (4)

We can rewrite the second inequality as 1 + η ≥ 1 + η + δ − p, and the result
follows irrespective of the work ratio η. ��

The previous corollary states the necessary conditions to apply delays. Let’s
assume that we have a set of (δi, pi) pairs, and we need to pick the δi that
maximizes speedup. The next corollary shows how to do this.

Corollary 2 (Speculation choice). Given a set of (δi, pi) pairs, where δi is
the speculated delay and pi is the respective sampled speculation hit probability,
speedup is maximal for the relative delay δi that has the minimum δi − pi.

Proof. Expression for Sspec from Theorem 3 is monotonic with respect to p and
δ, and is maximized when p − δ is minimized, irrespective of η. ��

182 A. Prokopec

2.3 Better Time-to-Speculation with an Adaptive Sampling Rate

We can use the Theorem 2 to estimate the sample size n. For example, for a
α = 95% confidence that speculation hit probability P lies within e = 15%
of the true value, we need n = 43. Our analysis implicitly assumed that the
sampling frequency ϕ is so low that it can be ignored. As an example, for ϕ = 1%,
execution overhead less than 1%, but the expected number of context switches
that an actor must undergo before deciding on speculation is N = n ·ϕ−1, which
is 4300 for the confidence α = 95% and the interval e = 15%, assumed previously.
This value is impractical for applications in which the actor lifetime is short.

To reduce the time until a speculation decision, we note that increasing the
sampling frequency ϕ causes a slowdown only if speculation hits are unlikely. If
speculation helps, it is likely that a message arrives during sampling. In what fol-
lows, we substantiate this intuition with an upper bound on the allowed sampling
rate ϕ. We then compute an upper bound on the expected number of messages
N that must be received before deciding on δ, when ϕ gets dynamically adapted.

Lemma 3 (Sampling rate bound). Consider an actor that speculates with
a relative delay δ = d/c, and, before a context switch, samples speculation hits
with the rate ϕ. Sampling does not decrease performance as long as ϕ ≤ P−δ

(1−P)2 .

Proof. We are investigating the upper bound for ϕ, so the previous assumption
that ϕ � 1 no longer holds, and we cannot use the result from Theorem3.
Instead, we rely on (1) from Lemma 2. We require that the speculative running
time is less than equal than the baseline:

w + d + c · (1 − P) · (1 + ϕ − ϕ · P) ≤ w + c (5)

By simplifying and substituting δ = d/c, we get the desired bound on ϕ. ��
We could (prematurely) conclude that a newly created actor must set the

sampling rate ϕ to the bound from Lemma 3. However, a new actor does not
know the speculation hit probability P . At the end of each sampling iteration i,
the actor only has an imprecise estimate pi of P , which, as shown in Theorem 2,
is only adequately accurate with the desired sample size n ≥ i.

We now show that, somewhat surprisingly, the actor can indeed use its cur-
rent estimate pi as a proxy for P to increase the sampling rate ϕ, and reduce
the expected number of messages N needed to reach the sample size n, with-
out compromising performance. The bound on N will be proportional with the
speculation miss probability 1 − P , confirming the initial intuition.

Theorem 4 (Adaptive sampling). Consider a newly created actor that starts
with an initial sampling frequency ϕ0, and then changes the sampling frequency
to ϕ = max(ϕ0,min(1, pi

(1−pi)
2)) after every sampling iteration i. The expected

number of messages N that an actor will receive before gathering the sample of
size n is bounded by N ≤ 1+ϕ−1

0 ·(1+(2+ϕ0)−1)·(1−P)·O(n)+O(n). Expected
speedup S between speculation and baseline is bounded by S ≥ 1 − (1 + ϕ−1

0)−1.

Accelerating by Idling: How Speculative Delays Improve Performance 183

N0,0=1

N1,0=N0,0 + ϕ−1
0

N2,0=N1,0 + ϕ−1
0

. . .

. . .

N2,1=N1,0 +
(1−1/2)2

1/2
. . .

. . .

N1,1=N0,0 +
(1−1)2

1

N2,2=N1,1 +
(1−1/2)2

1/2
. . .

. . .

N2,3=N1,1 +
(1−1)2

1
. . .

. . .

1

1 − P

1 − P

1 − P

P

P

1 − P

P

P 1 − P

1 − P

P

P

1 − P

P

Fig. 2. Probability tree and message counts in adaptive sampling

Proof. After each sampling event, the sampling probability ϕ is modified using
the expression P−δ

(1−P)2 from Lemma 3, where δ is 0 because the newly created
actor does not speculate yet, and P is replaced with the current value p.

The probability tree in Fig. 2 shows a series of sampling events, and the num-
ber of messages received Ni,j , which are needed to reach the respective sampling
iteration i and state j. N0,0 is 1, since a newly created actor can immediately
sample once – the sampling cost is amortized by the actor creation costs. Sam-
pling can result in a speculation hit with a probability P , or a speculation miss
with 1−P , where P is the true speculation hit probability. The expected number
of messages between two sampling iterations is ϕ−1, so we have:

Ni,j = Ni−1,j÷2 + min
(
ϕ−1
0 ,

(1 − pi)2

pi

)
(6)

Our task is compute the expected number of messages after n sampling itera-
tions, in other words, to produce a sum of the messages received at the depth
n in the tree, weighted by the respective probabilities. This is given with the
expression N = ΣjPn,j · Nn,j , where Pn,j is the probability of the outcome j
after n sampling iterations. We now compute the upper bound for N by grouping
the execution paths according to the number of speculation hits k, and choosing
the longest path in each such group k. The execution is longest when the initial
k sampling iterations are speculation misses, followed by n − k speculation hits.

N ≤ 1 +
n∑

k=0

(
n

k

)
Pn−k(1 − P)k

(
k · f · ϕ−1

0 +
n∑

i=k·f+1

(
1 − i−k

i

)2

i−k
i

)
(7)

Note that in the min in (6), the second term does not outweigh ϕ−1
0 at i = k+1,

but only after a few additional iterations. For this reason, we include the factor

184 A. Prokopec

f in (7). It can be shown that the upper bound holds when f = 1+(2+ϕ−1
0)−1.

Next, note that in the given range, the fraction in the last sum is always less
than i/(i−k). Therefore, we can use the following upper bound for the last sum:

n∑

i=k+1

(
1 − i−k

i

)2

i−k
i

≤
n∑

i=k+1

i

i − k
=

n−k−1∑

j=0

j + k + 1
j + 1

≤ (k + 1) · Hn + n (8)

Above, Hn = Σn
i=1i

−1 is the n-th harmonic number. By combining this with
(7), and by applying the identities Σn

k=0

(
n
k

)
Pn−k(1 − P)kk = n(1 − P) and

Σn
k=0

(
n
k

)
Pn−k(1 − P)k = 1, we get the following upper bound for N :

N ≤ 1 + ϕ−1
0 · (1 +

1
2 + ϕ−1

0

) · n · (1 − P) + n · Hn · (1 − P) + n (9)

The bound in (9) is too conservative – in particular, the term n·Hn never exceeds
n · ϕ−1

0 (in the worst case, the sampling frequency stays ϕ0), so we can replace
it with n · min(ϕ−1

0 ,Hn). This proves the first part. To prove the second part,
we find a lower bound for N – we consider the path in the probability tree that
starts with n − k hits (which set ϕ to 1), followed by k misses:

N ≥ 1+
n∑

k=0

(
n

k

)
Pn−k(1−P)k

(
(n−k)·1+

n∑

i=n−k+1

min(ϕ−1
0 ,

(1 − n−k
i)2

n−k
i

)
)

(10)

The term n − k becomes n · P under the outer sum. The second term (the inner
sum) consists of two parts, depending on which part under the min dominates.
The part with ϕ0 is alone greater than kϕ−1

0 when P → 0. From this, it can be
shown that N is lower bound by n · P + ϕ−1

0 · n · (1 − P). When work tends to
0, the speedup S = T base/T sampling becomes the ratio between the time spent
in context switching without sampling and the time spent with sampling. Note
that sampling spends n · c extra time, but only in the 1 − P cases that do not
end in a speculation hit. By substituting the lower bound into the speedup:

S ≥ N · c

N · c + n · c · (1 − P)
≥ 1 − 1 − P

1 + ϕ−1
0 · (1 − P)

(11)

The last expression in (11) is minimal when P = 0, and the claim follows. ��
We interpret the Theorem 4 as follows. First, when P → 1, the term with

the initial frequency ϕ0 disappears, and the expected number of messages N
depends only on the sample size n. From (9) and (10), for P = 0.9, n = 43 and
ϕ0 = 0.01, the expected number of messages N is between 468 and 497, an 8×
improvement. Second, when P → 0, the sampling overhead depends only on the
initial sampling frequency ϕ0. If we pick an unreasonably high value ϕ0 → 1 for
the initial sampling frequency, the performance degrades by at most 50% – this
is the case when we always sample after receiving a message, without benefiting
from speculation hits, and effectively paying the context switch cost twice.

Accelerating by Idling: How Speculative Delays Improve Performance 185

3 Algorithm and Implementation

We can summarize the results from Sect. 2 as follows. When the speculation
hit probability P is greater than the relative delay δ, where δ = d/c is the ratio
between the absolute delay d ∈ 〈0, c〉 and the context switch time c, an actor must
speculatively delay its context switches by the duration d. For a confidence level
α, an actor must gather a sample of speculation hits of size n = z21−α/2/(4e2),
where e is the confidence interval for the sampled speculation hit probability p.
These n values are sampled with some probability ϕ, which is a small value ϕ0

initially, but can be set to ϕ = (pi − δ)/(1 − pi)2 after every sampling iteration.

1 global ϕ = ϕ0

2 global L = 32

3 global counts = [1..L]

4 global d_best = 0

5 global sample_count = 0

6

7 has_more = poll()

8 while has_more:

9 has_more = false

10 if drain():

11 spins = d_best

12 while spins > 0:

13 spins -= 1

14 if spins%(C/L) == 0:

15 has_more = poll()

16 if has_more:

17 spins = 0

18 if random (0.0, 1.0) < ϕ:

19 spins = 0, i = 0

20 while spins < C:

21 spins += 1

22 if spins%(C/L) == 0:

23 has_more = poll()

24 i += 1

25 if has_more:

26 counts[j ∈ i..L] += 1

27 spins = C

28 sample_count += 1

29 ϕ = max(ϕ0, calc_p ())

30 if sample_count == n:

31 sample_count = 0

32 k = argmin(counts[i]-C/L*i)

33 d_best = C/L*k

34 counts[i ∈ 1..L] = 0

Fig. 3. Pseudocode for speculative lagging

The algorithm in Fig. 3 collects a set of sampled probabilities pi for equidis-
tant delays di ∈ 〈0, c〉. An actor runs the algorithm immediately before each
context switch. The algorithm maintains the current best delay d_best, initially
zero, and the array counts of speculation hit counts for each di. It first checks
for messages with poll in line 7, and handles them by calling drain in line 10.
The drain method returns false only when the scheduler externally disallows
further execution – in this case, the actor must immediately yield. Otherwise,
the actor spins for d_best time units, and calls poll on the message queue every
C / L time units, where L is the total number of delays di, and C is the context
switch time. If the actor finds that the message is available, it calls drain again
and this process is repeated. After the loop in line 8 ends, the actor samples the
delays, with the probability ϕ, by finding the first delay di after which a method
is available, and updates the speculation hit counts accordingly in line 26. The
actor adapts the sampling frequency ϕ in line 29. Upon reaching the sample size

186 A. Prokopec

n, the actor sets d_best to the di with the largest value pi − di in line 33, and
then resets the speculation hit counts in line 34.

We implemented our algorithm in the Reactors framework [2,19], as a mod-
ification of the pluggable scheduling system in Reactors [18]. Context switch in
this framework consists of finding a worker thread, creating a task object, inter-
acting with the work queue, and setting up actor-local state on the worker. The
largest deviation from the analysis in Sect. 2 is that the number of messages a
reactor can process is upper bound, and kept around 50 – this already amortizes
the context switch times, but ensures fair scheduling (i.e. a bound on latency).

4 Evaluation

In this section, we (1) show the running times of the benchmarks from the Savina
actor suite [12], using three different processor models. We identify a subset of
benchmarks on which speculative lagging improves performance, and use them
to estimate the context switch time c. We then (2) study the performance of
these benchmarks for a different number of actors in the system. Finally, to
validate that speculative lagging does not degrade performance when it is not
beneficial, we (3) identify a subset of benchmarks for which speculative lagging is

i7
-4
90
0M

Q

i5
-2
50
0

i5
-6
50
0

0

20

40

60

80

100

120 Ping-Pong (N=25k)

1
. 0×

1
. 0×

1
.0×

4
.8×

1
.7×

1
.8×

time/ms

reactors Akka

i7
-4
90
0M

Q

i5
-2
50
0

i5
-6
50
0

0

5

10

15

20

25
Streaming Ping-Pong
(N=25k,W=128)

1
.0×

1
.0×

1
.0×

1
.3×

1
.2×

1
.1×

time/ms

reactors Akka

i7
-4
90
0M

Q

i5
-2
50
0

i5
-6
50
0

0

5

10

15

20

25

30

35

40
Thread Ring
(N=25k,P=1000)

1
.0×

1
.0× 1
.0×

1
.2×

1
.0×

1
. 2×

time/ms

reactors Akka

i7
-4
90
0M

Q

i5
-2
50
0

i5
-6
50
0

0

20

40

60

80

100
Counting Actor
(N=250k)

1
.0×

1
.0× 1

. 0×

2
.9× 1
.9×

3
.0×

time/ms

reactors Akka

i7
-4
90
0M

Q

i5
-2
50
0

i5
-6
50
0

0

0.2

0.4

0.6

0.8

1

1.2
FJ Throughput
(N=25k,P=128)

1
.0× 1
.0×

1
.0×

2
.1× 1

.6×

1
.9×

time/s

reactors Akka

i7
-4
90
0M

Q

i5
-2
50
0

i5
-6
50
0

0

0.05

0.1

0.15

0.2

0.25

0.3 FJ Creation
(P=25k)

1
.0×

1
.0× 1

.0×

1
.2× 0

.9× 0
.9×

time/s

reactors Akka

i7
-4
90
0M

Q

i5
-2
50
0

i5
-6
50
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Fibonacci (F=25)

1
.0×

1
.0× 1

.0 ×

1
.6×

1
.4× 1

.4×

time/s

reactors Akka

i7
-4
90
0M

Q

i5
-2
50
0

i5
-6
50
0

0

0.05

0.1

0.15

0.2

Big
(N=250,P=1280)

1
.0 ×

1
.0 × 1

.0×

1
.1 ×

1
.0 ×

1
.3×

time/ms

reactors Akka

Fig. 4. Running time comparison between Reactors and Akka on the Savina benchmark
suite (lower better; N – number of messages, P – number of actors, W – streaming
window size, F – computed Fibonacci number)

Accelerating by Idling: How Speculative Delays Improve Performance 187

potentially harmful, and compare the running time for different initial sampling
frequencies ϕ0. We use standard performance evaluation techniques [10].

We emphasize that we only expect to see a performance improvement on
specific benchmarks, in which a majority of actors normally spend a lot of time
context switching compared to doing useful work. On other benchmarks, where
the actors’ mailboxes are saturated and the context switches are rare compared
to the amount of useful work, it is unreasonable to expect a speedup – here,
eliminating the context switch is unnoticeable by definition. However, we require
that the addition of our speculation algorithm does not degrade performance on
any benchmark – in the worst case, the performance must stay the same.

In Fig. 4, we compare the running time between Reactors with speculative
lagging and the Akka framework [1] on the Savina benchmark suite, using three
different processors, quad-core 2.8 GHz i7-4900MQ with hyperthreading, quad-
core 3.2 GHz i7-6500, and quad-core 3.3 GHz i5-2500. We distinguish between
benchmarks for which speculative lagging is beneficial, namely, Ping-Pong,
Thread Ring and Fork-Join Throughput, and the remaining benchmarks on
which lagging does not improve performance. We note that Reactors is 2–3×
faster on the Counting Actor benchmark due to primitive type specialization
optimization [7], which is only used in that particular benchmark.

In the first row of Fig. 5, we compare the running times for different values of
the estimated context switch time C. Here, C is expressed as the number of spins
in the algorithm from Fig. 3. In Ping-Pong, two actors repetitively exchange N
messages, where N is shown on the x-axis. For C = 128, the running time is
slightly below the Akka version, and converges after C reaches 512. In Thread
Ring, a total of P = 4 actors form a ring, and send a message N/P times
around, and C also converges after 512. In both these benchmarks, the run-
ning time is additionally improved by keeping an actor-local 1-element message
miniqueue, which the actor can steal a message from to avoid context switching.
The miniqueue optimization has no effect on FJ Throughput, where a single
producer sends messages to P = 128 consumer actors in a roundabout manner.
Here, speculative delays cause messages to pile up at non-active actors, which
decreases the overall number of context switches, and improves performance by
up to 10× for C > 1024 (note the logarithmic y-axis).

In the second row in Fig. 5, we analyze the performance of FJ Throughput
by keeping the total number of delivered messages fixed at 3.2 million, and
changing the number of consumers from 1 to 256. The speculation benefits are
less pronounced when there are 2 to 8 consumers, which coincides with the
number of hardware threads in i7-4900MQ – when each consumer is assigned
to a CPU core, speculative delays are just long enough to let the producer run
a full cycle, but messages cannot pile up. The situation is reversed on Thread
Ring, where performance is improved only when ring size is 8 or less. Since there
is a single message passed around, speculative delays only help when each actor
can be pinned to a CPU. For P > 8, Akka is noticeably faster when miniqueues
are disabled in Reactors, since Akka’s scheduler runs the next actor directly.

188 A. Prokopec

0 0.2 0.4 0.6 0.8 1

·105

0

100

200

300

400

#msg (Ping-Pong)

ti
m

e/
m

s

C=32

C=128

C=512

miniqueue

Akka

0 0.2 0.4 0.6 0.8 1

·105

0

50

100

150

200

#msg (TR,P=4)

C=128

C=512

C=2048

miniqueue

Akka

0.5 1 1.5 2 2.5

·104

102

103

#msg (FJT;P=128)

C=512

C=1024

C=2048

Akka

100 101 102

200

300

400

500

600

700

800

actors (FJ Throughput;N=3.2M)

ti
m

e/
m

s

reactors+lagging+miniqueue

Akka

1 10 100 1 000

0

20

40

60

80

100

120

140

actors (Thread Ring;N=25k)

reactors

reactors+lagging

reactors+lagging+miniqueue

Akka

10−3 10−2

12

14

16

18

20 P=1k;N=25k

ϕ0 (TR)

ti
m

e/
m

s

0 0.5 1 1.5 2

·10−2

6.2
6.3
6.4
6.5
6.6
6.7

N=25k

ϕ0 (SPP)
0 0.5 1 1.5 2

·10−2

45

50

55

60

65

70
P=1280;N=250

ϕ0 (Big)
0 2 4 6 8

·10−3

150

155

160

165

170

175

F=25

ϕ0 (Fibo.)

Fig. 5. First row – impact of estimated context switch time C (i7-4900MQ); Second
row – impact of parallelism level P (i7-4900MQ; C = 2048); Third row – impact of
initial frequency ϕ0 (i7-4900MQ; C = 2048; note that smallest ϕ0 is 0.1%)

In Thread Ring (when P � 8), Big and Fibonacci, each actor receives only
very few messages in total, so speculative delays can only slow down the program.
We vary initial sampling frequency ϕ0 in the third row of Fig. 5, and find that the
optimal value is ϕ0 ≤ 0.2% (we note that we used ϕ0 = 0.2% and C = 2048
for the benchmarks in Fig. 4). For comparison, actors in Streaming Ping-
Pong (SPP) always have a large number of messages waiting in the mailbox, so
that benchmark is insensitive to the sampling frequency.

5 Related Work

Speculation is in practice frequently used to improve execution performance.
Many compiler optimizations speculate on program sections that execute less
frequently [8], and optimistic concurrency control is based on the bet that syn-
chronization can be omitted [13]. CPUs speculatively execute instructions out

Accelerating by Idling: How Speculative Delays Improve Performance 189

of order, and speculatively eliding locks improves performance in some cases
[15]. In the context of cluster computing, delaying the start of a job can improve
throughput [21]. To cope with straggler jobs, some cluster runtimes speculatively
execute them in parallel [3].

In the context of concurrent computing, existing related work can be sepa-
rated into two groups. The first group consists of various spin lock techniques,
and was studied extensively [16]. When acquiring a spin lock, a process repeti-
tively polls the availability of a critical section until another process releases the
spin lock. Spin locks were used in a variety of applications, from general-purpose
locking [6] to concurrent data structures [4]. Spin locks are similar to specula-
tive lagging, proposed in this work, but differ in several crucial ways. First, in
speculative lagging, the release of a computing resource is preceded by spinning,
whereas with spin locks, a process spins prior to acquiring a lock. Second, after
acquiring a spin lock, a process may attempt to acquire other locks, potentially
entering a deadlock. In speculative lagging, the wait time is bound, and cannot
lead to a deadlock. Third, spin locks are exposed as a programming primitive,
while speculative lagging is performed transparently by a scheduler.

The second group deals with speculatively applying optimizations to con-
current programs. Optimistic concurrency techniques [13] speculate that it is
more efficient to run a computation without synchronization, and pay the price
only occasionally, compared to always synchronizing concurrent processes. Opti-
mistic concurrency is used in databases and in software transactional memory
[11]. Techniques for eliding locks in multithreaded programs were proposed in
the past both as microarchitectural solutions [20] and as compiler techniques
[15]. Some lock implementations speculatively assume that there are no con-
currently executing modifications, and validate memory reads by only reading
the lock state [17], which is cheaper compared to writes. Just-in-time compila-
tion techniques make statistical assumption about the program behaviour, and
deoptimize the program to a slower variant if an assumption is broken [8]. Com-
mon to all of these techniques is the idea of speculation – running a simpler,
cheaper version of the execution, and potentially reverting to the more costly
implementation if it turns out that the assumption is invalidated.

Speculation is often applied blindly, but was in some cases guided by a sta-
tistical model. For example, a statistical model was used in the past to predict
which threads are more likely to acquire a lock next [14].

We are unaware of prior work on speculatively delaying context switches
in actors and other message-based systems, and believe that this is the first
contribution in this area.

6 Conclusion

We proposed a new technique for scheduling message-based programs, called
speculative lagging. The speculation is based on the bet that waiting for another
message is less costly than context-switching to another process. To correctly
detect speculation opportunities at runtime, we proposed a statistical sampling

190 A. Prokopec

model that predicts whether delaying a context switch is beneficial. The sam-
pling is adaptive – when it believes that lagging helps, the algorithm increases
the sampling rate, hence reaching the conclusion faster. We showed the bounds
for the expected speedup, and derived their proofs. When applied to an exist-
ing actor system, our speculative lagging algorithm improves performance on
benchmarks that spend considerable time in context switches. We experimen-
tally identified the standard benchmarks in which speculative lagging improves
performance, and we showed that performance is otherwise not degraded.

Our conclusion is that speculative lagging improves program performance by
reducing the amount of context switching. The sampling overhead of detecting
speculation opportunities at runtime can be made arbitrarily small with the
correct choice of initial parameters. We found that the initial sampling frequency
ϕ0 = 0.2% and the maximum spin count C = 2048 work well, but these numbers
may need to be tuned on a per-system basis. Thus, speculation lagging does not
degrade the performance of programs that cannot benefit from context switches,
and it improves the overall throughput otherwise.

References

1. Akka documentation (2017). http://akka.io/docs/
2. Reactors.IO website (2017). http://reactors.io/
3. Ananthanarayanan, G., Hung, M.C.C., Ren, X., Stoica, I., Wierman, A., Yu, M.:

GRASS: trimming stragglers in approximation analytics. In: NSDI 2014 (2014)
4. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: A practical concurrent binary

search tree. In: PPoPP 2010. ACM, New York (2010)
5. Cochran, W.: Sampling Techniques. Wiley, Hoboken (1977)
6. Dice, D.: Biased locking in HotSpot (2006). https://blogs.oracle.com/dave/

biased-locking-in-hotspot
7. Dragos, I., Odersky, M.: Compiling generics through user-directed type specializa-

tion. In: ICOOOLPS 2009 (2009)
8. Duboscq, G., Würthinger, T., Stadler, L., Wimmer, C., Simon, D., Mössenböck,

H.: An intermediate representation for speculative optimizations in a dynamic
compiler. In: VMIL 2013 (2013)

9. Fleiss, J.L.: The Teacher’s corner: a note on the expectation of the reciprocal of a
random variable (1966)

10. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous Java performance
evaluation. SIGPLAN Not. (2007)

11. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. SIGARCH Comput. Archit. News 21(2), 289–300 (1993)

12. Imam, S.M., Sarkar, V.: Savina - an actor benchmark suite: enabling empirical
evaluation of actor libraries. In: AGERE! 2014 (2014)

13. Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency control. ACM
Trans. Database Syst. (1981)

14. Lucia, B., Devietti, J., Bergan, T., Ceze, L., Grossman, D.: Lock prediction. In:
Proceedings of the 2nd USENIX Workshop on Hot Topics in Parallelism (2010)

15. Mart́ınez, J.F., Torrellas, J.: Speculative synchronization: applying thread-level
speculation to explicitly parallel applications. SIGOPS Oper. Syst. Rev. (2002)

http://akka.io/docs/
http://reactors.io/
https://blogs.oracle.com/dave/biased-locking-in-hotspot
https://blogs.oracle.com/dave/biased-locking-in-hotspot

Accelerating by Idling: How Speculative Delays Improve Performance 191

16. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (1991)

17. Nakaike, T., Michael, M.M.: Lock elision for read-only critical sections in Java. In:
Proceedings of the 31st ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2010. ACM, New York (2010)

18. Prokopec, A.: Pluggable scheduling for the Reactor programming model. In:
AGERE 2016 (2016)

19. Prokopec, A., Odersky, M.: Isolates, channels, and event streams for composable
distributed programming. In: Onward! 2015 (2015)

20. Rajwar, R., Goodman, J.R.: Speculative lock elision: enabling highly concurrent
multithreaded execution. In: Proceedings of 34th ACM/IEEE International Sym-
posium on Microarchitecture, MICRO 34. IEEE Computer Society, Washington,
D.C. (2001)

21. Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., Stoica, I.:
Delay scheduling: a simple technique for achieving locality and fairness in cluster
scheduling. In: EuroSys 2010 (2010)

Using Simulation to Evaluate and Tune
the Performance of Dynamic Load Balancing

of an Over-Decomposed Geophysics Application

Rafael Keller Tesser1(B), Lucas Mello Schnorr1, Arnaud Legrand2,
Fabrice Dupros3, and Philippe Olivier Alexandre Navaux1

1 Informatics Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
{rktesser,schnorr,navaux}@inf.ufrgs.br

2 Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France
arnaud.legrand@imag.fr
3 BRGM, Orléans, France

f.dupros@brgm.fr

Abstract. Finite difference methods are commonplace in scientific com-
puting. Despite their apparent regularity, they often exhibit load imbal-
ance that damages their efficiency. We characterize the spatial and tem-
poral load imbalance of Ondes3D, a seismic wave propagation simulator.
We reveal that this imbalance originates from the nature of the input
data and from low-level CPU optimizations. Such dynamic imbalance
should therefore be quite common and is intractable by any static app-
roach or classical code reorganization. An effective solution, with few
code modifications, combines domain over-decomposition and dynamic
load balancing (e.g., with AMPI), migrating data and computation at
the granularity of an MPI rank. It generally requires a careful tuning
of the over-decomposition level, the load balancing heuristic and fre-
quency. These choices are quite dependent on application and platform
characteristics. In this paper, we propose a methodology that leverages
the capabilities of the SimGrid framework to conduct such study at low
experimental cost. It combines emulation, simulation, and application
modeling that requires minimal code modification and yet manages to
capture both spatial and temporal load imbalance, faithfully predict-
ing its overall performance. We compare simulation and real executions
results and show how our strategy can be used to determine the best load
balancing configuration for a given application/hardware configuration.

Keywords: Load balancing and over-decomposition · Performance pre-
diction · Simulation · Geophysics FDM application

1 Introduction

The Ondes3D seismic wave propagation simulator [7], developed by computa-
tional science researchers at the French Geological and Mining Research Bureau

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 192–205, 2017.
DOI: 10.1007/978-3-319-64203-1 14

Using Simulation to Evaluate and Tune the Performance 193

(BRGM), is a typical iterative application tailored for homogeneous HPC plat-
forms. Unfortunately like many other similar applications, Ondes3D suffers from
scalability issues [6] due to the difficulty of evenly distributing the computational
load among processes. One of the contributions of this article is to demonstrate
that, despite the regularity of the finite difference method kernels it relies on,
Ondes3D presents both non-trivial spatial and temporal load imbalance.

The performance of Ondes3D could be improved by partially rewriting it
[13] to run on modern heterogeneous HPC platforms. The undesired side-effect
is that computational science researchers, the people who actually understand
the physics behind the code, often become incapable to contribute anymore.
An alternative way to improve performance with less intrusive modifications
is to rely on domain over-decomposition and runtimes that support dynamic
process migration, as implemented by Charm++ [11]. In the specific case of
legacy iterative MPI applications, one may employ Adaptive MPI (AMPI) [10],
which is a full-fledged MPI implementation built over the Charm++ runtime and
benefits from its load balancing infrastructure. AMPI encapsulates each MPI
rank in a task that can be dynamically migrated when necessary. The migration
phase is triggered when the MPI Migrate operation is called. The load balancer
decides the new task mapping based on previously collected load measurements.

Such porting has already been applied to Ondes3D in a previous work [12],
enabling spatial load imbalance to be dynamically mitigated. However, antic-
ipating performance gains when using such adaptive HPC runtimes is usually
difficult. Finding the best configuration for AMPI involves conducting real exper-
iments at scale to identify the best (a) over-decomposition level, (b) load bal-
ancing heuristic, (c) load balancing frequency, and (d) number of resources to
request. Such parameter tuning is platform-specific, and time-consuming.

In this paper, we propose a simulation-based methodology to evaluate the
potential performance benefits brought by adaptive MPI runtimes to legacy
codes. This methodology accelerates the evaluation of over-decomposition cou-
pled with dynamic load balancing with almost no modification of the target
application. Our approach relies on the SMPI emulation and trace replay mech-
anisms of SimGrid [5] to simulate the computation/communication behavior of
the application and to mimic the behavior of the load balancing heuristics. Our
methodology is faithful in terms of total makespan, as well as from the load
balancing perspective. The application has to be executed only once to obtain a
fine-grain trace that can be replayed multiple times to evaluate the best parame-
ter configuration for a given HPC platform. Since the replay is fast (usually less
than a minute on a laptop), it enables a quick inspection of many load balancing
parameters. Although our validation is conducted only with Ondes3D and two
earthquake scenarios (Chuetsu-Oki and Ligurian), we believe that it has nothing
specific to it. Our strategy could be applied to any iterative MPI application.

Section 2 presents a detailed analysis of the spatial and temporal load imbal-
ances in Ondes3D. Section 3 details our evaluation workflow and its validation
procedure. In Sect. 4, we compare our method against real executions, and
confirm the usefulness of our simulation for load balancing parameter tuning.

194 R.K. Tesser et al.

Section 5 presents related work on simulation-based tools, justifying our choices.
Section 6 concludes the paper, listing major contributions and future work. More
details on experiments, analysis, and simulation workflow can be found in an
extended version at https://hal.inria.fr/hal-01391401.

2 Ondes3D: A Typical Imbalanced MPI Code

Fig. 1. 3D rock medium, with a
4× 4 domain decomposition; each
process calculates a cuboid.

Ondes3D is a simulator to conduct seismic haz-
ard assessment at regional scale. It approxi-
mates the differential equations governing the
elastodynamics of rock medium using finite-
differences methods (FDM). The 3D domain
is statically partitioned in cuboids, as depicted
in Fig. 1. Each iteration (see Fig. 2a) corre-
sponds to a given time step and consists in
calling three macro kernels (Intermediates,
Stress, and Velocity) that apply a series of
micro kernels (example in Fig. 2b) to the whole
domain. Message passing consists in asyn-
chronous neighborhood communications inter-
twined with the three macro kernels. There is
no global barrier, each process evolves asyn-
chronously up to some extent.

Fig. 2. The Ondes3D application: (a) the three macro kernels of the main loop, with
intertwined neighborhood communications; (b) and the CPML4 micro kernel.

Ondes3D suffers from load imbalance that limits its scalability despite its
regularity (cuboids have the same geometry; code is always the same). Extra-
computation dealing with boundary conditions has been previously identified [6]

https://hal.inria.fr/hal-01391401

Using Simulation to Evaluate and Tune the Performance 195

as the main source of spatial imbalance. In Sect. 2.1, we report another source of
spatial imbalance caused by the heterogeneous rock substrate. Temporal imbal-
ances had been overlooked due to the regular shape of the code. In Sect. 2.1, we
show that temporal imbalance is stronger than the spatial one. Evidences of its
origin are related to low level optimizations taking place inside the CPU.

We have used a Mw6.3 earthquake workload [2] identified as Ligurian. Code
compilation uses GCC 6.1.1 with −O3 and PAPI [14] instrumentation. While
we report results only for this setup, we have observed the issues with other
workloads, CPUs (Xeon X3440, X5650, E5-2630, and i7 4600M), and compilers.

2.1 Identifying New Sources of Load Imbalance

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

X Domain Decomposition

Y
D

om
ai

n
D

ec
om

po
si

tio
n

0.02 0.03 0.04 0.05

Total Computational Load
[seconds]

Fig. 3. Spatial imbalance for the first iteration
represented by a color gradient for each rank
in a 16× 16 grid (256 processes). (Color figure
online)

Spatial Imbalance Due to
Heterogeneous Rock Medium.
Figure 3 depicts a 16 × 16 domain
decomposition where each cell in
the cartesian grid represents one of
the 256 processes, each in charge
of a cuboid subdomain. The color
in the heatmap indicates the total
computational load per process
during the first iteration, before
the main earthquake event that
originates in the (13, 5) subdomain
coordinate. Processes on the bor-
ders demonstrate a much higher
computational load (red color)
than those located inside the phys-
ical domain. Another, much more
subtle, source of spatial imbalance
(blue shades), depends mostly on
the rock multi-layer configuration
of the input (six layers for this sce-
nario). Although minor, such effect
exists and solely depends on the
substrate geometry.

Temporal Imbalance Due to Low-Level CPU Optimizations. The
Ondes3D code does not exhibit any structure (convergence loops, refinements,
thresholds) that could lead to an evolution of computation load along simula-
tion iterations. There are conditional branches (see Fig. 2b), but they are related
solely to absorbing boundary conditions. Yet, as illustrated in Fig. 4a, one can
observe a variability in computational costs along iterations that is even higher
than the spatial variability incurred by the absorbing conditions. This figure
details the behavior of all 64 processes (each box in the 8 × 8 grid), showing

196 R.K. Tesser et al.

Fig. 4. Load imbalances for the Ligurian workload: (a) spatial load imbalance; (b)
temporal load imbalance for three kernels; and (c) CPML4 substrate values evaluating
to distinct values.

(in the vertical axis of each box) the total number of cycles (PAPI TOT CYC) per
macro kernel as a function of the iteration (horizontal axis). The number of
cycles seems to follow the earthquake shock progression, standing out around
the eightieth iteration.

We take the CPML4 kernel (see Fig. 2b) to explain the origin of this dynamic
computational cost. CPML4 represents well all the 24 small inlined kernels. It is
called by the Intermediates macro kernel that iterates over the cuboid sub-
domain with three nested loops. For each subdomain’s cell, the CPML4 kernel
is called nine times with different parameters, resulting in many calls for each
process and time step. The values dx and dt are constants, while variables x1,
x2, x3, and x4 represent how the rock medium state unfolds along the iterations.

Let us consider the x1, x2, x3, and x4 arguments of the CPML4 kernel (Fig. 2b).
They are used in the return statement, considered by the FPU for arithmetic
evaluation. We instrumented the CPML4 kernel to count how many times per
time step and per process these differences are equal to zero (let us name these
numbers n0

2,1 for x2-x1 and n0
4,3 for x4-x3). The difference |n0

2,1 −n0
4,3| (Fig. 4b)

perfectly correlates with the computational load change (Fig. 4a) and with the
growth of the branch miss-prediction counters. Intuitively, this value measures
how often only one of the two differences is zero. This hypothesis has been con-
firmed with a manual instrumentation of the CPML4 kernel, recording its duration
for each call (in cycles) along with the result of the two differences (x2-x1 and
x4-x3). The observed duration increase originates from the combination of both
a speed-up of multiplications by zero and of branch miss-predictions in the FPU

Using Simulation to Evaluate and Tune the Performance 197

incurred by the irregular sequence of zeros and non-zeros. All other small inlined
kernels share the same structure of CPML4. It is thus the aggregated contribution
of all these small additional cycles that generates the temporal load variation.

2.2 Need for Dynamic Load Balancing: The AMPI Approach

Modeling and predicting the Ondes3D load imbalance is hard, as it strongly
depends on the initial and evolving conditions of the earthquake simulations.
Even if we could rewrite Ondes3D to allow uneven domain decomposition, some
periodic data/computation re-balancing would still be required to cope with
temporal load imbalance. We thus employ a simpler approach by mixing load
balancing at runtime with over-decomposition, using Charm++’s Adaptive MPI
[10] (AMPI). This framework enables over-decomposition, i.e., dividing the prob-
lem domain in more tasks than the number of available cores. Each task becomes
a user-level thread suitable for migration. Load balancing heuristics, sensitive to
load variations from the near past, can periodically redistribute load.

Porting from MPI to AMPI requires three application changes. First, there
should be no global or static variables, to avoid data sharing among tasks. Sec-
ond, Pack-and-Unpack functions are necessary to make data migrations possible.
And third, the application must call MPI Migrate to indicate when the applica-
tion has no active communications or open files, and is ready for load balancing.

2.3 Costly Tuning of Load Balancing Parameters in Real Platforms

Many parameters influence the effectiveness of the load balancing. Some load
balancing heuristics are more scalable than others (e.g., centralized vs distrib-
uted). The level of over-decomposition defines the granularity for the load
balancer. As over-decomposition increases, we also increase the communication
cost. At some point, such cost exceeds the benefit of load balancing. Likewise,
the number of processors is a critical parameter in the overall performance.
Finally, fine-tuning the frequency of load balancing is essential to obtain
good performance since frequent calls might become overhead, hiding any load
balancing benefits. Moreover, since calling MPI Migrate incurs a global barrier,
it may also destroy any natural compensation of load imbalance throughout
iterations afforded by asynchronous neighborhood communications.

Using real executions to evaluate the load balancing benefits present several
difficulties. The optimal configuration often depends on application and platform
characteristics. Running the same earthquake simulation many times at scale on
a production system solely to determine such parameters is both resource and
time consuming. To overcome this, we propose a lightweight simulation workflow
to avoid the burden of real executions. Performance gains are evaluated with
few code changes (even before AMPI porting), and the application needs to be
executed only once. Such approach saves development and evaluation time.

198 R.K. Tesser et al.

3 Simulated Adaptive MPI (SAMPI)

Our workflow relies on SimGrid’s SMPI, which offers two key features we have
built upon. First, SMPI’s flexibility allows to study MPI applications either in
emulation mode or through trace-replay. In emulation, unmodified MPI applica-
tions are sequentially executed on top of the simulator, in a controlled way. In trace
replay, the events of an MPI application are replayed on top of the simulator, in
a small fraction of the time it takes to finish a normal run at full scale. Second,
SMPI builds on the hybrid flow-level network models of SimGrid [4] that allow to
faithfully model network contention, which is essential in our context.

SMPI has been modified to simulate AMPI in three ways. (1) The API is
extended with the non-standard MPI Migrate function both in the emulation
mode (to generate an event in the trace) and in the trace replay. When replay-
ing with load-balancing, this function calls the MPI Barrier function, the load
balancing heuristic to define a new mapping, and simulates all task migrations.
(2) We have manually extracted and slightly adapted two centralized load bal-
ancers (LB) by hand: GreedyLB and RefineLB. We removed internal refer-
ences to the original Charm++ implementation, making sure that the heuristic
remains intact. A few trace replay routines also had to be modified to collect the
load data that is fed to these heuristics. (3) The migration payload is estimated
by trapping malloc function calls in emulation, which is prone to migration cost
understimation. We rely on SimGrid’s contention-aware network models when
sending the data of the migrated task from its original location to its destination.

Tracing one workload requires to run the code for real, hence it takes 3–
5 h with SMPI’s emulation on a laptop. Then, while exploring parameters, it
can be replayed many times with SAMPI and an LB configuration (frequency,
heuristic). Each configuration simulation takes only a few minutes on a laptop.

4 Experimental Results and Evaluation

Several issues should be solved to correctly validate the accuracy of predictions
obtained in simulation. Solely comparing the (predicted) makespan of simula-
tions with the one of real-life executions on a few examples is insufficient to be
fully trusted. Yet, comparing detailed execution traces (e.g., with Gantt charts)
of an application as complex as Ondes3D is simply impossible. Other adhoc
intermediate and aggregated representations are thus needed. In our context,
iterations and load imbalance are of primary importance. Therefore, we decided
to track the resource usage per processor and per iteration and to study its evolu-
tion both temporally and spatially. We use this performance metric, to compare
reality and simulation both qualitatively and quantitatively.

Real measurements have been collected in 16 nodes of the Parapluie cluster
(part of Grid’5000 [3]). Each node has two 12-core 1.7 GHz AMD Opteron 6164
HE processors, interconnected through a 20 G Infiniband 4x QDR network.

We tested two very different earthquake scenarios in Ondes3D. The first one
is the Mw6.6 Niigata Chuetsu-Oki (2007) from Japan [1]. Running the full sim-
ulation (6000 time steps) takes an unreasonable amount of time, mainly because

Using Simulation to Evaluate and Tune the Performance 199

many runs are needed to obtain statistically significant results. We limited this
simulation to the first 500 time steps to keep a reasonable experimental time.
We also reduced the number of cells to 300 × 300 × 150. The second simulated
scenario is the same used in Sect. 2, with 500 × 350 × 130 cells.

4.1 Validation: Comparing SAMPI (Simulation) Against AMPI

In our validation experiments, we fix the domain decomposition to 64 tasks
(always mapped to 16 processes) and call MPI Migrate every 20 time steps.
From our experience, this configuration is relatively good and allows to focus
our evaluation on sound scenarios. The comparison of SAMPI with AMPI for
situations without load balancer, with GreedyLB and with RefineLB, is depicted
for the two workloads: Chuetsu-Oki in Fig. 5, and Ligurian in Fig. 6.

Per-Process Computational Load Analysis. The heatmaps in Figs. 5a
(Chuetsu-Oki) and 6a (Ligurian) show the computational load (as a color gradi-
ent) for each core (in the vertical axis) along the Ondes3D iterations. A reddish
color represents higher computational load, while blue represents idleness. Each
heatmap corresponds to an execution, either real (AMPI in the top row) or sim-
ulated (SAMPI in the bottom), with a given load balancer (no load balancing
on the left column, Greedy in the center, and Refine on the right). The real and
simulated load distribution are very similar, showing the ability of our workflow
to capture the complex behavior of AMPI in simulation.

Figure 5a shows that for Chuetsu-Oki, the case without load balancing leads
to many underutilized resources (white and bluish regions). Both LB seem to
significantly improve this situation by making processes 2 to 13 receive more load.
GreedyLB achieves a much better load balancing than RefineLB (being more
conservative) and this is visible in simulation as well as in real execution traces.
The load structure for the Ligurian workload is quite different (see Fig. 6a).
There seems to exist an alternating load irregularity in processes whose ranks
belong to the center of the domain decomposition (those with white and bluish
colors without load balancing). The Greedy and Refine load balancers are again
effective to redistribute the load. We observe a much more even computational
load across processes but not as good as for the Chuetsu-Oki workload.

The heatmap views are based on one run for each case. Any new execution
(either real or in simulation from a new trace) leads to slightly different outcomes.
Thus, focusing on the load of a given core at a given time-step is not really
meaningful. From such view, it seems that GreedyLB is the best choice from the
load balancing perspective, but communication (both from the application and
load balancer) should also be taken into account. In the following, we provide
makespan analyses using the average load as a function of the execution time.

Average Load and Makespan Comparison Analysis. The plots in Figs. 5b
(Chuetsu-Oki) and 6b (Ligurian) depict the evolution of the average load for each
core. This metric (in vertical axis) is drawn as a function of time (horizontal)
for both SAMPI (blue) and AMPI (red). The points along the lines indicate the

200 R.K. Tesser et al.

None GreedyLB RefineLB

AM
PI

SAM
PI

100 300 500 100 300 500 100 300 500

0

3

6

9

12

15

0

3

6

9

12

15

Ondes3D Iteration Number

R
es

ou
rc

e
Id

en
tif

ic
at

io
n

0.4 0.6 0.8 1.0Computational Load [percentage]

SAMPI

AMPIAMPI

Average SAMPI
Precision: −7.40%

SAMPI

AMPI

Average SAMPI
Precision: −8.20%

SAMPI

AMPI

Average SAMPI
Precision: −8.90%

None GreedyLB RefineLB

0 250 500 750 0 250 500 750 0 250 500 750
0%

20%

40%

60%

80%

100%

Time [seconds]

Av
er

ag
e

Lo
ad

Fig. 5. Comparison of SAMPI (simulation) against AMPI (reality) for the Chuetsu-Oki
workload; the top row shows six heatmaps (no LB, Greedy, and Refine) illustrating the
computation load (color gradient) for each iteration and all 16 processes; the bottom
row shows the average aggregated load along time, with the makespan of multiple runs.
(Color figure online)

moments when the metric is computed (when MPI Migrate starts, at the end of
the LB interval); lines show the trend. Horizontal facetting indicates the metric
without load balancing, with GreedyLB and with RefineLB.

Using Simulation to Evaluate and Tune the Performance 201

None GreedyLB RefineLB

AM
PI

SAM
PI

100 200 300 100 200 300 100 200 300

0

3

6

9

12

15

0

3

6

9

12

15

Ondes3D Iteration Number

R
es

ou
rc

e
Id

en
tif

ic
at

io
n

0.4 0.6 0.8 1.0Computational Load [percentage]

SAMPI

AMPI

Average SAMPI
Precision: −1.00%

AMPI

SAMPI

Average SAMPI
Precision: +0.70%

AMPI

SAMPI

Average SAMPI
Precision: +7.50%

None GreedyLB RefineLB

0 500 1000 0 500 1000 0 500 1000
0%

20%

40%

60%

80%

100%

Time [seconds]

Av
er

ag
e

Lo
ad

Fig. 6. Comparison of SAMPI against AMPI for the Ligurian workload. (Color figure
online)

For the Chuetsu-Oki workload (Fig. 5b), GreedyLB performs better than
RefineLB, both in simulation as in real life. One could expect GreedyLB to be
worse instead, due to the larger amount of migrations. It seems however that,
in this case, the default overload tolerance of 1.05 used by RefineLB is too high.
Regarding the comparison of SAMPI against the real AMPI, we see that SAMPI
is slightly too optimistic across several runs. That being said, such inaccuracy
would not affect our choice of load balancer. There is a significant variability

202 R.K. Tesser et al.

in real executions (perfect isolation is tough to achieve on a cluster), being
generally larger than in the simulations. Simulation variability comes from the
use of different inputs to trace replay. For the Ligurian workload (Fig. 6b), as on
the previous scenario, both simulation and real life have similar load unfolding,
except for RefineLB, where SAMPI is slightly more pessimistic than real life.

Our simulation mimics in a realistic way the evolution of the load distribution
of real executions, which is one of the main aspects we are trying to obtain.
There remains some minor inaccuracies in absolute time prediction: ≈9% for all
configurations of the Chuetsu-Oki workload, and varying from ≈1% to ≈8% in
the Ligurian. We are currently investigating their origin. Yet, since the trends
remain correct, this does not affect the identification of the optimal load balancer
in the two investigated scenarios. In the next section, we demonstrate how the
SAMPI simulator can be used to explore different load balancing parameters.

4.2 Tuning Load-Balancing Parameters with Simulation

We investigate the parameter space of AMPI using our SAMPI workflow. We
measure four configurations for load balancing interval; and five levels of over-
decomposition. We focus on the Ligurian workload, since it is much larger than
the Chuetsu-Oki and parameter tuning is likely to be more useful.

The Influence of Load Balancing Frequency. We measure the makespan of
Ondes3D with different load balancing intervals. A call to MPI Migrate is present
for each task at the end of every time step. During the simulation with SAMPI,
we control and enforce a different load balancing frequency by actually calling the
barrier and the load balancing, for example, only every 10, 20, 30 or 40 iterations.
Intuitively, the more frequent the calls, the better the load balancing but also
the more important the barrier and data migration overhead. Figure 7 shows
the influence of the load balancing frequency (horizontal axis) on the makespan
(vertical axis) of a 16 × 4 task configuration. In this setting, it turns out that
LB frequency has no or little influence in the performance attained when using
GreedyLB or RefineLB. Even though GreedyLB balances the load carelessly
whereas RefineLB is much more conservative, the communication performance
of the system is sufficiently good to hide the migration costs.

The Influence of Decomposition Level. Another important performance
affecting parameter is the over-decomposition level. The influence of over-
decomposition on the makespan of Ondes3D, when calling MPI Migrate every
20 time steps, is depicted in Fig. 7 (right plot). The average makespan (vertical
axis) is shown as a function of five over-decomposition configurations (horizon-
tal). In the absence of load balancing (None), over-decomposing is, as expected,
generally deterring since this creates extra-communication between tasks. Yet
having more and smaller tasks allows for a better redistribution of the load. The
RefineLB sweet spot is reached with a 16 × 8 decomposition (≈13% gain over
the original version). However, for GreedyLB the decomposition level should be

Using Simulation to Evaluate and Tune the Performance 203

Fig. 7. Simulated makespan predictions for the Ligurian earthquake simulation with
(left) four load balancing intervals (in number of iterations) and (right) with six over-
decomposition levels (1, 2, 3, 4, 8, and 16) on 16 cores.

as small as possible (which leads to ≈19% gain over the original version), which
is again explained by the fact that its careless migrations scale very badly. In
the end, the 16 × 2 GreedyLB configuration is slightly better than the 16 × 4
RefineLB configuration but exhibits quite different load balancing behaviors.

From a series of similar simple studies using SAMPI, it appears that, for this
application, RefineLB executed every 20 time steps with an over-decomposition
level of 8 provides, in general, a decent performance and gracefully handles a
larger number of nodes. This parameter combination has been tested a real
execution of the Chuetsu-Oki simulation on a 12-node cluster (288 cores) at
BRGM. We obtained an ≈36% faster execution than the original unbalanced
execution. Further tuning can be done at low cost using SAMPI to guide the
analyst toward a better configuration.

5 Related Work

The SAMPI workflow we propose mostly depends on two factors. First, a faithful
model of modern HPC networks and MPI implementations are essential since
communications play a crucial role in the load balancing trade-offs. Second, the
ability to run simulations both in trace-replay and emulation modes is helpful
to select the approach most suited to the resources at hand. There is a plethora
of simulation tools to study MPI applications [5] and at least four of them sup-
port both modes and could thus have been modified: BigSim [17], SST/Macro
[15], xSim [8], and SimGrid [5] (through SMPI). BigSim is part of Charm++,
thus supporting the AMPI applications simulation, such as our Ondes3D code.
Although linked to Charm++, BigSim is uncapable to change the load balanc-
ing parameters during trace replay and this would require major code modifi-
cations. SST-Macro allows both trace replay through the DUMPI module and
emulation through skeletonization. Although SST-macro is flexible with many
network models, including flow-based ones, its emulation support still seems

204 R.K. Tesser et al.

unsufficiently mature to run an application as complex as Ondes3D. Finally,
xSim mostly focuses on extreme-scale executions and its validity remains ques-
tionable at small scale [9]. Furthermore, the source code of xSim is currently
unavailable.

For this work, we therefore chose to rely on the free software SimGrid, whose
SMPI interface allows both emulation and trace replay of MPI applications.
SMPI leverages SimGrid’s thoroughly validated flow communication models [16],
while also accounting for specific characteristics of MPI implementations [5].
Hence, SMPI allows us to collect accurate execution traces from emulation, and
its replay mechanism allows us to quickly simulate one execution many times.

6 Conclusion

We propose a simulation based approach for the performance evaluation and
tuning of dynamic load balancing applied to iterative MPI applications. Our
approach allows the estimation of performance gains from load balancing at low
cost, both in terms of time and of resource requirements. Although we apply it to
a geophysics application (Ondes3D), its structure is very typical among legacy
MPI applications. Therefore, we believe the usefulness of our approach is not
limited to Ondes3D. Our contributions are three-fold: (a) An in-depth analysis
of the spatial and temporal load balancing issues found in Ondes3D. The lat-
ter demonstrates how dynamic load imbalance can arise even when there is no
indication of temporal variability in the code. (b) A validated simulator called
SAMPI that simulates over-decomposition and AMPI load balancing. This sim-
ulator is integrated in the open-source SimGrid framework, and allows the fast
and faithful exploration of different load balancing scenarios from a single execu-
tion trace. (c) A sensibility analysis showing both the importance of activating
a load balancer (≈20–30% gains), and the rather low influence of specific load
balancing parameters in the Ondes3D makespan.

As future work, we plan to build on other Ondes3D characteristics to under-
stand how spatial aggregation and trace extrapolation can be used together to
further accelerate the simulations.

Acknowledgements. We thank CAPES/Cofecub 764-13, FAPERGS/Inria ExaSE,
FAPERGS Green-Cloud, CNPq 447311/2014-0, CNRS/LICIA Intl. Lab, the EU H2020
Programme and from MCTI/RNP-Brazil under the HPC4E Project, grant 689772.
Some experiments were carried out at the Grid’5000 platform (https://www.grid5000.
fr), with support from Inria, CNRS, RENATER and several other organizations.

References

1. Aochi, H., Ducellier, A., Dupros, F., Delatre, M., Ulrich, T., Martin, F., Yoshimi,
M.: Finite difference simulations of seismic wave propagation for the 2007 mw 6.6
Niigata-ken Chuetsu-Oki earthquake: Validity of models and reliable input ground
motion in the near-field. Pure Appl. Geophys. 170(1–2), 43–64 (2013)

https://www.grid5000.fr
https://www.grid5000.fr

Using Simulation to Evaluate and Tune the Performance 205

2. Aochi, H., Ducellier, A., Dupros, F., Terrier, M., Lambert, J.: Investigation of
historical earthquake by seismic wave propagation simulation: source parameters of
the 1887 M6.3 Ligurian, north-western Italy, earthquake. In: 8ème colloque AFPS,
Vers une maitrise durable du risque sismique. p. 6, September 2011

3. Balouek, D., et al.: Adding virtualization capabilities to the Grid’5000 testbed. In:
Ivanov, I.I., Sinderen, M., Leymann, F., Shan, T. (eds.) CLOSER 2012. CCIS, vol.
367, pp. 3–20. Springer, Cham (2013). doi:10.1007/978-3-319-04519-1 1

4. Bédaride, P., et al.: Toward better simulation of MPI applications on Eth-
ernet/TCP networks. In: Jarvis, S.A., Wright, S.A., Hammond, S.D. (eds.)
PMBS 2013. LNCS, vol. 8551, pp. 158–181. Springer, Cham (2013). doi:10.1007/
978-3-319-10214-6 8

5. Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile, scalable,
and accurate simulation of distributed applications and platforms. Parallel Distrib.
Comput. 74(10), 2899–2917 (2014)

6. Dupros, F., Do, H.T., Aochi, H.: On scalability issues of the elastodynamics equa-
tions on multicore platforms. In: International Conference on Computer Science,
Procedia Computer Science, p. 9. Elsevier, Barcelone, June 2013

7. Dupros, F., Martin, F.D., Foerster, E., Komatitsch, D., Roman, J.: High-
performance finite-element simulations of seismic wave propagation in three-
dimensional nonlinear inelastic geological media. Parallel Comput. 36(5–6), 308–
325 (2010)

8. Engelmann, C.: Scaling to a million cores and beyond: using light-weight simulation
to understand the challenges ahead on the road to exascale. Future Gener. Comput.
Syst. 30, 59–65 (2014)

9. Engelmann, C., Naughton, T.: A network contention model for the extreme-scale
simulator. In: Press, A. (ed.) 34th IASTED International Conference on Modelling,
Identification and Control (MIC) (2015)

10. Huang, C., Lawlor, O., Kalé, L.V.: Adaptive MPI. In: Rauchwerger, L. (ed.) LCPC
2003. LNCS, vol. 2958, pp. 306–322. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24644-2 20

11. Kalé, L., Krishnan, S.: CHARM++: a portable concurrent object oriented system
based on C++. In: Proceedings of OOPSLA 1993, pp. 91–108. ACM Press (1993)

12. Keller Tesser, R., Lima Pilla, L., Dupros, F., Navaux, P., Mehaut, J.F., Mendes,
C.: Improving the performance of seismic wave simulations with dynamic load
balancing. In: International Conference Parallel, Distributed and Network-Based
Processing (2014)

13. Martinez, V., Michéa, D., Dupros, F., Aumage, O., Thibault, S., Aochi, H., Navaux,
P.O.A.: Towards seismic wave modeling on heterogeneous many-core architectures
using task-based runtime system. In: SBAC-PAD. IEEE Computer Society (2015)

14. Mucci, P.J., Browne, S., Deane, C., Ho, G.: PAPI: a portable interface to hardware
performance counters. In: Proceedings of the Department of Defense HPCMP Users
Group Conference, pp. 7–10 (1999)

15. Rodrigues, A.F., Hemmert, K.S., Barrett, B.W., Kersey, C., Oldfield, R., Weston,
M., Risen, R., Cook, J., Rosenfeld, P., CooperBalls, E., et al.: The structural
simulation toolkit. ACM SIGMETRICS Perform. Eval. Rev. 38(4), 37–42 (2011)

16. Velho, P., Schnorr, L.M., Casanova, H., Legrand, A.: On the validity of flow-level
TCP network models for grid and cloud simulations. ACM Trans. Model. Comput.
Simul. 23(4), 23:1–23:26 (2013)

17. Zheng, G., Kakulapati, G., Kale, L.: Bigsim: a parallel simulator for perfor-
mance prediction of extremely large parallel machines. In: Parallel and Distributed
Processing Symposium, Proceedings, 18th International, p. 78, April 2004

http://dx.doi.org/10.1007/978-3-319-04519-1_1
http://dx.doi.org/10.1007/978-3-319-10214-6_8
http://dx.doi.org/10.1007/978-3-319-10214-6_8
http://dx.doi.org/10.1007/978-3-540-24644-2_20
http://dx.doi.org/10.1007/978-3-540-24644-2_20

Optimizing Egalitarian Performance in the
Side-Effects Model of Colocation for Data

Center Resource Management

Fanny Pascual1 and Krzysztof Rzadca2(B)

1 Sorbonne Universités, UPMC, LIP6, CNRS, UMR 7606, Paris, France
fanny.pascual@lip6.fr

2 Institute of Informatics, University of Warsaw, Warsaw, Poland
krz@mimuw.edu.pl

Abstract. In data centers, up to dozens of tasks are colocated on a sin-
gle physical machine. Machines are used more efficiently, but tasks’ per-
formance deteriorates, as colocated tasks compete for shared resources.
As tasks are heterogeneous, the resulting performance dependencies are
complex. In our previous work [18] we proposed a new combinatorial
optimization model that uses two parameters of a task—its size and its
type—to characterize how a task influences the performance of other
tasks allocated to the same machine.

In this paper, we study the egalitarian optimization goal: maxi-
mizing the worst-off performance. This problem generalizes the clas-
sic makespan minimization on multiple processors (P ||Cmax). We prove
that polynomially-solvable variants of P ||Cmax are NP-hard and hard to
approximate when the number of types is not constant. For a constant
number of types, we propose a PTAS, a fast approximation algorithm,
and a series of heuristics. We simulate the algorithms on instances derived
from a trace of one of Google clusters. Algorithms aware of jobs’ types
lead to better performance compared to algorithms solving P ||Cmax.

The notion of type enables us to model degeneration of performance
caused by colocation using standard combinatorial optimization meth-
ods. Types add a layer of additional complexity. However, our results—
approximation algorithms and good average-case performance—show
that types can be handled efficiently.

Keywords: Cloud computing · Scheduling · Heterogeneity · Co-
tenancy · Complexity

1 Introduction

The back-bone of cloud computing, the modern data center redefines how indus-
try and academia use computers. Resource management in data centers signifi-
cantly differs from scheduling jobs on a typical HPC supercomputer. First, the
workload is much more varied [22]: data centers act as a physical infrastructure

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 206–219, 2017.
DOI: 10.1007/978-3-319-64203-1 15

Optimizing Egalitarian Performance in the Side-Effects Model of Colocation 207

providing virtual machines, or higher-level services, such as memory-cached data-
bases or network-intensive servers; in contrast, there are relatively few HPC-like
computationally-intensive batch jobs (later, we will use a generic term task for
all these categories). Consequently, a task usually does not saturate the resources
of a single node [12]. Tasks’ loads vastly differ: in a published trace [22], tasks’
average CPU loads span more than 4 orders of magnitude. In contrast to HPC
scheduling in which jobs rarely share a node, heterogeneity in both the type and
the amount of needed resources makes it reasonable to allocate multiple tasks
to the same physical machine.

Tasks colocated on a machine compete for shared hardware. Despite signifi-
cant advances in both OS-level fairness and VM hypervisors, virtualization is not
transparent: multiple studies show [12–14,21,27] that the performance of colo-
cated tasks drops. Suspects include difficulties in sharing the CPU cache or the
memory bandwidth. The resource manager should thus colocate tasks that are
compatible, i.e., that use different kinds of resources—hence, it should optimize
tasks’ performance. This, however, requires a performance model.

Our side-effects model [18] bridges the gap between colocation in datacenters
and the theoretical scheduling, bulk of which has been developed for non-shared
machines.

Rather than trying to predict tasks’ performance from OS-level metrics, we
abstract by characterizing a task by two characteristics: type (e.g.: a database,
or a computationally-intensive job) and load relative to other tasks of the same
type (e.g.: number of requests per second). The total load of a machine is a
vector: its i-th dimension is the sum of loads of tasks of the i-th type located
on this machine. Each type additionally defines a performance function map-
ping this vector of loads to a type-relevant performance metric. As datacenters
execute multiple instances of tasks such function can be inferred by a monitor-
ing module [13,21,27] matching task’s reported performance (such as the 95th
percentile response time) with observed or reported loads.

In this paper, we consider optimization of the worst-off performance (anal-
ogous to makespan in classic multiprocessor scheduling problem, P ||Cmax [8]).
We use a linear performance function: on each machine, the influence a type t′

has on type t performance is a product of the load of type t′ and a coefficient
αt′,t. The coefficient αt′,t describes how compatible t′ load is with t performance
(the coefficient is similar to interference/affinity metrics proposed in [13,21]).
Low values (0 ≤ αt′,t < 1) correspond with compatible types (e.g.: colocating a
memory-intensive and a CPU-intensive task): it is preferable to colocate a task
t with tasks of the other type t′, rather than with other tasks of its own type t.
High values (αt′′,t > 1) denote types competing for resources.

The contribution of this paper is as follows. (1) We prove that the notion
of type adds complexity, as makespan minimization with unit tasks P |pi =
1|Cmax (a polynomially solvable variant of P ||Cmax) becomes NP-hard and hard
to approximate when the number of types T is not constant (Sect. 3). We then
show how to cope with that added complexity. We propose (2) a PTAS for a
constant T and a constant α (Sect. 4.1); and (3) a fast greedy approximation

208 F. Pascual and K. Rzadca

algorithm (Sect. 4.2). (4) We also propose natural greedy heuristics (Sect. 5) (in
the accompanying technical report [19] we show they are approximations for
T = 2). (5) We also test our algorithm by simulation on a trace derived from
one of Google clusters (Sect. 6).

2 Side-Effects of Colocating Tasks: A Model

We study a min-max (egalitarian) performance criteria for our side-effects per-
formance model (introduced in [18], where we studied a utilitarian objective,
min-sum). We consider a system that allocates n tasks J = {1, . . . , n} to m
identical machines M = {M1, . . . ,Mm}. Each task i has a known size pi ∈ N

(i.e., clairvoyance, a common assumption in scheduling; the sizes can be esti-
mated by previous instances or users’ estimates). The size corresponds to the
load the task imposes on a machine: the request rate for a web server; or the
cpu load for a cpu-intensive computation. We take other assumptions standard
in scheduling theory: all tasks are known (off-line) and ready to be scheduled
(released at time 0). We take these assumptions to derive results on the basic
model before tackling more complex ones. We denote by pmax = max pi the
largest task and by W the total load, W =

∑
pi. We assume that the tasks are

indexed by non-increasing sizes: p1 ≥ p2 ≥ · · · ≥ pn.
A partition (an allocation) is an assignment of each of the n tasks to one of

the m machines. A partition separates the tasks into at most m subsets: each
subset corresponds to the tasks allocated on the same machine. Given a partition
P , we denote by MP,i ∈ M the machine on which task i is allocated. Due to
the similarities with P ||Cmax, we sometimes use the term “schedule” (and the
symbol σ) for an allocation (and even the term of length for the size of a task).
In this case, only the allocation is meaningful (not the order of the tasks on the
machines).

The main contribution of this paper lies in analyzing side-effects of colocating
tasks. The impact of task i on the performance of another task j is a function
of task’s size pi and task’s type ti. Types generalize tasks’ impact on the perfor-
mance and may have different granularities: for instance, “a webserver” and “a
database”; or “a read-intensive MySQL database”; or, as in [13], “an instance
of Blast”. We assume that the type ti is known (which again corresponds to
the clairvoyance assumption in classic scheduling; typically a data center runs
many instances of the same task, so task’s type can be derived from the past).
Let T = {1, . . . , T} be a set of T different types of tasks. Each task i has type
ti ∈ T . For each type t ∈ T , we denote by J (t) the tasks which are of type t;
and by p

(t)
i the size of the i-th largest task of type t (ties are broken arbitrarily).

We express performance of a task i by a cost function ci: to simplify pre-
sentation of our results, we prefer to express our problems as minimization of
costs, rather than maximization of performance (for a single type, our cost is
synonymous with the makespan). Note that the cost is unrelated to monetary
cost (the amount of money that a job pays to the machine)—we do not consider
monetary costs in this paper. Task’s i cost ci depends on to the total load of

Optimizing Egalitarian Performance in the Side-Effects Model of Colocation 209

tasks j colocated on the same machine MP,i, but different types have differ-
ent impacts: ci =

∑
j on machine MP,i

pj .αtj ,ti
, the cost function also takes into

account the task i itself, as well as other tasks of the same type. A coefficient
αt,t′ ∈ R≥0 defined for each pair of types (t, t′) ∈ T 2, measures the impact of
the tasks of type t on the cost of the tasks of type t′ (allocated on the same
machine). If αt,t′ = 0 then a task of type t has no impact on the cost of a task of
type t′; the higher the αt,t′ , the larger the impact. Coefficients are not necessar-
ily symmetric, i.e., it is possible that αt,t′ �= αt′,t. The coefficients αt,t′ can be
estimated by monitoring tasks’ performance in function of their colocation and
their sizes (a data center runs many instances of similar services [13,21,27]). We
consider the linear cost function as it generalizes, by adding coefficients αt,t′ ,
the fundamental scheduling problem P ||Cmax [8] (if ∀(t, t′) ∈ T 2 : αt,t′ = 1, our
problem reduces to P ||Cmax). Assuming linearity is a common approach when
constructing models in operational research or statistics (e.g. linear regressions).
Likewise, in selfish load balancing games [15], it is assumed that the cost of each
task is the total load of the machine (but their model does not consider types).
We assume that the impact the type has on itself is normalized with regards to
tasks’ sizes, i.e., αt,t = 1 (although some of our results, notably the PTAS, do
not need this assumption).

We denote by MSE (MinMaxCost with Side Effects) the problem of
finding a partition P ∗ minimizing the maximum cost C(P) = maxi ci, with
ci defined by the linear cost function. The partition P ∗ minimizes the worst
performance a task experiences in the system, thus corresponds to the egalitarian
fairness.

3 Complexity and Hardness of MSE for T Not Fixed

MSE is NP-hard as it generalizes an NP-hard problem P ||Cmax when there
is only one type. Our main result is that a polynomially-solvable variant of
mupltiprocessor scheduling (P |pi = 1|Cmax) becomes NP-hard when tasks are
of different types. Thus types add another level of complexity onto an already
NP-complete P ||Cmax.

Proposition 1. The decision version of MSE is NP-complete, even if all the
tasks have unit size, and even if m = 2.

Proof. (Sketch) Reduction from Partition [7]. Given a set S = {ai} of n
positive integers summing to 2B, we build an instance of MSE with n tasks,
each of size 1 and each of a different type. For a task i, we set its coefficients
∀j : αi,j = ai. Partition of S into two sets each with sum B exists if and only if
there exists an allocation P with maximal cost B: cost of each task j allocated
to a machine k is equal to cj =

∑
i:MP,i=k αi,j =

∑
i∈Sk

ai.

Proposition 2. MSE is strongly NP-hard, even if all tasks have unit size.
Moreover, there is no polynomial time r-approximate algorithm for MSE, for
any number r > 1, unless P = NP .

210 F. Pascual and K. Rzadca

Proof. Let r > 1. We show that if there is a r-approximate algorithm for MSE,
the algorithm solves NP-complete Partition into cliques, PIC [7]. In PIC,
given a graph G = (V,E) and a positive integer K ≤ |V |, can the vertices of G
be partitioned into k ≤ K disjoint sets V1, V2, . . . , Vk such that, for 1 ≤ i ≤ k,
the subgraph induced by Vi is a complete graph? We assume that V are labeled
from 1 to |V |.

Given an instance of PIC, we create K instances of MSE. Let i ∈ {1, . . . , K}.
The i-th instance of MSE is as follows: the number of machines is m = i; there
are n = |V | tasks, each of a different type (types are labeled from 1 to |V |).
All the tasks are of size 1. For each type i, αi,i = 1. For each pair of types
(i, j), i �= j: αi,j = 0 if {i, j} ∈ E and αi,j = r if {i, j} /∈ E.

We claim that a solution of a MSE instance costs either 1 or at least r + 1.
We also claim that the answer for the instance of PIC is “yes” if and only if the
optimal cost of one of these MSE instances is 1. Therefore, an r-approximate
algorithm for MSE will find a solution of cost 1 if it exists (when there is a
solution of cost 1, an r-approximate algorithm has to return a solution of cost
at most r, which is thus necessarily the optimal solution since all the other
solutions have a cost of at least r + 1). Since K ≤ |V |, if we assume that our
r-approximate algorithm runs in polynomial time, then by using it K times we
can solve in polynomial time PIC, which is an NP-complete problem. This leads
to a contradiction, unless P = NP .

We show that the cost of a solution of each of the MSE instances is either
1, or at least r + 1. If, on all the machines, for each pair (i, j) of tasks on the
same machine we have αi,j = 0, then the maximum cost of a task is 1 (its own
size, 1, times αi,i = 1). Otherwise, there is a machine with two tasks of types i
and j with αi,j = r. The maximum cost is thus at least the cost of task i, which
is at least 1 × αi,i + 1 × αi,j = 1 + r.

We show that the solution for the instance of PIC is “yes” if and only if there
is a solution of cost 1 for (at least) one of the |V | instances of MSE. Assume first
that there is a solution for PIC: the vertices of G can be partitioned into k ≤ K
disjoint sets V1, V2, . . . , Vk such that, for 1 ≤ i ≤ k, the subgraph induced by Vi

is a complete graph. We take the k-th MSE instance. For each i ∈ {1, . . . , k},
we assign to machine Mi the tasks corresponding to the vertices of Vi. Since all
the tasks on the same machine correspond to a clique in G, their coefficients αi,j

are all 0 (i �= j). The only cost of a task i is its own size times αi,i, that is 1.
Thus, the cost of the optimal solution of the k-th instance of MSE is 1.

Likewise, assume that there is a solution of cost 1 for (at least) one of the |V |
instances of MSE (wlog, for the k-th instance). Then there is a “yes” solution
for Partition into cliques: since the maximum cost for the instance of MSE
is 1, it means that all the values αi,j between tasks on the same machines are 0
(for i �= j) and thus that corresponding vertices form a clique in G.

4 Approximation for Fixed Number of Types

The inapproximability proof of the previous section means that we can develop
constant-factor approximations only for MSE with a constant number of types

Optimizing Egalitarian Performance in the Side-Effects Model of Colocation 211

Algorithm 1. A PTAS for MSE with constant T and α

1 J ′ = ∅;
2 for j ∈ J, pj ≥ C/(γk) do // round down long tasks
3 pj′ = pj − (pj mod C/(γk)2) ;

4 J ′ = J ′ ∪ {j′} ;

5 for t ∈ T do // glue short tasks to containers

6 W (t)
s =

∑
j∈J(t),pj<C/(γk)

pj ; // load of small tasks of type t ;

7 while W (t)
s > 0 do

8 pj′′ = min(C/(γk), W (t)
s) ;

9 J ′ = J ′ ∪ {j′′} ; // j′′ is a new container ;

10 W (t)
s = W (t)

s − pj′′ ;

11 for t ∈ T do remove from J′ m containers of type t ;

12 σ
′∗ = partition of J′ by solving (by dynamic programming)

OPT (n
′(1)
1 , . . . , n

′(1)
(γk)2

, . . . , n
′(T)
1 , . . . , n

′(T)
(γk)2

) =

1 + min
s
(1)
1 ,...,s

(T)
(γk)2

∈C
OPT (n

′(1)
1 − s

(1)
1 , . . . , n

′(T)
(γk)2

− s
(T)
(γk)2

);

13 if σ
′∗ requires more than m machines then return ∅;

14 σ = σ
′∗ ;

15 for k=1 to m do // add removed containers
16 for k=1 to T do σ[k] = σ[k] ∪ {C/(γk)};
17 for k=1 to m do // replace containers by small tasks
18 for t ∈ T do
19 i = number of type t containers in σ[k] ;
20 replace i containers by tasks of total load W , iC/(γk) ≤ W ≤ (i + 1)C/(γk);

21 replace in σ rounded long tasks with original long tasks ;

(and constant coefficients). We show in this section two approximation algo-
rithms. First, a PTAS running in time O(nT (γk)2), and thus mostly of theoretical
interest. Then we introduce a fast greedy approximation algorithm.

4.1 A PTAS

Our PTAS (Algorithm1) has a similar structure to the PTAS for P ||Cmax[9]:
the two main differences are the treatment of short tasks (which we pack into
containers, and not simply greedy schedule) and the sizing of long tasks. Our
PTAS works even if αi,i �= 1, and αi,j �= αj,i. The algorithm uses parameters: C,

the requested maximum cost; k, an integer; and γ = Tαmax

(
2 + 1/(min αi,i)

)

(we assume that T and αi,j are constants). Given C, the algorithm either returns
a schedule of cost at most C(1 + 1/k), or proves that a schedule of cost at most
C does not exist.

The algorithm starts by constructing an instance I ′ which will form a lower
bound for C of the original instance I. The algorithm partitions tasks into two
sets: long tasks of size at least C/(γk); and short tasks. Long tasks are rounded
down to the nearest multiple of C/(γk)2. Short tasks of a single type are “glued”
into container tasks of sizes C/(γk), except the last container task which might
be shorter (of size W

(t)
s mod (C/(γk)), where W

(t)
s is the load of short tasks

of type t, W
(t)
s =

∑
j∈J(t),pj<C/(γk) pj). Then, the algorithm reduces the load in

container tasks by removing m containers (the shortest one and m − 1 others)

212 F. Pascual and K. Rzadca

of each type. (Note that if the total load of short tasks of type t is smaller than
mC/(γk), there are less than m containers, and they are all removed in this
step; later, when reconstructing schedule, the algorithm adds the same number
of containers that were removed. We omit this detail from Algorithm1 to make
the code more readable). The resulting instance I ′ has at most as many tasks
and at most as high overall load as the original instance I (the number of tasks
and the load does not change only if all the tasks are long and their sizes are
multiples of C/(γk)2).

The algorithm then schedules the lower-bound instance I ′ using dynamic pro-
gramming. For a given configuration n

′(1)
1 , . . . , n

′(1)
(γk)2 , . . . , n

′(T)
1 , . . . , n

′(T)
(γk)2 , where

n
′(t)
i is the number of tasks in I ′ of type t and size iC/(γk)2, OPT denotes

the minimal number of machines needed to schedule the configuration with
cost smaller than C. To find OPT , the dynamic programming approach checks
all possible configurations C of task sizes for a single machine s

(1)
1 , . . . , s

(T)
(γk)2

(where s
(t)
i denotes the number of tasks) that result in cost smaller than C, i.e.:

s
(1)
1 , . . . , s

(T)
(γk)2 ∈ C ⇔ ∀t such that

∑
i s

(t)
i > 0 :

∑
t′

∑(γk)2

i=1 αt′,ts
(t′)
i iC/(γk)2 ≤

C. If OPT is larger than m, the algorithm ends. Otherwise, the returned schedule
σ

′∗ forms a scaffold to build a schedule σ for the original instance I. First, the
algorithm adds a container for each type on each machine (this container was
removed before the dynamic programming). Then, the algorithm replaces con-
tainers by actual short tasks. Assume that σ

′∗ scheduled i−1 containers of type
t on machine m; the previous step added at most one container. The algorithm
replaces i containers of a total load iC/(γk) by scheduling unscheduled short
tasks of type t with a total load of at least iC/(γk) and at most (i + 1)C/(γk)
(which is always possible as a short task is shorter than C/(γk)). Finally, the
algorithm replaces long tasks that were rounded down by the original long tasks.

Proposition 3. The PTAS returns a solution to MSE if and only if there is a
solution of MSE of cost at most C. Moreover, if such a solution of cost C exists,
the cost of the solution returned by the PTAS is at most C(1 + 1/k).

Proofs omitted due to space constraints are in the accompanying technical
report [19].

Proposition 4. The PTAS runs in time O(nT (γk)2).

4.2 A Greedy List-Scheduling Approximation

FillGreedy is a greedy 2Tm
m−T -approximate algorithm for MSE with constant

number of types. FillGreedy groups tasks by clusters. All the tasks of the
same type are in the same cluster. Two tasks of type i and j are in the same
cluster iff their types are compatible (αi,j ≤ 1 and αj,i ≤ 1). While minimizing
the number of clusters is NP-hard (by an immediate reduction from Partition
into cliques), any heuristics can be used, as the approximation ratio does not
depend on the number of clusters.

Optimizing Egalitarian Performance in the Side-Effects Model of Colocation 213

Clusters are processed one by one. Each cluster is allocated to at least one,
dedicated machine. (We assume that m, the number of machines, is smaller than
or equal to the number of clusters K; K ≤ T , and in a data center T should be
much smaller than m). The algorithm puts tasks from a cluster on a machine
until machine load reaches Lmax = max{2L,L+ pmax} (where L = (

∑
pi)/(m−

T) is the average load), then opens the next machine. In practice, rather than
fixing the maximum machine load to Lmax, we do a dichotomic search over
[1, Lmax] to find the smallest possible threshold leading to a feasible schedule.
The complexity of FillGreedy with dichotomic search is O(T 2n log(Lmax)).

Proposition 5. Algorithm FillGreedy is a 2Tm
m−T -approximate algorithm for

MSE.

Proof. We first show that the allocation is feasible, i.e. the algorithm uses at most
m machines. Let mused be the number of machines to which at least one task is
allocated. Among these mused machines, at most K have load smaller than L.
Indeed, for each cluster the algorithm allocates tasks to a machine beyond L (as
Lmax ≥ L + pmax), unless there are no remaining tasks. Thus, for each cluster,
only the load of the last opened machine can be smaller than L. Thus, the load
allocated on these mused machines is at least (mused −K)L = (mused −K) W

m−T .
Since the total load is W , we have (mused − K) W

m−T ≤ W . Thus mused−K
m−T ≤ 1,

and so mused − K ≤ m − T . Since K ≤ T , we have mused ≤ m. Thus, the
allocation returned by FillGreedy is feasible.

We now show that the cost is 2Km
m−T -approximate. We consider an instance I of

MSE. Let O be an optimal solution of I for MSE, and let OPT be the maximum
cost of a task in O. Since, for each type i, αi,i = 1, we have OPT ≥ pmax. Let
Lmax(O) be the maximum load of a machine in O. Let us consider that this load
is achieved on machine i. We have Lmax(O) ≥ W

m (by the surface argument).
Since there are at most T types on machine i, there is at least one type which
has a load of at least Lmax(O)

T on machine i. The cost of a task of this type on
machine i is thus at least Lmax(O)

T , and therefore OPT ≥ Lmax(O)
T ≥ W

Tm .
Let S be the solution returned by FillGreedy for instance I. Let C(S)

be the maximum cost of a task in S . Let Lmax(S) be the maximum load of
a machine in S . Since two tasks i and j are scheduled on the same machine
only if they belong to the same cluster, i.e. only if αti,tj

≤ 1, the cost of each
task is at most equal to Lmax(S), and thus C(S) ≤ Lmax(S). Moreover, by
construction, we have Lmax(S) ≤ max{2L,L + pmax}. We consider the two
following cases:

– case 1: max{L, pmax} = pmax. In this case, C(S) ≤ Lmax ≤ L + pmax =
W

m−T + pmax =
(

Tm
m−T

)
W
Tm + pmax. Since OPT ≥ pmax and OPT ≥ W

Tm , we

have C(S) ≤ (Tm
m−T + 1)OPT < 2Tm

m−T OPT .
– case 2: max{L, pmax} = L. In this case, C(S) ≤ Lmax ≤ 2L = 2W

m−T ≤
2
(

Tm
m−T

)
W
Tm ≤ 2Tm

m−T OPT because OPT ≥ W
Tm .

214 F. Pascual and K. Rzadca

5 Heuristics

We propose a few other algorithms for MSE. These algorithms are fast approx-
imations when T = 2 (see [19]). They all use as a subprocedure an algorithm
A for P ||Cmax, such as LPT (used in our experiments). A uses task’s size pi as
task’s length.

SchedMixed uses A on all tasks and all machines. Let σ be the schedule
constructed by A on m machines with tasks J . SchedMixed(A) returns the
partition P of the tasks equal to allocation in σ (tasks on Mi in P are the tasks
on Mi in σ).

SchedJuxtapose uses A on all machines for each type separately and then
joins the schedules. Let σt be the schedule obtained by applying A on tasks J (t)

of type t on m machines. SchedJuxtapose merges schedules reversing the order
of machines for every other type, i.e.: tasks on machine Mi are tasks allocated to
Mi in σ2k+1 and to Mm−i+1 in σ2k (when A = LPT and with a small number
of tasks, the machines with smallest indices have the highest load).

BestSchedule(A) returns the partition with the lowest cost among the
results of SchedJuxtapose(A) and SchedMixed(A).

GreedyDedicated(B) separates types into K clusters (as in Sect. 4.2).
Clusters do not share machines. The algorithm runs a subprocedure B (Sched-
Mixed, SchedJuxtapose or BestSchedule) to put tasks of k-th cluster onto
mk machines. GreedyDedicated returns the allocation with the minimal cost
over all possibilities of assigning [mk] to clusters (by exhaustive search over
[mk] :

∑
k∈K mk = m).

Let CA be the complexity of Algorithm A . Algorithm SchedMixed is in
O(CA); SchedJuxtapose and BestSchedule are in O(TCA); GreedyDed-
icated is in O(KmKCA).

6 Experiments

We used the Google Cluster Trace [22], the standard dataset for datacenter/cloud
resource management research, as an input data. The trace is certainly not ideal
for our needs as it shows the usage of raw resources (CPU, memory, network,
disk), and not the load of applications. However, to our best knowledge, there
are no publicly-available traces describing loads and performance of applications.
Due to space constraints we describe the details of conversion in the accompa-
nying technical report [19].

We generate a random sample of 10 000 task records. Each task record cor-
responds to a task in our model. To generate loads and types, we use data on
the (normalized) mean CPU utilization and the assigned memory. Task’s type
is determined by the ratio of the CPU to the memory usage. We generate the
coefficients α in four different ways: compatible: smaller than 1; incompatible:
between 1 and 2; clashing : at least 2; mixed : 2 incompatible clusters. There
are T ∈ {2, 3, 4} types. Instances have two sizes: in small ones, the there are
n ∈ {10, 20, 50} tasks and m ∈ {2, 3, 5, 10} machines; In large ones, there are

Optimizing Egalitarian Performance in the Side-Effects Model of Colocation 215

n ∈ {200, 500, 1 000} tasks and m ∈ {20, 50, 100} machines. For each combi-
nation we generate 30 instances; after discarding some unfeasible combinations
(e.g., mixed, T = 2), we have 6 390 instances.

We tested the following algorithms: FillGreedy (fill in plots); Sched-
Mixed (mix); SchedJuxtapose (jux); BestSchedule (best); GreedyDed-
icated with either SchedJuxtapose (d − jux), SchedMixed (d − mix) or
BestSchedule (d − best). We omit some algorithms on some instances if
they are clearly sub-optimal: GreedyDedicated on compatible instances; and
SchedJuxtapose on all but compatible instances. On incompatible and clash-
ing instances, all variants of GreedyDedicated result in the same allocation—
we denote the algorithm by ded in this case.

We compared the maximum cost returned by the algorithms to the lower
bound and computed the relative performance. We used the following lower
bounds. (1) pmax, the maximum size of the task (as we assume αt,t = 1, the
cost on the machine on which the longest task is allocated is at least pmax). (2)
For incompatible and clashing instances, the average load of a machine, W/m.
(3) For compatible instances, a solution of a LP that optimizes the fraction of
type t’s load to be allocated to machine k. (4) For mixed instances, the same LP
solved for each cluster on m machines (this lower bound assumes that there are
mK machines available).

Figure 1 presents the normalized cost (scores on clashing and incompatible
instances are exactly the same). We had two kinds of problems with the lower
bound (details in [19]), both resulting in underestimation of the optimal solution
and thus overestimation of the cost of our algorithms. First, the LP solver we
used (python-scipy) often failed on large compatible instances: on 6% of T = 3
and 70% of T = 4 instances. Second, the LP lower bound underestimates the
optimal cost of mixed instances. In such problematic instances, pmax was often
used, which resulted in a lower bound that might significantly underestimate the
cost of the optimum. To reduce the effect of such outliers, we discuss medians,
rather than means, in the sequel.

Overall, all algorithms have similar performance and the performance is close
to the lower bound except in mixed instances. On average, GreedyDedicated,
SchedMixed and SchedJux produce schedules with lower costs than Fill
Greedy (note that SchedMixed and SchedJux are used directly for com-
patible instances, and as sub-procedures for GreedyDedicated for the mixed
instances); and BestSchedule optimizes even further. All the results below are
statistically-significant (two sided paired t-test, p-values smaller than 0.0001).

Incompatible coefficients isolate the difference between Fill Greedy,
GreedyDedicated, and SchedMixed (as all clusters have a single type, nei-
ther Fill Greedy nor GreedyDedicated allocate different types onto a single
machine). Results clearly show that sharing machines (SchedMixed) leads to
higher costs. GreedyDedicated produces allocations with the lowest cost: its
median costs are 1.02 for large instances and from 1.12 for small instances.

Compatible coefficients isolate the difference between Fill Greedy, Sched-
Mixed and SchedJux. On the average, SchedMixed produces schedules with

216 F. Pascual and K. Rzadca

m
ax

co
st
(n
or
m
al
iz
ed

by
L
B
)

(a) small compatible (b) small mixed (c) small incompatible

(d) large compatible (e) large mixed (f) large incompatible

Fig. 1. The maximum cost of the solutions returned by various heuristics normalized
by the lower bound. All instances. In boxplots the middle line represents the median,
the box spans between the 25th and the 75th percentile, the whiskers span between the
5th and the 95th percentile, and the asterisks show all the remaining points (outliers).

a lower cost than SchedJux (medians are 1.06 for small instances and 1.18
for large). However, BestSchedule, choosing for each instance the best out
of SchedMixed and SchedJux has even lower costs (1.01 for both small and
large), demonstrating the need to occasionally use SchedJux.

Finally, mixed coefficients test both aspects; however, the scores of all
algorithms are higher due to an imprecise lower bound. GreedyDedicated
using BestSchedule dominates other algorithms with medians 1.46 for small
instances and 1.22 for large ones. While the numerical values are higher, we still
clearly see the advantage of using type-aware algorithms, as SchedMixed (used
without GreedyDedicated) has a significantly higher median score (1.77 for
small instances, 1.91 for large).

Due to space constraints, we do not present results in function of the num-
ber of tasks or the number of types. However, we have not found any strong
dependencies between these variables and the results of our algorithm (apart
from slightly—up to 1.18—higher medians for 500 and 1000-task instances for
compatible coefficients, caused by the LP problems discussed above).

Our results clearly show that using P ||Cmax algorithms without regarding
types (SchedMixed) is dominated by approaches considering types: using ded-
icated machines for α > 1 or, in some α < 1 instances, merging schedules of
different types.

7 Related Work

We introduced the side-effects performance model [18], where we studied a util-
itarian (min-sum) objective. We proved that the problem is NP-hard, and we
showed a dominance property (for each type, there is an order of the machines
such that the tasks are assigned by decreasing sizes to the machines). This allows
us to give an exact polynomial time algorithm when there is a single type. For

Optimizing Egalitarian Performance in the Side-Effects Model of Colocation 217

the general case, we proposed two algorithms, which are exponential in one data
of the problem (number of types, and either the number of machines or the
number of admissible sizes of the tasks).

Alternative Models of Data Center Resource Management. A recent survey
is [20]. Many colocation performance models are too complex for combinatorial
results [11,16,17]. Schedulers rely on heuristic approaches with no formal per-
formance guarantees [3,4,10,26]. In bin-packing approaches (e.g.,[23,25]), tasks
are modeled as items to be packed into bins (machines) of known capacity [5].
To model heterogeneity, bin packing is extended to vector packing: item’s size is
a vector with dimensions corresponding to requirements on individual resources
(CPU, memory, disk or network bandwidth) [24]. Alternatively, if tasks have
unit-size requirements, simpler representations can be used, such as maximum
weighted matching [1]. Bin packing approaches assume that machines’ capaci-
ties are crisp and that, as long as machines are not overloaded, any allocation is
equally good for tasks. In our model, machines’ capacities are not crisp—instead,
tasks’ performance gradually decreases with increased load.

Statistical Approaches. Bobroff et al. [2] uses statistics of the past CPU load of
tasks (CDF, autocorrelation, periodograms) to predict the load in the “next”
time period; then they use bin packing to calculate a partition minimizing the
number of used bins subject to a constraint on the probability of overloading
servers. Di et al. [6] analyze resource sharing for streams of tasks to be processed
by virtual machines. Sequential and parallel task streams are considered in two
scenarios. When there are sufficient resources to run all tasks, optimality condi-
tions are formulated. When the resources are insufficient, fair scheduling policies
are proposed.

Analysis of Effects of Colocation. Studies showing performance degeneration
when colocating data center tasks include [12,14,27]. [21] analyze the perfor-
mance of colocated CPU-intensive benchmarks; and [13] measures performance
of colocated HPC applications. Our αt,t′ coefficients are similar to their interfer-
ence/affinity metrics. Additionally [13] shows a greedy allocation heuristics, but
they don’t study its worst-case performance nor the complexity of the problem.

8 Conclusion

We considered a problem of optimally allocating tasks to machines in the side-
effects performance model. Performance of a task depends on the load of other
tasks colocated on the same machine. We use a linear performance function: the
influence of tasks of type t′ is their total load times a coefficient αt′,t, describing
how compatible is t′ with performance of t. We minimize the maximal cost. We
prove that this NP-hard problem is hard to approximate if there are many types.
However, handling a limited number of types is feasible: we show a PTAS and
a fast approximation algorithm, as well as a series of heuristics (we prove their
approximation ratios for two types in the accompanying technical report [19]).
We simulate allocations resulting from algorithms on instances derived from one

218 F. Pascual and K. Rzadca

of Google clusters. Our simulations show that algorithms taking into account
types lead to significantly lower costs than non-type algorithms.

Our results show a possible way to adapt to data centers the large body
of work in scheduling, which development has been often inspired by advances
in HPC platforms. We deliberately chose to study a fundamental problem, a
minimal extension to P ||Cmax. We envision that results for more realistic variants
of data center resource management problem, taking into account release dates,
non-clairvoyance or on-line, can be taken into account similarly as they are
considered in classic scheduling.

We are also working on validating our model by a systems study. We are
developing an extension for kubernetes that collects and correlates performance
metrics reported by containers to derive the size/coefficient performance model.

Acknowledgements. We thank Pawe�l Janus for his help in processing the Google
cluster data. This research has been partly supported by a Polish National Science
Center grant Sonata (UMO-2012/07/D/ST6/02440), and a Polonium grant (joint pro-
gramme of the French Ministry of Foreign Affairs, the Ministry of Science and Higher
Education and the Polish Ministry of Science and Higher Education).

References

1. Beaumont, O., Eyraud-Dubois, L., Thraves Caro, C., Rejeb, H.: Heterogeneous
resource allocation under degree constraints. IEEE TPDS 24(5), 926–937 (2013)

2. Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for
managing SLA violations. In: Proceedings of IM. IEEE (2007)

3. Bu, X., Rao, J., Xu, C.: Interference and locality-aware task scheduling for mapre-
duce applications in virtual clusters. In: Proceedings of HPDC. ACM (2013)

4. Chiang, R.C., Huang, H.H.: TRACON: interference-aware scheduling for data-
intensive applications in virtualized environments. In: Proceedings of SC. ACM
(2011)

5. Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin
packing: a survey. In: Approximation Algorithms for NP-Hard Problems. PWS
(1996)

6. Di, S., Kondo, D., Wang, C.: Optimization of composite cloud service processing
with virtual machines. IEEE Trans. Comput. 64(6), 1755–1768 (2015)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman & Co., New York (1979)

8. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAP 17(2), 416–429
(1969)

9. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems theoretical and practical results. JACM 34(1), 144–162 (1987)

10. Jersak, L.C., Ferreto, T.: Performance-aware server consolidation with adjustable
interference levels. In: Proceedings of SAC (2016)

11. Jin, X., Zhang, F., Wang, L., Hu, S., Zhou, B., Liu, Z.: Joint optimization of
operational cost and performance interference in cloud data centers. IEEE Trans.
Cloud Comput. (2015). doi:10.1109/TCC.2015.2449839

12. Kambadur, M., Moseley, T., Hank, R., Kim, M.A.: Measuring interference between
live datacenter applications. In: Proceedings of SC. IEEE (2012)

http://dx.doi.org/10.1109/TCC.2015.2449839

Optimizing Egalitarian Performance in the Side-Effects Model of Colocation 219

13. Kim, S., Hwang, E., Yoo, T.K., Kim, J.S., Hwang, S., Choi, Y.R.: Platform and
co-runner affinities for many-task applications in distributed computing platforms.
In: Proceedings of CCGrid. IEEE CS (2015)

14. Koh, Y., Knauerhase, R., Brett, P., Bowman, M., Wen, Z., Pu, C.: An analy-
sis of performance interference effects in virtual environments. In: Proceedings of
ISPASS. IEEE (2007)

15. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999).
doi:10.1007/3-540-49116-3 38

16. Kundu, S., Rangaswami, R., Dutta, K., Zhao, M.: Application performance mod-
eling in a virtualized environment. In: HPCA. IEEE (2010)

17. Kundu, S., Rangaswami, R., Gulati, A., Zhao, M., Dutta, K.: Modeling virtualized
applications using machine learning techniques. In: SIGPLAN Notices, vol. 47.
ACM (2012)

18. Pascual, F., Rzadca, K.: Partition with side effects. In: Proceedings of HiPC 2015
(2015)

19. Pascual, F., Rzadca, K.: Optimizing egalitarian performance in the side-effects
model of colocation for data center resource management. CoRR abs/1610.07339v3
(2017). http://arxiv.org/abs/1610.07339

20. Pietri, I., Sakellariou, R.: Mapping virtual machines onto physical machines in
cloud computing: a survey. CSUR 49(3), Article No. 49 (2016)

21. Podzimek, A., Bulej, L., Chen, L.Y., Binder, W., Tuma, P.: Analyzing the impact
of CPU pinning and partial CPU loads on performance and energy efficiency. In:
Proceedings of CCGrid (2015)

22. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity
and dynamicity of clouds at scale: Google trace analysis. In: Proceedings of SoCC.
ACM (2012)

23. Song, W., Xiao, Z., Chen, Q., Luo, H.: Adaptive resource provisioning for the cloud
using online bin packing. IEEE ToC 63(11), 2647–2660 (2014)

24. Stillwell, M., Vivien, F., Casanova, H.: Virtual machine resource allocation for
service hosting on heterogeneous distributed platforms. In: Proceedings of IPDPS.
IEEE (2012)

25. Tang, X., Li, Y., Ren, R., Cai, W.: On first fit bin packing for online cloud server
allocation. In: Proceedings of IPDPS (2016)

26. Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes, J.:
Large-scale cluster management at Google with Borg. In: Proceedings of EuroSys.
ACM (2015)

27. Xu, Y., Musgrave, Z., Noble, B., Bailey, M.: Bobtail: avoiding long tails in the
cloud. In: Proceedings of NSDI (2013)

http://dx.doi.org/10.1007/3-540-49116-3_38
http://arxiv.org/abs/1610.07339

Generic Algorithms for Scheduling Applications
on Hybrid Multi-core Machines

Marcos Amaris1,2, Giorgio Lucarelli1(B), Clément Mommessin1,
and Denis Trystram1

1 CNRS, Inria, LIG, Univ. Grenoble Alpes, 38000 Grenoble, France
{giorgio.lucarelli,clement.mommessin,denis.trystram}@imag.fr

2 Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
amaris@ime.usp.br

Abstract. We study the problem of executing an application repre-
sented by a precedence task graph on a multi-core machine composed
of standard computing cores and accelerators. Contrary to most exist-
ing approaches, we distinguish the allocation and the scheduling phases
and we mainly focus on the allocation part of the problem: choose the
most appropriate type of computing unit for each task. We address both
off-line and on-line settings. In the first case, we establish strong lower
bounds on the worst-case performance of a known approach based on
Linear Programming for solving the allocation problem. Then, we refine
the scheduling phase and we replace the greedy list scheduling policy used
in this approach by a better ordering of the tasks. Although this modi-
fication leads to the same approximability guarantees, it performs much
better in practice. In the on-line case, we assume that the tasks arrive in
any, not known in advance, order which respects the precedence relations
and the scheduler has to take irrevocable decisions about their alloca-
tion and execution. In this setting, we propose the first online scheduling
algorithm which takes into account precedences. Our algorithm is based
on adequate rules for selecting the type of processor where to allocate
the tasks and it achieves a constant factor approximation guarantee if
the ratio of the number of CPUs over the number of GPUs is bounded.
Finally, all the previous algorithms have been experimented on a large
number of simulations built on actual libraries. These simulations assess
the good practical behavior of the algorithms with respect to the state-
of-the-art solutions whenever these exist or baseline algorithms.

1 Introduction

The parallel and distributed platforms available today become more and more
heterogeneous. Such heterogeneous architectures have a growing impact on per-
formance in high-performance computing. Hardware accelerators, such as Gen-
eral Purpose Graphical Processing Units (in short GPUs) [12], are often used in
conjunction with multiple Central Processing Units (CPUs) on the same chip
sharing the same common memory. As an instance of this, the number of plat-
forms of the TOP500 equipped with accelerators has significantly increased dur-
ing the last years [14]. In the future it is expected that the nodes of such platforms
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 220–231, 2017.
DOI: 10.1007/978-3-319-64203-1 16

Generic Algorithms for Scheduling Applications 221

will be even more diverse than today: they will be composed of fast computing
nodes, hybrid computing nodes mixing general purpose units with accelerators,
I/O nodes, nodes specialized in data analytics, etc. The interconnect of a huge
number of such nodes will also lead to more heterogeneity. Using heterogeneous
platforms would lead to better performances through the use of more appropri-
ate resources depending on the computations to perform, but it has a cost in
terms of code development and more complex resource management.

In this work, we present efficient algorithms for scheduling an application
represented by a precedence task graph on hybrid computing resources. We are
interested in designing generic approaches for efficiently implementing parallel
applications where the scheduling is not explicitly part of the application. In this
way, the code is portable and can be adapted to the next generation of machines.

Underlying Architecture. We consider an hybrid multi-core node composed of
identical CPUs and GPUs. An application consists of tasks that are linked by
precedence relations. Each task is characterized by two processing times depend-
ing on which type of processors it is assigned to. We assume that an exact
estimation of both these processing times is available to the scheduler. This
assumption can be justified by several existing models to estimate the execution
times of tasks [2]. In several applications we always observe an acceleration of the
tasks if they are executed on a GPU. However, we consider the more general case
where the relation between the two processing times can differ for different tasks.
This work focuses on the analysis of the qualitative behavior induced by hetero-
geneity since it may be assumed that the computations dominate local shared
memory costs. Thus, no memory assignment or overhead for data management
are considered, nor communication times between the shared memory and the
CPUs or between CPUs and GPUs. As the application developers are mainly
looking for performance, the objective of a scheduler is usually to minimize the
completion time of the last finishing task.

Definition and Notations. We consider a parallel application which should be
scheduled on m identical CPUs and k identical GPUs. Henceforth, we assume
that m ≥ k. The application is represented by a Directed Acyclic Graph
G = (V,E) whose nodes correspond to sequential tasks and arcs correspond
to precedence relations among the tasks. We denote by T the set of all tasks.
Let pj (resp. pj) be the processing time of a task Tj if it is executed on any CPU
(resp. GPU). Given a schedule S, we denote by Cj the completion time of a task
Tj in S. In any feasible schedule, for each arc (i, j) ∈ E, the task Tj cannot be
executed before the completion of Ti. We say that Ti is a predecessor of Tj and
we denote by Γ−(Tj) the set of all predecessors of Tj . Similarly, we say that Tj

is a successor of Ti and we denote by Γ+(Ti) the set of all successors of Ti. We
call descendant of Tj each task Ti for which there is a path from j to i in G.

The objective is to create a feasible non-preemptive schedule of minimum
makespan. In other words, we seek a schedule that respects the precedence con-
straints among tasks, does not interrupt their execution and minimizes the com-
pletion time of the last task, i.e., Cmax = maxTj

{Cj}. Extending the three-fields

222 M. Amaris et al.

notation for scheduling problems introduced by Graham, this problem can be
denoted as (CPU,GPU) | prec | Cmax.

Contributions and Outline. In this paper we study the above problem on both
off-line and on-line settings. The goal is to design algorithms through a solid
theoretical analysis that can be practically implemented in actual systems. Con-
trarily to most existing approaches (see for example [15]), we propose to address
the problem by separately focusing on the following two phases:

– allocation: each task is assigned to a type of resources, either CPU or GPU,
– scheduling : each task is assigned to a specific pair of resource and time interval

respecting the decided allocation as well as the precedence constraints.

We aim to study the two phases separately motivated by the fact that there are
strong lower bounds on the approximability of known single-phase algorithms.
For example, the approximation ratio of the well-known Heterogeneous Earli-
est Finish Time (HEFT) algorithm [15] cannot be better than Ω(m

k2) (Sect. 3),
while it can be easily shown that List Scheduling policies have arbitrarily large
approximation ratio, even if we consider some enhanced order of tasks, like pri-
oritizing the task of the largest acceleration. The two-phases approach has been
used by Kedad-Sidhoum et al. [11] where a linear program (which we call Het-
erogeneous Linear Program or simply HLP) in conjunction with a rounding have
been proposed for the allocation phase, while the greedy Earliest Starting Time
(EST) policy has been applied to schedule the tasks. This algorithm, henceforth
called HLP-EST, achieves an approximation ratio of 6. Surprisingly, in Sect. 3,
we show that the ratio of this algorithm is tight. In fact, our worst-case example
does not depend on the scheduling policy applied in the second phase.

Based on this negative result, we propose to revisit both phases. In Sect. 4.1,
we initially present three greedy rules which can be used to decide the allocation.
Although these rules are of low complexity, a desired property in practice, they
cannot guarantee any approximation ratio. However, a more enhanced set of
rules that takes into account the actual schedule can lead to an algorithm of
worst case ratio O(

√
m
k), even in an on-line context where the tasks arrive in

any order that respects the precedence constraints, and the scheduler has to
take irrevocable decisions for their execution at the time of their arrival. This
is the first on-line upper-bound when precedence constraints are considered in
the hybrid context. In Sect. 4.2, we propose to replace the EST policy in HLP-
EST by a specific order of tasks which is based on both the allocation decisions
taken in the first phase and the critical path. This refined algorithm preserves
the approximation ratio of 6 and it also has a very good practical performance.

In Sect. 5, we describe the generation of the benchmark used in our exper-
iments, which is freely available in Standard Workload Format (SWF). The
experiments show that the new scheduling method based on HLP outperforms
both HEFT and HLP-EST in most of the applications, while our proposed on-line
algorithm has significantly better makespan than the baseline greedy algorithms.

Before continuing, we present in Sect. 2 the works related to our setting and,
finally, we conclude in Sect. 6. Omitted proofs can be found in [3].

Generic Algorithms for Scheduling Applications 223

2 Related Works

Most papers of the huge existing literature about GPUs concern specific appli-
cations. There are only few papers dealing with generic scheduling in mixed
CPU/GPU architectures, and very few of them consider precedence constraints.

From a theoretical perspective, the problem of scheduling tasks on two types
of resources is more complex than the problem on parallel identical machines,
P | prec | Cmax, but it is easier than the problem on unrelated machines,
R | prec | Cmax. Moreover, if all tasks are accelerated by the same factor in
the GPU side, then (CPU,GPU) | prec | Cmax coincides with the problem
of scheduling on uniformly-related parallel machines, Q | prec | Cmax. In this
sense, we can say that the former is more general than the latter one; however,
in our problem all tasks have only two different processing times, that makes
it simpler. For P | prec | Cmax, Graham’s List Scheduling algorithm [10] is
a 2-approximation, while no algorithm can have a better approximation ratio
assuming a particular variant of the Unique Games Conjecture [13]. Chudak
and Shmoys [8] developed a polynomial-time O(log m)-approximation algorithm
for Q | prec | Cmax. For hybrid architectures, a 6-approximation algorithm has
been proposed by Kedad-Sidhoum et al. [11]. In the case of independent tasks
there is a (43 + 1

3k)-approximation algorithm [5]. If the tasks arrive in an on-line
order, a 4-competitive algorithm has been presented by Chen et al. [7] for hybrid
architectures without precedence relations.

On a more practical side, there exist some work about off-line scheduling, such
as the well-known algorithm HEFT introduced by Topcuoglu et al. [15], which
has been implemented on the run-time system starPU [4]. Another work stud-
ied the systematic comparison of various heuristics [6]. Specifically, the authors
examined 11 different heuristics. This study provided a good basis for compari-
son and insights on circumstances why a technique outperforms another. Finally,
Bleuse et al. [5] compared their proposed (43 + 1

3k)-approximation algorithm with
HEFT. Note that the later two approaches considered only independent tasks.

3 Preliminaries and Lower Bounds

In this section we briefly present the two basic existing approaches for scheduling
on heterogeneous/hybrid platforms and we discuss their theoretical efficiency by
presenting lower bounds on their performance.

The first approach is the scheduling-oriented algorithm HEFT [15]. According
to HEFT, the tasks are initially prioritized with respect to their precedence
relations and their average processing times. Then, following this priority, tasks
are scheduled with possible backfilling on the available pair of processor and time
interval in which they feasibly complete as early as possible. Note that HEFT is a
heuristic that works for platforms with several heterogeneous resources and also
takes into account possible communication costs. However, even for the simpler
setting which we study in this paper without communication costs, with only
two types of resources and k = 1, HEFT cannot have a worst-case approximation

224 M. Amaris et al.

guarantee better than m
2 [5]. This result depends only on the number of CPUs,

since the example provided uses just one GPU. The following theorem, whose
proof is omitted, slightly improves the above result for the case of a single GPU.
More interestingly, it expresses the lower bound to the approximation ratio of
HEFT using both the number of CPUs and of GPUs.

Theorem 1. For any k ≤ √
m, the worst-case approximation ratio for HEFT

is at least m+k
k2

(
1 − 1

ek

)
, even in the hybrid model with independent tasks.

The second approach is proposed by Kedad-Sidhoum et al. [11] and it distin-
guishes the allocation and the scheduling decisions. For the allocation phase, an
integer linear program is proposed which decides the allocation of tasks to the
CPU or GPU side by optimizing the standard lower bounds for the makespan of
a schedule which are proposed by Graham [10], namely the critical path and the
load. To present this integer linear program, let xj be a binary variable which
is equal to 1 if a task Tj is assigned to the CPU side, and zero otherwise. Let
also Cj be a variable that indicates the completion time of Tj and λ the vari-
able that corresponds to the maximum over all lower bounds used. Then, the
Heterogeneous Linear Program (HLP) is as follows:

minimize λ

Ci + pjxj + pj(1 − xj) ≤ Cj ∀Tj ∈ T , Ti ∈ Γ−(Tj) (1)

pjxj + pj(1 − xj) ≤ Cj ∀Tj ∈ T : Γ−(Tj) = ∅ (2)

Cj ≤ λ ∀Tj ∈ T (3)

max{ 1
m

∑

Tj∈T
pjxj ,

1
k

∑

Tj∈T
pj(1 − xj)} ≤ λ (4)

xj ∈ {0, 1} ∀Tj ∈ T (5)
Cj ≥ 0 ∀Tj ∈ T

Constraints (1), (2) and (3) describe the critical path, while Constraint (4)
imposes that the makespan cannot be smaller than the load on CPU and GPU
sides. Note that the particular problem of deciding the allocation to minimize
the maximum over the three lower bounds is NP-hard, since it is a generaliza-
tion of the PARTITION problem to which reduces if all tasks are independent,
m = k, and pj = pj for each Tj .

After relaxing the integrity Constraint (5), a fractional allocation can be
found in polynomial time. To get an integral solution, the variables xj are
rounded as follows: If xj ≥ 1

2 then Tj is assigned to the CPU side, otherwise
to the GPU side. Finally, the Earliest Starting Time (EST) policy is applied
for scheduling the tasks: At each step, the ready task with the earliest possible
starting time is scheduled respecting the precedence relations and the decided
allocation. We call this algorithm HLP-EST.

HLP-EST achieves an approximation ratio of 6 [11]. Surprisingly, the follow-
ing theorem shows that this ratio is tight. In fact, the theorem implies an even

Generic Algorithms for Scheduling Applications 225

stronger result since the worst case example does not depend on the scheduling
policy which will be applied after the allocation step.

Theorem 2. Any scheduling policy which is applied after the allocation deci-
sions taken by the rounding of an optimal fractional solution of the relaxed HLP
leads to an approximation algorithm of ratio at least 6 − O(1

m).

Proof (sketch). Consider an hybrid system with an equal number of CPUs and
GPUs, i.e., m = k. The instance consists of 2m+3 tasks that are partitioned into
3 sets as shown in Table 1. The only precedence relations exist between tasks of
B1 and B2: for each task Tj ∈ B2 we have that Γ−(Tj) = B1, that is no task
in B2 can be executed before the completion of all tasks in B1. There are no
precedences between tasks of the same set.

Any optimal solution of the relaxed HLP for the above instance will assign
the task TA on a CPU, i.e., xA = 1. Hence, the objective value of any optimal
solution will be at least m(2m+1)

m−1 due to Constraints (2) and (3).
On the other hand, we can show that the following assignment is optimal

for the relaxed HLP: given a small constant ε > 0, set xA = 1, xj = 1
2 for

each Tj ∈ B1, xj = 1
2 − ε for each Tj ∈ Bi, and λ = m(2m+1)

m−1 . Given this
optimal fractional assignment, the algorithm will round the fractional variables
and allocate the tasks as follows: the task TA is assigned to the CPU side, each
task Tj ∈ B1 is assigned to the CPU side, and each task Tj ∈ B2 is assigned to
the GPU side. Then, assuming that m ≥ 3, there is only one meaningful family
of schedules for the tasks in B1 ∪ B2. An illustration of such a schedule is given
in Fig. 1.

The makespan of the created schedule is equal to 6(2m−1), while the optimal
fractional solution for the relaxed HLP has objective value m(2m+1)

m−1 . Hence, the
approximation ratio achieved for this instance is 6 − O

(
1
m

)
and the theorem

follows. 	

Table 1. Tasks and their processing
times for the input instance.

Sets of tasks # tasks pj pj

A 1 m(2m+1)
m−1

∞
B1 2m + 1 2m − 1 1

B2 2m + 1 1 2m − 1

GPU

B2 B2 B2

. . .

B2 B2

B2 B2

CPU

B1 B1 B1

. . .

B1 A
B1 B1 B1

0
(2m − 1)

2(2m − 1)
3(2m − 1)

4(2m − 1)
5(2m − 1)

6(2m − 1)

Fig. 1. The schedule created by the algorithm
(the gray areas correspond to idle times).

226 M. Amaris et al.

4 Algorithms

In this section we focus separately on each of the two phases, allocation and
scheduling, and we propose algorithms for them.

4.1 Allocation Phase

In the HLP-EST algorithm, an integer linear program was used to find an efficient
allocation of each task to the CPU or GPU side. Although this program optimizes
the classical lower bounds for the makespan, and hence informally optimizes the
allocation, the resolution of its relaxation has a high complexity in practice. For
this reason, we would like to explore some greedy, low complexity, policies. In
this direction, we initially propose the following three simple greedy rules:

R1. If pj

m ≤ pj

k then assign Tj to the CPU side, else assign it to the GPU side.
R2. If pj√

m
≤ pj√

k
then assign Tj to the CPU side, else assign it to the GPU side.

R3. If pj ≤ pj then assign Tj to the CPU side, else assign it to the GPU side.

However, these rules do not take into account neither the critical path nor the
actual schedule and they cannot guarantee a bounded approximation ratio.

In what follows, we propose to use a more enhanced set of rules which com-
bines R2 with a rule based on the structure of the actual schedule, in a similar
way as in the 4-competitive algorithm proposed by Chen et al. [7] for the on-line
problem with independent tasks. Our algorithm works also in the on-line setting.

To describe the new rule, we define τG to be the earliest time when at least
one GPU is idle. Let also RG

j = max{τG,maxi∈Γ−(j){Ci}} be the ready time of
task Tj , i.e., the earliest time at which Tj can be executed on a GPU. Then, the
new enhanced set of rules is defined as follows:

Step 1: If pj ≥ RG
j + pj then assign Tj to the GPU side.

Step 2: Otherwise apply R2.

This set of rules can be combined with a greedy List Scheduling policy that
schedules each task as early as possible on the CPU or GPU side already decided
by the rules. We call the algorithm obtained by this combination as ER-LS
(Enhanced Rules - List Scheduling). Note that both the allocation policy based
on rules and the List Scheduling policy can be applied in an on-line context, by
considering the tasks one by one and taking irrevocable decisions for them.

Theorem 3. ER-LS is a (4
√

m
k)-competitive algorithm.

4.2 Scheduling Phase

We propose here a new scheduling policy which prioritizes the tasks based on the
solution obtained for HLP. The motivation of assigning priorities to the tasks is
for taking into account the precedence relations between them. More specifically,

Generic Algorithms for Scheduling Applications 227

we want to prioritize the scheduling of critical tasks, i.e., the tasks on the critical
path, before the remaining (less critical) tasks.

To do this, we define for each task Tj a rank Rank(Tj) in the same sense
as in the HEFT algorithm. However, in our case, the rank of each task depends
on HLP, while in HEFT it depends on the average processing time of the task.
Specifically, the rank of each task Tj is computed after the rounding operation
of the assignment variable xj and corresponds to the length, in the sense of
processing time, of the longest path between this task and its last descendant
in the precedence graph. Thus, each task will have a larger rank than all its
descendants. The rank of the task Tj is recursively defined as follows:

Rank(Tj) = pjxj + pj(1 − xj) + max
i∈Γ+(Tj)

{Rank(Ti)}

After ordering the tasks in non-increasing order with respect to their ranks, we
apply the standard List Scheduling algorithm adapted to two types of resources
and taking into account the rounding of the assignment variables xj . We call the
above described policy Ordered List Scheduling (OLS), while the newly defined
algorithm (including the allocation) is denoted by HLP-OLS.

Although this policy performs well in practice, as we will see in the experi-
ments in the following section, its approximation ratio cannot be better than 6
due to the lower bound presented in Theorem2. On the other hand, it is quite
easy to see that HLP-EST and HLP-OLS have the same approximation ratio.

5 Experiments

In this section, we compare the performance of various scheduling algorithms by
a simulation campaign using a benchmark composed of 6 parallel applications.

5.1 Benchmark

The benchmark is composed of five applications generated by Chameleon, a
dense linear algebra software [1], and a more irregular application (fork-join)
generated using GGen, a library for generating directed acyclic graphs [9].

The applications of Chameleon, named getrf nopiv, posv, potrs, potri and
potrs, are composed of multiple sequential basic tasks of linear algebra. Different
number, denoted by nb blocks, and sizes, denoted by block size, of sub-matrices
have been used for the applications; specifically, nb blocks ∈ {5, 10, 20} and
block size ∈ {64, 128, 320, 512, 768, 960}. The applications were executed with
the runtime StarPU [4] on a Dual core Xeon E7 v2 machine with a total of
20 physical cores with hyper-threading of 3 GHz and 256 GB of RAM. This
machine had 4 GPUs NVIDIA Tesla K20 with 4 GB of global memory, 200 GB/s
of bandwidth and 2,496 cores divided in 13 multiprocessors.

The fork-join application corresponds to a real situation where the execution
starts sequentially and then forks to width parallel tasks. The results are aggre-
gated by performing a join operation, completing a phase. For our experiments,

228 M. Amaris et al.

we used p ∈ {2, 5, 10} phases and width ∈ {100, 200, 300, 400, 500}. The run-
ning time of each task on CPU was computed using a Gaussian distribution with
center p and standard deviation p

4 . We established various acceleration factors
for the running time on GPU. In all configurations, there are five parallel tasks
in each phase with an acceleration factor in [0.1, 0.5] while the remaining tasks
have an acceleration factor in [0.5, 50]. The data set and other information are
available under Creative Commons Public License1.

5.2 Environment and Algorithms

We compare the performance, in terms of makespan, of HLP-EST and HLP-OLS
with HEFT. We also compare in on-line mode, where tasks arrive over a list, the
algorithm ER-LS with two greedy algorithms: GreedyOn which allocates a task
on the processor type which has the smallest processing time for that task, and
RandomOn which randomly assigns a task to the CPU or GPU side.

The algorithms are implemented in Python (v. 2.7.6). The command-line
glpsol (v. 4.52) solver of the GLPK package is used for the linear program. The
number of tasks of the six applications range from 30 to 5011. Moreover, we
test different machine configurations, combining 16, 32, 64 or 128 CPUs with 2,
4, 8 or 16 GPUs. Each combination of application and machine configuration is
executed only once since all algorithms, except for the random greedy algorithm,
are deterministic. For each run, we store the optimal objective solution of the
linear program, denoted by LP ∗, and the makespan of the six algorithms.

5.3 Analysis of Results

Off-Line Algorithms. To study the performance of the 3 off-line algorithms we
computed the ratio between each makespan and LP ∗, which corresponds to a
good lower bound of the optimal makespan. Figure 2a shows the ratio of each
instance of application and configuration. Notice that the red/bigger dot repre-
sents the mean value of the ratio for each application. We can see that HLP-EST
is outperformed, on average, by the two other algorithms. The performances of
HLP-OLS and HEFT are quite similar, on average, but we observe that HEFT
does create more outlier makespans.

Figure 3 compares more specifically the two HLP-based algorithms and the
algorithms HLP-OLS and HEFT, respectively, by showing the ratio between the
makespans of the two algorithms. We can see that HLP-OLS clearly outperforms
HLP-EST, except for a few instances with the application potri, with an improve-
ment close to 10% on average. We also notice that, even if the two algorithms
have similar performances, HEFT is on average outperformed by HLP-OLS by
5%. Moreover, HEFT has a significantly worse performance than HLP-OLS in
strongly heterogeneous applications where there is a bigger perturbation in the
(dis-)acceleration of the tasks on the GPU side, like forkJoin, since in these
irregular cases the allocation problem becomes more critical.

1 Hosted at: https://github.com/marcosamaris/heterogeneous-SWF.

https://github.com/marcosamaris/heterogeneous-SWF

Generic Algorithms for Scheduling Applications 229

HLP−EST HLP−OLS HEFT

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●●●●

●●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●●●

●
●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●●

●

●
●●
●

●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

1.00

1.25

1.50

1.75

ge
trf

po
trf

po
tri
po

trs
spo

sv

for
kJo

in
ge

trf
po

trf
po

tri
po

trs
spo

sv

for
kJo

in
ge

trf
po

trf
po

tri
po

trs
spo

sv

for
kJo

in

Application

R
at

io
 o

ve
r L

P*

(a) Off-line algorithms.

ER−LS GreedyOn RandomOn

●●●
●
●●
●
●●
●
●●
●●

●

●●
●
●●●●
●
●
●
●
●●●●●●●

●
●●●●●
●
●

●●●●●●●●●
●●●●●●●●●●●●
●●
●
●

●
●
●●●
●●
● ●●

●
●●●●
●
●
●
●
●●●●
●●
●●

●●●●●●●●●

● ● ● ● ● ●

●●●
●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●●
●●●

●
●●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●
●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●●●●

●
●
●●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●
●

●

●

●

●●

●

●

● ●
●

● ●
●

●●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●
●

●●

●

●

●
●

●

●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●
●
●
●●
●

●●

●

●
●●

●

●
●

●
● ●

●

0

10

20

30

ge
trf

po
trf

po
tri

po
trs
spo

sv

for
kJo

in
ge

trf
po

trf
po

tri
po

trs
spo

sv

for
kJo

in
ge

trf
po

trf
po

tri
po

trs
spo

sv

for
kJo

in

Application

R
at

io
 o

ve
r L

P*

(b) On-line algorithms.

Fig. 2. Ratios over LP ∗ for each instance, grouped by application. (Color figure online)

On-Line Algorithms. The ratios between the makespan of each of the 3 on-line
algorithms and LP ∗ are compared in Fig. 2b which shows that, except for a few
number of instances, RandomOn is significantly outperformed by ER-LS and
GreedyOn. Figure 4a presents a more detailed comparison between GreedyOn
and ER-LS, and shows that the ratio of their performance is on average greater
than 1, meaning that GreedyOn is outperformed by ER-LS. The mean value of
the ratio per application is between 1 and 1.5. For some instances, ER-LS can
even perform up to 12.5 times better than GreedyOn. We also study the per-

●●●●●●●●●●●●●●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●
●●

●

●
●●

●

●
●●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●●●
●
●●●
●
●●●

●

●●●

●

●
●●

●

●
●●

●

●
●●

●

●

●●

●

●
●●

●

●
●●

●

●●●

●

●
●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●●

●

●

●●

●

●

●●
●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●●●●●●●●●●●●

●
●
●●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●
●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.0

1.1

1.2

1.3

1.4

getrf potrf potri potrs sposv forkJoin
Application

H
LP

−E
ST

 /
H

LP
−O

LS

(a)

●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●●

●

●●●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●●●
●
●●●
●
●●●

●

●●●

●

●●●

●

●●●

●

●●●●●●●●●●●●●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●●

●

●●

●

●●●●●●●

●

●●●●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●
●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●●●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●●

●

●

●●

●
●

●●

●

●

●●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●●●

●

●●●●●●

●

●

●●

●

●●●

●

●

●●

●

●●●

●

●●●

●

●●●

●

●●●
●●
●●

●
●
●●
●

●
●●

●
●
●●

●

●
●●

●

●
●●
●
●
●●
●
●
●●
●●
●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●
●
●

●
●●●
●●●●
●●●●
●●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●●●

●

●

●●

●

●
●

●
●

●

●●

●

●

●

●
●
●

●

●

●
●

●
●
●●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●
●

●

0.9

1.1

1.3

1.5

getrf potrf potri potrs sposv forkJoin
Application

H
EF

T
/ H

LP
−O

LS

(b)

Fig. 3. Ratio between the makespans of HLP-EST and HLP-OLS (left) and HEFT
and HLP-OLS (right) for each instance, grouped by application.

230 M. Amaris et al.

formance of ER-LS and GreedyOn with respect to the theoretical upper bound
given in Sect. 4.1. Figure 4b shows the mean competitive ratio of ER-LS and
GreedyOn along with the standard error in function of

√
m
k associated to each

instance. To simplify the lecture, we only present the applications potri and
fork-join. The competitive ratio is smaller than

√
m
k and far from the theoreti-

cal upper bound of 4
√

m
k .

●●●●●●●●●●●●●●●●
●
●●●
●
●●●
●
●●●
●
●●●●●
●●
●●
●
●
●
●●
●
●●●
●

●●●●

●

●●●

●
●

●●

●●●

●
●●
●●
●●●
●
●●●●
●
●●●
●●●●●●●●●●●●●●●●

●

●●●

●

●
●●

●

●
●●

●

●
●●

●

●

●●

●

●

●
●

●

●

●●

●

●

●●

●

●●●

●

●●
●

●

●
●
●

●

●●●

●●●●
●●●●
●

●
●●
●

●●

●●●●●
●
●●●
●
●●●

●

●●●
●●●●

●

●●●

●

●
●
●

●

●●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●●

●

●

●●

●

●

●
●

●●●●
●●●●

●
●●
●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●
●●

●

●

●
●

●

●

●

●
●●●
●
●●●●●●●●●●●●●●
●●
●●●
●
●●●●●●●●
●
●
●●

●●
●
●

●●
●
●
●●●●

●●●●●●●●

●

●●●

●●

●●

●

●●●

●

●
●●

●

●
●●

●

●
●●
●●●●●
●
●●●

●
●
●●

●●
●

●●●●
●●●●
●

●●●

●
●

●●
●
●●●
●
●●●
●
●●●
●
●●●
●●●●
●
●●●●
●
●●
●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●
●

●

●

●●

●

●

●●

●●●●
●●●●
●●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●●

●

●

●●

●

●

●

●
●●●●●●●
●●●●●●●●●●●●
●
●●●
●●●●●●●●●
●
●●●

●

●●●

●●

●●

●●●

●●●●●●●●●

●

●●●

●

●

●●

●

●
●●

●

●
●●

●

●
●●

●

●
●●
●
●●●●
●●
●
●

●
●
●●

●●
●

●
●●●
●
●●●
●
●
●
●

●●

●●

●

●●●

●

●●
●

●

●●●
●●●●
●●●●

●

●●●
●●●●
●

●
●●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●●

●

●

●
●

●

●

●●

●●●●
●●●●
●●●●

●

●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●●

●

●

●●

●

●

●

● ●●●
●
●●●●●●●●●●●●

●

●●●

●

●●●

●

●●
●

●

●●●

●

●●●
●

●
●●●

●

●
●●

●
●

●
●●●●●●●●●●●●

●

●

●●
●
●●●●
●
●●●●
●

●
●●
●●

●
●●●
●
●●●
●
●
●
●●●
●●

●

●●
●

●

●●●

●

●●●

●

●●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●●●

●

●

●●

●

●

●
●

●

●

●
●
●●●●
●●●●

●

●
●●

●

●
●●

●

●
●●

●

●

●●

●

●

●●

●

●

●●

●

●●●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●●

●

●

●

●
●●●●
●●●●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●
●
●●●
●
●●●

●

●●
●
●

●●●
●
●●●
●

●
●●
●
●●●
●

●
●●
●

●●
●

●●●●

●
●●●
●

●
●●●
●●
●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●
●
●●●
●
●●●

●

●

●
●

●

●

●●

●●

●●

●

●
●●

●

●
●●
●
●
●●

●

●●
●

●

●

●
●

●●●●
●

●●●

●

●
●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●

●
●●●

●

●●●

●

●
●
●

●
●●●

●

●●●

●

●●●

●

●

●●

●

●●●

●

●
●
●

●

●

●●

●

●

●●

●●
●●

●

●●
●

●
●

●

●

●

●

●

●

●●
●●

●

●●

●

●
●

●
●

●

●
●

●

●
●

●●

●

●
●

●

●

●
●
●

●

●

●
●●
●

●●

●

●
●

●

●

●
●
●

●

●
●
●●
●
●●

●

●

●●

●

●

●●

●

●

●●

●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●●

●
●●

●

●
●
●
●

●

●
●

●
●
●
●●

●

●
●
●

●

●
●
●

●

●

●

●
●
●
●●

●

●●
●

●

●

●●

●

●

●
●●●
●●

●

●
●●

●

●

●●

●

●

●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●

●

●

●

●
●

●

●

●

●
●
●

●●

●

●
●

●

●

●

●●

●

●

●
●
●
●

●●

●
●
●

●

●

●
●●

●

●

●
●● ●

●
● ●

●

0.0

2.5

5.0

7.5

10.0

12.5

getrf potrf potri potrs sposv forkJoin
Application

G
re

ed
yO

n
/ E

R
−L

S

(a) Ratio between the makespans of
GreedyOn and ER-LS.

● ●●●
●
● ●

●

●

●

●

●

●

●

1

2

3

4

5

6

2 4 6 8
sqrt(m/k)

M
ak

es
pa

n
ov

er
 L

P*

Application
● potri

forkJoin

(b) Competitive ratio of ER-LS (plain)
and GreedyOn (dashed) in function of√

m
k

.

Fig. 4. Comparison of on-line algorithms.

6 Conclusions

We studied the problem of scheduling parallel applications, represented by a
precedence task graph, on hybrid multi-core machines. We focused on generic
approaches, non depending on the particular application, by distinguishing the
allocation and the scheduling phases and we proposed efficient algorithms with
worst-case performance guarantees. In the off-line case, motivated by new lower
bounds on the performance of existing algorithms, we refined the scheduling
phase of the best known approximation algorithm and we presented a new algo-
rithm that preserves the approximation ratio and performs better in our experi-
ments. In the on-line case, we presented a O(

√
m
k)-competitive algorithm based

on adequate rules, which can be considered as constant-factor since, practically,
the ratio m

k is bounded.
From the practical point of view, an extensive simulation campaign on repre-

sentative benchmarks constructed by real applications showed that it is possible
to outperform the classical HEFT algorithm keeping reasonable running times.

Generic Algorithms for Scheduling Applications 231

Moreover, the on-line algorithm based on rules is a good trade-off since it deliv-
ers a solution close to the optimal. We aim to implement it on a real run-time
system (such as StarPU [4]) which currently uses HEFT on successive sets of
independent tasks.

In this work we assumed that the communications between CPUs, GPUs and
the shared memory are neglected. Our next step is to introduce communication
costs in the algorithms, which should not be too hard in both integer program
and greedy rules.

Acknowledgments. This work was partially supported by FAPESP (São Paulo
Research Foundation, grant #2012/23300-7) and ANR Moebus Project.

References

1. Agullo, E., et al.: Poster: matrices over runtime systems at exascale. In: SC Com-
panion, p. 1332 (2012)

2. Amaris, M., Cordeiro, D., Goldman, A., de Camargo, R.Y.: A simple BSP-based
model to predict execution time in GPU applications. In: HiPC, pp. 285–294 (2015)

3. Amaris, M., Lucarelli, G., Mommessin, C., Trystram, D.: Generic algorithms for
scheduling applications on hybrid multi-core machines. Technical report 01420798,
HAL (2016). https://hal.inria.fr/hal-01420798

4. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurr. Com-
put.: Pract. Exper. 23(2), 187–198 (2011)

5. Bleuse, R., Kedad-Sidhoum, S., Monna, F., Mounié, G., Trystram, D.: Scheduling
independent tasks on multi-cores with GPU accelerators. Concurr. Comput.: Pract.
Exper. 27(6), 1625–1638 (2015)

6. Braun, T.D., et al.: A comparison of eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed computing systems. J. Parallel
Distrib. Comput. 61(6), 810–837 (2001)

7. Chen, L., Ye, D., Zhang, G.: Online scheduling of mixed CPU-GPU jobs. Int. J.
Found. Comput. Sci. 25(06), 745–761 (2014)

8. Chudak, F.A., Shmoys, D.B.: Approximation algorithms for precedence-
constrained scheduling problems on parallel machines that run at different speeds.
J. Algorithms 30(2), 323–343 (1999)

9. Cordeiro, D., Mounié, G., Perarnau, S., Trystram, D., Vincent, J.M., Wagner, F.:
Random graph generation for scheduling simulations. In: SIMUTools, p. 60 (2010)

10. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.
17(2), 416–429 (1969)

11. Kedad-Sidhoum, S., Monna, F., Trystram, D.: Scheduling tasks with precedence
constraints on hybrid multi-core machines. In: HCW, pp. 27–33 (2015)

12. Lee, V.W., et al.: Debunking the 100x GPU vs. CPU myth: an evaluation of
throughput computing on CPU and GPU. SIGARCH Comput. Archit. News 38(3),
451–460 (2010)

13. Svensson, O.: Hardness of precedence constrained scheduling on identical machines.
SIAM J. Comput. 40(5), 1258–1274 (2011)

14. TOP-500-Supercomputer: http://www.top500.org
15. Topcuoglu, H., Hariri, S., Wu, M.Y.: Task scheduling algorithms for heterogeneous

processors. In: HCW, pp. 3–14 (1999)

https://hal.inria.fr/hal-01420798
http://www.top500.org

Low-Cost Approximation Algorithms
for Scheduling Independent Tasks

on Hybrid Platforms

Louis-Claude Canon1,2(B), Loris Marchal2, and Frédéric Vivien2

1 FEMTO-ST Institute, Université de Bourgogne Franche-Comté, 16 route de Gray,
25 030 Besançon, France

louis-claude.canon@univ-fcomte.fr
2 CNRS, Inria, ENS Lyon and University of Lyon, LIP Laboratory 46 allée d’Italie,

69 007 Lyon, France
loris.marchal@ens-lyon.fr, frederic.vivien@inria.fr

Abstract. Hybrid platforms embedding accelerators such as GPUs or
Xeon Phis are increasingly used in computing. When scheduling tasks
on such platforms, one has to take into account that a task execution
time depends on the type of core used to execute it. We focus on the
problem of minimizing the total completion time (or makespan) when
scheduling independent tasks on two processor types, also known as the
(Pm, Pk)||Cmax problem. We propose BalancedEstimate and Bal-
ancedMakespan, two novel 2-approximation algorithms with low com-
plexity. Their approximation ratio is both on par with the best approxi-
mation algorithms using dual approximation techniques (which are, thus,
of high complexity) and significantly smaller than the approximation
ratio of existing low-cost approximation algorithms. We compared both
algorithms by simulations to existing strategies in different scenarios.
These simulations showed that their performance is among the best ones
in all cases.

1 Introduction

Modern computing platforms increasingly use specialized computation accelera-
tors, such as GPUs or Xeon Phis: 86 of the supercomputers in the TOP500 list
include such accelerators, while 3 of them include several accelerator types [17].
One of the most basic but also most fundamental scheduling step to efficiently
use these hybrid platforms is to decide how to schedule independent tasks. The
problem of minimizing the total completion time (or makespan) is well-studied
in the case of homogeneous cores (problem P ||Cmax in Graham’s notation [13]).
Approximation algorithms have been proposed for completely unrelated proces-
sors (R||Cmax), such as the 2-approximation algorithms by Lenstra et al. [14]
based on linear programming. Some specialized algorithms have been derived
for the problem of scheduling two machine types ((Pm,Pk)||Cmax, where m
and k are the number of machines of each type), which precisely corresponds
to hybrid machines including only two types of cores, such as CPUs and GPUs
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 232–244, 2017.
DOI: 10.1007/978-3-319-64203-1 17

Low-Cost Approximation Algorithms for Scheduling Independent Tasks 233

(which corresponds to most hybrid platforms in the TOP500 list). Among the
more recent results, we may cite the DADA [5] and DualHP [3] algorithms
which both use dual approximation to obtain 2-approximations. Bleuse et al. [6]
also propose a more expensive (43 + 1

3k + ε)-approximation relying on dynamic
programming and dual approximation with a time complexity O(n2m2k3) (with
n being the number of tasks). PTAS have even been proposed for this problem
[7,12]. However, the complexity of all these algorithms is large, which makes
them unsuitable for efficiently scheduling tasks on high-throughput computing
systems.

Our objective is to design an efficient scheduling algorithm for (Pm,Pk)||
Cmax whose complexity is as low as possible, so as to be included in modern run-
time schedulers. Indeed with the widespread heterogeneity of computing plat-
forms, many scientific applications now rely on runtime schedulers such OmpSs
[16], XKaapi [5], or StarPU [2]. In this context, low complexity schedulers have
recently been proposed. The closest approaches to our work in terms of cost,
behavior, and guarantee are HeteroPrio [4], a (2 +

√
2)-approximation algo-

rithm when spoliation is permitted, and CLB2C [10], a 2-approximation algo-
rithm in the case where every task processing time, on any resource, is smaller
than the optimal makespan. A more detailed and complete analysis of the related
work can be found in the companion research report [9].

In this paper, we propose a 2-approximation algorithm, namedBalancedEs-
timate, which makes no assumption on the task processing times. Moreover, we
propose BalancedMakespan which extends this algorithm with a more costly
mechanismto select thefinal schedule,while keeping the sameapproximation ratio.
Wealsopresent the simulationscarriedout toestimate in realistic scenarios the rela-
tiveperformanceofthealgorithms.Table 1summarizesthecomparisonbetweenour
algorithmsandexistingsolutions.Amongmanyavailablehighcomplexitysolutions,
we selected the ones whose running times were not prohibitive. The time complex-
ity, when not available in the original articles, corresponds to our best guess, while
performance are the range of the most frequent relative overheads of the obtained
makespan with respect to a proposed lower bound that precisely estimates the min-
imum load on both processor types. In this table, BalancedEstimate and Bal-
ancedMakespan achieve both the best approximation ratio and the best perfor-
mance in simulation.

Therefore, the main contributions of this paper are:

1. Two new approximation algorithms, BalancedEstimate and Balanced-
Makespan, which both achieve very good tradeoffs between runtime com-
plexity, approximation ratios, and practical performance. The former has the
smallest known complexity, improves the best known approximation ratio for
low-complexity algorithms without constraints, and is on par with all com-
petitors for practical performance, while the latter outperforms other strate-
gies in most cases, at the cost of a small increase in the time complexity.

2. A new lower bound on the optimal makespan, a useful tool for assessing the
actual performance of algorithms.

234 L.-C. Canon et al.

Table 1. Complexity and performance of the reference and new algorithms. The “per-
formance” corresponds to the 2.5%–97.5% quantiles. The time complexity of Hetero-
Prio assumes an offline variant that needs to compute the earliest processor at each
step. A =

∑
i max(c1i , c

2
i)−maxi min(c1i , c

2
i) is the range of possible horizon guesses for

the dual approximations. (*: 3.42-approximation ratio for HeteroPrio when spolia-
tion is permitted; **: 2-approximation ratio for CLB2C restricted to the cases when
max(c1i , c

2
i) ≤ OPT)

Name Time complexity Approx. ratio Performance

BalancedEstimate n log(nmk) 2 0.2–15%

BalancedMakespan n2 log(nmk) 2 0.2–8%

HeteroPrio [4] n log(n) + (n + m + k) log(m + k) 3.42∗∗ 3.3–17%

CLB2C [10] n log(nmk) 2∗ 3.6–37%

DualHP [4] n log(nmkA) 2 0.2–14%

DADA [5] n log(mk) log(A) + n log(n) 2 0.9–15%

3. A set of simulations including the state-of-the-art algorithms. They show that
BalancedMakespan achieves the best makespan in more than 96% of the
cases. Moreover, its makespan is always within 0.6% of the best makespan
achieved by any of the tested algorithms.

The rest of the paper is organized as follows. The problem is formalized in
Sect. 2 and the proposed algorithms are described in Sect. 3. Section 4 is devoted
to a sketch of the proof of the approximation ratio. Section 5 presents a new lower
bound for the makespan. Finally, we report the simulation results in Sect. 6 and
conclude in Sect. 7.

2 Problem Formulation

A set of n tasks must be scheduled on a set of processors of two types containing
m processors of type 1 and k processors of type 2. Let c1i (resp. c2i) be the
integer time needed to process task i on processors of type 1 (resp. of type 2).
We indifferently refer to the ci’s as processing times or costs. The completion
time of a processor of type u to which a set S of tasks is allocated is simply
given by

∑
i∈S cui . The objective is to allocate tasks to processors such that the

maximum completion time, or makespan, is minimized.

3 Algorithm Description

We now move to the description of the first proposed approximation algorithm:
BalancedEstimate. We start by introducing some notations/definitions that
are used in the algorithm and in its proof. In the following μ represents an
allocation of the tasks to the two processor types: μ(i) = 1 (resp. μ(i) = 2) means
that task i is allocated to some processor of type 1 (resp. 2) in the allocation μ.

Low-Cost Approximation Algorithms for Scheduling Independent Tasks 235

The precise allocation of tasks to processors will be detailed later. Note that in
the algorithms, allocation μ is stored as an array and thus referred to as μ[i],
which corresponds to μ(i) in the text. For a given allocation μ, we define W 1(μ)
(resp. W 2(μ)) as the average work of processors of type 1 (resp. 2):

W 1(μ) =
1
m

∑

i:µ(i)=1

c1i and W 2(μ) =
1
k

∑

i:µ(i)=2

c2i .

We also define the maximum processing time M1(μ) (resp. M2(μ)) of tasks
allocated to processors of type 1 (resp. 2):

M1(μ) = max
i:µ(i)=1

c1i and M2(μ) = max
i:µ(i)=2

c2i .

The proposed algorithm relies on the maximum of these four quantities to esti-
mate the makespan of an allocation, as defined by the following allocation cost
estimate:

λ(μ) = max(W 1(μ),W 2(μ),M1(μ),M2(μ)).

Finally, we use imax(μ), which is the index of the largest task allocated to a
processor of type 1 but that would be more efficient on a processor of type 2:

imax(μ) = argmax
i:µ(i)=1 and c1i>c2i

c1i .

We can now define a dominating task j as a task such that j = imax(μ) and
λ(μ) = c1imax(µ).

The algorithm works in two passes: it first computes two allocations with
good allocation cost estimates (Algorithm 1) and then builds a complete sched-
ule using the Largest Processing Time first (LPT) rule from these allocations
(Algorithm 2).

The allocation phase (Algorithm 1) starts by putting each task on their most
favorable processor type to obtain an initial allocation μ. Without loss of general-
ity, we assume that processors of type 2 have the largest average work, otherwise
we simply switch processor types. Then, tasks are moved from processors of type
2 to processors of type 1 to get a better load balancing. During this process, we
carefully avoid task processing times from becoming arbitrarily long: whenever
some dominating task appears, it is moved back to processors of type 2. The
allocation phase produces two schedules: the one with the smallest cost estimate
(μbest) and the one corresponding to the iteration when the relative order of the
average works is inversed (μinv). We define μi (resp. μ′

i) as the allocation before
(resp. after) task i is allocated to processors of type 1 at iteration i on Line 10
(μistart = μ′

istart−1 is the initial allocation).
The scheduling phase (Algorithm 2) simply computes an LPT schedule for

each processor type for the two previous allocations. The schedule with minimum
makespan is selected as final result.

The time complexity of Algorithm 1 is O(n log(n)) (computing the allocation
cost estimate on Line 11 is the most costly operation). The time complexity of the
subsequent scheduling phase (Algorithm 2) is O(n log(n) + n log(m) + n log(k)).

236 L.-C. Canon et al.

Algorithm 1. Allocation Algorithm
Input : number m of processors of type 1; number k of processors of type 2
Input : number n of tasks; task durations cli for 1 ≤ i ≤ n, 1 ≤ l ≤ 2
Output: a set of allocations

1 for i = 1 . . . n do
2 if c1i < c2i then μ[i] ← 1 else μ[i] ← 2

3 if W 1(μ) > W 2(μ) then switch processor types
4 μbest ← μ
5 Sort tasks by non-decreasing c1i /c2i
6 istart = min{i : μ[i] = 2} /* first task on a processor of type 2 */

7 for i = istart . . . n do
8 if W 1(μ) ≤ W 2(μ) and W 1(μ) + c1i /m > W 2(μ) − c2i /k then
9 μinv ← μ /* remember μ */

10 μ[i] ← 1 /* move a task (μi → μ′
i) */

11 if λ(μ) < λ(μbest) then
12 μbest ← μ /* update best allocation so far */

13 if λ(μ) = c1imax(µ) then

14 μ[imax(μ)] ← 2 /* move back a task (μ′
i → μi+1) */

15 if μinv is not defined then μinv ← μ
16 return (μbest, μinv)

Theorem 1. BalancedEstimate (Algorithm2) is a 2-approximation for the
makespan.

We prove this result in the next section. Figure 1 provides an example showing
that this 2-approximation ratio is tight. Both BalancedEstimate and Bal-
ancedMakespan build the schedule on the left, which has a makespan of 2k−2
(initially they assign all the tasks on processors of type 2 and then move all the
small tasks on processors of type 1). The makespan of the optimal schedule (on
the right) is equal to k. The ratio is thus 2 − 2

k .
BalancedEstimate balances the average works on both processor types

during the allocation while ensuring that no single task will degrade the

Algorithm 2. BalancedEstimate

Input : number m of processors of type 1; number k of processors of type 2
Input : number n of tasks; task durations cli for 1 ≤ i ≤ n, 1 ≤ l ≤ 2
Output: schedule of the tasks on the processors

1 Compute (μbest, μinv) using Algorithm 1
2 foreach Allocation μ in (μbest, μinv) do
3 Schedule tasks {i : μ[i] = 1} on processors of type 1 using LPT
4 Schedule tasks {i : μ[i] = 2} on processors of type 2 using LPT

5 return the schedule that minimizes the global makespan

Low-Cost Approximation Algorithms for Scheduling Independent Tasks 237

k − 1

.

.

k − 1 1

k − 1 k − 1

1 + ε 1 + ε. . .

k − 1 1

.

.

.

k − 1 1

k

k

m = 1

Schedule for μbest = μinv Optimal schedule

Fig. 1. Example with m = 1 processor of type 1, an arbitrary number k > 1 processors
of type 2 and two types of tasks: k tasks with costs c1i = 1 + ε (with ε < 1

k−1
) and

c2i = 1, and k + 1 tasks with costs c1i = k and c2i = k − 1.

makespan when scheduled. BalancedMakespan (Algorithm 3) extends this
approach by computing the LPT schedule of each allocation (μi and μ′

i) consid-
ered by BalancedEstimate (including μbest and μinv), and thus has the same
approximation ratio. It uses the makespan instead of the allocation cost estimate
to update μbest and returns the schedule with the lowest makespan. Its time com-
plexity is O(n2 log(nmk)) as it runs LPT 2n times. In Algorithm 3, L(μ) denotes
the makespan of the schedule obtained using LPT on both processor types.

4 Approximation Ratio Proof

The proof that the previous scheduling algorithm produces a makespan at most
twice the optimal one is quite long and technical (it includes seven lemmas,
one corollary and the main proof requires the study of six different cases). For
lack of space, we only present some of the key points of the proof in the present
paper. The interested reader may find the whole detailed proof in the companion
research report [9].

The proof starts by adding dummy tasks (with 0 cost on processors of type 2),
to prove that μinv is always defined by Line 9: it corresponds to the last iteration
where the relative order of the average works is inversed. We also prove that when
Algorithm 1 completes, μbest is the allocation with smallest cost estimate among
all μ′

i’s and μi’s.
Then, our proof strongly relies on a new lower bound on the optimal

makespan. Note that in the following property, μ is any allocation of the tasks to
the processor types, not necessarily an allocation encountered by the algorithm.

Proposition 1. Let μ be an allocation and i1 = max{i : μ(i) = 1} be the largest
index of tasks that are on processors of type 1 (or 0 if there is none). Then,

min(W 1(μ),W 2(μ), min
1≤i<i1,
µ(i)=2

c1i) ≤ OPT, (1)

238 L.-C. Canon et al.

Algorithm 3. BalancedMakespan

Input : number m of processors of type 1, number k of processors of type 2,
Input : number n of tasks, task durations cli for 1 ≤ i ≤ n, 1 ≤ l ≤ 2
Output: schedule of the tasks on the processors

1 for i = 1 . . . n do
2 if c1i < c2i then μ[i] ← 1 else μ[i] ← 2

3 if W 1(μ) > W 2(μ) then switch processor types
4 μbest ← μ
5 Sort tasks by non-decreasing c1i /c2i
6 istart = min{i : μ[i] = 2} /* first task on processors of type 2 */

7 for i = istart . . . n do
8 μ[i] ← 1 /* move a task */

9 if L(μ) < L(μbest) then
10 μbest ← μ /* update best allocation so far */

11 if λ(μ) = c1imax(µ) then

12 μ[imax(μ)] ← 2 /* move back a task (μ′
i → μi+1) */

13 if L(μ) < L(μbest) then
14 μbest ← μ /* update best allocation so far */

15 return the schedule of tasks using LPT on both types of processors from μbest

where OPT is the makespan of an optimal schedule.

The proof of this property proceeds as follows: we look at where the set of
tasks S = {1 ≤ i < i1 : μ(i) = 2} are processed in an optimal allocation.

(i) Either one of those tasks is allocated to a processor of type 1, and then
mini∈S c1i is a lower bound on OPT;

(ii) Or all tasks of S are on processors of type 2. We then transform μ into the
optimal allocation by exchanging tasks and, thanks to the fact that tasks
are sorted by non-decreasing c1i /c2i , we can prove that not both W 1 and W 2

can increase simultaneously. As max(W 1(OPT),W 2(OPT)) ≤ OPT, then
min(W 1(μ),W 2(μ)) ≤ OPT.

We also need a classical result for list scheduling algorithms, summarized in
the following lemma.

Lemma 1. For a given set of tasks, any list scheduling algorithm (such as LPT)
builds a schedule on p identical processors with a makespan lower than or equal
to W + (1 − 1

p)M where W is the average work and M is the maximum cost of
any task.

Algorithm 1 produces two allocations: μbest and μinv, and the final schedule
comes from one of them. The extensive proof considers a large number of special
cases, but here we restrict to two cases, which we find the most significant: one
case considers μbest while the other one considers μinv.

Low-Cost Approximation Algorithms for Scheduling Independent Tasks 239

Case 1. Assume that the cost estimate of μbest is achieved on M1 or M2

(λ(μbest) = max(M1(μbest),M2(μbest))) and that there is no dominating task
in μbest (λ(μbest) > c1imax(µbest)

). Then, we prove that λ(μbest) ≤ OPT by con-
sidering the two possible cases:

– The maximum defining λ(μbest) is achieved by M1(μbest) = maxj:µbest(j)=1 c1j .
Let j be a task achieving this maximum. Note that c1j ≤ c2j because other-
wise we would have M1(μbest) = c1imax(µbest)

, which is not possible because
λ(μbest) > c1imax(µbest)

. Consider an optimal schedule: OPT ≥ min(c1j , c
2
j) =

c1j = M1(μbest) and thus λ(μbest) ≤ OPT.
– The maximum defining λ(μbest) is achieved by M2(μbest) = maxj:µbest(j)=2 c2j .

Let j be a task achieving this maximum. This case is analogous to the previous
one by remarking that j was already allocated to processors of type 2 in the
initial allocation, and thus c1j ≥ c2j .

As λ(μbest) ≤ OPT, we know by Lemma 1 that LPT on μbest gives a schedule
with makespan at most 2OPT.

Case 2. This case reasons on μinv. By an abuse of notation we call inv the
iteration at which μinv was defined at Line 9. We recall that after adding the
task with index inv on processors of type 1, μ′

inv has an average work larger
on processors of type 1 while μinv had an average work larger on processors
of type 2. We apply Proposition 1 on μinv and μ′

inv and forget the cases where
the minimum is achieved on a c1i in Eq. (1). This gives W 1(μinv) ≤ OPT and
W 2(μ′

inv) ≤ OPT. We also forget the case where the cost estimate of either μinv

or μ′
inv is given by M1 or M2 (which can be treated as in Case 1).
We have

W 1(μ′
inv) = W 1(μinv) +

c1inv
m

.

and, since W 1(μ′
inv) ≥ M1(μ′

inv), c1inv ≤ W 1(μ′
inv). Those two relations bring

c1inv ≤ W 1(μinv)
1 − 1/m

.

Let M be the task with largest cost allocated on processors of type 1 in μinv

(c1M = M1(μinv)). We have

c1M ≤ W 1(μ′
inv) ≤ W 1(μinv) +

c1inv
m

≤ W 1(μinv) +
W 1(μinv)

m − 1
=

m

m − 1
W 1(μinv).

Consider the schedule built by Algorithm2 on allocation μinv. On processors
of type 1, we have M1(μinv) = c1M bounded as above and the average work
is W 1(μinv) ≤ OPT (by assumption). Thanks to Lemma 1, we know that the
makespan produced by LPT on this instance has a makespan bounded by:

240 L.-C. Canon et al.

C1
max ≤ W 1(μinv) +

(

1 − 1
m

)

M1(μinv) ≤ W 1(μinv) +
(

1 − 1
m

)

c1M

≤ W 1(μinv) +
(

1 − 1
m

)
m

m − 1
W 1(μinv)

≤ 2W 1(μinv) ≤ 2OPT.

We now concentrate on processors of type 2. We know that

W 2(μinv) = W 2(μ′
inv) +

c2inv
k

≤ W 2(μ′
inv) +

OPT
k

,

The above inequality comes from the fact that OPT ≥ min(c1inv, c
2
inv) = c2inv

as task inv was on processors of type 2 in the initial allocation. For the same
reason, M2(μinv) ≤ OPT. Together with W 2(μ′

inv) ≤ OPT, we finally get

W 2(μinv) ≤
(

1 +
1
k

)

OPT.

Thanks to Lemma 1, we know that the makespan of Algorithm 2 on processors
of type 2 of allocation μinv is bounded by

C2
max ≤ W 2(μinv) +

(

1 − 1
k

)

M2(μinv)

≤
(

1 +
1
k

)

OPT +
(

1 − 1
k

)

OPT ≤ 2OPT.

Thus, max(C1
max, C

2
max) ≤ 2OPT which yields the result for this case.

The whole proof with many other cases can be found in [9].

5 Lower Bound

We now present a new lower bound on the optimal makespan, which is then used
as a reference in our simulations. Note that we could have used Proposition 1 to
derive lower bounds, but this would require to first compute interesting alloca-
tions. On the contrary, we present here an analytical lower bound, which can be
expressed using a simple formula, and which is finer than the previous one in
the way it considers how the workload should be distributed.

The bound is obtained by considering the average work on all processors, as
in the W/p bound for scheduling on identical machines. To obtain this bound,
we consider the divisible load relaxation of the problem: we assume that all
tasks can be split in an arbitrary number of subtasks which can be processed
on different processors (possibly simultaneously). We are then able to show that
the optimal load distribution is obtained when tasks with smaller c1i /c2i ratio are
placed on processors of type 1, while the others are on processors of type 2, so
that the load is well balanced. This may require to split one task, denoted by i
in the theorem, among the two processor types.

Low-Cost Approximation Algorithms for Scheduling Independent Tasks 241

Theorem 2. Assume tasks are sorted so that c1i /c2i ≤ c1j/c2j for i < j, and let i
be the task such that

1
m

∑

j≤i

c1j ≥ 1
k

∑

j>i

c2j and
1
m

∑

j<i

c1j ≤ 1
k

∑

j≥i

c2j .

Then, the following quantity is a lower bound on the optimal makespan:

LB =

c2i
∑

j<i

c1j + c1i
∑

j>i

c2j + c1i c
2
i

kc1i + mc2i
.

As this bound only considers average load, it may be improved by also con-
sidering the maximum processing time over all tasks: maxi min(c1i , c

2
i) is the

equivalent of the max ci lower bound for scheduling independent tasks on iden-
tical machines.

6 Simulations

In the context of linear algebra computations, hardware is typically composed
of several CPU cores and a few GPU units to compute hundreds of tasks. The
following simulations consider 300 tasks, 20 CPU cores, and 4 GPU units. Task
processing times are randomly generated and follow a gamma distribution with
expected value 15 for the CPUs and 1 for the GPUs. These values are inspired
from the measures in [1,3]. Moreover, the gamma distribution has been advo-
cated for modeling job runtimes [11,15]. This distribution is positive and it
is possible to specify its expected value and standard deviation by adjusting its
parameters. The Coefficient of Variation (CV1) of both types of processing times
is either 0.2 (low) or 1 (high). Each combination of CV for the CPUs and the
GPUs leads to 100 instances. For each instance, the set of processing times is
given as input to all six algorithms and the obtained makespans are then divided
by the lower bound given by Theorem2. The algorithms are implemented in R
and the related code, data and analysis are available in [8].

The studied algorithms are the reference algorithms DualHP, DADA, Het-
eroPrio and CLB2C, and our two new algorithms, BalancedEstimate and
BalancedMakespan. HeteroPrio and CLB2C both start by sorting the
tasks by their acceleration ratios. In HeteroPrio, each ready processor will
then start the execution of the next best task. When all tasks are running,
ready processors will steal a running task if this reduces its completion time.
In CLB2C, at each iteration, the two tasks that are the best for each type of
processors are considered and the one that can finish the soonest is scheduled.

Figure 2 depicts the ratios of the achieved makespans by the lower bound
using boxplots in which the bold line is the median, the box shows the quartiles,
the bars show the whiskers (1.5 times the interquartile range from the box) and
additional points are outliers.
1 The Coefficient of Variation is the ratio of thestandard deviation to the mean.

242 L.-C. Canon et al.

Fig. 2. Ratios of the makespan over a lower bound for 6 algorithms over 400 hundreds
instances. For each instance, there are n = 300 tasks, m = 20 CPUs and k = 4 GPUs.
The costs follow a gamma distribution with expected value 15 for the CPUs and 1 for
the GPUs, while the coefficient of variation is either 0.2 (low) or 1 (high).

BalancedMakespan has the best median in all cases and is often below 2%
from the lower bound except when the CPU CV is low and the GPU CV is high,
for which the lower bound seems to be the furthest. This case is also the most
realistic [1,3]. BalancedEstimate and DualHP have similar performance. It
may be due to their similar mechanism: allocating the jobs to balance the average
CPU and GPU works, and then scheduling the jobs in a second step. DADA,
HeteroPrio and CLB2C, which all schedule the jobs incrementally, perform
similarly for most of the cases. There are classes of problems for which CLB2C
has median performance that is more than 20% away from the lower bound. No
other algorithms achieve so low performance.

When the CPU CV is high, BalancedEstimate is close to the lower bound
(the median is around 1%). In the opposite case, however, CPU costs are more
homogeneous and the performance degrades. The LPT scheduling step of Bal-
ancedEstimate may schedule a last large task on a single CPU whereas it
would have been better to allocate it to the GPUs. In comparison, Balanced-
Makespan, HeteroPrio, and CLB2C are not affected by this limitation
because they build the schedule step by step and adjust the allocation depending
on the actual finishing times.

Finally, we measured that BalancedMakespan provides the best makespan
among the six tested algorithms in more than 96% of the cases. Moreover, the
makespan is always within 0.6% of the best makespan achieved by the differ-
ent algorithms. By contrast, the next two best algorithms in this regard, Bal-
ancedEstimate and DualHP, both provide the best makespan in more than
36% of the cases and their makespan is always within 16% of the best makespan.

Low-Cost Approximation Algorithms for Scheduling Independent Tasks 243

7 Conclusion

With the recent rise in the popularity of hybrid platforms, efficiently schedul-
ing tasks on multiple types of processors such as CPUs and GPUs has become
critical. This paper presents BalancedEstimate, a new algorithm for the
(Pm,Pk)||Cmax problem. It balances the tasks from the most loaded proces-
sor type to the other type of processors. This algorithm is the first to achieve
an approximation ratio of 2 in all cases with a low time complexity. We also
propose BalancedMakespan, a more costly variant with the same guarantee.
Among these two algorithms, simulations showed the latter outperforms com-
peting algorithms in more than 96% of the cases, while the former is on par
with a more costly dual approximation. The performance of the algorithms was
assessed using a new lower bound on the optimal makespan.

Future developments will consist in evaluating the robustness of the algo-
rithm against incertainties in the processing time estimates and implementing
this approach in a real runtime system to see its benefits in practical situations.
Furthermore, the model could be extended to fit more closely to realistic envi-
ronments by considering precedence constraints, more than 2 types of processors
and taking into account startup times for launching tasks on GPUs.

Acknowledgments. This work was supported by the LABEX MILYON (ANR-10-
LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir”
(ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). This
material is also based upon research supported by the SOLHAR project operated by
the French National Research Agency (ANR).

References

1. Agullo, E., Beaumont, O., Eyraud-Dubois, L., Kumar, S.: Are static schedules so
bad? A case study on Cholesky factorization. In: 2016 IEEE International Parallel
and Distributed Processing Symposium, pp. 1021–1030. IEEE (2016)

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurr. Com-
put.: Pract. Exp. 23(2), 187–198 (2011)

3. Beaumont, O., Cojean, T., Eyraud-Dubois, L., Guermouche, A., Kumar, S.:
Scheduling of linear algebra kernels on multiple heterogeneous resources. In: Inter-
national Conference on High Performance Computing, Data, and Analytics (HiPC)
(2016)

4. Beaumont, O., Eyraud-Dubois, L., Kumar, S.: Approximation proofs of a fast and
efficient list scheduling algorithm for task-based runtime systems on multicores and
GPUs (2016, to appear in IEEEIPDPS 2017). https://hal.inria.fr/hal-01386174

5. Bleuse, R., Gautier, T., Lima, J.V.F., Mounié, G., Trystram, D.: Scheduling data
flow program in XKaapi: a new affinity based algorithm for heterogeneous archi-
tectures. In: Silva, F., Dutra, I., Santos Costa, V. (eds.) Euro-Par 2014. LNCS,
vol. 8632, pp. 560–571. Springer, Cham (2014). doi:10.1007/978-3-319-09873-9 47

6. Bleuse, R., Kedad-Sidhoum, S., Monna, F., Mounié, G., Trystram, D.: Scheduling
independent tasks on multi-cores with GPU accelerators. Concurr. Comput.: Pract.
Exp. 27(6), 1625–1638 (2015)

https://hal.inria.fr/hal-01386174
http://dx.doi.org/10.1007/978-3-319-09873-9_47

244 L.-C. Canon et al.

7. Bonifaci, V., Wiese, A.: Scheduling unrelated machines of few different types. arXiv
preprint arXiv:1205.0974 (2012)

8. Canon, L.C.: Code for low-cost approximation algorithms for scheduling indepen-
dent tasks on hybrid platforms. https://doi.org/10.6084/m9.figshare.4674841.v1

9. Canon, L.C., Marchal, L., Vivien, F.: Low-cost approximation algorithm for
scheduling independent tasks on hybrid platforms. Research report 9029, INRIA,
February 2017. https://hal.inria.fr/INRIA/hal-01475884v1

10. Cheriere, N., Saule, E.: Considerations on distributed load balancing for fully het-
erogeneous machines: two particular cases. In: Proceedings of IEEE International
Parallel and Distributed Processing Symposium Workshop (IPDPSW), pp. 6–16.
IEEE (2015)

11. Feitelson, D.G.: Workload Modeling for Computer Systems Performance Evalua-
tion, 1st edn. Cambridge University Press, New York (2015)

12. Gehrke, J.C., Jansen, K., Kraft, S.E.J., Schikowski, J.: A PTAS for scheduling unre-
lated machines of few different types. In: Freivalds, R.M., Engels, G., Catania, B.
(eds.) SOFSEM 2016. LNCS, vol. 9587, pp. 290–301. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49192-8 24

13. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization and
approximation in deterministic sequencing and scheduling: a survey. Ann. Discret.
Math. 5, 287–326 (1979)

14. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling
unrelated parallel machines. Math. Program. 46(1–3), 259–271 (1990)

15. Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: modeling
the characteristics of rigid jobs. J. Parallel Distrib. Comput. 63(11), 1105–1122
(2003)

16. Sainz, F., Mateo, S., Beltran, V., Bosque, J.L., Martorell, X., Ayguadé, E.: Lever-
aging OmpSs to exploit hardware accelerators. In: IEEE International Symposium
on Computer Architecture and High Performance Computing (SBAC-PAD), pp.
112–119 (2014)

17. TOP500 supercomputer site, list of November 2016. http://www.top500.org

http://arxiv.org/abs/1205.0974
https://doi.org/10.6084/m9.figshare.4674841.v1
https://hal.inria.fr/INRIA/hal-01475884v1
http://dx.doi.org/10.1007/978-3-662-49192-8_24
http://www.top500.org

High Performance Architectures and
Compilers

Runtime-Assisted Shared Cache Insertion
Policies Based on Re-reference Intervals

Vladimir Dimić1,2(B), Miquel Moretó1,2, Marc Casas1,2, and Mateo Valero1,2

1 Barcelona Supercomputing Center (BSC), Barcelona, Spain
{vladimir.dimic,miquel.moreto,marc.casas,mateo.valero}@bsc.es

2 Universitat Politécnica de Catalunya, Barcelona, Spain

Abstract. Processor speed is improving at a faster rate than the speed
of main memory, which makes memory accesses increasingly expensive.
One way to solve this problem is to reduce miss ratio of the processor’s
last level cache by improving its replacement policy. We approach the
problem by co-designing the runtime system and hardware and exploit-
ing the semantics of the applications written in data-flow task-based
programming models to provide hardware with information about the
task types and task data-dependencies. We propose the Task-Type aware
Insertion Policy, TTIP, which uses the runtime system to dynamically
determine the best probability per task type for bimodal insertion in
the recency stack and the static Dependency-Type aware Insertion Pol-
icy, DTIP, that inserts cache lines in the optimal position taking into
account the dependency types of the current task. TTIP and DTIP per-
form similarly or better than state-of-the-art replacement policies, while
requiring less hardware.

Keywords: Shared cache · Replacement policy · Runtime system ·
Task-based programming model · Hardware-software co-design

1 Introduction

Throughout the last decades, main memory performance has been improving
with a slower rate than the performance of CPUs, which has been described as
the Memory Wall [28]. Misses happening in last level caches (LLC) result in
memory accesses, which cause CPU to wait for the data. Non-blocking caches
try to mitigate this problem by being able to serve several outstanding misses,
but they cannot hide the memory latency in all cases. One way to approach this
problem is to reduce the miss rate of the LLC. Optimizing the LLCs usage is a
complex problem and requires identifying the important factors that impact its
performance.

The access pattern of an application together with the memory hierarchy
configuration (i.e. cache size, associativity, replacement policy, etc.) are some of
these factors. Most commonly used applications can have several fundamental
access patterns. Memory accesses with high spatial and temporal locality are

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 247–259, 2017.
DOI: 10.1007/978-3-319-64203-1 18

248 V. Dimić et al.

cache friendly and usually have good hit rates. Streaming access patterns are
characterised by sequential or strided access of vectors in memory. In general,
they have no reuse and, therefore, the choice of the cache placement policy has
a low impact on the miss rate. Thrashing access patterns are the ones that have
reuse distances bigger than the cache associativity. Repeated, circular, accesses
to the same sequence of addresses cause the circular eviction of the cache lines,
thus making all accesses resulting in misses. Many applications show more com-
plex access patterns that are a combination of the simple ones. Choosing an
appropriate replacement policy is important for achieving good performance
when executing these applications.

The majority of modern CPUs are multi-core and have a multi-level cache
hierarchy with shared LLC. The sequences of memory accesses coming from
threads executing on different cores arrive into the LLC. If the LLC uses a
replacement policy that does not take into account the priority of certain access
patterns, such as LRU, accesses generated by a thread may trash the working set
of another. Giving more priority to the lines of the trashed thread will improve its
performance while not hurting the performance of the thrashing thread. There
are several state-of-the-art replacement policies designed by taking access pat-
tern priorities into account, such as DIP [19], DRRIP [9] and SHiP [27]. However,
they do not consider application semantics, which can give useful information
about access patterns for different memory regions and different code segments
in the application. Using this information in designing a replacement policy for
LLC can bring benefits in performance.

Applications written in a task-based programming model can provide more
information about the semantics. Many programming models use the notion
of task as a unit of work, such as OpenMP 4.0 [15], Cilk [5], Chapel [3], Intel
TBB [21], Charm++ [11] and OmpSs [25]. In task-based data-flow programming
models, task data-dependencies are used for synchronisation, meaning that tasks
consuming a dependency cannot start executing before the task producing that
dependency finishes. Special directives, inserted by programmers, instruct the
compiler how to parallelise the code. The compiler translates these directives to
calls to the runtime library, which manages the execution of the application.

Tasks perform different functions and access their dependencies in different
ways. We argue that using information about task types and dependency types
can help designing better replacement policies in the LLC. To approach the
problem, we use a recently proposed idea [4,26], where architectures and runtime
systems collaborate in order to achieve better performance in modern and future
computer systems. We exploit application semantics available in the runtime
system and provide the processor with the necessary information to optimise the
behaviour of the LLC. In this paper, we propose two insertion policies that utilise
information about task types (TTIP) and task data-dependency types (DTIP),
which are described in more detail in Sect. 3. TTIP dynamically determines
the best probability per task-type for probabilistic insertion achieving 5.1% and
0.8% better execution time than LRU and DRRIP, respectively. DTIP statically
assigns different insertion positions based on data-dependency type and is faster
4.8% and 0.3% than LRU and DRRIP, respectively.

Runtime-Assisted Shared Cache Insertion Policies 249

2 Related Work

Cache replacement policies are a set of algorithms that maintain the logical
order of cache lines inside a cache set. Insertion policies determine the position
of the line in the logical queue on its insertion into the cache. Promotion policies
update the line’s position when it is accessed. Eviction policies decide which line
to remove from the cache when a space for a new line is needed.

The optimal replacement policy, the Belady’s MIN algorithm [1], evicts the
line that is going to be referenced farthest in the future. It is unusable in real
systems because it requires the knowledge of the future. Least-Recently Used
(LRU) policy evicts the line that was used farthest in the past, while on inser-
tion and promotion lines are moved to the top of the LRU stack. The cost of
maintaining LRU states is increasing with set size, so it is not used in caches
with high associativity (LLC). Pseudo LRU policies [7,14] sacrifice precision
while simplifying the state management. On average, they perform similarly to
LRU in caches with high associativity.

LRU performs poorly with scanning and thrashing workloads. Qureshi
et al. [19] propose several insertion policies that try to reduce thrashing. Bimodal
Insertion Policy (BIP) inserts a tunable percentage of lines in the LRU position,
and the rest of the lines in the Most-Recently Used (MRU) position. LRU and
BIP outperform each other in different cases, so Dynamic Insertion Policy (DIP)
chooses the best of the two via sampling-based adaptive replacement [20].

Jaleel et al. [9] propose a cache replacement policy that uses Re-Reference
Interval Prediction (RRIP) in order to prevent cache pollution by lines that
are not going to be referenced for a long time. For managing the logical order
of the lines, two bits per cache line are used to encode 4 different states: 00
(immediate), 01, 10 (long) and 11 (distant). Multiple lines can be in the same
state. On a cache hit, the accessed line is promoted to immediate position. On
eviction, a line with distant state is removed. If no such line exists, states of all
lines are increased by one until at least one of the lines is in distant position. On
insertion, a line is assigned a position that depends on the insertion policy.

Static RRIP (SRRIP) always assigns long re-reference interval to new lines,
which protects lines with shorter re-reference interval from being evicted by scan-
ning access patterns. In thrashing workloads, SRRIP performs poorly. Bimodal
RRIP (BRRIP) solves this by inserting the majority of new lines with distant,
and the rest with long re-reference interval. Both policies implement promotion
and eviction similarly to NRU [14]. Dynamic RRIP (DRRIP) uses set duel-
ing [18] to dynamically select the best performing policy. Finally, Wu et al. [27]
propose Signature-based Hit Predictor (SHiP) that extends RRIP by predicting
the re-reference interval of an incoming cache line based on its history. Cache
line’s PC-based signature is used for tracking the history of hits.

There have been several proposals that use the runtime system of task-
based data-flow programming models to optimize the LLC performance.
Papaefstathiou et al. [17] propose a prefetching scheme in which the runtime
provides hardware with information about task data-dependencies. To mini-
mize cache pollution, quotas are assigned to current and future tasks based

250 V. Dimić et al.

on their footprint. The current task is given the highest priority, thus keep-
ing its lines in cache. Manivannan and Stenstrom [13] propose cache coherence
protocol, in which the runtime system exposes to the hardware which are the
lines that will be reused. The coherence protocol can then reduce coherence traf-
fic by invalidating or downgrading lines precisely. Pan and Pai [16] propose a
runtime-assisted cache partitioning technique. Runtime knowledge about task
inter-dependencies and future tasks is used in order to preserve useful data in
the cache, while removing the data that will not be re-referenced in the future.

RADAR [12], a runtime-assisted scheme for dead-block management, consists
of two independent algorithms for dead-block prediction, which are combined to
give the better final algorithm. The first, Look-ahead scheme, uses information
about task dependencies and current state of the task dependency graph to
determine whether certain blocks of data will reused. The second, Look-back
scheme, uses previous outcomes of cache accesses to estimate whether certain
cache lines will be dead.

3 Runtime-Assisted Insertion Policies in the LLC

An important factor that affects the LLC performance is the memory access pat-
tern. Runtime systems that support task-based data-flow programming models
have information about task types and task data-dependencies of the applica-
tion. We aim to utilise this information at the hardware level to improve the
LLC performance by optimizing its insertion policy.

3.1 Task Type Aware Probabilistic Insertion

BRRIP is designed to overcome thrashing in access patterns with longer re-
reference interval than the cache associativity. It achieves so by selecting the
new line’s insertion position in the recency stack based on a pre-determined
static probability.

If multiple access patterns, including thrashing ones, meet in the LLC, it is
beneficial to assign them different insertion probabilities. We assign probabili-
ties per task type, thus giving them different priorities in the LLC. A higher
probability means inserting more lines into the long position, so the lines have
more chances to be preserved in cache. Tasks that show more locality in their
accesses should get a higher insertion probability than the tasks having scanning
access patterns. Moreover, using a larger set of probabilities instead of a fixed
one gives more opportunities to tune the tasks’ performance in complex scenar-
ios where many different task types compete for the LLC resources. The optimal
probability depends on the co-runners that share the LLC at the moment. In
complex applications, instances of a given task type may execute with different
co-runners in different phases of the application, which means that the optimal
probability may change.

We develop a dynamic mechanism that aims to determine the best probabil-
ity per task type during the execution of an application. The proposed mecha-
nism alternates between two phases, training phase and stable phase, for each

Runtime-Assisted Shared Cache Insertion Policies 251

task type independently. The goal of the training phase is to find the optimal
probability for the given task type which is then used during the stable phase.

At the beginning of the application, all task types are set to run in the
training phase. When a task instance is scheduled on a given core, the algorithm
selects a probability from the pool of preselected probabilities P and instructs
the LLC to use that probability for all accesses issued by this task instance. Upon
completion of each task instance, the algorithm records the number of misses
generated by that task with the selected probability. The same probability is
used for K task instances. Probabilities are selected sequentially from the
pool until all probabilities are evaluated. In total, K × |P| task instances are
used for training during one training phase for one task type. This concludes
the training phase and the stable phase begins. The algorithm then selects the
probability that induced lowest average number of misses and uses it for the
next N instances of the given task type. After that, the whole process repeats
until the end of the application’s execution.

Consequently, TTIP is able to select the best probability parameter for a
given task type appropriate for the current conditions in the LLC.

3.2 Dependency Type Aware Insertion

We reason in Sect. 1 that task data-dependencies show different access patterns.
Input dependencies are read-only data useful for the current task instance. Out-
put dependencies are generated by a task in order to be consumed by its succes-
sors in the task dependency graph. Therefore, it may be beneficial to insert cache
lines belonging to outputs in higher positions of the recency stack, thus giving
them more chances to stay in the cache until the moment they are required by the
consumer task. A similar reasoning applies to dependencies denoted as inouts, as
they are also inputs of a future task. Non-dependencies are the local variables in
the call stack and the global variables that are not specified as task dependencies.
In some of our benchmarks, like CG, they are predominantly accesses to large
global variables that have streaming-like access patterns. In other benchmarks,
where this is not true, decisions that we make for non-dependencies do not harm
the performance.

We develop an insertion policy that inserts lines in positions based on which
dependency type they belong to. We call this policy Dependency Type aware
Insertion Policy (DTIP). The policy configuration can be formally defined as a
function f : DT → IP, where DT = {input, output, inout, non-dependency}
and IP = {immediate, long, distant}. To determine the impact of mapping
dependency types to specific positions in the recency stack, we perform an
exhaustive design space exploration where we try all possible functions f . Num-
ber of different policy configurations per benchmark is |IP||DT | = 34 = 81. For
all benchmarks, we run 405 simulations. On average, the best performing policy
is the one that inserts inputs and non-dependencies on the distant position in
the recency stack and outputs and inouts on long or immediate positions. This
is consistent with the intuitive expectations described above.

252 V. Dimić et al.

3.3 Implementation

In this section, we describe the hardware and runtime extensions necessary for
implementation of our policies. The cost of their implementation is discussed in
detail in Sect. 4.5.

Hardware Extensions. To be able to use different insertion probabilities
for different task types, TTIP requires a small and fast hardware structure in
the LLC that maps a hardware thread ID to the appropriate probability. It is
designed as a SRAM memory containing probabilities and is addressed by the
hardware thread ID, which is already required to enforce coherence in the LLC.
The mapping table is accessed on a new miss, in parallel with creation of a new
MSHR entry. The read probability from the table is used to calculate the inser-
tion position, which is cached in the newly created MSHR entry. The runtime
modifies the structure via memory-mapped registers. To track the performance
under each probability, we use one hardware counter per hardware thread for
misses to LLC. The counters are exposed to the runtime as a set of registers.

To identify the dependency type of an access, which is necessary for DTIP, we
add a special hardware structure that stores the mappings of dependency regions
to the dependency type for all running tasks. We assume that only one task is
executing concurrently on any given hardware thread. If tasks are switched, the
runtime or the operating system updates the mapping table with dependency
regions of the new task. There might be several tasks using the same region at
the same time, but the runtime scheduler inherently guarantees that the region
will have the same dependency type in all these tasks.

The mapping table is read on every occurrence of a miss in the LLC to
determine the dependency type of the missing line. The missing line’s address is
fed to the table, which simultaneously compares all stored region boundaries and
selects the entry containing the dependency type corresponding to the region of
the missed address. This is done in parallel with creating a new MSHR entry,
thus not introducing any additional latency. The dependency type of the line is
stored in the newly created MSHR entry. Upon serving the request from main
memory, the new line is inserted into the position in recency stack determined
by the stored dependency type.

Hardware structures of both TTIP and DTIP are centralised and located
in the LLC. They are accessed by the core via special requests through the
memory hierarchy. The requests are propagated to the LLC and do not change
the contents of the private caches.

Runtime System Extensions. To implement TTIP, several runtime modi-
fications are required. The runtime system contains a per-task data structure
that tracks the performance in terms of number of misses for each probability.
When a task starts, before its user code starts executing, the runtime decides
which probability to use for that task instance and writes it in the probability
table on the position specified by the core ID on which the task is scheduled to

Runtime-Assisted Shared Cache Insertion Policies 253

run. At the end of execution of a task, the number of misses produced by that
task in the LLC is read by the runtime and stored in the software data structure
mentioned above.

DTIP requires several changes in the runtime system. When a new task
starts executing on a core, the runtime system updates the mapping table with
the information for the new task by issuing store instructions to the memory-
mapped registers. This does not require changes to the ISA, since many modern
processors have a support for memory-mapped registers. If there are several
consecutive dependency regions of the same type, the runtime may perform two
optimizations to reduce the storage requirements in the mapping table. The first
optimization merges the consecutive dependency regions of the same dependency
type into one. The second does not insert the region if it already exists in the
table, which happens if two or more tasks are sharing the same region. Since the
mapping table is not readable by the runtime to simplify the hardware design,
the runtime keeps a software copy of the mapping information.

4 Evaluation

4.1 Simulation Infrastructure

We use TaskSim [23], a trace-driven [22] computer architecture simulator that
simulates applications written in data-flow task-based programming models. The
simulated system is a 4-core processor with a cache hierarchy consisting of 3
levels, two of which are private, L1 (4-way, 32 KB) and L2 (8-way, 256 KB), and
the LLC is shared (16-way, 8 MB). All caches are write-back and write-allocate.
Access latencies are 4, 10 and 24 cycles, respectively. Each cache can serve up to
16 outstanding misses and 4 write-back requests which are served when the bus
is not in use. Private caches use LRU replacement policy. The size of a cache
line in all caches is 64 B. Only memory instructions are simulated in detail while
other instructions are simulated on a simple CPU model. Inter-dependencies
of memory accesses are respected. The reorder buffer contains 128 entries. The
main memory has a latency of 200 ns and a bandwidth of 2.4 GB/s per core.

4.2 Benchmarks

In order to evaluate our proposals in relevant scenarios, we use benchmarks
that cover a wide range of modern applications and kernels used in HPC and
show variability in task sizes and dependency types. PARSECSs [6] is a task-
based implementation of widely-accepted benchmark suite of parallel applica-
tions, PARSEC [2]. Benchmarks that fulfil our requirements are facesim and
ferret. We use simlarge input set, the largest input set suitable for simula-
tion. Moreover, we use two HPC applications used in previous works [22,23],
specfem3D and stap. The inputs are selected to balance between simulation
time and LLC footprint. Finally, we use benchmark CG, a conjugate gradient
method [24], implemented in OmpSs by Jaulmes et al. [10]. The input is the
matrix qa8fm from The University of Florida Sparse Matrix Collection [8]. The
algorithm is decomposed in 8 blocks and runs until convergence (97 iterations).

254 V. Dimić et al.

4.3 TTIP Parameters Space Exploration

TTIP’s performance depends on two parameters K and N , which are described
in Sect. 3.1. These parameters determine how many task instances per probabil-
ity are used in training, and how many instances for running with the best prob-
ability in the stable phase. We explore the set of configurations (K,N) where
K ∈ {1, 2, 4, 8, 16} and N ∈ {10, 50, 100, 500, 1000,∞}. Configurations where
N = ∞ have only one training phase which is followed by one stable phase that
lasts until the end of execution. Intuitively, choosing a larger K offers better
precision by having more time to evaluate one probability. However, too large
K can hurt the overall performance if certain probabilities perform badly. Con-
figurations with larger N use the best probability for a longer period of time,
but are less able to adapt to potential changes in application behaviour. Using
a smaller N can be bad for the final performance because a larger percentage of
the execution is spent in the training phase.

Figure 1 shows the performance of TTIP in terms of MPKI depending on
the choice of parameters K and N . For most benchmarks except specfem3D
we can observe a performance improvement as N increases. This is due to the
fact that, in the majority of benchmarks, instances of the same task type have
similar behaviour. For cg, we can notice the trend of performance degradation
when increasing K for a constant N . Similar behaviour can be noticed for stap.
Stap highly benefits from configurations where N = ∞ due to having a large
number of task instances. Having many training phases in case of stap means
repeatedly evaluating sub-optimal probabilities, thus hurting the overall perfor-
mance. Ferret does not show significant sensitivity to K and N . Facesim obtains
better performance with larger K due to having a lot of small task instances
and, therefore, needing more instances per probability to properly evaluate the
performance of each probability. The configuration that performs the best on
average for all our benchmarks is (N,K) = (∞, 8), which we will use for further
evaluation of TTIP in the remaining of the paper.

Fig. 1. TTIP sensitivity to N ∈ {10, 50, 100, 500, 1000,∞} and K ∈ {1, 2, 4, 8, 16}

Runtime-Assisted Shared Cache Insertion Policies 255

4.4 Performance Results

Figure 2 compares TTIP and DTIP with LRU and state-of-the-art SRRIP,
BRRIP and DRRIP in terms of MPKI and speedup normalised to LRU. For
BRRIP we use the probability for inserting into the long position ε = 1/32 and
for DRRIP SDM with 32 sets.

TTIP upgrades BRRIP by supporting multiple probability values and being
able optimize the probability per task type. It achieves up to 32.1% and on
average 11.2% reduction in MPKI compared to LRU. The speedup over LRU is
up to 12.3% and on average 5.1%. TTIP performs similarly as DRRIP, having
3.3% higher MPKI and being 0.8% faster than DRRIP. However, it does not need
the hardware for Set Dueling, but instead uses a small mapping table described
in Sect. 3.3 and whose cost is discussed in the Sect. 4.5.

DTIP improves MPKI over LRU for up to 33.3% and on average 16.8%. The
largest contribution of improvement in MPKI comes from specfem3D, where
misses to output dependencies of the largest task are reduced by inserting outputs
in immediate position. This decision does not significantly impact the number of
misses to inputs and non-dependencies. DTIP is faster than LRU for up to 12.1%
and on average 4.8%. Compared to SRRIP, which is another static RRIP policy,
DTIP achieves up to 29.1% (12.8% on average) lower MPKI and performs up to
10.5% (3.7% on average) faster. The improvement over SRRIP comes from the
fact that DTIP differentiates the cache lines by their data-dependency types.
DTIP is able to benefit from this information by inserting the new lines in a
more optimal position in the recency stack so that different access patterns that

Fig. 2. Performance of TTIP and DTIP

256 V. Dimić et al.

collide in LLC have least possible negative effects on each other. DTIP reduces
MPKI by 3.1% on average and is faster 0.3% than DRRIP.

Even though it shows higher MPKI than DTIP on average, TTIP achieves
better execution time. The contributor to this effect is cg, where DTIP fails to
achieve a speedup comparable to TTIP and DRRIP. The largest task type, which
performs a matrix-vector multiplication, is the main source of MPKI improve-
ment of DTIP over TTIP. However, three smaller, but still important tasks,
show higher execution time with DTIP due to increased number of misses to
inputs and non-dependencies. The improvement in execution time achieved in
the largest task is not enough to compensate losses in three smaller tasks, because
hits in the largest task are hidden by the unavoidable misses to the matrix.

4.5 Design Costs

To store the state of the recency stack, both TTIP and DTIP need 2n bits per
cache set, the same as DRRIP, whereas LRU requires n log n bits per set, where
n is the cache associativity. In the system evaluated in this work (n = 16), RRIP
policies consume 2× less space than LRU.

The mapping table required by TTIP has 4 entries, one for each core. Prob-
abilities are stored with resolution of 6 bits, making the size of the structure
4 × 6 bit = 3B. In addition, TTIP requires 4 hardware counter registers, each
one being 32 bit long. The total additional hardware cost required by TTIP is
3B + 4 × 32 bit = 19B. After each task instance, the runtime reads the corre-
sponding hardware counter and potentially sets the new probability for the new
task instance, which incurs overhead of few instructions. Calculating the best
probability after the training period takes less than hundred instructions.

The mapping table for DTIP technique contains 32 pairs of 48-bit physical
addresses, thus providing each core with 8 entries, which is more than enough
to cover the most demanding tasks in regards to number of data-dependencies.
In the case of larger demand for mapping table entries, smaller, less important
dependencies can be omitted or merged with another dependency of the same
type without degrading the performance. The total size of the mapping table is
32×2×48 bit = 348B. When a new task instance is scheduled for execution, the
mapping table is updated with data-dependencies of the task. Upon completion
of a task, the runtime clears the entries from the mapping table that belong only
to that task. Both actions require several tens of instructions. The total runtime
overhead in terms of number of instructions is negligible when compared with
the total number of instructions of any benchmark that we use.

5 Conclusions

Improving LLC performance is of great importance in modern and future sys-
tems. In multi-core processors, threads generating various access patterns are
competing for LLC resources. To achieve best performance, it is necessary to
protect certain access patterns from being thrashed by accesses coming from

Runtime-Assisted Shared Cache Insertion Policies 257

another thread. In this paper we aim to exploit semantic information about
applications written in data-flow task-based programming model to better man-
age the LLC. The runtime system provides the information about task types
and task data-dependencies to the LLC in order to improve the insertion policy.
We propose two techniques:

TTIP - Task Type aware Insertion Policy tries to determine the best probability
for inserting lines in the recency stack by using runtime-guided dynamic app-
roach that evaluates the performance of several pre-set probabilities and chooses
the best performing one.
DTIP - Dependency Type aware Insertion Policy is a static policy that inserts
lines in the recency stack based on the type of data-dependency they belong to.
Data that will be used by the next tasks is given more chance to stay in cache
by inserting it in higher positions of the recency stack, while read-only data is
given less priority.

Our policies use the runtime system for providing the hardware with the nec-
essary information for determining appropriate insertion positions, which sim-
plifies hardware design. The overheads of the runtime extensions are negligible.
The performance benefits compared to LRU are significant for both policies.
TTIP performs slightly worse than DRRIP, but uses simpler hardware. DTIP
performs better than DRRIP on average, which proves the benefits of using run-
time information about the application in designing LLC replacement policies.
In comparison with DRRIP, our policies do not use set dueling monitors and do
not require a decoder for determining dedicated follower sets.

Possible improvements for TTIP include discarding probabilities that per-
form badly from the training process. DTIP can be extended to distinguish
between dependencies, since different dependencies of the same type may have
slightly different access patterns that benefit from different insertion positions.
Further benefits could be obtained by also taking into account task type.

Acknowledgments. This work has been supported by the RoMoL ERC Advanced
Grant (GA 321253), by the European HiPEAC Network of Excellence, by the Span-
ish Ministry of Science and Innovation (contract TIN2015-65316-P), by Generalitat de
Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272). V. Dimić has been partially
supported by AGAUR of the Government of Catalonia (contract 2017 FI B 00855).
M. Moretó has been partially supported by the Ministry of Economy and Competitive-
ness under Juan de la Cierva postdoctoral fellowship number JCI-2012-15047. M. Casas
has been supported by the Secretary for Universities and Research of the Ministry of
Economy and Knowledge of the Government of Catalonia and the Cofund programme
of the Marie Curie Actions of the 7th R&D Framework Programme of the European
Union (contract 2013 BP B 00243).

258 V. Dimić et al.

References

1. Belady, L.A.: A study of replacement algorithms for a virtual-storage computer.
IBM Syst. J. 5, 78–101 (1966)

2. Bienia, C.: Benchmarking modern multiprocessors. Ph.D. thesis, Princeton (2011)
3. Blumofe, R., Joerg, C., Kuszmaul, B., et al.: Cilk: an efficient multithreaded run-

time system. J. Parallel Distrib. Comput. 37, 55–69 (1995)
4. Casas, M., et al.: Runtime-aware architectures. In: Träff, J.L., Hunold, S., Versaci,

F. (eds.) Euro-Par 2015. LNCS, vol. 9233, pp. 16–27. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48096-0 2

5. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the Chapel
language. Int. J. High Perform. Comput. Appl. 21, 291–312 (2007–2008)

6. Chasapis, D., Casas, M., Moretó, M., Vidal, R., Ayguadé, E., Labarta, J., Valero,
M.: PARSECSs: evaluating the impact of task parallelism in the PARSEC bench-
mark suite. In: TACO (2015)

7. Chen, W., Liu, P., Stelzer, K.: Implementation of a pseudo-LRU algorithm in a
partitioned cache, US Patent 7,069,390 (2006)

8. Davis, T., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans.
Math. Softw. 38(1), 1 (2011)

9. Jaleel, A., Theobald, K.B., Steely Jr., S.C., Emer, J.: High performance cache
replacement using re-reference interval prediction (RRIP). SIGARCH Comput.
Arch. News 38, 60–71 (2010)

10. Jaulmes, L., Casas, M., Moretó, M., et al.: Exploiting asynchrony from exact for-
ward recovery for due in iterative solvers. In: SC (2015)

11. Kale, L.V., Krishnan, S.: CHARM++: a portable concurrent object oriented sys-
tem based on C++. In: OOPSLA (1993)

12. Manivannan, M., Papaefstathiou, V., Pericas, M., Stenstrom, P.: RADAR:
runtime-assisted dead region management for last-level caches. In: HPCA (2016)

13. Manivannan, M., Stenstrom, P.: Runtime-guided cache coherence optimizations in
multi-core architectures. In: IPDPS (2014)

14. Sun Microsystems: UltraSPARC T2 supplement to the UltraSPARC architecture
2007, draft D1.4.3 (2007)

15. OpenMP Arch. Rev. Board: OpenMP Application Program Interface, v4.0 (2013)
16. Pan, A., Pai, V.S.: Runtime-driven shared last-level cache management for task-

parallel programs. In: SC (2015)
17. Papaefstathiou, V., Katevenis, M.G., Nikolopoulos, D.S., Pnevmatikatos, D.:

Prefetching and cache management using task lifetimes. In: ICS (2013)
18. Qureshi, M., Jaleel, A., Patt, Y., Steely, S., Emer, J.: Set-dueling-controlled adap-

tive insertion for high-performance caching. In: Micro. IEEE (2008)
19. Qureshi, M.K., Jaleel, A., Patt, Y.N., Steely, S.C., Emer, J.: Adaptive insertion

policies for high performance caching. In: ISCA (2007)
20. Qureshi, M.K., Lynch, D.N., Mutlu, O., Patt, Y.N.: A case for MLP-aware cache

replacement. In: ISCA (2006)
21. Reinders, J.: Intel Threading Building Blocks. First edn. (2007)
22. Rico, A., Duran, A., Cabarcas, F., Etsion, Y., Ramirez, A., Valero, M.: Trace-driven

simulation of multithreaded applications. In: ISPASS (2011)
23. Rico, A., Cabarcas, F., Villavieja, C., et al.: On the simulation of large-scale archi-

tectures using multiple application abstraction levels. In: TACO (2012)
24. Shewchuk, J.R.: An introduction to the conjugate gradient method without the

agonizing pain. Technical report (1994)

http://dx.doi.org/10.1007/978-3-662-48096-0_2

Runtime-Assisted Shared Cache Insertion Policies 259

25. Teruel, X.: OmpSs quick overview, a practical approach (2013)
26. Valero, M., Moreto, M., Casas, M., Ayguade, E., Labarta, J.: Runtime-aware archi-

tectures: a first approach. Supercomp. Front. Innov. 1, 29–44 (2014)
27. Wu, C.J., Jaleel, A., Hasenplaugh, W., et al.: SHiP: signature-based hit predictor

for high performance caching. In: MICRO (2011)
28. Wulf, W.A., McKee, S.A.: Hitting the memory wall: implications of the obvious.

SIGARCH Comput. Arch. News 23, 20–24 (1995)

Rewriting System for Profile-Guided Data
Layout Transformations on Binaries

Christopher Haine1(B), Olivier Aumage2, and Denis Barthou3

1 LaBRI, University of Bordeaux, Bordeaux, France
christopher.haine@inria.fr

2 Inria, Bordeaux, France
olivier.aumage@labri.fr

3 Bordeaux INP, Bordeaux, France
denis.barthou@inria.fr

Abstract. Careful data layout design is crucial for achieving high per-
formance. However exploring data layouts is time-consuming and error-
prone, and assessing the impact of a layout transformation on perfor-
mance is difficult without performing it. We propose to guide appli-
cation programmers through data layout restructuring by providing a
comprehensive multidimensional description of the initial layout, built
from trace analysis, and then by giving a performance evaluation of the
transformations tested and an expression of each transformed layout.
The programmer can limit the exploration to layouts matching some
patterns. We apply this method to two multithreaded applications. The
performance prediction of multiple transformations matches within 5%
the performance of hand-transformed layout code.

Keywords: Performance tuning · Data layout restructuring · Memory
traces

1 Introduction

Adapting data allocations and structures to the way data is used is a key opti-
mization for parallel architectures. Changing data layout can enhance spatial
data locality and memory consumption, having a large impact on code perfor-
mance. Associated with instruction rescheduling and loop nest transformations,
layout restructuring has a strong impact on vectorization and may lead to a bet-
ter use of cache hierarchy, through temporal and spatial locality. Data restruc-
turing is a global optimization in general, requiring interprocedural analysis,
and in languages such as C, possible aliases hamper the scope of transforma-
tions. When considering combined data layout and control-flow transformation,
dependence analyse is further limits the applicability of the methods. Finally,
due to the complexity of memory hierarchy, the impact on performance of a
data structure change is difficult to assess. To illustrate this difficulty, the sim-
ple choice between an array of structures (AoS) or a structure of arrays (SoA)

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 260–272, 2017.
DOI: 10.1007/978-3-319-64203-1 19

Rewriting System for Profile-Guided Data Layout Transformations 261

is highly dependent on the use of the structure. Depending on the locality of
data, it may be beneficial to use the SoA version if when using a single field at a
time or the AoS version when using multiple fields (such as a complex number,
for instance). For a parallel code, an Array of Structures of Vectors/Arrays may
have to be considered, resulting in portability issues and unacceptable program
complexity for the human programmer [18].

Several works have studied data layout restructuring for specific applica-
tions [13,22] and for stencils [10]. In a recent work [1] we proposed a framework
to analyze binary codes, and to formulate user-targeted hints about SIMDization
potentials and hindrances. These hints provide the user with possible strategies
to remove SIMDization hurdles, such as code transformations or data restruc-
turing. However, this preliminary work conducted a qualitative analysis only,
thus lacking an estimation in the transformation gains. In [8], we proposed a
more quantified approach, to detect simple arrays and structures from execution
traces, and suggest promising data layout transformations.

This paper proposes a novel approach for data restructuring. A formalization
of data structures and of their transformations is described, independently of any
control-flow or rescheduling optimization. We show that this framework can be
used from memory traces in order to provide a quick assessment of potential
gains (or lack of) to be expected from some transformations. For this purpose,
we show how to setup mock-up executions for an application, in order to evaluate
the impact of the transformation without the need to actually change the whole
data structures or re-execute the whole application. This approach is evaluated
on two real applications parallelized with OpenMP, combining restructuring and
vectorization. The contributions proposed in this paper are the following:

– Description of data structure layouts and their transformations, independently
of control-flow optimizations;

– Generation of mock-up codes with restructured layouts;
– Performance evaluation of mock-ups, with and without SIMDization.

The paper is organized as follows: Sect. 2 presents two motivating examples with
sub-optimal data layout. Section 3 describes a method for finding an initial multi-
dimensional layout matching a trace, and the possible transformations. Section 4
presents the evaluation methodology. The experimental results are discussed in
Sect. 5 and Sect. 6 presents related work.

2 Motivating Examples

From a user perspective, abstract data types correspond to algorithmic require-
ments, but choosing the actual data layout requires to take compiler, runtime
support and architectural constraints into consideration. We illustrate this gap
between the data layout chosen for the two following applications. In the cardiac
wave simulation [23], the hot spot of the OpenMP version of the application
uses a large 4D array to store the whole data structure, as shown in Fig. 1. The
first 2 dimensions have starting index of 1, creating unnecessary gaps between

262 C. Haine et al.

Fig. 1. Two examples of codes needing data layout restructuring. In the Cardiac wave
simulation, the 4-D array datarr is used as an array of structures. For the QCD
simulation, all elements are complex double values. The space iterated by the outer
loop is a 4-D linearized space and the indirection used for U accesses the white elements
of a 4-D checkerboard.

lines. The third dimension is used as a structure with numbered fields, and the
fourth dimension has a spatial locality issue, since it is indexed with the parity
of the computation step (to keep only the previous computation results). While
reordering dimensions here is not very complex, the ordering and locality choices
for the last dimension depend on the computation itself and on the architecture.

The second example considered is a Lattice QCD application, based on
ETMC simulation [2]. The hotspot of the application performs several matrix-
vector computations. Each matrix is described as an element of a large array,
U. The space iterated by iL is a 4D linearized space. In this 4D space, only
the white elements of a checkerboard are accessed, through an indirection array.
Deciding how to restructure this array and whether it is worth to get rid of the
indirection is important for the code performance. This example is difficult to
analyze statically and would require some additional information from the user.
An analysis based on traces on the contrary would capture the regularity of the
accesses, in spite of the indirection.

Fig. 2. Example trace for Qiral for array U accesses, simplified 2D version for concise-
ness. Each color in the map represents one line of the trace. (Color figure online)

Rewriting System for Profile-Guided Data Layout Transformations 263

3 Layout Description and Transformations

We give here a formal description for layouts and rules for transforming them.

3.1 Data Layout Description

Data structures are considered as any combination of arrays and structures, of
any length. A layout is the description of this structure and of the elements that
are accessed in it. A layout can be defined only for a limited code fragment.
When considering a syntactic memory access expression in the code, it defines a
set of memory address values. This set can be denoted as base+ I where base is
the base address and I is the set of positive integers, including 0. All addresses
are within a range [base, base + d − 1] where d is the diameter of I. The set of
offsets I can be represented by a layout function SI,d, characterizing I:

SI,d : [0, d − 1] → {0, 1}
x → 1 if x ∈ I, 0 otherwise

SI,d is called a structure layout. If I = [0, d − 1] (all elements are accessed),
S[0,d−1],d is more specifically called an array layout, denoted Ad. Note that these
terms of arrays and structures may not correspond to the structures really occur-
ring in the source code. To build a multidimensional data structure, we define
the product operator ⊗ and the sum ⊕ on layout functions L1 and L2:

L1 ⊗ L2 : I1 × I2 → {0, 1}
x, y → L1(x) ∗ L2(y)

L1 ⊕ L2 : I → {0, 1}
x → L1(x) + L2(x)

For the product, the two layout functions L1 and L2 may have two different
domains, I1 and I2. For the sum, the domain of the two functions must be
the same. The + operation is a saturated addition between integers. With this
notation, Array of Structures correspond to the combination of the two types
of layout, described by Ad′ ⊗ SI,d for some values of d, d′ and I. The formal
description corresponds to the intuitive representation of the data. The same
factorization identities exist with ⊕ and ⊗ as with integers. Some simplifications
are possible between expressions involving both operators:

(SI,d ⊗ L) ⊕ (SJ,d ⊗ L) = SI∪J,d ⊗ L, (L ⊗ SI,d) ⊕ (L ⊗ SJ,d) = L ⊗ SI∪J,d.

3.2 Finding the Initial Multidimensional Layout

In the general case, the memory accesses are given as flat, linearized addresses.
The objective of this section is to find out the different multidimensional lay-
outs used in the code fragment considered. On the source code, finding whether
two memory accesses correspond to the same array region correspond to an
alias analysis. Delinearization can be used in some simple cases to retrieve the
multidimensional structure associated to the addresses. Because indirections or
complex operations can be involved in the address computation, as shown in

264 C. Haine et al.

the two codes given as motivating examples, we propose in this paper to resort
to memory traces. The code fragment is executed and all memory accesses gen-
erate a trace. This trace is compacted on-the-fly with the NLR method [12] in
order to find possible recurring stride patterns. The following rewriting system
transforms a flat layout into a multidimensional layout:

SI,m → SJ,n ⊗ Ap if I = {j ∗ p + k, j ∈ J, k ∈ [0, n]} (1)
SI,m → An ⊗ SJ,p if I = {k ∗ p + j, j ∈ J, k ∈ [0, n]} (2)

Sn∗I+p,m∗n → SI,m ⊗ S{p},n if p < n (3)

with n ∗ I + p = {n ∗ i + p, i ∈ I}. The first rule corresponds to the case where
the initial layout is a structure of array, the second to an array of structure,
and the third is the general case, where two structures layouts have been lin-
earized. The initial multidimensional layout can be found by applying these rules
iteratively until convergence. The rewriting system is confluent and convergent.
Convergence comes from structures with diminishing sizes. We assume that array
layouts are not rewritten. Confluence entails that the rules can be applied in any
order and results from the fact that there is only one way to rewrite any given
part of the addresses.

We apply the previous algorithm to restructure the trace given in Fig. 2. The
trace, given as a for..loop enumerating addresses, is a simplified version for the
memory access of matrix U (2D case, only first statement, no outer dimension).
The following initial structure corresponds to the set of values accessed by the
trace:

U + S{2048∗[0,255]+4∗[0,255]},d
⊕ S{2048∗[0,255]+4∗[0,255]+1},d ⇒
⊕ S{2048∗[0,255]+4∗[0,255]+1024+2},d
⊕ S{2048∗[0,255]+4∗[0,255]+1024+3},d

U + A256 ⊗ S{0},2 ⊗ A256 ⊗ S{0,1},4
⊕ A256 ⊗ S{1},2 ⊗ A256 ⊗ S{2,3},4

Applying Rule 3, then merging the first two lines and the last two, and then
applying Rule 2 and finally Rule 1 leads to the formulation on the right. This
corresponds to an AoSoAoS: This is an array of 2 lines, even lines and odd lines.
Even lines have 256 elements that are structures of 4 doubles, using only the
first 2. Odd lines have 256 elements having 4 doubles, using only the last 2. This
is represented in Fig. 2.

3.3 Transformations

We define layout transformations as rewriting rules that applies on the layouts
described in previously defined formalism. For these rules, rules applying to
structures S are assumed not to apply to arrays. If SI,d(x) = 1, we will rather
write it as: Sd. #I corresponds to the number of elements in I:

Rewriting System for Profile-Guided Data Layout Transformations 265

L ⊗ L
′ → L

′ ⊗ L (4)
An∗m → An ⊗ Am (5)

SI,n ⊗ SJ,m → SI′,n∗m, if#I
′
= #I × #J (6)

SI,d → SI′,d′ , if#I = #I
′
, d ≤ d

′ (7)

Rule 4 permutes two layouts, Rule 5 cuts an array in two arrays. Rule 6 merges
two structure layouts and the last one, Rule 7, removes unused elements in a
structure. In a layout expression composed of different terms in a ⊕, all terms
of the sum at the same position must be rewritten with the same rule, since it
corresponds to the same sub-structure. All transformations preserve the number
of elements in the layouts.

3.4 Exploring Layouts

The previous rewriting system generates a finite but potentially large number of
layouts. We propose a strategy to limit the exploration. Rule 5 is only applied at
most once to split an array for SIMDization purposes. One of the created array is
then permuted in the rightmost position of the term in order to create a possible
vector of elements. Rule 7 is applied whenever possible. Rule 6 simplifies code
generation by fusing contiguous dimensions. This rule is only applied at the end
of the rewriting. To further reduce exploration, we propose to guide the gener-
ation by proposing patterns of layouts. For instance, SIMDization requires that
the layout ends with an array. Only terms in the form of the regular expression
∗ ⊗ A are considered. For instance, on the two examples shown as motivating
examples, we look for layouts of the form ∗⊗A or ∗⊗A⊗Sc (with Sc the struc-
ture corresponding to complex numbers). This leads to the layouts presented in
the following table:

Code Initial Layout Transformed Layouts [short name]
Qiral excerpt AL ⊗ S{1},d ⊗ Sm ⊗ Sc AL/v ⊗ Sm×c ⊗ Av [AoSoA-dbl]
Qiral precond.
excerpt

⊕

x,y,z,t≡0[2]
(
⊗

k=x,y,z,t

Al ⊗ Sk,2) AL/v ⊗ Sm ⊗ Av ⊗ Sc [AoSoA-cplx]

⊗S{1},d ⊗ Sm ⊗ Sc

Sm×c ⊗ AL [SoA-dbl]
Sm ⊗ AL ⊗ Sc [SoA-cplx]

Qiral application AL ⊗ Sd ⊗ Sm ⊗ Sc AL/v ⊗ Sd ⊗ Sm×c ⊗ Av [AoSoA]
Sd ⊗ Sm ⊗ AL [SoA]

Cardiac Wave AX ⊗ AX ⊗ S{0},a ⊗ S{0},s AX ⊗ AX

The preconditioned version for QIRAL has a detected 4D checkerboard pat-
tern, here expressed in a concise form, and v has the size of a SIMD vector.
Checkerboard compression leads to the same transformations, only with L half
the size. The QIRAL excerpt corresponds to the code presented as the motivating
example while the application includes a larger scope of code.

4 Transformation Evaluation

This section deals with the quantified part of the user feedback we provide. The
idea is to estimate the potential speedup of transformations in order to help the
user make a choice for data restructuring.

266 C. Haine et al.

4.1 Principle of Mock-Up Evaluation

We propose an evaluation methodology that explores a set of different layout
transformations. Because these transformations are based on the values col-
lected by memory traces, the generated transformed codes are in general not
semantically equivalent to the initial code, outside of the trace. However they
can serve as performance mock-ups. The idea is to measure possible performance
gains of the application by executing the mock-ups. To preserve the application
execution conditions, the mock-up is executed in the context of the applica-
tion. Checkpoint/restart technique is used for this objective: Assuming the user
knows the hotspot of the application, the original binary code is patched with a
checkpoint right before the hotspot and then run until the checkpoint is reached.
This checkpoint generates an execution context, used for capturing the trace and
running/evaluating the mock-ups. The binary code is instrumented in order to
collect the memory trace and restarted from this context. Then several layout
transformations are applied on the initial code, generating new versions of the
code that are restarted from the same context. As the checkpoint/restart mech-
anism preserves the memory addresses in use, the addresses and sizes of layouts
captured in the trace can be reused in the mock-up codes. We rely on this prop-
erty for generating data layout copies and the transformed codes. Our approach
does not preserve however the hotspot cache state. Cache warm-up may be a
solution to this issue, but goes beyond the scope of this paper. Mock-ups are
stopped when the control leaves the hotspot and the timing is deduced at this
point. For checkpoint/restart, we resort to the BLCR library [9].

4.2 Automatic Mock-Up Generation Technique

Mock-ups are generated at compile time, as library functions. A mock-up corre-
sponds to the initial hotspot, with different memory accesses and their address
computation. The rest of the computation itself corresponds to the original code.
Before executing the mock-up, the data layout has to be created and data copied.
This copy-in operation is guided by the trace information. The objective is to
optimize the hotspot performance, and to push away the copies from the kernel
to minimize their impact, avoiding cache pollution due to the copy itself. We
choose to move the copy up to the beginning of the function if applicable, the
limit being the last write on the array we want to restructure. This is deter-
mined automatically by trace inspection. The sequence of transformation rules
applied to the initial layout corresponds also to transformations on the iterators
of these structures. The copy codes are simple loops changing one layout, with
one iterator, into another. For the indexation of data in the computation code,
the control is kept unchanged. New scalar iterators are created in order to map
the previous index to the new index. For this, the trace provides for each indi-
vidual assembly instruction the sequence of addresses accessed. This sequence
of indices is transformed into a sequence of new indices, of the new layout. The
binary code is parsed with the MAQAO tool [3], and the modified code of the
mock-up is generated in a C file, using inline assembly. The advantage of this

Rewriting System for Profile-Guided Data Layout Transformations 267

approach is to rely on the compiler for an optimized register allocation for all
the new induction variables added for indexing, and for removing dead code. For
instance, the loads corresponding to the indirection are removed when reindex-
ing the data structure in a simpler way. The code generated is only valid within
the scope of the values collected by the trace.

4.3 Combining Layout Restructuring with SIMDization

Data restructuring is a SIMDization-enabling transformation, as data can be
placed contiguously to fill a vector. We perform SIMDization whenever depen-
dences allows it, impacting the control (loops) of the hotspot. From the trace
analysis, we build a dependence graph that determines whether some arrays can
be vectorized. We rely on MAQAO for this analysis [1], as well as for the detec-
tion of loop structures and for loop counters. The generated vectorized loop has
a shorter loop trip count by a factor equal to the architecture vector size. This
loop trip count is retrieved from the memory traces. All instructions involving
the initial data structure have to be replaced by their vectorized counterpart,
including load and stores. Some compiler optimization can be untangled, such as
partial loads that are replaced by a single packed load operation. Reductions are
detected through dependence graph analysis, and are replaced using horizontal
operations. We detect read-only arrays or constants and unpack them. However,
our SIMDization step from binary code to assembly code (inline assembly) is
still fragile and essentially only applies a straightforward vectorization scheme.

5 Experimental Results

The objective of the section is to show how relevant the speedup hints are, in the
sense that they provide useful advice to the programmer. To do so, we compare
our mock-up speedups with the actual performance observed by restructuring
the C code by hand, using layouts defined in Sect. 3.4. All experiments are con-
ducted on an Intel(R) Xeon(R) CPU E5-2650 2 GHz 2*8-core processor with
SSE2 features, using icc 15.0.0 and gcc 5.3.1 compilers, both with -O3 flag.

Lattice QCD: Figure 3 shows performance of both mock-ups and hand-
transformed codes for the loop nest in Fig. 1.(b). The hand-tuned code focuses
only on restructuring layout and does not perform explicit SIMDization. It
appears that gcc does not vectorize the code when handling complex data types
and performs poorly even compared to the non-vectorized mock-ups. For the
code without preconditioning (left graph), all mock-ups predict performance
improvement for each of the four transformation presented, with an average
relative error of 16% compared to the hand-tuned codes. For AoSoA-cplx, the
mock-up under-estimate performance. The reasons comes from the fact that icc
optimizes the complex multiply and the load/stores, outperforming the naive
SIMDization of the mock-up. Similar conclusions hold for the code with even/odd
preconditioning. For the whole multithreaded hotspot function, the manually

268 C. Haine et al.

Fig. 3. Lattice QCD benchmark without preconditioning (left), with even/odd precon-
ditioning (right) speedup, single thread.

restructured version resorts to intrinsics, as the compilers do not manage auto-
vectorization. Predictions for SoA and AoSoA are reliable with an average rel-
ative error of 4%, as shown in Fig. 4, as mock-up SIMDization perform close to
user restructured code. With a packed thread policy and hyper-threading dis-
abled, the multithreaded context does not disrupt the mock-up prediction, since
the code is parallel and compute-bound.

2D Cardiac Wave Propagation Simulation: The hotspot here is not ini-
tially vectorized, but it is successfully vectorized after data layout restructur-
ing; Consequently no intrinsics are used in hand-tuned codes. We study layout
restructuring impact on performance on two different datasets, corresponding
to two different layout sizes. Speedups obtained after restructuring are shown
in Fig. 5 for the Dataset-256. With only the restructuring, the mock-ups exhibit
a speed-up of 2.4× on average. When considering mock-ups with SIMDization,
the gain of SIMDization alone is around 2×. Mock-up prediction average relative
error is 9% too optimistic in this experiment. This over-estimation is explained
by the effect of cache warm-up. In the mock-ups, the data copy loads data in
the cache right before the hotspot. In the application, such “prefetch” is not
performed. The input size is multiplied by a factor 4 using Dataset-512. In

Fig. 4. Lattice QCD application restructuring+SIMD speedup with respect to thread
number.

Rewriting System for Profile-Guided Data Layout Transformations 269

Fig. 5. 2D Wave propagation application restructuring+SIMDization speedup on
dataset-256 (left) or on Dataset-512 (right)—with respect to reference using respec-
tively equal number of threads—average relative error is 9%± 8% (left), 5%± 2%
(right)

this new configuration, restructuring gain is dramatically higher than before,
increasing with the number of threads and reaching roughly 14× with 8 threads,
as application achieves to take full advantage of all private L2 caches. Moreover,
prediction remains consistently slightly overoptimistic as memory cache may be
warmer before kernel execution than actual real application cache, while still
being accurate with an average relative error as low as 5%.

6 Related Work

Many modern languages, in particular object oriented languages, propose a layer
of abstraction between data types and the data layout in memory (hierarchi-
cal arrays, C++ libraries). However, few works propose to restructure existing
data, in codes written in C or Fortran. This abstraction layer is also provided by
libraries, hiding in particular the complexity of AoSoA layouts with SIMDization
to the user (Cyme [6], Boost:SIMD or Kokkos [5], to name a few). The StructSlim
profiler [16] helps programmers into data restructuring through structure split-
ting. For GPU, copy is performed at transfer time and data layout change is also
performed at this step [20]. Code analysis is performed statically, on OpenCL
for instance. The same approach has been explored for heterogeneous architec-
tures [15], assessing affinity between fields and clustering fields, and devising
multi-phase AoS vs SoA data layouts and transforms. V P 3 [24] is a tool for pin-
pointing SIMDization related performance bottlenecks. It tries to predict perfor-
mance gains by changing the memory access pattern or instructions. However, it
does not propose high level restructuring. Similarly, ArrayTool [14] can be used
to regroup arrays, to gain locality, but there is no deeper change in data lay-
outs. Annotations and specific data layout optimizations with compiler support
has been proposed by Sharma et al. [19]. The source-to-source transformation
requires to describe in a separate file the desired array interleaving. Similarly, the
array unification described by Kandemir [11] and Inter-Array Data regrouping
[4] propose to merge different arrays at compile-time in order to gain locality.

270 C. Haine et al.

The POLCA semantics-aware transformation toolchain is an Haskell framework
offering numerous transformation operators using programmer inserted pragma
annotations [21]. Neither of these approaches provide an assessment of the per-
formance gains to guide the user restructuring or hint generation, and these
compile-time approaches cannot handle indirections. An approach to find a good
layout using profile information has been proposed by [17], but relies on simula-
tion to test the layouts and does not address vectorization or AoS transforma-
tions. Delinearization is the first analysis on the compiler side, in order to be
able to restructure the layout. Parametric delinearization, for some particular
codes, has been proposed by Grosser et al. [7]. Specifically for stencil codes, using
the polyhedral model, Henretty et al. [10] propose a complete restructuring of
layout for SIMDization. This would not apply to the Lattice QCD code with
the even/odd preconditioning (indirection) Compared to the authors previous
work [8], the work presented in this paper gives a more general framework for the
recognition of complex data layouts and systematic exploration of data layouts.
The code generation and SIMDization are automatically achieved, for a given
transformation.

7 Conclusion

We have presented in this paper an original contribution for assessing the impact
on performance of data layout restructuring. The layout transformations, based
on profile information and described by a rewriting system, can be shown and
explained to the user, from the initial layout to the transformed one. These
transformations can then be applied and explored directly on a binary code gen-
erating automatically a new binary code. A set of different restructuring has
been combined with SIMDization and the evaluation has been conducted on
two applications, with different parameters (size of input, preconditioning used)
and using different number of threads. The results show that the performance
prediction of mock-up restructuring is reliable compared to a hand-tuned trans-
formation and SIMDization (below 5% in average of relative error).

References

1. Aumage, O., Barthou, D., Haine, C., Meunier, T.: Detecting SIMDization opportu-
nities through static/dynamic dependence analysis. In: Workshop on Productivity
and Performance (PROPER) (2013)

2. Barthou, D., Grosdidier, G., Kruse, M., Pene, O., Tadonki, C.: QIRAL: a high
level language for lattice QCD code generation. In: PLACES Workshop, Tallinn,
Estonia (2012). arXiv:1208.4035

3. Barthou, D., Rubial, A.C., Jalby, W., Koliai, S., Valensi, C.: Performance tuning
of x86 OpenMP codes with MAQAO. In: Müller, M., Resch, M., Schulz, A., Nagel,
W. (eds.) Tools for High Performance Computing. Springer, Berlin (2010). doi:10.
1007/978-3-642-11261-4 7

http://arxiv.org/abs/1208.4035
http://dx.doi.org/10.1007/978-3-642-11261-4_7
http://dx.doi.org/10.1007/978-3-642-11261-4_7

Rewriting System for Profile-Guided Data Layout Transformations 271

4. Ding, C., Kennedy, K.: Inter-array data regrouping. In: Carter, L., Ferrante, J.
(eds.) LCPC 1999. LNCS, vol. 1863, pp. 149–163. Springer, London (2000). doi:10.
1007/3-540-44905-1 10. http://dl.acm.org/citation.cfm?id=645677.663795

5. Edwards, H., Trott, C.: Kokkos: enabling performance portability across manycore
architectures. In: Extreme Scaling Workshop, pp. 18–24, August 2013

6. Ewart, T., Delalondre, F., Schürmann, F.: Cyme: a library maximizing SIMD com-
putation on user-defined containers. In: Kunkel, J.M., Ludwig, T., Meuer, H.W.
(eds.) ISC 2014. LNCS, vol. 8488, pp. 440–449. Springer, Cham (2014). doi:10.
1007/978-3-319-07518-1 29

7. Grosser, T., Ramanujam, J., Pouchet, L.N., Sadayappan, P., Pop, S.: Optimistic
delinearization of parametrically sized arrays. In: ACM on International Conference
on Supercomputing, pp. 351–360. ACM, New York (2015)

8. Haine, C., Aumage, O., Petit, E., Barthou, D.: Exploring and evaluating array
layout restructuring for SIMDization. In: Brodman, J., Tu, P. (eds.) LCPC
2014. LNCS, vol. 8967, pp. 351–366. Springer, Cham (2015). doi:10.1007/
978-3-319-17473-0 23

9. Hargrove, P.H., Duell, J.C.: Berkeley lab checkpoint/restart (BLCR) for Linux
clusters. J. Phys.: Conf. Ser. 46(1), 494 (2006)

10. Henretty, T., Stock, K., Pouchet, L.-N., Franchetti, F., Ramanujam, J., Sadayap-
pan, P.: Data layout transformation for stencil computations on short-vector SIMD
architectures. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 225–245. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19861-8 13

11. Kandemir, M.T.: Array unification: a locality optimization technique. In: Wilhelm,
R. (ed.) CC 2001. LNCS, vol. 2027, pp. 259–273. Springer, Heidelberg (2001).
doi:10.1007/3-540-45306-7 18

12. Ketterlin, A., Clauss, P.: Prediction and trace compression of data access addresses
through nested loop recognition. In: ACM/IEEE International Conference on Code
Generation and Optimization, pp. 94–103. ACM, New York (2008)

13. Kong, M., Veras, R., Stock, K., Franchetti, F., Pouchet, L.N., Sadayappan, P.:
When polyhedral transformations meet SIMD code generation. In: ACM SIGPLAN
Conference on Programming Language Design and Implementation (2013)

14. Liu, X., Sharma, K., Mellor-Crummey, J.: Arraytool: a lightweight profiler to guide
array regrouping. In: Parallel Architecture and Compilation, pp. 405–416. ACM,
New York (2014)

15. Majeti, D., Meel, K.S., Barik, R., Sarkar, V.: ADHA: automatic data layout frame-
work for heterogeneous architectures. In: International Conference on Parallel
Architectures and Compilation, pp. 479–480. ACM, New York (2014)

16. Roy, P., Liu, X.: StructSlim: a lightweight profiler to guide structure splitting.
In: ACM/IEEE International Conference on Code Generation and Optimization
(2016)

17. Rubin, S., Bod́ık, R., Chilimbi, T.: An efficient profile-analysis framework for data-
layout optimizations. In: ACM SIGPLAN Notices, vol. 37, pp. 140–153. ACM
(2002)

18. Satish, N., Kim, C., Chhugani, J., Saito, H., Krishnaiyer, R., Smelyanskiy, M.,
Girkar, M., Dubey, P.: Can traditional programming bridge the Ninja performance
gap for parallel computing applications? In: International Symposium on Computer
Architecture pp. 440–451. IEEE, Washington, DC (2012)

19. Sharma, K., Karlin, I., Keasler, J., McGraw, J.R., Sarkar, V.: Data layout opti-
mization for portable performance. In: Träff, J.L., Hunold, S., Versaci, F. (eds.)
Euro-Par 2015. LNCS, vol. 9233, pp. 250–262. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48096-0 20

http://dx.doi.org/10.1007/3-540-44905-1_10
http://dx.doi.org/10.1007/3-540-44905-1_10
http://dl.acm.org/citation.cfm?id=645677.663795
http://dx.doi.org/10.1007/978-3-319-07518-1_29
http://dx.doi.org/10.1007/978-3-319-07518-1_29
http://dx.doi.org/10.1007/978-3-319-17473-0_23
http://dx.doi.org/10.1007/978-3-319-17473-0_23
http://dx.doi.org/10.1007/978-3-642-19861-8_13
http://dx.doi.org/10.1007/3-540-45306-7_18
http://dx.doi.org/10.1007/978-3-662-48096-0_20
http://dx.doi.org/10.1007/978-3-662-48096-0_20

272 C. Haine et al.

20. Sung, I.J., Liu, G., Hwu, W.M.: DL: a data layout transformation system for
heterogeneous computing. Innov. Parallel Comp. 2012, 1–11 (2012)

21. Tamarit, S., Mario, J., Vigueras, G., Carro, M.: Towards a semantics-aware trans-
formation toolchain for heterogeneous systems. In: Program Transformation for
Programmability in Heterogeneous Architecture Workshop (2016)

22. Videau, B., Marangozova-Martin, V., Genovese, L., Deutsch, T.: Optimizing 3D
convolutions for wavelet transforms on CPUs with SSE units and GPUs. In:
Wolf, F., Mohr, B., Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 826–837.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40047-6 82

23. Wang, W., Xu, L., Cavazos, J., Huang, H.H., Kay, M.: Fast acceleration of 2D wave
propagation simulations using modern computational accelerators. PLoS ONE
9(1), 1–10 (2014)

24. Wong, D.C., Kuck, D.J., Palomares, D., Bendifallah, Z., Tribalat, M., Oseret, E.,
Jalby, W.: Vp3: a vectorization potential performance prototype. In: Workshop on
Programming Models for SIMD/Vector Processing, February 2015

http://dx.doi.org/10.1007/978-3-642-40047-6_82

Hardware Support for Scratchpad Memory
Transactions on GPU Architectures

Alejandro Villegas1(B), Rafael Asenjo1, Angeles Navarro1, Oscar Plata1,
Rafael Ubal2, and David Kaeli2

1 Department of Computer Architecture, University of Málaga, Andalućıa Tech,
29071 Málaga, Spain

{avillegas,asenjo,magonzalez,oplata}@uma.es
2 Department of Electrical and Computer Engineering, Northeastern University,

Boston, MA, USA
{ubal,kaeli}@ece.neu.edu

Abstract. Graphics Processing Units (GPUs) have become the accel-
erator of choice for data-parallel applications, enabling the execution of
thousands of threads in a Single Instruction - Multiple Thread (SIMT)
fashion. Using OpenCL terminology, GPUs offer a global memory space
shared by all the threads in the GPU, as well as a low-latency local
memory space shared by a subset of the threads. The latter is used as a
scratchpad to improve the performance of the applications.

We propose GPU-LocalTM, a hardware transactional memory (TM),
as an alternative to data locking mechanisms in local memory. GPU-
LocalTM allocates transactional metadata in the existing memory
resources, minimizing the storage requirements for TM support. In addi-
tion, it ensures forward progress through an automatic serialization
mechanism. In our experiments, GPU-LocalTM provides up to 100X
speedup over serialized execution.

Keywords: Transactional memory · Scratchpad memory · GPGPU

1 Introduction

Graphics Processing Units (GPUs) have been adopted as hardware accelera-
tors given their ability to significantly improve the performance of data-parallel
applications. Using OpenCL terminology, GPUs are organized as a set of highly
multi-threaded Single Instruction - Multiple Thread (SIMT) cores called com-
pute units (CUs) and feature two different memory spaces. The global memory
space provides high capacity with high latency. In contrast, the local memory
space (named shared memory in CUDA terminology) features a smaller capac-
ity with lower latency. Programmers are encouraged to use local memory as a
scratchpad to speedup their applications (in fact, 27 out of the 52 sample appli-
cations in the AMD APP SDK for OpenCL prove the benefit from using local
memory).

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 273–286, 2017.
DOI: 10.1007/978-3-319-64203-1 20

274 A. Villegas et al.

Transactional Memory (TM) [6,7] has emerged as a promising alternative to
locking mechanisms to coordinate concurrent threads. TM provides the concept
of a transaction to determine the bounds of a critical section (usually providing
TX Begin and TX Commit functions) enforcing atomicity and isolation. In con-
trast to traditional lock-based mechanisms, transactions are allowed to run in
parallel. A conflict occurs if two transactions have to access to the same mem-
ory location and, at least, one of the accesses is a write. In such situations, one
of the transactions aborts, discarding its updates to memory and restarting its
execution. This is achieved by implementing appropriate conflict detection and
version management mechanisms. Recently, TM solutions have been proposed
for GPU global memory, both software [2,8,10,12] and hardware [3–5].

Motivating Example. The left side of Fig. 1 shows the traditional implemen-
tation of a spinlock. In the SIMT programming model, as threads execute in
lockstep, only one of them is able to get the lock and leave the while-loop (line
1). As there is a divergence in the execution of the program, the SIMT pro-
gramming model sets a convergence point at the end of the while-loop (line 2),
creating an implicit barrier. This implicit barrier forces the thread who acquired
the lock to wait for the rest to finish the execution of the while-loop. This will
never happen, as the lock is held by the waiting thread and the remaining threads
will not leave the while-loop until the lock is released. Thus, the classic spinlock
creates a deadlock in the SIMT programming model. The central part of Fig. 1
shows the required transformation for this spinlock to work. In this case, all the
active threads enter the while-loop (line 2). The convergence point (i.e., implicit
barrier) for this loop is set in line 8, which will be eventually reached by all
the threads. Then, only one of the threads acquires the lock (line 3) inside an
if-statement. In this case, the convergence point is set at line 7. This way, the
threads that did not acquire the lock perform the implicit barrier at line 7, while
the thread that acquired the lock executes its critical section (line 4), sets itself
to go to the convergence point of the while-loop (line 5), and releases the lock
(line 6). With this code transformation we can safely implement coarse-grained
locks in the SIMT programming model.

Fig. 1. Coarse-grained lock implementation in CPUs (left), its required transforma-
tion to avoid deadlocks in the SIMT programming model (center), and the TM-based
solution (right).

Using a coarse-grained lock creates an inefficient serialization of the execution
of the critical sections. Fine-grained locks can help improving parallelism, but

Hardware Support for Scratchpad Memory Transactions 275

its use is complicated and error-prone. Furthermore, its implementation can be
harder in the SIMT programming model, as transformations similar to the ones
shown in Fig. 1 are required in order to avoid deadlocks and livelocks. In addition,
the use fine-grained locks is application-specific and a generic template can not be
provided. Thus, it is hard to implement automatic code transformations similar
to the one explained above. Given these problems, TM has been proposed to
both improve parallelism of the applications and ease programming. The right
side of Fig. 1 shows how simple is the implementation of mutual exclusion using
the TM interface. In order to discuss the performance of the TM implementation,
the applications Hash Table (HT) and Genetic Algorithm (GA) (see Sect. 5 for
a full description) were implemented on a GPU using fine-grained locks (FGL)
as well as with TM to coordinate the execution of 256 threads (work-items
in OpenCL terminology). The implementation of these applications were done
taking advantage of the low-latency provided by the local memory. HT is a
simple application and the 3 implementations require a similar programming
effort. Both the FGL and TM versions outperform the serial execution (90X and
60X, respectively). To implement GA using a FGL approach, lock acquisition
has to be serialized to avoid deadlocks, requiring more programming effort. Also,
execution time increases by 30% due to lock management overhead. However, a
TM-based solution halves the execution time and requires a similar programming
effort as a serial implementation.

This paper introduces GPU-LocalTM, a lightweight hardware TM for local
memory. The goal is to use TM as an efficient alternative to existing methods
(i.e., locks). GPU-LocalTM is designed in a way that reuses existing memory
resources (if active), and can be disabled (if not needed). The conflict detection
and version management mechanisms are distributed per local memory bank,
improving concurrency. Lastly, GPU-LocalTM implements an automatic serial-
ization mechanism that ensures forward progress of the transactions without the
need of any programmer action.

The rest of the paper is organized as follows. Section 2 provides the back-
ground and discusses the related work. Section 3 presents the design of GPU-
LocalTM. Section 4 presents the simulation framework used for evaluation,
and Sect. 5 discusses the experimental evaluation. Finally, Sect. 6 draws the
conclusions.

2 Background and Related Work

Baseline GPU Architecture. We use OpenCL terminology to describe our
baseline GPU architecture, which is the AMD’s Southern Islands [1] (see Fig. 2).
An ultra-threaded dispatcher assigns work-groups (work-groups are a set of com-
puting threads called work-items) to the Compute Units (CUs). A work-group
is assigned to a single CU, but a CU may contain several work-groups. This
architecture supports a maximum of 256 work-items per work-group. This set of
work-items are grouped in 4 wavefronts of 64 work-items executing in lockstep.
Wavefronts are the schedulable unit within the CU. All work-groups share data

276 A. Villegas et al.

through the physical global memory available on the GPU. Work-items within
a work-group have access to the local memory, a low-latency memory used to
speedup applications. Each CU contains a wavefront scheduler, 4 SIMD units
(consisting of vector ALUs and general purpose vector registers), a scalar unit
(with a scalar ALU and general purpose scalar registers), a local data share
(LDS) unit and a L1 data cache.

Fig. 2. Baseline GPU architecture: AMD’s Southern Islands.

The LDS unit, which contains the local memory, deserves special attention
as it is a key component in the GPU-LocalTM design. The LDS included in
each CU features 64 KB distributed across 32 banks with interlaced addressing
(consecutive memory addresses map to consecutive banks). Each work-group
is allowed to use only 32 KB, leaving the other 32 KB reserved for concurrent
work-group execution. The LDS unit is in charge of managing this local mem-
ory. The accesses to local memory issued by a wavefront are scheduled by the
LDS unit, supporting up to 32 coalesced (i.e., without bank conflicts) accesses
simultaneously. Uncoalesced memory accesses are serialized by the LDS unit.

Related Work. To the best of our knowledge, Kilo TM [3–5] is the only existing
hardware TM for GPUs. Kilo TM [5] operates on global memory and implements
conflict detection and version management at commit time (lazy) using a specific
Commit Unit. Kilo TM was improved by considering read-only transactions and
reducing bus communication [4], and to detect conflicts before sending transac-
tions to the Commit Units and to stall transactions that are likely to conflict [3].

In our proposal, we target different applications: Kilo TM addresses appli-
cations that synchronize at global memory and our proposal supports synchro-
nization at local memory. Both memory spaces have different purposes and very
different characteristics. For instance, the difference in latency of both memory
spaces affects application performance, even if they do not use any TM support.
Once both TM approaches are integrated, applications can be developed tak-
ing full advantage of the complete GPU memory model. In addition, we explore
eager (at memory access time) conflict detection and version management, in
contrast to the lazy Kilo TM approach, by adding logic to the LDS unit instead
of having a new dedicated unit for TM.

Hardware Support for Scratchpad Memory Transactions 277

There are a number of software TM proposals for GPUs which only use the
global memory space. Cederman et al. proposes two STM systems for graphics
processors [2], operating at work-group granularity. Xu et al., Holey et al., and
Shen et al. propose different STM approaches working at work-item granular-
ity [8,10,12].

3 GPU-LocalTM Design

GPU-LocalTM is a hardware TM for GPU local memory. Transactional execu-
tion, conflict detection, and, version management are implemented with minor
logic modifications in the wavefront scheduler, SIMD and LDS units. Required
space is taken from the scalar register file and the local memory banks.

Transactional SIMT Execution. In our baseline architecture, control flow of
the SIMT programming model is implemented with predication, using two 64-bit
masks managed by the hardware and the compiler. The execution mask (EXEC)
indicates, per wavefront, the work-items that are running or disabled (one bit
per work-item). The vector comparison mask (VCC) stores, for each work-item
within the wavefront, the resulting Z flag of arithmetic/logic operation. By com-
bining EXEC and VCC, compilers implement loops and conditionals. The VCC
and EXEC masks are mapped into two consecutive 32-bit scalar registers each
one (four 32-bit registers in total) [1].

In order to define the bounds of a transactional block of code, we add two
instructions to the ISA: TX Begin and TX Commit (see Fig. 1). These instruc-
tions work at a wavefront granularity as work-items within the wavefront execute
in lockstep. Local memory operations performed between these instructions are
transactional and are instrumented via hardware for conflict detection and ver-
sion management. The TX Begin sets the beginning of the transaction. When the
TX Commit instruction is reached, the transactional SIMT execution is respon-
sible for restarting the execution of the conflicting work-items (if any).

To implement this, we introduce a new 64-bit transaction conflict mask
(TCM) per wavefront (one bit per work-item). Similarly to EXEC and VCC
masks, TCM is mapped to two consecutive scalar registers. TCM is used to mark
conflicting work-items. The reason for not reusing EXEC is that it is explicitly
managed by the compiler [1] and allowing implicit hardware modifications can
lead to inconsistent situations. When the work-items within a wavefront execute
the TX Begin instruction, the TCM mask is reset (all bits to 0, meaning that
no conflict occurred). If a work-item detects a conflict the corresponding bit in
TCM is set to 1. When this bit is 1, it indicates the such work-item is disabled
(i.e., the enabled work-items are those whose EXEC bit is 1 and whose TCM
bit is 0). If all the TCM bits are 0 when the TX Commit instruction is reached,
then all transactions have finished with no conflicts. In other case, conflicting
transactions must retry the execution by copying TCM to EXEC and returning
to the TX Begin instruction (and, again, TCM is reset).

278 A. Villegas et al.

Fig. 3. Example of transactional SIMT execution. A work-item (WI) is enabled if
EXEC[WI] & !TCM[WI]. Single lines separate transaction executions.

Figure 3 shows an example of transactional execution using TCM. In this
example, during the execution of the transactions, work-item 1 detects a conflict,
is marked by setting its bit in TCM, and is disabled immediately. At commit
time, the rest of work-items successfully complete their transactions and wait
while work-item 1 is restarted. This second time, work-item 1 is able to complete.

Forward Progress. A livelock situation can be detected if the TCM remains
the same after two consecutive transaction re-executions. This means that two or
more work-items were not able to progress, creating an infinite loop. To resolve
this without requiring programmer action, GPU-LocalTM includes a two-level
serialization mechanism: wavefront serialization (WfS) mode and work-group
serialization (WgS) mode.

The basic WfS mode is enabled when a livelock situation is first detected. In
this mode, the transaction is retried a third time but, instead of clearing TCM
at the beginning of the transaction execution, only one of the active bits is reset.
This action results in the execution of the only selected work-item within the
wavefront during the next transaction retry (i.e., the rest are already marked as
conflicting). If the execution ends with no new conflicts, the transaction is again
retried but in normal mode (i.e., not using WfS). Otherwise, the conflict may
come from a work-item that belongs to a different wavefront. In such situations,
the basic WfS mode transfers to the basic WgS mode. In this mode, only the
current wavefront re-executes transactionally. Transactions executing in other
wavefronts are aborted, rolled back and stalled at the TX Begin instruction
until the selected work-item ends execution. Now that a single work-item within
the work-group is accessing local memory, no conflicts can occur and forward
progress is assured. After this execution, the transaction returns to normal mode
and the stalled wavefronts are allowed to continue execution.

Version Management. GPU-LocalTM uses eager version management, where
new local memory values are stored in place while old values are saved on the
side. Specifically, old values are stored in a memory area called shadow memory,
allocated in local memory. These values are used to restore the original state
of the local memory in case of a transaction abort. As the local memory is
multi-banked (32 banks in the case of our baseline GPU architecture), version

Hardware Support for Scratchpad Memory Transactions 279

Fig. 4. Version management (LDS unit) and register checkpointing (SIMD units) (a)
and shadow memory organization (b).

management and conflict detection can be carried out concurrently in different
banks (i.e., there is a shadow memory per bank). The shadow memory area is
organized in two spaces (see Fig. 4(a)): a backup space with enough room to
store backups for all of the local memory variables declared within the kernel
allocated in each bank, and an ownership space.

The shadow memory is organized as in Fig. 4(b): if there is a set of N words
in local memory, a contiguous section of N words is allocated to backup the
values, and after this section, N/4 additional words are reserved to store the
owners. Each word in the ownership region stores 4 owners (1 byte each). Given
this layout, when a memory access is issued to a location k, a backup value is
stored at word position N + k, and the work-item ID (owner) is stored at word
position 2N + k/4, byte k%4. By adopting this scheme, the hardware required
to backup a memory value and store its owner is minimal, as it only performs
integer addition and bit manipulation. In addition, capacity conflicts are avoided,
as each memory location is ensured to have space for its backup. The shadow
memory area is statically allocated by the compiler using the same mechanism
used for regular local memory variables [1,11].

Register Checkpointing. When starting a transaction (TX Begin instruc-
tion), the user-visible non-memory work-item state must be saved (and restored
on transaction abort). This includes vector and scalar registers. Vector registers
are checkpointed to a shadow register file. This is implemented by splitting the
vector register file in each SIMD unit into two equally sized parts. Every two
registers, one for each part, are paired together so as one of them acts as the
backup (shadow) register of the other (see Fig. 4(a)). Scalar registers, on the
other hand, are used to store scalar shared data for an entire wavefront, such as
a for-loop index. As this information is shared by 64 work-items, if some of them
commit their transactions while others abort, the value held by scalar registers
become inconsistent. For this reason, scalar registers are not checkpointed at the
beginning of a transaction. To allow for loops within a transaction, the compiler
must promote the use of work-item-private vector registers.

280 A. Villegas et al.

Conflict Detection. GPU-LocalTM performs eager conflict detection at a
work-item level. During the transactional execution of a wavefront, the LDS
unit serializes all local memory accesses so that, at a given time, a memory
bank is accessed by only one work-item. Parallel accesses to different banks do
not present conflicts, as the banks have different address ranges. Assuming a
multi-bank arrangement, conflict detection proceeds in two steps:

(1) Intra-bank conflict detection: conflicts are detected for memory accesses
within a bank. The conflict detection mechanism works in parallel for all
memory banks. This step is responsible of updating TCM, setting to 1 the
bits for those work-items involved in a conflict.

(2) Inter-bank conflict communication: once a conflict is detected in a memory
bank, it is communicated to the rest of banks in order to remove the shadow
memory entries allocated for the conflicting work-item. This is accomplished
through the TCM, avoiding the need of an expensive broadcast communica-
tion. TCM informs to each memory bank which work-items detected conflicts
(bits set to 1). For each one of these work-items, all the backups are restored
and the associated shadow memory is cleared.

We have designed two strategies for intra-bank conflict detection (inter-bank
conflict communication is common for both approaches).

Directory-Based Conflict Detection (DCD). In order to detect conflicts,
the DCD mechanism checks the ownership information associated to the memory
location being accessed. Valid bit V, required to differentiate empty and non-
empty entries, is stored in vector registers. The number of V bits required is
equal to the number of words allocated in each bank (see Fig. 4(b)). Provided
that N words are allocated, N/32 vector registers are needed to store the V bits.
Depending on the result of the check, three actions may occur (see Table 1(a)):

(1) First (new) access: the shadow memory entry has no owner associated (valid
bit V is 0). A copy of the current value of the memory location is stored in the
corresponding shadow memory entry and its owner is set to the work-item
that made the access (now V is set to 1).

(2) Repeated access: the owner of the shadow memory entry is the accessing
work-item. If the access is a read, the value in memory is returned. If it is a
write, the memory is updated.

(3) Conflict: the owner of the shadow memory entry is a different work-item
than the one that made the access. TCM is updated to mark this conflict,
setting to 1 the bit of the work-item accessing to memory. In addition, the
backup values of the accessing work-item are restored and all ownership
entries in the shadow memory for WI are deleted.

DCD is a simple and precise approach for detecting conflicts, but at the cost
of an additional local memory access to check the ownership records. Note that
this mechanism cannot filter out read-read conflicts.

Hardware Support for Scratchpad Memory Transactions 281

Table 1. Conflict detection using DCD (a) and SMDCD (b). WI is the accessing
work-item, o-WI is other work-item, “0/1” means 0 or 1. “Abort” means the following
actions: restore backup for WI, delete WI ownership entries and set TCM[WI] = 1.

Current State Mem. Next State
Owner V Operat. Owner V Action

Not set 0 Read or Write WI 1 back up value; read or write mem.
WI 1 Read or Write WI 1 read or write memory
o-WI 1 Read or Write o-WI 1 conflict; abort

(a)

Current State Mem. Next State
Owner S M Operat. Owner S M Action

Read WI 0 0 read memory
Not set 1 1 Write WI 0 1 back up value; write memory

Read WI 0 0/1 read memory
WI 0 0/1 Write WI 0 1 write memory

Read WI 1 0 read memory
WI 1 0 Write WI 1 0 Conflict (R→W); abort

Read o-WI 1 0 read memory
o-WI 0/1 0 Write o-WI 0/1 0 Conflict (R→W); abort

Read o-WI 0 1 Conflict (W→R); abort
o-WI 0 1 Write o-WI 0 1 Conflict (W→W); abort

(b)

Shared-Modified DCD (SMDCD). The DCD mechanism can be improved
by adding two state bits per memory location to the ownership records: the S
bit, set to 1 if multiple work-items accessed the location, and the M bit, set to 1 if
the location has been written. These bits replace the valid bit (V) (see Fig. 4(b))
and permit to filter out read-read conflicts. In this case, provided that N words
are allocated per memory bank, N/16 32-bit vector registers are used to store
this information. The new mechanism is called Shared-Modified Directory-based
Conflict Detection (SMDCD).

The case of both state bits set to 1 at the same time is used to encode
the “not set” (i.e., V = 0) owner state. This way, when starting a transaction
(TX Begin), both S and M are set to 1. For each transactional access to local
memory, the SMDCD mechanism carries out the actions specified in Table 1(b).
Accessing a memory location for the first time sets the owner in shadow memory
and performs a backup of the current memory value if the access is a write (bit
M permits to distinguish between reads and writes). A read access to memory
location owned by a different work-item is allowed as long as M is 0. These
accesses set the S bit to 1. If M is, however, 1, a conflict is detected (read after
write). A write access is allowed only if the owner is the accessing work-item and
the memory location was not accessed by another work-item (bit S set to 0).
These accesses set the M bit to 1. Otherwise, they are considered conflict (write
after read, or write after write).

4 GPU-LocalTM Modeling

The implementation of GPU-LocalTM requires changes to the GPU microarchi-
tecture. We have implemented these changes using the Multi2sim 4.2 simulation

282 A. Villegas et al.

framework [11] which supports the AMD Southern Islands family of GPUs. These
changes introduce memory and latency overheads in the microarchitecture.

Latency Overhead. The TX Begin and TX Commit instructions are modeled
as scalar instructions with an extra cycle of latency to manage the EXEC and
TCM masks. Accesses to shadow memory are modeled as local memory accesses,
plus an extra cycle used to manage the state bits.

Storage Overhead. Storage resources required in GPU-LocalTM are taken
from those available in the CU. The amount of local memory available per work-
group depends on the size of the shadow memory. If the user requests N words to
store local variables, the shadow memory allocates another N words for backups
and N/4 words for the ownership records (see Fig. 4). As the physical amount of
local memory is 64KB, the maximum value of N is 29126 bytes and N/4 is 7282
bytes. This represents and overhead of ∼56% of the total local memory space.
Vector registers are used to store the state bits. In the case of DCD, we need
to store a V bit per word, requiring a maximum of 228 registers This supposes
∼0.3% of 65536 available. In the case of SMDCD, the number of registers needed
doubles. The 4 TCMs required for a work-group (one per wavefront) use 8 scalar
registers (two 32-bit registers for a 64-bit TCM, ∼0.4% of 2048 available). GPU-
LocalTM may require to use the full amount of physical memory (64KB) for
memory-demanding workloads, reducing potential concurrency. GPU-LocalTM
is designed with the principle of not adding extra memory resources and to be
fully configurable: no TM-dedicated memory needs to be added and the amount
memory available is not affected if no TM support is needed. Furthermore, the
programmer (or compiler) can opt for a lock implementation if no resources are
available for TM support, and the runtime can assign new work-groups to a
different CU to improve concurrency.

5 Evaluation

We have designed eight TM benchmarks to evaluate GPU-LocalTM in specific
scenarios. All the experiments execute a single work-group with the maximum
number of work-items allowed (i.e., 4 wavefronts of 64 work-items each, for a
total of 256 work-items). The benchmarks are implemented in 3 different ver-
sions: a TM version, a fine-grained locks (FGL) or atomics version, and a third
version serializing the critical section. In addition, each application uses two dif-
ferent inputs to test different levels of contention: high contention (HC) and low
contention (LC). Table 2 summarizes the descriptions of these workloads.

Note that the HT, IT, DB and QU implementations using atomics are simple
and the programming effort is comparable to the use of TM. However, GA, KM,
GC and VA require extra lock management for FGL (17%, 10%, 42%, and 22% of
the total code, respectively). The DB and QU applications are prone to conflicts
and are designed to stress the TM to understand the possible sources of overhead

Hardware Support for Scratchpad Memory Transactions 283

(i.e., they test the TM beyond its expected capabilities). The serialization of the
critical section is implemented by delegating the work of the whole work-group to
a single work-item.

Table 2. Characteristics of the applications used for evaluation

Bench. Description Bench. Description

HT Inserts elements in a hash table,
searching for the desired position.
Features short and read-only
transactions

IT Similar to HT, but uses an
index to point to the desired
position. Features short and
read-modify-write transactions

VA The Vacation workload from the
STAMP [9] suite, adapted and
evaluated for inputs that modify
from 2–4 elements. Features long
transactions with a low probability
of conflict

GA Genetic algorithm used to solve
an optimization problem
searching for the best solution
by combining a set of possible
solutions. Features long and
read-modify-write transactions

GC Decentralized Graph Coloring
algorithm. Features read-only
transactions

KM Implementation of the K-Means
clustering algorithm. Features
long transactions with multiple
memory accesses

DB Simulates an in-memory database
composed of multiple IT tables.
Features multiple memory accesses

QU Simulates the queue and
dequeue operations on a
concurrent queue. Features
short transactions with a high
probability of conflict

Fig. 5. Speedup w.r.t. TX. serialization (higher is better).

Speedup. Figure 5 presents the speedup achieved by the two different conflict
detection strategies (DCD and SMDCD), fine-grained locks (FGL), and when
serializing the critical sections. Performance is relative to serialized execution.
In general, both DCD and SMDCD have similar performance. The exception
are these applications with read-modify-write and read-only transactions that

284 A. Villegas et al.

do not benefit from the SMDCD features. For the first set of applications (HT,
IT, VA, and GC) both TM solutions and FGL outperform serial execution. The
exception is VA when using FGL: the overhead of lock management is too high
and such algorithm is not suitable for the use of fine-grained locks in a SIMT
architecture. In the case of low contention scenarios, the performance of GPU-
LocalTM is similar to FGL for applications such as HT and IT, and is in the same
order of magnitude for GC. The second set of applications (GA, KM, DB, and
QU) present a different scenario. As in VA, the extra lock management required
for GA results in low performance when using FGL. For KM, GPU-LocalTM
and FGL perform similar and close to the serial execution. The reason is that
only 10% of the code of KM is able to take advantage of TM or FGL execution.
DB and QU are challenging scenarios for GPU-LocalTM. The following metrics
help to explain the reasons of their low performance.

Execution Breakdown. Figure 6 shows the execution breakdown using the two
implementations of GPU-LocalTM. In all the scenarios, most of the overhead is
introduced during the memory operations due to conflict detection and version
management. As DCD aborts transactions on read-read conflicts while SMDCD
waits until one of the memory operations is a write. Thus, in some cases, the
overhead of SMDCD is larger as these conflicts are detected later. The overhead
of TX Begin and TX Commit instructions is low and almost unnoticeable.

Fig. 6. Normalized execution breakdown.

Commit Ratio. Figure 7 shows the ratio of transactions committed over trans-
actions started. In general, DCD and SMDCD conflict detection algorithms offer
similar commit ratio. In the case of GA(LC), as transactions perform read-
modify-write operations on the same memory location, DCD has some advantage
over SMDCD as conflicts are detected during the read operation. GA, KM, DB,
and QU suffer of a low commit ratio, harming performance (see Fig. 5). Future
research will reduce the overhead of conflict detection in order to minimize the
impact in performance of applications with a high probability of conflict.

Serialization Mechanism Evaluation. Figure 8 shows the percentage of
transactions that proceed in transactional, WfS and WgS modes. Both DCD and
SMDCD have similar results. We observe that many transactions (up to 90% in

Hardware Support for Scratchpad Memory Transactions 285

Fig. 7. Commit ratio (higher is better).

Fig. 8. Normalized transaction execution mode.

HT with high contention) need to make use of the serialization mechanism. The
reason is that most of the conflicts continue to appear after a transaction retry
due to lockstep execution.

6 Conclusions

In this paper we present GPU-LocalTM as a hardware TM for GPU architec-
tures that focuses on the use of local memory. GPU-LocalTM is intended to
limit the amount of additional GPU hardware needed to support TM. We pro-
pose two alternative conflict detection mechanisms targeting different types of
applications. Conflict detection is performed per-bank, ensuring scalability of the
solution. We find that for some applications the use of TM is not optimal and dis-
cuss how to improve our implementation for better performance. Furthermore,
GPU-LocalTM introduces a serialization mechanism to ensure forward progress.

Acknowledgements. This work has been supported by projects TIN2013-42253-P
and TIN2016-80920-R, from the Spanish Government, and P11-TIC8144 and P12-
TIC1470, from Junta de Andalucia.

References

1. AMD: Southern Islands series instruction set architecture (2012)
2. Cederman, D., Tsigas, P., Chaudhry, M.T.: Towards a software transactional mem-

ory for graphics processors. In: 10th Eurographics Conference on Parallel Graphics
and Visualization (EG PGV 2010), pp. 121–129 (2010)

3. Chen, S., Peng, L.: Efficient GPU hardware transactional memory through early
conflict resolution. In: 22nd International Symposium on High Performance Com-
puter Architecture (HPCA 2016) (2016)

286 A. Villegas et al.

4. Fung, W.W.L., Aamodt, T.M.: Energy efficient GPU transactional memory via
space-time optimizations. In: 46th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO 2013), pp. 408–420 (2013)

5. Fung, W.W.L., Singh, I., Brownsword, A., Aamodt, T.M.: Hardware transactional
memory for GPU architectures. In: 44th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO 2011), pp. 296–307 (2011)

6. Harris, T., Larus, J., Rajwar, R.: Transactional Memory, 2nd edn. Morgan & Clay-
pool Publishers, San Rafael (2010)

7. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: 20th Annual International Symposium on Computer Archi-
tecture (ISCA 1993), pp. 289–300 (1993)

8. Holey, A., Zhai, A.: Lightweight software transactions on GPUs. In: 43rd Interna-
tional Conference on Parallel Processing (ICPP 2014), pp. 461–470 (2014)

9. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford trans-
actional applications for multi-processing. In: IEEE International Symposium on
Workload Characterization (IISWC 2008), pp. 35–46 (Sept 2008)

10. Shen, Q., Sharp, C., Blewitt, W., Ushaw, G., Morgan, G.: PR-STM: priority rule
based software transactions for the GPU. In: Träff, J.L., Hunold, S., Versaci, F.
(eds.) Euro-Par 2015. LNCS, vol. 9233, pp. 361–372. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48096-0 28

11. Ubal, R., Jang, B., Mistry, P., Schaa, D., Kaeli, D.: Multi2Sim: a simulation frame-
work for CPU-GPU computing. In: 21st International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT 2012) (2012)

12. Xu, Y., Wang, R., Goswami, N., Li, T., Gao, L., Qian, D.: Software transactional
memory for GPU architectures. In: Annual IEEE/ACM International Symposium
on Code Generation and Optimization (CGO 2014), pp. 1:1–1:10 (2014)

http://dx.doi.org/10.1007/978-3-662-48096-0_28

Parallel and Distributed Data
Management and Analytics

Execution of Recursive Queries in Apache Spark

Pavlos Katsogridakis1,2, Sofia Papagiannaki1, and Polyvios Pratikakis1(B)

1 Institute of Computer Science,
Foundation for Research and Technology—Hellas, Heraklion, Greece

{katsogr,spapagian,polyvios}@ics.forth.gr
2 Computer Science Department, University of Crete, Rethymno, Greece

Abstract. MapReduce environments offer great scalability by restrict-
ing the programming model to only map and reduce operators. This
abstraction simplifies many difficult problems occuring in generic dis-
tributed computations like fault tolerance and synchronization, hiding
them from the programmer. There are, however, algorithms that cannot
be easily or efficiently expressed in MapReduce, such as recursive func-
tions. In this paper we extend the Apache Spark runtime so that it can
support recursive queries. We also introduce a new parallel and more
lightweight scheduling mechanism, ideal for scheduling a very large set
of tiny tasks. We implemented the aformentioned scheduler and found
that it simplifies the code for recursive computation and can perform
up to 2.1× faster than the default Spark scheduler.

1 Introduction

Modern analytics queries consist of complex computations operated on massive
amounts of data. By restricting the programming model to only map and reduce,
or equivalent operators, MapReduce [5] clusters scale out because they do not
need to track task dependencies, have simpler communication patterns, and are
tolerant to executor and even master node failures. However, this simplified pro-
gramming model cannot easily express some applications, including applications
with nested parallelism or hierarchical decomposition of the data. When faced
with such algorithms, programmers often develop iterative versions that trans-
late recursion into worklist algorithms. This may be inefficient as it introduces
unnecessary barriers from one iteration to the next, and can be unintuitive and
complicated to code.

The Barnes-Hut simulation [3] is an approximation algorithm for particle
simulation with nested parallelism that cannot be easily expressed using flat
map-reduce operators. In its simple two-dimensional version, the simulation first
recursively splits the space into four quads and computes the center of mass for
each, resulting in a tree structure that represents the whole space. In its second
phase, it uses the tree of all the centers of mass to compute the forces applied
to each body in the space. That reduces the N-Body problem complexity from
O(n2) to O(nlogn), by grouping all objects in distant quads into one force.

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 289–302, 2017.
DOI: 10.1007/978-3-319-64203-1 21

290 P. Katsogridakis et al.

Figure 1 shows a simplified version of the recursive query that implements the
second phase of the algorithm. Function calcForces traverses the tree computed
during the first phase, to calculate all the forces applied to a single particle.

1 def calcForces(particle , tree) = {
2 if(isFar(particle , tree, THETA))
3 Array(force(particle , tree))
4 else
5 tree.map(child => {
6 calcForces(particle , child)
7 }).flatten
8 }

Fig. 1. N-Body recursive query

If the particle is far enough
from all particles in the tree,
then the total force can be com-
puted using the center of mass of
the whole space represented by
the tree (lines 2–3). If the par-
ticle is near that space, then the
function recurses to compute all
forces applied to the input parti-
cle by each sub-tree (lines 5–7).
This computation cannot be exe-

cuted using the classic MapReduce abstraction, because it allows only flat map-
reduce operations on the dataset. Assuming the tree argument is a distributed
dataset, the map function would need to recursively apply a map-reduction to
directly code the above algorithm.

In this paper we extend the Apache Spark MapReduce engine [18] to directly
support such nested and recursive computations. Spark is an implementation of
the MapReduce model that outperforms Hadoop [2] by packing multiple oper-
ations into single tasks, and by utilizing the RAM memory for caching inter-
mediate data. We target Apache Spark because it is a widely used, efficient,
state-of-the-art platform for data analytics, and currently the fastest-growing
such open-source platform [4,13].

Spark expresses and executes in-memory fault-tolerant computations on
large clusters using Resilient Distributed Datasets (RDD). RDD instances are
immutable partitioned collections that can be either stored in an external stor-
age system, such as a file in HDFS, or derived by applying operators to other
RDDs. RDDs support two types of operations: (i) transformations, which create
a new dataset from an existing one, and (ii) actions which return a value to the
driver program after running a computation on the dataset. Examples of RDD
transformations are map and filter operations, whereas reduce and count oper-
ations are typical actions. All transformations in Spark are lazy, which means
that the result is not computed right away. Instead, Spark keeps track of all the
transformations applied to the base dataset and they are only materialized when
an action requires a result to be returned to the driver program.

Each RDD operator uses a User Defined Function (UDF) that manipulates
the data. By default, this UDF is not itself allowed to operate on RDDs in Spark,
as RDD objects and their dependency graph are allocated in the master node
containing the Spark scheduler and driver, where the main program is executed,
whereas UDFs are executed by the worker nodes containing the Spark executors.
This restriction does not affect a large set of programs that do not use recur-
sive computations. Moreover, even recursive computations can almost always be
transformed to use a worklist and iteratively fixpoint, to bypass this restriction.

Execution of Recursive Queries in Apache Spark 291

1 val file1 = sc.textFile("hdfs://file1")
2 val file2 = sc.textFile("hdfs://file2")
3 file1.map(word1 =>
4 file2.filter(word2 =>
5 (word1.length > word2.length))
6 .collect())
7 .collect()

Fig. 2. Example of nested RDD operations

That is, however, often ineffective in time and space, e.g., when not all recursive
computations need to go to the same recursive depth, or when the created tasks
are few and not load-balanced. Finally, refactoring a simple recursive compu-
tation into a worklist algorithm often introduces complexity and, with it, the
possibility of errors. Barnes-Hut is an example of such a recursive application
that cannot directly be expressed using the “vanilla” RDD abstraction, because
it needs nested RDD operators to express the recursive function shown in Fig. 1.

This paper extends the Spark programming model and scheduler to support
nested RDD operations, to facilitate expressing recursive and hierarchical com-
putations. We implemented this by modifying the RDD scheduling mechanism in
Spark and measured its performance. We found that recursive RDD operations
can greatly simplify the code for algorithms of a recursive nature.

The current Spark driver does not optimally schedule such fine-grain tasks as
it introduces comparatively large latency from the time one task finishes to the
time another task is scheduled to execute on that executor node. As recursive
and hierarchical decomposition of work tends to create small tasks, we designed
and implemented an extension to the Spark scheduler that supports parallel,
lightweight scheduling better suited for jobs with fine-grain tasks.

Overall, this paper makes the following contributions:

– We added support for nested RDD queries in the Spark scheduler and compare
it against built-in operators implemented without nesting. To demonstrate
the usability of the programming model extension we implement an N-Body
particle simulation using the nested RDD mechanism.

– We modified the default Spark task-scheduling mechanism so that it can sup-
port many parallel light schedulers. We measured its performance against the
default Spark scheduler, and found a speedup of up to 2.1× for computations
using fine-grain tasks.

2 Spark Support for Nested Operations

Consider the example code shown in Fig. 2 that creates two RDDs from two
HDFS files (lines 1–2) and performs a map operation on RDD file1 (lines 3–7).
The “mapper” function of the map operation performs a filter operation on RDD

292 P. Katsogridakis et al.

file2 for every word in RDD file1 to select all words of larger length. The
calls to collect() are there to force the computation to take place and collect
the results into an array, as otherwise RDDs would behave essentially like lazy
futures. This is a simple example of nested operators.

By default, Spark does not support such nested RDD operations. This is
mainly because the RDD metadata required to schedule new computations
are stored only at the master node, with executor nodes simply running tasks
assigned to them. This example could be easily encoded in SQL and resolved
using a cartesian product. Our system, however, allows full recursion, where the
map function could itself contain maps and be recursive. Moreover, using nest-
ing we achieve better scheduling, and outperform standard Cartesian product
by up to 7x, as shown in Sect. 4.

Handling nested RDD operators inside the user-defined functions of a map
operation as shown in Fig. 2 (lines 4–6) requires the executor nodes that run
the tasks of the outer RDD map operator (lines 3–7) to behave as the mas-
ter node and schedule the “nested” filter job created in the mapper function
(line 4). Adding such functionality to the executor nodes would greatly increase
their complexity, as the RDD data would need to be replicated on executors,
which would require maintaining RDD metadata consistent among all distrib-
uted copies of an RDD. Apart from being inefficient, this would undo the sim-
plicity and efficiency of the MapReduce model. Thus, our design forwards the
nested operators back to the master, to avoid a distributed scheduler setup.

In the example in Fig. 2, the outer collect method (line 7) will force the run-
time to schedule the outer RDD computation. Since no shuffle operations are
involved, the dependency DAG that Spark constructs to properly order consecu-
tive RDD operations will consist of only one stage1 that contains one transforma-
tion of the HadoopRDD file1 to a MappedRDD returned by the map method.
The Spark scheduler will try to submit this stage and since there are not waiting
parent stages it will proceed with creating and submitting the missing tasks.
Then the scheduler will create tasks that execute the mapper function (lines
4–6) for each word in the file1 RDD. Specifically, the scheduler will serialize
a closure of the mapper function and distribute it to the executors; then it will
create a task for every partition of the file1 RDD and send each task to an
idle executor to run the mapper function on that partition and thus create the
corresponding partition of the result RDD.

In the executor nodes, when the mapper function shown in Fig. 2 (lines 4–6)
runs, it will try to invoke a filter operation on the file2 RDD. We extended
the executor functionality to capture this event and send a CreateRDD message
to the scheduler node. The message contains an identifier of the RDD object
referenced, the (reflective) name of the invoked operation, and a serialized version
of the user-defined function that is applied.

We extended the Spark scheduler to receive such messages from the executors.
Upon receiving such a forwarded RDD operation message, the scheduler looks

1 In Spark, a stage is a set of consecutive operators that can be grouped and executed
together, per partition.

Execution of Recursive Queries in Apache Spark 293

Nested
Operator

Create

new RDD

Nested
collect()

Schedule
nested task

Execute
task

Receive
result

Executor 1 Executor 2

Launch Task

Create RDD

Task Result

Task Result

Launch Task

Collect RDD

Send RDD

Task Result

Scheduler

Fig. 3. Executor asks the scheduler to schedule a nested RDD operation (Color figure
online)

up the RDD with the specified id and, using jvm reflection, invokes the specified
operation. In the execution of the example code in Fig. 2 it will invoke the map
method of the file2 RDD, creating the desired RDD that describes the result.
Note that, as RDDs are essentially futures in Spark, no computation will yet take
place at this point. The scheduler then will simply send back to the executor an
identifier of the created RDD. The executor, upon receiving that message, will
create a proxy of that RDD object based on the identifier received, and use it to
continue the computation of the mapper function for the task of the outer map
operation on file1. When that mapper function calls collect() (line 6), the
executor will send a CollectRDD message to ask the scheduler to collect the new
RDD, using its identifier, and send back the result. Figure 3 shows the sequence
of messages that will be sent for this example.

In the näıve master-executor protocol described above, the master schedules
the nested job after receiving the CollectRDD message. When the nested job
is done, it receives the result from all the executors where the job was sched-
uled, combines all partitions into a collected array, and sends the result to the
executor that issued the nested operation. This would mean that there is an
unnecessary transfer of data to the master node, and from there to the executor
that issued the nested job. To avoid the transfer overhead that would also make
the master node a centralized bottleneck for all nested computations, we mod-
ified the executor code to send the nested task result directly to the executor
that issued the nested job (shown by the red dashed line) and also send an ack
to the scheduler that the nested task finished, to free the executor resources.
This way, the only transfer of data to the master is for collect() operations
called at the master node in the top-level of the program.

294 P. Katsogridakis et al.

Following the protocol described so far, the executor sends a CreateRDD
message to the scheduler for every RDD operation that the mapper function
of the file1 map operation performs on file2. However, only the collect()
operation requires the master to actually schedule a nested computation. This is
because the Spark RDD abstraction is lazy and the operations are not computed
immediately. We took advantage of this property by grouping all the nested
operators into a single message. RDDs are both lazy and immutable, which
permits us to pack all the RDD operator arguments in a per-executor global data
structure. Then, at the end of a task or when a nested collect() is triggered,
the executor sends all the RDD transformations to the master node, to create
all the RDDs described and schedule any required computations.

3 Scheduling

Recursive decomposition of data tends to create many small tasks. Moreover,
simple computations like summing or counting an RDD often result in many
lightweight tasks where scheduling overhead is comparable to the actual task
computation. Although computations rarely constitute the whole of a Spark
program, they are often found within larger computations as, for instance, a stage
in an analytics pipeline, or “inner” jobs in a Spark-nested program as described
in the previous section. The default Spark scheduling algorithm underperforms
for jobs like that, because:

1. The scheduling path is sequential, which means that if a job consists of many
tiny tasks, scheduling itself will take a lot of time in the critical path of the
computation, while the processing time will be negligible.

2. After a worker has finished a task, it sends a request message to the scheduler,
so that the driver sends a new task to the worker. That increases the total
time by at least one RTT for every task and every worker, since the scheduler
receives and handles these messages sequentially.

These issues may be exacerbated when a large number of executors cannot be
properly managed by a single, centralized Spark scheduler. To address this, we
designed and implemented a parallel version of the Spark scheduler. We modified
the Spark scheduler to send multiple tasks to each executor and amortize the
idle time between tasks over many requests. This decreases the time between
when a worker finishes a task and sends a message to the scheduler and when
the scheduler answers with the next task to run. Specifically, we inserted a local
task queue per executor, and modified the centralized scheduler to keep track of
these coalesced task sets. Every time a worker core finishes a task, it first tries
scheduling one of the tasks in the local task queue, and only generates network
traffic and a request to the centralized scheduler if the local queue is empty.

Moreover, we modified the central Spark scheduler to schedule task-sets in
parallel. Specifically, instead of using a single scheduler-master, we deploy a set
of schedulers organized hierarchically as a set of ProxyScheduler actors under the
standard Spark master node. The standard Spark scheduler creates a few large

Execution of Recursive Queries in Apache Spark 295

task-sets per job and sends them to the proxy schedulers; each proxy scheduler is
then responsible for sending smaller task-sets or individual tasks to the executors.
This reduces congestion at the master scheduler, occuring either because tasks
are too small or because there is a large number of pending executor messages.
We do not assign specific executor groups to the proxy schedulers, and instead
allow all proxy schedulers to send work to all available executors. This works
well in practice when the available work is much more than the executors, which
is almost always the case in Spark analytics applications.

To schedule and track tasks to executors, each proxy scheduler keeps a copy
of all the executor metadata that the standard Spark master normally maintains.
This creates a consistency issue, as not all of these copies may be updated at
the same time. We solve this by keeping all the “heartbeat” functionality Spark
uses for tracking executor availability at the Spark master, and only forward
information about executors from the master to the proxy schedulers. This means
that at any given time the latest metadata about the state of one given executor’s
availability are at the master, and the metadata about all tasks in that executor’s
queue are distributed among all proxy schedulers that may have sent tasks to
that executor.

To handle the case of executor state changes, the master scheduler sends a
message to all proxy schedulers when the heartbeat process discovers that an
executor has changed state. For example, when an executor is started, it sends
a message to the master to inform that the executor is registered—as in the
standard Spark scheduler. Then, the master broadcasts to all proxy schedulers
the state of the newly registered worker. Eventually, all the schedulers will have
the same view of the cluster state.

A similar problem of distributing copies of metadata occurs in tracking task
completions. Specifically, the standard Spark scheduler uses StatusUpdate mes-
sages that contain information about whether a task has started, is executing,
has finished, or has failed. In our distributed scheduler, these messages are sent
from the workers to the proxy schedulers. The proxy schedulers eventually for-
ward all StatusUpdate messages to the central Spark scheduler. We have not yet
managed to recreate any cases where this creates a bottleneck; in that case we
expect it would be straightforward to reduce the strain on the Spark scheduler
by handling task completions and failures in the proxy schedulers without any
forwarding of that information.

The standard Spark scheduler balances loads among executors by sending
tasks only to the executors that have free cores. In avoiding the update messages
by coalescing sets of tasks per executor and in allowing all proxy schedulers to
send tasks to all executors, we have removed the load balancing guarantees of
the standard Spark scheduler. However, we found that by tranferring some of the
master functionality to the executors suffices in practice to give load-balanced
executions.

Specifically, we use a best-effort approach for balancing task loads, where each
executor locally schedules tasks from a queue to cores as they become available.
The per executor local queue we inserted is visible by all executor threads. This

296 P. Katsogridakis et al.

means that in a case where an executor is loaded with some heavy and some light
tasks, the threads executing the light tasks that will finish earlier, will dequeue
and execute more tasks. Thus, when a job consists of some heavy tasks, even if
they are scheduled on the same executor it is highly improbable that they will
be executed by the same core.

Note however that this solution is best effort. In most cases given enough
executor cpus the load will be equally balanced. In an extremely bad scenario
where too many straggler tasks are scheduled into the same executor while
the other executor takes all the lightweight tasks, the runtime will be highly
affected. We tried to stress our best-effort solution by constructing benchmarks
with highly-imbalanced tasks (Sect. 4, but were unable to create such a scenario
in practice.)

4 Evaluation

We evaluated the performance of our scheduler using a set of micro-benchmarks
and an operator from a real, large analytics application, that we were able to
rewrite to use nested operators. The code for our scheduler and the micro-
benchmarks is available at https://github.com/p01K/spark-nested.

We designed a set of micro-benchmarks to consist of non computationally
demanding tasks, so that the scheduling overhead becomes a bottleneck. When
such computations are used in analytics applications, it may not be feasible
to create larger tasks, as the overhead of repartitioning is comparable to the
scheduling overhead of fine-grain tasks.2 The datasets contain integers or words,
split into a defined number of partitions, and intentionally cached so that the
tasks do not take extra time loading the data. We first invoke a count operation
in all benchmarks, without counting it in the total run time, so that we ensure
that the dataset is stored in memory. We ran each benchmark 15 times and
measure the last 10 runs, so that the runtime is not affected by the JVM class
loading, JIT compiling or other optimization techniques [6].

We used the following benchmarks:

– The filter benchmark generates a dataset of random numbers and returns
those that are products of a defined number.

– The sum benchmark adds the dataset values using the reduce operator.
– The collect benchmark simply brings all the elements to the master node.
– The longtail benchmark simulates a taskset whose runtime follows a long tail

distribution.
– The word count benchmark counts the references of each word.

We implemented our scheduler in Apache Spark 1.6.0. We ran all benchmarks
on a cluster of 5 nodes, where each node has 4 Intel i5-3470 cores, 16 GB memory,
and is running Debian Linux and OpenJDK7. The nodes are connected through

2 We have encountered such small tasks in map and filter operations that operate on
fine-grain partitions within larger workflows, in actual analytics applications.

https://github.com/p01K/spark-nested

Execution of Recursive Queries in Apache Spark 297

1 GBs network. We measured the average round-trip time between any two nodes
to be on the order of 0.1 ms.

We compare our scheduling algorithm with the default Spark scheduling. To
have a valid comparison, we tried to use equal resources for scheduling and for
task execution; the runs with default Spark use one node as a Spark master and
4 nodes as executors, while the runs with our distributed scheduler deploy all
proxy schedulers together with the Spark master on one node, and use 4 nodes
as executors. This way, both schedulers have exactly the same resources devoted
to scheduling and to task execution.

We ran these benchmarks with a fixed number of elements (5M), and a
variable number of partitions (64 to 8192) to measure how the number and
granularity of tasks affects the runtime difference between the two schedulers.
Figure 4(a) presents average running time of a simple filter operation on 5 million
elements. The number of partitions of the input RDD is equal to the number of
tasks. The y-axis shows the runtime in milliseconds. Our scheduler consistently
outperforms the default Spark scheduler by at least 1.11× and up to 1.86×. Much
of that difference seems to be a constant factor, which we believe is due to the
reduction of worker idle time while waiting for the next task. As task granularity
becomes smaller, both schedulers perform worse. The consistent performance
“knee” observed for the default Spark scheduler at 512 tasks is not correlated
with idle time in the worker cores nor network traffic measured, and could be
due to partition migrations.

Figure 4(b) compares the default Spark scheduler to our distributed sched-
uler on a reduction that sums 5M random integers. The horizontal axis is the
number of partitions that the dataset is distributed into. Reducing the num-
ber of messages and parallelization of scheduling gains a constant factor over
the default Spark scheduler, resulting in 1.12× to 1.87× better performance.
Figure 4(c) compares the two schedulers on simply collecting all the elements
of a partitioned RDD to the master node. We observe the same behavior even
when the task execution time is zero in this case, again due to the reduction
in scheduling overhead and message latencies. To evaluate how well our best
effort load balancing heuristic performs compared to the load balancing guar-
antees provided by the default Spark scheduler, we ran a microbenchmark that
simulates tasks with highly different running times, following a long-tailed distri-
bution. Figure 4(d) presents a comparison of the two schedulers on the long-tail
benchmark. Again, the distributed scheduler achieves a speedup between 1.13×
and 1.77× over the default Spark scheduler. This result is consistent accross exe-
cutions with negligible variance; we expect that for executors with more than
4 cores it is highly unlikely that straggler tasks will cause imbalance and large
latency in the total job execution time. Finally, Fig. 4(e) presents the comparison
on a standard word count benchmark. Again, the distributed scheduler outper-
forms the default Spark scheduler by up to 2.15×.

We used the Cartesian product as a benchmark to compare the performance
of nested queries versus flat queries. For the flat, non-nested version we used the
cartesian RDD operator. Figure 4(f) compares the total running times between

298 P. Katsogridakis et al.

(a) Filter 5M elements (b) Reduce 5M elements

(c) Collect all data at the master (d) Long-tail distribution of task times

(e) Word count (f) Comparison between flat and nested
operators in Cartesian product

Fig. 4. Comparison with original Spark scheduler

the two versions. We found that writing a cartesian product as a two-level nested
RDD operation parallelizes it into smaller but parallel jobs and achieves a total
speedup of up to 8×, mainly due to the parallel scheduling of the work.

To demonstrate the programming expressiveness of using nested RDD opera-
tions we implemented the Barnes-Hut n-body gravity simulation algorithm using
nested operators, and evaluated it for various numbers of data points, up to 8000

Execution of Recursive Queries in Apache Spark 299

Dataset Size Nested Flat

1 hour 46.45K 33s 39s
1 day 450MB 4m 4.4m
1 month 12.6G 57m OOM
1 month 17.3G 1.5h OOM
2 months 30G 3.8h OOM

Fig. 5. Flat vs nested query

points time (sec)

32k 3
64K 3.7
128K 7
256K 10
512K 20
1M 60

Fig. 6. N-Body

bodies. Note that there is no comparison against the default Spark scheduler as
Barnes-Hut is recursive and thus not directly portable to flat MapReduce, with-
out completely restructuring the algorithm to use explicit iterations and simulate
a stack. Figure 6 presents the results.

To further evaluate the effect of nested queries, we used a (closed source, pro-
prietary) analytics application used by a telecommunications provider to perform
user characterization and classification from CDR data. We extracted a part of
the full workflow that used nested loops to iteratively perform multiple map
reductions, and rewrote it using nested map operators. Figure 5 presents a com-
parison on synthetic datasets of various sizes that closely match actual data3.
The data sets used correspond to one hour, one day, one low-usage month and
one high-usage month of data, while the last line uses a two-month dataset pro-
duced by concatenation of the two one-month datasets. We observed a large
difference in scalability between the two versions. When the size of the dataset
is relatively small, both versions execute in similar time, with the nested version
having a small speedup. But for larger data sizes, the nested version executes
successfully, while the flat terminates with OutOfMemory exception.

5 Related Work

Many analytics query execution engines use dataflow models and languages to
express computations. Similar to Spark, Naiad [9] is a distributed data ana-
lytics engine for cyclic dataflow programs, Stratosphere [1] (now Flink), is a
distributed data analytics engine aimed at stream analytics, and Hadoop is a
map-reduce framework for large batch computations. Although all engines allow
non-pure User Defined Functions in certain cases, none allow these computations
to recursively include other queries(manually tried to use a MapFunction func-
tion inside a MapFunction function in Flink 1.1.2, which failed with a runtime
error).

Spark supports the execution of SQL queries, which can be nested. Nest-
ing of SQL statements, however, does not correspond to actual recursion in the

3 Actual data was not available for analysis due to privacy constraints.

300 P. Katsogridakis et al.

computed queries; nested SQL statements amount to simply sequenced compu-
tations. The same limitation applies to REX [8], which introduces a new pro-
gramming model similar to SQL, called RQL, that uses the notion of deltas (or
small updates). Similarly, Datalog execution engines [14,15] can express queries
on recursive relations in Spark. Although Datalog relations can be recursively
defined and may correspond to fixpoint computations, they are closer to itera-
tive fixpoints and do not amount to fully recursive computations; for instance it
is not straightforward to express the Barnes-Hut n-body simulation in datalog,
where the mapper and reducer functions apply themselves recursively in nested
map-reductions.

The Spark default scheduler uses Delay scheduling [17] to send a task where
its data are stored, before any available worker. Ousterhout et al. [11] pro-
pose Sparrow, a decentralized scheduling algorithm. The scheduling of a job is
assigned to a random scheduler, that sends each task probe to 2 random workers.
When the worker dequeues a task probe, it asks for the task binary from the
scheduler and the corresponding scheduler sends the task to the worker that asks
first. In comparison, our batching of small tasks simplifies the scheduling over-
head and may have a probabilistically worse worst-case-scenario, although we
did not observe this issue in practice. Moreover, solutions to straggler occurrence
proposed by Ousterhout et al. [10] produce a lot of fine-grain tasks, decreasing
that probability further.

Schwarzkopf et al. [12] present Omega, a distributed scheduling mechanism
where each scheduler has full access to the cluster. Each scheduler is given a
private, local, frequently-updated copy of the cluster state for making schedul-
ing decisions. We chose not to replicate scheduling state between master and
proxy schedulers, to avoid the complication of maintaining all copies coherent,
thus introducing additional fail points in the scheduling algorithm. SkewTune [7]
is a Hadoop extension that tries to eliminte skew in map reduce jobs. When
SkewTune identifies a straggler it repartitions the remaining data, to increase
parallelism. Yadwadkar et al. [16] describe a way to reduce straggler mitigation
to multi-task learning. Their models can predict if a task will be a straggler,
creating a separate model for each cluster node.

6 Conclusions

We present an extension of the default Spark scheduler that supports nested
RDD operations and allows the programmer to express recursive computations
intuitively. We demonstrate this by using it to implement the Barnes-Hut n-body
simulation in Spark. We found that our extension of the RDD abstraction creates
many small jobs, so we extended the default Spark scheduler with distributed
scheduling to reduce scheduling overhead. We evaluated our system and found
it outperforms the standard Spark scheduler by up to 2.15×.

Acknowledgements. This work was supported in part by the 7th Framework Pro-
gramme of the European Community for Research, Technological Development and

Execution of Recursive Queries in Apache Spark 301

Demonstration Activities (FP7) project ASAP (grant agreement 619706); and by the
Horizon 2020 Framework Programme for Research and Innovation project ExaNeSt
(grant agreement 671553).

References

1. Alexandrov, A., Bergmann, R., Ewen, S., Freytag, J.C., Hueske, F., Heise, A., Kao,
O., Leich, M., Leser, U., Markl, V., Naumann, F., Peters, M., Rheinländer, A.,
Sax, M.J., Schelter, S., Höger, M., Tzoumas, K., Warneke, D.: The stratosphere
platform for big data analytics. VLDB J. 23(6), 939–964. http://dx.doi.org/10.
1007/s00778-014-0357-y

2. Apache Software Foundation: Hadoop. https://hadoop.apache.org
3. Barnes, J., Hut, P.: A hierarchical O(N log N) force-calculation algorithm. Nature

324, 446–449 (1986)
4. Databricks: Spark survey results (2015)
5. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.

Commun. ACM 51(1), 107–113. http://doi.acm.org/10.1145/1327452.1327492
6. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous Java performance

evaluation. In: Object-oriented Programming, Systems, Languages, and Applica-
tions (2007). http://doi.acm.org/10.1145/1297027.1297033

7. Kwon, Y., Balazinska, M., Howe, B., Rolia, J.: SkewTune: mitigating skew in
MapReduce applications. In: ACM SIGMOD International Conference on Man-
agement of Data (2012). http://doi.acm.org/10.1145/2213836.2213840

8. Mihaylov, S.R., Ives, Z.G., Guha, S.: Rex: recursive, delta-based data-centric
computation. Proc. VLDB Endow. 5(11), 1280–1291. http://dx.doi.org/10.14778/
2350229.2350246

9. Murray, D.G., McSherry, F., Isaacs, R., Isard, M., Barham, P., Abadi, M.: Naiad:
a timely dataflow system. In: Symposium on Operating Systems Principles (2013)

10. Ousterhout, K., Panda, A., Rosen, J., Venkataraman, S., Xin, R., Ratnasamy, S.,
Shenker, S., Stoica, I.: The case for tiny tasks in compute clusters. In: Hot Topics
in Operating Systems, p. 14 (2013). http://dl.acm.org/citation.cfm?id=2490483.
2490497

11. Ousterhout, K., Wendell, P., Zaharia, M., Stoica, I.: Sparrow: distributed, low
latency scheduling. In: Symposium on Operating Systems Principles (2013).
http://doi.acm.org/10.1145/2517349.2522716

12. Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., Wilkes, J.: Omega: flexible,
scalable schedulers for large compute clusters. In: SIGOPS European Conference
on Computer Systems (2013). http://eurosys2013.tudos.org/wp-content/uploads/
2013/paper/Schwarzkopf.pdf

13. Shi, J., Qiu, Y., Minhas, U.F., Jiao, L., Wang, C., Reinwald, B., Özcan, F.: Clash
of the titans: MapReduce vs. spark for large scale data analytics. Proc. VLDB
Endow. 8(13), 2110–2121. http://dx.doi.org/10.14778/2831360.2831365

14. Shkapsky, A., Yang, M., Interlandi, M., Chiu, H., Condie, T., Zaniolo, C.: Big
data analytics with datalog queries on spark. In: ACM SIGMOD International
Conference on Management of Data (2016). http://doi.acm.org/10.1145/2882903.
2915229

15. Wang, J., Balazinska, M., Halperin, D.: Asynchronous and fault-tolerant recursive
datalog evaluation in shared-nothing engines. PVLDB 8(12), 1542–1553 (2015)

16. Yadwadkar, N.J., Hariharan, B., Gonzalez, J., Katz, R.H.: Faster jobs in distributed
data processing using multi-task learning. In: SDM, pp. 532–540. SIAM (2015)

http://dx.doi.org/10.1007/s00778-014-0357-y
http://dx.doi.org/10.1007/s00778-014-0357-y
https://hadoop.apache.org
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1297027.1297033
http://doi.acm.org/10.1145/2213836.2213840
http://dx.doi.org/10.14778/2350229.2350246
http://dx.doi.org/10.14778/2350229.2350246
http://dl.acm.org/citation.cfm?id=2490483.2490497
http://dl.acm.org/citation.cfm?id=2490483.2490497
http://doi.acm.org/10.1145/2517349.2522716
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
http://dx.doi.org/10.14778/2831360.2831365
http://doi.acm.org/10.1145/2882903.2915229
http://doi.acm.org/10.1145/2882903.2915229

302 P. Katsogridakis et al.

17. Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., Stoica, I.:
Delay scheduling: a simple technique for achieving locality and fairness in cluster
scheduling. In: European Conference on Computer Systems (2010). http://doi.
acm.org/10.1145/1755913.1755940

18. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Hot Topics in Cloud Computing (2010). http://
dl.acm.org/citation.cfm?id=1863103.1863113

http://doi.acm.org/10.1145/1755913.1755940
http://doi.acm.org/10.1145/1755913.1755940
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113

Replica-Aware Partitioning Design in Parallel
Database Systems

Liming Dong1,2(B), Weidong Liu1, Renchuan Li2, Tiejun Zhang2,
and Weiguo Zhao3

1 Department of Computer Science and Technology, Tsinghua University,
Beijing, China

dlm14@mails.tsinghua.edu.cn, liuwd@mail.tsinghua.edu.cn
2 National Defense University of PLA, Beijing, China

hqxtgc@163.com, zhang tj@126.com
3 Army Logistics Information Center of PLA, Beijing, China

houjunzhaoweiguo@163.com

Abstract. In parallel database systems, data is partitioned and repli-
cated across multiple independent nodes to improve system performance
and increase robustness. In current practice of database partitioning
design, all replicas are uniformly partitioned, however, different state-
ments may prefer contradictory partitioning plans, so a single plan can-
not achieve the overall optimal performance for the workload.

In this paper, we propose a novel approach of replica-aware data par-
titioning design to address the contradictions. According to the access
graph of SQL statements, we use the k -medoids algorithm to classify
workload into statement clusters, then we use the branch-and-bound
algorithm to search for the optimal partitioning plan for each cluster.
Finally, we organize replicas with these plans, and route statements to
their preferred replicas. We use TPC-E, TPC-H and National College
and University Enrollment System (NACUES) to evaluate our approach.
The evaluation results demonstrate that our approach improves system
performance by up to 4x over the current practice of partitioning design.

Keywords: Distributed database management system · Database
design · Data partitioning · Workload clustering

1 Introduction

Partitioning design is an important topic to shared-nothing, parallel database
systems. In such environments, data is partitioned across to multiple nodes, each
of which is essentially an independent computer. In general, the communications
and data movements between nodes are much more expensive than relational
operations in one node. So a good partitioning plan should minimize them. The
problem can be formally defined as [3]:

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 303–316, 2017.
DOI: 10.1007/978-3-319-64203-1 22

304 L. Dong et al.

Given a database D, a workload W, and a storage bound S, find a
configuration P whose storage requirement does not exceed S, such
that the

∑
Q∈W fQ·Cost(Q,P) is minimized.

Here, the Q is the statement in workload, and the fQ is the weight of Q, it can
be the multiplicity of Q in the workload, and Cost(Q,P) is the cost of statement
Q if the database is partitioned by P. Many researchers have introduced a great
deal of algorithms to search for the optimal partitioning plan [12–14], such as
genetic algorithm, simulated annealing, hill climbing, branch and bound, etc.
Even so, this problem is far from being resolved.

On one hand, different statements may prefer different partitioning plans,
and those plans may mutually contradictory, so a one-size-fits-all partitioning
plans cannot achieve the overall optimal performance for the workload.

On the other hand, in many real-world database systems, data is replicated
to increase the robustness and availability, such as Microsoft SQL Azure [5] has 3
full database replicas, Amazon’s Relational Database Service [4] has up to 5 read
replicas of MySQL database, and Facebook’s TAO also has 3 replicas of MySQL
database [6]. In current practice of partitioning design, all replicas are uniformly
organized. These two contradictory aspects motivate our research effort.

In this paper, we use multi-plan coexistence way to address this problem.
In this fashion, replicas are organized by different partitioning plans heteroge-
neously, so different subsets of workload can be routed to different replicas for
better performance.

The contributions of our work can be summarized as follows.

(1) We analyze the reasons for the contradiction of the statements. Our analysis
reveals that the requirements for different attributes of the same table will
result in contradictory partitioning plans.

(2) We propose an approach of replica-aware partitioning design. We leverage
the access graph of SQL statement and database schema to measure the
distance between statements, and use k -medoids to cluster the workload,
and generate partitioning plan for each cluster, and organize replicas with
these plans.

(3) We evaluate of our approach of Replica-Aware Partitioning Design (abbr.
RAPD), and compare it with the Divergent Design [7], Schism [8], and
the Current Practice of Partitioning Design (abbr. CPPD). The evaluation
results demonstrate that our approach could increase system performance
up to a factor of 4x compared with CPPD, and has a higher efficiency in
the process of searching for partitioning plans.

2 Related Work

Many researchers have done a lot of outstanding work in replica-aware parti-
tioning design, like the CliqueSquare [9], Divergent Design [7], and Trojan Data
Layouts [11], etc.

Replica-Aware Partitioning Design in Parallel Database Systems 305

Workload DB
Advisor

W1

W2

W3

Object
Function

Partitioning
Plans

(a) Divergent Designs

Workload Object
Function

W1

W2

W3

Partitioning Plan
Generator

Partitioning
Plans

(b) Our Approach

Fig. 1. Comparison of process flows for generating partitioning plans

Firstly, we have different process flow of generating partitioning plans (Fig. 1).
They use the DB Advisor of DB2 [14] as a black box to generate partitioning
plans, and iteratively evaluate the plans with an object function and repartition
the workload until the plans satisfy some conditions. In contrast, we use data
mining algorithms to classify the workload firstly, and use the branch-and-bound
algorithm to search for the optimal partitioning plan for each subset of the work-
load. Secondly, we have different policy in dealing with the update statement,
they assign the update statements in every cluster to generate partitioning plans
while we use the Query Completion to address the update statements.

Jindal et al. proposed the Trojan Layout [11], we are different from them in
2 aspects: (i) they focus on improving the performance of Map phase of Map-
Reduce jobs while we focus on data partitioning of distributed database systems,
(ii) the Trojan Layout is designed for organizing data blocks of distributed file
systems, and our approach is designed for organizing replications.

In addition to the works mentioned above, many researchers have done lots of
works [8,12–15]. The biggest difference between us and them is that most of them
treat the workload as a whole, and they did not take replicas into consideration
to search for partitioning plans.

3 Motivation and Overview of Our Approach

In this section, we present the analysis of the contradictions which motivate our
research effort, and provide an overview of our approach.

3.1 Analysis of Contradiction

Different SQL statements may prefer different partitioning plans. Assuming a
table Table 1 has two attributes: ID and Name, and two query statements:

306 L. Dong et al.

– SELECT * FROM table1 WHERE ID = ‘123456’
– SELECT * FROM table1 WHERE NAME = ‘Michael’

Obviously, the optimal partitioning plans for these two query statements are
contradictory. The first statement prefers Table 1 to be partitioned by ID while
the second one prefers the table to be partitioned by NAME.

Although these contradictions can be partially addressed by creating more
indices, but indices need extra storage and are very time consuming, so this
limits the administrators from creating too many indices. Since we have full
replications of tables already, then the contradictions can be addressed by orga-
nizing replications with different partitioning plans, more importantly, this will
not increase the overall storage overhead.

In many real-world systems, many tables are connected by foreign keys, for
example, TPC-E has 33 tables, 27 of which have a total of 50 foreign keys,
that will lead to more prominent contradictions. In this paper, we make the
assumption that two statements are contradictory if they access to different
attributes of the same table.

3.2 Overview of Our Approach

Compared with [3], we take the replications into account, then the problem of
replica-aware partitioning design can be define as:

Given a database D, a workload W, the number of replicas N, and a
storage bound Si of each replica, find partitioning plans {P1 ... Pn}
and workload clusters {W1 ...Wn}, such that the

∑
Wi∈W Cost(Wi,Pi)

is minimized, and the storage requirement of Pi should not exceed Si.

The core idea of our approach is to cluster contradictory statements into
different clusters (W1... Wn), and generate partitioning plan (P1...Pn) for each
of them, then organize replicas with these plans. The Cost(Wi,Pi) is the cost
of cluster Wi when the replica is partitioned by Pi.

Workload

Distance
Matrix

Data
Schema

k-medoids

Plan 3

Plan 2

Partition
Plan 1

Constraint
Conditions

Branch&Bound
Algorithm

...

...

Workload
Clusters

Fig. 2. Overview of our approach

Figure 2 shows the overview of our approach. Firstly, we traverse the workload
and use data schema to get the distance matrix of statements. Secondly, we use
k -medoids algorithm to cluster the workload. Thirdly, we use branch-and-bound
algorithm to search the optimal partitioning plan for each statement cluster.
Finally, we use these partitioning plans to organize replicas, and route each
statement to the appropriate replica.

Replica-Aware Partitioning Design in Parallel Database Systems 307

4 Clustering the Workload

The clustering algorithm we used is inspired by the well-known k -medoids, it
has two important issues: the distance function and the number of clusters.

4.1 Distance Function

Many types of data can be used to measure the distance between statements
[2,8,10,16]. Because the access graph can demonstrate the relationship between
statements, so we use it to measure the distance of statements.

An access graph is derived from workload, it describes the relationship
between a statement and the attributes (Example 1). If a statement Q accesses
an attribute A, then the corresponding cell has a value of 1, otherwise it has a
value of 0.

Example 1. A workload with 10 statements

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
A1 1 1 1 1 0 0 0 0 0 0
A2 1 1 1 1 0 0 0 0 0 0
A3 0 0 0 0 1 1 1 1 1 1
A4 0 1 1 1 1 1 1 1 1 1

According to the analysis described in Sect. 3.1, we consider 2 types of access
graphs.

Attributes Belong to Different Tables. In Example 1, attributes A1–A4
belong to different tables. For workload-driven algorithms which automatically
generate partitioning plans [3,12–14], the smaller the difference in attributes that
accessed by statements, the more likely they are to produce a better partitioning
plan. So if the number of replicas is 3, then the cluster result is {{Q1}, {Q2,
Q3, Q4}, {Q5, Q6, Q7, Q8, Q9, Q10}}, because in each cluster, all statements
access the same attributes. Inspired by CG-COST [3], we use the co-accessed
attributes to measure the distance.

Denote Ci is the number of attributes accessed by Qi, and Ci,j is the number
of attributes that Qi and Qj co-accessed, then the distance is defined as:

dist1(Qi, Qj) = 1 − 2 · Ci,j

Ci + Cj
(1)

We can easily verify that the absolute-error criterion (Eq. 2) of the clustering
result of Example 1 is minimal, where k is the number of clusters, and W is the
workload.

E =
k∑

n=1

∑

Qi,Qj∈Wk

dist(Qi, Qj) (2)

308 L. Dong et al.

Attributes Belong to the Same Table. In the left table of Example 2, A2
and A3 belong to the same table, and other attributes belong to different tables
respectively.

Example 2. A workload with 3 statements

Q1 Q2 Q3
A1 1 0 0
A2 1 0 1
A3 0 1 0
A4 0 1 1
A5 0 1 1

Q1 (500) Q2 (200) Q3 (700)
A1 1 0 0
A2 1 0 1
A3 0 1 0
A4 0 1 1
A5 0 1 1

If the number of clusters is 2, then the cluster result is {{Q1}, {Q2, Q3}}.
Because we can use Eq. 1 to calculate the distances of Q1–Q3 is 0.6, and Q2–
Q3 is 0.33. However, A2, A3 are accessed by Q2, Q3 respectively, because A2,
A3 belong to the same table, so this clustering result can lead to contradictory
partitioning plans of the table which contains A2, A3. In this case, we introduce
Dij , it denotes the number of attributes belonging to the same table and accessed
but not co-accessed by Qi, Qj. The distance is defined as:

dist2(Qi, Qj) =
Dij

Ci + Cj
(3)

If we add the dist2 to dist1, then we can get the new distances of Q1–Q3
and Q2–Q3 is 0.6 and 0.67, so the attribute Q3 should be assigned with Q1.

Based on the above analysis, we can define the distance of Qi, Qj as:

dist(Qi, Qj) = dist1(Qi, Qj) + dist2(Qi, Qj). (4)

Workload Compression. We can use Eq. 4 to compute the distance of any
tow statements, then we get the distance matrix:

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
dist(Q2, Q1) 1
dist(Q3, Q1) dist(Q3, Q2) 1

...
...

...
. . .

dist(Qn, Q1) dist(Qn, Q2) · · · · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(5)

However, in many cases, the workload is too large to fit into the memory. In
these cases, we can compress all statements that access to the same attributes
into one. For example, in Example 2, if there are 500 statements access to the
same attributes as Q1, 200 statements access to the same attributes as Q2 and
700 statements access to the same attributes as Q3, then we can record this
like the right table in Example 2. Similarly, in the computation of the distance
matrix, the factors Cij and Dij also need to multiply the corresponding number.

Replica-Aware Partitioning Design in Parallel Database Systems 309

4.2 The Number of Clusters

The most thorough way to resolve the contradictions is to generate partitioning
plan for each statement of the workload [12], but this is infeasible and unneces-
sary, because there will be a great deal of problems under this circumstance, i.e.
storage constraint, data consistency and hardware cost.

An appropriate value is the number of replicas, because we can use them
without increasing the overall storage overhead and design complexity, and this
is also consistent with our original idea. Therefore, we assume the number of
clusters is equal to the number of replicas.

4.3 Clustering Algorithm

The input of the algorithm (Algorithm1) is the attribute set A and the num-
ber of clusters k. Firstly, k statements are chosen randomly from the workload
as the representative attributes (initial medoids) of k clusters (o[k]). Then the
other statements are assigned to the cluster with the nearest distance. After-
wards, the algorithm iteratively replaces a representative statement ci with a
non-representative statement a and compute the SwapCost until the represen-
tative statement set o[k] does not change. In each iteration, if the SwapCost < 0,
then a is the new representative statement of the cluster and reassign other state-
ments, otherwise, the representative statement set is not changed. The SwapCost
is the difference between the new and the old absolute-error criterion (Eq. 2).

Algorithm 1. Statement Clustering
Input: W : Workload, k: the number of clusters
Output: k statement clusters
1: function AttributeClustering(W,k)
2: o[k]← RandAttrib(W); Clusters[k] ← NULL
3: while o[k] is changed do
4: for all a ∈ (W − o[k]) do
5: Assign(a, Clusters[k])
6: end for
7: for all ci ∈ o[k], a ∈(W−o[k]) do
8: SwapCost=CalcCost(a,ci)
9: if SwapCost < 0 then

10: Swap(a,ci)
11: end if
12: end for
13: end while
14: return Clusters[k]
15: end function

310 L. Dong et al.

5 Generating Partitioning Plan

We use the branch and bound algorithm to search the optimal partitioning
plan, which is designed for discrete and combinatorial optimization problems.
The solution space is constructed to a tree structure, and the algorithm only
expands the most promising node at each search stage.

The input of the algorithm (Algorithm2) is the initial plan (RN) of a cluster,
and the storage bound (B), and a cluster (W). We use DFS policy to choose the
next tree node for expansion (NextNode). To improve the pruning efficiency
and reduce the search time, we sort attributes and tables in descending order
of the frequency of access. If the storage requirement of the new plan exceeds
the constraint, then the new plan is pruned. Otherwise, we compute the cost of
the new plan with the cost model [13], and if the cost of the temporary optimal
plan (OptimalPlan) is greater than the cost of the new plan, then replace the
temporary optimal plan with the new plan. The iteration ends when there is no
partial plan can be partitioned, or a specified length of time has elapsed.

Algorithm 2. Branch and Bound Algorithm
Input: RN : Root node, B: Storage bound, W : Workload Cluster
Output: Partitioning Plan
1: function BBSearch(RN,B)
2: OptimalP lan ← null; CurrentP lan ← null; NewPlan ← null
3: while (!StopCondition()) do
4: NewPlan= CreateChildPlans(NextNode(RN))
5: if storage requirement of NewPlan < B then
6: Cost=GetCost(NewPlan, W)
7: if NewPlan is a completed partitioning plan then
8: if Cost < OptimalPlan.Cost then
9: OptimalP lan = NewPlan; prune(NewPlan)

10: end if
11: else
12: if OptimalPlan.Cost<Cost then
13: prune(NewPlan)
14: end if
15: end if
16: else
17: prune(NewPlan)
18: end if
19: end while
20: return OptimalP lan
21: end function

6 Routing Statements

In our approach, different replicas are organized with different plans, for a state-
ment of workload, the response time may vary greatly when executed in different

Replica-Aware Partitioning Design in Parallel Database Systems 311

replicas. In order to forward each statement to its preferred replica, we use the
triplet to maintain the mapping information of statement, workload cluster and
replica.

< StatementID,ClusterID,ReplicaID >

On receiving a statement, the server can forward it directly by taking a lookup
of the triplets, however, 2 types of statements need to be handled carefully.

6.1 New Statement

A New Statement is the statement that has never occurred in the process of clus-
tering or generating partitioning plans. So the server cannot find the information
of the statement in the triplets.

To forward this type of statement, we calculate the sum of the distances
of this statement to each cluster firstly, that is

∑
s∈Ci

dist(n, s), where the n
denotes the New Statement. Then, we can assign the New Statement to the
cluster with the minimal value, and route it to the corresponding replica.

6.2 Update Statement

Different from query statement, the update statement has to be executed in
all replicas. It can be time-consuming to execute the statement in the replica
whose partitioning plan is generated without the statement. For example, three
replicas are organized with P1, P2, and P3, and P1, P2, P3 partition table T
on attributes C1, C2, C3 respectively. If the update statement only contains
C1, then the replica which is organized by P1 can complete the statement faster
than the other replicas.

We present a method called Query Completion to address this issue. Figure 3
shows the process flow of an update statement. We update the replica which is
partitioned by P1 (line 1) firstly, then construct a read-only query to retrieve
corresponding tuples affected by former update query (line 2), and then complete
the update query with C2 and C3, and send the completed statement to other
replications finally (line 3).

Update

Main Server

2

3

1

3

Fig. 3. Process flow of update statement

312 L. Dong et al.

7 Experimental Evaluation

The main objective of our approach is to show that organizing replicas with
different partitioning plans can improve system performance. So we carry out
experiments to compare our approach (RAPD) with the current practice of single
partitioning plan design (CPPD), Schism [8] and Divergent Design [7].

7.1 Data Sets and Experimental Platform

We choose TPC-E, TPC-H and a real-world system NACUES (National Col-
lege and University Enrollment System) as the experimental datasets. The basic
statistics are summarized in Table 1.

Table 1. Summary statistics of datasets

Data set #Tables #Attributes #ForeignKeys #Quereis Size

TPC-E 33 188 50 12 40GB

TPC-H 8 51 9 22 1 TB

NACUES 115 764 265 130 1 TB

TPC-E and TPC-H are widely used in many data management experiments.
The real-world dataset NACUES is a system used by nearly 3000 colleges and
universities in China to enroll students from all over the country. It contain
scores, profiles, physical examinations, applications of students, basic informa-
tion of colleges and universities and enrollment plans etc.

We use MyCat [1] as the distributed DBMS, which use MySQL as the under-
lying database. It supports distributed transaction, database partitioning, which
can fully meet our experimental needs. We set up a cluster of 16 common com-
modity servers each with 32 GB RAM, 2 Intel Xeon-E5 processors and 2 TB
hard disk, all servers are connected through 1000 Mbps LAN.

7.2 Proportion of Single-Site Statements

In general, single-site statement consumes less resources than multiple-site state-
ment, so the proportion of single-site statement is an important measure of par-
titioning design. Figure 4 shows the proportion of different number of plans being
deployed.

Obviously, the proportions increase rapidly with the number of partition
plans, the underlying reason is that the contradictions in workload are gradually
solved when more plans are deployed. The result means that our approach is
effective to solve the contradictions in workload.

Replica-Aware Partitioning Design in Parallel Database Systems 313

1 2 3 4 5 6 7 8 9 100.3

0.4

0.5

0.6

0.7

0.8

1.0
0.9

Pr
op

or
tio

n
TPCE
TPCH
NACUES

 #Partitioning Plans

Fig. 4. Proportion of single-site statements

7.3 Performance of Our Approach

In order to evaluate the impact to system performance, we compare RAPD with
the CPPD, Schism, and Divergent Design in different number of replications.
We execute all of the statements (SQL) of different datasets and compare the
execution times of these 4 approaches, the execution times is show in Fig. 5.

TPCE TPCH NACUES
10
20
30
40
50
60
70
80
90

tim
e (

s)

CPPD
Schism
DivDesign
RAPD

(a) 2 replications

TPCE TPCH NACUES
10
20
30
40
50
60
70
80
90

tim
e (

s)

CPPD
Schism
DivDesign
RAPD

(b) 3 replications

TPCE TPCH NACUES
10
20
30
40
50
60
70
80
90

tim
e (

s)

CPPD
Schism
DivDesign
RAPD

(c) 4 replications

TPCE TPCH NACUES
10
20
30
40
50
60
70
80
90

tim
e (

s)

CPPD
Schism
DivDesign
RAPD

(d) 5 replications

Fig. 5. Performance of our approach

On the whole, we can see that the execution time of all approaches except
CPPD becomes shorter as the number of replications increases. The reason is
that in CPPD, all replications have the same partitioning plan, so the executing

314 L. Dong et al.

time is not very sentitive to the number of replications. Also, we can see that
the execution times are reduced substantially in our approach (RAPD). Take
NACUES in Fig. 5(d) for example, it takes more than 80 s to finish the 130 queries
of NACUES in CPPD, but only takes 9 s in our approach. The reason is that the
more partition plans are deployed, the more contradictions of statements can be
solved, and that will lead to the growth of the proportion of single-site statement,
and result in the reduction of execution time of statements. Further more, we
can see that RAPD is 1.5–2 times faster than Divergent Design under different
number of replications, this means the clustering result of in RAPD can generate
better partitioning plans, that is more efficient to resolve the contradictions of
statements.

Also, we notice that the performance of Schism in NACUES is not as good as
in TPC-E and TPC-H, the reason is that the access graph of NACUES created
in Schism is more complicate than others, given the same number of vertices,
the access graph of NACUES has far more edges than that of TPC-E and TPC-
H, so the graph partition algorithm used in Schism cannot find a good way to
partition the graph, leading to a limited improvement of system performance.

7.4 Comparison of Execution Time

To compare the execution time with Divergent Design, we carried out an exper-
iment with TPC-E, the workload has 100–500 statements, and the number of
replica is 3, and the Black-box used in Divergent Design is the branch-and-bound
algorithm as we used in RAPD. The total execution time of searching partition-
ing plan of our approach is composed of the pre-processing and clustering time
of workload, and the execution time of branch-and-bound. Figure 6 shows the
experiment result.

0 100 200 300 400 500 600
#Statements

0
200

400

600

800

1000
1200

tim
e (

s)

DivergentDesign
RAPD

Fig. 6. Total execution time of searching partitioning plans

Compared with Divergent Design, the execution time of RAPD is much
shorter, and is not affected by the number of statements. That is because RAPD
cluster the workload first, and then search for the partitioning plans. Differently,
in each of the iteration of workload clustering, Divergent Design needs to call
the Branch and Bound algorithm, which is very time-consuming.

Replica-Aware Partitioning Design in Parallel Database Systems 315

8 Future Work

Two of the most crucial issues of our approach are identifying contradictions and
clustering the workload. There are only a slice of literatures on these two issues
[12]. The analysis and assumption we made is only a tentative work, and the
clustering algorithms of workload is quite straightforward. We would try other
approaches in the future to make them more accurate, and formalized definitions
and proofs are also our future work.

Another potential work is the algorithm of searching for the optimal partition
plans. Although researchers have already conducted concrete work in this area,
this problem is still far from being addressed. If the search algorithm cannot find
a suitable partition plan, then different query clusters may conduct to similar
partition plans, and we have encountered this phenomenon in our experiments
of choosing algorithms.

9 Conclusion

In this paper, we present an approach of replica-aware partitioning design to
resolve the contradictions in workload. Our approach uses access graph of state-
ments to measure their distance and then cluster the workload and generate
partitioning plans for each of them. By introducing the necessary modifications
and data structures, replicas with different partitioning plans can work properly
and more effectively. Through the experimental evaluation, we could see that our
approach can improve system performance by up to 4x over the current practice
of partitioning design.

References

1. Mycat (2017). http://www.mycat.org.cn/
2. Agrawal, S., Chaudhuri, S., Das, A., Narasayya, V.: Automating layout of relational

databases. In: Proceedings 19th International Conference on Data Engineering, pp.
607–618. IEEE (2003)

3. Agrawal, S., Narasayya, V., Yang, B.: Integrating vertical and horizontal partition-
ing into automated physical database design. In: Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data, pp. 359–370. ACM
(2004)

4. Beach, B.: Relational database service. In: Beach, B. (ed.) Pro Powershell for
Amazon Web Services, pp. 155–178. Springer, Heidelberg (2014)

5. Bernstein, P.A., Cseri, I., Dani, N., Ellis, N., Kalhan, A., Kakivaya, G., Lomet,
D.B., Manne, R., Novik, L., Talius, T.: Adapting Microsoft SQL server for cloud
computing. In: Proceedings of the 27th International Conference on Data Engi-
neering (ICDE), pp. 1255–1263. IEEE (2011)

6. Bronson, N., Amsden, Z., Cabrera, G., Chakka, P., Dimov, P., Ding, H., Ferris, J.,
Giardullo, A., Kulkarni, S., Li, H.C., et al.: Tao: Facebook’s distributed data store
for the social graph. In: Proceedings of USENIX Annual Technical Conference, pp.
49–60 (2013)

http://www.mycat.org.cn/

316 L. Dong et al.

7. Consens, M.P., Ioannidou, K., LeFevre, J., Polyzotis, N.: Divergent physical design
tuning for replicated databases. In: Proceedings of the 2012 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 49–60. ACM (2012)

8. Curino, C., Jones, E., Zhang, Y., Madden, S.: Schism: a workload-driven approach
to database replication and partitioning. Proc. VLDB Endow. 3, 48–57 (2010)

9. Goasdoué, F., Kaoudi, Z., Manolescu, I., Quiané-Ruiz, J.A., Zampetakis, S.:
CliqueSquare: flat plans for massively parallel RDF queries. In: Proceedings of the
31st International Conference on Data Engineering (ICDE), pp. 771–782. IEEE
(2015)

10. Holmes, D.E., Jain, L.C.: Data Mining: Foundations and Intelligent Paradigms.
Springer Publishing Company, Heidelberg (2012)

11. Jindal, A., Quiané-Ruiz, J.A., Dittrich, J.: Trojan data layouts: right shoes for a
running elephant. In: Proceedings of the 2nd ACM Symposium on Cloud Comput-
ing, p. 21. ACM (2011)

12. Nehme, R., Bruno, N.: Automated partitioning design in parallel database sys-
tems. In: Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data, pp. 1137–1148. ACM (2011)

13. Pavlo, A., Curino, C., Zdonik, S.: Skew-aware automatic database partitioning in
shared-nothing, parallel OLTP systems. In: Proceedings of the 2012 ACM SIG-
MOD International Conference on Management of Data, pp. 61–72. ACM (2012)

14. Rao, J., Zhang, C., Megiddo, N., Lohman, G.: Automating physical database design
in a parallel database. In: Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, pp. 558–569. ACM (2002)

15. Serafini, M., Mansour, E., Aboulnaga, A., Salem, K., Rafiq, T., Minhas, U.F.:
Accordion: elastic scalability for database systems supporting distributed transac-
tions. Proc. VLDB Endow. 7, 1035–1046 (2014)

16. Zilio, D.C.: Physical database design decision algorithms and concurrent reorgani-
zation for parallel database systems. Ph.D. thesis. Citeseer (1998)

Cluster and Cloud Computing

A Simplified Model for Simulating the Execution
of a Workflow in Cloud

Roland Mathá, Sasko Ristov(B), and Radu Prodan

Institute for Computer Science, University of Innsbruck,
Technikerstr. 21a, 6020 Innsbruck, Austria
{roland,sashko,radu}@dps.uibk.ac.at

Abstract. Although simulators provide approximate, faster and easier
simulation of an application execution in Clouds, still many researchers
argue that these results cannot be always generalized for complex appli-
cation types, which consist of many dependencies among tasks and var-
ious scheduling possibilities, such as workflows. DynamicCloudSim, the
extension of the well known CloudSim simulator, offers users the capa-
bility to simulate the Cloud heterogeneity by introducing noisiness in
dozens parameters. Still, it is difficult, or sometimes even impossible to
determine appropriate values for all these parameters because they are
usually Cloud or application-dependent. In this paper, we propose a new
model that simplifies the simulation setup for a workflow and reduces
the bias between the behavior of simulated and real Cloud environments
based on one parameter only, the Cloud noisiness. It represents the noise
produced by the Cloud’s interference including the application’s (in our
case a workflow) noisiness too. Another novelty in our model is that it
does not use a normal distribution naively to create noised values, but
shifts the mean value of the task execution time by the cloud noisiness
and uses its deviation as a standard deviation. Besides our model reduces
the complexity of DynamicCloudSim’s heterogeneity model, evaluation
conducted in Amazon EC2 shows that it is also more accurate, with
better trueness (closeness to the real mean values) of up to 9.2% and
precision (closeness to the real deviation) of up to 8.39 times.

Keywords: Accuracy · Makespan · Modeling · Precision · Simulator ·
Trueness

1 Introduction

Sciences of various domains other than computer science use scientific work-
flows to model their complex computational pipelines, which brings them many
benefits such as reusing the results of parts or entire workflows, failure manage-
ment, or parallelisation. Managing the workflows’ execution is a complex task, as
each workflow requires different computing, memory or I/O capacity, making the
designing of a common, but appropriate, distributed environment for all work-
flows types very difficult and sometimes almost impossible. Workflows can also be
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 319–331, 2017.
DOI: 10.1007/978-3-319-64203-1 23

320 R. Mathá et al.

executed in Cloud as similar as in traditional clusters, as many workflow manage-
ment services that allow the effective utilisation of the Cloud’s elastic resources
already exist [23]. Still, Cloud produces many additional challenges compared
with the traditional clusters [2] caused by its on-demand elastic resource provi-
sioning, dynamic starting of instances [20], and variant performance of virtual
machines (VMs) during a time period [22].

Instead of executing in a real Cloud environment to determine the behavior of
an application, many researchers resort to simulators for their analysis [3], which
allows them to reduce costs for purchasing and maintaining expensive hardware
resources, and time for executing time-consuming algorithms [21] and later on to
determine that its performance is over- or under estimated. Moreover, simulators
can be used to experiment new prototype solutions and identify the “optimal”
resource configurations before deployment of production platforms. Most com-
mon simulators allow users to create a virtual data center considering their latest
computing, networking, energy, or cost requirements. However, although they
can simulate an elastic Cloud data center, simulators usually neglect the Cloud
performance fluctuation and uncertainty [10], which can lead to wrong estima-
tion. This aspect is especially important for workflow executions, as they consist
of a high number of data and control flow dependencies [15] that further affect
their overall performance without any correlation [18]. A small disturbance in a
task execution can dramatically affect the scheduling of the following workflow
tasks, resulting in a completely inefficient schedule that increases the execution
cost or execution time (the makespan), or sometimes even both [1].

Although some simulators, such as DynamicCloudSim [4], allow users to con-
figure the simulation considering a certain heterogeneity and instability of Cloud,
still, there are several deficiencies for a proper configuration. The configuration
itself is a complex process, as users need to configure more than ten parameters,
for which they do not know the exact values of parameters in order to configure
a specific Cloud and application to be executed. For example, the default values
that are intended for Amazon’s EC2 are several years old, and cannot be used
for other public or private Clouds. Additionally, public Clouds can be seen as
a black-box whose internal parameters are unknown to regular users. Even by
using results of previous research, some parameters still cannot be generalized
as they are valid either for that specific Cloud, a specific application, or even a
combination of both.

We therefore propose a simpler model that reduces the configuration of
the noisiness to a single parameter the Cloud noisiness, instead of dozens.
The injected noise causes an instability in Task Execution Time (TET), which
improves the accuracy, represented through the trueness (i.e. closeness of the
true mean value) and the precision (i.e. closeness of corresponding standard
deviation) of the simulation, as defined in ISO-5725 standard [12]. We conduct a
series of evaluation experiments in Amazon EC2 and the most common state-of-
the-art simulator - DynamicCloudSim. The evaluation proves that our simpler
model implemented in DynamicCloudSim shows up to 9.2% higher trueness and
up to 8.39 times higher precision for workflow execution simulations compared

A Simplified Model for Simulating the Execution of a Workflow in Cloud 321

to DynamicCloudSim. Not only that our proposed model shows better accuracy
to the real execution, but its configuration is much simpler and easier.

The paper is structured in several sections as follows. Section 2 presents the
related works in modeling the workflow execution instability and the features of
cloud simulators in this domain. The models for workflow, Cloud, experiments
and test cases that are used for our noisiness model are presented in Sect. 3.
Our simplified, more accurate model of adding a noise in simulation is described
in Sect. 4. Sections 5 and 6 present the testing methodology and results of the
evaluation of our model and current state-of-the-art simulation model of Dynam-
icCloudSim. Finally, we conclude the paper and present plans for future work in
Sect. 7.

2 Related Work

Many Cloud features and parameters can cause the performance instability: het-
erogeneity of resources, instance types, number of instances, instance straggling,
instance failures, multi-tenancy, networking bottlenecks, resource time-sharing,
etc. As a consequence, an instance of the same type provides different perfor-
mance for the same task over some time period. Dejun et al. [7] reported high
performance deviations in Amazon EC2. Jackson et al. [13] determined that
different underlying hardware for similar instances caused performance pertur-
bation. Schad et al. [19] detected a long-term performance instability of Amazon
EC2, which was correlated also to the CPU model of the same instance type,
the hour of the day, and the day of the week. Iosup et al. [11] determined yearly
and daily patterns of performance variability, but also periods of constant per-
formance. All these behaviors depend also on the executed application.

CloudSim [5] simulates scheduling algorithms and resource provisioning in
elastic Cloud environment, but Cloud performance instability remains unad-
dressed. Chen and Deelman [6] extended the Cloudsim into WorkflowSim, by
introducing several parameters specific to workflows. Still, all these extensions do
not introduce the Cloud performance instability. Other works developed scalable
simulators covering up to hundreds of thousands of heterogeneous machines [8].
For example, GroudSim [16] is a scalable event-based simulator for Grid and
Cloud environments. GloudSim [9] is a simulator that introduces some dynamics
in execution by resizing the instances. Still, it does not offer a TET’s instability,
as the performance of specific VM is constant during a time period.

Bux and Leser [4] went further in this direction by developing the Dynamic-
CloudSim simulator as an extension of CloudSim that introduces several addi-
tional characteristics to simulate the Cloud heterogeneity, such as heterogeneous
underline hardware, VM stragglers, VM failures, long and short term fluctua-
tions, etc. However, configuring dozens of parameters for heterogeneity is not an
easy task, as users are usually not aware of the internal Cloud architecture. We
therefore went a step further by treating the Cloud as a black-box and intro-
duced much simpler approach that needs a configuration of the noise into one
parameter only. It includes two instabilities in itself: workflow noisiness (e.g.

322 R. Mathá et al.

dependencies, structure, TET deviation) and Cloud noisiness (e.g. heterogene-
ity). Nevertheless, although it is a simple method, the results of the evaluation
show that our model improves the accuracy compared to the related Dynamic-
CloudSim’s instability model. Schad et al. [19] reported that several performance
parameters are unstable with a normal distribution. We also use the normal dis-
tribution to add a noise in TET, but instead of naively generating the variables
distributed with a normal distribution, we inject the noisiness parameter by
shifting the TET’s mean value by the Cloud noisiness parameter.

3 Modeling the Workflow and Cloud

This section formally models the workflow and Cloud environment, which are
used for our cloud noisiness model later on.

3.1 Workflow Application Model

We model a workflow application W as a precedence constraint graph (T,D)
consisting of a set T =

⋃n
i=1 {Ti} of n tasks Ti, which are interconnected through

a set of dependencies D = {(Ti, Tj ,Dij) | (Ti, Tj) ∈ T × T}, where (Ti, Tj ,Dij)
implies that Ti needs to be executed before Tj , and the file size to be transferred
from Ti to Tj is Dij bytes. The tasks are assumed to be non-preemptive, so it is
not allowed to suspend one and resume it later on.

The function pred : T → P(T), where P denotes the power set, returns the
set of immediate predecessors of each task Ti ∈ T (i.e. Tj ∈ pred (Ti) ⇐⇒
(Tj , Ti,Dji) ∈ D), while the function succ : T → P(T) returns the set of imme-
diate successors of the task Ti (i.e. Tj ∈ succ (Ti) ⇐⇒ (Ti, Tj ,Dij) ∈ D).
Each workflow has an entry task Tentry with no predecessors (i.e. Tentry ∈ T :
pred (Tentry) = ∅) and an exit task Texit with no successors (i.e. Texit ∈ T :
succ (Texit) = ∅).

Each task Ti has a requirement vector Ri, which defines its hardware or
software requirements such as the minimum value of memory or storage needed
for execution. We express the computational complexity wi (i.e. work) of each
task Ti in million of instructions (MI).

Note that this is a simplified view of a workflow. Still, workflows with multiple
entry/exit tasks are covered by adding a single “dummy” entry task with the
computational complexity w = 0 (i.e. without any complexity) before all entry
tasks or a single “dummy” exit task, also with the computational complexity
w = 0, after all exit tasks, respectively.

3.2 Cloud Infrastructure Model

A Cloud offers a set of r VM types IT =
⋃r

k=1 {ITk}. Each instance type ITk is
characterized by two parameters: computational speed sk in million instructions
per second (MIPS) and number of CPUs ck. We denote the set of available VM
instances as: I =

⋃m
j=1 {Ij}, whose number m is constant during the workflow

A Simplified Model for Simulating the Execution of a Workflow in Cloud 323

execution. Each instance Ij has an associated instance type ITk defined as a
function: type : I → IT .

We model the expected TET tji of a task Ti as the ratio between its com-
putational complexity and the speed of the instance Ij on which it is executed
(tji = wi/sk, Ij ∈ I ∧ ITk = type (Ij)).

The completion time of a task Ti executed on an instance Ij is the latest
completion time of all its predecessors plus its expected TET:

end (Ti, k) =

⎧
⎨

⎩

tji , Ti = Tentry , ITk = type(Ij);
max

Tp∈pred(Ti)

{
end (Tp, k) + tji

}
, Ti �= Tentry , ITk = type(Ij).

In a single experiment, we are using a constant number of the same type
VMs, which keep running. Thus, for an experiment that uses VM instances of
type k, we define the workflow makespan M = end(Texit, k).

3.3 Experiment and Test Case Model

In order to model the environment-independent model, we define a set of exper-
iments EXP =

⋃q
x=1 {EXPx}. Each element EXPx is modeled as a triple

EXPx(W, ITk, v), which means that a workflow W is executed on a specific
number of VMs v, all of the same type ITk.

As we want to simulate Cloud’s behavior, we repeat each experiment N times
and we refer to each execution as a test case. Therefore, a test case xTCc repre-
sents the c-th repetition of an experiment EXPx. This means that an experiment
can be considered as a matrix of N columns (workflow execution repetitions) and
n rows (tasks within a workflow).

Let xtci denotes the measured TET of a task Ti in a test case xTCc of an
experiment EXPx. Analogue, the makespan of test case xTCc will be denoted
as xM c. As we want to analyze the distribution of makespans per experiment,
we define the TET’s mean value xti = 1

N · ∑N
c=1

xtci of a task Ti and the mean
makespan xM = 1

N ·∑N
c=1

xM c. Both mean values are defined for an experiment
EXPx.

4 Noise Simulation Model

In this section we present our new model of simulating a workflow execution in
Cloud, which improves the accuracy through a much simpler approach that uses
only one parameter for noising for all the tasks of a workflow - Cloud noisiness,
instead of DynamicCloudSim’s 13 parameters for heterogeneity and instability.

4.1 Workflow Noisiness

In order to define a model for the noisiness provided by the workflow, first we
model the noisiness of a task Ti ∈ T itself with the parameter TET’s deviation

324 R. Mathá et al.

xρcd
i , which is defined in (1) as a relative TET difference of task Ti in two test

cases xTCc and xTCd of an experiment EXPx with c, d ∈ [1, N] ∧ c �= d.

xρcd
i =

|xtci − xtdi |
max(xtci ,

x tdi)
(1)

The TET’s deviation xρcd
i is used to introduce the workflow noisiness xΔ

cd
,

which describes the total noisiness of all TETs within a workflow in two test
cases xTCc and xTCd of an experiment EXPx, as defined in (2). Formally, it
represents a normalized mean TET’s difference of all corresponding tasks Ti of
the same workflow, in two test cases xTCc and xTCd of an experiment EXPx.

xΔ
cd

=
1
n

·
n∑

i=1

xρcd
i (2)

The workflow noisiness xΔ
cd

can be used to extract noisiness of Cloud envi-
ronment and includes vertical average of TETs of all tasks within a workflow
W . xΔ

cd
is an intermediate metric and serves as input for the Cloud noisiness,

which is explained in the following subsection.

4.2 Cloud Noisiness

The workflow noisiness shows the instability of a workflow in two executions
only. As Cloud environment is unstable, we want to take some average of a set
of test cases for a single experiment EXPx. Therefore, we introduce the Cloud
noisiness xΔ of an experiment EXPx. As defined in (3), xΔ represents the
average experiments’ makespan instability of all N repetitions (test cases) of an
experiment EXPx.

xΔ =
1

N ·(N−1)
2

·
∑

∀c,d|1≤c<d≤N

xΔ
cd

(3)

We measure the workflow noisiness xΔ
cd

of each unique pair of test cases
xTCc and xTCd for all N executions (test cases) of the same experiment EXPx.
Accordingly, the total number of unique pairs that can be generated from a set
of N elements is

(
N
2

)
= N ·(N−1)

2 . The Cloud noisiness xΔ includes horizontal
average of all workflow executions (test cases) within a single experiment EXPx.

4.3 Modeling the Noising

Now, after formally definition of cloud noisiness, we define how to model and
add a noise in a simulation. The noised TET xτ̃i of a task Ti is defined in (4),
where Gaussian(Mean, STDEV) represents a random function with Gaussian
(normal) distribution.

xτ̃i = (1 +x Δ + Gaussian(0, σxΔ)) ·x ti (4)

A Simplified Model for Simulating the Execution of a Workflow in Cloud 325

Accordingly, the noise in (4) is modeled as a Gaussian distribution, where
the mean value is the TET’s mean value xti of a task Ti, shifted with the Cloud
noisiness xΔ in order to cover uncertain overheads, measured in the experiments.
For noisiness, we use the standard deviation σxΔ of all workflow noisiness of a
single cloud noisiness, which is determined by each pair of test cases TCc and
TCd (∀c, d | 1 ≤ c < d ≤ N) of a single experiment.

5 Testing Methodology

In this section we present the testing methodology in order to evaluate our
noising model in Sect. 6.

5.1 Synthetic Workflow

The synthetic workflow that is used in our experiments consists of two paral-
lel sections (Second and Fourth) of same size, with three synchronisation tasks
(First, Third and Fifth) in between, as depicted in Fig. 1. The chosen work-
flow structure is the result of workflow characteristics analysis of several well
known workflows, such as EPIGENOMICS and SIPHT [14]. The workflow size
is related to the number of tasks in the parallel sections. In the experiments we
use a parallel section size of 13 (SYNWF/13) and 44 (SYNWF/44). We use two
different workflow sizes in order to cover balanced and unbalanced executions,
such that one is a prime number and the other is dividable by the numbers 2
and 4, corresponding to the number of instances. Additionally, we used instance
number of 3, which is not a divisor of neither workflow sizes. With this work-
flow structure and selected parameters, we also want to investigate if there is
a correlation between the workflow parameters and the execution environment
(chosen resources and the inefficient workflow execution).

As workflow makespan consists of computations and file transfers (including
both the network and I/O), we have chosen different file transfer to computation

Fig. 1. The structure of the synthetic work-
flow with the file transfer to computation
time ratios

Table 1. File transfer (FT) to computa-
tion time (CT) ratio in % for SYNWF/13
and SYNWF/44

Task type SYNWF/13 SYNWF/44

FT[%] CT[%] FT[%] CT[%]

First 30 70 30 70

Second 15 85 15 85

Third 90 10 95 5

Fourth 75 25 75 25

Fifth 90 10 95 5

326 R. Mathá et al.

time ratios for all five task types, as depicted in Fig. 1 and presented in Table 1.
A file transfer describes the copying process of a set of files from one task to
another and combines network bandwidth with I/O. The ratios of the First,
Second and Fourth task types are assumed to be constant for different workflow
sizes because the number and size of file inputs is not changing. This is different
for the Third and Fifth task types, which are synchronization tasks and collect
all the output files produced by the Second and Fourth tasks (parallel sections),
correspondingly. Thus, in order to compensate this, we slightly increase the file
transfer time for the workflow size 44. Moreover, the ratios of both parallel
sections are inverse to each other.

5.2 Cloud Testing Environment

All Cloud experiments were executed in Amazon EC2 with the VM image Ama-
zon Linux AMI (ami-1ecae776) in the availability zone US East (N. Virginia).
For the workflow execution and measurements of the TETs and makespan,
we used the workflow execution engine Askalon [17]. We use two Amazon
instance types IT = {t2.small, t2.medium} as well as the number of instances
m = {2, 3, 4}.

According the definition of experiments in Sect. 3.3, EXP1 is defined as
EXP1(SY NWF/13, t2.small, 2), which means that it executes the synthetic
workflow with parallel section size 13, by using two small VMs. As we used two
different workflows that are specified in the previous subsection, we define q = 12
experiments, and since we execute 20 repetitions (test cases) of each experiment,
we execute a total of 240 test cases in Cloud. In order to cover different behavior
of Amazon’s EC2, we run all test cases of each experiments in the period of two
weeks.

5.3 Simulation Testing Environment

In all our simulations, we used DynamicCloudSim, which extends CloudSim by
adding features that allow a user to simulate the heterogeneity in Cloud described
as the performance deviation of a resource, including VM heterogeneity, host het-
erogeneity, File I/O heterogeneity, and Cloud instability, VM Stragglers and VM
Failures. DynamicCloudSim introduces 13 parameters that cover Cloud hetero-
geneity and instability, which are described in Table 2.

The same two workflows, two VM types and two, three, and four number of
VMs are used to reproduce the same 12 experiments as in real Cloud. We execute
N = 20 test cases per experiment in order to have equal number of experiments
in real and simulated executions. Note that we consider the instance startup as
warm up period and thus it is discarded in the experiments.

In order to evaluate our model, we compare it with the DynamicCloudSim’s
model (denoted as SsDCS) with default values for Amazon EC2 (Table 2), which
are based on other performance-based researches, experience, and assumptions.

A Simplified Model for Simulating the Execution of a Workflow in Cloud 327

Table 2. DynamicCloudSim heterogeneity parameter setup for SsDCS and Snoise

Heterogeneity parameter Description SsDCS Snoise

cpuHeterogeneityCV Randomize the power of
the host

0.4 0

ioHeterogeneityCV (CPU, I/O and
bandwidth)

0.15 0

bwHeterogeneityCV 0.2 0

cpuNoiseCV Randomize the
performance
characteristics

0.028 0

ioNoiseCV of a VM (CPU, I/O and
bandwidth)

0.007 0

bwNoiseCV 0.010 0

cpu/io/bw BaselineChangesPerHour Randomize the dynamic
changes of Cloud’s
performance

0 0

likelihoodOfStraggler Probability of a VM being
a straggler

0 0

stragglerPerformanceCoefficient Diminished performance
of a straggler

1 1

likelihoodOfFailure Average rate of failure 0 0

runtimeFactorInCaseOfFailure TET factor of a failed task 1 1

Our noisining model Snoise, adds noise to one parameter (TET) only. Thus,
all other heterogeneity and noise related parameters are set to 0 in Dynamic-
CloudSim. Note that also the cpuNoiseCV parameter is also set to 0, because
we insert our noise through the Cloud noisiness parameter. Table 3 shows the
measured Cloud noisiness xΔ and the corresponding standard deviations for
Snoise in each experiment executed on Amazon EC2. It shows that EC2 pro-
vides computation instabilities from 8.9% up to 17.6% for various workflows and
using different number of various instance types. The deviation of all test cases
per a single experiment is in the range of 2.8% up to 11.2%.

Table 3. xΔ and σxΔ values for Snoise

W 2*S 3*S 4*S 2*M 3*M 4*M W 2*S 3*S 4*S 2*M 3*M 4*M

xΔ 13 0.110 0.089 0.120 0.144 0.162 0.165 44 0.093 0.112 0.166 0.129 0.176 0.158

σxΔ 0.077 0.029 0.062 0.028 0.041 0.048 0.039 0.058 0.112 0.039 0.042 0.031

For a fair comparison, both simulations have equal base network, storage
and computation speed. Moreover during the experiments in real Cloud, we did

328 R. Mathá et al.

not detect any VM failures, and therefore the straggler, failure and cpu/io/bw
BaselineChangesPerHour parameters are set to 0 for both simulations.

6 Evaluation

In this section we present the results of a series of experiments to evaluate our
noising model. The summary of the evaluation shows not only that our model
is simpler, but it is more accurate than DynamicCloudSim.

Figure 2 shows the mean makespans of both workflows SYNWF/13 and
SYNWF/44. The experiments are denoted as the product of number of instances
(m) and the abbreviation of VM type (M for t2.medium and S for t2.small VM
type). For example, 2 ∗ S denotes the experiment that uses two small instances,
while 4 ∗ M is used for the experiment with four medium instances.

2*S 3*S 4*S 2*M 3*M 4*M

50

100

150

200

250

m ∗ ITk

m
ea

n
m

a
k
es

p
a
n

[s
]

C SsDCS Snoise

(a) SYNWF/13

2*S 3*S 4*S 2*M 3*M 4*M

100

200

300

400

500

600

m ∗ ITk

m
ea

n
m

a
k
es

p
a
n

[s
]

C SsDCS Snoise

(b) SYNWF/44

Fig. 2. Mean makespans with variations ±σ(mean makespan) of SYNWF/13 and
SYNWF/44 using two, three or four instances of type t2.small (S) or t2.medium (M)

The mean values of makespans of all experiments with SYNWF/13 are
depicted in Fig. 2a, along with the standard deviation. We observe that our
Snoise model shows higher accuracy, that is, both higher trueness and preci-
sion, than SsDCS . Increasing the number of small instances, Snoise improves its
precision with 20.16% up to 71.61%, while SsDCS has minimum 51.21% of pre-
cision offset compared to C. For all experiments, our noise model shows higher
makespan trueness for real Cloud C, compared to SsDCS . In detail, the trueness’
offset of Snoise is between 6.0% and 10.7% for small instances, while SsDCS ’s
is between 11.8% and 13.0%. Thus, Snoise is up to 7.0% better than SsDCS

for small instances. We observe a similar behavior with increasing number of
medium instances, where the makespan trueness offset of Snoise is between 0.5%
and 14.7%, while SsDCS ’s is between 2.3% and 16.3%. In the experiments with
two medium instances, both simulations show higher makespan than C, but
Snoise has still higher trueness with 0.5% offset.

A Simplified Model for Simulating the Execution of a Workflow in Cloud 329

Figure 2b shows the average makespan results for all experiments with the
SYNWF/44 workflow. Similar to the experiments with the SYNWF/13 work-
flow, our model Snoise shows again higher accuracy than SsDCS . The trueness
of our model Snoise is better than SsDCS for all experiments, while the precision
is comparable, but slightly worse, only for experiments with 4 instances, and
for all others our model Snoise is still better. In detail, Snoise shows between
15.29% and 20.59% higher standard deviation than C for 2 and 3 instances,
while SsDCS has up to 5 times higher offset. On experiments with 4 instances,
Snoise shows between 76.94% and 86.21% precision offset, while SsDCS has only
up to 21.93%. Regarding the simulated makespans’ trueness (closeness to the
mean value), Snoise shows a better trueness than SsDCS in all experiments. In
detail, comparing the trueness offset of the simulated results and the real Cloud
results, Snoise is still better with trueness offset between 9.4% and 26.6%, while
SsDCS has between 16.0% and 28.8%.

Comparing all experiments conducted with both workflows, Snoise shows
higher and more closer precision than SsDCS for all experiments with
SYNWF/13. We observe similar behavior with SYNWF/44, except for exper-
iments with 4 small and medium instances. Additionally, Snoise shows up to
9.2% higher makespans’ trueness compared to SsDCS for all experiments. We
also observe that the precision of both models does not depend if the number
of instances is a divisor or not of the workflow parallel section size, which can
significantly reduce the number of experiments to determine the cloud noisiness.

7 Conclusion and Future Work

This paper presents a new simplified Cloud noisiness model for noising the work-
flow execution while it is simulated in order to behave as the real Cloud unsta-
ble environment. Instead of configuring dozens parameters in order to achieve a
noised simulation, as it is required in DynamicCloudSim, our model configures
only one - the Cloud noisiness. A series of experiments in Amazon EC2 that were
reproduced in simulated environment show that our Cloud noisiness model sim-
plifies the simulation configuration and improves the simulation trueness, and
especially precision.

The main novelty in our model is the calculation of noisiness. Instead of using
the normal distribution naively for the tasks’ runtime, we shift the mean TET
by the Cloud noisiness and then add a noise (deviation of the Cloud noisiness) of
each task. The workflow noisiness smooths the impact of the workflow structure
by calculating the average instability of all tasks in a workflow, while the Cloud
noisiness estimates the environmental noise by calculating the horizontal average
instability of the same task. With these two parameters, we inject not only the
noise of a task itself, when being executed in Cloud, but we inject the impact
of common tasks’ noises within the workflow and environmental noise provided
when a whole workflow is being repeatedly executed in that environment.

Although our Cloud noisiness approach requires several executions of a work-
flow in order to calculate the Cloud noisiness parameter, the results show that

330 R. Mathá et al.

the instability is not correlated to the parallel section size, that is, if we exe-
cute a workflow efficiently or inefficiently. However, the experiments show that
the instability is highly correlated with the instance type and the number of
instances. We will try to extend our model with other parameters in order
to reduce this dependency and therefore the cost of learning the Cloud noisi-
ness. However, our analysis shows that the performance instability of up to 17%
between two experiments is comparable with the standard deviation of up to
11% between test cases within a single experiment.

Our noisiness model improved the simulator’s trueness for all and the preci-
sion for most instance types and number of instances. As the results show that
the instability is instance type dependent, we will extend our model towards
modeling network, as well as I/O, and including them in order to improve the
trueness and precision even more.

Acknowledgments. This work is being accomplished as a part of project ENTICE:
“dEcentralised repositories for traNsparent and efficienT vIrtual maChine opErations”,
funded by the European Unions Horizon 2020 research and innovation programme
under grant agreement No. 644179.

References

1. Alkhanak, E.N., Lee, S.P., Rezaei, R., Parizi, R.M.: Cost optimization approaches
for scientific workflow scheduling in cloud and grid computing: A review, classifi-
cations, and open issues. J. Syst. Softw. 113, 1–26 (2016)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50–58 (2010)

3. Basu, A., Fleming, S., Stanier, J., Naicken, S., Wakeman, I., Gurbani, V.K.: The
state of peer-to-peer network simulators. ACM Comput. Surv. 45(4), 46:1–46:25
(2013)

4. Bux, M., Leser, U.: DynamicCloudSim: Simulating heterogeneity in computational
clouds. Future Gen. Comput. Syst. 46, 85–99 (2015)

5. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: CloudSim:
a toolkit for modeling and simulation of cloud computing environments and evalua-
tion of resource provisioning algorithms. Softw.: Practice Exp. 41(1), 23–50 (2011)

6. Chen, W., Deelman, E.: WorkflowSim: A toolkit for simulating scientific workflows
in distributed environments. In: 2012 IEEE 8th International Conference on E-
Science (e-Science), pp. 1–8, October 2012

7. Dejun, J., Pierre, G., Chi, C.-H.: EC2 performance analysis for resource provision-
ing of service-oriented applications. In: Dan, A., Gittler, F., Toumani, F. (eds.)
ICSOC/ServiceWave -2009. LNCS, vol. 6275, pp. 197–207. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-16132-2 19

8. Depoorter, W., Moor, N., Vanmechelen, K., Broeckhove, J.: Scalability of grid
simulators: an evaluation. In: Luque, E., Margalef, T., Beńıtez, D. (eds.) Euro-
Par 2008. LNCS, vol. 5168, pp. 544–553. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85451-7 58

9. Di, S., Cappello, F.: GloudSim: Google trace based cloud simulator with virtual
machines. Softw. Pract. Exper. 45(11), 1571–1590 (2015)

http://dx.doi.org/10.1007/978-3-642-16132-2_19
http://dx.doi.org/10.1007/978-3-540-85451-7_58
http://dx.doi.org/10.1007/978-3-540-85451-7_58

A Simplified Model for Simulating the Execution of a Workflow in Cloud 331

10. Fard, H.M., Ristov, S., Prodan, R.: Handling the uncertainty in resource perfor-
mance for executing workflow applications in clouds. In: 9th IEEE/ACM Interna-
tional Conference on Utility and Cloud Computing, UCC 2016, pp. 89–98. ACM
(2016). http://doi.acm.org/10.1145/2996890.2996902

11. Iosup, A., Yigitbasi, N., Epema, D.: On the performance variability of production
cloud services. In: 2011 11th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), pp. 104–113, May 2011

12. ISO: ISO 5725: 1994. http://www.iso.org/obp/ui/#iso:std:11833:en
13. Jackson, K.R., Ramakrishnan, L., Muriki, K., Canon, S., Cholia, S., Shalf, J.,

Wasserman, H.J., Wright, N.J.: Performance analysis of high performance com-
puting applications on the Amazon web services cloud. In: 2010 IEEE Second
International Conference on Cloud Computing Technology and Science (Cloud-
Com), pp. 159–168, November 2010

14. Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., Vahi,
K.: Characterizing and profiling scientific workflows. Future Gen. Comput.
Syst. 29(3), 682–692 (2013). http://www.sciencedirect.com/science/article/pii/
S0167739X12001732. Special Section: Recent Developments in High Performance
Computing and Security

15. Malawski, M., Juve, G., Deelman, E., Nabrzyski, J.: Cost- and deadline-constrained
provisioning for scientific workflow ensembles in IaaS clouds. In: Proceedings of the
International Conference on HPC, Networking, Storage and Analysis, SC 2012, pp.
1–11 (2012)

16. Ostermann, S., Plankensteiner, K., Prodan, R., Fahringer, T.: GroudSim: An event-
based simulation framework for computational grids and clouds. In: Guarracino,
M.R., et al. (eds.) Euro-Par 2010. LNCS, vol. 6586, pp. 305–313. Springer, Heidel-
berg (2011). doi:10.1007/978-3-642-21878-1 38

17. Ostermann, S., Prodan, R., Fahringer, T.: Extending grids with cloud resource
management for scientific computing. In: 2009 10th IEEE/ACM International Con-
ference on Grid Computing, pp. 42–49. IEEE (2009)

18. Ristov, S., Mathá, R., Prodan, R.: Analysing the performance instability correla-
tion with various workflow and cloud parameters. In: 2017 25th Euromicro Interna-
tional Conference on Parallel, Distributed and Network-based Processing (PDP),
pp. 446–453, March 2017

19. Schad, J., Dittrich, J., Quiané-Ruiz, J.A.: Runtime measurements in the cloud:
Observing, analyzing, and reducing variance. Proc. VLDB Endow. 3(1–2), 460–
471 (2010)

20. Tchernykh, A., Schwiegelsohn, U., Alexandrov, V., ghazali Talbi, E.: Towards
understanding uncertainty in cloud computing resource provisioning. Procedia
Comput. Sci. 51, 1772–1781 (2015). International Conference on Computational
Science (2015)

21. Tian, W., Xu, M., Chen, A., Li, G., Wang, X., Chen, Y.: Open-source simulators for
cloud computing: comparative study and challenging issues. Simul. Modell. Prac-
tice Theory 58(Part 2), 239–254 (2015). http://www.sciencedirect.com/science/
article/pii/S1569190X15000970. Special issue on Cloud Simulation

22. Wu, F., Wu, Q., Tan, Y.: Workflow scheduling in cloud: A survey. J. Supercomput.
71(9), 3373–3418. http://dx.doi.org/10.1007/s11227-015-1438-4

23. Zhao, Y., Li, Y., Raicu, I., Lu, S., Lin, C., Zhang, Y., Tian, W., Xue, R.: A service
framework for scientific workflow management in the cloud. IEEE Trans. Serv.
Comput. 8(6), 930–944 (2015)

http://doi.acm.org/10.1145/2996890.2996902
http://www.iso.org/obp/ui/#iso:std:11833:en
http://www.sciencedirect.com/science/article/pii/S0167739X12001732
http://www.sciencedirect.com/science/article/pii/S0167739X12001732
http://dx.doi.org/10.1007/978-3-642-21878-1_38
http://www.sciencedirect.com/science/article/pii/S1569190X15000970
http://www.sciencedirect.com/science/article/pii/S1569190X15000970
http://dx.doi.org/10.1007/s11227-015-1438-4

Dealing with Performance Unpredictability
in an Asymmetric Multicore Processor Cloud

Boris Teabe(B), Patrick Lavoisier Wapet, Alain Tchana, and Daniel Hagimont

University of Toulouse, Toulouse, France
{boris.teabedjomgwe,patrick.wapet,alain.tchana,

daniel.hagimon}@enseeiht.fr

Abstract. In a Cloud computing data center and especially in a IaaS
(Infrastructure as a Service), performance predictability is one of the most
important challenges. For a given allocated virtual machine (VM) in one
IaaS, a client expects his application to perform identically whatever is
the hosting physical server or its resource management strategy. How-
ever, performance predictability is very difficult to enforce in a heteroge-
neous hardware environment where machines do not have identical per-
formance characteristics, and even more difficult when machines are inter-
nally heterogeneous as for Asymmetric Multicore Processor machines.
In this paper, we introduce a VM scheduler extension which takes into
account hardware performance heterogeneity of Asymmetric Multicore
Processor machines in the cloud. Based on our analysis of the problem,
we designed and implemented two solutions: the first weights CPU alloca-
tions according to core performance, while the second adapts CPU allo-
cations to reach a given instruction execution rate (Ips) regardless the
core types. We demonstrate that such scheduler extensions can enforce
predictability with a negligible overhead on application performance.

1 Introduction

Cloud Computing enables remote access to on-demand allocated resources. The
most popular cloud model is the so-called Infrastructure as a Service (IaaS)
model, since it offers a high flexibility to cloud users. In order to provide isolation,
IaaS clouds are often virtualized so that resources are allocated in terms of virtual
machines (VMs). The provider defines a VM catalog (e.g. t2.medium, t2.small
in Amazon EC2) presenting VM configurations which can be requested by cloud
users. A VM configuration defines a capacity for each resource types, that we
call virtual resource types as machines are virtual. Capacities are expressed as
follows:

– the capacity of the network is expressed in terms of a bandwidth value (e.g.
100 MBps).

– the capacity of the hard disk is expressed in terms of both an IO bandwidth
(e.g. 100 MBps) and a storage space (e.g. 1 TB).

– the capacity of the RAM is expressed in terms of a storage space (e.g. 10 GB).

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 332–344, 2017.
DOI: 10.1007/978-3-319-64203-1 24

Dealing with Performance Unpredictability 333

– the capacity of the CPU is expressed in terms of a number of virtual CPU
(noted vCPU, e.g. 4 vCPUs).

The analysis of the above capacity expressions raises one question: from the
user point of view, what is the real capacity of each virtual resource
type, given that virtual resources are mapped to heterogeneous phys-
ical resources? Concerning both the network and the hard disk, the answer is
quite clear because they are expressed using absolute units (independent from
the underlying hardware). This is not the case for the two other virtual resources.
Both the RAM bandwidth (which is not presented to the user) and the vCPU
computing capacity depend on the underlying hardware. Figure 1 left shows that
the same VM type from Rackspace and Azure cloud delivers different perfor-
mance levels according to the underlying processor. This results in the problem
of performance unpredictability [16], which has been identified by Microsoft [2]
as part of the five top significant challenges in the cloud.

Fig. 1. Left figure: performance unpredictability illustration in Rackspace and
Microsoft Azure clouds. The experimental application is π-app [6]. Right figure: SMP
and AMP machines

The majority of research projects, if not all, have investigated this issue from
the resource contention perspective [27,30], seen as the only source of the prob-
lem. However, we have shown in a previous work [28] that heterogeneity (of
memory and processor) is actively involved in performance unpredictability. In
this previous work, we focused on heterogeneous Symmetric Multicores Proces-
sor machines (hereafter called SMP clouds) (Fig. 1 left). However, advances in
semiconductor technologies have enabled processor manufacturers to integrate
more and more cores on a chip. This will lead in the near future (for energy
saving reasons [8,18]) to a new type of architecture called Asymmetric Multi-
cores Processor (AMP) (Fig. 1 right). Such an architecture is composed of cores
exporting the same Instruction Set Architecture (ISA) but delivering different
performance [18]. This new architecture comes with new challenges which have
begun to be studied [8,14]. This paper tackles the issue of performance unpre-
dictability in AMP clouds in which three problematic situations can be identified:

1. A multi-vCPU VM whose vCPUs run atop different core types (e.g. in Fig. 1
right, a thread inside the V M2 can be scheduled either on “vCPU ×86 slow”
or “vCPU ×86 fast”);

334 B. Teabe et al.

2. the scheduling of one vCPU across different core types in the same machine
(e.g. in Fig. 1 right, V M3’s vCPU can be scheduled either on “×86 slow”,
“×86 fast”, “×64” or “ARM”);

3. VM migration across different machine types.

The first two situations can only occur in an AMP cloud while the third situation
can raise up in AMP and SMP clouds.

It is clear that providing the same vCPU computing capacity regardless the
underlying core type allows addressing all of the above situations. Our analysis
of this problem led us to the design of two solutions, which both include (1)
an absolute metric to express a vCPU computing capacity, and (2) a sched-
uler which enforces the negotiated contract during the overall VM lifetime. The
first solution consists in using a reference core (noted pref) as the basis of vCPU
capacity expression. Relying on the proportionality coefficient between the actual
core type and pref , the scheduler dynamically adjusts the allowable CPU time
of the vCPU. This solution is an improvement of our previous work [28] (which
was performing such an adjustment at VM migration time in an SMP cloud).
The second solution uses the “number of instructions per second” (noted Ips)
as the metric to express a vCPU computing capacity. It requires a new kind of
scheduler which relies on the actual number of CPU retired instructions rather
than the CPU time (the standard practice). Theses solutions were prototyped in
the Xen 4.2.0 system, although their design is independent from any virtualiza-
tion system. The overhead of these prototypes at runtime is almost nil. We have
evaluated their effectiveness using well known benchmarks (SPEC CPU2006 [4],
Blast [1], and wordpress [5]). The evaluation results show that our solutions
almost cancel out the issue of performance unpredictability due to core hetero-
geneity.

The rest of the article is structured as follows. Section 2 presents the back-
ground. Section 3 presents our contributions. The evaluation results are reported
in Sect. 4. The related work is presented in Sect. 5 and we present our conclusions
in Sect. 6.

2 Background

Our work is based on the para-virtualized Xen system. Before going into the
description of our contributions, we briefly present Xen and its CPU allocation
mechanism.

2.1 The Xen Hypervisor

Xen [11] is a popular open-source Virtual Machine Monitor (VMM) system (also
called hypervisor) which is widely espoused by several cloud providers such as
Amazon EC2. Its implementation follows the para-virtualization [29] model. In
this model, the hypervisor runs directly on the hardware, so taking the tradi-
tional place of the operating system (OS). Thus, the hypervisor has all privileges

Dealing with Performance Unpredictability 335

and rights to access the entire hardware. It provides the means to concurrently
run several OS called virtual machines (VM). The host OS (seen as a special
VM) is called dom0 while the others are called domU. The former has more
privileges than the latter since it is responsible for running Xen’s management
toolstack. The next section presents the Xen’s CPU allocation mechanism.

2.2 CPU Allocation in Xen

Each VM is configured at start time with a number of vCPU and the hyper-
visor is responsible for scheduling vCPUs on cores. Roughly, each core runs a
dedicated scheduler instance which manages a sub-group of vCPUs. The goal of
each scheduler is to determine which vCPU will receive the core during the next
quantum. Xen implements several scheduling policies including Simple Earliest
Deadline First (SEDF) [11] and Credit [11]. SEDF is a scheduler which guaran-
tees a minimum processing time to a VM. Concerning the Credit scheduler, it
guarantees that a VM will strictly receive a portion (called credit) of the physical
machine computing capacity. Credit is the default and the widely used scheduler.
Therefore our work only considers this scheduler.

The Credit scheduler works as follows. Each VM (noted v) is configured at
start time with a credit value (noted c) between 0 and 100 (full computing capac-
ity). The scheduler defines remainCredit, a scheduling variable (associated with
the VM) initialized to c. Each time a vCPU from v releases a core, (1) the sched-
uler translates into a credit value (let us say burntCredit) the time spent by v on
the core. Subsequently, (2) the scheduler computes a new value of remainCredit
by subtracting burntCredit from the previous remainCredit. When remainCredit
reaches a lower threshold (configured in Xen), the VM enters a “blocked” state.
In order to make blocked VMs schedulable in the future, the scheduler periodi-
cally increases their remainCredit according to their initial credit.

From the above presentation, we can see that the Credit scheduler is based on
the notion of credit which depends on CPU time. The latter is a relative metric,
as opposed to absolute metrics introduced in Sect. 1. Indeed, a vCPU capacity
during a time period depends on the underlying core type. In other words, during
the same time period, different core types result in different numbers of retired
instructions for the same application. The next section presents our solutions
which address this issue.

3 Performance Predictability Enforcement Systems

In public clouds, a vCPU is generally pinned to a dedicated core and is allowed
to fully use this core. Our work is situated in this context1. In such a con-
text, the provider presents to the user the vCPU capacity as a core capacity.
This is ambiguous in AMP clouds since cores have different capacities. This

1 Our solutions can also be easily applied to other contexts where several vCPUs share
the same core.

336 B. Teabe et al.

paper addresses the issue of performance unpredictability which comes from
this ambiguity. To do so, we adopt a two-step approach which is summarized by
the following questions:

– Expressiveness: how to clearly express a vCPU computing capacity?
– Enforcement: how to enforce a booked vCPU computing capacity at runtime?

This section presents two ways to answer the above questions. Relying on the
popular open source Xen hypervisor, we also present the implementation of each
solution.

3.1 The First Solution

Expressiveness. In this solution, a vCPU computing capacity is presented to the
user as the capacity of a specific core type (referred to as “reference core” and
noted pref) available in the IaaS. pref is chosen once by the provider. It should
be the core type with the lowest computing capacity, so that all other core types
are able to provide this capacity.

Enforcement. Let us note app a single-thread CPU bound application (e.g. π-
app [6]). ExecutionT ime(app, p) is the execution time of app when it exclusively
runs on a core whose type is p. The enforcement system goal here is to ensure that
given a vCPU v, ExecutionT ime(app, p)=ExecutionT ime(app, pref) regardless
the actual core which runs v. We define the proportionality coefficient between
pref and each core type p (noted coef(p)) as follows

coef(p) =
ExecutionT ime(app, pref)
ExecutionT ime(app, p)

(1)

The proportionality coefficient is computed once by the provider. Then, the
enforcement system relies on an adaptation of the Xen Credit scheduler in order
to dynamically scale each vCPU allowable CPU time according to the propor-
tionality coefficient of its actual core. By doing so, the computing capacity asso-
ciated with a vCPU is always that of pref . In the scheduler, the burnt CPU
time (for a vCPU) is always translated as if it had been executed on pref . This
translation is periodically performed after each scheduler intervention (typically
every 30 ms in Xen). Unlike the native Credit scheduler (see the beginning of
the section) which allows the vCPU to fully use its actual core (noted p), our
modification enforces the use of only a fraction of p. The implementation of this
solution is straightforward in the Xen Credit scheduler. It simply consists in
modifying the vCPUBurntCredit function (see Sect. 2) as follows

1Unsigned int vCPUBurntCredit (. . .) {
2 . . .
3 // burn tCred i t has been c a l c u l a t e d above (in the ↘

o r i g i n a l Xen Cred i t s chedu l e r)
4 burntCredit = burntCredit ∗ co e f (typeOf (c o r e i d)) ;
5 return burntCredit ;
6}
where typeOf(core id) returns the current core type.

Dealing with Performance Unpredictability 337

3.2 The Second Solution

Expressiveness. In this solution, a vCPU computing capacity is presented to the
user as an instruction throughput (noted Ips): it is the maximum number of
instructions the vCPU is allowed to performed per second. As well as the metric
used to express a virtual network card capacity (Byte per second, Bps) is clear
and absolute, Ips is also clear and absolute.

Enforcement. The enforcement system aims at ensuring that a vCPU’s booked
Ips is always satisfied regardless its actual core speed. Unlike the first solution
which relies on the translation of a relative metric into an absolute metric, the
second solution is directly based on an absolute metric. Therefore, the imple-
mentation of this solution cannot be implemented with a simple adaptation of
the Xen Credit scheduler. It requires a monitoring system which is able to mea-
sure online the number of instructions performed by each vCPU. Ips Sched,
the new scheduler we have implemented, works as follows. Ips Sched periodi-
cally collects the number of retired instructions (noted ri) related to each vCPU
during the sampling period (noted sp). In our prototype, ri is obtained using
Perfctr-xen [24], a tool which allows accessing performance counters in a vir-
tualized environment. Subsequently, Ips Sched computes the actual instruction
throughput (noted act t) of each vCPU using the following formula

act t =
old t × sp + ri

2 × sp
(2)

where old t is the throughput calculated during the previous sampling period.
Note that old t is zero if the vCPU was blocked during the previous sampling
period. Ips Sched keeps two queues namely UNDER and OV ER. If act t is
lower than the booked Ips, the vCPU is inserted into the UNDER queue.
Otherwise the vCPU is inserted into OV ER. vCPUs which belong to the latter
are not allowed to use the processor during the next sampling period (they are
considered as blocked).

3.3 Comparison of the Two Solutions

This section presents both the advantages and the limitations of our two solu-
tions. We have conducted a survey of cloud users (from two cloud provider part-
ners) regarding the metrics used in the two solutions. The results of this survey
show that the metric introduced in the first solution (the vCPU capacity is that
of a reference core, pref) is more comprehensive than the metric used in the sec-
ond solution (the vCPU capacity is an instruction throughput, Ips). The latter
is suitable for HPC cloud users since they have the necessary expertise needed to
deal with low level statistics such as Ips. Furthermore, Ips allows doing both fine
grained and flexible CPU reservation. For instance, in the same way that physi-
cal AMP machines exist, the user can define AMP VMs2 by expressing different
2 Several research have highlighted the benefits of AMP VMs for energy saving

improvements.

338 B. Teabe et al.

Ips per vCPU for the same VM. This is not possible using the first solution
since all vCPUs should have the same capacity. Finally the implementation of
the first solution requires more work (calibration of proportionality coefficients)
from the provider than the second solution.

4 Evaluations

This section presents the evaluation results of our solutions. We evaluate the
following aspects:

– Effectiveness: the capacity of the solutions to ensure a vCPU computing
capacity.

– Overhead: the amount of resources consumed by both solutions.

Experimental Setup.

Hardware. The adopted experimental environment is similar to those used in
prior work [15,26] in the domain of AMP. In those works, an AMP machine
consists of two core types namely fast and slow cores. An AMP machine is
simulated by an SMP machine whose cores work at different frequency levels:
a fast core is emulated by running the core at the highest available frequency;
a slow core is emulated by running the core at the lowest available frequency.
Our testbed is composed of 2 DELL PowerEdge R420 machines. Each machine
has 2 sockets, 6 cores per socket. The core’s highest frequency is 2.2 GHz and
the lowest frequency is 1.2 GHz. Each socket is organized into 3 fast cores and
3 slow cores. The operating system is Ubuntu 12.04 (Linux kernel version 3.8.0)
virtualized with Xen 4.2.0. Our private IaaS is managed by OpenStack [3], a
popular IaaS manager system.

Benchmarks. We evaluated our solutions using three reference benchmarks
namely SPEC CPU2006 [4], Blast [1] and wordpress [5].

– SPEC CPU2006 [4] is a suite of single-threaded applications, stressing a sys-
tem’s processor, memory subsystem and compiler.

– Blast [1] is a multi-threaded application which simulates a typical workload
from a health institute.

– Wordpress [5] is a web application commonly deployed in the cloud. Its per-
formance metrics are the throughput (req/sec) and the response time.

4.1 The Effectiveness

Methodology. Performance predictability is guaranteed when the same workload
execution results in the same performance regardless the core type. This contract
is respected in an SMP machine because cores are identical (obviously) and we
avoid other sources of problem (e.g. resource contention [30]) in order to only
focus on the issue related to core heterogeneity. Therefore, we first execute appli-
cations on SMP machines managed with the native Xen system (representing the

Dealing with Performance Unpredictability 339

“baseline”). Afterwards, we run the same applications on AMP machines man-
aged with the native Xen (def) and with our solutions (sol1 and sol2). Finally, we
compare the obtained results: our solutions are effective if they provide the same
results as the baseline. In addition, to highlight the criticality of the addressed
issue, we evaluate the use of the native Xen system to manage AMP machines.
Notice that each experiment is repeated several times. In the evaluation of the
first solution (sol1), pref is set to the slow core type. Concerning the evaluation
of the second solution, the booked Ips of any vCPU is set to 50 Mega Ips.

Results. The first experiment uses CPU bound applications (SPEC CPU2006
and Blast) to evaluate the effectiveness of our solutions. As well as SPEC
CPU2006 and Blast are respectively single-threaded and multi-threaded appli-
cations, they were ran respectively in single-vCPU and four-vCPU VMs. Each
application is the subject of several executions, so that all vCPU to core type
mappings are experimented. Performance predictability is achieved if the execu-
tion time of an application is almost the same in all executions. Figure 2 contains
box plots presenting the normalized execution time of each benchmark (normal-
ized to the baseline). The height of the boxes corresponds to the performance
variation between various executions of benchmarks. We can observe that our
solutions (sol1 and sol2) lead to a unique execution time which is equal to the
baseline execution time. This is not the case for the native Xen system (def).
The latter results in up to five different execution times, which correspond to the
various vCPU to core type mappings: SPEC CPU2006 and Blast applications
have respectively two and five possible vCPU to core mappings.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

Def Sol1 Sol2

N
or

m
 P

er
f.

Astar

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

Def Sol1 Sol2

N
or

m
 P

er
f.

Xanbmck

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

Def Sol1 Sol2

N
or

m
 P

er
f.

Bzip2

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

Def Sol1 Sol2

N
or

m
 P

er
f.

Omnetp

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

Def Sol1 Sol2

N
or

m
 P

er
f.

H264ref

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

Def Sol1 Sol2

N
or

m
 P

er
f.

Blast

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

Def Sol1 Sol2

N
or

m
 P

er
f.

Hmmer

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

Def Sol1 Sol2

N
or

m
 P

er
f.

Gobmk

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

Def Sol1 Sol2

N
or

m
 P

er
f.

Perlbench

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

Def Sol1 Sol2

N
or

m
 P

er
f.

Sjeng

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

Def Sol1 Sol2

N
or

m
 P

er
f.

Libquantum

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

Def Sol1 Sol2

N
or

m
 P

er
f.

Mcf

Fig. 2. Effectiveness evaluation of our solutions with SPEC CPU2006 and Blast.

The second experiment type is based on wordpress, an internet service appli-
cation. We configure the benchmark as a two-tier application composed of a load
balancer (Haproxy) which distributes requests among two Apache web servers
(see Fig. 3 left). Each Apache server runs in a single-vCPU VM and a constant
workload is submitted to wordpress. We experimented several vCPU to core
type mappings (VM to core mappings). The results of this experiment are pre-
sented through a Cumulative Distribution Function (CDF) in Fig. 3 right. We

340 B. Teabe et al.

can observe that our solutions (sol1 and sol2) provide almost the same response
time values as the baseline regardless the vCPU to core type mappings. Con-
versely, the native Xen (def) system results in two response time values (691 and
44385 micro sec) corresponding to the scenario where the two Apache servers
(the two VMs) run on different core types.

Fig. 3. Effectiveness evaluation of our solutions with wordpress. The right side figure
presents the Cumulative Distribution Function (CDF) of the obtained response times.

4.2 The Overhead

The overhead of our solutions is almost nil. In reality, only the second solution
could have introduced a possible overhead during performance counters collec-
tion. However, Perfctr-xen [24] authors and several other researches [10] have
reported that this fear is unjustified. This also corresponds to what we have
observed.

5 Related Work

The Heterogeneity Issue in SMP Clouds
Several researches have investigated the problem of hardware heterogeneity
in today’s clouds. [12] evaluates the impact of assuming a heterogeneous cloud
as being homogeneous. It proposes a metric to express an application sensibil-
ity facing heterogeneity. [25] proposed to standardize the representation of the
processing power of CPU by using Processing Units. [13] based on this Process-
ing Units, presents the Execution and Resources Homogenization Architecture
(ERHA). ERHA aims to provide mechanisms for submitting and executing batch
applications in private IaaS clouds using homogeneous virtual environments cre-
ated over heterogeneous physical infrastructure. Concerning public clouds, some
(such as Amazon EC2) avoid the issue of hardware heterogeneity by dedicating
the same hardware type to each VM type. For instance, EC2 announces to their
customers that a m3.medium VM instance will always run atop an Intel Xeon

Dealing with Performance Unpredictability 341

CPU E5-2650 2.00 GHz processor. This strategy is constraining for VM coloca-
tion. Indeed, a VM could not be deployed on a machine even if this machine
has enough resources to host the VM. Concerning other public clouds such as
Rackspace, the allocation unit is a vCPU and no more information is given
about the real computing capacity. The actual computing capacity of a VM on
this IaaS depends on the underlying core type, as illustrated in the introduction
(see Fig. 1).

The Heterogeneity Issue in AMP Clouds
Several research works on AMP systems have focused on the scheduling issue and
not on the predictability issue. Most of them have been conducted in the context
of native systems. [9,17,18,21–23,26] aim at determining the best thread to core
mapping in order to improve thread performance. [26] investigates applications
which are composed of both parallel and sequential phases. [26] improves the
scheduler by running sequential phase threads on fast cores. [7] tries to ensure
fair sharing of the fast cores while [20] proposes to assigned vCPUs to core
according to their speed. Therefore, fast core run-queues receive more vCPUs
than slow cores. [9] shows that in an AMP, dynamic thread migration policies
provide larger performance improvements than static policies. Their dynamic
thread migration policy executes the threads for a small time duration on each
core to measure their IPC (Instruction Per Cycle). Based on this, a thread that
achieves only modest performance improvements from running on a fast core is
executed on a slow core, and a thread that benefits significantly from running
on a fast core is executed on the fast core. Researches conducted in virtualized
systems [15,18,19,26] consist in translating native system solutions in virtualized
systems (vCPUs are seen as threads). For instance, [15] proposes to realize a fair
sharing of fast cores on AMP machines. They present a scheduling technique
for hypervisors implemented in Xen. To ensure that all virtual CPUs (vCPUs)
equally share the fast physical cores, the quota of a VM is decided depending
on the number of vCPUs in it.

Positioning of Our Work
From far of our knowledge, no research study has investigated the issue of per-
formance unpredictability in AMP clouds. The majority of research projects,
if not all, have investigated this issue in SMP clouds. Also, they have mainly
focused on the resource contention perspective, seen as the only source of the
unpredictability problem. We have shown that heterogeneity (of memory and
processor) is significantly involved in performance unpredictability. This paper
is the only one to proposed solutions to the unpredictability in AMP clouds.

6 Conclusion

This paper addresses the issue of performance unpredictability due to the ambi-
guity of vCPU computing capacity expression in AMP clouds. We have presented
two solutions and their implementations within the Xen virtualized system. Each
solution includes both an absolute metric definition and an enforcement system.

342 B. Teabe et al.

The first solution relies on a reference core (pref) as the basis of vCPU capac-
ity expression. Subsequently, relying on the proportionality coefficient between
the actual core type and pref , the scheduler dynamically adjusts the allowable
CPU time of the vCPU. The second solution directly introduces an absolute
metric namely the “number of instructions per second” (noted Ips). We have
demonstrated the effectiveness of each solution by experimenting several refer-
ence benchmarks.

References

1. Blast. http://fiehnlab.ucdavis.edu/staff/kind/Collector/Benchmark/Blast Bench
mark. Accessed 3 Feb 2015

2. Microsoft’s top 10 business practices for environmentally sustainable data
centers. http://www.microsoft.com/environment/news-and-resources/datacenter-
best-practices.aspx. Accessed 10 Feb 2015

3. Open Stack. https://www.openstack.org/enterprise/virtualization-integration/.
Accessed 3 Feb 2015

4. SPEC CPU2006. http://www.spec.org/cpu2006/. Accessed 3 Dec 2015
5. Wordpress. https://fr.wordpress.org/. Accessed 3 Feb 2015
6. y-cruncher - A multi-threaded Pi-program. http://www.numberworld.org/

y-cruncher/#Benchmarks. Accessed 3 May 2014
7. Balakrishnan, S., Rajwar, R., Upton, M., Lai, K.: The impact of performance asym-

metry in emerging multicore architectures. In: Proceedings of the 32Nd Annual
International Symposium on Computer Architecture, ISCA 2005, pp. 506–517.
IEEE Computer Society, Washington (2005). https://doi.org/10.1109/ISCA.2005.
51

8. Baumann, A., Barham, P., Dagand, P.E., Harris, T., Isaacs, R., Peter, S., Roscoe,
T., Schüpbach, A., Singhania, A.: The multikernel: a new OS architecture for
scalable multicore systems. In: Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, SOSP 2009, pp. 29–44. ACM, New York (2009).
http://doi.acm.org/10.1145/1629575.1629579

9. Becchi, M., Crowley, P.: Dynamic thread assignment on heterogeneous multiproces-
sor architectures. In: Proceedings of the 3rd Conference on Computing Frontiers,
CF 2006, pp. 29–40. ACM, New York (2006). http://doi.acm.org/10.1145/1128022.
1128029

10. Bui, V.Q.B., Teabe, B., Tchana, A., Hagimont, D.: Kyoto: applying the polluters
pay principle to cache contention in an IaaS. In: Proceedings of the International
Workshop on Virtualization Technologies, VT15, pp. 1–6. ACM, New York (2011).
http://doi.acm.org/10.1145/2835075.2835077

11. Cherkasova, L., Gupta, D., Vahdat, A.: Comparison of the three CPU schedulers
in Xen. SIGMETRICS Perform. Eval. Rev. 35(2), 42–51. http://doi.acm.org/10.
1145/1330555.1330556

12. Fedorova, A., Vengerov, D., Doucette, D.: Operating system scheduling on het-
erogeneous core systems. In: Proceedings of 2007 Operating System Support for
Heterogeneous Multicore Architectures (2007)

13. Jin, X., Park, S., Sheng, T., Chen, R., Shan, Z., Zhou, Y.: ERHA: execution and
resources homogenization architecture. In: The Third International Conference on
Cloud Computing, GRIDs, and Virtualization, CLOUD COMPUTING (2015)

http://fiehnlab.ucdavis.edu/staff/kind/Collector/Benchmark/Blast_Benchmark
http://fiehnlab.ucdavis.edu/staff/kind/Collector/Benchmark/Blast_Benchmark
http://www.microsoft.com/environment/news-and-resources/datacenter-best-practices.aspx
http://www.microsoft.com/environment/news-and-resources/datacenter-best-practices.aspx
https://www.openstack.org/enterprise/virtualization-integration/
http://www.spec.org/cpu2006/
https://fr.wordpress.org/
http://www.numberworld.org/y-cruncher/#Benchmarks
http://www.numberworld.org/y-cruncher/#Benchmarks
https://doi.org/10.1109/ISCA.2005.51
https://doi.org/10.1109/ISCA.2005.51
http://doi.acm.org/10.1145/1629575.1629579
http://doi.acm.org/10.1145/1128022.1128029
http://doi.acm.org/10.1145/1128022.1128029
http://doi.acm.org/10.1145/2835075.2835077
http://doi.acm.org/10.1145/1330555.1330556
http://doi.acm.org/10.1145/1330555.1330556

Dealing with Performance Unpredictability 343

14. Jin, X., Park, S., Sheng, T., Chen, R., Shan, Z., Zhou, Y.: FTXen: making
hypervisor resilient to hardware faults on relaxed cores. In: 21st IEEE Interna-
tional Symposium on High Performance Computer Architecture, HPCA 2015,
Burlingame, CA, USA, 7–11 February 2015, pp. 451–462 (2015). https://doi.org/
10.1109/HPCA.2015.7056054

15. Kazempour, V., Kamali, A., Fedorova, A.: AASH: an asymmetry-aware sched-
uler for hypervisors. SIGPLAN Not. 45(7), 85–96. http://doi.acm.org/10.1145/
1837854.1736011

16. Koh, Y., Knauerhase, R.C., Brett, P., Bowman, M., Wen, Z., Pu, C.: An analysis
of performance interference effects in virtual environments. In: Proceedings of 2007
IEEE International Symposium on Performance Analysis of Systems and Software,
San Jose, California, USA, 25–27 April 2007, pp. 200–209 (2007). https://doi.org/
10.1109/ISPASS.2007.363750

17. Koufaty, D., Reddy, D., Hahn, S.: Bias scheduling in heterogeneous multi-core
architectures. In: Proceedings of the 5th European Conference on Computer Sys-
tems, EuroSys 2010, pp. 125–138. ACM, New York (2010). http://doi.acm.org/10.
1145/1755913.1755928

18. Kumar, R., Tullsen, D.M., Ranganathan, P., Jouppi, N.P., Farkas, K.I.: Single-
ISA heterogeneous multi-core architectures for multithreaded workload perfor-
mance. In: Proceedings of the 31st Annual International Symposium on Computer
Architecture, ISCA 2004, pp. 64–77. IEEE Computer Society, Washington (2004).
http://dl.acm.org/citation.cfm?id=998680.1006707

19. Kwon, Y., Kim, C., Maeng, S., Huh, J.: Virtualizing performance asymmetric
multi-core systems. In: Proceedings of the 38th Annual International Symposium
on Computer Architecture, ISCA 2011, pp. 45–56. ACM, New York (2011). http://
doi.acm.org/10.1145/2000064.2000071

20. Li, T., Baumberger, D., Koufaty, D.A., Hahn, S.: Efficient operating system
scheduling for performance-asymmetric multi-core architectures. In: Proceedings
of the 2007 ACM/IEEE Conference on Supercomputing, SC 2007, pp. 1–11. ACM,
New York (2007). http://doi.acm.org/10.1145/1362622.1362694

21. Liu, G., Park, J., Marculescu, D.: Dynamic thread mapping for high-performance,
power-efficient heterogeneous many-core systems. In: 2013 IEEE 31st International
Conference on Computer Design, ICCD 2013, Asheville, NC, USA, 6–9 October
2013, pp. 54–61 (2013). https://doi.org/10.1109/ICCD.2013.6657025

22. Luo, Y., Packirisamy, V., Hsu, W.C., Zhai, A.: Energy efficient speculative threads:
Dynamic thread allocation in same-ISA heterogeneous multicore systems. In: Pro-
ceedings of the 19th International Conference on Parallel Architectures and Com-
pilation Techniques, PACT 2010, pp. 453–464. ACM, New York (2010). http://
doi.acm.org/10.1145/1854273.1854329

23. Morad, T.Y., Kolodny, A., Weiser, U.C.: Scheduling multiple multithreaded appli-
cations on asymmetric and symmetric chip multiprocessors. In: Third International
Symposium on Parallel Architectures, Algorithms and Programming, PAAP 2010,
Dalian, China, 18–20, pp. 65–72 (2010). https://doi.org/10.1109/PAAP.2010.50

24. Nikolaev, R., Back, G.: Perfctr-Xen: a framework for performance counter virtual-
ization. In: Proceedings of the 7th ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments, VEE 2011, pp. 15–26. ACM, New York
(2011). http://doi.acm.org/10.1145/1952682.1952687

https://doi.org/10.1109/HPCA.2015.7056054
https://doi.org/10.1109/HPCA.2015.7056054
http://doi.acm.org/10.1145/1837854.1736011
http://doi.acm.org/10.1145/1837854.1736011
https://doi.org/10.1109/ISPASS.2007.363750
https://doi.org/10.1109/ISPASS.2007.363750
http://doi.acm.org/10.1145/1755913.1755928
http://doi.acm.org/10.1145/1755913.1755928
http://dl.acm.org/citation.cfm?id=998680.1006707
http://doi.acm.org/10.1145/2000064.2000071
http://doi.acm.org/10.1145/2000064.2000071
http://doi.acm.org/10.1145/1362622.1362694
https://doi.org/10.1109/ICCD.2013.6657025
http://doi.acm.org/10.1145/1854273.1854329
http://doi.acm.org/10.1145/1854273.1854329
https://doi.org/10.1109/PAAP.2010.50
http://doi.acm.org/10.1145/1952682.1952687

344 B. Teabe et al.

25. Rego, P.A.L., Coutinho, E.F., Gomes, D.G., de Souza, J.N.: FairCPU: architecture
for allocation of virtual machines using processing features. In: Proceedings of the
2011 Fourth IEEE International Conference on Utility and Cloud Computing, UCC
2011, pp. 371–376. IEEE Computer Society, Washington (2011). http://dx.doi.org/
10.1109/UCC.2011.62

26. Shelepov, D., Saez Alcaide, J.C., Jeffery, S., Fedorova, A., Perez, N., Huang,
Z.F., Blagodurov, S., Kumar, V.: HASS: a scheduler for heterogeneous multi-
core systems. SIGOPS Oper. Syst. Rev. 43(2), 66–75. http://doi.acm.org/10.1145/
1531793.1531804

27. Tang, L., Mars, J., Soffa, M.L.: Contentiousness vs. sensitivity: improving con-
tention aware runtime systems on multicore architectures. In: Proceedings of the
1st International Workshop on Adaptive Self-Tuning Computing Systems for the
Exaflop Era, EXADAPT 2011, pp. 12–21. ACM, New York (2011). http://doi.acm.
org/10.1145/2000417.2000419

28. Teabe, B., Tchana, A., Hagimont, D.: Enforcing CPU allocation in a heteroge-
neous IaaS. Future Gener. Comput. Syst. 53(C), 1–12. http://dx.doi.org/10.1016/
j.future.2015.05.013

29. Whitaker, A., Shaw, M., Gribble, S.D.: Scale and performance in the Denali isola-
tion kernel. In: Proceedings of the 5th Symposium on Operating Systems Design
and implementation Copyright Restrictions Prevent ACM from Being Able to
Make the PDFs for This Conference Available for Downloading, OSDI 2002, pp.
195–209. USENIX Association, Berkeley (2002). http://dl.acm.org/citation.cfm?
id=1060289.1060308

30. Zhuravlev, S., Blagodurov, S., Fedorova, A.: Addressing shared resource contention
in multicore processors via scheduling. In: Proceedings of the Fifteenth Edition of
ASPLOS on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XV, pp. 129–142. ACM, New York (2010). http://doi.acm.org/
10.1145/1736020.1736036

http://dx.doi.org/10.1109/UCC.2011.62
http://dx.doi.org/10.1109/UCC.2011.62
http://doi.acm.org/10.1145/1531793.1531804
http://doi.acm.org/10.1145/1531793.1531804
http://doi.acm.org/10.1145/2000417.2000419
http://doi.acm.org/10.1145/2000417.2000419
http://dx.doi.org/10.1016/j.future.2015.05.013
http://dx.doi.org/10.1016/j.future.2015.05.013
http://dl.acm.org/citation.cfm?id=1060289.1060308
http://dl.acm.org/citation.cfm?id=1060289.1060308
http://doi.acm.org/10.1145/1736020.1736036
http://doi.acm.org/10.1145/1736020.1736036

Deadline-Aware Deployment for Time Critical
Applications in Clouds

Yang Hu1,2(B), Junchao Wang1, Huan Zhou1,2, Paul Martin1, Arie Taal1,
Cees de Laat1, and Zhiming Zhao1

1 University of Amsterdam, Amsterdam, The Netherlands
{Y.Hu,j.wang2,H.Zhou,P.W.Martin,A.Taal,delaat,Z.Zhao}@uva.nl

2 National University of Defense Technology, Changsha, China

Abstract. Time critical applications are appealing to deploy in clouds
due to the elasticity of cloud resources and their on-demand nature. How-
ever, support for deploying application components with strict deadlines
on their deployment is lacking in current cloud providers. This is partic-
ularly important for adaptive applications that must automatically and
seamlessly scale, migrate, or recover swiftly from failures. A common
deployment procedure is to transmit application packages from the appli-
cation provider to the cloud, and install the application there. Thus, users
need to manually deploy their applications into clouds step by step with
no guarantee regarding deadlines. In this work, we propose a Deadline-
aware Deployment System (DDS) for time critical applications in clouds.
DDS enables users to automatically deploy applications into clouds. We
design bandwidth-aware EDF scheduling algorithms in DDS that mini-
mize the number of deployments that miss their deadlines and maximize
the utilization of network bandwidth. In the evaluation, we show that
DDS leverages network bandwidth sufficiently, and significantly reduces
the number of missed deadlines during deployment.

1 Introduction

Cloud computing is the platform of choice for deploying and running many of
today’s businesses. When executing applications in clouds, deployment is an
important step to make required software and data of an application avail-
able before execution. In cloud environments, Software as a Service (SaaS), e.g.,
Google Apps, or Platform as a Service (PaaS), e.g., Amazon EMR, aim at hid-
ing the deployment complexity by automating deployment during resource pro-
visioning [13]. However, these solutions are not sufficient for applications that
require infrastructure-level optimization under the given platform services or
application-level customized environments, which are not included in predefined
virtual machines or container images.

Time critical applications, such as disaster early warning systems, often have
very high performance requirements for data communication and processing [18].
To support time critical applications using cloud environments, developers often
use Infrastructure as a Service (IaaS) to optimize overall system-level perfor-
mance by selecting the most suitable virtual machines, customizing their network
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 345–357, 2017.
DOI: 10.1007/978-3-319-64203-1 25

346 Y. Hu et al.

topology and optimizing the scheduling of execution on the virtual infrastruc-
ture [6,16,20]. During the execution, the virtual infrastructure often has to be
adapted, e.g., virtual machines scaling out/in or up/down to handle dynamically
changing workloads [19]. A deployment service is thus needed not only before the
application execution for making the environment available, but also at runtime.
In particular, it is necessary to ensure that components can be deployed immedi-
ately whenever the application needs to re- scale to handle increased workloads,
or migrate components to new VMs. Moving the repository of components closer
to the application is necessary to ensure that such deployments can be handled
as rapidly as possible for time critical applications. Furthermore, the deploy-
ment service also has to be aware of time constraints, e.g., deadlines, required
for acceptable system performance. Deployments that fail to finish within certain
deadlines harm user experience, affect application performance, and even incur
penalties for application failure. However current cloud providers lack explicit
support for deploying time critical applications where users need to manually
deploy their applications step by step and have no guarantee regarding deploy-
ment deadlines.

In this paper, we propose a Deadline-aware Deployment System (DDS)
for time critical applications in clouds. DDS enables users to automatically
deploy time critical applications and provide scheduling mechanisms to guaran-
tee deployment deadlines. First, DDS helps users to create a local repository for
application components instead of using a remote repository, providing a guar-
antee of bandwidth for transmitting application packages where the transmission
rate directly from the remote repository is widely varying. To be deadline-aware,
DDS schedules deployment requests based on Earliest Deadline First (EDF) [8]
which is a classical scheduling technique to minimize the number of deployments
that miss deadlines. Furthermore, we design bandwidth-aware EDF to facilitate
DDS to satisfy a greater number of deadline requirements and achieve sufficient
utilization of bandwidth. In the evaluation, we demonstrate that DDS signif-
icantly reduces the number of deployments that miss deadlines, and leverages
bandwidth sufficiently. We summarize our contributions as follows:

– We design and implement DDS, a deadline-aware deployment system which
can support automatic deployments of time critical applications in clouds.

– We build on DDS to implement deployment scheduling algorithms that min-
imize the number of deployments that miss deadlines and maximize the uti-
lization of bandwidth.

– We experimentally evaluate the benefits of DDS on the ExoGENI [2] test-bed
and large-scale simulations by comparing it with three different scheduling
techniques.

2 Problem Statement

A typical scenario for deploying distributed applications in clouds involves two
basic steps: transmitting necessary application packages or software components

Deadline-Aware Deployment for Time Critical Applications in Clouds 347

from remote repositories to virtual machines (VMs) in the provisioned infrastruc-
ture; and installing the software once runnable. In this paper, we assume con-
tainers, e.g., Docker [9], are the default way to wrap application components.

For a distributed application, the deployment service has to know the location
of application components, and the location to deploy (VMs) for each compo-
nent. Those container images are often stored in a repository, e.g., Docker hub,
which is not a part of the provisioned virtual infrastructure. The deployment
service should schedule the sequence of each component based on the applica-
tion description for transmitting and installing each individual component. The
time for deploying a single container (Td) typically contains time cost for trans-
mitting the component from its repository (Tf) and installing (extracting files
from the Docker image) the component (Ti). The total time of the deployment of
the whole application starts from the first component transmission until the last
component finishes its installation. When an application contains more com-
ponents, careless scheduling of the deployment sequence might lead to a high
time cost, which can eventually influence the execution of the application if key
application components are delayed during deployment.

Tf depends on the size of the container and the network bandwidth between
repository and target. Ti mainly depends on the performance of the VM and
the complexity of the container itself. In many cases, Tf is much bigger than
Ti. Table 1 shows some observations in a private cloud environment (ExoGENI
[2]). We created VMs which are “xo.medium” configuration in three different
locations: Boston, Washington and Houston. We found that Tf is widely vary-
ing because the internet connection between VMs and Docker hub is different
between different locations, and Ti is stable for the same VM configurations. For
meeting the deployment time constraints of time critical applications in provi-
sioned virtual infrastructure, the key challenge is how to minimize the transmis-
sion time Tf and predict the installation time Ti. Installation time prediction is
not the focus on this paper—we assume that existing predictors [11] can achieve
good estimations of installation time. In this paper, we focus on the transmission
process (Tf) of deployment.

Table 1. Comparison of transmission time and installation time in different locations

Docker image Image size Boston rack Washington rack Houston rack

ubuntu 400Mb Tf : 40.8 s(±2.2 s) Tf : 27.0 s(±1.5 s) Tf : 20.3 s(±1.5 s)

Ti : 6.3 s(±0.5 s) Ti : 6.4 s(±0.4 s) Ti : 6.3 s(±0.6 s)

nginx 576Mb Tf : 58.7 s(±2.5 s) Tf : 38.9 s(±2.6 s) Tf : 29.2 s(±1.8 s)

Ti : 9.3 s(±0.7 s) Ti : 9.1 s(±0.5 s) Ti : 9.3 s(±0.6 s)

mongodb 1200Mb Tf : 122.4 s(±3.0 s) Tf : 81.0 s(±3.4 s) Tf : 60.9 s(±1.9 s)

Ti : 15.4 s(±0.5 s) Ti : 15.7 s(±0.8 s) Ti : 15.5 s(±0.8 s)

cassandra 1296Mb Tf : 132.2 s(±3.1 s) Tf : 87.5 s(±3.4 s) Tf : 65.7 s(±2.3 s)

Ti : 17.1 s(±0.9 s) Ti : 17.3 s(±0.7 s) Ti : 17.4 s(±0.6 s)

348 Y. Hu et al.

The deployment model in this work is a set of deployment requests. The
deployment service has to optimize the time cost by scheduling component trans-
missions carefully, and parallelize the data transfer based on the time constraint
obtained from the application. We model the deployment request as a tuple
Ri = (vi, si, di), where vi is the target virtual machine to deploy request Ri,
si is the application size (e.g., Mb), and di is its deadline. As we concentrate
on transmission, we model bandwidth information for provisioned VMs as sets
B = {b1, b2, b3, . . . , bn}, where bi denotes the bandwidth of virtual machine i.
This means that the throughput of virtual machine i can not exceed bi during
the transmission process, and the bandwidth is stable based on the SLA provi-
sioning mechanisms [3] in this context. We denote the bandwidth of the target
machine vi as bj , so that the transmission time of request Ri can be represented
as Tf = si

bj
. Similarly, the deployment time can be represented as Td = si

bj
+ Ti.

The problem of this paper is thus to investigate the scheduling mechanisms
needed to meet the deployment deadlines (i.e., ensure that Td ≤ di) of time
critical applications in clouds.

3 Deadline-Aware Deployment System

This section highlights our approach in DDS. DDS aims to provide a deadline-
aware, efficient and automatic deployment system that supports time critical
applications on infrastructure as a service on cloud systems. As we mainly con-
sider the transmission part of the deployment procedure in this paper, DDS
focuses on the network of the underlying distributed system to provide the best
guarantee for deployment within deadlines.

3.1 Design Principles

Repository Location. The repository for the application is a shared stor-
age from which application packages can be fetched to be installed on another
machine. The repository can be located in a remote server or in the cloud already.
The location of the repository can directly impact the deployment time because
the network bandwidth between cloud VMs and between a VM and a remote
repository in a different location can be very different. Compared to a remote
repository, a local repository within a cloud has some obvious advantages. First,
the local repository has greater transmission capacity than the remote reposi-
tory. Second, the bandwidth of the local repository inside a cloud is more stable,
which provides a guarantee regarding the transmission time. Third, the local
repository is more flexible due to the possibility of personalized configuration.
Thus, DDS would help users to create a local repository first if there is only a
remote repository from which to fetch application packages.

Deadline-Aware Mechanism. As the goal of DDS to meet the deadline of
requests, whether the system is aware of the deadline is important for deploy-
ment. Consider a common time critical application scenario involving two deploy-
ment requests sent to the same application component provider simultaneously,

Deadline-Aware Deployment for Time Critical Applications in Clouds 349

Fig. 1. Awareness of deadlines can be used to meet two deadlines

where one request has a tighter deadline than the other. The resulting requests
share a bottleneck via which to transmit application packages. As shown in Fig. 1,
with today’s setup, the transport protocol (e.g., TCP) strives for fairness and
the transmission finishes for both requests almost simultaneously. However, only
one of the requests meets its deadline which makes the another request useless or
degrades its value. Alternatively, given explicit information about deployment
deadlines, the system can arrange the transmission order to better meet the
deployment deadline.

Fig. 2. Awareness of bandwidth can be used to meet two deadlines

Bandwidth-Aware Mechanism. In addition to deadline-aware scheduling, to
be aware of bandwidth is another significant attribute for deployment. Consider
another scenario with two deployment requests, where the second request pulls
a larger application package. The resulting requests also share a link to trans-
mit their respective packages. As shown in Fig. 2, the deployment system has
information about the deadlines and schedules the transmission based on those
deadlines. However only one request meets its deadline. Because the transmission
bottleneck is the bandwidth of the target machine, there is some spare band-
width on the server which is not used. Thus, given explicit information about
the bandwidth capacity of each machine in the cloud, the system could schedule
more deployment requests and leverage the bandwidth more efficiently.

350 Y. Hu et al.

3.2 Scheduling Algorithm

In this section, we zoom in on the design principles presented in Sect. 3.1 by
providing an algorithmic description. The main goal of our algorithms is to min-
imize the deadline miss rate: the application packages should be transmitted to
the target machine within the deadline wherever possible. In addition to mini-
mizing miss rate, we should maximize the bandwidth utilization to reduce the
total transmission time. To achieve both these goals, we employ EDF to priori-
tize requests and design bandwidth-aware EDF to support parallel transmission
and realize dynamic rate control.

EDF Scheduling. The key insight guiding the design of deadline-aware
scheduling is derived from the classic real-time scheduling algorithm Earliest
Deadline First (EDF) [8], which prioritizes tasks based on their deadline. EDF
is an optimal scheduling algorithm in that if a set of deadlines can be satisfied
under some schedule, then EDF can satisfy them too.

We adopt EDF to schedule deployment requests. When a deployment request
comes, DDS compares the deadline of new request with previous requests and
then sets the corresponding priority relative to the other deadlines. DDS then
puts the new request into the request queue where the requests are sorted by
priority. The algorithm is described in Algorithm1. Consequently, DDS obtains
the request from the queue and starts to transmit application packages to the
target machine.

Algorithm 1. EDF scheduling
Input: The new deployment request Ri
Output: The request queue RQ where requests sorted by the deadline
1: for each Rj ∈ RQ do
2: if Ri.deadline < Rj.deadline then
3: RQ.insert(Ri)
4: return RQ
5: end if
6: end for
7: RQ.append(Ri)
8: return RQ

Bandwidth-Aware EDF Scheduling. In addition to EDF scheduling, we
design bandwidth-aware scheduling in cooperation with EDF scheduling. The
key idea of bandwidth-aware scheduling is to make use of the spare bandwidth
available between the local repository and the target as much as possible for
parallelizing multiple requests. Thus, DDS needs the bandwidth information for
each machine in the cloud. DDS would collect the bandwidth information before
the whole deployment procedure begins.

Deadline-Aware Deployment for Time Critical Applications in Clouds 351

Algorithm 2. Bandwidth-aware EDF scheduling
Input: throughput and bandwidth of the local repository
1: while throughput < bandwidth do
2: if RQ /∈ ∅ then
3: Ri = RQ.pop()
4: bj = GetBandwidth(vi)
5: if throughput + bj < bandwidth then
6: throughput = throughput + bj
7: else
8: SetTransmissionRate(Ri, bandwidth − throughput)
9: throughput = bandwidth

10: end if
11: StartTransmission(Ri)
12: end if
13: end while
14: return

EDF is optimal when the deadlines can be satisfied. However, without band-
width information, EDF would schedule requests in a sequential way which
leads to insufficient utilization of bandwidth or even missed deployment dead-
lines. However if we directly schedule requests in a parallel way, the bandwidth
contention among different requests can also cause deployment deadlines to be
missed. Therefore, the challenge of bandwidth-aware scheduling is how to dynam-
ically allocate transmission rates for deployment requests in order to avoid unnec-
essary contention. For this purpose, we design bandwidth-aware EDF algorithm
as described in Algorithm 2.

As per the description of bandwidth-aware EDF, if there is spare bandwidth
in the local repository, DDS will continue to obtain requests from the request
queue until the required bandwidth is equal or greater than the local reposi-
tory bandwidth. DDS then sets the specific rate for the last deployment request
to make sure the total required bandwidth is equal to the bandwidth of local
repository. Consequently, it avoids bandwidth contention with previous deploy-
ment requests and makes full use of spare bandwidth to transmit. Once a new
deployment request arrives, DDS performs bandwidth-aware EDF scheduling
after putting the request in the request queue. When one deployment request
finishes, DDS will allocate the released bandwidth for the running requests first,
and then perform bandwidth-aware EDF scheduling again.

4 Evaluation

In this section, we describe experiments for quantitative evaluation of the
deadline-aware deployment system. We perform three kinds of experiments.
First, we evaluate the transmission time using a DDS local repository versus
a remote repository. Second, we evaluate DDS in comparison with three typical
scheduling algorithms by running experiments on our cloud test-bed. Third, we
evaluate DDS in larger-scale simulations.

352 Y. Hu et al.

4.1 Repository Evaluation

In this section, we compare the transmission time to a target machine from a
DDS local repository and a remote repository based on Docker. In most common
cases, the application provider only has the repository outside cloud. Thus, DDS
would help users to create local repository within their cloud first. We provision
two virtual machines with 50Mbps bandwidth in the ExoGENI Boston rack and
create a local repository in one of them. Then, we use the other machine to
fetch the image from the local repository and also the original remote repository
(Docker Hub). The comparative results are shown in the Table 2. Note that the
transmission time (Tf) from the local repository is much less than from the
remote repository, the reason being that the bandwidth inside cloud is much
better than outside.

Table 2. Comparison of transmission time from different repository

Docker image Image size Local repository Remote repository

ubuntu 400 Mb Tf : 8.1 s(±1.1 s) Tf : 40.8 s(±2.2 s)

nginx 576 Mb Tf : 11.7 s(±1.3 s) Tf : 58.7 s(±2.5 s)

mongodb 1200 Mb Tf : 24.4 s(±1.2) Tf : 122.4 s(±3.0 s)

cassandra 1296 Mb Tf : 26.4 s(±1.5) Tf : 132.2 s(±3.1 s)

4.2 Testbed Experiments

In this section, we evaluate DDS alongside three typical scheduling algo-
rithms in ExoGENI [2] test-bed. ExoGENI is a networked infrastructure-as-
a-service (NIaaS) platform where researchers can define the network topology
and bandwidth of virtual infrastructures. In our experimental setup, we chose
the “xo.xlarge” type of machine as our local repository, and all other application
nodes we chose “xo.medium” type machines. The guest OS in VMs which are
provisioned for evaluation is Ubuntu 14.04. In the experiment, we use iPerf [12]
to simulate the application package transmission, therefore the size of applica-
tion package can be customized via iPerf in the evaluation. For transmission rate
control, we leverage Linux Traffic Control (TC) to perform deployment request
rate limiting. We use two-level Hierarchical Token Bucket (HTB) in TC: the root
node classifies requests to their corresponding leaf nodes based on IP address
and the leaf nodes enforce each request rate.

Schemes to Compare: We compare the following schemes with DDS.

– FIFO: All the deployment requests are scheduled by the arrival time of the
request in a sequential way.

– EDF: All the deployment requests are scheduled by the EDF algorithm in a
sequential way.

Deadline-Aware Deployment for Time Critical Applications in Clouds 353

– PARALLEL: All the deployment requests are scheduled immediately after
arrival in a parallel way.

Through comparison with these three schemes, we can inspect the benefits from
DDS for different aspects. FIFO is the most common scheduling algorithm in
distribution. EDF is optimal in sequential scheduling when the deadline can be
satisfied, but it is not bandwidth-aware. PARALLEL can make high utilization
of the bandwidth, but it is not deadline-aware.

Metrics: In this section, we compare the number of schedulable requests
(requests that meet the deadline) and the total deployment time among dif-
ferent schemes. The number of schedulable requests can indicate the satisfaction
of deadline requirements. The total deployment time can indicate the utilization
of network bandwidth.

In this experiment, we provision two kinds of bandwidth configuration to
evaluate DDS as the Table 3 described. We instantiate four nodes to deploy
time critical applications in ExoGENI. For these four nodes, we generate six
deployment requests which include the target machine, application size, arrival
time and the deadline as the Table 4 described. To understand the scheduling
mechanisms in DDS better, we assume that the installation time Ti of each
application is 1s in this experiment.

In Fig. 3, we inspect the number of schedulable requests on different schemes.
We observe that DDS can schedule more requests in two different bandwidth
configurations, because sequential scheduling (EDF, FIFO) can not meet all
the deadlines when multiple requests emerge simultaneously, and direct parallel
scheduling suffers from bandwidth contention. Figure 4 shows the total deploy-
ment time of various schemes. We note that the total deployment time of DDS
is less than EDF & FIFO, and similar to PARALLEL. This indicates that DDS
makes full use of network bandwidth.

4.3 Large-Scale Simulations

Our simulations evaluate DDS considering the common public cloud provider
(EC2, Azure) in this section. We evaluate the deployment schedulable ratio which
is the percentage of schedulable requests in different schemes.

Table 3. Bandwidth configuration

(a) Configuration A (Mbps)

Repository Node1 Node2 Node3 Node4

100 20 50 70 100

(b) Configuration B (Mbps)

Repository Node1 Node2 Node3 Node4

100 70 70 70 70

Table 4. Deployment request

Machine Size Deadline Arrival time

Node1 200Mb 14 s 0 s

Node1 160Mb 20 s 10 s

Node2 320Mb 9 s 11 s

Node2 560Mb 15 s 30 s

Node3 960Mb 20 s 30 s

Node4 640Mb 25 s 30 s

354 Y. Hu et al.

Fig. 3. Comparison of the number of
schedulable requests in various schemes

Fig. 4. Comparison of the total deploy-
ment time in various schemes

VMs Configuration: We equip the deployment server with 10 Gbps bandwidth
connection and application node with 1 Gbps bandwidth connection which are
typical configuration in public cloud. In the simulation, the number of application
nodes range over 10, 20, 40 and 80 nodes which are sufficient to account for most
distributed cloud applications.

Deployment Requests: We simulate the deployment service running 10 days
(Trunning) in the experiment. During this period, we generate deployment
requests in different densities to simulate deploying various applications on each
node. We denote Si

total as the total application size of all deployment requests

on node i. The request density of node i is equal to Si
total

Trunning∗10Gigabit , and the
request density of whole system is the average for each node. The overall request
density varies from 0.1 to 0.9. In the experiment, the deadline (di) of each request
ranges from 10s to 100s, and the application size is equal to di ∗ 1Gigabit. We
assume the installation time (Ti) is 1s in the simulation.

Figure 5 shows the deployment schedulable ratio in different scenarios. We
observe that DDS can reduce from 24% to 83% of the deployment deadline
miss ratio compared to EDF, from 26% to 89% compared to FIFO, and up to
86% compared to PARALLEL. Because EDF and FIFO schedule deployment
requests in sequential way, DDS can take advantage of parallelized deployments.
The PARALLEL scheme parallelizes deployments but suffers severe bandwidth
contention as request density increases. In contrast, DDS is bandwidth-aware
and provides dynamic transmission rate control to avoid bandwidth contention
for different deployment requests. In summary, DDS significantly reduces the
number of deadline missing requests for deploying cloud applications.

Deadline-Aware Deployment for Time Critical Applications in Clouds 355

(a) 10 nodes (b) 20 nodes

(c) 40 nodes (d) 80 nodes

Fig. 5. Comparison of the deployment schedulable ratio in different scenarios

5 Related Work

In recent years, deployment has been an important topic in distributed environ-
ment, service-oriented systems and cloud computing. The techniques in DDS are
related to the following areas of research:

Automatic Cloud Application Deployment. To enable automatic deploy-
ment has been the focus of several recent works. SO-MVDS [5] allows users to
design and create virtual machines with specific services running in them and
define a service deployment request to enhance the efficiency of service deploy-
ment. Li et al. [7] propose a general approach to application deployment. They
adopt contextualization process which is to embed various scripts in VM images
to initiate applications. DDS, on the other hand, is compatible with Docker
containers, achieving automatic deployment more easily.

On-Demand Image Distribution. The idea of distributing images in clouds
efficiently has been explored in recent works. Vaquero et al. [15] proposes a solu-
tion based on combining hierarchical and Peer to Peer (P2P) data distribution
techniques. VDN [10], a new VM image distribution network on the top of chunk-
level, enables collaborate sharing in cloud data centers. These approaches focus

356 Y. Hu et al.

on fast transmission. In contrast, DDS is not only transmitting images efficiently
but is also aware of deadlines via scheduling mechanisms.

Deadline-Aware Scheduling Techniques. D3[17] and D2TCP [14] are trans-
port protocols designed for deadline-aware transmission inside data centers.
These protocols add the deadline information to TCP and provide control
mechanisms based on the deadline information. Techniques like Karuna [4] and
pFabric [1] prioritize network flows to transmit. All these approaches schedule
transmission at flow level. In contrast, DDS exploits the information of band-
width to schedule transmission in application level which is more relevant to
users requirements.

6 Conclusion

It is challenging to deploy time critical applications into clouds while meeting
the time constraints of deployment. This is an important and practical problem,
but has been neglected by prior work in this field. In this paper, we propose
a Deadline-aware Deployment System (DDS) which helps users to create local
repository and automatically deploy applications into clouds. We investigate the
scheduling mechanisms in cloud deployment system and implement bandwidth-
aware EDF scheduling algorithm in DDS. DDS schedules deployment requests
based on deadline and bandwidth information to make better scheduling deci-
sion. In the evaluation, we showed that DDS leverages network resources suf-
ficiently and significantly reduces the number of missed deployment deadlines.
Furthermore, we plan to investigate multiple repositories deployment and inter-
data center network for time critical cloud applications.

Acknowledgments. This research has received funding from the European Union’s
Horizon 2020 research and innovation program under grant agreements 643963
(SWITCH project), 654182 (ENVRIPLUS project) and 676247 (VRE4EIC project).
The research is also partially funded by the COMMIT project.

References

1. Alizadeh, M., Yang, S., Sharif, M., Katti, S., McKeown, N., Prabhakar, B., Shenker,
S.: pFabric: minimal near-optimal datacenter transport. In: ACM SIGCOMM
Computer Communication Review, vol. 43, pp. 435–446. ACM (2013)

2. Baldin, I., Chase, J., Xin, Y., Mandal, A., Ruth, P., Castillo, C., Orlikowski, V.,
Heermann, C., Mills, J.: ExoGENI: a multi-domain infrastructure-as-a-service test-
bed. In: McGeer, R., Berman, M., Elliott, C., Ricci, R. (eds.) The GENI Book, pp.
279–315. Springer, Cham (2016). doi:10.1007/978-3-319-33769-2 13

3. Casalicchio, E., Silvestri, L.: Mechanisms for SLA provisioning in cloud-based ser-
vice providers. Comput. Netw. 57(3), 795–810 (2013)

4. Chen, L., Chen, K., Bai, W., Alizadeh, M.: Scheduling mix-flows in commodity dat-
acenters with Karuna. In: Proceedings of the 2016 conference on ACM SIGCOMM
2016 Conference, pp. 174–187. ACM (2016)

http://dx.doi.org/10.1007/978-3-319-33769-2_13

Deadline-Aware Deployment for Time Critical Applications in Clouds 357

5. Gao, W., Jin, H., Wu, S., Shi, X., Yuan, J.: Effectively deploying services on vir-
tualization infrastructure. Front. Comput. Sci. 6(4), 398–408 (2012)

6. Hu, Y., Li, H., Peng, Y.: NVLAN: a novel VLAN technology for scalable multi-
tenant datacenter networks. In: 2014 Second International Conference on Advanced
Cloud and Big Data (CBD), pp. 190–195. IEEE (2014)

7. Li, W., Svärd, P., Tordsson, J., Elmroth, E.: A general approach to service deploy-
ment in cloud environments. In: 2012 Second International Conference on Cloud
and Green Computing (CGC), pp. 17–24. IEEE (2012)

8. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM (JACM) 20(1), 46–61 (1973)

9. Merkel, D.: Docker: lightweight Linux containers for consistent development and
deployment. Linux J. 2014(239), 2 (2014)

10. Peng, C., Kim, M., Zhang, Z., Lei, H.: VDN: virtual machine image distribution
network for cloud data centers. In: 2012 Proceedings IEEE INFOCOM, pp. 181–
189. IEEE (2012)

11. Smith, W., Foster, I., Taylor, V.: Predicting application run times using historical
information. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1998. LNCS, vol. 1459,
pp. 122–142. Springer, Heidelberg (1998). doi:10.1007/BFb0053984

12. Tirumala, A., Qin, F., Dugan, J., Ferguson, J., Gibbs, K.: Iperf: the TCP/UDP
bandwidth measurement tool (2005). http://dast.nlanr.net/Projects

13. Tsai, W., Bai, X., Huang, Y.: Software-as-a-service (SaaS): perspectives and chal-
lenges. Sci. China Inf. Sci. 57(5), 1–15 (2014)

14. Vamanan, B., Hasan, J., Vijaykumar, T.: Deadline-aware datacenter TCP
(D2TCP). ACM SIGCOMM Comput. Commun. Rev. 42(4), 115–126 (2012)

15. Vaquero, L.M., Celorio, A., Cuadrado, F., Cuevas, R.: Deploying large-scale
datasets on-demand in the cloud: treats and tricks on data distribution. IEEE
Trans. Cloud Comput. 3(2), 132–144 (2015)

16. Wang, J., Taal, A., Martin, P., Hu, Y., Zhou, H., Pang, J., de Laat, C., Zhao,
Z.: Planning virtual infrastructures for time critical applications with multiple
deadline constraints. Future Gener. Comput. Syst. (2017)

17. Wilson, C., Ballani, H., Karagiannis, T., Rowtron, A.: Better never than late:
meeting deadlines in datacenter networks. In: ACM SIGCOMM Computer Com-
munication Review, vol. 41, pp. 50–61. ACM (2011)

18. Zhao, Z., Martin, P., De Laat, C., Jeffery, K., Jones, A., Taylor, I., Hardisty,
A., Atkinson, M., Zuiderwijk, A., Yin, Y., Chen, Y.: Time critical requirements
and technical considerations for advanced support environments for data-intensive
research. In: 2nd International Workshop on Interoperable Infrastructures for Inter-
disciplinary Big Data Sciences (IT4RIs) in the Context of IEEE Real-Time System
Symposium (RTSS) (2016)

19. Zhao, Z., Martin, P., Wang, J., Taal, A., Jones, A., Taylor, I., Stankovski, V.,
Vega, I.G., Suciu, G., Ulisses, A., et al.: Developing and operating time critical
applications in clouds: the state of the art and the SWITCH approach. Procedia
Comput. Sci. 68, 17–28 (2015)

20. Zhou, H., Hu, Y., Wang, J., Martin, P., De Laat, C., Zhao, Z.: Fast and dynamic
resource provisioning for quality critical cloud applications. In: 2016 IEEE 19th
International Symposium on Real-Time Distributed Computing (ISORC), pp. 92–
99. IEEE (2016)

http://dx.doi.org/10.1007/BFb0053984
http://dast.nlanr.net/Projects

More Sharing, More Benefits?
A Study of Library Sharing

in Container-Based Infrastructures

José Bravo Ferreira1(B), Marco Cello2, and Jesús Omana Iglesias2

1 Princeton University, Princeton, USA
josesf@princeton.edu

2 Nokia Bell Labs, Dublin, Ireland
{marco.cello,jesus.omana iglesias}@nokia-bell-labs.com

Abstract. Container-based infrastructures have surged in popularity,
offering advantages in agility and scaling, while also presenting new chal-
lenges in resource utilization due to unnecessary library duplication. In
this paper, we consider sharing libraries across containers, and study the
impact of such a strategy on overall resource requirements, scheduling,
and utilization. Our analysis and simulations suggest significant benefits
arising from library sharing. Furthermore, a small fraction of libraries
shared between any two containers, on average, is enough to reap most
of the benefits, and even näıve schedulers, such as a First Fit scheduler,
succeed at doing so. We also propose a score maximization, mixed-integer
linear-programming scheduler for handling bulk request arrivals (such as
large jobs composed of many smaller tasks), which compares favorably
against state-of-the-art schedulers in these scenarios.

1 Introduction

Container-based infrastructures are gaining popularity both in Infrastructure-
as-a-Service (IaaS) and Platform-as-a-Service (PaaS) models. In IaaS (e.g. Pan-
theon and Amazon ECS) abstracting away the host operating system allows
providers to make system-wide changes quickly, to provision new containers with
little delay, and to scale up without worrying about architecture. This is also
the case for PaaS (e.g. Heroku and Google’s App Engine), where providers must
automatically manage and maintain necessary infrastructure behind the scenes.

Containers can be added and removed in seconds, allowing for greater flex-
ibility in dynamically scaling applications and in running mostly idle services.
Modern container hypervisors, such as LXD1, or container managers, such as
Docker2 or Kubernetes3, facilitate the management of containers, with auto-
matic scheduling, scaling and storage orchestration. This is accomplished while
running seamlessly on most infrastructures using open standard containers.
1 https://linuxcontainers.org/lxd/.
2 https://www.docker.com/.
3 https://kubernetes.io.

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 358–371, 2017.
DOI: 10.1007/978-3-319-64203-1 26

https://linuxcontainers.org/lxd/
https://www.docker.com/
https://kubernetes.io

More Sharing, More Benefits? A Study of Library Sharing 359

The adoption of container-based infrastructures is bolstered by the increasing
popularity of a microservices approach to software design, focused on scalabil-
ity, agility, resilience, and developer efficiency [3]. However, breaking down an
application into many smaller processes that need large-scale replication might
also require loading the same set of libraries inside each container, resulting in
memory duplication.

Existing schedulers, such as Tetris [5] or dominant resource fairness [4] can
successfully schedule and pack tasks in an efficient way, but a large increase in
the number of containers demands answers to new challenges related to volume,
locality (runtime environments), and dependencies between containers [9].

As an extreme example of microservices design, recent efforts in Serverless
solutions, such as AWS Lambda4, incentivize the application developer to imple-
ment their services as a composition of stateless functions, often triggered by
predefined events (e.g. a user request or a database change) and written in
predefined programming languages. This leads the cloud provider to instanti-
ate many containers loaded with similar runtime environments and the same
language-specific libraries, so that library-sharing could be not just beneficial
but an actual necessity. The analysis presented in [8, Figs. 3 and 13] shows that
current Docker images contained in Docker Hub5 already share some amount of
libraries since they share common AUFS layers.

In this paper, we analyze the possible benefits of library-sharing across con-
tainers as a potential solution in current container-based infrastructures. Con-
ceptually, we consider a scenario in which libraries are shared using a union
file system across Linux containers (LXC), and study the impact on resource
utilization through simulations and mathematical analysis. We:

1. Study library-sharing in single- and multi-resource scenarios analytically and
through simulation, illustrating that even small levels of sharing yield signif-
icant savings in memory-bound scenarios (Sects. 4.1 and 4.2);

2. Propose a scheduling algorithm based on mixed-integer linear-programming
(MILP) for handling bulk arrivals, which compares favorably against state-of-
the-art schedulers and can be adapted to custom goals via a scoring function
Sect. 4.2 providing improvements over näıve schedulers.

Section 2 lays down the motivation for this work in greater detail, Sect. 3
describes the methodology used in the paper, Sect. 4 presents the results of the
analysis, and Sect. 5 summarizes the main conclusions.

2 Motivation

Current standard practice in container-based applications is to package all
needed libraries in the container [7]. This approach has several advantages, such

4 https://aws.amazon.com/lambda/.
5 https://hub.docker.com/u/library/.

https://aws.amazon.com/lambda/
https://hub.docker.com/u/library/

360 J. Bravo Ferreira et al.

as ensuring that the application uses the intended version of the libraries. How-
ever, this solution suffers from redundantly loading libraries in memory that
could otherwise be shared across containers.

Sharing libraries is a form of memory deduplication (MD), defined as a set
of techniques to reduce the memory footprint of a running system by merging
memory pages6 with the same contents. A way to implement MD is through the
use of union filesystem, such as AUFS7. AUFS takes a list of directories on a
single Linux host and provides a single unified view. These directories are often
referred to as layers and the technology used to layer them is known as a union
mount. In AUFS, all the layers but the top one are read-only, and the unified
view is exposed through its own directory called merged

In order to showcase the benefits of AUFS, we present results when 3 con-
tainers are running in the same host. Let us denote the three containers by c1,
c2 and c3. c1 and c2’s filesystem directories are AUFS union mount points,
composed of 3 layers: ubuntu base (Ubuntu base OS), gsl layer (GNU scientific
libraries), and container layer (writeable layer containing the binary test file). In
contrast, c3’s filesystem directory is a regular ext4 filesystem containing Ubuntu
base OS, GNU scientific libraries and the binary test file. Figure 1 shows how
the filesystem directories are created for the three containers. When the LXC
containers are created, c1 and c2 share both Ubuntu base OS files and GSL
scientific libraries on disk, while c3 does not share any file with the other two.

Fig. 1. Creation of testbed container filesystems.

6 A fixed-length contiguous block of virtual memory, described by a single entry in
the page table. It is the smallest unit of data for memory management in a virtual
memory operating system.

7 http://aufs.sourceforge.net/aufs.html.

http://aufs.sourceforge.net/aufs.html

More Sharing, More Benefits? A Study of Library Sharing 361

A C executable, test.out, using GSL, is ran in all three containers. We
considered different scenarios in which containers and the binary are running:

S1 Only c1+test.out is running on the host.
S2 Both c1+test.out and c2+test.out are running on the host.
S3 Both c1+test.out and c3+test.out are running on the host.

To show the amount of memory shared by GSL libraries (used internally by
test.out) across containers we make use of the linux command pmap8 which
displays the process map of any process and its actual memory consumption.

Table 1 shows part of the output of the pmap command for scenarios S1, S2,
and S3. The Shrd column shows the amount of memory which is shared with
other processes and has not been modified, while the Priv column shows the
amount of memory which is private to this process. Note that libgsl is not
shared in S1. In S2, all libraries are now shared by the two containers, such that
the total memory utilized is ≈2780 + 2 · 156 = 3092 kB. Finally, in scenario S3,
we see the same numbers as in scenario S1, indicating no additional libraries are
being shared. In this instance, ≈1288 + 2 · 1472 = 4232 kB are in use.

Table 1. Memory usage by c1 in scenarios S1, S2, and S3 [in kB].

S1 S2 S3

Shrd Priv Shrd Priv Shrd Priv

0 4 0 4 0 4 test.out

0 56 64 0 0 56 libgcc

1156 0 1244 0 1156 0 libc

0 128 128 32 0 128 libm

0 752 748 28 0 752 libstdc++

0 44 44 0 0 44 libgslcblas

0 472 420 92 0 472 libgsl
128 0 128 0 128 0 ld

1288 1472 2780 156 1288 1472 Total

With this analysis, we verified that when two containers are sharing some
of the libraries (in this case GSL libraries) on disk (using AUFS), they can
actually share libraries in memory (S2). Moreover, from an operational point of
view, AUFS is no more complex than other filesystems.

In this work, we analyze and quantify the improvements in resource utiliza-
tion from sharing libraries. In particular, we highlight that even if two containers
share, on average, only a small fraction of their libraries, the resulting mem-
ory deduplication is still substantial. Therefore, when memory is the limiting

8 https://linux.die.net/man/1/pmap.

https://linux.die.net/man/1/pmap

362 J. Bravo Ferreira et al.

resource, as in today’s data intensive applications, library sharing can result in
improved server utilization. Meanwhile, resource isolation of containers is not
affected, as it is handled by the linux control groups (cgroups) regardless of the
union filesystem used (e.g. AUFS or OverlayFS).

3 Analysis Description

We begin by describing an abstracted model of a cloud environment for use
in mathematical analysis and simulations (Subsect. 3.1). This is followed by a
description of our methodology (Subsect. 3.2), and, finally, by a brief presentation
of the simulator developed for this analysis (Subsect. 3.3).

3.1 Abstract Representation of a Cloud Environment

This work considers an arbitrary cloud environment, which could be a Platform-
as-a-Service (PaaS) or a Serverless (Computation-as-a-Service, CaaS) platform
in which the applications are designed following microservices or stateless func-
tions principles. Users’ requests for a specific application arrive at the scheduler9

according to a well-defined distribution, and the scheduler schedules containers
in an available server to complete each request. A request and a container are
equivalent since container start-up and wind-down times are small relative to
the duration of the container, and the containers’ duration is randomly sampled,
such that start-up and wind-down times can be absorbed into the distribution.

The cloud platform is composed of ns servers, with normalized capacity of 1 in
each resource (memory, cpu). Fixed, nonzero server boot-up and shut-down times
are assumed throughout. The scheduler is assumed to have perfect knowledge of
the state of the system (i.e. resource availability at each server). This is the case
at different granularity levels in typical cloud environments [11].

3.2 Analysis Methodology

This work presents theoretical analysis and simulation results of single- and
multi-resource scenarios. The two types of analysis are described in the following:

Mathematical analysis, Sect. 4.1. The memory requirements of containers
are studied and parameterized by the average level of sharing across contain-
ers (f), the ratio of library to container memory requirements (r), and the
memory requirements of the containers (v). The analysis considers a single-
resource scenario (memory), where containers have similar memory require-
ments and their library sets are randomly sampled from a finite set of libraries.

Simulations, Sect. 4.2. Several simulation scenarios are considered in order
to: (1) validate the mathematical analysis, (2) study the performance of the
system under different scheduling algorithms and under realistic load traces.
Details about the setting and traces are provided in the relevant sections.

9 Or frontend. We refer here to the logical entity in the cloud infrastructure in charge
of receiving requests and assigning them to the cloud’s resources.

More Sharing, More Benefits? A Study of Library Sharing 363

3.3 Simulator

In order to single-out the parameters of our abstracted cloud model in a large-
scale context, we designed and implemented an event-driven simulator in Python
2.7, for arrival and scheduling across an arbitrary number of abstracted servers
using four different scheduling algorithms, (First Fit, Greedy Fit, Tetris [5], and a
mixed-integer linear-programming scheduler), in both single and multi-resource
scenarios (memory, CPU, disk, I/O, and so on).

The simulator can generate requests on the fly according to predefined proba-
bility distributions, or use predefined container types (both described in Sect. 4)
arriving according to Poisson distributions or uniformly on a time interval.
Scheduling events periodically trigger the orchestrator, which queries the state of
the servers and then runs the chosen algorithm to schedule containers in available
servers. A hysteresis controller governs the boot-up and shut-down of servers by
estimating resource utilization at future times assuming linear system dynamics
[1]. The state of the simulation is logged periodically.

A pictorial representation of the inner workings of the simulator is presented
in Fig. 2 below.

Event queue

Container arrival

Container arrival

Logging event

Container arrival

Scheduling Event Scheduler

Container
queue

Logger

Servers

Orchestrator
Container
Generators

Fig. 2. Container generators (left) produce container arrival events, which contribute to
form a container queue. Scheduling events trigger the orchestrator, which prompts the
scheduler to query the queue and the servers and schedule containers appropriately. The
status of the simulator is logged periodically. The controller (not shown) monitors the
container queue and the servers, estimates resource utilization at future times assuming
linear system dynamics, and triggers server boot-ups and shut-downs as needed to
handle the load using a hysteresis-based approach [1].

4 Performance Evaluation

Terminology. Server capacities are normalized to 1 for each resource. The
memory requirements of a container (excluding libraries) are denoted by v. The
memory requirements of the library set for a container is given by r · v, so that
the total memory required by the container is v · (1 + r). A value of r = 1 thus
indicates that 50% of the container’s total required memory is due to the library
set. If a container shares libraries with other containers on the same server,

364 J. Bravo Ferreira et al.

then the effective memory required by the libraries is smaller. We introduce the
variable f to represent the fraction of libraries shared by any two containers, on
average. Therefore, if two containers require a library set of 10 libraries, a value
of f = 0.1 would indicate that the containers would share 1 library, on average.

The following section describes the mathematical analysis. This is followed
by a discussion of the simulations.

4.1 Mathematical Analysis

The goal of this analysis is to study the relationship between memory utilization
and the three variables: v, r, and f . Assume each container has the same resource
requirements v, and utilizes a library set of m libraries, selected uniformly at
random from a set of n libraries, such that, in expectation, f = m/n. The sched-
uler schedules each container in the first available server that can accommodate
it (FirstFit).

Under the conditions defined above, the expected number of containers that
fit in each server, N , is given by the following implicit equation:

N ≈ E[cavail]
v

=
1 − v·r

f (1 − (1 − f)N)

v
. (1)

For a derivation of this result see Appendix A.
To quantify the impact of library sharing, we introduce the concept of rela-

tive utilization, u, which is the ratio of the total utilized resources to the total
utilized resources when libraries are not shared (the worst-case scenario).

Figure 3 shows the value u obtained from solving Eq. (1) for various values
of v and r, with f varying between 0 and 1. Several aspects are worthy of note:

Fig. 3. Relative utilization as a function of f for various values of v and r, obtained
from solving the implicit Eq. (1).

Observation 1: Higher values of f reduce the effective resource requirements
of containers.

More Sharing, More Benefits? A Study of Library Sharing 365

Observation 2: r governs the “steady-state” of utilization in terms of f , deter-
mining the savings that can be obtained through library sharing by regulating
the relative impact of libraries on the overall resource requirements of the tasks.

Observation 3: A low f is sufficient to yield significant savings.

Observation 3 is less intuitive than the others, but of great importance, as
it suggests that even small levels of library-sharing across containers suffice to
achieve most of the memory savings that one could hope for. Note, for example,
that for v = 0.005 there is little difference between f = 0.1 and f = 1.

Observation 4: Larger v (the memory requirements of a container, excluding
libraries) and r (the ratio of library memory requirements relative to v) both
result in a delay of the “steady-state” in terms of f (the fraction of libraries
shared by any two containers, on average).

Observation 4 implies that a larger f is required to produce the same
savings when resource requirements of each container are larger, suggesting that
container-based approaches have more to gain from library sharing, as container
memory requirements are typically small relative to the server capacities.

4.2 Simulations

Three sets of simulations were conducted, exploring different scenarios.
The first set of simulations, A1, studies a single-resource scenario similar

to the one assumed by the analysis in Sect. 4.1. A2 considers a multi-resource
scenario with multiple container types arriving in a Poisson fashion. Finally, A3
studies a multi-resource scenario where requests arrive in bulk (100 s of containers
at the same time).

A1. This is a single-resource simulation with 50 servers, representative of a
small cluster [5], each with capacity c = 1. Four different container types and
distributions are considered, with different v, r, and Poisson rate of arrival,
λ. These are specified in Table 2 below. A FirstFit algorithm that places each
container in the first available server that can accommodate it was used for

Table 2. Parameters for simulation set A1.

S1.a S1.b S1.c S1.d

v U(0, 0.01) U(0, 0.01) U(0, 0.003) U(0, 0.1)

r 1.0 0.1 5.0 1.0

λ 50 50 50 5

366 J. Bravo Ferreira et al.

scheduling. The key difference between this simulation and the setting in Sect. 4.1
is that the container sizes, v, are sampled uniformly in some interval.

Figure 4 shows the results of simulation S1.a for different values of f (left),
where we see that f = 0.05 reduces utilized memory by nearly 50%, confirming
the previous finding that even a small level of overlap between container library
sets suffices to yield significant savings. Figure 4 also shows the agreement in
relative utilization between the simulations and the analysis in Sect. 4.1 (right),
validating Eq. 1 even when v is randomly sampled.

The initial bump in the active server count is a result of the finite server boot-
up times, as the controller initializes a large number of servers to accommodate
the requests accumulated at the beginning of the simulation.

Fig. 4. Left: Number of active servers over time in a simulation with v ∼ U(0, 0.01),
r = 1, and f ∈ (0, 0.01, 0.05, 1.0). Each simulation runs until 5 · 105 containers are
processed. Right: Comparison of relative total utilization in simulations A1 versus
theoretical results from Sect. 4.1, showing clear agreement.

A2. The second set of simulations considers a multi-resource scenario (memory
and cpu) with 20 container types, each arriving according to a Poisson distrib-
ution where the arrival rate, λ = 0.4 (number of arrivals per unit of time). The
container size, v, for both memory and cpu is sampled according to the cumu-
lative distribution functions described in [10], falling in the range (10−4, 10−1).
Each container type’s library sets were chosen such that r = 1 and such that
any two container types share 10% of their libraries (so that f = 0.1). Note that
this inflates the memory requirement of the containers relative to [10], but it
illustrates the point when memory is the dominant resource.

Figure 5 shows the result of the simulation when libraries are not shared (left)
and when libraries are shared (right). We observe a drastic drop of about 40%
in the required number of servers when libraries are being shared. We also note
that by reducing the memory saturation, fewer inputs for server boot-ups and
shut-downs are needed from the controller, resulting in a more stable number of
active servers over time.

More Sharing, More Benefits? A Study of Library Sharing 367

Fig. 5. Normalized memory and cpu utilization and number of active servers over time
for simulation A2. The plots on the left show the result when libraries are not shared,
while the plots on the right showcase the results when libraries are shared.

A3. This simulation set considers a multi-resource scenario where containers
arrive in bulk, representing large jobs such as map-reduce tasks. Each job is
randomly chosen as small (100 containers) or large (500 containers) with equal
probability. Containers are chosen randomly from 20 container types, with ran-
domly chosen libraries such that f = 0.1 across container types. Each container
type is either high- or low-memory and high- or low-cpu (v = 0.10 or v = 0.025,
respectively). The size of the libraries is adjusted such that r = 1.0. Arrival times
are sampled uniformly between t = 0 and t = 3600, and there are 200 jobs in
total. This simulation setting is similar to the one in [5].

Having quantified the memory savings one can achieve through library shar-
ing, this simulation considers how to best take advantage of library set overlaps
between different containers, at the scheduler’s level. To do this, we propose
a mixed-integer linear-programming (MILP) scheduling algorithm that exploits
the cost of libraries on each server, while attempting to minimize waiting time.

MILP scheduler: Let X(i,j),k be the number of containers of type i from job
j scheduled on server k. Let t(i,j),k be the total resource requirements of
container of type i from job j on server k and ck be the vector of resource
capacities for server k. Let A(i,j),k be the corresponding score of schedul-
ing a container of type i from job j on server k. Each entry A(i,j),k is a
weighted combination of scores for waiting time (tmax − t(i,j),k), the shortest
time remaining to finish (STRF) metric (smax − s(i,j),k), and a fairness score
(amount of resources below the job’s fair-share). The algorithm is summarized
below.

This is a score maximization program with linear constraints. Note that con-
straint 4 ensures that at most n(i,j) containers of type i from job j get scheduled,
while constraint 5 prevents the servers’ capacities from being exceeded, thereby
avoiding overallocation. Gurobi [6] was used to obtain an approximate solution
to the problem at each allocation interval (<100 ms per scheduling event).

368 J. Bravo Ferreira et al.

Algorithm 1. MILP scheduling algorithm

letN=Y
Require: containers, jobs, servers

A ← score(containers, jobs, servers)
Solve:

max
X

∑

(i,j)

∑

k

X(i,j),kA(i,j),k (2)

s.t.
∑

k

X(i,j),k ≤ n(i,j), ∀(i, j) (3)

∑

(i,j)

X(i,j),kt(i,j),k ≤ ck, ∀k (4)

X(i,j),k ∈ Z
+
0 , ∀(i, j), k (5)

for each (i, j), k do
schedule X(i,j),k containers of type i from job j on server k

Efficiency: The size of the problem is proportional to the number of servers and
of distinct job/container type tuples. Scheduling separately on different sets of
servers can help improve efficiency in scheduling at a small cost in the solution
quality (provided that the server subsets are still large enough). Jobs and con-
tainer types can also be classified into a smaller, perhaps fixed, number of job
and container type classes, or divided into separate scheduling groups in order
to minimize the scaling effects on the solver (approaches of this flavor have been
adopted in scheduling literature before [2]). Note that this scheduler assigns
many tasks to servers in a single scheduling event, such that such events can
happen at less regular intervals.

Tetris. For comparison purposes, we also adapted the Tetris scheduler [5] to
our problem, as it has been found to perform well in reducing job processing
times. In this simulation we do not consider writes and reads over the network,
which are explicitly accounted for in Tetris.

Figure 6 shows the average waiting times for the 20 different container types
for all three algorithms. Waiting times using the MILP scheduler were reduced
by 22% and 41% compared with Tetris and FirstFit, respectively. Job processing
times (arrival to end of processing of the job’s last task) were reduced by 18% and
19%. This can be attributed to the fact that the algorithm schedules all available
containers in a single-pass, thus taking explicit advantage of the overlap between
the containers’ library sets and those already loaded in the servers.

Note that, unlike Tetris, the MILP scheduler accounts for packing in the con-
straints, so it does not require an alignment score in the cost function. This also
contributes to the improved results. Overall, the results suggest that accounting
for containers’ libraries explicitly when allocating a large number of containers
simultaneously is advantageous in a shared-library setting.

More Sharing, More Benefits? A Study of Library Sharing 369

Fig. 6. Boxplot of waiting times for the 20 different container types in A3 using three
algorithms: MILP, Tetris, and First Fit.

4.3 Real Case Scenario

The analysis above covers a very large spectrum of real case scenarios. As an
example, the analysis in [8] presents results about Docker images contained in
Docker Hub and describes a situation in which different images share common
AUFS layers. For the most downloaded docker container images, the authors
show that the top layer of 90% of the images represents less than 10% of the size
of the whole image [8, Fig. 13].

These scenarios fall within the parameterization in our analysis. Specifically,
the results in [8] suggest a large value of r > 5.0 (since the topmost layer is
typically a small fraction of the container), and a value of v < 0.005 for a server
with 32 GB of RAM, in the majority of cases. The fraction of shared layers is
not explicitly reported, but as the analysis in the above section has made clear,
a small f of even 0.05 would drastically reduce the memory required by the
containers. In particular, Fig. 3 and Eq. 1 suggest that if the images share 5% of
their layers, then for r = 5.0 and v = 0.005 one could expect a relative utilization
of 33.1% of that achieved when layer sharing is not used.

5 Conclusions and Future Work

Sharing libraries using filesystems such as AUFS offers a convenient yet effective
solution to combat memory duplication in container-based cloud applications.
Our mathematical analysis and simulations showed that the memory used by a
container can be reduced by nearly 50% when the containers’ library sets are as
large as the container itself (r = 1), even if any two containers share just 10% of
their libraries, on average. Our proposed MILP scheduler further improved on
the results by considering the scheduling of hundreds of containers at once when
requests arrive in bulk, reducing waiting times and processing times by about
22% and 18% respectively, relative to state-of-the-art schedulers. Its generality
as a score-maximization algorithm also opens the door to many possible scoring
functions that could include locality and architectural constraints [9].

370 J. Bravo Ferreira et al.

Appendix A

Derivation of Equation 1

Recall that each container has the same resource requirements v, and a set
of m libraries randomly sampled from a larger set of n total libraries, such that
f = m/n.

The probability that a particular library is not one of the m libraries used by
a particular container is simply (n−m)/n = 1−f . Letting N denote the number
of containers in a particular server, then the probability that a particular library
is loaded in that server is given by

p = 1 − (1 − f)N (6)

The expected number of unique libraries in the server, nL, is thus E[nL] = n · p.
Using the chosen terminology, the memory required by each library is given

by sL = v · r/m. We can therefore estimate the expected available capacity in a
server after discounting all libraries loaded in memory:

E[cavail] = 1 − sL ·E[nL] = 1 − v · r

m
· n · (1 − (1 − f)N) = 1 − v · r

f
(1 − (1 − f)N).

The remaining capacity is used for the containers themselves, each requiring
v resources. As a result, we have

N ≈ E[cavail]
v

=
1 − v·r

f (1 − (1 − f)N)

v
(7)

which implicitly defines N in terms of v, r, and f .

References

1. Bod́ık, P., Griffith, R., Sutton, C., Fox, A., Jordan, M., Patterson, D.: Statistical
machine learning makes automatic control practical for internet datacenters. In:
Proceedings of the 2009 Conference on Hot Topics in Cloud Computing, Hot-
Cloud 2009. USENIX Association, Berkeley (2009). http://dl.acm.org/citation.
cfm?id=1855533.1855545

2. Delimitrou, C., Kozyrakis, C.: Paragon: QoS-aware scheduling for heterogeneous
datacenters. SIGPLAN Not. 48(4), 77–88 (2013)

3. Dragoni, N., Giallorenzo, S., Lluch-Lafuente, A., Mazzara, M., Montesi, F.,
Mustafin, R., Safina, L.: Microservices: yesterday, today, and tomorrow. CoRR
abs/1606.04036 (2016). http://arxiv.org/abs/1606.04036

4. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dom-
inant resource fairness: fair allocation of multiple resource types. In: Proceedings
of the 8th USENIX Conference on Networked Systems Design and Implementa-
tion, pp. 323–336. NSDI 2011. USENIX Association, Berkeley (2011). http://dl.
acm.org/citation.cfm?id=1972457.1972490

http://dl.acm.org/citation.cfm?id=1855533.1855545
http://dl.acm.org/citation.cfm?id=1855533.1855545
http://arxiv.org/abs/1606.04036
http://dl.acm.org/citation.cfm?id=1972457.1972490
http://dl.acm.org/citation.cfm?id=1972457.1972490

More Sharing, More Benefits? A Study of Library Sharing 371

5. Grandl, R., Ananthanarayanan, G., Kandula, S., Rao, S., Akella, A.: Multi-resource
packing for cluster schedulers. SIGCOMM Computer Communication Review, vol.
44, no. 4, August 2014

6. Gurobi Optimization Inc.: Gurobi optimizer reference manual (2015). http://www.
gurobi.com

7. Haas, F.: Containers: just because everyone else is doing them wrong,
doesn’t mean you have to. https://www.hastexo.com/blogs/florian/2016/02/21/
containers-just-because-everyone-else/. Accessed 10 Feb 2017

8. Harter, T., Salmon, B., Liu, R., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.:
Slacker: fast distribution with lazy Docker containers. In: 14th USENIX Conference
on File and Storage Technologies (FAST 2016), pp. 181–195. USENIX Association
(2016)

9. Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-Dusseau,
A.C., Arpaci-Dusseau, R.H.: Serverless computation with OpenLambda. In: 8th
USENIX Workshop on Hot Topics in Cloud Computing. USENIX Association,
June 2016

10. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity
and dynamicity of clouds at scale: Google trace analysis. In: Proceedings of the
3rd ACM Symposium on Cloud Computing, SoCC 2012, pp. 7:1–7:13. ACM, New
York (2012). http://doi.acm.org/10.1145/2391229.2391236

11. Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., Wilkes, J.: Omega: flexible,
scalable schedulers for large compute clusters. In: Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys 2013, pp. 351–364. ACM,
New York (2013). http://doi.acm.org/10.1145/2465351.2465386

http://www.gurobi.com
http://www.gurobi.com
https://www.hastexo.com/blogs/florian/2016/02/21/containers-just-because-everyone-else/
https://www.hastexo.com/blogs/florian/2016/02/21/containers-just-because-everyone-else/
http://doi.acm.org/10.1145/2391229.2391236
http://doi.acm.org/10.1145/2465351.2465386

An Efficient Communication Aware Heuristic
for Multiple Cloud Application Placement

Pedro Silva(B) and Christian Perez

University of Lyon, Inria, CNRS, ENS de Lyon, UCBL 1, LIP, Lyon, France
{pedro.silva,christian.perez}@inria.fr

Abstract. To deploy a distributed application on the cloud, cost,
resource and communication constraints have to be considered to select
the most suitable Virtual Machines (VMs), from private and public cloud
providers. This process becomes very complex in large scale scenarios
and, as this problem is NP-Hard, its automation must take scalability
into consideration. In this work, we propose a heuristic able to calculate
initial placements for distributed component-based applications on pos-
sibly multiple clouds with the objective of minimizing VM renting costs
while satisfying applications’ resource and communication constraints.
We evaluate the heuristic performance and determine its limitations by
comparing it to other placement approaches, namely exact algorithms
and meta-heuristics. We show that the proposed heuristic is able to com-
pute a good solution much faster than them.

1 Introduction

To place an application onto the Cloud, in the context of Infrastructure as a
Service (IaaS), a designer must choose the best set of machines, generally virtual
machines, from public and private cloud providers, which satisfies application
performance constraints. When the placement aims at minimizing renting costs,
the abundant number of available cloud providers and their offerings makes this
task challenging. Although automation becomes crucial, the placement problem
is NP-hard, and hence scalability must be taken in consideration, particularly in
the cases where applications are large and time constraints are tight.

In spite of important contributions made by previous works, issues concern-
ing, mainly, scalability and the modeling of communication constraints are still
open, in particular in the case of multiple cloud deployment. Scalability issues
are observed in works that propose time consuming solutions based on exact
algorithms, meta-heuristics or solvers. Issues related to modeling communica-
tion constraints become apparent in works that either do not consider them at
all or assume complete knowledge of cloud network and application topologies.
In reality, users usually do not have access to the exact network topology of cloud
provider data centers. Furthermore, due to hardware virtualization, the identity
and location of physical machines where VM instances run may vary. Hence,
placement algorithms that rely on those assumptions may not work correctly.

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 372–384, 2017.
DOI: 10.1007/978-3-319-64203-1 27

An Efficient Communication Aware Heuristic 373

We tackle the problem of finding an initial placement for distributed applica-
tions modeled as component-based applications on multiple clouds. For brevity,
we call this problem CAPDAMP, for Communication Aware Placement of Dis-
tributed Applications on the Multi-cloud Problem. The objective is to map each
application component to an instance of a virtual machine (VM) minimizing
renting costs and satisfying resource and communication constraints. Compo-
nents can be any piece of code. They expose what they provide/require through
interfaces, hiding their implementations to enhance reusability.

Each application component has resource requirements and communication
requirements for its connections to other components. VM types have their
capacities, renting prices and communication capacities to other VM types. This
means that the resource capacities of a VM instance must be larger than or
equal to the sum of resource requirements of the components it hosts. We call
those resource capacities or requirements dimensions. Similarly, communication
requirements between components must be inferior or equal to the communica-
tion capacities between the VM instances hosting them. We assume communi-
cation requirements and capacities can be expressed numerically.

Our hypothesis is that users describe communication constraints because
they want a placement that respects their application latency requirements.
Thus, to satisfy this constraint and to overcome the lack of available information
about network topologies of public cloud providers, we introduce a flexible app-
roach that allows an application designer to describe communication constraints
using a less accurate view of the Cloud topology as well as a more accurate
schema when in the context of private cloud providers.

Benefiting from this model, we propose an efficient and scalable heuristic that
mixes graph clustering techniques and which is able to compute good quality
placements very quickly for small to large scenarios. As this work considers
initial placements, we do not assume a priori information concerning expected
workload, renting times, or dynamic actors that would allow online modifications
of the placement. This is left for future work. This paper extends our previous
work [18], where we proposed bin packing based greedy heuristics to solve a
communication-oblivious placement problem.

Section 2 deals with the state of the art. Section 3 presents our application
and cloud models and details the proposed heuristic which is evaluated in Sect. 4.
Finally, Sect. 5 concludes the paper and discusses future directions.

2 Related Work

We divide the related work into three groups based on the approach used
to tackle the CAPDAMP and related communication-aware problems: exact
approaches, meta-heuristic approaches, and heuristic based approaches. Then,
we discuss them with respect to the CAPDAMP.

Exact Algorithms: In [19], a Mixed Integer Programming (MIP) is proposed
for the placement of distributed applications on the Cloud. The objective is

374 P. Silva and C. Perez

to maximize availability by modeling fault-tolerance measures. Similarly, [10]
proposes a MIP to minimize application downtime. Both approaches neither
consider renting cost minimizations nor allow for more than two dimensions of
interest. In [13], a very expressive MIP to compute the placement of services
on multiple clouds is presented. Despite allowing for cost optimization, hetero-
geneous VM types, and resource constraints, it does not allow for an explicit
description of communication constraints. Finally, in [12], a hierarchical app-
roach to the process placement in multi-core clusters is presented. However,
only the communication problem is considered and both processes and hosting
machines are homogeneous, contratry to our work.

Meta-heuristics: In [3,20], the authors propose two very similar approaches
based on genetic algorithms to calculate the placement of services on the Cloud
targeting cost minimization while satisfying CPU, memory, disk and latency con-
straints. In [9], a simulated annealing based approach to the VM consolidation
problem is presented. In the same topic, an ant colony algorithm for a multi-
objective VM consolidation problem aiming at minimizing energy consumption
and resource waste is described in [7]. In [6] another ant colony based approach
for the VM consolidation problem is proposed.

Heuristics: A communication-aware greedy heuristic for calculating the task
mapping on supercomputer clusters is presented in [4]. Using a max-clique based
approach, [2,14] describe algorithms for the consolidation of VM types. An anal-
ogous problem is addressed in [16], which adds the challenge of having to place
a virtual network aiming at satisfying resource and network constraints. Using
a min cut approach, a hierarchical representation of the network and a graph
modeling of the application, [15] tackles the traffic aware virtual machine place-
ment on data centers. A hierarchical approach for the deployment of distributed
scientific applications on the Cloud is presented in [5]. In [21], a graph match-
ing algorithm based on a graph query approach for the service placement on the
cloud is proposed. [8] presents a heuristic based on a relaxed MILP to compute a
solution for a VM consolidation problem. In [11], an approach for placing services
onto clouds while minimizing communication costs is proposed. Despite present-
ing a hierarchical cloud topology description and clustering heuristics similar
to ours, the only considered resources is CPU. Communication constraints are
viewed as soft constraints.

2.1 Discussion

As the CAPDAMP is NP-hard, using exact algorithms to calculate optimal
placements is feasible only for very small problem instances. To overcome
this limitation there is a plethora of more scalable approaches based mainly
on meta-heuristics and heuristics. Meta-heuristics have their solution qualities
proportional to the time given to process a problem. Hence, depending on prob-
lem size, using a meta-heuristic may still be unfeasible. Furthermore, as they

An Efficient Communication Aware Heuristic 375

are generic tools, meta-heuristics tend to be very sensitive to parameter tuning
specific for each scenario.

Other heuristics usually aim primarily at solving the graph partitioning (or
communication constraint) problem letting the packing (or resource constraint
problem) in second place. Graph-based modeling can efficiently describe commu-
nication constraints, however, describing at the same time resource constraints
and renting costs tends to be more difficult. Thus, issues like VM heterogeneity,
renting costs and multi-dimensionality are not addressed at the same time.

The main contribution of this paper is an efficient and scalable heuristic (cf.
Sect. 3) which addresses the aforementioned problems. Using a graph clustering
and multidimensional bin packing strategies, it manages to calculate good quality
solutions very quickly, as described in Sect. 4.

3 The 2PCAP Heuristic

Before presenting the heuristic proposed in Sect. 3.1, we introduce the com-
munication topology models for applications and multi-clouds upon which our
heuristic strongly relies on.

Multi-cloud Network Topology: In this work, we model the network topol-
ogy as a tree. It is a hierarchical approximation of intra cloud provider and long
distance networks as well as an approximation of their inherent communication
capacity uncertainties.

Figure 1(a) gives an example of this modeling. Leaves are sets of rentable
resources, like VM types (or physical machines), that we call machine groups.
An inner node m of the multi-cloud tree models a level of connection between
all machine groups available in the sub-tree having m as root. The level of an
inner node represents the quality of the machine group connection. In Fig. 1(a),
machine groups m1 and m2 are connected at levels 0, 1, and 2. Thus, their
connection qualities may be 0, 1 or 2. Machine groups m1 and m3 have a con-
nection quality 1. Resources in the same machine group are always connected
with a connection quality equals to the level of the leaves. In Fig. 1(a), all con-
nections between VM types inside the same machine group have quality 3.

The concept of connection quality aims at characterizing the latency of a con-
nection. The closest an internal node is to the leaves, the smallest the latency
is. This is sufficiently general to describe detailed internal data center topologies
as well as general Internet links. We suppose that this model is sufficient for
describing VM localization (within the same data center, city, or country).

Application Communication Topology: In this work, we represent a
component-based application as a graph. Components are nodes and connections
between components are weighted edges. Weights are connection requirements,
defined in terms of connection quality matching the multi-cloud topology. In
Fig. 2, components c1 and c2 communicate and require a connection quality of
at least 2, while c2 and c3 require at least 1.

376 P. Silva and C. Perez

Fig. 1. Placement example.

3.1 Two Phase Communication Aware Placement Heuristic

We propose a divide-and-conquer heuristic called Two Phase Communication
Aware Placement Heuristic (2PCAP) to calculate solutions for the CAPDAMP.
2PCAP, described in Algorithm 1, has two phases. (i) It recursively decomposes
components and machine groups into subsets, creating communication-aware
sub-placements, until sub-placements can be calculated with communication-
oblivious heuristics. (ii) From the leaves to the root of the tree, sub-placements
with best costs compose the solution for their parents.

Phase 1 – Decomposition: A component subset i� is a set of nodes from a
connected subgraph from the application graph. Component subsets have the
property that every connection between its components has a communication
quality requirement superior or equal to �, where 0 ≤ � < H and H is the height
of the multi-cloud tree. A machine group subset s� contains machine groups from
sub-trees of the multi-cloud tree topology. All machine groups contained in the
same subset are connected with connection quality superior or equal to �.

The process that generates component and machine group subsets is called
decomposition. Given a level �, machine group subsets are generated through
the gathering of leaves whose subtree roots are in level �. Component subsets

An Efficient Communication Aware Heuristic 377

Algorithm 1. Pseudo-code of 2PCAP.
Input: level, comp subset,mg subset
Output: min cost plac
1: min cost plac ← ∞
2: if is calculated(comp subset ⇒ mg subset) then
3: return plac(comp subset ⇒ mg subset)
4: else if level = l max then
5: calculate(comp subset ⇒ mg subset)
6: return plac(comp subset ⇒ mg subset)
7: else if level < l max then
8: if size(decompose(mg subset, level)) = 1 then
9: plac ← null

10: for cs in decompose(comp subset, level) do
11: temp plac ← 2PCAP (level + 1, cs,mg subset)
12: plac ← compose(plac + temp plac)
13: min cost plac ← plac
14: else if size(decompose(mg subset, level)) > 1 then
15: plac ← null
16: for cs in decompose(comp subset, level) do
17: min plac ← null
18: for ms in decompose(mg subset, level) do
19: temp plac ← 2PCAP (level + 1, cs,ms)
20: if cost(temp plac) < min plac then
21: min plac ← temp plac
22: plac ← compose(plac + min plac)
23: min cost plac ← plac
24: for ms in decompose(mg subset, l max) do
25: temp plac ← 2PCAP (l max, comp subset,ms)
26: if cost(temp plac) < cost(min cost plac) then
27: min cost plac ← plac
28: return min cost plac

are connected sub-graphs resulting from the removal of all connections requiring
connection qualities inferior to � from the original application graph. I� and S�

are the sets containing, respectively, all components and machine groups subsets
constructed on level �.

In Fig. 1(b), (c) and (d) there are examples of machine group and component
decompositions. Table names (L0, L1 and L2) refer to the level of decomposition,
component subsets (I�) are represented in the left and machine group subsets
(S�), in the upper part.

A sub-placement is the placement of a subset of components on a subset of
machine groups. It also aims at minimizing VM renting costs while satisfying
resource and communication constraints. Given a level �, i� ∈ I� and s� ∈ S�, the
sub-placement of i� on s� can only be computed if it is a bottom sub-placement or
if the sub-placements generated by the decomposition of i� and s� were computed.

A bottom sub-placement is a sub-placement that can be computed by com-
munication oblivious heuristics while satisfying communication quality require-

378 P. Silva and C. Perez

ments. Hence, any pair of VM types from machine groups contained in s� will
satisfy the communication requirements from any pair of components from i�.

Let lmax be the highest connection quality requirement present in the com-
ponent graph. Observe that every sub-placement of i� ∈ I� on s�max ∈ S�max is
a valid bottom sub-placement. Hence, there is no reason to continue the decom-
position process beyond lmax.

Phase 2 – Composition: Bottom sub-placements are calculated by efficient
communication-oblivious heuristics for the multi-dimensional bin packing prob-
lem presented in a previous work [18]. Once all necessary bottom sub-placements
are calculated, 2PCAP starts the process of composition of sub-placements.
The objective is to choose, at each composition step, the less expensive sub-
placements. Given the set I ′

�+1 containing all component groups decomposed
from i� ∈ I� and the set S ′

�+1 decomposed from the machine group s� ∈ S�,
let uis

�+1 be the sub-placement of i�+1 on s�+1. Thus, the solution for the sub-
placement of i� on s� is one of the following:

Case 1: uis
�+1, if S�+1 = S� and I�+1 = I�.

Case 2:
∑

i∈I�+1
uis

�+1 for s ∈ S�+1, if |S�+1| = |S�| and |I�+1| > |I�|;
Case 3:

∑
i∈I�+1

min(uis
�+1, ∀s ∈ S�+1), if |S�+1| > |S�|;

In Case 1, The decomposed subset of components and machine groups are
identical to the original subsets. Hence, uis

� = uis
�+1. This is described in lines 2

and 3 from Algorithm 1. In Case 2, the decomposed subset of machine groups
is identical to the original, but this is not true for the decomposed component
subset. In this case, 2PCAP composes the |I�+1| sub-placements on s�+1. Sub-
placements c and f (cf. Fig. 1(d)) compose sub-placement h (cf. Fig. 1(c)). This
situation is described between lines 8 and 13 from Algorithm 1. In Case 3, when
|S�+1| > |S�| machine groups are decomposed in more than one subset. Thus,
for each decomposed component subset there are |S�+1| possible sub-placements,
from which, only the less expensive one is used in the composition process. Sub-
placement i (cf. Fig. 1(b)) is composed by sub-placements g and h (cf. Fig. 1(c)).
Furthermore, sub-placement g (cf. Fig. 1(c)) is composed by sub-placements a,
b, d and e (cf. Fig. 1(d)). This can be observed between lines 14 and 23 from
Algorithm 1.

3.2 Discussion

The 2PCAP heuristic does not compute, during the decomposition phase, all
possible sub-placements. Doing this would result in a factorial complexity which
would lead to prohibitive execution times for large problems. To further explore
the solution space without increasing too much the time complexity, 2PCAP
computes the sub-placement of every generated subset which is not part of a
bottom sub-placement on machine group subsets generated at level lmax (cf.
Lines 24 to 27 of Algorithm 1).

An Efficient Communication Aware Heuristic 379

The complexity of 2PCAP is dominated by decomposition operations
(decompose function) and the computation of placements (plac function). Let
I, S and T be the sets of components, sites and VM types, respectively. Decom-
position operations have a O(|I|3 + |I| × |S|2 × log|S|) complexity while the
computation of placements has O(|S| × |T |log|T × |I|2).

4 Evaluation

As the CAPDAMP is NP-Hard, we divide the evaluation process in two steps.
First, using small problem instances and a MIP solver, we compare 2PCAP solu-
tions to optimal ones. Then, we compare 2PCAP on medium and large problem
instances using meta-heuristics and a relaxed version of the CAPDAMP as base-
line algorithms.

4.1 Methodology

An experiment is the resolution of a set of placement problem instances by a set of
algorithms within a given time. Each problem instance has seven parameters: the
number nd of considered resources or dimensions, the number nc of components,
the number nv of VM types, the number ns of sites, the height ht of the multi-
cloud tree, the topology tc of the component-based application and the multi-
cloud tree connection schema xt.

Experiments are organized in three experiment classes, namely A, B, and C.
Small, and thus easier to solve, problem instances compose Class A; medium-
sized problem instances are present in Class B, and, finally, large problems form
Class C. Table 1 details the range of problem instance parameters that define
each class and the total of generated problem instances per class.

Table 1. Parameters of experiment classes. Column tc indicates the application topolo-
gies: line (l), star (s), full connected (f), or random (r). Column xs indicates the
multi-cloud tree connection schemas: distant (d), agglomerate (a), or uniform (u).

Class nd nc nv ns ht tc xs # exps

A 4 3, 5, 7, 10 100, 250, 500, 700 25, 50, 100 3, 5 l, s, f, r u 384

B 5 10, 20, 30, 40, 50 500, 1k, 1.5k, 2k 100, 300, 500 5 l, s, f, r d, a, u 720

C 6 60, 80, 100, 120, 140 2.5k, 5k, 7.5k, 10k 500, 750, 1k 7 l, s, f, r d, a, u 720

Component requirements and VM capacities are pseudo-random values,
picked uniformly from pre-defined intervals (Table 2). We consider that VM
types are distributed equally among the sites. We generate three different compo-
nent communication patterns: distant, agglomerated, and uniform. The difference
between them is the probability of connecting two or more subtrees. The distant
pattern has higher probability to connect subtrees near the root; agglomerated

380 P. Silva and C. Perez

Table 2. Intervals of dimension data generation.

Dimension (i) (ii) (iii) (iv) (v) (vi)

Requirements 800–k 1–16 1–32 50–3.5k 5–30 1–8

Capacities 1k–3.5k 2–32 2–40 150–4k 10–80 1–16

gives higher connection probabilities to subtrees near the leaves and the uniform
schema gives the same connection probability

(
1
ht

)
to every subtree.

The four component-based application topologies we consider are line, star,
full connected (cf. Fig. 2), and random. In the random schema, a pair of compo-
nents is connected with a probability of 50%. Communication requirements from
component connections are pseudo-random integers picked uniformly between 0
and ht − 1.

Fig. 2. Schemas of part of the generated application topologies. (a) line, (b) star and
(c) full connected.

Renting prices depend on the resource dimensions of each VM. Let c∗
t,d be the

ratio ct,d

maxd
between the capacity ct,d of dimension d from VM type t and maxd

the maximum value for dimension d (cf. Table 2). Each dimension is multiplied
by a coefficient to create scenarios where some dimensions are more expensive
than others. Hence, the price of a VM type pt is α + β + γ + δ + ε + ζ, where
α = c∗

t,1 × random(1, 3), β = c∗
t,2 × random(8, 20), γ = c∗

t,3 × random(5, 8),
δ = c∗

t,4 × random(10, 15), if c∗
t,4 ≤ 500, otherwise δ = c∗

t,4 × random(20, 25),
ε = c∗

t,5 × random(5, 10), and ζ = c∗
t,6 × random(2, 5).

The 2PCAP algorithm is implemented in Python. Experiments were con-
ducted on Dell PowerEdge R630 2.4 GHz (2 CPUs, 8 cores) nodes from the
Parasilo and Paravance clusters of the Grid’5000 experimental platform1.

4.2 2PCAP Performance on Small Problems

In this section we use the SCIP solver [1], a framework for constraint integer
programming and branch-cut-and-price, together with an optimization formu-
lation of the CAPDAMP to generate a set of optimal solutions which will be
compared to solutions computed by 2PCAP. Problems from experiment Class A
(Table 1) were used and SCIP was given 24 h to solve each one of them.
1 cf. https://www.grid5000.fr.

https://www.grid5000.fr

An Efficient Communication Aware Heuristic 381

Fig. 3. (Left) Cost distances as percentage of 2PCAP solutions compared to optimal
solutions aggregated by application topology type. The green solid line is the median
and the brown dashed line is the average. (Right) Sum of execution times in seconds
from 2PCAP and SCIP solver aggregated by application topology – SCIP: average
4180 s, median 1800s. 2PCAP: average 0.1 s, median: 0.08 s. (Color figure online)

SCIP solver was able to solve only around 48% of Class A problem instances
in time, i.e., 180 problem instances. Figure 3 illustrates the cost distance from
solutions computed by 2PCAP to the optimal ones as a percentage of the latter
for problem instances successfully solved by SCIP. Cost distances are grouped
by application topology.

In Fig. 3 (Left) we can see that cost distances vary between 0% and at most
12.3%. The median is always 0% and the average between 2% and 3%. Figure 3
(Right) complements this data. It depicts the sum of the execution times in sec-
onds that each approach used to calculate the 48% of Class A problem instances
solved by SCIP, grouped by application topology schema. While 2PCAP takes
some seconds to solve all problems, the solver’s execution time is in the scale
of days. Hence, in spite of being much faster than the solver, 2PCAP manages
to produce a solution at most around 12% worse than the optimal and, in the
median, the solutions are optimal.

4.3 2PCAP Performance on Large Problems

The evaluation of 2PCAP on large problems cannot rely on using a solver to
generate optimal solutions. It is necessary to use scalable baseline algorithms.

Heuristics presented in Sect. 2 cannot handle the complexity of CAPDAMP.
Hence, as a first approach, we implement a Simulated Annealing (SA) meta-
heuristic for the CAPDAMP as a baseline algorithm. We used Python module
Simanneal [17] and problem instances from Classes B and C. The meta-heuristic
is initialized with a random – not necessarily valid – placement. Despite the
timeout of 1 hour per problem instance, SA managed to calculate a solution for
only around 10% of problem instances. As CAPDAMP’s search space is very
large, SA would need more time to be able to produce more solutions.

Running SA with an initial solution computed by 2PCAP shows how much
SA can improve a 2PCAP solution in one hour. Figure 4 (Left) illustrates this
metric for Class C problems. SA managed to improve the solutions by at most 9%
and the median is always bellow 4%. This small improvement is a good indicator

382 P. Silva and C. Perez

of 2PCAP’s solution qualities. Due to space limitations, we do not illustrate the
same metric for Class B problems, however the observed curves are very similar:
the largest improvement is around 9% and the median is always bellow 2%.

Fig. 4. (Left) Improvement of 2PCAP solutions by SA for Class C. (Right) Cost dis-
tances between 2PCAP and lower bound for Class C. The green solid line is the median
and the brown dashed line is the average. (Color figure online)

In a second approach, we compute baseline solutions obtained through
the relaxation of CAPDAMP’s communication constraints and compare them
to 2PCAP solutions. CAPDAMP is, thus, reduced to a cost-aware multi-
dimensional bin packing placement problem which is calculated by an adapted
SA meta-heuristic initialized with the less expensive placement among those cal-
culated by 2PCAP and other efficient heuristics [18]. Figure 4 (Right) illustrates
the evolution of cost distances between 2PCAP and SA solutions for Class C
problems. Cost distances vary between 0% and around 22% and the median is
always bellow 10%. Due to space constraints, we do not plot this metric for
Class B problems, nevertheless, we observe a similar pattern: cost distances vary
between 0% and 30% and the median is always bellow 10%. The consistent
distance to baseline solution costs is a good indicator of the 2PCAP’s solution
quality. Concerning 2PCAP execution times for Classes B and C, the average
was around 11 s and the median around 3 s for each problem instance. At most,
2PCAP took around 110 s to calculate a placement.

The results presented in this section indicate that, even on large scenarios,
2PCAP manages to quickly calculate compatible or better solutions than those
calculated by SA.

5 Conclusion and Future Work

In this paper we presented an approach to calculate initial placements for
component-based applications with the objective of minimizing costs while sat-
isfying resource and communication constraints. This approach is based on a
hierarchical model of the cloud topology which allows the introduction of latency
requirements despite the uncertainties inherent to cloud networks, mainly due

An Efficient Communication Aware Heuristic 383

to virtualization. This model is used by 2PCAP, an efficient heuristic whose
evaluation shows its capability of producing good quality solutions very quickly.

Future work aims to go beyond the initial placement by adding the notion of
application reconfiguration and, consequently, modeling the migration of virtual
machines. We also plan to extend the placement heuristics to support applica-
tions described with more abstract component models, including, for example,
concepts such as cardinality, hierarchy, genericity, etc.

Acknowledgments. All experiments were carried out using the Grid’5000 testbed,
supported by a group hosted by Inria and including CNRS, RENATER, and several
Universities as well as other organizations (cf. https://www.grid5000.fr). This work
was partially supported by the PaaSage (FP7-317715) EU project.

References

1. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Com-
put. 1, 1–41 (2009)

2. Biran, O., Corradi, A., Fanelli, M., Foschini, L., Nus, A., Raz, D., Silvera, E.: A
stable network-aware VM placement for cloud systems. In: CCGrid (2012)

3. Chen, W., Qiao, X., Wei, J., Huang, T.: A profit-aware virtual machine deployment
optimization framework for cloud platform providers. In: CLOUD (2012)

4. Deveci, M., Kaya, K., Uçar, B., Catalyurek, U.V.: Fast and high quality topology-
aware task mapping. In: IPDPS (2015)

5. Fan, P., Chen, Z., Wang, J., Zheng, Z., Lyu, M.R.: Topology-aware deployment of
scientific applications in cloud computing. In: CLOUD (2012)

6. Ferdaus, M.H., Murshed, M., Calheiros, R.N., Buyya, R.: Virtual machine consol-
idation in cloud data centers using ACO metaheuristic. In: Europar (2014)

7. Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A multi-objective ant colony system
algorithm for virtual machine placement in cloud computing. J. Comput. Syst. Sci.
79, 1230–1242 (2013)

8. Gu, L., Zeng, D., Guo, S., Xiang, Y., Hu, J.: A general communication cost opti-
mization framework for big data stream processing in geo-distributed data centers.
IEEE Trans. Comput. 65, 19–29 (2016)

9. Hyser, C., Mckee, B., Gardner, R., Watson, B.J.: Autonomic virtual machine place-
ment in the data center. Technical report HPL-2007-189, HP Laboratories (2007)

10. Jammal, M., Kanso, A., Shami, A.: High availability-aware optimization digest for
applications deployment in cloud. In: ICC (2015)

11. Jayasinghe, D., Pu, C., Eilam, T., Steinder, M., Whally, I., Snible, E.: Improv-
ing performance and availability of services hosted on IaaS clouds with structural
constraint-aware virtual machine placement. In: SCC (2011)

12. Jeannot, E., Mercier, G., Tessier, F.: Process placement in multicore clusters: algo-
rithmic issues and practical techniques. IEEE Trans. Parallel Distrib. Syst. 25,
993–1002 (2014)

13. Lucas-Simarro, J.L., Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.:
Scheduling strategies for optimal service deployment across multiple clouds. Future
Gener. Comput. Syst. 29, 1431–1441 (2013)

14. Alicherry, M., Lakshman, T.V.: Network aware resource allocation in distributed
clouds. In: INFOCOM (2012)

https://www.grid5000.fr

384 P. Silva and C. Perez

15. Meng, X., Pappas, V., Zhang, L.: Improving the scalability of data center networks
with traffic-aware virtual machine placement. In: INFOCOM (2010)

16. Nonde, L., El-Gorashi, T.E.H., Elmirghani, J.M.H.: Energy efficient virtual net-
work embedding for cloud networks. J. Lightwave Technol. 33, 1828–1849 (2015)

17. Perry, M.: Simanneal: Python module for simulated annealing optimization.
https://github.com/perrygeo/simanneal

18. Silva, P., Perez, C., Desprez, F.: Efficient heuristics for placing large-scale distrib-
uted applications on multiple clouds. In: CCGrid (2016)

19. Spinnewyn, B., Braem, B., Latre, S.: Fault-tolerant application placement in het-
erogeneous cloud environments. In: CNSM (2015)

20. Yusoh, Z.I.M., Tang, M.: Clustering composite SaaS components in cloud comput-
ing using a grouping genetic algorithm. In: CEC (2012)

21. Zong, B., Raghavendra, R., Srivatsa, M., Yan, X., Singh, A.K., Lee, K.W.: Cloud
service placement via subgraph matching. In: ICDE (2014)

https://github.com/perrygeo/simanneal

Energy-Driven Straggler Mitigation
in MapReduce

Tien-Dat Phan1, Shadi Ibrahim2(B), Amelie Chi Zhou2, Guillaume Aupy3,
and Gabriel Antoniu2

1 ENS Rennes/IRISA, Rennes, France
tien-dat.phan@irisa.fr

2 Inria Rennes - Bretagne Atlantique Research Center, Rennes, France
{shadi.ibrahim,chi.zhou,gabriel.antoniu}@inria.fr

3 Inria Bordeaux - Sud-Ouest Research Center, Bordeaux, France
guillaume.aupy@inria.fr

Abstract. Energy consumption is an important concern for large-scale
data-centers, which results in huge monetary cost for data-center oper-
ators. Due to the hardware heterogeneity and contentions between con-
current workloads, straggler mitigation is important to many Big Data
applications running in large-scale data-centers and the speculative exe-
cution technique is widely-used to handle stragglers. Although a large
number of studies have been proposed to improve the performance of Big
Data applications using speculative execution, few of them have studied
the energy efficiency of their solutions. In this paper, we propose two tech-
niques to improve the energy efficiency of speculative executions while
ensuring comparable performance. Specifically, we propose a hierarchi-
cal straggler detection mechanism which can greatly reduce the number
of killed speculative copies and hence save the energy consumption. We
also propose an energy-aware speculative copy allocation method which
considers the trade-off between performance and energy when allocating
speculative copies. We implement both techniques into Hadoop and eval-
uate them using representative MapReduce benchmarks. Results show
that our solution can reduce the energy waste on killed speculative copies
by up to 100% and improve the energy efficiency by 20% compared to
state-of-the-art mechanisms.

Keywords: MapReduce · Energy efficiency · Straggler mitigation ·
Detection · Copy allocation

1 Introduction

Energy consumption has started to severely constrain the design and the way
that data-centers are operated. Energy bill has become a substantial part of
the monetary cost for data-center operators (e.g., the annual electricity usage
and bill are over 1,120 GWh and $67 M for Google, and over 600 GWh and
$36 M for Microsoft [13]). Moreover, as a result of the explosion of Big Data and
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 385–398, 2017.
DOI: 10.1007/978-3-319-64203-1 28

386 T.-D. Phan et al.

applications becoming more data-intensive, it is natural for data-center operators
to extend their infrastructure with more machines, which are energy-hungry. This
makes energy consumption a major concern for Big Data systems [7,11].

In parallel, the increasing scale of data-centers results in a noticeable per-
formance variation in operations [21,22]. This is due to: (i) the hardware het-
erogeneity caused by the gradual scaling out of data-centers [10], and (ii) the
dynamic resource allocation when adopting the virtualization technique to collo-
cate different users [20]. The performance variation results in a large number of
stragglers, i.e., tasks that take significantly longer time to finish than the normal
execution time (e.g., 700–800% slower [1]). Since the job execution time is deter-
mined by the latest task, stragglers can severely prolong the job execution time.
Speculative execution is a widely-used straggler mitigation technique to improve
the performance of jobs. It launches a speculative copy for each straggler upon
its detection. As soon as the straggler or the copy finishes, the other one is killed
and the task is considered finished. Nonetheless, using speculative execution is
not always beneficial. For example, Ren et al. [14] have shown that specula-
tive execution can reduce the task execution time in 21% of the time while the
unsuccessful speculative copies consume more than 40% extra resources. Thus,
there exists a trade-off between performance gain and extra energy/resource
consumption when using speculative execution [12].

Existing speculative execution mechanisms cannot achieve good trade-off
between performance and energy efficiency. First, existing speculative execution
mechanisms detect as many stragglers as possible in order to cut the jobs’ heavy-
tails. This policy is good for improving the performance, but can cause much
extra energy consumption. Second, different speculative copy allocation deci-
sions can result in different performance and energy consumption results [12].
For example, launching speculative copies on nodes with a small number of run-
ning tasks can result in short task execution time but leads to a high power
consumption (refer to Sect. 3). Unfortunately, existing copy allocation methods
do not consider this aspect. In this paper we make the following contributions.

– We introduce a novel straggler detection mechanism to improve the energy
efficiency of speculative execution. The goal of this detection mechanism is to
identify critical stragglers which strongly affect the job execution times and
reduce the number of killed speculative copies which lead to energy waste.
This hierarchical straggler detection mechanism can work as a secondary layer
on top of any existing straggler detection mechanisms (Sect. 5).

– We propose an energy-aware copy allocation method to reduce the energy
consumption of speculative execution. The core of this allocation method is a
performance model and an energy model which expose the trade-off between
performance and energy consumption when scheduling a copy (Sect. 6).

– We evaluate our hierarchical detection mechanism and energy-aware copy
allocation method on the Grid’5000 [8] testbed using three representative
MapReduce applications. Experimental results show a good reduction in the
resource wasted on killed speculative copies and an improvement in the energy
efficiency compared to state-of-the-art mechanisms (Sect. 7).

Energy-Driven Straggler Mitigation in MapReduce 387

2 Related Work

There is a rich body of research on straggler mitigation in MapReduce [4,9].
Straggler Detection in MapReduce. Dean and Ghemawat [4] presented a
straggler detection mechanism based on progress score, a 0-to-1 number repre-
sents the ratio of processed data over the total input data. A task, which has a
progress score less than the average progress score minus 20%, is marked as a
straggler. This mechanism has shown a reduction to the job execution times by
44%. Zaharia et al. [20] noticed that the progress score alone does not accurately
reflect how fast a task runs as different tasks start at different times. Therefore,
they present a new detection mechanism (i.e., LATE) which takes into consid-
eration both the progress score and the elapsed time (i.e., the time each task
takes from the moment it starts). These two parameters are used to calculate the
progress rate of each task. In practice, this straggler detection mechanism can
reduce the job execution times by a factor of 2. Recent studies [2,3,5,6,17,18]
have shown that there still exist several reasons that lead to incorrect straggler
detections, including data locality and task execution skew. Ananthanarayanan
et al. [2] proposed a cause-aware straggler detection mechanism. It keeps mon-
itoring the performance and resource consumption of tasks and uses this infor-
mation to infer the causes of slow task executions (e.g., non-local task and data
skew). Our hierarchical straggler detection mechanism complements these mech-
anisms to enforce identifying the most critical stragglers and hence reduce the
extra energy consumption imposed by speculating non-critical ones.

Straggler Handling in MapReduce. Ren et al. [15] proposed a speculation-
aware scheduler, named Hopper. Hopper reserves spare resources to run spec-
ulative copies whenever needed. Ananthanarayanan et al. [1] presented Dolly,
a straggler handling approach which launches multiple copies (i.e., clones) for
each task when starting MapReduce applications. While previous studies mainly
answer the question of when to allocate the resources to speculative copies, this
paper tackles the problem of where to allocate speculative copies. In particular,
it leverages the heterogeneity of resources (in terms of performance and energy)
to reduce the energy consumption of MapReduce applications.

3 On the Energy Inefficiency of Speculative Execution

In this section, we discuss the energy inefficiency of the default speculative exe-
cution mechanism in Hadoop.

3.1 Huge Energy Waste Due to Unsuccessful Speculative Copies

Speculative execution is initially designed to handle stragglers and improve job
performance. The common wisdom applied in existing straggler detection mech-
anisms is to detect as many stragglers as possible in order to cut the heavy-tails
in job execution. For example, Default [4] decides a task with progress less than
80% of the average progress as straggler. LATE [20] marks the tasks with speed

388 T.-D. Phan et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500

R
at

io
 o

f k
ill

ed
 s

pe
cu

la
tiv

e
co

pi
es

 O

ve
r

to
ta

l s
pe

cu
la

tiv
e

co
pi

es

Job ID

(a) Ratio of killed copies

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 200 300 400 500

R
es

ou
rc

e
co

ns
um

pt
io

n
by

 k
ill

ed
 c

op
ie

s
 O

ve
r

to
ta

l j
ob

 r
es

ou
rc

e
co

ns
um

pt
io

n

Job ID

(b) Resource on killed copies

Fig. 1. Production Hadoop cluster trace analysis: (a) More than 65% of the jobs have
zero successful speculative copies; (b) The resource consumption caused by the unsuc-
cessful copies can be substantial. In some cases, it can reach 40% of the total resource
consumption.

less than the mean speed minus the standard deviation as stragglers. Mantri [2]
considers tasks with 1.5x times longer execution time than average execution
time as stragglers. To understand the energy efficiency of these straggler detec-
tion mechanisms, we have analyzed one month traces (October 2012) collected
from a Hadoop production cluster in CMU [14]. Figure 1 shows the ratio of killed
speculative copies, i.e., unsuccessful copies, over all copies for each Hadoop job,
as well as the ratio of resources consumed by the killed copies over the total
resource consumption of a job. We observe that many speculative copies are
unsuccessful and are wasting a lot of resources. For example, among the total
568 jobs, there are 370 jobs which have speculative execution with no successful
copy. For some jobs, the killed copies consumed more than 40% of the job’s total
resource consumption. The large number of unsuccessful speculative copies is
mainly due to the late detection and the wrongly detected stragglers. To con-
clude, the philosophy of detecting as many stragglers as possible in speculative
execution is no longer optimal from the energy perspective.

3.2 Speculative Copy Allocation Matters

We have observed that there is a trade-off between the performance and energy
consumption for tasks executing on different nodes, according to the current sta-
tus of the nodes. Figure 2 shows the average task execution time and the energy
consumption of a node when executing different numbers of tasks concurrently.
The application used is WordCount and the number of cores in the node is
four. For example, we find that when the number of concurrent tasks is three,
we can obtain the lowest energy consumption, without sacrificing too much the
performance. Thus, allocating speculative copies to different locations, which
may have different numbers of running tasks, can result in different performance
and energy consumption results. Unfortunately, existing copy allocation meth-
ods have ignored such a trade-off. For example, Default [4] follows the simple

Energy-Driven Straggler Mitigation in MapReduce 389

 50

 100

 150

 200

 250

 300

 350

 400

 450

1 2 3 4 5 6 7 8
 0

 2

 4

 6

 8

 10

 12

E
ne

rg
y

co
ns

um
pt

io
n

(k
J)

E
xe

cu
tio

n
tim

e
(s

ec
on

d)

Number of concurrent Map tasks

Energy consumption Execution time

Fig. 2. Variability in execution times and energy consumptions with different numbers
of concurrent map tasks for WordCount application.

FCFS policy to allocate copies to the first freed slot, without considering any of
the performance and energy objectives. In Mantri, the task placement is mainly
based on the performance objective which ensures that a copy is more likely to
finish earlier than the original task. In order to improve the energy efficiency of
speculative execution, it is important to take into consideration the impact of
different copy allocation decisions to the overall energy consumption.

Based on the two observations, in the following sections, we present a novel
straggler detection mechanism and a smart speculative copy allocation method,
in order to improve the energy efficiency of speculative executions.

4 Architectural Model

Considering the straggler mitigation problem in a cluster, we provide the follow-
ing models to describe the energy and performance behaviors of tasks running
in the cluster.

Power and Energy Model. For any node in the cluster, we assume there are
c cores which support t threads each. The power consumption of a running node
is composed of two parts, namely the fixed static power consumption Pstatic and
the dynamic power consumption proportionally related to the number of active
cores. We use Pdyn to denote the power consumption resulted by activating one
core and n to denote the number of tasks running on the node. Then the total
power consumption P of a running node can be modeled as in Eq. 1.

P =

{
Pstatic + n · Pdyn for 0 ≤ n ≤ c

Pstatic + c · Pdyn for c < n ≤ ct
(1)

The energy consumption E of a node is its power integrated over time and
thus can be modeled as E =

∫ T

0
P(t)dt. We use T to denote the execution time

of tasks running on the node. The energy efficiency EE is defined as the ratio
of the throughput to the power consumption, namely EE = 1/E.

Average Slowdown Factor and Interference Model. We model the slow-
down to a task caused by interference between concurrent tasks running on the

390 T.-D. Phan et al.

same node using the average slowdown factor α defined for a node. We observe
that α equals to one when the number of concurrent tasks is less than the num-
ber of cores c. This is because each task can be executed on a dedicated core
and there is hardly any interference between the tasks. When the number of
tasks increases beyond c, the interference also increases. Denote the number of
running tasks as n, then the average slowdown factor α can be calculated as
below.

α =

{
1 for 1 ≤ n ≤ c
n
c for c < n ≤ ct

(2)

5 Hierarchical Straggler Detection Mechanism

In this section, we present the architecture of our hierarchical straggler detection
mechanism. Our hierarchical mechanism works as a secondary layer on top of
an existing straggler detection mechanism. The goal of this detection layer is
to select the critical stragglers, i.e., the long-running stragglers which strongly
affect the job execution time, from the list of stragglers detected by an existing
detection mechanism. The secondary detection layer considers the stragglers at
the node-level. That means, it detects only the stragglers on very slow nodes. The
reason for this strategy is that most stragglers are caused by node-level problems,
such as a node with worn-out hardware and node-level resource contentions
which lead to slow tasks [2]. We identify all the nodes with performance less
than β of the average node performance as slow nodes. In the evaluation, we
discuss the impact of this parameter on the speculative execution results.

Figure 3 shows the design of the secondary straggler detection layer. Specifi-
cally, it takes the stragglers detected by the underlying straggler detection layer
as input. Then, it calculates the performance of each node and filters out the
stragglers that are not hosted on slow nodes. We calculate the performance of a
node using the following equation.

Perfhost =
1
n

∗ α ∗
n∑

i=1

Perf i
task (3)

Secondary straggler detection layer

(1)

(2)

(3)

(3
’)

(4)

Output of
underlying
straggler
detection

Master
information

Detected
stragglers

Node’s
performance

Filter the
stragglers

according to
the node’s

performance

List of
sorted

stragglers

Fig. 3. Hierarchical straggler detection architecture.

Energy-Driven Straggler Mitigation in MapReduce 391

where α is the slowdown factor and

Perf i
task =

progress ∗ input

duration
(4)

Equation 4 evaluates the performance for a specific task, where progress rep-
resents the ratio of finished work over the task’s total work, input is the size of
the task’s input data in bytes and duration is the time from the starting moment
of the task. This information of each task is extracted from the Master node’s
database. Equation 3 means that the performance of a host is defined as the sum
of the performances of all tasks running on the host. After the filtering, the rest
stragglers are sorted according to their own performance and the most critical
straggler (with the worst performance) is placed in the beginning of the list. We
filter and sort the stragglers according to Eqs. 3 and 4 with the consideration
of optimizing the energy efficiency of speculative execution. Apparently, a slow
straggler running on a poor performance node is expected to be more critical
straggler. Such stragglers are the main reason of causing heavy-tails in job exe-
cutions and as a result wasting a lot of energy. Thus, handling those critical
stragglers first can potentially lead to better energy efficiency. It is important to
note that our secondary straggler detection layer is independent from the under-
lying detection layer, and therefore it can be easily integrated with any existing
straggler detection mechanisms.

6 Energy-Aware Speculative Copy Allocation

After having the list of stragglers detected by the hierarchical straggler detection
mechanism, we propose an energy-aware speculative copy allocation method to
further optimize the energy efficiency of speculative execution.

6.1 Problem Definition

Given a list of suspected stragglers, the copy allocation method maps each strag-
gler to a node with idle slots (denoted as an idle node) and start a copy of the
straggler on that node, in order to optimize the overall energy efficiency of spec-
ulative execution. Assume there are S copies (si, i ∈ [1, S]) to be launched and
N idle nodes (nj , j ∈ [1, N]) to host the copies. We can easily formulate the
copy allocation problem as a variant of the classic bin packing problem, where
the size of each bin (i.e., a node) equals to the number of idle slots in the bin.
Thus, the copy allocation problem is a NP-hard problem. In the next subsection,
we propose a heuristic to obtain a good solution to this problem.

When the value of N is small, there are not many choices to make copy
allocation decisions and the optimized energy efficiency results may not be good.
Thus, we adopt the same methodology as Delay scheduling [19]. That is, we first
check the value of N when making the copy allocation decision. If N is small,
we wait a few seconds to have more idle nodes for potentially better results. In
our experiments, we wait three seconds when N equals to one.

392 T.-D. Phan et al.

6.2 Copy Allocation Heuristic

There are many existing heuristics such as first-fit and best-fit algorithms to solve
bin-packing problems. In this paper, we propose a heuristic similar to best-fit
for our copy allocation problem. Following the order of stragglers sorted by the
hierarchical straggler detection, we search for the node that can best fit each
copy sequentially. We define the fitness of mapping a copy to a node according
to the energy efficiency of the map. As the energy efficiency is affected by both
the energy consumption and the performance of job, given any map from copy of
straggler i to node j, we first provide two models to estimate the job execution
time change and the energy consumption change caused by launching a copy of
straggler i on node j.

Execution Time Change Estimation. As the list of stragglers returned by
hierarchical straggler detection mechanism are sorted according to their perfor-
mances, the head of the list is always the most critical straggler. Handling the
critical straggler can directly contribute to the reduction of job execution time.
Thus, we can estimate the job execution time change ΔTij caused by launching
a copy of straggler i on node j using the difference between the task execution
time of straggler i before and after launching the copy. Assume that straggler i
is running on node k.

ΔTij = αk ∗ (1 − progressi) ∗ inputi
Perfk

host

− αj ∗ inputi

Perf j
host

(5)

where the first term stands for the left over time for the straggler to finish if no
copy is launched and the second term stands for the execution time of the copy
on node j.

Energy Consumption Change Estimation. Executing a new copy consumes
more energy while at the same time saves energy due to shortening the execution
time of the straggler task. We can formulate the energy consumption change
caused by launching a copy of straggler i on node j as follows.

ΔEij = (Pk + Pj) · Ts − (Pk + P ′
j) · Tc

= Pk · ΔTij + Pj · Ts − P ′
j · Tc (6)

where Ts equals to the first term of Eq. 5 and Tc equals to the second term of
Eq. 5. Pj and P ′

j are the power consumption of node j before and after adding
a copy of straggler i, which can be calculated using Eq. 1.

Given the above two models and the definition of energy efficiency, we can
choose the map which gives the best ΔEij result as the best fit solution (i.e., the
highest improvement to energy efficiency). Algorithm1 presents the general flow
of our copy allocation heuristic, where stragglers list contains the list of ordered
stragglers and idle nodes contains the list of nodes with idle slots.

Energy-Driven Straggler Mitigation in MapReduce 393

1 while stragglers list is not empty do
2 straggler i is the head of stragglers list ;
3 best fitness = 0 ;
4 for node j in idle nodes do
5 calculate ΔEij using Equation 6;
6 if ΔEij > best fitness then
7 best map = j;
8 best fitness = ΔEij ;

9 end

10 end
11 remove straggler i from stragglers list ;
12 launch a copy of straggler i to node best map;

13 end

Algorithm 1. Speculative copy allocation heuristic.

7 Evaluation

In this section, we evaluate our hierarchical straggler detection mechanism and
copy allocation method in real Hadoop cluster and compare them with existing
straggler detection mechanisms and copy allocation methods. We implemented
our techniques in the Hadoop 1.2.1 stable version, with roughly 1500 lines of
JAVA code. Both mechanisms are implemented as extra modules to the core of
Hadoop to allow users to easily adopt our techniques using the Hadoop general
configuration file.

7.1 Experimental Setup

Testbed. All of our experiments were conducted on a cluster of 21 nodes from
the Nancy site of Grid’5000 testbed [8]. We configured the cluster with one
master and 20 workers. Each node in the cluster is equipped with 4-core Intel
2.53 GHz CPU, 16 GB of RAM and 1 Gbps Ethernet network. The power con-
sumption of the nodes are monitored by Power Distribution Units. Thus, we can
acquire fine-grained and accurate power consumption values during the experi-
ments. All experiments are run for 10 times and the average values are reported.

Applications. We adopt three widely-used MapReduce applications chosen
from the well-known Puma MapReduce benchmark suite [16]. The three applica-
tions have different characteristics, where Kmeans is a compute-intensive appli-
cation, Sort is an I/O-intensive application and WordCount has similar require-
ments on the computation and I/O resources. The input data size of the appli-
cations are all set to 10 GB. The number of Map and Reduce tasks are both set
to 160 tasks.

Straggler Injection. In order to inject stragglers, we use the Dynamic Voltage-
Frequency Scaling technique (DVFS) to tune the CPU frequencies (hence

394 T.-D. Phan et al.

the capabilities) of nodes. According to the CMU Hadoop production cluster
traces [14], the ratio of stragglers varies from 0 to 40% of the total number of
tasks. We choose the straggler ratio of 20% in our experiments. Thus, we set
four nodes out of the 20 workers in our cluster to lower CPU frequencies, which
are 1.20 Ghz, 1.33 Ghz, 1.46 Ghz and 1.60 Ghz.

Comparisons. We conduct two sets of comparisons. In the first set, we com-
pare the hierarchical straggler detection mechanism with the Default detection
mechanism [4] and LATE [20] detection mechanism. Second, we compare our
proposed copy allocation heuristic (denoted as Smart) with the following two
methods:

Performance-Driven Allocation: This method differs from Smart in that it
launches speculative copies on nodes which give the best execution time reduc-
tion as calculated by Eq. 5.

Power-driven allocation: This method differs from Smart in that it launches
speculative copies on nodes which cause the lowest additional power consump-
tion. The additional power consumption for a node j equals to P ′

j − Pj as in
Eq. 6.

7.2 Evaluation

Comparison Results on Straggler Detection Mechanisms. Figure 4 shows
the performance and energy results of a single WordCount job running with
different straggler detection mechanisms. We use the default copy allocation
method in this experiment. In the x-axis, “D” stands for the Default straggler
detection mechanism, “L” stands for the LATE detection mechanism, “D+Hx”
and “L+Hx”stand for using the hierarchical straggler detection mechanism on
top of Default and LATE, respectively, where “x” stands for the value of the β
parameter used for node filtering in the hierarchical layer.

We have the following observations. First, from Fig. 4(a), we find that the
hierarchical straggler detection layer can greatly reduce the number of unsuc-
cessful speculative copies, and the reduction increases with the increase of β.
As a result, the amount of resources wasted on the killed copies is reduced (see
Fig. 4(b)) by up to 94% compared to Default and 88% compared to LATE. The
total energy consumption is also reduced (see Fig. 4(d)) by up to 9% compared
to both Default and LATE. Second, adding the hierarchical layer does not sacri-
fice the performance too much (except when β = 0.2) as shown in Fig. 4(c) and
(e). When β = 0.2, there is an obvious degradation in the performance. This is
mainly because that when β is too small, some of the real stragglers are missed
and can still cause a heavy-tail to the job. Specifically, we can see that when
β = 0.4, almost all the stragglers filtered by hierarchical are successful stragglers.
Thus, when we reduce β to be smaller than 0.4, some of the real stragglers will
be filtered out. Third, the hierarchical straggler detection mechanism can obtain
better energy efficiency compared to Default and LATE (except when β = 0.2),
as shown in Fig. 4(f). When β = 0.5, we obtain the best energy efficiency, which

Energy-Driven Straggler Mitigation in MapReduce 395

 0

 10

 20

 30

 40

 50

D
D

+
H

1.
0

D
+

H
0.

9
D

+
H

0.
75

D
+

H
0.

6
D

+
H

0.
5

D
+

H
0.

4
D

+
H

0.
2 L

L+
H

1.
0

L+
H

0.
9

L+
H

0.
75

L H
0.

6
L+

H
0.

5
L+

H
0.

4
L+

H
0.

2N
um

be
r

of
 s

pe
cu

la
tiv

e
ta

sk
s

Successful copies
Killed copies

(a) #Speculative copies

 0

 50

 100

 150

 200

 250

 300

D
D

+
H

1.
0

D
+

H
0.

9
D

+
H

0.
75

D
+

H
0.

6
D

+
H

0.
5

D
+

H
0.

4
D

+
H

0.
2 L

L+
H

1.
0

L+
H

0.
9

L+
H

0.
75

L H
0.

6
L+

H
0.

5
L+

H
0.

4
L+

H
0.

2

R
es

ou
rc

e
oc

cu
pa

tio
n

 (
S

lo
t x

 s
ec

on
d)

(b) Resource on killed copies

 0
 20
 40
 60
 80

 100
 120
 140
 160

D
D

+
H

1.
0

D
+

H
0.

9
D

+
H

0.
75

D
+

H
0.

6
D

+
H

0.
5

D
+

H
0.

4
D

+
H

0.
2 L

L+
H

1.
0

L+
H

0.
9

L+
H

0.
75

L H
0.

6
L+

H
0.

5
L+

H
0.

4
L+

H
0.

2

E
xe

cu
tio

n
tim

e
(s

ec
on

d)

(c) Execution time

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16

D
D

+
H

1.
0

D
+

H
0.

9
D

+
H

0.
75

D
+

H
0.

6
D

+
H

0.
5

D
+

H
0.

4
D

+
H

0.
2 L

L+
H

1.
0

L+
H

0.
9

L+
H

0.
75

L H
0.

6
L+

H
0.

5
L+

H
0.

4
L+

H
0.

2

E
ne

rg
y

co
ns

um
pt

io
n

(M
J)

(d) Energy consumption

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008
 0.009

D
D

+
H

1.
0

D
+

H
0.

9
D

+
H

0.
75

D
+

H
0.

6
D

+
H

0.
5

D
+

H
0.

4
D

+
H

0.
2 L

L+
H

1.
0

L+
H

0.
9

L+
H

0.
75

L H
0.

6
L+

H
0.

5
L+

H
0.

4
L+

H
0.

2

T
hr

ou
gh

pu
t (

#j
ob

/s
ec

on
d)

(e) Throughput

 0
 1
 2
 3
 4
 5
 6
 7
 8

D
D

+
H

1.
0

D
+

H
0.

9
D

+
H

0.
75

D
+

H
0.

6
D

+
H

0.
5

D
+

H
0.

4
D

+
H

0.
2 L

L+
H

1.
0

L+
H

0.
9

L+
H

0.
75

L H
0.

6
L+

H
0.

5
L+

H
0.

4
L+

H
0.

2

E
ne

rg
y

ef
fic

ie
nc

y
 (

T
hr

ou
gh

pu
t /

 p
ow

er
)

(f) Energy efficiency

Fig. 4. WordCount application with different straggler detection mechanisms.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

D
D

+
H

1.
0

D
+

H
0.

9
D

+
H

0.
75

D
+

H
0.

6
D

+
H

0.
5

D
+

H
0.

4
D

+
H

0.
2 L

L+
H

1.
0

L+
H

0.
9

L+
H

0.
75

L H
0.

6
L+

H
0.

5
L+

H
0.

4
L+

H
0.

2N
um

be
r

of
 s

pe
cu

la
tiv

e
ta

sk
s

Successful copies
Killed copies

(a) #Speculative copies

 0

 20

 40

 60

 80

 100

 120

 140

D
D

+
H

1.
0

D
+

H
0.

9
D

+
H

0.
75

D
+

H
0.

6
D

+
H

0.
5

D
+

H
0.

4
D

+
H

0.
2 L

L+
H

1.
0

L+
H

0.
9

L+
H

0.
75

L H
0.

6
L+

H
0.

5
L+

H
0.

4
L+

H
0.

2

E
xe

cu
tio

n
tim

e
(s

ec
on

d)

(b) Execution time

 0

 1

 2

 3

 4

 5

 6

 7

D
D

+
H

1.
0

D
+

H
0.

9
D

+
H

0.
75

D
+

H
0.

6
D

+
H

0.
5

D
+

H
0.

4
D

+
H

0.
2 L

L+
H

1.
0

L+
H

0.
9

L+
H

0.
75

L H
0.

6
L+

H
0.

5
L+

H
0.

4
L+

H
0.

2

E
ne

rg
y

ef
fic

ie
nc

y
 (

T
hr

ou
gh

pu
t /

 p
ow

er
)

(c) Energy efficiency

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

D
D

+
H

1.
0

D
+

H
0.

9
D

+
H

0.
75

D
+

H
0.

6
D

+
H

0.
5

D
+

H
0.

4
D

+
H

0.
2 L

L+
H

1.
0

L+
H

0.
9

L+
H

0.
75

L H
0.

6
L+

H
0.

5
L+

H
0.

4
L+

H
0.

2N
um

be
r

of
 s

pe
cu

la
tiv

e
ta

sk
s

Successful copies
Killed copies

(d) #Speculative copies

 0

 20

 40

 60

 80

 100

 120

 140

D
D

+
H

1.
0

D
+

H
0.

9
D

+
H

0.
75

D
+

H
0.

6
D

+
H

0.
5

D
+

H
0.

4
D

+
H

0.
2 L

L+
H

1.
0

L+
H

0.
9

L+
H

0.
75

L H
0.

6

L+
H

0.
5

L+
H

0.
4

L+
H

0.
2

E
xe

cu
tio

n
tim

e
(s

ec
on

d)

(e) Execution time

 0

 2

 4

 6

 8

 10

 12

 14

D
D

+
H

1.
0

D
+

H
0.

9
D

+
H

0.
75

D
+

H
0.

6
D

+
H

0.
5

D
+

H
0.

4
D

+
H

0.
2 L

L+
H

1.
0

L+
H

0.
9

L+
H

0.
75

L H
0.

6
L+

H
0.

5
L+

H
0.

4
L+

H
0.

2

E
ne

rg
y

ef
fic

ie
nc

y
 (

T
hr

ou
gh

pu
t /

 p
ow

er
)

(f) Energy efficiency

Fig. 5. Kmeans (a–c) and Sort (d–f) applications with different straggler detection
mechanisms.

is 10% higher than both Default and LATE. Thus, we set β to 0.5 by default
to have the best energy efficiency result while maintaining similar performance
compared to existing mechanisms

Similar observations have also been found with the other two applications.
Figure 5 shows the results obtained for the Kmeans and Sort applications. We
can observe that, for the compute-intensive Kmeans application, we can obtain
even higher reduction in the energy consumption while maintaining similar per-
formance. When β = 0.5, we improve the energy efficiency by 13% and 10%

396 T.-D. Phan et al.

compared to Default and LATE, respectively. Thus, we can conclude that, the
hierarchical straggler detection mechanism can greatly improve the energy effi-
ciency of speculative executions with a comparable performance. In the following
experiments, we focus on the WordCount application which shows the average
improvement and use the default value of 0.5 for β.

 0

 10

 20

 30

 40

 50

D+D

D+H
0.

5+
Per

D+H
0.

5+
Pow

D+H
0.

5+
Sm

t
L+

D

L+
H0.

5+
Per

L+
H0.

5+
Pow

L+
H0.

5+
Sm

tN
um

be
r

of
 s

pe
cu

la
tiv

e
ta

sk
s

Successful copies
Killed copies

(a) #Speculative copies

 0

 50

 100

 150

 200

 250

 300

D+D

D+H
0.

5+
Per

D+H
0.

5+
Pow

D+H
0.

5+
Sm

t
L+

D

L+
H0.

5+
Per

L+
H0.

5+
Pow

L+
H0.

5+
Sm

t

R
es

ou
rc

e
oc

cu
pa

tio
n

 (
S

lo
t x

 s
ec

on
d)

(b) Resource on killed copies

 0
 20
 40
 60
 80

 100
 120
 140

D+D

D+H
0.

5+
Per

D+H
0.

5+
Pow

D+H
0.

5+
Sm

t
L+

D

L+
H0.

5+
Per

L+
H0.

5+
Pow

L+
H0.

5+
Sm

t

E
xe

cu
tio

n
tim

e
(s

ec
on

d)

(c) Execution time

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16

D+D

D+H
0.

5+
Per

D+H
0.

5+
Pow

D+H
0.

5+
Sm

t
L+

D

L+
H0.

5+
Per

L+
H0.

5+
Pow

L+
H0.

5+
Sm

tE
ne

rg
y

co
ns

um
pt

io
n

(M
J)

(d) Energy consumption

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008
 0.009

D+D

D+H
0.

5+
Per

D+H
0.

5+
Pow

D+H
0.

5+
Sm

t
L+

D

L+
H0.

5+
Per

L+
H0.

5+
Pow

L+
H0.

5+
Sm

tT
hr

ou
gh

pu
t (

#j
ob

/s
ec

on
d)

(e) Throughput

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

D+D

D+H
0.

5+
Per

D+H
0.

5+
Pow

D+H
0.

5+
Sm

t
L+

D

L+
H0.

5+
Per

L+
H0.

5+
Pow

L+
H0.

5+
Sm

t
E

ne
rg

y
ef

fic
ie

nc
y

 (
T

hr
ou

gh
pu

t /
 p

ow
er

)

(f) Energy efficiency

Fig. 6. WordCount application with different copy allocation methods.

Comparison Results on Copy Allocation Methods. Figure 6 shows the
energy and performance results of running a single WordCount job with different
speculative copy allocation methods. We evaluated in total eight combinations
of the straggler detection mechanisms and copy allocation methods. Specifically,
“D+D” and “L+D” are chosen as the baseline, which stand for using the Default
detection mechanism with Hadoop’s default copy allocation method and using
the LATE straggler detection mechanism with default allocation, respectively.
“D+H0.5+y” and “L+H0.5+y” refer to using hierarchical straggler detection
mechanism on top of Default and LATE, respectively, where “y” stands for the
copy allocation method used for allocating the copies.

We have the following observations. First, with our Smart copy allocation
method, we can further reduce the energy consumption of speculative execu-
tions compared to existing mechanisms. For example, with the combination of
Hierarchical and Smart, we can achieve 17% and 20% higher energy efficiency
compared to Default and LATE using the default copy allocation method (see
Fig. 6(f)). Second, considering only the performance or power during the copy
allocation is not good enough. For example, from Fig. 6(a), we observe that
Power-driven has the highest number of killed copies among the three compared
allocation methods. This is because Power-driven tends to launch copies on nodes

Energy-Driven Straggler Mitigation in MapReduce 397

with low additional power consumption (i.e., highly utilized nodes) and thus can
cause long execution time for the copies. As a result, some of the long run-
ning copies are killed and causing resource waste (see Fig. 6(b)) and thus extra
energy consumption (see Fig. 6(d)). This suspicion can be verified with Fig. 6(c)
and (e), which shows that Power-driven has the longest execution time (and the
lowest throughput) compared to other allocation methods. Overall, Smart can
improve the energy efficiency by 7% and 8% compared to Power-driven with the
Default and LATE detection mechanisms, respectively. The improvement over
Performance-driven are 5% and 6% using Default and LATE, respectively. The
observations show that our Smart copy allocation method can further improve
the energy efficiency of speculative execution.

8 Conclusion

Speculative execution is an important technique used for mitigating stragglers
and improving performance of MapReduce jobs. However, few studies have
looked at the energy efficiency of speculative executions. In this paper, we pro-
pose two techniques to trade-off the performance and energy efficiency for specu-
lative executions. First, we propose a hierarchical straggler detection mechanism,
which eliminates non-critical stragglers to reduce the energy waste on killed spec-
ulative copies. Second, we propose an energy-aware speculative copy allocation
method which consults the performance and energy models to allocate specu-
lative copies to the most energy efficient locations. Experimental results using
real implementation demonstrate that our solution can reduce the energy waste
on killed speculative copies by up to 100% and improve the energy efficiency by
up to 20% compared to state-of-the-art methods. For future work, we plan to
study the impact of using reservation-based scheduling on the energy efficiency
of speculative executions.

Acknowledgments. This work is supported in part by the ANR KerStream project
(ANR-16-CE25-0014-01). The experiments presented in this paper were carried out
using the Grid’5000 ALADDIN-G5K experimental testbed, an initiative from the
French Ministry of Research through the ACI GRID incentive action, Inria, CNRS and
RENATER and other contributing partners (see http://www.grid5000.fr/ for details).

References

1. Ananthanarayanan, G., Ghodsi, A., Shenker, S., Stoica, I.: Effective straggler mit-
igation: attack of the clones. In: USENIX NSDI 2013, pp. 185–198 (2013)

2. Ananthanarayanan, G., Kandula, S., Greenberg, A., Stoica, I., Lu, Y., Saha, B.,
Harris, E.: Reining in the outliers in MapReduce clusters using Mantri. In: USENIX
OSDI 2010, pp. 1–16 (2010)

3. Chen, Q., Liu, C., Xiao, Z.: Improving MapReduce performance using smart spec-
ulative execution strategy. IEEE Trans. Comput. 63(4), 29–42 (2014)

4. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

http://www.grid5000.fr/

398 T.-D. Phan et al.

5. Ibrahim, S., Jin, H., Lu, L., He, B., Antoniu, G., Wu, S.: Maestro: replica-aware
map scheduling for MapReduce. In: IEEE/ACM CCGrid 2012, pp. 435–442 (2012)

6. Ibrahim, S., Jin, H., Lu, L., Wu, S., He, B., Qi, L.: LEEN: locality/fairness-aware
key partitioning for MapReduce in the cloud. In: IEEE CloudCom 2010, pp. 17–24
(2010)

7. Ibrahim, S., Phan, T.D., Carpen-Amarie, A., Chihoub, H.E., Moise, D., Antoniu,
G.: Governing energy consumption in Hadoop through CPU frequency scaling.
Future Gener. Comput. Syst. 54(C), 219–232 (2016)

8. Jégou, Y., Lantéri, S., Leduc, J., Melab, N., Mornet, G., Namyst, R., Primet, P.,
Quetier, B., Richard, O., Talbi, E.G., Iréa, T.: Grid’5000: a large scale and highly
reconfigurable experimental grid testbed. Int. J. High Perform. Comput. Appl.
20(4), 481–494 (2006)

9. Jin, H., Ibrahim, S., Qi, L., Cao, H., Wu, S., Shi, X.: The MapReduce programming
model and implementations. In: Cloud Computing: Principles and Paradigms, pp.
373–390 (2011)

10. Lee, G., Chun, B.G., Katz, H.: Heterogeneity-aware resource allocation and
scheduling in the cloud. In: USENIX HotCloud 2011, p. 4 (2011)

11. Leverich, J., Kozyrakis, C.: On the energy (in)efficiency of Hadoop clusters.
SIGOPS Oper. Syst. Rev. 44(1), 61–65 (2010)

12. Phan, T.D., Ibrahim, S., Antoniu, G., Bouge, L.: On understanding the energy
impact of speculative execution in Hadoop. In: IEEE DSDIS 2015, pp. 396–403
(2015)

13. Qureshi, A.: Power-demand routing in massive geo-distributed systems. Ph.D. dis-
sertation. MIT (2010)

14. Ren, K., Kwon, Y., Balazinska, M., Howe, B.: Hadoop’s adolescence: an analysis
of hadoop usage in scientific workloads. VLDB Endow. 6(10), 853–864 (2013)

15. Ren, X., Ananthanarayanan, G., Wierman, A., Yu, M.: Hopper: decentralized
speculation-aware cluster scheduling at scale. In: ACM SIGCOMM 2015, pp. 379–
392 (2015)

16. Thottethodi, M., Ahmad, F., Lee, S., Vijaykumar, T.: Puma: Purdue MapReduce
benchmarks suite. Technical report, Purdue University (2012)

17. Xu, H., Lau, W.C.: Resource optimization for speculative execution in a MapRe-
duce cluster. In: IEEE ICNP 2013, pp. 1–3 (2013)

18. Xu, H., Lau, W.C.: Task-cloning algorithms in a MapReduce cluster with compet-
itive performance bounds. IEEE ICDCS 2015, pp. 339–348 (2015)

19. Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., Stoica, I.:
Delay scheduling: a simple technique for achieving locality and fairness in cluster
scheduling. In: ACM EuroSys 2010, pp. 265–278 (2010)

20. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving MapRe-
duce performance in heterogeneous environments. In: USENIX OSDI 2008, 29–42
(2008)

21. Zhou, A.C., He, B., Cheng, X., Lau, C.T.: A declarative optimization engine for
resource provisioning of scientific workflows in geo-distributed clouds. In: ACM
HPDC 2015, pp. 223–234 (2015)

22. Zhou, A.C., He, B., Liu, C.: Monetary cost optimizations for hosting workflow-as-
a-service in IaaS clouds. IEEE Trans. Cloud Comput. 4(1), 34–48 (2016)

Leveraging Cloud Heterogeneity for
Cost-Efficient Execution of Parallel Applications

Eduardo Roloff(B), Matthias Diener, Emmanuell Diaz Carreño,
Luciano Paschoal Gaspary, and Philippe O.A. Navaux

Informatics Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
{eroloff,mdiener,edcarreno,paschoal,navaux}@inf.ufrgs.br

Abstract. Public cloud providers offer a wide range of instance types,
with different processing and interconnection speeds, as well as varying
prices. Furthermore, the tasks of many parallel applications show dif-
ferent computational demands due to load imbalance. These differences
can be exploited for improving the cost efficiency of parallel applica-
tions in many cloud environments by matching application requirements
to instance types. In this paper, we introduce the concept of heteroge-
neous cloud systems consisting of different instance types to leverage
the different computational demands of large parallel applications for
improved cost efficiency. We present a mechanism that automatically
suggests a suitable combination of instances based on a characterization
of the application and the instance types. With such a heterogeneous
cloud, we are able to improve cost efficiency significantly for a variety of
MPI-based applications, while maintaining a similar performance.

Keywords: Cloud computing · Cost efficiency · Heterogeneity ·
Performance

1 Introduction

Executing large parallel applications in the cloud has reached the mainstream
and has become a major research topic in recent years. Compared to clusters, the
cloud provides a higher flexibility and lower up-front costs for the hardware [14].
Public cloud providers such as Amazon’s EC2 and Microsoft’s Azure provide a
large number of cloud instance types with different numbers of cores, processing
speeds, and network interconnections [18]. Research in this area focuses mostly
on porting applications to the cloud [12], evaluating their performance and cost
efficiency [13,18], and improving communication performance [2–4].

An aspect that has received less attention is building a multi-instance cloud
system out of different instance types. We refer to such a system as a hetero-
geneous cloud in this paper. Most multi-instance clouds currently use the same
instance types, or use different instance types only in the context of accelera-
tors (such as GPUs) [5]. A heterogeneous cloud is an interesting solution for
the execution of large parallel applications, as these applications typically have
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 399–411, 2017.
DOI: 10.1007/978-3-319-64203-1 29

400 E. Roloff et al.

heterogeneous computational demands, with some tasks performing more work
than others. In such a scenario, tasks that perform more work can be executed
on faster but more expensive instances, while tasks that perform less work can
be executed on slower and more cost-efficient instances.

In this paper, we investigate heterogeneous clouds, focusing on their potential
for cost-efficient execution of parallel applications. Our main contributions are
the following:

• We perform an in-depth evaluation of heterogeneous clouds with a variety of
instance combinations and parallel application behaviors.

• We present a mechanism for determining instance combinations that is based
on application behavior and instance characteristics.

Our proposal is compatible with a wide range of applications and requires no
changes to the applications or runtime environments. In an evaluation with ten
MPI-based benchmarks and scientific applications on several types of Microsoft
Azure instances, we show that our proposal results in drastic cost reductions
of executing parallel applications in heterogeneous clouds, while maintaining a
similar performance, which leads to substantial improvements in cost efficiency
of up to 18% (6.6% on average).

2 Performance and Cost Differences in the Cloud

Most public cloud providers offer a wide variety of instance types with different
characteristics and prices. This section provides an analysis of homogeneous
cloud clusters, that is, clusters that are composed of cloud instances of the same
type, in terms of their computational performance and cost. We also measure
the load imbalance of a set of parallel applications. Combining these two aspects
leads us to motivate the introduction of heterogeneous clouds.

2.1 Methodology of the Analysis

Experiments in this section were performed with the following methodology.
First, we selected a group of homogeneous clouds to run performance and cost
tests, focusing on instance types that are similar to provide a better comparison.
Based on these results, we selected instance types that will be used for the rest of
this work. Second, we verified the computational load profile of several parallel
applications by measuring the number of instructions per task.

All experiments were performed on the Microsoft Azure public cloud, which
was selected since it has the largest number of instance types among the main
cloud providers. We selected the A10, D4 v2, F8, G3, and H8 instances of Azure
to verify their efficiency in terms of performance and cost. All chosen instance
types consist of eight cores, which is the most common instance size in Azure.
The multi-instance experiments use eight nodes, for a total number of 64 cores in
all cases. The software environment consists of Ubuntu server 16.04, with Linux
kernel 4.4. We use Open MPI [7] 1.10.2 as the parallel runtime environment. All

Leveraging Cloud Heterogeneity for Cost-Efficient Execution 401

Table 1. Characteristics of the Azure instance types. Instance types that are evaluated
in depth in this paper are marked in bold.

Instance name Price/hour Linpack perf. (GFlops) Price/TFlop

A10 US$ 0.780 155.35 US$ 5.02

D4 v2 US$ 0.559 265.00 US$ 2.11

F8 US$ 0.513 246.10 US$ 2.08

G3 US$ 2.440 280.17 US$ 8.71

H8 US$ 0.971 324.34 US$ 2.99

BT CG EP FT IS LU MG SP
0

0.1

0.2

0.3

Benchmark

C
os
t
in

ce
nt
s
(U

S$
)

A10 D4v2 F8 G3 H8

Fig. 1. Cost per execution (in US$ cents) of each NAS benchmark on homogeneous
eight-instance cloud systems.

applications were compiled with gcc/gfortran 5.4.0, using the -O2 optimization
level. We measured the raw computational performance of a single instance of
each type with the High Performance Linpack (HPL) benchmark [11]. To eval-
uate the cost of the machines we calculate the price of a TFlop, based on per-
formance results and the price for each instance, with the Linpack performance.
Table 1 presents an overview of the characteristics of these instance types as well
as the performance and cost results.

Experiments were performed with a variety of MPI-based parallel applica-
tions. We use the MPI implementation of the NAS Parallel Benchmarks (NPB) [1],
version 3.3.1. Experiments were performed with input class C, which represents
a medium-large input size. The DT application was not used because it needs at
least 85 MPI processes to execute using input size C. BRAMS (Brazilian devel-
opments on the Regional Atmospheric Modeling System) [6] is the extended ver-
sion of the RAMS (Regional Atmospheric Modeling System) weather prediction
model. Alya [9] is a simulation code for multi-physics problems, based on a vari-
ational multi-scale finite element method for unstructured meshes.

The location used to allocate the machines on Microsoft Azure was “West
USA”. All experiments were executed 10 times. Applications were configured
to run with 64 ranks (1 rank per core). In our experiments, we did not notice

402 E. Roloff et al.

significant differences between executions at different times of day and between
different allocations of instances.

2.2 Cost of Homogeneous Clouds

This section presents the cost results of executing the NAS benchmarks on homo-
geneous cloud instances. The instance types selected for the rest of this work are
also discussed.

The cost per execution of the NAS benchmarks are shown in Fig. 1. The cost
was calculated by multiplying the price per second of each instance with the
execution time of the benchmark. The G3 instance presented the highest cost
of all benchmarks. Despite its high performance, G3 has a cost that is several
times bigger than the other instances. The other instance types show a similar
behavior among them. The D4 v2 and F8 instances presented the lowest cost
among all the instances tested, resembling thus the cost analysis of Linpack.

Based on these preliminary results, we selected two instance sizes, D4 v2 and
F8, for our analysis in this paper. They were chosen because they have the best
relation of cost and performance among all the types we evaluated. Furthermore,
despite having differences in the price per hour and performance, their relation
between cost and performance is very similar and therefore provides an inter-
esting tradeoff between price and speed. For simplicity, the D4 v2 instance type
will be referred to as D4 in the rest of the paper.

120

125

130

Ranks#
In
st
ru
ct
io
ns

(b
ill
io
ns
) BT

16

17

18

19

Ranks

CG

13

13.5

14

Ranks

EP

25

26

27

28

Ranks

FT

1.8

2

2.2

Ranks

IS

80

85

90

95

Ranks#
In
st
ru
ct
io
ns

(b
ill
io
ns
) LU

8.2

8.4

8.6

Ranks

MG

106

108

110

112

Ranks

SP

700

750

800

Ranks

BRAMS

1,200

1,400

1,600

Ranks

Alya

Fig. 2. Load distribution of the benchmarks, running with 64 ranks. Each bar corre-
sponds to the number of instructions executed by a rank. Ranks are sorted according
the numbers of instructions executed.

Leveraging Cloud Heterogeneity for Cost-Efficient Execution 403

2.3 Load Imbalance

Another important aspect of our proposal is that parallel applications have dif-
ferent computational demands. Such a load imbalance can be caused for various
reasons, such as an imperfect distribution of work, interference from other appli-
cations or users, or if an algorithm has different complexities for different regions
of the input data. To evaluate the load imbalance of the parallel applications,
we used the perf tool [10], measuring the number of instructions executed by
each MPI rank. All applications were executed with 64 ranks.

Results of this experiment are shown in Fig. 2. In the figure, we show the
numbers of instructions executed by each rank for each benchmark, sorted in
descending order. The results show varying degrees of imbalance between the
applications. In general, imbalance is considerable, with differences between the
minimum and maximum numbers of instructions for each benchmark reaching
up to 35% in the case of Alya. Some applications, such as FT , SP , and Alya,
have considerable sequential parts that increase their imbalance. Others, such as
BT , EP , and FT , show two distinct levels of numbers of instructions executed
by the ranks. Executing the applications multiple times results in a very similar
load profile, with similar loads for each rank.

3 A Mechanism to Improve Cost Efficiency in the Cloud

This section describes our proposed mechanism to automatically leverage the
heterogeneity for an improved cost efficiency. The mechanism calculates for a
given profile of an application and cloud instance types how many instances of
each type should be used, and which MPI ranks should be executed on each
instance. An overview of our proposal is shown in Algorithm1.

Our mechanism receives as input the load profile of the application, the
instance profile of the possible instance types. Currently, two different instance
types are taken into account, which we refer to as HI (higher performance and
cost) and LO (lower performance and cost), which correspond to the D4 and F8
instances in our experiments, respectively. We focus on two instance types since
many of the applications show a two-level load distribution. The mechanism
outputs the instance combination, that is, how many instances of each type
should be used, and which ranks should be placed on each instance.

3.1 Mechanism Inputs

Our mechanism requires the following inputs. The first two, application profile
and instance profile, are generated automatically.

Application Profile. The load profile of the application is generated via the
perf tool [10]. We focus on the number of instructions per rank, as in Sect. 2.
This could be extended to a more fine-grained differentiation for several types of
instructions (for example, floating point or integer operations) and other types

404 E. Roloff et al.

Algorithm 1. Algorithm of our proposed mechanism
Data: Application profile, Instances profiles
Result: MPI rankfile (mapping of MPI ranks to instances)

1 calculate instance performance ratio;
2 while ranksize/VMs count < rankgroup do
3 calculate ratio (rankgroup[n], rankgroup[n+1]);
4 if rankgroup ratio < instance performance ratio then
5 assign rankgroup to a HI VM;
6 fetch next rankgroup;

7 else
8 assign rest of rankgroups to LO VMs;
9 end

10 end
11 output rankfile;

of resources (such as communication, memory, I/O). This application profile
usually needs to be generated only once for a given set of input data and number
of ranks. The result of this stage is the load vector of the application.

Instance Profile. The mechanism generates the instance profile of the instance
types by measuring the execution time of the desired application on homogeneous
instances. The result of this stage is the relative performance between the two
instance types.

3.2 Mechanism Outputs

Our mechanism outputs the instance combination, as well as which ranks should
run on which instance. For the discussion in this section, we first sort the load
vector in descending order, as shown in the load distributions in Fig. 2.

Instance Combination. The first output step of our mechanism is to deter-
mine the instance combination. We group the sorted list of ranks into groups of
the same size as the number of cores per instance and calculate the cumulative
load of each group. The mechanism then iterates over the list of groups and
calculates the load ratio between subsequent groups. Until the ratio reaches a
threshold, groups will be executed on HI instances. When the ratio is above the
threshold, all subsequent groups will be executed on LO instances. The threshold
is determined by the performance ratio of the instance types.

Rank Placement. After determining the number of HI and LO instance types,
our mechanism assigns ranks to the instances in the following way. It iterates
over the sorted list of ranks, and assigns ranks to instances sequentially, starting
with the ranks with the highest load, which are assigned to the HI instances.

Leveraging Cloud Heterogeneity for Cost-Efficient Execution 405

As soon as one instance has the maximum number of ranks assigned to it, the
mechanism continues the rank placement with the next instance, until all ranks
are assigned. In the final step, our mechanism creates a rank file that specifies
the task to instance assignment for Open MPI [15].

4 Results

This section presents the evaluation methodology used to validate our proposal,
as well as the obtained results.

For our experiments, we use the same Azure instance types as before, D4
and F8. All experiments use eight instances for a total of 64 cores. We vary the
mix of instances between:

• fully homogeneous: all eight instances are of the same type, D4 or F8.
• heterogeneous to varying degrees: 1–7 instances of each type, totaling eight

instances.

We evaluate all possible combinations of the D4 and F8 instances.
Machines of all instance types were only allocated once and not reallocated

between executions. Further experiments after deallocating and allocating new
instances of the same types (not shown in the paper) resulted in quantitatively
and qualitatively very similar behaviors. Results show the average values of
10 executions. We begin with a discussion of the NAS benchmarks, followed by
the BRAMS and Alya applications.

4.1 The NAS Benchmarks

The cost efficiency results of the NAS benchmarks are shown in Fig. 3. In the
figures, the line represents the cost efficiency when varying the mix of instance
types. To calculate the cost efficiency metric, we use the following equation [13].

cost efficiency = execution time × price of execution (1)

Lower values of the metric indicate a higher cost efficiency.
In the figures, the y axes show the values of the metric, while the x axes

indicate the mix of instance types in the form a/b, where a represents the number
of D4 instances and b represents the number of F8 instances. 0/8 and 8/0 are the
homogeneous clouds, while 1/7 – 7/1 are heterogeneous instances. The most cost
efficient instance combination is marked with a dashed circle (). The results
of the instance combination determined by our mechanism are marked with an
unbroken circle ().

Several interesting results can be pointed out. First of all, heterogeneous
clouds are the most cost efficient environments for the majority of the bench-
marks. Heterogeneous environments are beneficial for five out of the eight bench-
marks (BT , EP , FT , MG , and SP), while homogeneous environments are more
appropriate for CG , IS , and LU . The five benchmarks have an increased cost

406 E. Roloff et al.

0/8 1/7 2/6 3/5 4/4 5/3 6/2 7/1 8/0

255

260

D4 instances / # F8 instances

V
al
ue

BT

0/8 1/7 2/6 3/5 4/4 5/3 6/2 7/1 8/0

500

550

600

650

D4 instances / # F8 instances

V
al
ue

CG

0/8 1/7 2/6 3/5 4/4 5/3 6/2 7/1 8/0

34

35

36

D4 instances / # F8 instances

V
al
ue

EP

0/8 1/7 2/6 3/5 4/4 5/3 6/2 7/1 8/0

220

240

260

280

D4 instances / # F8 instances

V
al
ue

FT

0/8 1/7 2/6 3/5 4/4 5/3 6/2 7/1 8/0

11.5

12

12.5

13

D4 instances / # F8 instances

V
al
ue

IS

0/8 1/7 2/6 3/5 4/4 5/3 6/2 7/1 8/0

180

200

220

240

D4 instances / # F8 instances

V
al
ue

LU

0/8 1/7 2/6 3/5 4/4 5/3 6/2 7/1 8/0

29

30

D4 instances / # F8 instances

V
al
ue

MG

0/8 1/7 2/6 3/5 4/4 5/3 6/2 7/1 8/0

420

430

440

D4 instances / # F8 instances

V
al
ue

SP

Fig. 3. Cost efficiency results for the NAS benchmarks on the D4 and F8 instances for
different combinations of instances. Lower values indicate a higher cost efficiency. The
highest cost efficiency is marked with a dashed circle . The results of our mechanism
are marked with an unbroken circle .

Leveraging Cloud Heterogeneity for Cost-Efficient Execution 407

0/8 1/7 2/6 3/5 4/4 5/3 6/2 7/1 8/0

130

140

150

D4 instances / # F8 instances

V
al
ue

BRAMS

0/8 1/7 2/6 3/5 4/4 5/3 6/2 7/1 8/0
1,310

1,320

1,330

1,340

1,350

D4 instances / # F8 instances

V
al
ue

Alya

Fig. 4. Cost efficiency results for BRAMS and Alya on the D4 and F8 instances.
Lower values indicate a higher cost efficiency. The highest cost efficiency is marked
with a dashed circle . The results of our mechanism are marked with an unbroken
circle .

efficiency between 3.0% (SP) and 18.0% (FT) compared to the best cost effi-
ciency of a homogeneous environment. Over all NAS benchmarks, cost efficiency
was improved on average by 6.6%. These results show that cost efficiency can
be improved substantially via heterogeneous clouds.

Although not achieving the optimal gains for all applications, our mechanism
is able to result in substantial cost efficiency improvements close to the optimum
in most scenarios, with an average improvement of 4.7%. This shows that pro-
filing all possible instance combinations is not required in order to reduce costs.
Another important result is that almost the whole spectrum of heterogeneous
and homogeneous instances is the most cost efficient environment at least in
one experiment. This indicates that simple policies that do not take the specific
characteristics of the environment and application behavior into account can not
result in optimal cost efficiency.

The performance analysis of the heterogeneous allocations is also an impor-
tant aspect for the user. There are four benchmarks that presented performance
losses (BT , EP , MG , and SP), between 0.2% (SP) to 5.5% (MG). It is impor-
tant to remark that when comparing the performance loss with the cost efficiency
gain, the heterogeneous allocations present better ratios for all the cases. This
means that the performance decrease is less than the cost efficiency gain. The
best ratios were obtained with SP (0.2% performance loss, 3.0% cost efficiency
gain) and EP (0.7% performance loss, 3.1% cost efficiency gain). On average,
performance was reduced by 0.4% in the optimal case, and 1.2% with our mech-
anism.

4.2 BRAMS and Alya

The cost efficiency results for the two scientific applications, BRAMS and Alya,
are shown in Fig. 4. The results echo our analysis of the NAS benchmarks.
Both applications can benefit significantly from a heterogeneous environment
and show significant cost efficiency improvements in almost all cases. When

408 E. Roloff et al.

comparing the results of BRAMS , we observed that BRAMS presented a cost
efficiency gain of 4.6%.

When analyzing the results of Alya, we observed a performance loss of 0.4%,
while presenting a cost efficiency gain of 1.8% for the cloud tenant. Observing
the load distribution of Alya in Fig. 2, we note that the imbalance of Alya is
high, with a few processes executing much more operations than the average.
The instances used in our experiments, D4 and F8, present a close performance.
Due to the Alya load distribution, we can conclude that it could benefit from
instances with higher differences between them, and from mixing more instances
types.

5 Related Work

Yeo and Lee [17] analyzed how periodically upgrading hardware in datacenters
introduced heterogeneity and how the service provider could mitigate its impact
on performance for the end user. However, this work does not allow the cloud
tenants to exploit the information about the underlying infrastructure to improve
the cost/efficiency of their applications.

Zhang et al. [19] present a dynamic capacity provisioning manager that allows
workload division using a heterogeneity-aware algorithm. Their work considers
heterogeneity in machine hardware from production datacenters and from the
workload in them. They evaluate their algorithm simulating a heterogeneous
cluster. They were able to improve the utilization of the cluster and scheduling
without compromising the workload. Their work takes the heterogeneity of VMs
into account, but their focus is on improvements from the provider perspective.

Gupta et al. [8] propose a technique to improve the performance of paral-
lel applications in the cloud with task placement. The authors place the tasks
according to the interference between different applications by analyzing their
cache memory usage, and from a description provided by the user. They do not
take different types of instances into account.

Zhang et al. [20] exploited cloud heterogeneity in several MapReduce clusters
to select the best cost/performance deployment. They simulate their configura-
tions of 3 instance sizes looking to obtain the same application performance
but with different provisioning costs. The validation was done on Amazon using
MapReduce jobs with no data dependencies between them. Their results showed
a difference in cost when using homogeneous or heterogeneous deployments. For
some of the applications evaluated they obtained significant cost savings. Our
work include MPI applications, and benchmarks with communication between
instances.

Carreño et al. [4] created a communication-aware task mapping for cloud
environments with multiple instances. Their work analyzes heterogeneity in com-
munication between the tasks and in the network interconnections between cloud
instances. They use this information to map tasks that communicate a lot to
faster instances, improving inter-instance communication performance. However,
their work uses the same type of VMs for each execution and they do not take

Leveraging Cloud Heterogeneity for Cost-Efficient Execution 409

computational performance into account. In our work, we compare the perfor-
mance when mixing different types of VMs.

Wang and Shi [16] developed a task-level scheduling algorithm to comply
with budget and deadline constrains. They analyze heterogeneity as the variety
of options of virtual machines from a provider and the underlying variations
in hardware that exists for each instance. They developed a parallel greedy
algorithm that improves deployment to comply with the constrains. Their work
is different because it does not try to optimize the cost/efficiency of the solution
but tries to respect the user constrains. Also their work was not validated using
an actual public cloud infrastructure.

6 Conclusions

The cloud has become an interesting environment for the execution of parallel
applications due to the easy and flexible availability of different instance types
that vary in performance and price. Most current cloud deployments for par-
allel applications are homogeneous, that is, they are composed of a number of
instances of the same type. In this paper, we motivated and analyzed a new
type of deployment that is based on heterogeneous instances of different types.
Since the computational demands of parallel applications are not uniform in
most cases, such a heterogeneous cloud can better match the requirements of
the application, improving the price and cost efficiency of the execution.

Our evaluation with MPI-based applications on an Azure cloud shows that
the cost efficiency can be improved significantly, by up to 18%, depending on
the load imbalance of the application, while maintaining a similar performance.
Gains achieved by our mechanism were close to the optimum in most cases,
showing that improvements from heterogeneous execution do not require a time-
consuming evaluation of all possible instance combinations.

For the future, we plan to take communication within the parallel application
into account when making placement decisions, and we will extend our analysis
to consider more than two different types of instances with different numbers of
cores on each type.

Acknowledgments. This research received funding from the EU H2020 Programme
and from MCTI/RNP-Brazil under the HPC4E project, grant agreement no. 689772.
Additional funding was provided by FAPERGS in the context of the GreenCloud
Project.

410 E. Roloff et al.

References

1. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D.,
Venkatakrishnan, V., Weeratunga, S.K.: The NAS parallel benchmarks. Int. J.
Supercomput. Appl. 5(3), 66–73 (1991)

2. Bassem, C., Bestavros, A.: Network-constrained packing of brokered workloads
in virtualized environments. In: 15th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (2015)

3. Bhatele, A., Titus, A.R., Thiagarajan, J.J., Jain, N., Gamblin, T., Bremer, P.T.,
Schulz, M., Kale, L.V.: Identifying the culprits behind network congestion. In:
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp.
113–122 (2015)

4. Carreño, E.D., Diener, M., Cruz, E.H.M., Navaux, P.O.A.: Communication opti-
mization of parallel applications in the Cloud. In: IEEE/ACM International Sym-
posium on Cluster, Cloud, and Grid Computing (CCGrid), pp. 1–10 (2016)

5. Crago, S.P., Walters, J.P.: Heterogeneous cloud computing: the way forward. Com-
puter 48(1), 59–61 (2015)

6. Freitas, S.R., Longo, K.M., Silva Dias, M.A.F., Chatfield, R., Silva Dias, P., Artaxo,
P., Andreae, M.O., Grell, G., Rodrigues, L.F., Fazenda, A., Panetta, J.: The cou-
pled aerosol and tracer transport model to the Brazilian developments on the
regional atmospheric modeling system (CATT-BRAMS) - Part 1: model descrip-
tion and evaluation. Atmos. Chem. Phys. 9(8), 2843–2861 (2009)

7. Gabriel, E., et al.: Open MPI: goals, concept, and design of a next genera-
tion MPI implementation. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.)
EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 97–104. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-30218-6 19

8. Gupta, A., Kalé, L.V., Milojicic, D., Faraboschi, P., Balle, S.M.: HPC-aware VM
placement in infrastructure clouds. In: IEEE International Conference on Cloud
Engineering (IC2E), pp. 11–20 (2013)

9. Houzeaux, G., Vázquez, M., Aubry, R., Cela, J.M.: A massively parallel fractional
step solver for incompressible flows. J. Comput. Phys. 228(17), 6316–6332 (2009).
http://dx.doi.org/10.1016/j.jcp.2009.05.019

10. de Melo, A.C.: The new Linux ‘perf’ tools. In: Linux Kongress (2010)
11. Petitet, A., Whaley, R.C., Dongarra, J., Cleary, A.: HPL - a portable implementa-

tion of the high-performance linpack benchmark for distributed-memory computers
(2012). http://www.netlib.org/benchmark/hpl/

12. Roloff, E., Birck, F., Diener, M., Carissimi, A., Navaux, P.O.A.: Evaluating high
performance computing on the Windows Azure platform. In: IEEE International
Conference on Cloud Computing (CLOUD), pp. 803–810 (2012)

13. Roloff, E., Diener, M., Carissimi, A., Navaux, P.O.A.: High performance computing
in the Cloud: deployment, performance and cost efficiency. In: IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), pp. 371–
378 (2012)

14. Saad, A., El-Mahdy, A.: Network topology identification for Cloud instances. In:
International Conference on Cloud and Green Computing, pp. 92–98 (2013)

15. The Open MPI project: mpirun man page (2013). http://www.open-mpi.de/doc/
v1.6/man1/mpirun.1.php#sect9

16. Wang, Y., Shi, W.: Budget-driven scheduling algorithms for batches of MapReduce
jobs in heterogeneous clouds. IEEE Trans. Cloud Comput. 2(3), 306–319 (2014)

http://dx.doi.org/10.1007/978-3-540-30218-6_19
http://dx.doi.org/10.1016/j.jcp.2009.05.019
http://www.netlib.org/benchmark/hpl/
http://www.open-mpi.de/doc/v1.6/man1/mpirun.1.php#sect9
http://www.open-mpi.de/doc/v1.6/man1/mpirun.1.php#sect9

Leveraging Cloud Heterogeneity for Cost-Efficient Execution 411

17. Yeo, S., Lee, H.H.: Using mathematical modeling in provisioning a heterogeneous
Cloud computing environment. Computer 44(8), 55–62 (2011)

18. Zant, B.E., Gagnaire, M.: Performance and price analysis for Cloud service
providers. In: Science and Information Conference (SAI), pp. 816–822 (2015)

19. Zhang, Q., Zhani, M.F., Boutaba, R., Hellerstein, J.L.: Harmony: dynamic
heterogeneity-aware resource provisioning in the Cloud. In: Proceedings of the 2013
IEEE 33rd International Conference on Distributed Computing Systems, ICDCS
2013, pp. 510–519. IEEE Computer Society, Washington, DC (2013)

20. Zhang, Z., Cherkasova, L., Loo, B.T.: Exploiting Cloud heterogeneity for optimized
cost/performance MapReduce processing. In: Proceedings of the Fourth Interna-
tional Workshop on Cloud Data and Platforms, CloudDP 2014, pp. 1:1–1:6 (2014)

Distributed Systems and Algorithms

A Consensus-Based Fault-Tolerant Event Logger
for High Performance Applications

Edson Tavares de Camargo1,2(B), Elias P. Duarte Jr.2, and Fernando Pedone3

1 Department of Informatics, Federal University of Paraná (UFPR), Curitiba, Brazil
2 Federal Technology University of Paraná (UTFPR), Toledo, Brazil

edson@utfpr.edu.br, elias@inf.ufpr.br
3 University of Lugano (USI), Lugano, Switzerland

fernando.pedone@usi.ch

Abstract. Most message logging protocols rely on a centralized event
logger to store information (i.e., the determinants) to allow the recovery
of an application process. This centralized approach, besides suffering
from the single point of failure problem, represents a bottleneck for the
efficiency of message logging protocols. In this work, we present a fault-
tolerant distributed event logger based on consensus that outperforms
the centralized approach. We implemented the event logger of MPI deter-
minants using the Paxos algorithm. Our event logger inherits the Paxos
properties: safety is guaranteed even if the system is asynchronous and
liveness is guaranteed despite processes failures. Experimental results are
reported for the performance of the distributed event logger based both
on classic Paxos and parallel Paxos applied to AMG (Algebraic Multi-
Grid) and NAS Parallel Benchmark applications.

1 Introduction

Most traditional strategies to deal with failures in HPC systems are based on
rollback-recovery mechanisms [3,6,16]. These strategies allow applications to
recover from failures without losing previously computed results. Message log-
ging is a class of rollback-recovery technique that unlike coordinated checkpoint
strategies does not require all processes to coordinate to save their state during
normal execution and to restart after a single process failure.

Message logging relies on the piecewise deterministic assumption. This
assumption states that all nondeterministic events that a process executes can
be identified and the information necessary to replay each event during recovery
can be logged in tuples called determinants [7]. By replaying the determinants
in their exact original order, a process can deterministically recreate its pre-
failure state. Most message logging protocols suppose that reception events (i.e.,
message receiving events) are the only possible nondeterministic events in the
execution [3]. Consequently, a crucial task in message logging is to reliably save
and restore the determinants without penalizing the performance.

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 415–427, 2017.
DOI: 10.1007/978-3-319-64203-1 30

416 E.T. de Camargo et al.

The component responsible for reliably logging determinants is the event
logger. The event logger receives the determinants from the application processes,
stores them locally, and notifies the application processes. Previous works based
on message logging typically assume that the event logger is a centralized entity
(e.g., [1,4,17]), and thus it cannot tolerate failures. Indeed, the failure of the
event logger would bring the execution to a halt as application processes would
no longer be able to save the determinants.

The main goal of this paper is to propose a fault-tolerant event logger that
has performance comparable to or better than a centralized event logger. In
particular, our replicated event logger does not require extra system resources
(i.e., physical nodes) in comparison with a centralized event logger and can
tolerate a configurable number of failures. When configured to tolerate a single
failure, our consensus-based event logger needs the same number of messages and
communication steps (i.e., network delays) to log a determinant as a centralized
event logger. We also show in the paper that the myth that fault tolerance
introduces overheads is not completely unfounded since the indiscriminate use
of existing fault-tolerance techniques can indeed lead to expensive solutions.

We implemented two fault-tolerant event loggers based on the Paxos algo-
rithm [11]. One is based on classic Paxos and the other on a configuration we
call parallel Paxos. We conducted a number of experiments comparing them to
a centralized event logger. We evaluated the performance of our event logger
implementations using the LU and MG kernels from the NAS Parallel Bench-
marck (NAS-PB) and the Algebric MultiGrid (AMG) application. Our results
show that the replicated event logger based on parallel Paxos consistently out-
performs a centralized event logger while providing configurable fault tolerance.

The rest of the paper is organized as follows. Section 2 briefly overviews
rollback-recovery, including message logging, and the event logger. Section 3
reviews the Paxos algorithm and presents our consensus-based event loggers.
Section 4 presents our implementations of the event logger and experimental
results and Sect. 5 concludes the paper.

2 Log-Based Rollback Recovery

Rollback-recovery techniques are often used to provide fault tolerance to HPC
applications so that they can restart from a previously saved state [3,6].
Rollback-recovery assumes a distributed system that is a collection of appli-
cation processes that communicate through a network and have access to stable
storage that survives failures [7]. Processes save recovery information periodi-
cally on stable storage during their failure-free execution. After the occurrence
of a failure, the process that failed uses the recovery information to restart its
computation from a past state. The recovery information includes at least the
state of the participating processes, called checkpoints. Some protocols may also
include the logging of nondeterministic events, encoded in tuples called determi-
nants.

A Consensus-Based Fault-Tolerant Event Logger 417

Log-based approaches, or simply “message logging”, use both checkpoints
and logging of nondeterministic events to avoid the drawbacks of both uncoordi-
nated and coordinated checkpointing [14]. Message logging protocols assume the
application is piece-wise deterministic [10]. This assumption asserts that all non-
deterministic events executed by a process can be identified and the information
necessary to replay each event during recovery can be logged in determinants.
An event corresponds to a computational or communication step of a process.
Most message logging protocols assume that message reception is the only non-
deterministic event.

Depending on how determinants are logged, message logging protocols can be
pessimistic, optimistic or causal [7]. In pessimistic logging, a process first stores
the determinant of a nondeterministic event (e.g., in remote storage) before deliv-
ering the message. Despite the fact that pessimistic logging simplifies recovery
and garbage collection, it presents an overhead on failure-free scenarios: the
application has to wait for the determinant to be stored in order to proceed. In
optimistic logging, processes log determinants asynchronously, thereby reducing
the overhead. However, optimistic protocols allow orphan processes to be created
due to failures and lead to more expensive recovery.

Usually, in message logging approaches the determinant of every received
message is logged. However, it is possible to reduce the overall number of logged
messages by identifying which events are deterministic and which are nondeter-
ministic [2]. An event is deterministic when from the current state there is only
one possible outcome state for the event. If an event can result in several dif-
ferent states, then it is nondeterministic. Message receptions with an explicitly
identified sender are deterministic events and do not need to be logged; if the
source is left unspecified then message receptions are nondeterministic. Message
receptions with an explicitly identified sender are deterministic events and do not
need to be logged; if the source is left unspecified then message receptions are
nondeterministic. For example, a nondeterministic event occurs in MPI when
the receiving process uses the tag MPI ANY SOURCE in MPI Recv. As stated in
[5], several MPI applications contain only deterministic communication events.
However, many important MPI applications are nondeterministic, including all
master-slave applications. Furthermore, programmers usually include nondeter-
ministic communication events in the code to improve performance.

2.1 The Event Logger

The event logger plays an important role in message-logging protocols [1]. It
receives the determinants from the application processes, stores them locally, and
notifies the application processes after determinants are stored. The performance
of the event logger has a major impact on the efficiency of message-logging
protocols as showed in [1,17,18], and many protocols implement the event logger
as a centralized (i.e., non-replicated) component [1,3].

To the best of our knowledge, the only existing distributed event logger is
proposed in [18] for O2P [17]. That protocol offers a distributed way to save
determinants. Despite being related to our work, the entire solution fails if an

418 E.T. de Camargo et al.

acknowledgement is not received by the sender; i.e., the fault tolerance of the
solution is not guaranteed. Our proposed event logger based on consensus is
both distributed and fault-tolerant. The Paxos protocol ensures progress with a
majority of non-faulty processes and safety even if the system is asynchronous.

3 Consensus and Message Logging

Consensus is a fundamental abstraction in fault-tolerant distributed computing.
In this section, we review the consensus problem, present Paxos, one of the
most prominent consensus algorithms, and discuss how to efficiently implement
a fault-tolerant event logger with Paxos.

3.1 Consensus and State Machine Replication

Consensus can be used to build a highly available event logging service using the
state machine replication approach [19]. State machine replication regulates how
commands must be propagated to and executed by the replicas in order for the
service to be consistent. In our particular case, the commands are requests to
save a determinant, propagated to and executed by replicas of the event logger.
Command propagation has two requirements: (i) every non-faulty replica must
receive every command and (ii) no two replicas can disagree on the order of
received and executed commands. If command execution is deterministic, then
replicas will reach the same state and produce the same output upon executing
the same sequence of commands.

Intuitively, consensus captures the command propagation requirements of
state machine replication. More precisely, consensus is defined by three abstract
properties: (a) If a replica decides on a value, then the value was proposed by
some process (validity). (b) No two replicas decide differently (agreement). (c) If
a non-faulty process proposes a value, then eventually all non-faulty replicas
decide some value (termination). From the requirements of state machine repli-
cation and the guarantees provided by consensus, it should be clear that state
machine replication can be implemented as a series of consensus instances, where
the i-th consensus instance decides on the i-th command (or batch of commands)
to be executed by the replicas [11].

State machine replication and consensus provide a principled approach to
ensuring that replicas are consistent despite failures. This approach should not be
overlooked since ad hoc solutions to replication must face subtle impossibilities
in the design of distributed systems subject to process failures [8].

3.2 The Paxos Protocol

Paxos is a fault-tolerant consensus algorithm designed for state machine repli-
cation [12]. Paxos has important characteristics: it is safe under asynchronous
assumptions, live under weak synchronous assumptions, ensures progress with a
majority of non-faulty processes, and assumes a crash-recovery failure model.

A Consensus-Based Fault-Tolerant Event Logger 419

P0

P1

R0
(coord)

R1

R2

Centralized Replicated with
Classic Paxos

Replicated with
Parallel Paxos

m1 m2 m1 m2 m1 m2

only needed if R0 or R1 fail

P0

P1

R0

P0
R0

(coord)

R2

R3

P1
R1

(coord)
command

accept

accept

Px : application process x
Rx : replica x

Fig. 1. Three implementations of an event logger. The centralized approach has a single
event logger (R0) and thus cannot tolerate any failures. The Paxos-based approaches
can tolerate one failure (i.e., f = 1). Paxos coordinators already executed the first phase
of the protocol and can proceed with the second phase upon receiving a command.

Paxos distinguishes the following roles that a process can play: proposers,
acceptors and learners. Proposers propose a value, acceptors choose a value, and
learners learn the decided value. A single process can assume any of those roles,
and multiple roles simultaneously. Paxos is resilience-optimum [13]: to tolerate
f failures it requires 2f + 1 acceptors—that is, to ensure progress, a quorum of
f + 1 acceptors must be non-faulty.

An instance of Paxos proceeds in two phases: during the first phase, a pro-
poser selects a unique round number and sends a prepare request to a quorum
of acceptors. Upon receiving a prepare request with a round number bigger
than any round the acceptor previously received, the acceptor responds to the
proposer promising that it will reject any future requests with smaller round
numbers. If the acceptor already accepted a command for the current instance
(explained next), it will return this command to the proposer, together with the
round number received when the command was accepted. When the proposer
receives answers from a quorum of acceptors, it proceeds to the second phase.

In the second phase, the proposer selects a command according to the fol-
lowing rule. If no acceptor in the quorum of responses accepted a command,
the proposer can select a new command for the instance; however, if any of the
acceptors returned a command in the first phase, the proposer chooses the com-
mand with the highest round number. The proposer then sends an accept request
with the round number used in the first phase and the command chosen to a
quorum of acceptors. When receiving such a request, the acceptors acknowledge
it by sending a message to the coordinator and learners, unless the acceptors
have already acknowledged another request with a higher round number. When
a quorum of acceptors accepts a command consensus is reached.

If multiple proposers simultaneously execute the procedure above for the
same instance, then no proposer may be able to execute the two phases of the
protocol and reach consensus. To avoid scenarios in which proposers compete
indefinitely, a coordinator process can be chosen. In this case, proposers submit
commands to the coordinator, which executes the first and second phases of
the protocol. If the coordinator fails, another process takes over its role. Paxos
ensures consistency despite concurrent coordinators and termination in the pres-
ence of a single coordinator.

420 E.T. de Camargo et al.

A coordinator can optimize performance by executing the first phase of the
protocol for a batch of instances before it receives any commands [11]. This
is possible because the coordinator only sends commands in the second phase
of the protocol. With this optimization, a command can be chosen in three
communication steps: the message from the proposer to the coordinator, the
accept request from the coordinator to the acceptors, and the response to this
request from the acceptors to the coordinator and learners.

3.3 Consensus-Based Message Logging

We now propose two protocols based on Paxos to render the event logger fault-
tolerant: Classic Paxos and Parallel Paxos. Similarly to a centralized event log-
ger, our protocols log nondeterministic events only; the message payload is saved
by the sender- [9]. A determinant contains the sender of a message, the message
identifier, and the message receiving order. Periodically, each process performs
a checkpoint in order to save its state.

Our first protocol, Classic Paxos, is based on classic state machine replication.
Application processes are proposers and the event logger replicas are acceptors
and learners. Every application process submits commands to the coordinator,
a process among the acceptors, to log determinants. The coordinator receives
commands, executes Paxos to log the commands in a quorum of replicas, and
sends replies to the application process (see Fig. 1). In “good executions” (i.e., in
the absence of process failures) a determinant is logged after four communication
steps and 2f + 2 point-to-point message exchanges. By contrast, a centralized
event logger can log events after two communication steps and two message
exchanges.

In our second protocol, Parallel Paxos, we assign a separate sequence of Paxos
executions to each application process. This means that each process has its set
of replicas, which allows important optimizations. First, since each process has
its own sequence of Paxos executions, the process does not compete with other
processes in executions of Paxos and therefore, there is no need for a coordinator;
in good executions, the process is the only proposer in its sequence of Paxos.
Second, by using different sets of replicas, performance is no longer capped by
what the coordinator and the acceptors can handle. Third, we can now co-locate
the application process and the acceptor-coordinator in the same process. In
good runs, this scheme can log a determinant after two communication steps
and 2f messages.

An event logger implemented with Parallel Paxos presents the same number
of communication steps as a centralized event logger, while tolerating a config-
urable number of failures and scaling performance. When configured to tolerate
one failure (f = 1), it exchanges the same number of messages per logging opera-
tion as the centralized logger. Moreover, to save resources, “free acceptors” (i.e.,
acceptors not collocated with application processes) can be placed in the same
physical node. For example, a single node can host all free acceptors, i.e. Parallel
Paxos can use the same amount of nodes required by a centralized strategy.

A Consensus-Based Fault-Tolerant Event Logger 421

Upon recovering from a failure, an application process must retrieve all its
logged determinants. With the centralized approach, the application process con-
tacts the event logger. With the replicated approaches, this is done by contacting
a quorum of acceptors.

4 Evaluation

In this section we describe an implementation of the proposed consensus-based
event logger and present experimental results, including a comparison with the
traditional centralized alternative. Results are presented for the execution of
three MPI applications: AMG 2013 (Algebraic Multigrid Solver) of the Lawrence
Livermore National Laboratory, LU (Lower-Upper Gauss-Seidel solver) and MG
(Multi-Grid on a sequence of meshes). Both LU and MG are on the NAS parallel
benchmarks version 3.2. The applications were executed through Open MPI ver-
sion 1.10. The experiments were conducted on a dedicated cluster that consists
of 40 nodes each with two Intel(R) Quad-Core Xeon L5420 2.5 GHz processors
and 8 Gbytes of RAM interconnected on a Gigabit Ethernet network.

We intercept MPI primitives using the MPI standard profiling interface
(PMPI) [15]. If the interceptor detects a nondeterministic event, as defined in
[2], it builds a determinant related to the event and makes a submission to the
event logger. We implemented three event loggers: a traditional centralized log-
ger, a distributed replicated logger based on Classic Paxos, and the distributed
replicated logger based on Parallel Paxos (all described in Sect. 3.3). The Parallel
Paxos event logger can be configured to log messages synchronously or asynchro-
nously. In the synchronous mode, after submitting a determinant, an application
process waits for an acknowledgement from the event logger before submitting
the next determinant; in asynchronous mode the application process can submit
multiple determinants before it receives acknowledgments from the event log-
ger. Unless stated otherwise, our experiments use the synchronous mode. The
interceptor and event loggers were implemented in C using the libevent version
2.022. We used the Paxos library libpaxos version 3.

The centralized event logger is hosted on a dedicated node. In Classic Paxos,
a coordinator was deployed on a dedicated node while three acceptors (i.e.,
f = 1) were deployed each on a single node. There were also three learners,
each one colocated with an acceptor. The learners are responsible for replying
to the MPI processes as soon as a determinant is stored. In Parallel Paxos,
each sequence of Paxos executions uses three acceptors (i.e., f = 1), each one
deployed on a dedicated node. In Parallel Paxos each MPI process is both a
proposer and a learner. Acceptors can be configured to store commands (i.e.,
determinants) on disk or in memory. In all experiments, the centralized event
logger and the acceptors log values in main memory. We justify this choice by the
fact that persistent memory technologies such as non-volatile RAM (NVRAM)
and battery-backed memory are increasingly popular.

422 E.T. de Camargo et al.

4.1 The Event Logger

To evaluate the performance of the event logger alone, we built a simple MPI
application where a process only submits a new determinant to the logger after it
receives a response acknowledging that the previously submitted determinant has
been logged. Since application processes do not communicate among themselves
in these experiments, determinants are fixed-content 50-byte messages.

 0

 100

 200

 300

 400

 0 20 40 60 80 100 120 140Th
ro

ug
hp

ut
 (d

et
/m

se
c)

MPI processes

Centralized
Classic Paxos
Parallel Paxos

 0
 20
 40
 60
 80

 100

 0 5 10 15 20

 0

 2

 4

 6

 0 20 40 60 80 100 120 140

La
te

nc
y

(m
se

c)

MPI processes

 0.0
 0.2
 0.4
 0.6
 0.8
 1.0

 0 5 10 15 20

Fig. 2. Throughput and latency for the three event logger approaches.

Figure 2 shows the throughput in logged determinants per millisecond
(det/msec) and latency (in msec) when we increased the number of MPI
processes up to 128. The centralized event logger reaches the maximum through-
put of about 83 det/msec with 16 processes. Classic Paxos reaches a maximum
throughput of 28 det/msec with a latency of 4.6 msec with 128 MPI processes.
Parallel Paxos never saturates in these experiments: throughput increases pro-
portionally to the number of processes and the latency remains approximately
constant, below 4 msec. With 128 processes, Parallel Paxos has 5 times the
throughput of the centralized scheme and 13 times the throughput of Classic
Paxos, with much lower latency.

4.2 AMG

AMG is a parallel algebraic multigrid solver for linear systems which can be
classified as a nondeterministic application that employs “any-source” receptions
and nondeterministic deliveries. All calls to Iprobe use the any source tag and
only one call to Recv, among many, uses the any source tag. AMG also has calls
to the Test and Testall primitives. Although during the execution there was
a large number of Iprobe, Test and Testall invocations, a determinant for an

A Consensus-Based Fault-Tolerant Event Logger 423

 0

 20

 40

 60

 80

 100

 120

 140

 160

16 32 64 128

D
ur

at
io

n
(s

ec
on

ds
)

MPI processes

AMG

Unmodified
Centralized

Classic Paxos
Parallel Paxos

 0

 1

 2

 3

 4

 0 5 10 15 20 25 30 35 40

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

16 MPI Processes

Asynchronous

Synchronous

0

2

4

6

8

10

12

 0 10 20 30 40 50 60 70

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

32 MPI Processes

0

5

10

15

20

25

30

 0 10 20 30 40 50 60 70 80

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

64 MPI Processes

0

20

40

60

80

 0 20 40 60 80 100 120 140 160

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

128 MPI Processes

Fig. 3. AMG performance and througput.

 0

 20

 40

 60

 80

 100

 120

16 32 64 128

D
ur

at
io

n
(s

ec
on

ds
)

MPI processes

LU class C

Unmodified
Centralized

Classic Paxos
Parallel Paxos

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 0 20 40 60 80 100 120

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

16 MPI Processes

Asynchronous

Synchronous

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 0 10 20 30 40 50 60

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

32 MPI Processes

0

2

4

6

8

10

 0 5 10 15 20 25 30 35

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

64 MPI Processes

0

2

4

6

8

10

 0 5 10 15 20 25
Th

ro
ug

hp
ut

 (d
et

/m
se

c)

Duration (sec)

128 MPI Processes

Fig. 4. LU class C performance and throughput.

Iprobe with the any source tag is only created when the message is ready to be
received. Similarly, for Test and Testall invocations, we count the number of
invocations but only submit the determinant to the event logger when the MPI
message related to Test or Testall is ready to be delivered.

Figure 3 (left) presents results for the AMG application, including the repli-
cated event loggers. The “Unmodified” label refers to executions without any
event logging. Although all strategies introduce an overhead, with 64 and 128
processes Classic Paxos increased the duration of the original application by
approximately 3.8%, the worst-performing technique. The centralized scheme
presented an overhead of approximately 2% for 16, 32 and 64 processes. Parallel
Paxos presented the lowest overhead, below 1.3% for all configurations.

Figure 3 (right) shows the number of determinants logged per milliseconds
considering both the synchronous and asynchronous Parallel Paxos modes, for
16, 32, 64 and 128 MPI processes. In the asynchronous mode, application
processes never wait for the logger; thus, this case provides an upper bound
for the performance of the event logger. As it can be seen, log requests are
not uniformly distributed over time. For the case with 128 processes, between
time instants 80 s and 90 s a peak can be distinguished, that reaches approxi-
mately 34 det/msec in the synchronous mode and 66 det/msec in the asynchro-

424 E.T. de Camargo et al.

nous mode. These results help understand how the overhead of Parallel Paxos
is distributed over time.

4.3 LU and MG

LU and MG are kernels of the NAS parallel benchmarks. As pointed out in [2],
only MG and LU among the NAS-PB kernels generate nondeterministic events.
We assess classes C and D of the kernels in deployments with 16, 32, 64 and 128
MPI processes. LU contains both Recv and Irecv primitives. The last one is
used with the any source tag. MG receives all its messages through MPI Irecv
with the any source tag.

The total number of events logged in LU is less than 1% of the total of
all its receptions in class C. The MG kernel however has almost 100% of non-
deterministic events among its receptions. Although both AMG e MG solve
similar problems, the reason for much more nondeterministic events in MG is
its implementation. Unlike MG, AMG does not receive all its messages through
MPI Irecv with the any source tag. This illustrates the fact that nondetermin-
ism is often a programmer’s choice (e.g., to boost performance), rather than a
requirement coming from the problem being solved.

From our experimental evaluation, we concluded that logging determinants
using any of the three event logging strategies presents nearly no overhead when
logging events of classes C and D of the LU kernel. This is somewhat surprising
since logging introduces some overhead in the AMG application and both classes
C and D of the LU benchmark contain a higher percentage of nondeterministic
events than AMG contains. Figure 4 (left) shows the results for class C of the LU
kernel. By inspecting the number of determinants logged during the execution
in Fig. 4 (right), we notice that determinants are more uniformly distributed in
LU class C than in AMG and they happen at a rate that is within the limits
the event logger can sustain (see Sect. 4.1). The difference between class C and
D of the LU is that the last one has longer duration and lower throughput. As
a consequence, the event logger never becomes an execution bottleneck in LU.

On the contrary, the logging of determinants introduces a considerable over-
head to MG classes C and D (Figs. 5 and 6, respectively). In class C, while
Classic Paxos presents an overhead of more than 125% and 200% for 64 and 128
processes, the overhead of the centralized event logger is below 31% and 55%
for 64 and 128 processes, respectively. Parallel Paxos sports even lower over-
heads: 17,71% and 24,26% for 64 and 128 processes, respectively. The results for
MG class D show a similar trend, with Parallel Paxos outperforming both the
two other techniques. The MG kernel is highly communication-bound and all its
receive events use the any source tag. As the number of application processes
increases, the event logger reaches its limits with the centralized and the Classic
Paxos strategies. Parallel Paxos is able to scale performance by distributing the
load among the various series of Paxos.

Figures 5 and 6 also show the rate of logged determinants per milliseconds
for the synchronous and asynchronous Parallel Paxos-based event logger. The
throughput of the synchronous mode is close to the asynchronous mode for MG

A Consensus-Based Fault-Tolerant Event Logger 425

 0

 5

 10

 15

 20

16 32 64 128

D
ur

at
io

n
(s

ec
on

ds
)

MPI processes

MG class C

Unmodified
Centralized

Classic Paxos
Parallel Paxos

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

16 MPI Processes

Asynchronous

Synchronous

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

32 MPI Processes

0

20

40

60

80

100

120

 1 1.5 2 2.5 3 3.5 4 4.5 5

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

64 MPI Processes

0

20

40

60

80

100

120

 1 2 3 4 5 6

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

128 MPI Processes

Fig. 5. MG class C performance and throughput.

 0

 50

 100

 150

 200

 250

16 32 64 128

D
ur

at
io

n
(s

ec
on

ds
)

MPI processes

MG class D

Unmodified
Centralized

Classic Paxos
Parallel Paxos

 0

 1

 2

 3

 4

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

16 MPI Processes

Asynchronous

Synchronous

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

32 MPI Processes

0

4

8

12

 0 10 20 30 40 50 60

Th
ro

ug
hp

ut
 (d

et
/m

se
c)

Duration (sec)

64 MPI Processes

0

5

10

15

20

25

 0 10 20 30 40 50 60
Th

ro
ug

hp
ut

 (d
et

/m
se

c)

Duration (sec)

128 MPI Processes

Fig. 6. MG class D performance and throughput.

class C with 16, 32 and 64 processes. For 128 processes, the asynchronous mode
presents a throughput that is higher than that of the synchronous mode and fin-
ishes approximately 1 s earlier. MG class D has lower throughput than MG class
C. The throughputs of both synchronous and asynchronous Parallel Paxos are
very similar. In all configurations, both the synchronous and the asynchronous
modes display a uniform rate over time.

5 Conclusion

In this work we presented a fault-tolerant and distributed event logger based on
consensus for HPC applications. The event logger is the component responsible
for reliably logging determinants and its performance can represent a signifi-
cant impact on the efficiency of message logging protocols. We implemented two
fault-tolerant event loggers based on the Paxos algorithm. By using Paxos, our
event loggers guarantee safety even if the system is asynchronous and liveness
despite processes failures. Our first protocol is based on classic state machine
replication. In our second protocol, which we call Parallel Paxos, we assign a
separate sequence of Paxos executions to each application process. We assessed

426 E.T. de Camargo et al.

experimentally the performance of a centralized event logger and our two event
loggers based on consensus. Besides evaluating the event loggers by themselves,
we used three MPI applications to evaluate their performance: AMG, MG and
LU. Results of all experiments show that the event logger based on Parallel
Paxos always outperformed the centralized approach in terms of both the exe-
cution time and the throughput in terms of the number of determinants logged
per millisecond.

The implementation of a recovery protocol using the nondeterministic events
stored on the Parallel Paxos event logger is left as future work.

References

1. Bouteiller, A., Collin, B., Herault, T., Lemarinier, P., Cappello, F.: Impact of event
logger on causal message logging protocols for fault tolerant MPI. In: IPDPS (2005)

2. Bouteiller, A., Bosilca, G., Dongarra, J.: Redesigning the message logging model
for high performance. Concurr. Comput.: Pract. Exp. 22(16), 2196–2211 (2010)

3. Bouteiller, A., Hérault, T., Krawezik, G., Lemarinier, P., Cappello, F.: MPICH-V
project: a multiprotocol automatic fault-tolerant MPI. Int. J. HPC Appl. 20(3),
319–333 (2006)

4. Bouteiller, A., Ropars, T., Bosilca, G., Morin, C., Dongarra, J.: Reasons for a
pessimistic or optimistic message logging protocol in MPI uncoordinated failure,
recovery. In: Cluster (2009)

5. Cappello, F., Guermouche, A., Snir, M.: On communication determinism in parallel
HPC applications. In: ICCCN (2010)

6. Egwutuoha, I.P., Levy, D., Selic, B., Chen, S.: A survey of fault tolerance mecha-
nisms and checkpoint/restart implementations for HPC systems. J. Supercomput.
65(3), 1302–1326 (2013)

7. Elnozahy, A., Wang, J.: A survey of rollback-recovery protocols in message-passing
systems. CSURV Comput. Surv. 34, 375–408 (2002)

8. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty processor. J. ACM 32(2), 374–382 (1985)

9. Johnson, D.B., Zwaenepoel, W.: Sender-based message logging. In: FTCS (1987)
10. Kshemkalyani, A.D., Singhal, M.: Distributed Computing: Principles, Algorithms,

and Systems. Cambridge University Press, Cambridge (2011)
11. Lamport, L.: Paxos made simple. SIGACTN: SIGACT News (ACM Spec. Interest

Group Automata Comput. Theory) 32, 51–58 (2001)
12. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169

(1998)
13. Lamport, L.: Lower bounds for asynchronous consensus. Distrib. Comput. 19(2),

104–125 (2006)
14. Lemarinier, P., Bouteiller, A., Krawezik, G., Cappello, F.: Coordinated checkpoint

versus message log for fault tolerant MPI. Int. J. High Perform. Comput. Netw. 2,
146–155 (2006)

15. MPI Forum: document for a standard message-passing interface 3.1. Technical
report, University of Tennessee (2015). http://www.mpi-forum.org/docs/mpi-3.1

16. Riesen, R., Ferreira, K., Silva, D.D., Lemarinier, P., Arnold, D., Bridges, P.G.:
Alleviating scalability issues of checkpointing protocols. In: SC (2012)

http://www.mpi-forum.org/docs/mpi-3.1

A Consensus-Based Fault-Tolerant Event Logger 427

17. Ropars, T., Morin, C.: Active optimistic message logging for reliable execu-
tion of MPI applications. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par
2009. LNCS, vol. 5704, pp. 615–626. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03869-3 58

18. Ropars, T., Morin, C.: Improving message logging protocols scalability through
distributed event logging. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-
Par 2010. LNCS, vol. 6271, pp. 511–522. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15277-1 49

19. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. 22(3), 299 (1990)

http://dx.doi.org/10.1007/978-3-642-03869-3_58
http://dx.doi.org/10.1007/978-3-642-03869-3_58
http://dx.doi.org/10.1007/978-3-642-15277-1_49
http://dx.doi.org/10.1007/978-3-642-15277-1_49

Families of Graph Algorithms: SSSP Case Study

Thejaka Amila Kanewala1,2(B), Marcin Zalewski2, and Andrew Lumsdaine2,3

1 School of Informatics and Computing, Indiana University, Bloomington, IN, USA
thejkane@indiana.edu

2 Pacific Northwest National Laboratory, Seattle, WA, USA
{marcin.zalewski,andrew.lumsdaine}@pnnl.gov

3 University of Washington, Seattle, WA, USA

Abstract. Single-Source Shortest Paths (SSSP) is a well-studied graph
problem. Examples of SSSP algorithms include the original Dijkstra’s
algorithm and the parallel Δ-stepping and KLA-SSSP algorithms. In
this paper, we use a novel Abstract Graph Machine (AGM) model to
show that all these algorithms share a common logic and differ from one
another by the order in which they perform work. We use the AGM
model to thoroughly analyze the family of algorithms that arises from
the common logic. We start with the basic algorithm without any order-
ing (Chaotic), and then we derive the existing and new algorithms by
methodically exploring semantic and spatial ordering of work. Our exper-
imental results show that new derived algorithms show better perfor-
mance than the existing distributed memory parallel algorithms, espe-
cially at higher scales.

Keywords: Single-source shortest paths (SSSP) · Distributed-memory
graph algorithms

1 Introduction

Given a graph problem, how many ways can it be solved in? In this paper, we
consider the seemingly simple problem of single-source shortest paths (SSSP),
where the task is to find the shortest path from a source vertex s to every
other vertex in the graph. A number of sequential algorithms exist. The well-
known Dijkstra’s algorithm [3] is “work optimal”, where vertices are ordered in
a priority queue based on their distance from the source s, and every edge is
traversed only once. Work optimality, however, comes at a cost of limited paral-
lelism and extensive synchronization. Subsequent development concentrated on
relaxing the strict ordering of the Dijkstra algorithm to make more work avail-
able in parallel at the cost of some “wasted work” that has to be invalidated and
repeated. For example, the Δ-stepping [9] algorithm groups vertices into Δ-sized
buckets, based on their distances from the source s, giving an approximation of
Dijkstra ordering. Vertices in a bucket are processed in parallel, and picking an
appropriate Δ ensures the right balance between parallelism and wasted work.

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 428–441, 2017.
DOI: 10.1007/978-3-319-64203-1 31

Families of Graph Algorithms: SSSP Case Study 429

The KLA-SSSP [6] algorithm is similar, but it uses topological distances instead
of shortest path distances from the source s to order work into buckets1.

Table 1. Orderings in SSSP algorithms.

Algorithm Ordering

Dijkstra’s Global priority queue

Δ-stepping Global distance
equivalence classes
defined by Δ

KLA Global topological
distance equivalence
classes defined by k

Chaotic None

Algorithm 1. The SSSP relax function

1: Input: Task (v, d), distances D
2: if d < D(v) then
3: D(v) ← d
4: ∀vn ∈ neighbors(G, v) :
5: Task(vn, dv + weight(v, vn))

In both Δ-stepping and KLA-SSSP, processing of the buckets inserts implicit
synchronization points, since processing of a bucket cannot begin until all pre-
vious buckets are finished. The Chaotic SSSP does away with synchronization
altogether by processing all the vertices in parallel in an arbitrary order, resulting
in maximum available parallelism at the cost of more wasted work.

Despite the variety of algorithms, analysis reveals that they are all based on
the same core logic of relaxation, as shown in Algorithm 1. Relaxation takes
as the input a vertex-distance pair and a distance map (D), and produces
more vertex-distance pairs if the distance was improved. These newly produced
pairs are further relaxed, and the algorithms differ by how these relaxations
are ordered (Table 1). In this paper, we methodically investigate this similar-
ity between the seemingly different SSSP algorithms. To do that, we model the
algorithms using the Abstract Graph Machine (AGM) [7]. An AGM represents a
graph algorithm as two distinct components: the processing function that models
the core functionality of the algorithm and an ordering of the work tasks that
define the characteristics of the algorithm (as in Table 1, for example). The work
ordering relation of an AGM is defined based on one or more attributes of work
tasks. For the SSSP algorithms, it can be the distance in vertex-distance pair,
or it can be an additional attribute introduced specifically for a given algorithm
(see the next section for details). The work ordering relation is a strict weak
ordering. It divides work into ordered equivalence classes, where work within an
equivalence class is unordered and can be executed in parallel, but work within
separate equivalence classes is executed according to an ordering induced by the
strict weak ordering relation.

We present AGM models for all the algorithms listed in Table 1, and we
show that they change by the way in which they order work. Then we show
that new algorithms can be developed by methodically discovering new order-
ings. We introduce extended AGM (EAGM) that incorporates information about
spatial distribution into algorithms modeled in AGM. With EAGM, we develop
1 KLA-SSSP with single-hop buckets is equivalent to the Bellman-Ford algorithm [1].

430 T.A. Kanewala et al.

variations of algorithms presented in Table 1 with additional ordering at dif-
ferent spatial levels of architecture such as node (process), numa (non-uniform
memory access) region, and thread, resulting in nine different SSSP algorithms.
We compare the weak scaling performance of the new algorithms with exist-
ing distributed memory parallel algorithms and also with the SSSP algorithm
in PowerGraph [5] and in Parallel Boost Graph Library (PBGL) [4] for a per-
formance base line. Our results show that some of the new variations of SSSP
algorithms perform better than the well-known algorithms, especially at large
scales.

In summary, our main contributions are generalizing SSSP algorithms using
the AGM formulation, an approach to generate variations of primary distributed
SSSP algorithms listed in Table 1 using EAGM, and experimental evaluation
showing that algorithm variations generated by EAGM specification perform
better compared to the well-known algorithms listed in Table 1.

w4 w7

w8

<condition (C)>

S1
S2
S3

<constructor (N)>

.

.

.

.

w1

w2
w3

w5 w6

T
F <state_update (U)>

Ordering

nil

The Processing Function ()π

Last

First

equivalence class
order

Fig. 1. An overview of the Abstract Graph Machine execution.

2 Abstract Graph Machine (AGM)

The Abstract Graph Machine (AGM) approach captures the core logic of an
algorithm and the semantic work ordering that impacts the performance of the
algorithm. Such principled approach allows discovery of families of algorithms
by varying work ordering where it affects the performance but not semantics of
an algorithm. In this section, we introduce AGM framework, and in Sect. 3 we
apply it to the SSSP algorithms.

At the heart of AGM is the processing function that captures the logic of an
algorithm. A processing function takes a single workitem, the smallest unit of
work performed in the algorithm, and it generates zero or more new workitems
from the input workitem. The processing function can access the graph and per-
vertex and per-edge state when computing new workitems. The set of all the
workitems generated by an algorithm is denoted using WorkItem. In other words,
the WorkItem represent all the workitems generate during the whole lifetime of
the algorithm’s execution. The order of execution of workitems generated by
processing functions is dictated by a strict weak ordering relation defined on
the WorkItem. Figure 1, shows an overview of the AGM. An AGM consists of a
definition of a Graph, a definition of a WorkItem set, a set of states, a processing
function, a strict weak ordering relation, and of an initial workitem set.

Families of Graph Algorithms: SSSP Case Study 431

Graph Definition. The graph definition takes the form, G=(V, E, vmaps,
emaps), where V is the set of vertices and E ⊆ V ×V is the set of edges. vmaps
is a set of functions each of the form f : V −→ X, and emaps is another set
of functions each of the form f : E −→ X. For example, a weighted graph is
represented as G = (V,E, {}, {weight : E −→ R}).

The Set, WorkItem. A workitem(∈ WorkItem) is a tuple. The first element of
the tuple is a vertex, and the remainder are the state and the ordering attribute
values. For example, the Chaotic SSSP algorithm stores a vertex and a distance
in a workitem. The size of the tuple is determined by the states and the ordering
attributes used in the AGM formulation of a given algorithm. The workitem
tuple elements are accessed using the bracket operator ; e.g., if w ∈ WorkItem
and w = 〈v, p0, p1 . . . , pn〉, then w[0] = v, w[1] = p0, w[2] = p1, and so on. The
workitem data (i.e., the tuple elements) are used by the processing function to
generate new work items and update state.

States. An AGM maintains state values as mappings. The domain of the state
mappings is the set V . The co-domain depends on the possible values that can
be held in states. For example, in Dijksta’s SSSP algorithm the state mapping
is distance : V −→ R. In AGM terminology, accessing a state value associated
with a vertex (or edge) “v” is denoted as “mapping[v]” (e.g., distance[v]).

Processing Function. A processing function π : WorkItem −→ P(WorkItem)2

takes a workitem as an argument and produces zero or more workitems. The
body of the processing function consists of a set of statements (Sts). A statement
contains a condition C : WorkItem −→ Bool based on input workitem, an
update to states U : WorkItem −→ Bool , and a constructor N : WorkItem −→
P(WorkItem) describing how new output workitems should be constructed. The
condition C is evaluated first. If it evaluates to True, state update U is evaluated.
If both are True, the constructor N is invoked. The C indicates whether a St
is applicable to a workitem, and the U evaluates to True if states are changed
when processing the input workitem. The N of a statement is evaluated only
if its C and U both evaluate to True. States are not explicit parameters to
the processing function, and changes to state are treated as side effects. An
implementation of an AGM must ensure that state updates happen atomically.
To define a processing function statement, the condition (C), state update (U),
and the workitem constructor (N) must be provided.

We use notation loosely based on set-comprehension notation to represent
processing functions. The format of a processing function π : WorkItem −→
P(WorkItem) takes the form π(w) = {{wn|〈N (w)〉, 〈U (w)〉, 〈C (w)〉}, . . . }. In
this notation, wn is the new workitem generated by N from the input workitem
w. U and C represent the state update and the condition. This notation describes
one statement. For processing functions where there are more than one state-
ments, the notation can be duplicated for each statement and separate each
2 We denote a powerset of a set A as P(A).

432 T.A. Kanewala et al.

statement using a comma. Note that we use angle brackets (〈. . .〉) to deliminate
parts of processing function. This is not a standard notation in set comprehen-
sion, but it makes parts of the processing function clear. Furthermore, we will
provide the U part of AGM as a side effect, but we will treat it as a boolean
(True when the side effect occurs, False if it does not).

Strict Weak Ordering Relation. The workitems generated by a process-
ing function are ordered according to a strict weak ordering relation (repre-
sented using <wis) defined on WorkItem, which induces equivalence classes on
workitems. The workitems in an equivalence class are not comparable to each
other, but any two workitems in different equivalence classes are. In the AGM,
the workitems belonging to the same equivalence class can be processed by the
processing function in parallel, but workitems belong to different equivalence
classes are ordered according to the ordering on equivalence classes.

Initial Work Item Set. The initial workitem set contains workitems that
represent the input to the algorithm. For example, for SSSP, the initial set of
workitems will contain the workitem corresponding to the source vertex s.

The AGM. Having defined all supporting concepts we now give the definition
of an AGM in Definition 1.

Definition 1. An Abstract Graph Machine (AGM) is a 6-tuple (G, WorkItem,
Q, π, <wis , S), where

1. G = (V,E, vmaps, emaps) is the input graph,
2. WorkItemSet ⊆ (V ×P0×P1 · · ·×Pn) where each Pi represents a state value

or an ordering attribute,
3. Q - Set of states represented as mappings,
4. π : WorkItem −→ P(WorkItem) is the processing function,
5. <wis : WorkItem × WorkItem - Strict weak ordering relation on workitems,
6. S ⊆ WorkItem - Initial workitem set.

3 SSSP Algorithms in AGM

In this section, we present AGM models for algorithms discussed in Table 1. To
specify these models, we need to provide AGM elements from Definition 1. First,
we provide the input graph, the WorkItem, the set of states, the processing func-
tion, and the initial workitem set. Then, we show that adding different orderings
to the AGM models, we get existing distributed SSSP algorithms.

The input graph for the SSSP problem is a weighted graph: G =
(V,E, vmaps = {}, emaps = {weight}). The basic workitem includes a ver-
tex and its distance and WorkItem for SSSP is defined as WorkItemsssp ⊆
(V ×Distance). The basic workitem is extended by additional ordering attributes

Families of Graph Algorithms: SSSP Case Study 433

when necessary (e.g., in KLA-SSSP). The set of states includes a single mapping
distance for storing the distance from the source vertex. The distance mapping
is defined as distance : V −→ R

∗
+. The processing function for SSSP changes the

distance state if the input workitem’s distance for a given vertex is less than what
is already stored for that vertex in the distance map. The list of adjacent ver-
tices of a given vertex are accessed through the neighbors : V −→ P(V) function.
The basic (it will be extended with additonal functionality for some algorithms)
processing function for the SSSP graph problem is defined in Definition 2.

Definition 2. πsssp : WorkItemsssp → P(WorkItemsssp)

πSSSP (w) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{wn|〈wn[0] ∈ neighbors(w[0])
and wn[1] = w[1] + weight(w[0], wn[0])〉,

〈distance(w[0]) ←− w[1]〉,
〈if w[1]<distance(w[0])〉}

The SSSP processing function (πsssp) has a single statement. The statement
is executed only if the input workitem, ws’ distance is less than the value stored
in the distance map for the vertex in the workitem (w[0], the first element of
the workitem tuple). Constructor of the statement specifies how to construct the
new workitem wn. The processing function defines the core logic that needs to
be achieved by any SSSP algorithm. Some of the algorithms discussed in Table 1
extend this definition because of the way they order workitems.

Chaotic SSSP. The Chaotic SSSP algorithm does not order workitems. There-
fore, the strict weak ordering relation is defined in such a way that no two
workitems are related (defined in Definition 3).

Definition 3. <ch : WorkItemsssp × WorkItemsssp is a binary relation where
∀w1, w2 ∈ WorkItemsssp : w1 ≮ch w2.

This relation induces only one equivalence class, and all the workitems in this
class can be executed in parallel. The AGM model for Chaotic SSSP algorithm is
given in Proposition 1. The presented AGM uses the strict weak ordering defined
in Definition 3.

Proposition 1. Chaotic Algorithm is an instance of an AGM where

1. G = (V,E, vmaps = {}, emaps = {weight}) is the input graph,
2. WorkItem = WorkItemsssp,
3. Q = {distance} is the state (initially ∀v ∈ V, distance(v) = ∞),
4. π = πsssp,
5. Strict weak ordering relation <wis = <ch ,
6. S = {<vs, 0>} where vs ∈ V and vs is the source vertex.

Dijkstra’s SSSP. The Dijkstra’s SSSP algorithm globally orders workitems by
their associated distances (Definition 4).

434 T.A. Kanewala et al.

Definition 4. <dj : WorkItemsssp × WorkItemsssp is a relation where ∀w1,
w2 ∈ WorkItemsssp : w1<djw2 iff w1[1]<w2[1].

The AGM formulation for Dijkstra’s SSSP is same as the AGM formulation in
Proposition 1 except for the strict weak ordering. In <dj , two workitems belong
to the same equivalence class if they have the same distance. In general, the
equivalence classes generated by <dj are small, hence the parallelism available
in Dijkstra’s SSSP algorithm is limited.

<< level >>

π
sssp

<dj <ch

SSSP

Chaotic
SSSP<skla

KLA-SSSP

πkla

 -Stepping
SSSP

Δ

Δ<

Fig. 2. Summary of AGMs for
SSSP algorithms.

Δ-Stepping Algorithm. Δ-Stepping [9]
SSSP algorithm arranges vertex-distance
pairs into distance buckets) of size Δ ∈ N and
executes buckets in order. Within a bucket,
vertex-distance pairs can be executed in any
order. Processing a bucket may produce extra
work for the same bucket or for successive
buckets. The strict weak ordering relation for
Δ-stepping algorithm is given in Definition 5.
As for Dijkstra’s algorithm, Δ-stepping AGM
is as in Proposition 1 with ordering replaced
by <Δ.

Definition 5. <Δ : WorkItemsssp×WorkItemsssp is a relation where ∀w1, w2 ∈
WorkItemsssp : w1<Δw2 iff
w1[1]/Δ�<
w2[1]/Δ�.
KLA-SSSP Algorithm. The K-Level Asynchronous (KLA) paradigm [6]
processes vertices up to k topological levels asynchronously (k can be var-
ied). Correspondingly, the KLA-SSSP AGM orders workitems by their level.
To do this, workitems include an additional ordering attribute. The KLA-SSSP
WorkItem is defined as WorkItemkla ⊆ V × Distance × Level where Level ⊆ N.
The processing function also is extended to populate the level attribute (Defin-
ition 6).

Definition 6. πkla : WorkItemkla −→ P(WorkItemkla)

πkla(w) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{wn|〈wn[0] ∈ neighbors(w[0])
and wn[1] = w[1] + weight(w[0], wk[0])
and wn[2] = w[2] + 1〉,

〈distance(w[0]) ←− w[1]〉,
〈if w[1]<distance(w[0])〉}

The workitems within consecutive k levels can be executed in parallel. The
strict weak ordering relation for KLA-SSSP is given in Definition 7. The AGM
for KLA-SSSP algorithm is as AGM in Proposition 1 except for the processing
function, which is replaced with πkla, and for the strict weak ordering, which is
replaced with <skla defined in Definition 7.

Definition 7. <skla : WorkItemkla×WorkItemkla is a relation where ∀w1, w2 ∈
WorkItemkla : w1<sklaw2 iff
w1[2]/K�<
w2[2]/K�.

Families of Graph Algorithms: SSSP Case Study 435

Family of SSSP Algorithms. The SSSP AGMs are summarized in Fig. 2.
Dijkstra’s, Δ-stepping, and Chaotic algorithms share the same processing func-
tion but with different orderings. Both Dijkstra’s algorithm and Δ-stepping algo-
rithm use distance to define their strict weak orderings. KLA-SSSP uses levels
to order workitems. The only difference between πsssp and πkla is that πkla has
logic to update level attribute in newly generated workitems. In Fig. 2, we rep-
resent this with a dashed arrow to indicate that πkla is an extended version of
πsssp. Because all the algorithms use the same processing function (with ordering
extension for KLA-SSSP), they form an algorithm family.

4 Extended Abstract Graph Machine

AGMs are abstract and independent of implementation details. However, dis-
tributed graph algorithms are strongly impacted by properties of the distributed
architecture they run on. To capture that impact, we introduce extended AGM
(EAGM) that represents spacial distribution on a distributed memory platform.
Currently, we recognize 4 hierarchical levels of distribution that roughly match
modern distributed systems (arrows indicate inclusion):

Global −→ Process −→ Numa −→ ThreadTable 2. Thread ordered,
numa ordered and process
ordered EAGMs for Δ-
stepping, KLA and Chaotic
AGMs.

buffer threadq numaq nodeq

Δ
-s
te
p
p
in
g

<Δ

↓
<Δ

↓
<Δ

↓
<Δ

↓
<ch

↓
<ch

↓
<ch

↓
<dj

↓
<ch

↓
<ch

↓
<dj

↓
<ch

↓
<ch <dj <ch <ch

K
L
A
-S

S
S
P

<kla

↓
<kla

↓
<kla

↓
<kla

↓
<ch

↓
<ch

↓
<ch

↓
<dj

↓
<ch

↓
<ch

↓
<dj

↓
<ch

↓
<ch <dj <ch <ch

C
h
a
o
ti
c

<ch

↓
<ch

↓
<ch

↓
<ch

↓
<ch

↓
<ch

↓
<ch

↓
<dj

↓
<ch

↓
<ch

↓
<dj

↓
<ch

↓
<ch <dj <ch <ch

Given the spatial hierarchy, we use EAGMs
to specify spatial orderings for AGM graph
algorithms. Spatial orderings apply non-semantic
ordering on workitems throughout the spatial
hierarchy of a distributed machine. The ordering
at the Global level is the same as in the under-
lying AGM, keeping the semantics of an AGM
intact. Since the global ordering maintains the
equivalence classes of AGM, workitems can be fur-
ther ordered at the lower levels of the hierarchy.
For example, two different EAGM spatial order-
ings for Δ-stepping are <Δ → <ch → <ch →
<ch and <Δ → <ch → <ch → <dj where
each ordering corresponds to the EAGM level (the
orderings are as defined in the previous section).
The first spatial ordering enforces <Δat the global
level, but leaves execution in buckets unordered
(<ch). The second spatial ordering applies Dijk-
stra’s ordering at the Thread level (<dj), which

means that workitems at every thread are ordered in a priority queue as they
reach the thread in the spatial distribution. In summary, an EAGM consists of
an AGM and a spatial architecture hierarchy annotated by spatial orderings.

436 T.A. Kanewala et al.

In Table 2, we apply Dijkstra’s strict weak ordering relation (Definition 4)
to spatial hierarchy levels of Process (nodeq), Numa (numaq), and of Thread
(threadq) to derive EAGMs for algorithms in Table 1. The buffer represents the
original algorithm without spatial level orderings. The table shows orderings for
each combination of ordering and AGM, where the ordering chain corresponds
to the archtectural hierarchy given at the beginning of this section. Each EAGM
generates a variation of the main algorithm defined by its corresponding AGM.
By methodical application of spatial ordering, we derive a family of SSSP algo-
rithms. In the next section, we evaluate the performance of different EAGMs.

5 Experiments and Results

In this section, we implement and compare the weak scaling performance of
each derived EAGM in Table 2. In addition, we also compare the performance of
the EAGMs to the performance of SSSP algorithms available in two well-known
graph processing frameworks PowerGraph [5] and PBGL [4].

Weak scaling performance is measured on two types of synthetic R-MAT [2]
graphs: RMAT1 graphs with R-MAT parameters A = 0.57, B = C = 0.19,D =
0.05 and with edge weights ranging 0–100, and RMAT2 graphs with R-MAT
parameters A = 0.5, B = C = 0.1,D = 0.3 and with edge weights 0–255.
All experiments were carried out on Cray XE6/XK7 nodes, each with 2 AMD
Opteron Abu Dhabi CPUs (for total of 32 cores), and 64 GB of memory per
node (4 numa domains, 2 per CPU).

The algorithms are implemented in AM++ [14], a light-weight active mes-
saging framework. Graph vertices are equally distributed among distributed
processes and in-node graph structure is stored in compressed sparse row for-
mat. Disjktra’s orderings is implemented using concurrent priority queues at the
process and the numa levels, and using standard priority queue at the thread
level.

5.1 Scaling Results

The weak scaling results are presented in Figs. 3, 4 and 5. Experiment results for
basic AGMs are represented using the buffer designator. As in Table 2, EAGMs
with thread-level, node-level and numa-level Dijkstra orderings are represented
using threadq, nodeq and, numaq designators. We tested the performance of
Δ-stepping EAGMs for three delta values (Δ = 3, 5, 7) and KLA-SSSP EAGMs
with three k values (k = 1, 2, 3). In the following, we discuss results in detail.

Δ-Stepping Variations. The basic Δ-stepping (buffer) algorithm performs
the best in-node (up to 32 cores). Since no communication is involved, the addi-
tional ordering provided by the other implementations does not provide a suffi-
cient benefit for its overhead. In general, the threadq variation is the fastest in
the distributed setting for both RMAT1 and RMAT2 graph inputs. The nodeq
and the numaq variations perform better with increasing deltas, but they are not
competitive with the buffer implementation.

Families of Graph Algorithms: SSSP Case Study 437

Fig. 3. Timing results of Δ-stepping. Shaded region indicates single node runs.

For RMAT1 graph inputs, PoweGraph shows better distributed performance
for small scale graphs. However, for larger graph inputs, PowerGraph does not
scale well. All the Δ-stepping EAGMs outperform PowerGraph at higher scales,
especially for RMAT2. The threadq EAGM shows better performance than
PBGL on RMAT2 graphs, and for RMAT1 graphs, all EAGMs outperform
PBGL.

In summary, while in-node performance is dominated by the basic Δ-stepping
algorithm (excluding PowerGraph and PBGL results), the distributed execution
shows significant improvement with the threadq EAGM. Although the numaq
and nodeq variations provide more ordering than the threadq variation, the over-
head of the concurrent ordering reduces the performance of numaq and nodeq.

438 T.A. Kanewala et al.

Fig. 4. Timing results of KLA. Shaded region indicates single node runs.

KLA Variations. KLA variations show different performance characteristics
than Δ-stepping. For KLA, the nodeq and the numaq variations perform the
best at scale, with K = 1. At greater K values, the performance of threadq
is comparable to nodeq and numaq, but, in absolute terms, the performance at
higher K values is worse than at K = 1. The numaq and nodeq provide the best
potential ordering by ordering the most items. The overheads are kept at bay
because at K = 1 all the writes to the next level’s queue occur before all the
reads. For higher K values, writes and reads get more mixed, and the advan-
tage of numaq and nodeq becomes less pronounced. In KLA, for both RMAT1
and RMAT2 inputs, all EAGM variations (threadq, nodeq and numaq) perform
better compared to the basic buffer variation.

Families of Graph Algorithms: SSSP Case Study 439

Fig. 5. Timing results of the Chaotic EAGM. Shaded region indicates single node
runs.

For RMAT1 graph inputs, PowerGraph outperforms almost all the KLA
EAGMs. However, PowerGraph execution time tends to increase with the scale,
but KLA-SSSP EAGM variations tend to scale well with the increasing scale. For
RMAT2 graph inputs, all the KLA-SSSP EAGM variations, except for buffer,
outperform PowerGraph in distributed execution. However, for RMAT2, PBGL
outperforms almost all EAGMs, and numaq and nodeq tend to perform better at
higher scales with K = 1. All the EAGMs show better performance than PBGL
for RMAT1 graphs.

Chaotic Variations. For chaotic EAGMs, the thread-level ordering shows
good performance, specially in distributed execution. For RMAT2, threadq weak
scales almost perfectly in distributed execution. In addition, the threadq vari-
ation outperforms GraphLab and PBGL for both RMAT1 and RMAT2 graphs
in distributed execution. Furthermore, the threadq Chaotic EAGM is faster
than all other EAGMs in terms of absolute performance, demonstrating how the
structured (E)AGM approach may result in new, highly performant algorithms.

6 Related Work

Abstract Models–For shared memory systems ordering in graph algorithms
is studied as schedulers. Nguyen and Pingali synthesized concurrent schedulers
in [11]. Pingali et al. ([12] and [13]) discussed a data-centric formulation, that
treats graphs as abstract data types, called operator formulation. Ordering is
achieved using an operator called “ordered set iterator”. The AGM formulations’
processing function works at the workitem level while operator formulation is
applied on the graph. In addition, their ordering formulation is different from
the AGM ordering formulation.

440 T.A. Kanewala et al.

Spatial Ordering–Though, parallel processing in SSSP is well studied, spatial
level orderings for SSSP problem are not common. Pingali et al.has done research
on shared memory systems with Galois [10] scheduler, OBIM [8] that include spa-
tial characteristics of the machine. In summary, shared memory models may not
extend to distributed memory immediately due to cost factors that are significant
in distributed memory than in shared memory (e.g., low compute/communica-
tion ratios, overhead of barriers, overhead of subgraph computations etc.,). The
AGM model is designed to minimize such overheads.

7 Conclusions

Using the AGM abstraction, we showed that existing distributed graph algo-
rithms; Dijkstra’s SSSP, Δ-stepping SSSP and KLA-SSSP has the same process-
ing logic but with different orderings. These orderings generate different equiva-
lence class either based on distance or based on the level. We also showed, pro-
posed EAGM model generates more fine-grained orderings at less synchronized
spatial levels. Results of our experiments showed that some of the generated
algorithms perform better compared to standard distributed memory, parallel
SSSP algorithms under different graph inputs.

Acknowledgments. This research is based upon work supported by the National
Science Foundation under grant 1319520. Access to computational resources was sup-
ported in part by Lilly Endowment, Inc., through its support for the Indiana University
Pervasive Technology Institute, and in part by the Indiana METACyt Initiative. The
Indiana METACyt Initiative at IU was also supported in part by Lilly Endowment,
Inc. Significant part of this work was performed while the authors were affiliated with
Indiana University.

References

1. Bellman, R.: On a routing problem. Technical report, DTIC Document (1956)
2. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph

mining. In: SDM, vol. 4, pp. 442–446. SIAM (2004)
3. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.

1(1), 269–271 (1959)
4. Edmonds, N., Breuer, A., Gregor, D., Lumsdaine, A.: Single-source shortest paths

with the parallel boost graph library. In: The Ninth DIMACS Implementation
Challenge: The Shortest Path Problem, Piscataway, NJ, pp. 219–248 (2006)

5. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph: distrib-
uted graph-parallel computation on natural graphs. In: OSDI, vol. 12, p. 2 (2012)

6. Harshvardhan, Fidel, A., Amato, N.M., Rauchwerger, L.: KLA: a new algorithmic
paradigm for parallel graph computations. In: Proceedings of 23rd International
Conference on Parallel Architectures and Compilation, pp. 27–38. ACM (2014)

7. Kanewala, T.A., Zalewski, M., Lumsdaine, A.: Abstract graph machine. arXiv
preprint arXiv:1604.04772 (2016)

http://arxiv.org/abs/1604.04772

Families of Graph Algorithms: SSSP Case Study 441

8. Lenharth, A., Nguyen, D., Pingali, K.: Priority queues are not good concurrent
priority schedulers. The University of Texas at Austin, Department of Computer
Sciences. Technical report TR-11-39 (2011)

9. Meyer, U., Sanders, P.: δ-stepping: a parallelizable shortest path algorithm. J.
Algorithms 49(1), 114–152 (2003)

10. Nguyen, D., Lenharth, A., Pingali, K.: A lightweight infrastructure for graph ana-
lytics. In: Proceedings of 24th ACM Symposium on Operating Systems Principles,
pp. 456–471. ACM (2013)

11. Nguyen, D., Pingali, K.: Synthesizing concurrent schedulers for irregular algo-
rithms. In: ACM SIGPLAN Notices, vol. 46, pp. 333–344. ACM (2011)

12. Pingali, K., Nguyen, D., Kulkarni, M., Burtscher, M., Hassaan, M.A., Kaleem,
R., Lee, T.H., Lenharth, A., Manevich, R., Méndez-Lojo, M., et al.: The tao of
parallelism in algorithms. ACM SIGPLAN Not. 46(6), 12–25 (2011)

13. Prountzos, D., Manevich, R., Pingali, K.: Elixir: a system for synthesizing concur-
rent graph programs. ACM SIGPLAN Not. 47(10), 375–394 (2012)

14. Willcock, J.J., Hoefler, T., Edmonds, N.G., Lumsdaine, A.: AM++: a generalized
active message framework. In: Proceedings of 19th Internatational Conference on
Parallel Architectures and Compilation Techniques, pp. 401–410. ACM (2010)

SEMem: Deployment of MPI-Based In-Memory
Storage for Hadoop on Supercomputers

Thanh-Chung Dao(B) and Shigeru Chiba

Graduate School of Information Science and Technology,
The University of Tokyo, Tokyo, Japan

chung@csg.ci.i.u-tokyo.ac.jp, chiba@acm.org

Abstract. This paper reports our experiments to compare various
deployment strategies of memcached-like in-memory storage for Hadoop
on supercomputers, where each node often does not have a local disk
but shares a slow central disk. For the experiments, we developed our
own memcached-like file system, named SEMem, for Hadoop. Since
SEMem was designed for supercomputers, it uses MPI for communica-
tion. SEMem is configurable to adopt various deployment strategies and
our experiments revealed that a good deployment strategy was allocat-
ing some nodes that work only for in-memory storage but do not directly
perform map-reduce computation.

1 Introduction

This research is motivated by the challenges of running data-intensive frame-
works, such as Hadoop [15], Spark [16], and Flink [5] on supercomputers to
meet their design. A supercomputer is a big machine consisting of thousands
of high-performance nodes that are connected to each other through high-speed
network. Not only running efficiently compute-intensive but also data-intensive
workloads, for example, clustering and classification in machine learning and
graph processing, are challenges on supercomputers.

In today’s top supercomputers, each compute node does not have a local
disk or is equipped only with a small size solid state drive (SSD) due to its
relative costs and high failure rate. It makes writing and reading intermediate
data during job execution (Hadoop/Spark) become a bottleneck since those data
must be stored on the distributed central disk whose access time is considered
slower five orders of magnitude than one of main memory [9]. To solve that
problem, a natural approach is using in-memory intermediate data storage in
order to avoid spilling to disk. We call that approach as memcached-like style
[7] since in-memory storage could be at either a local or remote node.

How to deploy memcached-like file systems on supercomputers is not an easily
answerable question and combination of memcached-like in-memory storage and
Hadoop is not studied well as far as we know. A feature of supercomputers is
that the number of compute nodes is often huge and supercomputer users submit
a job to a job queue in order to request a number of nodes they need. When

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 442–454, 2017.
DOI: 10.1007/978-3-319-64203-1 32

SEMem: Deployment of MPI-Based In-Memory Storage 443

compute nodes are given to users, should we deploy in-memory storage on every
node? should we allocate dedicated nodes from the given nodes for in-memory
usage only? or should we allow using memory of remote nodes?

In this paper, we answer that research question by designing experiments
of different in-memory storage deployment strategies for figuring out which
one achieves a good performance when running data-intensive MapReduce
applications on supercomputers. For experiments, we have designed our own
memcached-like file system, named SEMem. Since Hadoop and Spark are good
choices to run data-intensive applications even on supercomputers in aspects
of productivity and maturity, we integrated our SEMem with the implemen-
tation of Hadoop. The deployment of SEMem is easily configurable and the
intra-communication is through MPI, which is the de facto networking protocol
on supercomputers. We examined the following deployment strategies:

1. SEMem is deployed as RAM disks where data is stored only in local memory.
2. SEMem is deployed on every node and data can be stored in remote memory.
3. SEMem is deployed only on dedicated nodes that are used only for storage.

Note that the original memcached software [11] is not a file system, does not
support Hadoop directly, and uses TCP socket for data exchange. That is the
reason why we developed SEMem from scratch.

Our experimental results reveal that allocating a group of nodes used only to
store data in memory shows a good result in data-intensive applications with 7–
10% improvement in comparison with deploying the memcached-like file system
on every computation node. The benefit has been achieved in the context in
which the ratio of the dedicated nodes to the total nodes is small (less than
12%). Note that there is no computation task running on those dedicated nodes.
No computation task on the dedicated nodes might give a chance of allocating
bigger memory space to in-memory storage and makes those nodes less busy.

Moreover, our experiments reveal that supercomputer centers can consider
in-memory storage (e.g. SEMem) instead of installing SSD storage for flexible
hardware resource configuration and supercomputer users can choose in-memory
storage as an alternative of SSD. Compared to the central disk and SSD storage
on TSUBAME supercomputer [13], our experimental results show that SEMem
reduces execution time by 25% and 5%, respectively, on average when data size is
bigger than 128 GB. In this experiment, SEMem runs on dedicated nodes and for
fairness of this experiment, all three configurations use the same total number of
nodes. In case of SEMem, some nodes are assigned to only storing data, whereas
they are used for computation in the central-disk and SSD configurations. That
means SEMem uses a smaller number of computation nodes.

In the context in which the ratio of the dedicated nodes to the total nodes
is small, better performance from using fewer compute nodes demonstrates that
Hadoop aims for data organization rather than computation.

444 T.-C. Dao and S. Chiba

2 Motivation

2.1 Running Hadoop MapReduce on Supercomputers

In today’s top supercomputers, it is typical that there is no local disk on each
compute node, but SSD is sometimes equipped [13]. Local disk on each node
can be a point of failure and when it happens, it is difficult to fix. Instead of
local disk, there is a shared storage called central disk. Disk I/O from and to the
central disk is slow. SSD can be integrated in each compute node. Note that SSD
might be a temporary storage where data will be deleted after job execution.

When running Hadoop MapReduce on supercomputers, writing/reading
intermediate data is a performance bottleneck since it must be stored on the
central disk. There are two main phases in Hadoop MapReduce workflow: map-
ping and reducing. Mapping tasks generate intermediate data that is written
to a node’s local disk and deleted after being sent to reducers. On supercom-
puters, the central disk is used to store that intermediate data instead of local
disks. Reducing tasks fetch data from nodes where intermediate data is available
and execute the reducing function. Figure 1 shows execution timeline of tera-sort
application on TSUBAME supercomputer consisting of 256 mapping tasks and
128 reducing tasks. It reveals that in mapping tasks, writing time of intermediate
data to the central disk (red color) is relatively long in comparison with the total
execution time. In the figure, mapping tasks have shorter execution time than
reducing ones. Using a local SSD helps improve writing/reading performance,
but it is not always available.

1
31

66
10

6
15

1
19

6
24

1
28

6
33

1
37

6

Timeline (second)

Ta
sk

 ID

0 40 80 120

Start-up (JVM & User info)
Task initializing
Data waiting
Shuffling (Data copying)
Data merging
Data reading
Task running
Task finishing

Fig. 1. Tera-sort running on TSUBAME supercomputer using its central disk: shorter
running tasks are mappers, the longer ones are reducers.

2.2 In-Memory Approach and Deployment

In-memory storage is a natural approach that helps avoid disk spilling by keeping
intermediate data in memory [4,12,16]. We call that approach as memcached-
like style [7] since in-memory storage could be at either a local or remote node.

SEMem: Deployment of MPI-Based In-Memory Storage 445

Memcached [11] is a distributed memory cache software that is used widely
in web applications to speed up database accessing. A typical deployment of
Memcached is installing its daemon on dedicated nodes used only for in-memory
storage.

How to deploy memcached-like file systems on supercomputers is not an
easily answerable question, even on commodity or off-the-shelf clusters, such
as laboratory clusters and Amazon EC2. In this paper, we focus only on the
supercomputer environment since the modern (or future) cloud systems [3] look
like supercomputers. A feature of supercomputers is that the number of compute
nodes are often huge and supercomputer users submit a job to a job queue in
order to request a number of nodes they need. When compute nodes are given
to users, should we deploy in-memory storage on every node? should we allocate
dedicated nodes from the given nodes for in-memory usage only? or should we
allow using memory of remote nodes? Moreover, combination of memcached-like
storage and Hadoop is not studied well as far as we know.

3 Experiment Design

We answer the above research question by designing experiments of different
in-memory storage deployment strategies for figuring out which one achieves
a good performance when running data-intensive MapReduce applications on
supercomputers. For experiments, we have designed our own memcached-like
file system named SEMem. We examined the following deployment strategies:

RamDisk: SEMem is deployed as RAM disks where data is stored only in local
memory. Memory size on each node is limited, data might not fit into memory.
When out of memory happens, the task must be stopped or restarted on other
nodes. For large-scale datasets, this approach is not feasible. Our expectation is
this deployment strategy is fast in small-scale datasets.

Every Node: SEMem is deployed on every computation node and data can be
stored in remote memory. We call nodes that are responsible for running appli-
cations computation nodes. Computation nodes are used to run a job’s tasks,
e.g. Mapping or Reducing tasks in Hadoop MapReduce. The SEMem daemon is
run on all computation nodes and helps share a node’s in-memory storage with
other nodes. This strategy solves the problem of out of memory when data size
is bigger than a node’s in-memory storage size.

Dedicated Nodes: SEMem is deployed only on dedicated nodes that are used
only for storage. We allocate a group of nodes that is only used to store data in
their memory. There is no computation task running on that group of nodes. We
call those nodes memory nodes and their memory external memory. The SEMem
daemon is run only on each memory nodes. In this deployment strategy, we trade
computation resource for data storage by using memory nodes only for keeping
data. A question is that whether this approach is a complete waste of resources
or not. No computation task on memory nodes gives a chance of allocating bigger
memory space to SEMem and makes the memory nodes less busy.

446 T.-C. Dao and S. Chiba

SEMem Architecture: In this section, we describe our own in-memory storage
called SEMem. SEMem is easy to be configured to change the deployment strat-
egy of in-memory storage. SEMem is designed to tightly integrate with Hadoop
MapReduce framework.

In original Hadoop MapReduce workflow (Fig. 2a), intermediate data gener-
ated by mapping tasks is written to a node’s local disk. In case of supercomputer,
instead of local disks, the central disk or SSD is used to store that data. Figure 2a
shows how map output is copied from mappers to reducers. At the mapping side,
map output is buffered in memory, and then when its size reaches buffer size, it
is spilled to the local disk. The spilled files are merged into a final map output at
the end of the mapping phase. There is a shuffle server (thread) running on each
computation node waiting for fetching requests from reducers. When a request
comes, the shuffle server will look up map output metadata, read again those
data from the local disk, and send back to the reducer.

In the RamDisk deployment (Fig. 2b), map output is stored totally in memory
to avoid writing to and reading from the local disk. Map output is kept in memory
instead of spilling to the local disk when the buffer is full. After merging, map
output is sent to the shuffle server. A memory space is created on each shuffle
server to keep map output in memory. When a fetching request comes, the shuffle
server looks up the memory space and is able to send back immediately to the
reducer. The size of the memory space on each shuffle server is limited, so out

(a) The original Hadoop (b) RamDisk deployment

(c) Every node deployment (d) Dedicated node deployment

Fig. 2. SEMem configuration for each deployment strategy: a shuffle server is integrated
into NodeManager of Hadoop framework. Memory daemon (or node) is a separate
process running on each node of the every-node and dedicated-node strategies and
responsible for in-memory storage. In the every-node strategy, the memory daemon
and shuffle server are available on the same node.

SEMem: Deployment of MPI-Based In-Memory Storage 447

of memory might happen during data fetching. For example, suppose that the
memory space size is 8 GB and there are 20 map tasks running on the node. If
each input data is 512 MB and running tera-sort application, the total size of
map output is 10 GB. Those data cannot fit into the memory space. Although
the map output can be deleted right after it is sent to the corresponding reducer,
that out of memory error can happen at any time.

In Every-node deployment (Fig. 2c), SEMem daemon (called memory dae-
mon) is run on the same node with the shuffle server. In contrast to RamDisk
where data is stored at a shuffle server, data can be kept at any node’s in-memory
storage (memory daemon). Round-robin data affinity is used to store in-memory
data since it makes data more distributed and helps speed up data fetching later.
This kind of data affinity does not use the local memory for storage as long as
possible since unbalanced intermediate data might be a performance bottleneck.

Dedicated-node deployment (Fig. 2d) is to create a group of nodes (called
memory nodes) used only for storing map output and there is no map or reduce
task running on those nodes. On supercomputer environment, those nodes are
requested on the same job as the nodes used to run Hadoop applications. In
Fig. 2d, the group of memory nodes consists of one node manager (master) and
slave nodes (just called memory nodes). Node manager is responsible for data
placement and monitoring memory left on each memory node. Since there is no
task running on memory nodes, the amount of memory allocated can be bigger.

In comparison with RamDisk design, data exchange among nodes of SEMem
in Every-node and Dedicated-node is more complex. First, the mapper requests
its shuffle server to send map output. If the shuffle server still has empty space,
data is sent then. If the shuffle server’s memory space is full, the mapper requests
the memory node manager to send map output. The node manager will find a
relevant place and send back to the mapper. Then, the mapper starts sending
map output to the specified memory node. When finishing sending map output,
the mapper also informs the shuffle server about the location of map output on
memory nodes.

What is the best strategy for storing map output in external memory? Should
we distribute map output to as many memory nodes as possible or just store on
a memory node and when it is full, the next memory node will be used? The
former helps increase fetching throughput since reducers can request to more
memory nodes. The latter is useful if map output is packaged and sent once to
a reducer. In the current design, we have implemented a round robin scheduler
on the memory node manager. Data will be distributed on all memory nodes.

Communication Protocol: SEMem uses MPI as communication protocol,
which is the de facto protocol on supercomputers and exploits underlaying hard-
ware such as remote DMA. This is a reason why we developed SEMem from
scratch since Memcahced uses TCP/IP. SEMem uses the direct buffer memory
of Java and MPI binding for Java [14] included in OpenMPI 1.7.5. It also uses our
HPC-Reuse framework [6] to avoid MPI-Spawn or other methods to keep MPI
connections available when a new process starts. To multiplex non-blocking com-

448 T.-C. Dao and S. Chiba

munication, SEMem runs a dedicated thread on every node to handle it. Note
that our supercomputers do not support MPI THREAD MULTIPLE mode.

Storage Size: Storage size of SEMem depends on the number of memory nodes.
To waste less CPU resources on memory node, it is necessary to minimize the
number of memory nodes, although out of memory must not happen. In our
current design, the number of memory nodes is estimated roughly based on the
size of input data. Our assumption is that total size of map output is equal to
one of input data. Therefore, the number of memory nodes chosen satisfies the
condition that the total size of memory space on shuffle servers and the memory
nodes must be bigger than the size of input data. It might not achieve the best
performance of data fetching, but it helps prevent out of memory error. That
error is more serious if it happens since the whole task will be restarted.

Minimizing Changes in Hadoop: Keeping the original source code (e.g.
Hadoop or Spark) unchanged as much as possible is important to increase
SEMem’s capability in order to be integrated easily to other different data-
intensive frameworks. In our implementation of Hadoop integration, Hadoop
source code is changed with the below ratio:

– Line of code/total of Hadoop: 443/1,851,473
– Number of classes/total of Hadoop: 8/35,142

4 Experimental Results

In this section, first we compare three in-memory deployment strategies including
RamDisk, Every-node, and Dedicated-node that are described in Sect. 3. We use
three workloads in Puma benchmark suit [1]: WordCount, InvertedIndex, and
SequenceCount. Second, we evaluate how fast SEMem (using the dedicated-node
deployment strategy) is in comparison with the central-disk-based and SSD-
based storage. There are three test configurations in this experiment: Central-
disk, SSD, and SEMem storages. Tera-sort application is chosen for comparison
since the size of intermediate data is big enough to show the bottleneck of the
central disk.

Our experiments are conducted on Fujitsu FX10 supercomputer at The
University of Tokyo [8] and TSUBAME supercomputer at Tokyo Institute of
Technology [13]. A FX10 node is equipped with SPARC64 IXfx 1.848 GHz (16
cores) and 32 GB memory. FX10 nodes are connected with each other through
Tofu interconnection [2]. The maximum throughput of that interconnection is
80 Gbps. A TSUBAME node has less cores (Intel Xeon X5670 2.93 GHz - 12
cores) and 54 GB memory. Each node is connected with Infiniband device Grid
Director 4700. Another feature of TSUBAME is that 120 GB of SSD storage is
available on each node.

SEMem: Deployment of MPI-Based In-Memory Storage 449

SEMem has been implemented using Java since it helps integrate more easily
with Hadoop, Spark, or Flink frameworks. We use Hadoop v2.2.0 for experi-
ments, but any Hadoop version 2.x can be integrated with SEMem. Spark can
also use SEMem as an intermediate storage. Our Hadoop cluster consists of
one resource manager (master) and 31 slave nodes. Each slave node can run at
most four MapTasks or ReduceTasks simultaneously and maximum heap size
of a JVM is 4096 MB of memory. Block size of Hadoop Distributed File System
(HDFS) is 256 MB. In our experiments, all input data is stored in HDFS running
on the central disk.

4.1 Deployment Strategies

This experiment is aimed to show which deployment strategy of in-memory
storage shows a better performance in data-intensive applications. We compare
three configurations on Fujitsu FX10 supercomputer: RamDisk, Every-node, and
Dedicated-node. Moreover, for comparison of in-memory storage and spilling
data to the central disk, we compare three strategies with another configuration
called Central-disk. The largest size of input data is 120 GB. The number of
reducers is set to 128 for all datasets. Note that running time is 0 (zero) denoting
that out of memory happens and the corresponding job is stopped.

Regarding fairness of this experiment, all three configurations use the same
total number of nodes. In case of dedicated-node, some nodes are assigned to
only storing data, but they are used for computation as well in Ramdisk and
Every-node. In this experiment, while we use 32 nodes for computation and 4
nodes for SEMem storage, 36 nodes are allocated for computation in Ramdisk
and every-node configurations.

Figure 3 reveals that RamDisk is the fastest strategy, but out of memory
happens when data size is bigger than 120 GB. Dedicated-node shows a bet-
ter performance (10% on average) than Every-node when data size is bigger
than 40 GB. Compared with central-disk configuration, Dedicated-node is always
faster, especially 32% improvement in SequenceCount workload, whereas Every-
node is slower in WordCount and InvertedIndex, but faster in SequenceCount
26% on average.

RamDisk is the fastest deployment strategy since data is stored at local
memory and no inter-node communication. However, due to uneven distribution
of input data, intermediate data is not fit into memory at some nodes. That
is why out of memory happens. In WordCount and InvertedIndex workloads,
Every-node is slower than central-disk configuration since more communication
is required and computation nodes might be busier when SEMem daemon is run.
By contrast, central-disk is the slowest configuration in SequenceCount because
size of intermediate data is larger.

4.2 SEMem (Dedicated-Node) vs. Central-Disk (HDD) and SSD

This experiment is aimed to show how fast SEMem is in comparison with the
central-disk-based and SSD-based approaches. We compare three test configu-

450 T.-C. Dao and S. Chiba

0
20

0
40

0
60

0
80

0
10

00

Data size

Ti
m

e
(s

ec
on

d)

10G 20G 40G 80G 120G

Dedicated-node
RamDisk
Every-node
Central-disk

(a) WordCount

0
20

0
40

0
60

0
80

0
10

00

Data size

Ti
m

e
(s

ec
on

d)

10G 20G 40G 80G 120G

Dedicated-node
RamDisk
Every-node
Central-disk

(b) InvertedIndex

0
20

0
40

0
60

0
80

0
10

00

Data size

Ti
m

e
(s

ec
on

d)

10G 20G 40G 80G 120G

Dedicated-node
RamDisk
Every-node
Central-disk

(c) SequenceCount

Fig. 3. Running time on different deployment strategies: zero at 120 GB at RamDisk
denotes that out of memory happens and the corresponding job is stopped.

rations on TSUBAME: the central-disk-based Hadoop, SSD-based Hadoop, and
our approach (SEMem). Tera-sort is used for comparison and input data is gen-
erated by tera-gen. The largest size of input data is 1 Terabyte. We run each
experiment of a data size twice and calculate the average execution time. The
number of reducers is fixed to 128 for all data sizes. The number of nodes (#)
is denoted in the figure.

In this experiment, SEMem runs on dedicated nodes and for fairness of this
experiment, all three configurations use the same total number of nodes. In case
of SEMem, some nodes are assigned to only storing data, whereas those nodes
are used for computation in the central-disk and SSD configurations. That means
SEMem uses a smaller number of computation nodes.

Figure 4a shows that as the size of input data increases, SEMem is faster
than central-disk-based storage, and close to SSD-based storage. Compared to
central disk and SSD storage, SEMem reduces execution time by 20% and 5%,
respectively, on average when data size is bigger than 512 GB. SSD storage has
better performance when data size is less than 256 GB.

SEMem: Deployment of MPI-Based In-Memory Storage 451

Fig. 4. SEMem vs. central disk and SSD

Choosing SSD or SEMem storage? at the supercomputer centers, when
they design a new supercomputer, a question is that whether each node should
be equipped with a SSD storage or not. SSD storage is considered difficult for
maintenance and it can be a point of failure. For example, data on SSD storage
of TSUBAME must be deleted manually after each job. If they do not want to
install SSD, a question is whether SEMem can be an alternative. Moreover, if
SSD is available and also become a paid resource on supercomputers, whether
supercomputer users should buy SSD storage or choose to increase number of
computation nodes in order to create SEMem. We design an experiment to
answer those questions. This experiment is conducted on TSUBAME.

We keep the same number of computation nodes for both SEMem and SSD
test configurations. We assume that SEMem and SSD is two types of resources
that users can choose. SEMem has a defined number of nodes used for storage.
Tera-sort is used for comparison and maximum input data is 1 Terabyte.

Figure 4b reveals that SEMem is always faster than SSD storage, especially
41% improvement at 128 GB of input data. When input size is 1 Terabyte, the
improvement is 13% in comparison with SSD storage, but SEMem helps decrease
the total execution time (1249 s) by 159 s. The figure shows that SEMem is
feasible to become an alternative of SSD storage.

4.3 Communication Protocol

This experiment is aimed to check how fast our MPI implementation on SEMem
is in comparison with TCP communication and whether the improvement
achieved by using SEMem comes mainly from in-memory storing or fast MPI
communication. We run the original Hadoop in memory and compare it with
SEMem-based Hadoop. The original Hadoop uses TCP communication for data
exchange between reducers and shuffle servers. This comparison is fair because
SEMem is an in-memory storage, but uses MPI for data exchange. Tera-sort
workload is used for comparison and the number of nodes (#) is denoted in the
figure.

452 T.-C. Dao and S. Chiba

Figure 5a shows there is no difference when the size of input data is smaller
than 128 GB. However, MPI-based Hadoop is faster 10% and 5%, respectively,
when input size is 256 and 512 GB. Compared with Fig. 4a at the data size
of 256 GB, MPI communication contributes less than 20% to the performance
improvement by using SEMem. This experiment has proved that the main
source of improvement (80%) comes from in-memory storing on memory nodes
of SEMem.

Fig. 5. Evaluation of implementation issues

4.4 Storage Size of SEMem

This experiment is designed to measure performance impacts of storage size.
SEMem’s memory capacity can be configured based on number of memory nodes.
We have conducted an experiment by keeping the same number of computation
nodes and changing number of memory nodes. The purpose of this experiment
is to check whether our current approach of finding the number of memory
nodes is effective or not. We always run tera-sort application on 32 computation
nodes. The number of memory nodes ranges from 4 to 16. The size of input
data is 64 GB generated using tera-gen application. According to our estima-
tion, required number of memory nodes should be 4–8 nodes. We measure data
copying time (between shuffle servers and memory nodes and reducers) rather
than total execution time. Figure 5b shows that when number of memory nodes
is 8, data is copied fastest. However, if increasing number of memory nodes from
8 to 16, copying time is slower due to complexity in node management.

5 Related Work

There are several proposals of using in-memory storage in Hadoop, but they
did not clearly describe and evaluate deployment strategies including location of
in-memory instances and storage size. M3R [12] is an in-memory Hadoop engine

SEMem: Deployment of MPI-Based In-Memory Storage 453

implemented using X10 programming language and M3R instances running on
each node is responsible for in-memory storage by providing a shared heap-state.
Although X10 supports where data is stored through places and activities oper-
ators, but the paper did not mention it explicitly and also have any evaluation.
HaLoop [4] provides caching preferences, such as reducer input and output cache
and mapper input cache, but intermediate data is only shared on the same node
between jobs and deployment strategies are not relevant in this context. Spark
[16] is a data-intensive framework and uses in-memory storage to improve per-
formance compared with Hadoop. It proposed a programming model based on
Resilient Distributed Dataset (RDD) and intermediate data is built and gen-
erated from RDDs. It is possible to choose a location for a RDD through pre-
ferredLocations() operator, but there was no evaluation of RDD deployment in
the paper. Moreover, the supercomputer context makes our contribution unique.

Memcached software [11] is close to our implementation of SEMem since it
is a distributed caching system. The combination of Hadoop and Memcached is
a study topic. However, to the best our knowledge, there is no study on using
Memcached to store intermediate data implicitly in Hadoop MapReduce work-
flow. We also evaluated advantages of that combination SEMem and Hadoop.
Memcached uses TCP-based communication and RDMA-based Memcached [10]
is an extension that speeds up internode communication by using RDMA. In our
SEMem, we use MPI for communication among memory nodes. RDMA could
be also enabled automatically in MPI communication on supercomputers.

6 Conclusion

In this paper, we have examined in-memory storage deployment strategies
including RamDisk, Every-node, and Dedicated-node. For experiments, we have
designed our own memcached-like file system called SEMem. Dedicated-node
shows a good result in data-intensive applications with 10% improvement in
comparison with Every-node strategy. Dedicated-node is motivated by a fea-
ture of supercomputers that the number of compute nodes is often huge and
supercomputer users can request a number of nodes they need. There is no
computation task running on that group of nodes.

SEMem is an easily configurable in-memory storage for different deployment
strategies. It is tightly integrated with Hadoop, but Spark can use SEMem
as preferred servers in the preferredLocations(). The performance of Hadoop
MapReduce with SEMem should be the same as Spark since both of them are
supporting in-memory storage. In our SEMem, however, users can choose the
best in-memory storage deployment strategy for their applications. MPI commu-
nication on SEMem is an advantage in comparison with other Memcached-like
software.

When we have only a fixed number of nodes, increasing the number of dedi-
cated nodes according to the dataset size should affect the performance. Finding
the best ratio of the dedicated nodes to the total nodes is our future work. More-
over, when the dataset does not fit into memory, SEMem needs to be adapted
to use the central disk or SSD storage if available.

454 T.-C. Dao and S. Chiba

References

1. Ahmad, F., Lee, S., Thottethodi, M., Vijaykumar, T.: Puma: Purdue MapReduce
benchmarks suite (2012)

2. Ajima, Y., Sumimoto, S., Shimizu, T.: Tofu: a 6D mesh/torus interconnect for
exascale computers. Computer 11(42), 36–40 (2009)

3. Amazon Web Services: High Performance Computing (2017). https://aws.amazon.
com/hpc/

4. Bu, Y., Howe, B., Balazinska, M., Ernst, M.D.: Haloop: efficient iterative data
processing on large clusters. Proc. VLDB Endow. 3(1–2), 285–296 (2010)

5. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:
Apache flink: stream and batch processing in a single engine. Bull. IEEE Com-
put. Soc. Tech. Committee Data Eng. 36(4), 28 (2015)

6. Dao, T.C., Chiba, S.: HPC-Reuse: efficient process creation for running MPI and
Hadoop MapReduce on supercomputers. In: 2016 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 342–345. IEEE
(2016)

7. Fitzpatrick, B.: Distributed caching with memcached. Linux J. 2004(124), 5 (2004)
8. FX10: User’s Guide (2015). http://www.cc.u-tokyo.ac.jp/system/fx10/index-e.

html
9. He, J., Jagatheesan, A., Gupta, S., Bennett, J., Snavely, A.: Dash: a recipe for a

flash-based data intensive supercomputer. In: Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1–11. IEEE Computer Society (2010)

10. Jose, J., Subramoni, H., Luo, M., Zhang, M., Huang, J., Wasi-ur Rahman, M.,
Islam, N.S., Ouyang, X., Wang, H., Sur, S., et al.: Memcached design on high
performance RDMA capable interconnects. In: 2011 International Conference on
Parallel Processing, pp. 743–752. IEEE (2011)

11. Memcached: A caching system (2017). https://memcached.org
12. Shinnar, A., Cunningham, D., Saraswat, V., Herta, B.: M3R: increased perfor-

mance for in-memory Hadoop jobs. Proc. VLDB Endow. 5(12), 1736–1747 (2012)
13. TSUBAME: User’sGuide (2016). http://tsubame.gsic.titech.ac.jp/en/top
14. Vega-Gisbert, O., Roman, J.E., Squyres, J.M.: Design and implementation of Java

bindings in Open MPI (2014)
15. White, T.: Hadoop: The Definitive Guide. O’Reilly Media Inc., Sebastopol (2012)
16. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,

M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: Proceedings of the 9th USENIX confer-
ence on Networked Systems Design and Implementation, p. 2. USENIX Association
(2012)

https://aws.amazon.com/hpc/
https://aws.amazon.com/hpc/
http://www.cc.u-tokyo.ac.jp/system/fx10/index-e.html
http://www.cc.u-tokyo.ac.jp/system/fx10/index-e.html
https://memcached.org
http://tsubame.gsic.titech.ac.jp/en/top

Parallel and Distributed Programming,
Interfaces, and Languages

Supporting the Xeon Phi Coprocessor in a
Heterogeneous Programming Model

Ana Moreton-Fernandez(B), Eduardo Rodriguez-Gutiez,
Arturo Gonzalez-Escribano, and Diego R. Llanos

Departamento de Informática, Edif. Tecn. de la Información,
Universidad de Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain

{ana,eduardo,arturo,diego}@infor.uva.es

Abstract. Supercomputers are becoming more heterogeneous. They are
composed by several machines with different computation capabilities
and different kinds and families of accelerators, such as GPUs or Intel
Xeon Phi coprocessors. Programming these machines is a hard task, that
requires a deep study of the architectural details, in order to exploit
efficiently each computational unit.

In this paper, we present an extension of a GPU-CPU heterogeneous
programming model, to include support for Intel Xeon Phi coprocessors.
This contribution extends the previous model and its implementation, by
taking advantage of both the GPU communication model and the CPU
execution model of the original approach, to derive a new approach for
the Xeon Phi. Our experimental results show that using our approach,
the programming effort needed for changing the kind of target devices
is highly reduced for several study cases. For example, using our model
to program a Mandelbrot benchmark, the 97% of the application code is
reused between a GPU implementation and a Xeon Phi implementation.

1 Introduction

Supporting computational accelerators such as GPUs or Xeon Phi coproces-
sors in current programming models is vital to exploit modern parallel plat-
forms. Different kinds and families of accelerators are used in modern high-
performance platforms, as we observe in the configuration of the TOP500 super-
computers [17]. However, programming solutions for an efficient deployment in
accelerator devices in general is a very complex task [12], that relies on the man-
ual management of memory transfers and execution configuration parameters.
For each different computing device, the programmer has to carry out a deep
study of the particular data needed to be computed at each moment, considering
architectural details to exploit efficiently the specific execution system [1].

Many works address the problem of heterogeneous systems management
(e.g. [3,4,15]) following two alternatives: automatically generating specific codes
from sequential or higher-level programming abstractions, or using runtime
libraries that make transparent the use of different device types. Using cur-
rent heterogeneous code generators or compilers, the code should be recompiled
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 457–469, 2017.
DOI: 10.1007/978-3-319-64203-1 33

458 A. Moreton-Fernandez et al.

for each different execution platform in order to better exploit the performance
capabilities of the system. One example is OpenAcc [19]. It provides a simple and
abstract programming framework for accelerators. However, the code should be
recompiled with their specific compilers for each different execution architecture
in order to achieve a good performance.

As for libraries, some works focused on specific kind of applications, address
the portability problem internally using several native programming models.
For example, MAGMA library [5] provides a unified programming environment
for heterogeneous systems using both CPUs and accelerators, such as GPUs or
Intel Xeon Phi, for dense linear algebra algorithms. However, most heteroge-
neous libraries rely on the OpenCL abstraction. OpenCL [16] is a widespread
programming framework to deal with heterogeneous devices. The OpenCL con-
text abstraction allows the memory management of multiple devices of the same
nature (using the same platform in OpenCL notation). The abstractions intro-
duced by OpenCL have been proved to prevent the obtaining of the same effi-
ciency as when using directly the vendor programming models, for several com-
mon situations [9]. Many state-of-the-art heterogeneous frameworks and libraries
with a high level of abstraction [2,7,8,14,18,20], that rely on OpenCL as execu-
tion layer, typically inherit some of these problems. Additionally, during the last
decade several high-performance libraries targeting specific accelerator devices or
CPU architectures, have been developed using the vendor specific programming
models, such as cuBLAS [13] or MKL. For making the most of such works, it is
advisable the use of such native or vendor programming models and compilers,
for each different kind of device.

In this paper, we extend a programming model for heterogeneous platforms
that is not based on the use of OpenCL. The original proposal, named Con-
troller [11], is presented as a library that internally exploits vendor-specific pro-
gramming models available on the platform. It introduces an abstract entity to
allow the transparent launching of series of tasks on a GPU or on a CPU. It
exploits their native or vendor specific programming models, thus enabling the
potential performance obtained by them. In this work we present an extension
of this Controller heterogeneous programming model that includes the support
for Intel Xeon Phi coprocessors, also known as Many Integrated Cores (MICs).
The model is based on the mix of the communication model originally designed
for GPUs in the Controller library with the execution model originally designed
for groups of CPU cores. We develop a complete runtime execution system that
includes methods for task launching, transparent data transfers between the MIC
accelerator and the host, and a queue system to manage the kernel executions
with a customized grain choice. It perfectly fits with the previous Controller
library, thus standardizing and abstracting to the programmer the issues related
to the programming of different kinds of accelerators. It provides a MIC runtime
support for a heterogeneous programming model, that unifies the programming
for heterogeneous systems composed by MIC coprocessors, GPUS, or CPUs, also
obtaining the same performance than using their native programming models.

Supporting the Xeon Phi Coprocessor 459

We also present an experimental study with four study cases. We show that
our approach is highly flexible, with minimum programming effort for changing
the kind of target devices. Moreover, the performance results show that our
implementation does not introduce significant performance penalties compared
with reference codes which use the native/vendor programming models directly.

Fig. 1. Left: previous Controller model, only supporting CPU and GPU. Right: the
MIC Controller proposed model, mixing features from the GPU-CPU submodels.

2 Approach to Support MIC Accelerators

The work presented in [11] proposed the Controller, a simple heterogeneous
programming model to deal with the issues of hybrid computation in an abstract
way to the programmer. This model defines an object able to transparently
manage either a group of CPU cores or a GPU accelerator using internally
native programming techniques (OpenMP and CUDA respectively).

For our new proposal, we distinguish two internal parts in the Controller,
which provide support for each kind of computational device: Execution and
communication management models (see left of Fig. 1). The abstract device
formed by CPU-cores shares the memory space with the host. Thus, the con-
troller object only has to provide an execution model that manages a task queue
and that adapts the fine-grain computations used in the Controller model to a
coarser granularity, more appropriate for CPU threads. On the other hand, for
GPUs, the CUDA programming model already provides an execution system to
enqueue and launch kernels with the same granularity level used in the Con-
troller model. However, the communication operations across different memory
spaces on host and GPUs required the implementation of a more sophisticated
mechanism to integrate different policies and techniques in the Controller model.

In this work we understand as independent parts in the Controller abstraction
both, the execution and the communication management models from different
kind of devices. Thus, we propose their mixture to support a new type of accel-
erator such as the MIC coprocessors. In order to do that, we use: (1) In terms of
execution, the Controller model for groups of CPU cores, that blends blocks of
fine grained kernels into coarse CPU tasks, is appropriated for MIC coprocessors.
(2) In terms of memory management, the abstract model for data communica-
tions needed for the MIC coprocessors is equivalent to the GPU communication
model in the old Controller approach.

460 A. Moreton-Fernandez et al.

The application of this idea leads to a homogeneous programming model for
heterogeneous systems including MIC coprocessors, where the issues related to
the programming of different types of accelerators are transparent for the pro-
grammer. In this work we show the implementation of this idea in the Controller
library, to support computational devices such as MIC coprocessors, GPUs, and
groups of CPU-cores, without redesigning or changing the high-level program-
ming model and interface.

3 Programming with the Controller Model

In this section we describe the concepts related to programming using the Con-
troller model. It introduces the reader to Hitmap [6], the library used for the
managing of data-structures, and the properties of the Controller model [11]
abstract interface and its programming methodology.

Hitmap Library. Hitmap is the library used in the Controllers to provide a
common interface for the data management inside the generic portable kernels.
Hitmap defines the HitTile structure, an abstract entity for n-dimensional arrays
and array tiles of arbitrary size. A HitTile structure is a handler to store array
meta-data, along with the pointer to the actual memory space. There are only
three functions of Hitmap needed to work with the Controller library. The func-
tion hit tileDomainAlloc is used to declare the index domains of a tile array
and allocate the data memory. The function hit tileFree is used to free the data
memory and clean the handler. The function hit tileElem is used in the host or
kernel codes to access the elements of a tile. It receives a tile name, a number of
dimensions, and the indexes values of the desired element. The data are accessed
in row major order in all cases, independently of the device implementation.

Controller Features. The Controller model provides a systematic program-
ming methodology together with several important features: (1) A mechanism
to define from common kernels reusable across different types of devices, to
specialized kernels for specific device kinds; (2) A transparent mechanism of
memory management, including optimized communications of the data struc-
tures between the host and the corresponding images in the accelerators; (3) An
optimization system to select proper values for kernel-launching configuration
parameters (such as the threadblock geometry), guided by simple qualitative
code characterization provided by the programmer. These features makes the use
of our proposal adaptable to the programmer knowledge. Thus, for non-experts
users, it is possible to program a generic approach achieving good performance.
On the other hand, a user with programming experience in the execution plat-
form can take advantage of this knowledge and achieve better results.

Kernel Definitions. In the Controller library, a kernel is declared by using the
primitive KERNEL <type>. Where type may be empty to indicate a kernel usable

Supporting the Xeon Phi Coprocessor 461

on any kind of device, or may be a specific value for a given type of device indicat-
ing a specialized code. The original library supported declarations KERNEL GPU
for CUDA code targeting NVIDIA’s GPUs, KERNEL CPU for host machine code
targeting sets of CPU cores, and KERNEL GPU WRAPPER, KERNEL CPU WRAPPER,
for code to execute in the host which includes calls to specialized GPU or CPU
libraries, such as cuBLAS or MKL routines.

1 /* Matrix addition: Generic kernel code for any type of device */
2 KERNEL(MatAdd, 3,
3 OUT, , C, IN, , A, IN, , B){
4 x = thread.x; y = thread.y;
5 hit_tileElem(C, 2, x, y) = hit_tileElem(A, 2, x, y) +
6 hit_tileElem(B, 2, x, y);
7 }
8 /* Host program using the Controller library */
9 main(){

10 SIZE = 10000;
11 /* Stage 1: Controller creation */
12 Cntrl comm;
13 CntrlCreate(&comm, CNTRL_GPU, 0);
14 /* Stage 2: Data structures creation and initialization */
15 A; B; C;
16 hit_tileDomainAlloc(&A, , 2, SIZE, SIZE);
17 hit_tileDomainAlloc(&B, , 2, SIZE, SIZE);
18 hit_tileDomainAlloc(&C, , 2, SIZE, SIZE);
19 initMatrices(&A, &B, &C);
20 /* Stage 3: Data structures attachment */
21 CntrlAttach(&comm, &A); CntrlAttach(&comm, &B); CntrlAttach(&comm, &C);
22 /* Stage 4: Kernel launching */
23 Thread threadsSpace;
24 ThreadInit(threads, 2, SIZE, SIZE);
25 CntrlLaunch(comm, MatAdd, threadsSpace, 3, &A, &B, &C);
26 /* Stage 5: Data structures detachment */
27 CntrlDetach(&comm, &C);
28 }

Fig. 2. Kernel definition and configuration, and host program of a matrix addition
using the Controller library.

We can see a kernel definition in lines 2–7 of Fig. 2. The kernel-definition
primitive specifies in brackets the number of parameters of the kernel, with a
tuple of information for each parameter. The parameter information includes its
type, name, and input/output role.

Programming Methodology. Building a Controller host program follows sim-
ple development guidelines: (1) The Controller entity creation, associating to this
object the computational device to be managed. A Controller entity should be
created for each computational device that will be used for computation. (2)
The attachment of the data structures to the Controller object. Data structures
that will be accessed by a kernel should be previously attached to the Controller
entity. (3) The launching of the computational kernels on the Controller object.
(4) The detachment of the data structures.

Figure 2 shows a matrix addition implementation that performs the com-
putation on a GPU using the Controller model. In the main program, first, a

462 A. Moreton-Fernandez et al.

Controller object is created, assigning a GPU to the object (lines 12 to 13). Data
structures are created and initialized on the host (lines 15 to 19). After that,
these data structures are attached to the previously created Controller (line 21).
In the step 4, the program launches the kernel MatAdd. It uses a Thread object
to specify the number and index space of the threads to be launched. In this
example a thread is launched for each element of the matrix C (lines 23 to 25).
Finally, the program detaches the matrix with the results (line 27).

In this paper, we propose a method to integrate the support of MIC coproces-
sors in this model, that allows the efficient execution of this program on the Xeon
Phi, only by changing the CNTRL GPU parameter by a new CNTRL XPHI parameter
on the line 13 of the code.

4 Integrating MIC coprocessors in the Controller library

The original version of the Controller library supports the deployment of kernels
on GPUs or virtual computational devices formed by groups of CPU-cores. In
this section we present the support of the MIC devices in the Controller library.
We implement the MIC controller object containing several functionalities,
such as the identification, initialization and management of MIC devices, an
adapted internal queue to manage the asynchronous kernel executions, and a
method to lock accesses to the HitTile data structures on the host while they
are managed in the device memory.

1 /* Internal attach function */
2 attachToXPHI(CntrlXPHI* cntrl,
3 HitTile *tile){
4 Lock(tile, cntrl);
5 MIC= cntrl->MIC;
6 *data = (*)(*tile).data;
7 numBytes = hit_tileSize(tile);
8 #pragma offload target(mic:MIC) \
9 in(data:length(numBytes) \

10 alloc_if(1) free_if(0))
11 }

1 /* Internal detach function */
2 detachToXPHI(CntrlXPHI* cntrl,
3 HitTile *tile){
4 MIC= cntrl->MIC;
5 *data = (*)(*tile).data;
6 numBytes = hit_tileSize(tile);
7 #pragma offload target(mic:MIC) \
8 in(data:length(0) \
9 alloc_if(0) free_if(0)) \

10 out(data:length(numBytes) \
11 alloc_if(0) free_if(1))
12 Unlock(tile, cntrl);
13 }

Fig. 3. Excerpts of the Controller internal code that perform data transfers of a HitTile
object. Left: from the host to a MIC coprocessor. Right: from a MIC coprocessor to
the host.

4.1 Attaching and Detaching Data Structures on the MIC

In computational devices such as GPUs or MIC coprocessors, where their mem-
ory spaces are separated from the host memory space, the attachment/detach-
ment operation also implies a data transfer.

Supporting the Xeon Phi Coprocessor 463

We have implemented two internal functions to perform the data transfers
to/from the MIC coprocessor, using the Intel Language Extensions for Offload
(LEO). These functions are executed internally when the program invokes an
attachment or a detachment operation respectively. Figure 3 shows a summarized
version of the code of both functions.

On the left, we see the code used to attach a tile to a MIC controller object
(represented in the figure by the CntrlXPHI type). In this function, first the
attached tile is locked on the host. Second, the code extracts: (1) The MIC
identifier assigned to the controller object (line 5); (2) The pointer to the
actual data (line 6); and (3) The number of bytes to be transferred (line 7);
After that, the function performs the actual data transfer from the host to the
MIC, ensuring that there is allocated memory space in the target device (using
alloc if(1)), and that after this offloading the actual data will be maintained
(using free if(0)).

On the right, we show the code used to detach a tile whose data have been
modified from a MIC controller object. As in the attachment, first the code
extracts the information about the data transfer (lines 4 to 6). Second, the actual
data transfer from the coprocessor to the host is specified using a pragma. For
determining the pointer of the data previously transferred, the program uses
the in modifier to make the data pointer available in the Xeon Phi, and sets
the length to 0 to prevent any data from being copied (lines 8 to 9). Once the
pointer is available on the MIC, the pragma also specifies the data transfer and
the freeing of the MIC space memory (lines 10 to 11). Finally, the data structure
is unlocked on the host.

1 /* Auxiliar macros for kernels with one parameter */
2 STRINGIFY(a) #a
3 XPHI_WRAPPER_PARAMS1(io1, type1, value1) \
4 type1 value1
5 XPHI_WRAPPER_VALUES1(io1, type1, value1) \
6 value1
7 XPHI_WRAPPER_CAST1(io1, type1, value1) \
8 type1 value1_p = (type1)args[2]; \
9 HitTile value1_t = *(HitTile*)value1_p; \

10 *data_tile1= (*) (value1_t).data;
11 \)1eulav,1epyt,1oi,CIM(1SMARAP_DAOLFFO_IHPX
12 offload target(mic:MIC) in(threads:length(3)) in(value1_t) \
13 in(data_tile1:length(0) alloc_if(0) free_if(0))
14 XPHI_POINTERS1(io1, type1, value1) \
15 HitTile value1 = value1_t; \
16 value1.data = data_tile1;

Fig. 4. Auxiliary macros defined for a one parameter kernel.

4.2 New Kernel Definitions

A kernel definition specifies the device that fits with the contained code by
declaring it using the primitive KERNEL <type>. We extent the Controller frame-
work to support also MIC kernel definitions. A MIC kernel definition is rewritten

464 A. Moreton-Fernandez et al.

1 /* Macro of the kernel definition */
2 KERNEL_XPHI(name, nparams, params...) \
3 /* Single-element function declaration */ \
4 __attribute__((target(mic))) \
5 kernel_xphi_##name(Thread threadId, XPHI_WRAPPER_PARAMS##nparams(params)); \
6 \
7 /* Parallel coarse-grained function */ \
8 inline wrapper_xphi_##name(** args){ \
9 MIC=cntrl->MIC; \

10 CntrlXPHI* cntrl = (CntrlXPHI*) args[0]; \
11 Thread* threads = (Thread*)args[1]; \
12 XPHI_WRAPPER_CAST##nparams(params); \
13 _Pragma(STRINGIFY(XPHI_OFFLOAD_PARAMS##nparams(MIC, params))) \
14 { \
15 XPHI_POINTERS##nparams(params); \
16 _Pragma("omp "){ \
17 i,j,k; \
18 Thread threadId; \
19 _Pragma("omp for private(i,j,k)") \
20 (i=0; i<=threads->x; i++){ \
21 (j=0; j<=threads->y; j++){ \
22 (k=0; k<=threads->z; k++){ \
23 threadId.x = i; \
24 threadId.y = j; \
25 threadId.z = k; \
26 kernel_xphi_##name(threadId, XPHI_WRAPPER_VALUES##nparams(params)); \
27 } } } \
28 }} \
29 \
30 /* Task addition function */ \
31 \,daerhtdaerhT,lrtnc*IHPXlrtnC(ihpx_##eman
32 XPHI_WRAPPER_PARAMS##nparams(params)){ \
33 CntrlXPHIAddTask(cntrl, wrapper_xphi_##name, thread, nparams, \
34 XPHI_WRAPPER_VALUES##nparams(params)); \
35 } \
36 /* Single-element function definition */ \
37 __attribute__((target(mic))) \
38 kernel_xphi_##name(Thread threadId, XPHI_WRAPPER_PARAMS##nparams(params)) \

Fig. 5. Functions internally generated by the MIC kernel definition: (1) Function
to be executed by each fine-grain virtual thread: kernel xphi ##name; (2) Function
that executes a dequeued kernel, grouping virtual threads in coarse-grained OpenMP
threads: wrapper xphi ##name; (3) Function to enqueue a kernel-launching request:
name## xphi.

as three functions using macro functions. We show examples of the code of the
three resulting functions in Fig. 5.

Fine-Grain Virtual Thread Function: The first function implements the
kernel code that the programmer defined to execute for one index element of the
fine-grain virtual threads space. In most array operations, it is used to compute
one data element. The function is named kernel xphi ##name, where ##name
is the kernel name, taken from the first parameter of the kernel definition prim-
itive. It is defined as a MIC function using the attribute target(mic). The
parameters are a multi-dimensional index represented by a Thread object, that
represents a point in the execution domain, and the actual kernel parameters. In
Fig. 5, lines 4 to 5 show the function declaration and lines 37 to 38 the function
definition.

Supporting the Xeon Phi Coprocessor 465

Parallel Coarse-Grained Function: The second one (wrapper xphi ##name)
performs the offloaded coarse-grained parallel computation in the MIC device. It
receives a variable number of parameters. The first one is the controller object,
the second one the domain of fine-grain thread indexes to compute and the rest
are the data structures corresponding to the real parameters. Lines 10 to 12
of Fig. 5 show how the information is extracted from the parameters (auxiliary
macros for the transformations were defined in Fig. 4). The rest of the body of
the function defines the offload region. The offload pragma transfers the data-
structure handlers, the domain represented by a Thread object, and the pointer
to the actual data for each HitTile. As in the detachment operation, in order
to determine the data previously transferred, the offload pragma uses the in
modifier to make the data pointer available in the Xeon Phi, and sets the length
to 0 to prevent any data from being copied (see line 13 of Fig. 4). Inside the offload
region, the HitTile handlers update their data pointer to the actual offloaded
data (line 15). After that, the parallel computation is performed on the specified
domain (lines 16 to 28), grouping virtual thread indexes in actual coarse-grained
threads, by using an OpenMP parallel loop.

Kernel Launch Request: The third one is named name## xphi. It is the
internal implementation of a kernel launch for a MIC. In its body, the func-
tion implements the enqueuing of the kernel execution request in the Controller
object. The information needed is: The controller object, the pointer to the
coarse-grained parallel computation function, and its real parameters (the index
space where the application will be executed, the number of kernel parameters,
and the actual kernel parameters). See lines 31 to 35 of Fig. 5.

4.3 Queue Management and Kernel Launching

As opposite as the CUDA programming model, the offloading MIC coprocessor
programming model does not provide a queue system to manage asynchronous
kernel launchings. We have developed a queue system for the asynchronous exe-
cution of several kernel launches on the MIC coprocessor, currently using a FIFO
policy in our prototype. When a MIC controller object is created, an asynchro-
nous OpenMP task is launched. This task uses OpenMP locks to block until there
are kernel-launching requests in the queue. Then, it dequeues the request and
dispatches/executes it. The execution of a task on the MIC is carried out by
simply executing the already offloaded parallel wrapper xphi ##name generated
function, specified in the request structure, that contains pointers to the function
and parameters. The Controller destructor enqueues a special request that noti-
fies to the OpenMP queue-controlling task that it should release the Controller
resources and finish.

5 Experimental Study

We perform an experimental study to evaluate the potential advantages and
constraints of the integration of the MIC coprocessor in the original Controller

466 A. Moreton-Fernandez et al.

library. The section includes: (1) A description of the considered study cases,
(2) a performance study of our proposal, and (3) a development effort compari-
son between programming using the new Controller extension and using device
vendor programming models.

5.1 Study Cases

We select four benchmarks to test our approach and implementation.

Matrix Addition. It implements a sum of two matrices, storing the result in a
third one: C = A+B. For the Controller version, we use the same generic kernel
implementation tested in previous works for CPU-cores and GPUs, without any
modification.

Black-Scholes. The Black-Scholes formula is based on a mathematical model
of a financial market. The result estimates the price of European-style options.
The original program, obtained from the CUDA Toolkit Samples, independently
applies the formula to the input values of an array, calculating and storing their
results. Again, the Controller version uses the same generic kernel definition for
both GPUs, and MICs accelerators.

Matrix Multiplication. It computes the product of two matrices, storing the
result in a third one: C = A ∗ B. The read patterns on A and B matrices
should be adapted to exploit coalescence and shared memory in GPUs, and
to properly exploit caches and vectorization on MICs. These features lead to
different optimizations in both types of accelerators. Thus, the Controller version
declares different specialized and optimized kernels for each kind of device.

Mandelbrot Algorithm. The Mandelbrot algorithm is used to compute fractal
geometric images. The Controller version uses a single generic kernel definition
for both GPUs and MICs accelerators.

Table 1. Performance results (seconds) comparing LEO reference codes with Controller
codes for different input sizes (left/right). Experiments executed on a Intel Xeon E5-
2620 v2 @2.1 GHz, 32 Gb DDR3 main memory, and with the Xeon Phi Knights Corner
3120A coprocessor. Compiler used: ICC 17.0.0 version with the flags -O3, and -openmp.

Supporting the Xeon Phi Coprocessor 467

Table 2. Measurements of development effort metrics for the codes of the study cases.
Left: comparison of number of code lines, code tokens, and cyclomatic complexity
between the Controller version and the version using native programming models.
Right: comparison in terms of the percentage of words that are common and can be
reused, should be deleted, or should be changed, when porting codes between GPU
and MIC versions using the native models, or the Controller library.

5.2 Performance Study

In this section we show how low is the performance overhead produced by the
implementation of our proposed MIC library extension. Table 1 shows the total
times spent (including computation and data transfers) by the four benchmarks
with two different problem sizes. Codes have been implemented with our pro-
posal, and directly with the Intel Language Extensions for Offload (LEO) and
OpenMP. A similar comparison for groups of CPU-cores and GPUs were pre-
sented in [11]. Both studies indicate only a small constant penalty performance
due to the management of the queue system, that is only noticeable in the results
for the smaller problem sizes presented on the left of Table 1. For bigger problem
sizes, some performance gain is obtained due to Hitmap optimizations in the
internal management of the data structures. In general terms, the performance
obtained by using our approach is similar to the native programming models.

5.3 Development Effort Measures

This section includes two development effort comparisons. First, between the
proposed Controller implementation and the reference codes (using LEO and
OpenMP for MIC, and CUDA for GPUs). Secondly, comparing measures of the
code changes needed to port a GPU implementation to a MIC implementation,
using the Controller or the native programming models.

The results of the first comparison are presented on the left of Table 2. We
measure three classical development effort metrics: Number of lines of code;
Number of tokens, and McCabe’s cyclomatic complexity [10]. The measured
codes include kernel definitions, kernel characterizations, the coordination host
code, and data structures management. We observe that the use of the Controller
library implies less cyclomatic complexity, but more number of lines and tokens.

468 A. Moreton-Fernandez et al.

However, the goal of the library is to provide an homogeneous interface to deal
with any kind of accelerator. For this reason, we also compare the effort needed
for transforming GPU codes in order to port them to a MIC device. See results on
the right of Table 2. We analyze the percentage of words of each implementation
that are common and can be reused, should be deleted, or should be changed.
The largest changes are on the matrix multiplication benchmark, because of
the implementation of different optimized kernels for each device. For the other
benchmarks, we see that using our proposal the programming effort needed to
change the target computational device is extremely low. These measures show
the level of abstraction and standardization achieved by our proposal.

6 Conclusions

In this paper we propose an extension to support the Intel Xeon Phi (MIC)
coprocessors in a CPU-GPU homogeneous programming model for heteroge-
neous systems, that is implemented as a compiler agnostic library. To provide
support for MIC coprocessors, our approach reuses and mixes the internal execu-
tion features for CPU-cores, and the internal memory and communication man-
agement features of the original GPU model. We have completely integrated the
support for a MIC coprocessor in the library, without adding any constraint to
the programming model. The experimental study shows the high flexibility of
our approach, that implies a minimum programming effort for changing the exe-
cution target devices, without significatively penalizing the performance. Future
work includes the integration of scientific libraries, such as MKL, as kernels
in the Controller implementation, and an evaluation with applications of other
domains.

Acknowledgments. This research has been partially supported by MICINN (Spain)
and ERDF program of the European Union: HomProg-HetSys project (TIN2014-58876-
P), CAPAP-H6 (TIN2016-81840-REDT), and COST Program Action IC1305: Network
for Sustainable Ultrascale Computing (NESUS).

References

1. Contassot-Vivier, S., Vialle, S.: Algorithmic scheme for hybrid computing with
CPU, Xeon-Phi/MIC and GPU devices on a single machine. Parallel Comput.:
Road Exascale 27, 25–34 (2016)

2. Deepika, H., Mangala, N., Babu, S.C.: Automatic program generation for heteroge-
neous architectures. In: 2016 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), pp. 102–109. IEEE (2016)

3. Diogo, M., Grelck, C.: Towards heterogeneous computing without heterogeneous
programming. In: Loidl, H.-W., Peña, R. (eds.) TFP 2012. LNCS, vol. 7829, pp.
279–294. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40447-4 18

4. Dolbeau, R., Bihan, S., Bodin, F.: HMPP: a hybrid multi-core parallel program-
ming environment. In: Workshop on General Purpose Processing on Graphics
Processing Units (GPGPU 2007), vol. 28 (2007)

http://dx.doi.org/10.1007/978-3-642-40447-4_18

Supporting the Xeon Phi Coprocessor 469

5. Dongarra, J., Gates, M., Haidar, A., Jia, Y., Kabir, K., Luszczek, P., Tomov, S.:
HPC programming on Intel many-integrated-core hardware with Magma port to
Xeon Phi. Sci. Program. 2015(9), 1–11 (2015)

6. Gonzalez-Escribano, A., Torres, Y., Fresno, J., Llanos, D.R.: An extensible system
for multilevel automatic data partition and mapping. IEEE Trans. Parallel Distrib.
Syst. 25(5), 1145–1154 (2014)

7. Grasso, I., Pellegrini, S., Cosenza, B., Fahringer, T.: A uniform approach for pro-
gramming distributed heterogeneous computing systems. J. Parallel Distrib. Com-
put. 74(12), 3228–3239 (2014)

8. Hijma, P., Jacobs, C.J., van Nieuwpoort, R.V., Bal, H.E.: Cashmere: heteroge-
neous many-core computing. In: 2015 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 135–145. IEEE (2015)

9. Karimi, K., Dickson, N.G., Hamze, F.: A performance comparison of CUDA and
OpenCL. arXiv preprint (2010). arXiv:1005.2581

10. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 4, 308–320 (1976)
11. Moreton-Fernandez, A., Ortega-Arranz, H., Gonzalez-Escribano, A.: Controllers:

an abstraction to ease the use of hardware accelerators. Int. J. High Perform.
Comput. Appl. (2017). http://dx.doi.org/10.1177/1094342017702962

12. NESUS, Network for Sustainable Ultrascale Computing (Cost Action IC1305): A
roadmap for research in sustainable ultrascale systems, October 2016

13. NVIDIA Corporation: Cublas library. NVIDIA Corporation, Santa Clara, Califor-
nia, vol. 15, no. 27 (2008)

14. Pérez, B., Bosque, J.L., Beivide, R.: Simplifying programming and load balancing
of data parallel applications on heterogeneous systems. In: Proceedings of the 9th
Annual Workshop on General Purpose Processing using Graphics Processing Unit,
pp. 42–51. ACM (2016)

15. Riebler, H., Vaz, G., Plessl, C., Trainiti, E.M., Durelli, G.C., Del Sozzo, E., San-
tambrogio, M.D., Bolchini, C.: Using just-in-time code generation for transparent
resource management in heterogeneous systems. In: 2016 IEEE 2nd International
Forum on Research and Technologies for Society and Industry Leveraging a Better
Tomorrow (RTSI), pp. 1–5. IEEE (2016)

16. Stone, J.E., Gohara, D., Shi, G.: OpenCL: a parallel programming standard for
heterogeneous computing systems. Comput. Sci. Eng. 12(1–3), 66–73 (2010)

17. TOP500.org: Top500 supercomputing sites, January 2017. http://www.top500.
org/

18. Viñas, M., Fraguela, B.B., Andrade, D., Doallo, R.: Towards a high level approach
for the programming of heterogeneous clusters. In: 2016 45th International Con-
ference on Parallel Processing Workshops (ICPPW), pp. 106–114. IEEE (2016)

19. Wienke, S., Springer, P., Terboven, C., Mey, D.: OpenACC—first experiences with
real-world applications. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G.
(eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 859–870. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-32820-6 85

20. Wu, S., Dong, X., Chen, H., Dang, B.: OCLS: a simplified high-level abstrac-
tion based framework for heterogeneous systems. In: Park, J., Yi, G., Jeong, Y.S.,
Shen, H. (eds.) Advances in Parallel and Distributed Computing and Ubiqui-
tous Services. LNEE, vol. 368, pp. 57–65. Springer, Singapore (2016). doi:10.1007/
978-981-10-0068-3 7

http://arxiv.org/abs/1005.2581
http://dx.doi.org/10.1177/1094342017702962
http://www.top500.org/
http://www.top500.org/
http://dx.doi.org/10.1007/978-3-642-32820-6_85
http://dx.doi.org/10.1007/978-981-10-0068-3_7
http://dx.doi.org/10.1007/978-981-10-0068-3_7

GLT: A Unified API for Lightweight Thread
Libraries

Adrián Castelló1(B), Sangmin Seo2, Rafael Mayo1, Pavan Balaji2,
Enrique S. Quintana-Ort́ı1, and Antonio J. Peña3

1 Universitat Jaume I de Castelló, Castellón de la Plana, Spain
{adcastel,mayo,quintana}@uji.es

2 Argonne National Laboratory, Lemont, IL, USA
{sseo,balaji}@anl.gov

3 Barcelona Supercomputing Center (BSC), Barcelona, Spain
antonio.pena@bsc.es

Abstract. In recent years, several lightweight thread (LWT) libraries
have emerged to tackle exascale challenges. These offer programming
models (PMs) based on user-level threads and incorporate their own
lightweight mechanisms. However, each library proposes its own PM,
exposing different semantics and hindering portability.

To address this drawback, we have designed Generic Lightweight
Thread (GLT), an application programming interface that frames the
functionality of the most popular LWT libraries for high-performance
computing under a single PM. We implement GLT on top of Argobots,
MassiveThreads, and Qthreads. We provide GLT as a dynamic library,
as well as in the form of a static version based on macro preprocessing
resolution to reduce overhead. This paper discusses the GLT PM and
demonstrates its minimal performance impact.

1 Introduction

The number of processors in high-performance computing (HPC) systems has
been continuously increasing, as reflected in the supercomputers of the June
Top500 lists [5]. Following this trend, exascale systems are expected to leverage
hundreds of millions of cores. Hence, future applications will have to accommo-
date massive concurrency.

Leveraging this massive intranode parallelism efficiently with traditional
threading approaches may be difficult because of their relatively expensive con-
text switching and synchronization mechanisms. In response, dynamic scheduling
and lightweight thread (LWT) and tasklet models are designed to deal with the
required levels of parallelism.

Different user-level thread (ULT) and tasklet libraries have been imple-
mented in the past, such as Windows Fibers [14], Solaris Threads [2], Conver-
seThreads [13], Nanos++ [8], MassiveThreads [15], Qthreads [20], and Argob-
ots [16] were the last three LWT solutions are compared. These solutions demon-
strate semantic and performance benefits over the classic POSIX threads [3].
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 470–481, 2017.
DOI: 10.1007/978-3-319-64203-1 34

GLT: A Unified API for Lightweight Thread Libraries 471

The variety of LWT libraries, however, hinders portability. Their programming
models (PMs) and internal strategies differ among implementations, and hence
developing and maintaining applications and runtime systems for different LWT
approaches require considerable effort. In this scenario, a unified standard inter-
face can be highly beneficial, as long as it supports most of the functionalities
offered by the LWT libraries while maintaining their performance.

In this paper we introduce the design of a unified LWT application program-
ming interface (API), named Generic Lightweight Thread (GLT), that groups
the functionality of popular LWT solutions for HPC under the same PM. To the
best of our knowledge, this is the first paper proposing a unified API for LWT
solutions oriented to HPC. GLT is presented as a proof of concept in order to
spark a joint effort from the community to design a standard LWT API.

We implement GLT on top of Argobots, MassiveThreads, and Qthreads.
The library choices are based on the work presented in [9], where a set of LWT
implementations was reviewed, from the semantic point of view, using a set of
OpenMP microbenchmarks.

In addition to a dynamic GLT library that enables switching the underly-
ing LWT implementation, we provide a static version to minimize the overhead.
Using the GLT API, application programmers can develop a single code for dif-
ferent LWT approaches. The design of a single API to take advantage of the
functionality of different LWT libraries, along with an efficient implementation
composed primarily of wrappers resolved at compile time, provides a semanti-
cally powerful, efficient framework for LWT programming.

Our experiments demonstrate the feasibility of a GLT implementation, which
does not exert any perceivable negative performance impact on applications.
In our experiments, the average performance overhead when using static and
dynamic GLT approaches, instead of the original LWT libraries, is 0.08% and
0.6%, respectively.

In summary, the contributions of this paper are as follows: (1) analysis of
the semantics/PMs of the three major LWT solutions for HPC; (2) design of a
generic LWT API capable of offering the functionality of its underlying libraries
efficiently; (3) practical demonstration of the GLT portability; and (4) experi-
mental performance evaluation of the GLT API on top of three reference LWT
libraries for HPC.

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 offers background on our reference LWT libraries. Section 4 justifies
the need for a unified LWT API. Section 5 discusses the GLT PM. Section 6
introduces the GLT unified API. Section 7 provides an in-depth performance
analysis. Section 8 contains conclusions and future work proposals.

2 Related Work

In computer science, libraries commonly offer similar functionality. This situa-
tion may be caused by several circumstances, for example, a topic that is being
developed by different institutions at the same time (e.g., MPICH [4] and Open

472 A. Castelló et al.

MPI [12]) or new implementations that aim to improve legacy or commercial
codes (e.g., BLIS [19]).

In the past, some efforts have been made to join several solutions under a
unique API. These common APIs aim to gather significant common features
of the original libraries and offer them to users, who benefit from having to
learn only a single API. One of these efforts in peer-to-peer overlay is [10], in
which all the common functionality of the underlying libraries is joined as Tier-
0 capabilities and offered under a unified API. Part of the community in cloud
computing also proposed a common API in [17]. There have been also efforts
in the unified runtime systems with the aim to unify heterogeneous multi-core
architectures [6] and task scheduling [7].

No unified API has been available, however, for the diverse LWT libraries
that exist today.

3 Background

In this section we provide an overview of the most widely adopted stand-alone
LWT solutions for HPC.

Qthreads presents a PM with three hierarchical levels composed of shepherds,
workers, and work units. In Qthreads, a large number of user-level threads may
access any word in memory. Associated full/empty bits are used for synchronizing
between ULTs as well as leveraging mutex mechanisms. As a drawback, allowing
all threads to access any word in memory requires hidden synchronization, which
may severely impair performance.

MassiveThreads exposes a recursive-oriented PM. It follows a work-first policy
by default, which implies that upon creation, a ULT is immediately executed,
pushing the ULT in execution into a ready queue. This policy may be configured
at library compile time. MassiveThreads exploits the concept of worker as a
hardware resource (generally a core), which is created at initialization time.
This library does not allow creating ULTs in other threads’ queues. Instead, it
relies on a work-stealing mechanism.

Argobots is a flexible, mechanism-oriented LWT library. It supports two types
of work units: ULTs and tasklets. While the former are the base for all the
aforenamed libraries, the latter provides a lighter stackless work unit. Argobots
provides the programmer with absolute control of all library resources. Pro-
grammers may dynamically create as many execution streams (abstraction of
hardware resources) as desired during runtime instead of at initialization. Users
can also decide the number of required work unit pools. Although there are
default schedulers for each pool, programmers may create their own instances.

GLT: A Unified API for Lightweight Thread Libraries 473

4 Benefits of a Unified LWT API

A unified threading API implemented on top of several underlying libraries
avoids having to modify the application code in order to execute it on top of
different threading solutions. Different hardware platforms may leverage distinct
native LWT libraries for technical or strategic reasons. If more than one is avail-
able, users may want to select the library delivering the best performance for
their particular case.

To support this assertation experimentally, we have designed two simple
microbenchmarks that create fine-grained ULTs. These microbenchmarks are
merely created in order to demonstrate how a programmer could benefit from
the common API, selecting the desired underlying solution and achieving the
best performance possible without modifying the application code.

In the first microbenchmark, each thread creates and executes a range of
ULTs. In the second microbenchmark, a single thread creates all the ULTs, which
are executed by all the threads. These microbenchmarks have been implemented
on top of each native LWT library (Argobots, Qthreads, and MassiveThreads),
as well as using the GLT API. Each test has been executed using 72 threads with
72, 720, and 1,440 ULTs. The results are the average of 1,000 executions on a
36-core (72-hardware thread) machine equipped with two 18-core Intel Xeon E5-
2699 v3 (2.30 GHz) CPUs and 128 GB of RAM. The LWT libraries are Argobots
03-2016, Qthreads version 1.10, and MassiveThreads version 0.95.

Figure 1 shows the microbenchmarks’ performance results. Although the GLT
implementations are executed on top of the three libraries, only that offering the
highest performance is shown. In Fig. 1a this corresponds to GLT over Argobots
for 72 and 720 ULTs and to GLT over MassiveThreads for the largest size. In
Fig. 1b, on the other hand, GLT over Argobots is the best option for the smallest
dataset size, while GLT over the Qthreads library offers the highest performance
for the other two problem sizes.

(a) All threads create ULTs. (b) A single thread creates all the ULTs.

Fig. 1. Performance of the underlying LWT libraries and the best GLT implementation
choice when a set of ULTs are created and executed.

These experiments demonstrate the benefits of using a unified LWT API on
top of different underlying native implementations. Within the same platform,

474 A. Castelló et al.

different LWT libraries may yield distinct performance for different applications.
Even the same application may benefit from different LWT implementations
depending on the dataset sizes. Therefore, a unified LWT API such as GLT
enables users to select the most appropriate underlying native LWT implemen-
tation while avoiding the additional work of implementing the same application
using several LWT APIs. Determining the best underlying implementation for a
particular case is left out of the scope of this paper.

5 GLT Programming Model

As introduced in Sect. 3, each LWT library offers its own PM. Therefore, choosing
a correct default PM for GLT is critical.

Figure 2 depicts the set of elements that compose the GLT PM. A GLT thread
is composed of the operating system (OS) thread, a queue of ULTs/tasklets, and
a scheduler that sets the order of the execution of these work units. The different
functionality exposed by their PMs is explained in this section.

Fig. 2. GLT PM elements abstraction.

A GLT thread executes ULTs in an OS thread. GLT threads are conceptually
equivalent to shepherds in Qthreads, execution streams in Argobots, and workers
in MassiveThreads. ULTs are conceptually equivalent to qthreads in Qthreads
and to threads in Argobots and MassiveThreads.

GLT sets the environment during the initialization function. By default, one
thread is created per CPU core. This number, however, can be defined by the
user by means of an environment variable. Each thread is bound to a specific
CPU core in the system.

Furthermore, nothing prevents users from changing the default initial
resources for the underlying LWT library (e.g., number of pools in Argobots
or number of workers per thread in Qthreads) by means of its own environ-
ment variables, which is honored by the GLT implementation. Affinity is always
enabled mapping one GLT thread to each CPU system. No other bindings are
allowed due to the GLT PM.

GLT: A Unified API for Lightweight Thread Libraries 475

While all our reference libraries provide ULTs, Argobots additionally sup-
ports tasklets. Tasklets are lighter than ULTs, but they cannot migrate or yield
because a tasklet does not own a stack. These work units are suitable for com-
putation codes that do not include blocking calls. All codes that can be executed
by a tasklet can also be executed by a ULT. If GLT is used on top of a library
with no native support for tasklets, ULTs are transparently used underneath
instead, yielding the expected functionality but no performance benefits.

GLT scheduling relies on the underlying library. This may be specified dur-
ing the configuration step prior to building those libraries or, as in the case of
Argobots, can be changed at execution time.

6 GLT Design and Implementation Details

This section discusses the GLT design choices and describes several implemen-
tation details.

6.1 API

GLT objects start with the upper-case prefix “GLT ”. Table 1 shows the equiva-
lences between the main GLT object types and those of the reference libraries.

Table 1. GLT object equivalences (prefix shown next to each library name).

GLT (GLT) Argobots (ABT) Qthreads MassiveThreads (myth)

ult thread aligned t thread t

tasklet task aligned t thread t

thread xstream qthread shepherd id t thread t

mutex mutex aligned t mutex t

barrier barrier qt barrier t barrier t

cond cond aligned t cond t

GLT functions are organized into modules depending on their functional-
ity. Many GLT functions are simple wrappers to those in the underlying LWT
libraries, hence yielding low performance overhead. Some other GLT functions
require more elaborate implementations because no direct mapping to the under-
lying library functionality exists.

GLT is divided into modules that enclose the main necessary semantics. The
functionality supported by a complete unified LWT PM is distributed into the
following 7 API modules:

476 A. Castelló et al.

– Setup. This module initializes and finalizes the library.
– Work Unit. It is composed of 18 functions that are used for work unit

management. It supports two types of work units: ULTs and tasklets. In
case the underlying library does not support tasklets, ULTs are leveraged to
deliver analogous functionality.

– Mutex. This module includes 5 basic functions to create, destroy, lock,
unlock, and try to lock mutexes. Qthreads supports only locking and unlock-
ing natively because of the full/empty-bit mechanism; the remaining functions
have been implemented on top of these semantics.

– Barrier. Three functions are provided for barrier management.
– Condition. Five condition management functions are supported natively by

Argobots and MassiveThreads and developed for Qthreads.
– Util. It consists of 6 functions to measure elapsed times or to obtain a

timestamp and 2 functions that return the number of threads and the rank
of the current thread.

– Key. This module hosts 4 work-unit data management functions. Natively
supported by Argobots and MassiveThreads and implemented for Qthreads.

Although some LWT libraries offer a more complete set of functions, we have
included only those that are relevant for the PM we propose. However, we plan
to study the addition of the extra functionality if any PM benefits from them.

6.2 Implementations

Our GLT implementation can be used in two ways. On the one hand, a set
of dynamic libraries compiled on top of the different reference libraries may
be generated. This eases the switch among the underlying LWT implementa-
tions by linking the application to a different library at load time. On the other
hand, we have devised our GLT implementation as a header-only library. This
second approach offers higher performance than the former because all the func-
tions are labeled as static inline. Most compilers will honor these modifiers
and prevent the additional function call. The performance result in most cases
is analogous to that obtained if the user employs the original library directly,
yielding no performance impact for those functions with a direct mapping to the
underlying library.

6.3 Semantic Mapping

GLT is largely composed of wrappers to the underlying LWT library functions.
The mapping between the most important functions of the GLT API and the
reference libraries is shown in Table 2.

The lack of tasklet support in Qthreads and MassiveThreads is compen-
sated with the use of the ULT functions. Moreover, since MassiveThreads does
not allow creating ULTs in other workers’ ready queue, when a glt tasklet/
ult creation to is called, the library just creates a ULT in the current worker’s
queue. Despite the fact that the different implementation approaches over differ-
ent underlying native LWT libraries may have performance implications, these

GLT: A Unified API for Lightweight Thread Libraries 477

Table 2. Mapping between some GLT functions and their equivalent in the underlying
libraries (prefix shown next to each library name).

GLT (glt) Argobots (ABT) Qthreads (qthread) MassiveThreads (myth)

tasklet creation task create fork create

ult creation thread create fork create

ult creation to thread create fork to create

yield thread yield yield yield

ult join thread free readFF join

all conform to the exposed GLT semantics (offering the same functionality to
GLT users) while transparently leveraging the most efficient mechanism under-
neath.

7 Performance Evaluation

We next compare the performance of our test cases implemented directly on
top of the low-level libraries with the codes that use the GLT API. The results
correspond to the average of 1,000 executions. The software and hardware con-
figuration employed was introduced in Sect. 4.

7.1 Microbenchmarks

We leverage the Callgrind profiling tool [18] to measure the overhead in terms
of instructions per call of the most frequently used functions of the GLT code
for our three reference LWT libraries. These functions are initialization (Init),
work unit allocation (Malloc), work unit creation (Creation), yield (Yield),
join (Join), and number of threads query (Num thr).

Figure 3 shows our results for the Qthreads, MassiveThreads, and Argobots
GLT implementations, comparing the results with the native approaches. The
plots expose a common pattern: Init, Malloc, and Creation show a small incre-
ment in the number of instructions in both GLT variants (dynamic vs static); but
Yield, Join, and num threads experience this increment only in the stand-alone
version of GLT. These results reflect that the second group of functions contains
pure wrappers to the original functions and that the additional function call
overhead is added only in case of leveraging a separate GLT library. The library
initialization function adds a relatively high number of instructions because of
the GLT environment set up. Nevertheless, this is a one-time overhead intro-
ducing merely 10–15% additional instructions compared with the native LWT
solutions. The Malloc overhead (up to 4 instructions per call) is caused by the
type casting of the value returned by the allocation function to the appropriate
work unit pointer. The instructions added in Creation are due to the function
pointer casting and the return of the work unit handler. These results confirm
that the use of the GLT library as a high-level LWT API introduces fairly low
overhead.

478 A. Castelló et al.

Fig. 3. Overhead (%) GLT approaches compared with overhead (%) native libraries.

7.2 N-Queens

We evaluated the overhead of the GLT API using a translation from an OpenMP
version of N-Queens [11]. The number of lines of code needed in the translation
are 185 for Argobots code compared with 158 for Qthreads, MassiveThreads,
and GLT. Our unified API does not add more lines to the code; indeed, it
even reduces the number compared with Argobots. The reason is the automatic
environment setup described in Sect. 6.

In the base OpenMP implementation, a single thread creates the first set of
tasks (to place a queen in a cell) and executes a taskwait. Each task creates
more tasks and waits for their termination. Our implementation of this algorithm
using LWTs follows the same philosophy. The main thread creates the first work
units, and each of these is placed into other threads’ queue until each thread has
at least one work unit to be executed. Once that is completed, each thread creates
its own work. The threads wait for the finalization using the join function.

Table 3 summarizes the average overhead of several thread configurations
(from 1 to 72 threads), for three problem sizes—10, 11, and 12 queens—and the
reference LWT libraries. While the average overhead for the stand-alone version
varies from 0.28% to 0.56%, for the header-only GLT deployment this overhead
is less than 0.1%.

These results showcase the low overhead introduced by the use of the GLT
API. The results also show a constant behavior that indicates that the overhead
is not caused by the size problem. The largest cost with respect to the native
implementations is under 0.6%.

7.3 UTS Benchmark

UTS Benchmark is a parallel code that measures the performance attained when
executing an exhaustive search on an unbalanced tree. The tree is built at exe-
cution time by using a divisible random number generator that splits the struc-
ture, making possible the parallel processing while still generating a determin-
istic tree. We translated the original code written in Pthreads to our GLT API
using 71 code lines for the Argobots implementation and 38 for MassiveThreads,
Qthreads, and GLT.

GLT: A Unified API for Lightweight Thread Libraries 479

Table 3. Average overhead (%) executing the N-Queens application using headers (H)
and stand-alone (S) GLT implementations over the three libraries.

GLT underlying library (mode) Number of Queens

10 11 12

Argobots (H) 0.01 0.06 0.04

Argobots (S) 0.28 0.36 0.32

MassiveThreads (H) 0.02 0.01 0.00

MassiveThreads (S) 0.48 0.33 0.49

Qthreads (H) 0.08 0.08 0.09

Qthreads (S) 0.43 0.51 0.56

In the original Pthreads implementation, the main thread initializes the tree
and places the first (tree) node into its own queue. Then all threads execute
the same function. First, the next node in the queue is executed, and this node
creates more nodes that are pushed into the local queue. If its local queue is
empty, a thread tries to steal a certain number of nodes from other queues.

In our implementation, a work unit is created for each thread, and work-
stealing is performed as in the original code. Accessing other threads’ queues
requires synchronization among threads and is done via GLT mutex.

In this scenario, GLT can leverage the lighter tasklet work unit because the
code does not include any blocking or system call. As discussed in Sect. 6, GLT
implementations over MassiveThreads and Qthreads employ ULTs instead of
tasklets. For reference, we also include the results for native Argobots based on
ULTs.

Table 4. GLT average overhead executing the UTS benchmark using headers (H) and
stand-alone (S) GLT implementations over the three underlying libraries.

GLT underlying library (mode) Problem size

T1 T1L T1XL T1XXL

Argobots task (H) 0.06 0.00 0.01 0.00

Argobots task (S) 0.08 0.36 0.39 0.28

Argobots ULT (H) 0.03 0.01 0.01 0.00

Argobots ULT (S) 0.24 0.55 0.22 0.53

MassiveThreads (H) 0.11 0.00 0.08 0.05

MassiveThreads (S) 0.45 0.50 0.45 0.18

Qthreads (H) 0.00 0.01 0.02 0.06

Qthreads (S) 0.30 0.55 0.58 0.29

We calculated the average overhead for all the executions of different prob-
lem sizes in order to obtain a global vision of the overhead introduced by the

480 A. Castelló et al.

GLT API. Table 4 shows the average overhead when executing the UTS bench-
mark with problems T1, T1L, T1XL, and T1XXL (of 4 million, 102 million,
1.6 billion, and 4.2 billion nodes, respectively), on top of the three underlying
libraries, modifying the number of threads from 1 to 72. As in the N-Queens
case, the difference using the stand-alone (S) and header-only (H) GLT versions
is perceivable, being under 0.6% for the former and just slightly above 0.1%
for the latter. The results also show a trend that does not correspond with the
problem size, so it indicates that the overhead is not caused by the size problem.

8 Conclusions

In this work we have introduced the GLT API [1]. This library proposes a uni-
fied API for LWT solutions that is the first attempt to standardize those PMs.
Moreover, we have implemented GLT on top of the major general-purpose LWT
solutions for HPC: Argobots, MassiveThreads, and Qthreads.

In addition, we have discussed the GLT PM and decomposed the API’s
modules. Furthermore, we have presented an example of the semantic mapping
between the GLT API with the LWT solutions. Using two microbenchmarks we
have also justified the need for a unified LWT API from the point of view of
portability.

Our performance evaluation, based on stand-alone and header-only imple-
mentations of the GLT API, demonstrates the low performance overhead of
this approach. We have demonstrated this overhead with a set of microbench-
marks that measure the instructions per call added with GLT. Moreover, we
have assessed the overhead by comparing the execution time of two applications
where, the stand-alone implementation produced an average overhead under
0.6%, while the header-only version showed an average overhead below 0.1%.

In conclusion, we have demonstrated the portability benefits that a unified
API for LWT libraries can offer to programmers translating their applications
from OpenMP and Pthreads to GLT API. As part of future work, we plan to
implement several high-level PMs on top of the GLT API, such as OpenMP or
OmpSs. Moreover, we plan to augment the API with additional functionality
that some PMs/applications can benefit from.

Acknowledgements. Researchers from the Universitat Jaume I de Castelló were sup-
ported by project TIN2014-53495-R of the MINECO, the Generalitat Valenciana fel-
lowship programme Vali+d 2015, and FEDER. Antonio J. Peña is cofinancied by the
Spanish Ministry of Economy and Competitiveness under Juan de la Cierva fellow-
ship number IJCI-2015-23266. This work was partially supported by the U.S. Dept. of
Energy, Office of Science, Office of Advanced Scientific Computing Research (SC-21),
under contract DE-AC02-06CH11357.

References

1. Generic Lightweight Thread. http://github.com/adcastel/GLT
2. Programming with Solaris Threads. http://docs.oracle.com/cd/E19455-01/

806-5257/

http://github.com/adcastel/GLT
http://docs.oracle.com/cd/E19455-01/806-5257/
http://docs.oracle.com/cd/E19455-01/806-5257/

GLT: A Unified API for Lightweight Thread Libraries 481

3. Pthreads API. https://computing.llnl.gov/tutorials/pthreads/
4. MPICH, High-Performance Portable MPI (2016). http://www.mpich.org/
5. TOP500 Supercomputer Sites (June 2016). www.top.500.org/
6. Augonnet, C., Namyst, R.: A unified runtime system for heterogeneous multi-

core architectures. In: César, E., Alexander, M., Streit, A., Träff, J.L., Cérin, C.,
Knüpfer, A., Kranzlmüller, D., Jha, S. (eds.) Euro-Par 2008. LNCS, vol. 5415, pp.
174–183. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00955-6 22

7. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: Starpu: a unified platform
for task scheduling on heterogeneous multicore architectures. Concurr. Comput.:
Pract. Exp. 23(2), 187–198 (2011)

8. BSC: Nanos++. http://pm.bsc.es/projects/nanox/
9. Castelló, A., Peña, A.J., Seo, S., Mayo, R., Balaji, P., Quintana-Ort́ı, E.S.: A

review of lightweight thread approaches for high performance computing. In: IEEE
International Conference on Cluster Computing, Taiwan, September 2016

10. Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J., Stoica, I.: Towards a com-
mon API for structured peer-to-peer overlays. In: Kaashoek, M.F., Stoica, I. (eds.)
IPTPS 2003. LNCS, vol. 2735, pp. 33–44. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45172-3 3

11. Duran González, A., Teruel, X., Ferrer, R., Martorell Bofill, X., Ayguadé Parra,
E.: Barcelona OpenMP tasks suite: a set of benchmarks targeting the exploita-
tion of task parallelism in OpenMP. In: 38th International Conference on Parallel
Processing, pp. 124–131 (2009)

12. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., et al.: Open MPI: goals, concept, and design of a next
generation MPI implementation. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J.
(eds.) EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 97–104. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-30218-6 19

13. Kalé, L.V., Bhandarkar, M.A., Jagathesan, N., Krishnan, S., Yelon, J.: Converse:
an interoperable framework for parallel programming. In: Proceedings of the 10th
International Parallel Processing Symposium (IPPS), pp. 212–217, April 1996

14. Microsoft MSDN Library: Fibers. http://msdn.microsoft.com/en-us/library/
ms682661.aspx

15. Nakashima, J., Taura, K.: MassiveThreads: a thread library for high productivity
languages. In: Agha, G., Igarashi, A., Kobayashi, N., Masuhara, H., Matsuoka, S.,
Shibayama, E., Taura, K. (eds.) Concurrent Objects and Beyond. LNCS, vol. 8665,
pp. 222–238. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44471-9 10

16. Seo, S., Amer, A., Balaji, P., Bordage, C., Bosilca, G., Brooks, A., Carns, P.,
Castelló, A., Genet, D., Herault, T., Jindal, P., Kalé, L.V., Krishnamoorthy, S., Lif-
flander, J., Lu, H., Meneses, E., Snir, M., Sun, Y., Beckman, P.: Argobots: a light-
weight threading/tasking framework (2017). https://collab.cels.anl.gov/display/
ARGOBOTS/

17. Silva, L.A.B., Costa, C., Oliveira, J.L.: A common API for delivering services over
multi-vendor cloud resources. J. Syst. Softw. 86(9), 2309–2317 (2013)

18. Developers, V.: Callgrind: a call-graph generating cache and branch prediction
profiler (2010)

19. Van Zee, F.G., van de Geijn, R.A.: BLIS: a framework for rapidly instantiating
BLAS functionality. ACM Trans. Math. Softw. 41(3), 14 (2015)

20. Wheeler, K.B., Murphy, R.C., Thain, D.: Qthreads: An API for programming
with millions of lightweight threads. In: Proceedings of the 2008 Workshop on
Multithreaded Architectures and Applications (MTAAP), April 2008

https://computing.llnl.gov/tutorials/pthreads/
http://www.mpich.org/
www.top.500.org/
http://dx.doi.org/10.1007/978-3-642-00955-6_22
http://pm.bsc.es/projects/nanox/
http://dx.doi.org/10.1007/978-3-540-45172-3_3
http://dx.doi.org/10.1007/978-3-540-45172-3_3
http://dx.doi.org/10.1007/978-3-540-30218-6_19
http://msdn.microsoft.com/en-us/library/ms682661.aspx
http://msdn.microsoft.com/en-us/library/ms682661.aspx
http://dx.doi.org/10.1007/978-3-662-44471-9_10
https://collab.cels.anl.gov/display/ARGOBOTS/
https://collab.cels.anl.gov/display/ARGOBOTS/

PASCAL: A Parallel Algorithmic SCALable
Framework for N -body Problems

Laleh Aghababaie Beni(B) and Aparna Chandramowlishwaran

University of California Irvine, Irvine, USA
{laghabab,amowli}@uci.edu

Abstract. We propose PASCAL, a parallel unified algorithmic frame-
work for generalized N-body problems. PASCAL utilizes tree data
structures and user-controlled pruning or approximations to reduce the
asymptotic runtime complexity from being linear in the number of data
points to be logarithmic. In PASCAL, the domain scientists express
their N -body problem in terms of application-specific operations, and
PASCAL generates the pruning and approximation conditions automat-
ically from this high-level specification. In order to evaluate PASCAL,
we generate solutions for six problems: k-nearest neighbors, range search,
Euclidean minimum spanning tree, kernel density estimation, expecta-
tion maximization (EM), and Hausdorff distance chosen from various
domains.

We show that applying domain-specific optimizations and paralleliza-
tions to the algorithms generated by PASCAL achieves 10× to 230×
speedup compared to state-of-the-art libraries on a dual-socket Intel
Xeon processor with 16 cores on real world datasets. We also obtain
a novel out-of-the-box asymptotically optimal algorithm for Hausdorff
distance calculation and an improved algorithm for EM. This shows the
impact and potential of PASCAL in rapidly extending to a larger class
of problems that are yet to be explored.

Keywords: N-body problems · kd-trees · Multi-core parallelization

1 Introduction and Motivation

N -body problems are those in which an update to a single element in the system
depends on every other element. The general form applies a set of operators
{op1, ..., opm} to m datasets using a kernel function, K, as follows.

op1, ..., opm Compute K(x1, ..., xm) (1)

where x1 ∈ D1,..., xm ∈ Dm and D1...Dm are the m datasets. The naive com-
putation of these problems is asymptotically O(Nm) which is expensive.

N-body problems are ubiquitous, with applications in various domains rang-
ing from scientific computing simulations to machine learning [8,9,16]. N -body
methods were identified as one of the original seven dwarfs or motifs [2] and
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 482–496, 2017.
DOI: 10.1007/978-3-319-64203-1 35

PASCAL: A Parallel Algorithmic SCALable Framework 483

are believed to be important in the next decade. In fact, the well-known Fast
Multipole Method (FMM) made the list for the top 10 algorithms having the
greatest influence on the development of science and engineering in the 20th
century [7]. According to data mining researchers, EM is one of the top ten
algorithms having the most impact on data mining research [17].

However, a big gap exists between the algorithm one designs on paper and
the code that runs efficiently on a billion-core system. It is time-consuming to
write fast, parallel, and scalable code for an N-body problem on any architec-
ture. On the other hand, the sheer scale and growth of modern scientific datasets
necessitate exploiting the power of both asymptotically fast parallel algorithms
and approximation algorithms where we can potentially trade-off accuracy for
performance [11]. The goal of PASCAL is to automate the generation of asymp-
totically optimal N -body algorithms using the definition of the problem provided
by domain scientists. This is especially useful in rapidly growing fields such as
machine learning and data mining where new models are created at a much
faster rate than optimal algorithms and implementations for the models.

Contributions and Findings. First, this paper strives to combine two areas
that traditionally have not combined forces, namely high-performance comput-
ing and machine learning. We apply the knowledge and expertise gained from
optimizing and tuning scientific N-body computations to N-body problems from
other domains. We make the following contributions.

1. We design an algorithmic framework for N-body problems called PASCAL to
automatically generate prune and approximate conditions from a high-level
user specification. PASCAL can generate O(N log N) and O(N) algorithms if
the operators, and kernel function in Eq. 1 satisfy the decomposability prop-
erty over subsets, and monotonically decrease with distance respectively. PAS-
CAL is also the first to generalize beyond two operators by the design of a
Nested Prune generator (Sect. 4).

2. We apply domain-specific optimizations and parallelize the algorithms gener-
ated by PASCAL. An asymptotically optimal algorithm generated by PAS-
CAL combined with optimizations and parallelization results in 10–230×
speedup compared to state-of-the-art libraries and software such as Weka,
Scikit-learn, MLPACK, and MATLAB (Sects. 5 and 7).

3. PASCAL is able to generate an approximation condition for the log-likelihood
step of EM which results in an improved EM algorithm for Gaussian Mix-
ture Models. This algorithm is 7–16× faster compared to the best competing
implementation. PASCAL also generates a nested prune condition for Haus-
dorff distance resulting in a new O(N) algorithm. To the best of our knowl-
edge, this is the first dual-tree algorithm for Hausdorff distance (Sect. 4).

As a result, this paper lays a solid foundation for future scalable implementa-
tions of N -body problems on emerging systems. PASCAL enables us to rapidly
obtain both an optimal algorithm and its parallel implementation for new and
existing N -body problems.

484 L. Aghababaie Beni and A. Chandramowlishwaran

2 Related Work

N-body Algorithms in Physical Simulations. The most popular and widely
used fast algorithms for classical N -body problems are the Barnes-Hut [3] and
the Fast Multipole Method (FMM) [9]. They use trees to approximate distance
computations and achieve sub O(N2) asymptotic runtime. There has been sig-
nificant work on parallelizing tree codes [12].

PASCAL differs from the preceding work in many ways. First, PASCAL
supports algorithms and operations beyond what is usually considered in clas-
sical physics. This makes PASCAL more general. Second, we consider high-
dimensional trees (e.g. kd-trees, ball-trees, cover trees) which are required to
handle high-dimensional datasets. Third, our approach is more portable and
easily extensible compared to previous approaches which focus on optimizing a
specific algorithm for a specific architecture.

N-body Algorithms in Machine Learning. While parallel N -body algo-
rithms in physics have received significant attention, the same is not true for
machine learning (ML). There are a number of freely accessible ML libraries,
however, each of them lacks in one or both of the two ways, (a) efficient optimal
algorithms and (b) parallelism and scalability on modern machines. For instance,
MLPACK [6] which is a state-of-the-art C++ ML library offers a limited set of
fast algorithms but is not parallel, or distributed. Other popular libraries empha-
size ease of use but scale poorly such as Weka toolkit [10]. Even others implement
fast algorithms but in languages such as Python resulting in poor performance
such as Scitkit-learn [15].

Luckily, there is a theory on generalized N -body algorithms [5,8] which is
similar in spirit to long studied physics algorithms such as FMM that run in
linear time. This theory is a stepping stone to our work but it is limited in two
ways – (a) the pruning and approximation conditions are designed manually for
every problem, and (b) the theory is limited to problems with only 2 operators.
Although this is a useful first step, this approach is not scalable. In this paper,
we address the above limitations by proposing an algorithm to automate the
design of pruning and approximation conditions for two or more operators.

3 N -body Problems

This section provides an overview of N -body problems, and their main structure.
Later, in Sect. 4, we will see how they fit in the PASCAL framework.

Given a system of N reference points (Nr) and N query points (Nq), an
update to a single element depends on every other element in the system. The
most familiar example arises in physical simulations and has the following form.

∀q,
∑

r

K(xq, xr) · s(xr) , (2)

where s(xr) is the density of the reference point and K(xq, xr) is an interaction
kernel that specifies the physics of the problem. For instance, Laplace kernel is
defined as, K(xq, xr) = 1

||xq−xr|| which models gravitational interactions.

PASCAL: A Parallel Algorithmic SCALable Framework 485

This style of N -body problem arises in other significant domains and the
common theme that brings these problems under a single umbrella is the insight
that their inner-loop computations are analogous and naively require O(

N2
)

operations for the all-pairs computation. Below, we present six examples.

(a) k-Nearest Neighbor (k-NN) Search. One of the most ubiquitous N -
body problems in ML is k-NN search which is defined as, ∀q, arg mink

r ||xq −xr||
where, for each query point xq we want to find its k nearest neighbors, i.e. the
k reference points xr whose distance to xq is minimal. Comparing this to our
familiar physical summation (Eq. 2), we see that the kernel function in this case
is the Euclidean distance function and the operator sum has been replaced by
another operator, arg min. The inputs for PASCAL in this case are the operators
set, {∀, arg min} and the kernel function, ||xq − xr||.
(b) Range Search (RS). A related problem is range search, where the kernel
function is a delta function. We want to find all the reference points that fall
within a range (hmin, hmax) of a query point, xq defined as ∀q,

⋃
argr I(hmin ≤

||xq − xr|| ≤ hmax) where I(hmin ≤ ||xq − xr|| ≤ hmax) is a delta function.

(c) Kernel Density Estimation (KDE). Another example of sum-based
accumulations from statistics is KDE, which is a widely used method for non-
parametric density estimation. The goal is to estimate the probability density at
each xq, using a kernel function Kσ. It is defined as ∀q, 1

|Nr|
∑

r Kσ

(||xq−xr||
σ

)

where Kσ is a zero-centered probability density function (e.g. Gaussian) and σ
is the bandwidth of the kernel. When the distance between two points ||xq −xr||
is very large, the contribution of the kernel function to the probability density
at xq is small. Therefore, we can approximate the kernel sum at the expense of
reduced precision to achieve a faster algorithm similar to Barnes-Hut and FMM.

(d) Minimum Spanning Tree (MST). This is one of the oldest problems in
computational geometry. Given a set of points S ∈ Rd, the goal is to find the
lowest weight spanning tree in the complete graph G, where the edge weights are
given by the Euclidean distance between two points. We consider the iterative
Boruvka’s algorithm for MST [14]. Borukva’s MST is an iterative algorithm
that connects each component to its nearest vertex until only one component,
the MST, remains. The computational bottleneck in MST is finding the nearest
neighbor component which is identical to example (a). Computing all neighbor
pairs efficiently will result in an efficient Boruvka’s algorithm.

(e) Expectation Maximization (EM). EM is a popular algorithm used in
mixture models. Here, we consider problems where EM is used to learn the para-
meters of a multivariate Gaussian Mixture Model (GMM). Consider a dataset
D = {x1, x2, .., xN}, where xi ∈ Rd generated independently from an underlying
distribution p(x). If p(x) is a Gaussian distribution, we can define a GMM as,

p(x|θ) =
K∑

k=1

πkf(x|μk, Σk), f(xi|θk) =
1√

2π|Σk|e
− 1

2 (xi−μk)
T Σ−1

k (xi−μk)

486 L. Aghababaie Beni and A. Chandramowlishwaran

where K is the number of Gaussian mixture components, and θk = {μk, Σk} are
the parameters of Gaussian component, k, with mean vector μk and covariance
matrix Σk. πk are the mixing weights (

∑K
k=1 πk = 1). EM starts with an initial

estimate of θ (generated randomly, or using k-means), and iteratively updates θ
until convergence (i.e. log-likelihood change is less than a threshold) as follows.

1. E-step: Compute the responsibility, rnk = πkf(xn|μk,Σk)∑K
j=1 πjf(xn|μj ,Σj)

(weight factor

of data point n for cluster k).
2. M-step: Re-estimate θ using the responsibilities measured in the E-step.
3. Compute the log-likelihood, l(θ) =

∑N
n=1 log

∑K
k=1 πkf(xn|μk, Σk) for con-

vergence check.

E-step and log-likelihood computation are the two N -body problems in EM.

(f) Hausdorff Distance. The last example is Hausdorff distance calculation
which has applications in computer vision. The Hausdorff distance between two
subsets is computed as, maxq, minr||xq − xr|| where ||xq − xr|| is the Euclidean
distance which is the kernel function and the set of operators is {max, min}.

4 PASCAL Framework

Leveraging the commonalities between N-body problems gives rise to the PAS-
CAL framework shown in Fig. 1, which consists of space partitioning trees, a
prune/approximate condition generator, and a tree-traversal scheme. We then
apply domain specific transformations and parallelize the algorithms generated
by PASCAL to produce an efficient code for comparison against other state-of-
the-art libraries and software. The blue shaded boxes in the figure represent the
contributions which we will discuss in detail in the rest of this paper.

Space-Partitioning Trees. A powerful class of space-partitioning tree-based
algorithms exist that can reduce the complexity of N-body problems from O(

N2
)

to O(N log N) or even O(N) [3,9]. These algorithms use techniques such as
approximation and pruning to estimate or discard regions of the space.

An example we consider is kd-trees which are used in data analytics and
mining [4]. These are high-dimensional binary trees which maintain a bounding

Fig. 1. Block diagram outlining the overall approach. The dotted box represents the
PASCAL framework and the blue shaded boxes are the contributions. (Color figure
online)

PASCAL: A Parallel Algorithmic SCALable Framework 487

box for all the points in each node. Children are formed by recursively sub-
dividing the parent’s bounding box along the median of its largest dimension.
We stop partitioning when each node contains no more than l points (l > 0).
The bounding box information allows us to efficiently compute the minimum and
maximum node-to-point or node-to-node distances during evaluation without
accessing the actual points in each node, which is critical for performance.

Tree Traversals. Algorithm 1 describes multi-tree traversal given two inputs,
a set of nodes and a rule set. The rule set consists of the following 3 functions.

Algorithm 1. MultiTreeTraversal
Input: Nodes set {N1, N2, ..., Nm} ≈ N all, rule set R.
1: if R.Prune/Approximate(N1, N2, ..., Nm) then
2: return R.ComputeApprox(N1, N2,..., Nm)

3: if (∀Ni ∈ N all is leaf) then
4: R.BaseCase(N1, N2,..., Nm)
5: else
6: for all Ni ∈ N all do
7: if Ni is leaf then N split

i = Ni

8: else N split
i = {Ni.right, Ni.left}

9: PowerSet-Tuples = {(N ′
1, ..., N ′

m)|N ′
i ∈ N split

i }
10: for all (N ′′

1 , ..., N ′′
m) ∈ PowerSet-Tuples do

11: MultiTreeTraversal((N ′′
1 , ..., N ′′

m))

BaseCase implements the
direct point-to-point com-
putation. For instance, for
k-NN, this is equivalent
to computing the distance
between all the points in
the reference node to every
point in the query node.

Prune or Approximate
checks to see if the com-
putation for that set of
nodes can be approximated
or pruned based on the con-
dition generated by Algo-
rithm2. In some cases, the
algorithm prunes entire sub-trees, so the nodes and their descendants will not
be visited.

ComputeApprox replaces the computation with the center contribution of
each node multiplied by the density of that node which is equivalent to the
number of data points in that node. This is only for approximation problems.

While the operations above are not completely orthogonal, they are conve-
nient and powerful to express the range of N -body algorithms. Not only does
this representation abstract the actual computation from the traversal, it also
abstracts the tree type which gives us the freedom to plug and play with different
trees. Moreover, we are able to express both pruning and approximation algo-
rithms in the same framework which enables us to translate our optimizations
and parallelization to a much larger class of algorithms.

Prune/Approximate Condition Generator. In order to generate a prune
or approximate condition, we first classify N -body problems into 3 categories
namely, (a) approximation, (b) single pruning, and (c) nested pruning. Approx-
imation problems are those in which the contribution by a subset of the data to
the solution can be approximated by a smaller subset. Two examples are KDE
and EM. Pruning problems are those in which a part of the data and associ-
ated computation are discarded. The main distinction between single and nested
pruning is that former has only one pruning opportunity (e.g. k-NN) while the
latter has more than one opportunity for pruning (e.g. Hausdorff distance).

488 L. Aghababaie Beni and A. Chandramowlishwaran

Algorithm 2 generates one of three conditions and distinguishes the cate-
gory of problems by maintaining a queue of possible prune opportunities called
PrunePipeline (Line 1). We iterate through the operators’ set, OP and kernel
function, K and check if there is any pruning opportunity. If so, we push the
reverse of OP and/or K into the PrunePipeline (Lines 2–6). The reverse
function is defined for operators and kernel function, and defines the reverse of
their functionality. For example, the reverse of ||xq −xr|| < h is ||xq −xr|| > h,
and the reverse of min operator is the relational operator greater than (>).

Algorithm 2. Prune/Approximate Condition Gen-
erator
Input: Node set {N1, N2, ..., Nm} ≈ N all, kernel func-

tion K, operators set OP , threshold σ.
Output: The prune/approximate condition
1: queue<Function> PrunePipeline
2: for all (opi ∈ OP) do
3: if (opi.isComparative()) then
4: PrunePipeline.push(reverse(opi))

5: if K.isComparative() then
6: PrunePipeline.push(reverse(K))

7: // Approximation categorya

8: if (PrunePipline.size == 0) then
9: Kmin ← min{K(N1, N2, ..., Nm)}

10: Kmax ← max{K(N1, N2, ..., Nm)}
11: (N c

1 , N c
2 , ..., N c

m) ← tuple of node centers
12: Kcenter ← K(N c

1 , N c
2 , ..., N c

m)
13: return Kmax − Kmin < σ × Kcenter

14: // Single prune category
15: if (PrunePipline.size == 1) then
16: τ ← threshold by K or a boundary default
17: N border

m ← {(b1, .., bd), bi ∈ {bi,min, bi,max}d
i=1}

18: op⊕ ← PrunePipeline.pop()
19: return op⊕(τ, K(x1, ..., xm))
20: {∀xi ∈ Ni(i = 1, ..., m − 1), ∀xm ∈ N border

m }
21: // Nested Prune category
22: if (PrunePipline.size > 1) then
23: return NestedPrune(PrunePipeline)

a min, max, and center computations are meta-data
generated during tree construction.

The problem falls under
approximation if the size
of PrunePipeline is zero
(Lines 8–13). For approxi-
mating the contribution of
a node, we check if the
minimum and maximum
contribution of that node
are very close (i.e.less
than a threshold). If so,
we know that all the
data points in that node
have a similar contribu-
tion and therefore, PAS-
CAL uses the center to
approximate the computa-
tion of that node. Note
that (N c

1 ,N c
2 , ...,N c

m) defi-
ned in line 11, represents
the centers of nodes Ni ∈
(N1,N2, ...,Nm) and this
is pre-computed as meta-
data information during
tree construction.

The problem falls under
the single prune cate-
gory if the size of Prune
Pipeline is one (Lines
15–19). First, we define a
threshold for pruning. To
do so, we randomly choose

points in each set and compute a temporary value using the kernel function. We
define N border

r as the set of border data points which have either maximum or
minimum values in each dimension. Line 18 pops the prune operator and Line
19 generates the prune condition by applying the operator on the tuple of points
from the nodes in N1, ...,Nm1 , and border points of Nm.

PASCAL: A Parallel Algorithmic SCALable Framework 489

Note that in Algorithm 2, the notation op⊕ is similar to non-member function
operators in C++ language. For instance, op≤(xr, xq) is equal to xr ≤ xq.

When the size of the PrunePipeline is greater than one, the problem belongs
to the nested prune category and the nested prune Algorithm3 is called in line
22. In Line 2, for each node, we calculate the border data points using the
maximum and minimum values of data points in each dimension as defined in
{bmin, bmax}d

i=1. Line 3 pops the prune operator from the PrunePipeline. Ini-
tially, a temporary threshold τ is defined for each prune operator. Subsequently,
τ is refined as the computation progresses. Line 5 returns the nested prune condi-
tion that we generate. For generating this condition, first, we apply the innermost
operator to the border points in the innermost dataset. The result of this is used
to call the next innermost operator, and so on. We will continue this process
from the innermost operator to the outermost operator in the PrunePipeline
and apply each operator on the corresponding node borders with the computed
thresholds. Each prune operator corresponds to one level in the multi-tree. Note
that single prune can be considered as a special case of nested prune with a
nesting level of one.

Algorithm 3. NestedPrune(PrunePipeline)
Input: Node set N1...Nm, kernel function K.
Output: The nested pruning condition
1: for all Nj ∈ N1...Nm do
2: N border

j ← {(b1, b2, ..., bd),
bi ∈ {bi,min, bi,max}d

i=1} for Nj

3: op⊕j ← PrunePipeline.pop()
4: τj ← K(x′

1, ..., x
′
m) or defined by K

5: return op⊕1(τ1, K(x1, ..., xm)|op⊕2(τ2, ...
|op⊕m(τm, K(x1, ..., xm)...)

s.t.{∀x1 ∈ N border
1 , ..., ∀xm ∈ N border

m }

Case Studies. In this section,
we show how N -body algo-
rithms are generated using
PASCAL. Specifically, we con-
sider the six N -body prob-
lems discussed in Sect. 3 as case
studies. The choice of these six
problems is because they cover
(a) approximation, single prun-
ing, and nested pruning prob-
lems, (b) both direct and iter-
ative algorithms, and (c) prob-
lems from multiple domains.

In all the problems, the BaseCase is the direct point-to-point computation
at the leaf nodes. So, we will focus specifically on how the prune/approximate
condition is generated since this is the most challenging step.

(a) k-NN Search. k-NN has only one pruning opportunity, arg min, so it
is classified as a single prune problem by PASCAL. PASCAL generates the
prune condition using Algorithm2. The prune operator that is pushed into
PrunePipeline is arg min and the reverse is ≥. The reverse of arg min
is similar to the reverse of min since they both compute the minimum. The
difference is the return value, the latter returns the value of minimum while the
former returns the argument of it. The threshold τ is initialized at the begin-
ning with a temporary computation of the kernel (or a default value such as the
maximum value of double precision) and is updated through the algorithm.

PASCAL evaluates K for each reference point in N border
r with respect to the

query point xq. Then, it checks to see if it is greater than or equal to τ . So, the
prune condition is op⊕(τ,K(xq, xr)) =⇒ K(xq, xr) ≥ τ, ∀xr ∈ N border

r .

490 L. Aghababaie Beni and A. Chandramowlishwaran

(b) Range Search (RS). Range search has only one pruning opportunity via its
kernel function, I(hmin ≤ ||xq−xr|| ≤ hmax). The reverse of this kernel function
that is saved in PrunePipeline is hmin > ||xq − xr|| or ||xq − xr|| > hmax)
which is used as op⊕ to generate the prune condition (op⊕1 is >, op⊕2 is <).
The two thresholds, τ1 and τ2 are defined by the kernel function as hmax and
hmin. We evaluate the kernel function on the points in N border

r for each xq as δ,
K(xq, xr) = δ. Then, the prune condition is defined as follows.

op⊕1(τ1,K(xq, xr)) or op⊕2(τ2,K(xq, xr)) =⇒ δ > τ1|δ < τ2,∀xr ∈ N border
r

(c) Kernel Density Estimation (KDE). This is an approximation problem
since there is no pruning opportunity by the definition of the problem, and
the PrunePipeline queue is empty. ComputeApprox will return the probability
density at the center of the node, Kcenter, multiplied by the number of data points
in that node. In this problem, τ is a default constant that can be overridden by
the user to adjust the overall accuracy. PASCAL uses Algorithm 2 to generate
the approximation condition, (Kmax − Kmin) < τ × Kcenter.

(d) Minimum Spanning Tree (MST). MST is an iterative algorithm and in
each iteration, it uses the same operations as k-NN search. So PASCAL generates
exactly the same prune condition and rule set as k-NN.

(e) Expectation Maximization (EM). EM is an approximation problem.
EM has three steps namely, E-step, M-step, and Log-likelihood where 99% of
the time is spent in E-step and Log-likelihood. Moore [13] proposed a powerful
space-partitioning tree-based algorithm to reduce the complexity of E-step from
O(KN) to O(K log N), where N is the number of data points and K is the
number of clusters. We extend Moore’s idea and propose a fast algorithm for
estimating both the E-step and log-likelihood computation in O(K log N).

The first N -body computation in EM is the E-step. In the E-step, if the differ-
ence between the maximum and the minimum responsibility of the points i from
cluster j, rij , is less than a threshold, we can approximate the influence of these
data points. This is because all the data points in that node will approximately
have a similar responsibility to the cluster. PASCAL generates the approxima-
tion condition (rmax

ij − rmin
ij) < σ × rcenterij , i = 1, ..,K where, σ is the threshold

parameter, rcenteri is the responsibility of the center data points in the node from
cluster i, rmin

i and rmax
i are the minimum and maximum responsibilities between

all the data point from cluster i.
ComputeApprox will return the value of responsibility at the center of the

node multiplied by the number of data points in that node. Note that in this
algorithm, the distance we compute is the Mahalanobis distance which is defined
as (x − μ)T Σ−1(x − μ) for a Gaussian with θ = (μ,Σ).

The second N -body computation in EM is the log-likelihood computation.
In order to calculate the log-likelihood, we traverse the same tree as in the E-
step. The computation pattern is similar in style to E-step albeit with a different
approximation condition generated by PASCAL presented below. To the best of
our knowledge, this is the first O(K log N) algorithm for computing log-likelihood.

PASCAL: A Parallel Algorithmic SCALable Framework 491

log
K∑

i=1

πif(xmax|θi) − log
K∑

i=1

πif(xmin|θi) < σ| log(
K∑

i=1

πif(xcenter|θi))|

(f) Hausdorff Distance. One of the N -body problems with more than one
pruning opportunity is Hausdorff distance. In this problem, the kernel function
is the Euclidean distance with the operators set {max, min} both of which provide
pruning opportunities. PASCAL generates the prune condition using the nested
prune algorithm, Algorithm3.

First, PASCAL constructs dual-trees and applies each of its operators on one
of the levels of the tree. The PrunePipeline queue consists of the reverse of
max and min which are ≤ and ≥. Therefore, op⊕1 is ≤ and op⊕2 is ≥. To form the
prune condition, PASCAL creates two nested loops. The inner loop runs over
the borders of the inner tree (for example, reference dataset) applying the inner
operator which is ≥. The outer loop covers the borders of the second tree (for
example, the query dataset), applying the ≤ operator.

Note that by the definition of the N -body problem, each operator that is
applied to a dataset is regarded as the operator that is applied to the tree built
for that dataset. We define two thresholds, τ1 and τ2 and the nested prune
condition generated is shown below.

op⊕1(τ1,K(xq, xr)|op⊕2(τ2,K(xq, xr))) =⇒ τ1 ≥ (K(xq, xr)|τ2 ≤ K(xq, xr)),

s.t. ∀xq ∈ N border
q ,∀xr ∈ N border

r

5 Domain-Specific Optimizations and Parallelization

In order to achieve an optimized code, we first apply numerous optimizations
to both the tree construction and the computational core of the evaluation.
Then, we parallelize the tree traversal defined by Algorithm1, and finally tune
empirically for the associated tuning parameters (e.g. leaf size).

Incremental Bounding Box Calculation. During tree construction described
in Sect. 4, we associate each node with its bounding box data. This is critical for
efficient evaluation during traversal. For instance, during range search, we check
if the reference node is within a specified range of the query node and if not, the
entire node is pruned. This check requires computing the minimum and max-
imum node-to-point and node-to-node distances. Pre-computing the bounding
box information significantly reduces the time to compute these distances since
we do not have to access the actual data points each time.

For kd-trees, this is essentially computing the hyper-rectangle boundary
information in each dimension. At the start of the computation, the root bound-
ing box is computed from all the N points. During partitioning, we only incre-
mentally update the bounding box of the dimension that is being split at each
node based on the splitting value. This results in a complexity of O(Nd).

492 L. Aghababaie Beni and A. Chandramowlishwaran

Optimal Metric Calculation. The evaluation can be performed using a vari-

ety of distance metrics. We consider Euclidean:
√∑d

i=1(xi − yi)2, Manhattan:
∑d

i=1 |xi−yi|, Chebyshev: maxd
i=1 |xi−yi|, and Mahalanobis: (−→x −−→μ)T Σ−1(−→x −−→μ) (μ and Σ are distribution’s parameters) metrics for real-valued vector spaces.

Outlined below are two techniques to efficiently compute these metrics which
are repeatedly used in all phases of the algorithm. Additionally, we ensure that
the compiler generates vectorized code for the metric calculation.

1. Each metric defines both a distance and a reduced distance, which is often
faster to compute and is used whenever possible. For example, in the case of
Euclidean distance, the reduced distance is squared Euclidean distance. This
eliminates the expensive sqrt instruction which has long latencies.

2. Partial distance between two d-dimensional points x and y is defined as the
distance computed on a subset of the d dimensions. For example, when search-
ing for k-nearest neighbors, we compute the distance between two points and
insert the reference point into our neighbor list only if the computed distance
is smaller than the kth largest distance in our sorted list. When d is large
as in the case for some of our datasets, this optimization offers additional
savings in processing time where we can terminate the computation earlier if
the computed partial distance exceeds our threshold.

Incremental Distance Calculation. This idea was introduced by Arya and
Mount [1] where the node-to-point distance at each node during single-tree tra-
versal is incrementally computed from the parent’s distance in constant time
independent of dimension. For datasets with large d, this has the potential for
significant savings in computation at the cost of minimal additional storage of
distance information. We support this optimization and note that it is possible
to extend this idea for computing node-to-node distances as well in multi-trees.

Parallelization and Tuning. After applying serial optimizations, we paral-
lelize the multi-tree traversal using Cilk. Since there are dependencies across
the recursion, we exploit a combination of data and task parallelism. At first, we
spawn Cilk tasks recursively until all the threads are saturated, at which point we
switch to data parallelism. Since the tree traversal is abstracted from the actual
computation, parallelizing the tree traversal leads to parallel implementations of
all six algorithms. Moreover, for any new algorithm expressed in PASCAL, we
can obtain parallel multi-tree implementations at no additional cost. This greatly
accelerates the ability to scale new problems in rapidly growing domains.

Algorithmically, the tree is parameterized by the maximum number of points
per leaf node, l. As l increases, the cost of tree construction decreases at the
expense of increased cost in performing the BaseCase. On the other hand, small
l results in a large number of nodes and an increase in the cost of tree traversal.
We exhaustively tune l for all implementations.

PASCAL: A Parallel Algorithmic SCALable Framework 493

6 Experimental Setup

Libraries. We compare PASCAL’s performance against state-of-the-art soft-
ware namely, WEKA [10], Scitkit-learn [15], MLPACK [6], and MATLAB.

Table 1. Description
of the datasets. N : num-
ber of points, d: dimen-
sionality.

Dataset N d

Yahoo! 41904293 11
IHEPC 2075259 9
HIGGS 11000000 28
Census 2458285 68
KDD 4898431 42

Architecture and Compilers. We evaluate our
implementations on a dual-socket Intel Xeon E5-2630
v3 processor (Haswell-EP). Each socket has 8 cores, for
a total of 16 cores (32 threads with hyper-threading)
and a theoretical double precision peak performance
of 614.4 GFlop/s. We use Intel C++ compiler (icpc
version 15.0.2) with C++11 feature support. We use
Python v2.7.6 for scikit-learn and Java v1.8.0 for Weka.

Benchmarks. We present results on five real-world
datasets characterized in Table 1. These include Yahoo!
front page module user click log dataset, v1.0 (Yahoo!),
Higgs boson’s signals and background process dataset
(HIGGS), Individual Household Electric Power Consumption dataset (IHEPC),
US Census data from 1990 (Census), and KDD Cup 1999 dataset (KDD) from
the UCI ML repository.

7 Results and Discussion

The combined benefits of asymptotically optimal algorithms, optimizations, and
parallelization are substantial. In this section, we first compare our performance
against state-of-the-art ML libraries and software. Then, we break down the per-
formance gain step by step and finally, evaluate the scalability of our algorithms.

Performance Summary. Figure 2 presents the performance of k-NN and EM.
The choice of these two algorithms is because they are the only ones supported
by all competing libraries and therefore make good candidates for a compre-
hensive comparison. Moreover, the choice of these two algorithms albeit space
constraints is because k-NN is a direct pruning algorithm while EM is an iterative
approximation algorithm that represents two ends of the spectrum.

Across the board, our implementation shows significantly better performance
compared to Scikit-learn, MLPACK, MATLAB, and Weka.

Performance Breakdown. To gain a better understanding of the factors con-
tributing to the performance improvement, we break down the speedups in
Table 2. Specifically, it helps distinguish the improvements that are purely algo-
rithmic (tree algorithm) from improvements via optimization and paralleliza-
tion. For example, for the Yahoo! dataset, we observe a 3.1× speedup from an
asymptotically faster algorithm, 12.1× due to optimizations on top of the tree
algorithm, and 173.1× with parallelization for k-NN. The breakdown for EM are
1.6×, 3.2×, and 53.7× respectively for the same dataset.

494 L. Aghababaie Beni and A. Chandramowlishwaran

63

5.36.3Base6.2

143

3.58.9Base7.5

231

2.1
23.1

Base14.5

98

212.3Base4.7

160

Base13.324.5
0

50

100

150

200

250

Yahoo! HIGGS Census KDD IHEPC

S
pe

ed
up

MATLAB WEKA MLPACK Scikit PASCAL

201

5.2
22.3

Base
18.4

142

Base7.91.63.9

104

1.46.1Base3.4

123

1.315.4Base7.7

98

1.56.1Base4.1
0

50

100

150

200

250

Yahoo! HIGGS Census KDD IHEPC

S
pe

ed
up

Fig. 2. Speedup summary of single-tree EM (top) and dual-tree k-NN for k = 3 (bot-
tom). The slowest library is used as the baseline for comparison.

Table 2. Speedup breakdown. Alg stands for algorithmic improvement, +Opt refers
to optimization on top of Alg, and +Par is parallelization on top of Opt.

KNN EM KDE HD RS EMST

Alg +Opt +Par Alg +Opt +Par Alg +Opt +Par Alg +Opt +Par Alg +Opt +Par Alg +Opt +Par

Yahoo! 3.1 12.1 173.1 1.6 3.2 53.7 2.1 9.1 92.1 2.5 11.5 161.1 2.2 9.1 126.8 2.9 11.9 166.7

HIGGS 2.1 7.3 108.1 1.5 6.8 117.6 1.7 4.7 50.1 1.9 6.1 89.6 1.9 6.3 86.5 2.0 6.9 102.8

Census 1.4 6.5 90.8 1.3 11.2 190.0 1.4 8.1 75.6 1.3 10.2 141.8 1.3 10.4 144.9 1.4 10.9 151.6

KDD 1.6 6.8 100.7 1.4 4.1 70.9 1.5 3.1 33.5 1.4 3.8 54.4 1.4 5.1 70.5 1.5 3.8 55.5

IHEPC 3.0 4.3 61.5 1.5 7.6 127.6 2.0 5.4 53.6 2.5 6.8 101.3 2.1 6.3 94.1 2.9 7.1 107.1

We observe that each dataset benefits differently from algorithmic changes,
optimizations, and parallelization based on the number of data points, dimen-
sionality, and distribution of the points.

Scalability. Figure 3 shows the scalability of the six algorithms namely, (i) k-
NN with k = 3, (ii) RS with range between 0 and 2, (iii) KDE for Gaussian
kernel, K with bandwidth, σ = 0.1 and relative error tolerance set to 0.1, (iv)
EM with error tolerance of 0.1, (v) MST, and (vi) Hausdorff distance.

We observe good scaling on all six algorithms. Note that 32 threads is with
hyper-threading enabled where we assign 2 threads per core. In all cases, hyper-
threading further improves the performance resulting in 14×, 16×, 13×, 14×,
10×, and 14× speedup for Yahoo! over the serial optimized code for k-NN, EM,
RS, MST, KDE, and Hausdorff distance respectively.

0

5

10

15

2 4 8 16 32

S
pe

ed
up

EM
EMST
HD
KDE
KNN
RS

Yahoo!

2 4 8 16 32

KDD

2 4 8 16 32

HIGGS

2 4 8 16 32

IHEPC

2 4 8 16 32

Census

Fig. 3. Multicore scalability using Cilk. X-axis is the number of threads.

Scalability Difference in Multi-trees. Tree algorithms are irregular. The
dynamic nature of pruning/approximation of sub-trees during tree-traversal

PASCAL: A Parallel Algorithmic SCALable Framework 495

makes these problems challenging to parallelize. This load-balancing problem
is further exacerbated in dual-tree traversal. As a result, we observe that EM
which uses single-tree traversal with one tree (we use a single-tree over a dual-
tree traversal for EM because of the small number of clusters) shows better
scalability compared to the other five algorithms which use dual-tree traversals.

We currently defer to Cilk to manage scheduling of tasks using its work-
stealing scheduler. In future work, we will explore a locality aware work-stealing
scheduler for better load balance which is critical especially on NUMA machines.

In summary, these results show the potential of our approach to achieve
orders of magnitude improvement in performance through the use of tree data
structures, optimizations, and parallelization.

8 Conclusions

In this paper, we proposed PASCAL, a parallel unified algorithmic framework
for N -body problems. PASCAL generates prune and approximation conditions
automatically from the high-level specification of the problem, which is one the
most challenging components in the design of these algorithms. We evaluated
PASCAL with six N -body problems from different domains and observe 10–230×
speedup compared to state-of-the-art libraries/software. The broader impact is
to enable scientific discovery not only for N -body problems in scientific com-
puting and machine learning but also to a number of related problems in other
unexplored domains that can be expressed in the same style of execution to
obtain an out-of-the-box parallel optimized implementation.

Acknowledgments. This work was supported in part by the National Science Foun-
dation (NSF) under award number 1533917.

References

1. Arya, S., Mount, D.M.: Algorithms for fast vector quantization. In: Proceeding of
DCC 1993: Data Compression Conference, pp. 381–390. IEEE Press (1993)

2. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer,
K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The
landscape of parallel computing research: a view from Berkeley. Technical report,
UCB/EECS-2006-183, University of California, Berkeley (2006)

3. Barnes, J., Hut, P.: A hierarchical O(n log n) force-calculation algorithm. Nature
324, 446–449 (1986)

4. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM (CACM) 18(9), 509–517 (1975)

5. Curtin, R., March, W., Ram, P., Anderson, D., Gray, A., Isbell, C.: Tree-
independent dual-tree algorithms. In: Proceedings of the 30th International Con-
ference on Machine Learning (ICML 2013), vol. 28, pp. 1435–1443, May 2013

6. Curtin, R.R., Cline, J.R., Slagle, N.P., March, W.B., Ram, P., Mehta, N.A., Gray,
A.G.: MLPACK: a scalable C++ machine learning library. J. Mach. Learn. Res.
14, 801–805 (2013)

496 L. Aghababaie Beni and A. Chandramowlishwaran

7. Dongarra, J., Sullivan, F.: Guest editors introduction to the top 10 algorithms.
Comput. Sci. Eng. 2(1), 22–23 (2000)

8. Gray, A.G., Moore, A.W.: N-body problems in statistical learning. In: Proceeding
of NIPS, vol. 4, pp. 521–527 (2000)

9. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput.
Phys. 73, 325–348 (1987)

10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1),
10–18 (2009)

11. Kambatla, K., Kollias, G., Kumar, V., Grama, A.: Trends in big data analytics. J.
Parallel Distrib. Comput. 74(7), 2561–2573 (2014)

12. Lashuk, I., Chandramowlishwaran, A., Langston, H., Nguyen, T.A., Sampath, R.,
Shringarpure, A., Vuduc, R., Ying, L., Zorin, D., Biros, G.: A massively parallel
adaptive fast multipole method on heterogeneous architectures. Commun. ACM
(CACM) 55(5), 101–109 (2012)

13. Moore, A.W.: Very fast EM-based mixture model clustering using multiresolution
KD-trees. In: Advances in Neural Information Processing Systems, pp. 543–549
(1999)

14. Nešetřil, J., Nešetřilová, H.: The origins of minimal spanning tree algorithms-
Boruvka and Jarńık. In: Documenta Mathematica, pp. 127–141 (2012)

15. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

16. Salmon, J.K., Warren, M.S.: Fast parallel tree codes for gravitational and fluid
dynamical n-body problems. Int. J. High Perform. Comput. Appl. 8(2), 129–142
(1994)

17. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan,
G.J., Ng, A., Liu, B., Philip, S.Y., Zhou, Z.H., Steinbach, M., Hand, D.J., Steinberg,
D.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)

GASPI/GPI In-memory Checkpointing Library

Valeria Bartsch(B), Rui Machado, Dirk Merten, Mirko Rahn,
and Franz-Josef Pfreundt

Competence Center for High Performance Computing,
Fraunhofer ITWM, Kaiserslautern, Germany
{bartsch,machado,dirk.merten,mirko.rahn,

franz-josef.pfreundt}@itwm.fhg.de

Abstract. Fault tolerance becomes an important feature at large com-
puter systems where the mean time between failure decreases. Check-
pointing is a method often used to provide resilience. We present an
in-memory checkpointing library based on a PGAS API implemented
with GASPI/GPI. It offers a substantial benefit when recovering from
failure and leverages existing fault tolerance features of GASPI/GPI.
The overhead of the library is negligible when testing it with a simple
stencil code and a real life seismic imaging method.

Keywords: Checkpointing · Resilience · Partitioned global address
space

1 Introduction

With decreasing mean time between faults at large computer systems resilience
to hardware faults and failures become a more and more important issue. In this
paper we describe a light-weight checkpointing library supporting the applica-
tion developer. Checkpointing is a classical and probably the most often used
technique to minimize the effect of failures when running a parallel program. It
simply consists of saving a snapshot of a program’s state or produced data. An
application can use such a snapshot to recover from a failure by continuing the
execution from the saved point.

The novelty of our approach is that the data transfer is asynchronous using
RDMA principles. So the communication cost of the data transfers for the check-
pointing methods are hidden. Our approach allows to run applications which
are scalable and fault tolerant at the same time. To avoid the large overhead
of I/O when writing to persistent storage, an often pointed drawback of check-
pointing, we opted for an in-memory checkpointing where the snapshot of a
process is saved in the memory of a neighboring node. In case of failure, a spare
node can fetch the checkpoint from the neighbor of the failing process (mir-
ror) and continue the work from that point. Using a PGAS approach allows
to design the library in such a way that instead of bulk synchronous commu-
nication, one-sided and asynchronous communication mechanisms can be used
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 497–508, 2017.
DOI: 10.1007/978-3-319-64203-1 36

498 V. Bartsch et al.

with which communication and computation times may be overlapped. Thus we
choose GASPI/GPI [12] as communication layer of the checkpointing library. A
consequence of the GASPI/GPI architecture is that when non-volatile memory
like NVRAM becomes widely available such an approach includes persistence
automatically. The drawback of any in-memory checkpointing method is that it
uses additional memory to save the data from the checkpoint. Because we are
using asynchronous methods the data from the previous checkpoint still needs
to be available in case of a failure while writing the checkpoint, duplicating the
size of the checkpointing memory.

To be able to detect faults and provide resilience the underlying commu-
nication library and runtime infrastructure needs to allow the application to
react on hardware failures. Currently some communication models lack such a
support in a generic way as described in [16]. GASPI/GPI supports tolerant
mechanisms concerning hardware faults. The checkpointing library keeps the
GASPI/GPI core lean and checkpointing as a separate option. The library can
be called from any parallel program, i.e. the interface to the checkpointing library
is independent of GASPI/GPI. E.g. we have tested that an application based
on Berkeley UPC [5] is able to call the checkpointing library and exploit the
resilience features. Even though MPI code can call the checkpointing library [14]
it is difficult to achieve resilience within the current MPI standard (see [8] for a
POSIX-compliant strategy) due to a lack of support for node failures [16].

After briefly summarizing related work in Sect. 2 the design of the checkpoint-
ing library is described in Sect. 3. Performance results using the implementation
under GPI-2 are shown in Sect. 4. In Sect. 5 we draw some conclusions and point
to future work.

2 Related Work

Checkpointing and roll-back is probably the most often used technique for recov-
ering from single node failures in parallel programs. The run-time overhead from
IO when writing checkpoints to file easily becomes signficant. It can be reduced
by optimizing data layout and access patterns to the underlying file system [3].
Avoiding IO by using the main memory and additional communication for check-
pointing seems natural for a parallel application. A framework for supporting
the user in doing this under an implementation of MPI is described in [9]. In the
context of PGAS programming models, detailed control about the partitioning
of data within the address space can be utilised for checkpointing, as done for
Fortran Global Arrays in [1] and for specialized distributed arrays in [6]. Current
checkpointing strategies have to be re-evaluated in the presence of virtualization
as common in cloud computing facilities. Corresponding benefits and restrictions
of are discussed in [2].

GASPI/GPI In-memory Checkpointing Library 499

3 In-memory Checkpointing

3.1 Short Description of GASPI/GPI

GPI-2 (Global address space Programming Interface), an implementation of the
GASPI standard [10], is a PGAS API designed to maximize scalability and
performance. GPI employs the RDMA model: it relies on one-sided and asyn-
chronous communication that allows communication hiding. The PGAS API of
GASPI/GPI is semantically very similar to the (asynchronous) MPI communi-
cation commands. GASPI/GPI allows for efficient thread-safe implementations.
The global memory can be accessed by other nodes using the GASPI/GPI API
and is divided into so-called segments. A segment is a continuous space of glob-
ally accessible memory which can be addressed in terms of offset of the data.
Thus any data can be stored on the segments independent of the data struc-
ture which needs to be handled fully by the application developers. GASPI/GPI
memory segments were conceived to represent any sort of available memory.
NVRAM is one such sort.

GASPI/GPI supports fault-tolerance mechanisms which go beyond mech-
anisms provided by most PGAS languages. (A comparison with other PGAS
approaches like UPC [7] and CAF [13] can be found at [4].) GASPI/GPI cur-
rently supports fault tolerance of applications by providing local timeout mech-
anisms. All operations that involve the remote side feature a timeout with a
defined exit status. GASPI/GPI maintains a local vector with the state of all
ranks. A rank can get that state vector to check for any detected problems with
other ranks. Both mechanisms can be used by applications to detect a fault.
Together with the proposed library, the application can recover and continue its
execution. The checkpointing interface consists of different calls to initialize and
finalize the checkpointing infrastructure and perform and restore a checkpoint.

3.2 Application View

The presented library is not a full fledged fault tolerant solution from an appli-
cation point of view. To take advantage of checkpoints and fault tolerance, the
application must be extended to use the proposed checkpoint interface and take
advantage of the GASPI/GPI timeout and error state vector mechanisms in
order to detect timeouts and possibly related faults.

The application decides when it is more reasonable to perform a checkpoint.
In case of the pseudocode in Fig. 1 e.g. at a given iteration number. It is recom-
mended to use in a realistic application adaptive checkpointing which starts to
write a new checkpoint after checking that the previous one has been finished.
The application must also detect a fault and enter a recovery process. The appli-
cation can use one or more spare nodes which are not part of the active group
in the pseudo code. The number of spare nodes is small compared to the num-
ber of active nodes, otherwise the job has to be considered as failed, because
the compute system is not stable enough. The spare node(s) take the place of
the failed node(s). In case of more than one error, the checkpointing approach

500 V. Bartsch et al.

int main()

{

gaspi_proc_init (...);

gaspi_size_t const size = ...;

gaspi_segment_create (segment_id_checkpoint, size, ...);

gaspi_cp_description_t checkpoint_description =

GASPI_CP_DESCRIPTION_INITIALIZER();

gpi_cp_init (segment_id_checkpoint,

gaspi_offset_t (0), size,

gaspi_queue_id_t (4), cp_policy,

active_group, &checkpoint_description,

timeout);

for (iteration)

{

if (checkpoint_this_iteration)

{

gpi_cp_commit (&checkpoint_description, timeout);

// setup segment with id segment_id_checkpoint

// -> application specific

// store to be checkpointed data in

// segment_id_checkpoint, e.g.

// memcpy (ptr (segment_id_checkpoint),

// ptr (segment_id_work), size 8);

// memcpy (ptr (segment_id_checkpoint) + size - 8,

// &state, 8);

gpi_cp_start (&checkpoint_description, timeout);

}

...

}

gpi_cp_finalize (&checkpoint_description, timeout);

}

Fig. 1. Pseudocode for an application with checkpointing library calls

still works with at least k spare nodes unless k errors happen at the same time
and affect both copies of the same data. If k errors happen at the same time
without affecting both copies of the same data, this approach can still recover
all data. If the probability of two simultaneous errors that might affect both
copies of the data is high in comparison to the cost for the recomputation, one
could easily use three or more copies if enough memory is available. One can
use an approach without spare nodes and redistribute the tasks and data of the
failed node to the remaining nodes. Such an approach without spare nodes would
have the advantage of decreasing the CPU power needed and the disadvantage
of a more complex process in case of a node failure. In the recovery process
presented in this paper, a spare node takes the place of the failed one, the last

GASPI/GPI In-memory Checkpointing Library 501

Fig. 2. Sketch of the initialization with application-driven in-memory checkpointing
enabled

checkpoint is read and the application can continue its execution. The code of
the checkpointing library can be found at [11].

3.3 Initialization Phase

As sketched in Fig. 2 the initialization of the checkpoint infrastructure is done
by invoking gpi cp init. Currently and following the GASPI/GPI semantic, the
application must provide a segment, offset and size where the data to be saved
will be placed by the application. This is application specific. Moreover, a check-
point policy and group must be given. The group is a GASPI/GPI construct and
corresponds to the group of ranks that will be active and will perform check-
points. The checkpoint policy corresponds to the selection of the neighbor where
the mirrored data will be placed (e.g. ring topology). Other topologies are also
possible and the checkpoint topology object can be chosen by the application.

After initialization, a checkpoint description is returned. This checkpoint
description is then used to invoke other routines. One important consequence of
this initialization design is that several snapshots are possible by simply invok-
ing the initialization multiple times. This way, an application can have different
checkpoints with different policies, different priorities and redundancy or persis-
tence levels.

Fig. 3. Sketch of the data segment mirrors used during checkpointing

502 V. Bartsch et al.

3.4 Checkpointing

Our in-memory checkpoint approach follows what we call an asynchronous, coor-
dinated checkpointing approach. It is coordinated because at some point in time
we ensure consistency of a snapshot. In the easiest case this would be global
consistency of a snapshot specifying a certain point by means of a collective
operation (gaspi barrier). In other words, all active processes ensure that they
have one particular snapshot that is consistent on all processes. To make this
approach scalable for large computer systems, it makes sense to build check-
pointing groups which need to be in a consistent state only amongst themselves
but not globally to run the checkpoints. This can be done by initializing the
checkpoint gpi cp init several times with a different sets of active group. It
is up to the application developer to check if the application can handle such a
loosened consistency definition. The approach is asynchronous because we take
advantage of GASPI/GPI communication. When a checkpoint is started, the
data is transferred asynchronously to the mirror as depicted in Fig. 3. In the
meantime the computation of the application resumes overlapping computation
and communication.

Performing a checkpoint is a two step procedure: the application must start a
checkpoint and commit the checkpoint. Again, this split-phase semantic matches
that of GASPI communication and aims at hiding the costs of communication
required by mirroring. Starting a checkpoint (gpi cp start) initiates the copy of
checkpoint data to the neighboring mirror. All the details required to post that
communication are included in the checkpoint description object. Committing
the checkpoint (gpi cp commit) is a global operation and ensures the comple-
tion of a previously started checkpoint operation on all nodes. At this point, a
valid snapshot exists to which the application can return to. Being a global oper-
ation and following the GASPI semantic, the commit operation has a timeout
to avoid blocking.

3.5 Fault Detection

The detection of faults is orthogonal to checkpoints and currently has to be
programmed by the application. GASPI already provides mechanisms for that:
timeouts and the error state vector. In the current GPI implementation, the
hardware fault of a node can be detected locally by a process running on a
node requesting communication to the faulty node. If a communication request
is erroneous or returned a timeout, the process can check the error state vector
which is set after every non-local operation. Each rank can either have a state of
GASPI STATE HEALTHY or CORRUPT. This error state vector can be
queried by the application (using gaspi state vec get) to determine the state
of a remote partner in case of timeout or error.

If a problem is detected, the fault needs to be acknowledged by all other
running processes. After that all of the remaining and healthy processes can
enter consistently the recovery process. An example of how to build fault tol-
erant applications with GASPI/GPI can be found in [15]. The reliable way to
propagate the fault detection information is beyond the scope of this paper.

GASPI/GPI In-memory Checkpointing Library 503

...

// create a new_group exchanging the faulted process with the spare process

gpi_cp_restore (segment_id_checkpoint,

gaspi_offset_t (0), size,

gaspi_queue_id_t (4), cp_policy,

new_group, &checkpoint_description,

timeout);

// copy the checkpointed data into the execution buffer

// make new_group the new active_group

...

Fig. 4. Pseudocode for an application restoring the data from a checkpoint

3.6 Recovery

Once a fault is detected, the remaining processes must enter a recovery step.
Such recovery step will generally involve 3 actions as sketched in the pseudo
code in Fig. 4: add spare node(s) to the group of active nodes to replace the
failed node(s), create the new group of active processes, restore the data from
consistent checkpoint. The first 2 actions must be programmed in the application
although in principle it should be possible to perform this in a more automatic
way. The third action corresponds to the gpi cp restore call of our in-memory
checkpointing interface. The gpi cp restore call is symmetric to the gpi cp init.
The differences are that a new group of active processes is provided and the
checkpoint description object is updated on the set of survivor nodes and cre-
ated anew for the new joining (spare) nodes. Moreover, a valid snapshot will
be retrieved from the corresponding mirrors and when the procedure returns
successfully the data will be available in the provided memory segment. After
this the application can continue from that point on.

4 Results

4.1 Performance Metrics

The use of the in-memory checkpoint interface incurs in some extra overhead to
the normal application execution in terms of memory, CPU time incurred mainly
by the additional communication which adds to the inflight communication of
the application. The memory usage, i.e. the data size of the checkpoint needs to
be optimized by the application, the CPU time overhead must be kept minimal.
Particularly in the case of failure-free execution, the modified application should
run with minimal performance impact. The total overhead is composed of several
parts (writing a checkpoint, rebuilding the active group, reading the checkpoint,
etc.) that should be analyzed separately, identifying possible bottlenecks. In an
ideal world the frequency of the checkpointing should be self-adapting by using
the method gpi cp commit to check that the data of the checkpoint have been

504 V. Bartsch et al.

written. The ideal time of the start of a new checkpoint depends on the size
of the data communicated by the application plus the size of data written to a
checkpoint and the computation time of the application between checkpoints and
therefore the overlap between communication and computation heavily depends
on the application itself.

To assess the effectiveness of this approach we have evaluated the perfor-
mance with a small demonstrator application as a proof of principle and in a
real-life application with a slightly different checkpointing scenario compared to
the demonstrator application. This mechanism should be integrated and used
with a real application.

The performance tests were executed on a local cluster on up to 50 nodes
consisting of Dell PowerEdge M620, dual Intel Xeon E5-2670 (Sandy Bridge),
i.e. 16 CPU cores per node. One process per node has been run. The nodes are
connected via QDR Infiniband.

4.2 Performance Measurement with a Simple Stencil Code Example

As example to test the functionality of the code a simple stencil code has been
used. In general stencil codes are wide-spread in HPC. The checkpointing library
provides an important additional tool.

Number of Nodes
0 5 10 15 20 25 30 35 40 45

w
ith

 c
he

ck
po

in
ts

 /
t

w
ith

ou
t c

he
ck

po
in

ts
R

el
at

iv
e

C
om

pu
ta

tio
n

T
im

es
 t

=
 t

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

no fault(cp every 100th cycle: relative comp. time

one fault (cp every 100th cycle: relative comp. time)

optimal runtime taking into account effect of spare node: (n-1)/n

Fig. 5. Relative computation times with in-memory checkpointing versus number of
nodes

Figure 5 shows the relative computation times with in-memory checkpointing
versus the number of nodes. The computation times are the execution times of
the application excluding the initialization and the finalization of the program

GASPI/GPI In-memory Checkpointing Library 505

and only measuring the part where the application runs through its computation
and communication cycle. The computation times range from (283.87 ± 0.04) sec
on 5 nodes to (29.14 ± 0.12) sec on 50 nodes without any checkpoint overhead.
The exchange between the different processes is done within a loop with a max-
imum iteration number of 1000 with a checkpoint cycle of 100. Thus 10 check-
points have been written during the execution of the application. The size of the
checkpoints has been 59 MBytes. The process with the maximum computation
times of an application without checkpointing has been divided by the compu-
tation time of an application with checkpointing to get a relative computation
time. The error of the relative computation time is calculated by calculating the
error of the three independent executions of the distributed application using
error propagation. In the current setup one spare node is reserved when com-
puting with checkpoints. Thus it is expected that the ideal curve follows (n−1)/n
where n is the number of nodes. Figure 5 shows that the additional cost of writ-
ing checkpoints during the execution of the program is less than 1%. One can
also see that the relative computation times in a scenario with checkpointing and
one simulated failure are a 4% lower compared to the execution time without
failure. However the overhead is still small.

number of nodes
0 5 10 15 20 25 30 35 40 45

co
m

pu
ta

tio
n

tim
e

in
 m

s

10

210

3
10

time spent in gpi_cp_init

time spent in gpi_cp_commit

time spent in gpi_cp_restore

Fig. 6. Checkpointing overhead when writing a checkpoint in every 100th cycle: accu-
mulated time spent in gpi cp init, gpi cp commit and gpi cp restore in ms

Figure 6 shows the details of the time spent in methods of the in-memory
checkpointing library. The process of the distributed application with the maxi-
mum time in gpi cp init, gpi cp commit and gpi cp restore respectively in
each execution of the program has been selected. The time spent in gpi cp init is
quite small. The time spent in gpi cp start (not shown) is negligible. This is due

506 V. Bartsch et al.

to the fact that in this method the transfer is only started. The gpi cp commit
method checks if the checkpoint has already been completely transferred. It is
independent of the number of nodes as long as the checkpointing frequency is
chosen in such a way that enough time is available for the asynchronous oper-
ation to be run. Also the time spent in the gpi cp restore method is quite
small. One has to keep in mind that the time for a restore after a fault consists
of several components since the time spent to make sure that a common state is
observed in a distributed application and to get back to the computational state
where the error occurred have to be added.

4.3 Performance Measurement with a Real-Life Application: GRT
Angle Migration

GRT Angle Migration is a ray-based method in seismic imaging, that does not
only recreate a structural image of the sub-surface from reflected acoustic signals
but also provides direct access to the angle dependency of the reflection coef-
ficient at the sub-surface scatterer. In migration algorithms, amplitudes picked
from seismic traces according to travel-times are summed up for each output
point. In GRT, this integration is performed within the angle domain of inci-
dent and reflected ray, resulting in a quasi-random access to the input traces. In
modern surveys, these traces cover areas of a few 1000 km2, leading to TBytes
of data.

In the current implementation of the GRT algorithm, this input data is loaded
into GASPI memory during the initialization phase and can be accessed on
demand by each worker node during the calculation phase. The calculation is

Number of Nodes
0 20 40 60 80 100 120 140 160 180 200

w
ith

 c
he

ck
po

in
ts

 /
t

w
ith

ou
t c

he
ck

po
in

ts
R

el
at

iv
e

C
om

pu
ta

tio
n

T
im

es
 t

=
 t

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no fault: relative comp. time

recovery of one fault: relative comp. time

restart without cp: relative comp. time)

optimal runtime taking into account effect of spare node: (n-1)/n

Fig. 7. Relative computation time of the GRT angle migration example with in-
memory checkpointing, recovery and manual restart.

GASPI/GPI In-memory Checkpointing Library 507

parallelized in the output domain, each partial result is written to disk. Thus,
a restart of this application in case of a failure is possible without recalculat-
ing these partial results, but the initialization phase has to be redone. And this
phase includes some expensive pre-processing, data analysis and arrangement
steps, including a parallel sorting of the full data set and a distribution of corre-
sponding meta data. Redoing this after a failure should be avoided by creating
one checkpoint of this meta data as soon as possible.

The execution time has been measured for a medium sized seismic data set
of 264 GB and a target oriented output-area of one line. Figure 7 shows calcula-
tion times with checkpointing and with checkpointing, restoring and recovering
relative to the calculation times without any checkpoint. The overhead for creat-
ing the checkpoint during a successful run can be neglected against the optimal
run time including the effect of one spare process (solid line). In case of one
failure, the overhead is about 15%. This overhead contains the synchronization
after the simulated failure, recovering the meta data from the checkpoint and
reloading the seismic data according to this meta data on the spare node. But it
avoids a re-initialization of the entire data set an all nodes, as discussed above.
In order to stress this point, Fig. 7 also shows the computation time for running
with simulated fault and manual restart without checkpointing for comparison.
In this mode, the overhead is much larger. More important, it increases with
the number of processes, caused by some global operations during initialization.
Avoiding this gives a clear benefit for this application.

5 Conclusions

The in-memory checkpointing library offers a number of benefits to the applica-
tion developer. It provides a light-weight interface independent of GASPI/GPI
which can be called from any parallel program. Measurements of a simple stencil
code and a real-life seismic imaging method GRT show that the low latency and
asynchrony cause negligible overheads. The library allows the user to specify
the data to be replicated and to select the frequency writing the checkpoints
to maximize the benefits of the method. As future work we intend to evaluate
our approach on larger systems and experiment with persistency as provided
by NVRAM. We will continue to improve our library with particular focus on
turning some fault tolerance aspects (e.g. fault detection) more automatic.

Acknowledgments. The work was funded by the European Commission through the
EXA2CT project (grant agreement no. 610741).

References

1. Ali, N., Krishnamoorthy, S., Govind, N., Palmer, B.: A redundant communication
approach to scalable fault tolerance in PGAS programming models. In: 2011 19th
International Euromicro Conference on Parallel, Distributed and Network-Based
Processing, pp. 24–31, February 2011

508 V. Bartsch et al.

2. Amoon, M.: A framework for providing a hybrid fault tolerance in cloud computing.
In: 2015 Science and Information Conference (SAI), pp. 844–849, July 2015

3. Bent, J., Gibson, G., Grider, G., McClelland, B., Nowoczynski, P., Nunez, J.,
Polte, M., Wingate, M.: PLFS: a checkpoint filesystem for parallel applications.
In: Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, SC 2009, pp. 21:1–21:12. ACM, New York (2009). http://
doi.acm.org/10.1145/1654059.1654081

4. Breitbart, J., Schmidtobreick, M., Heuveline, V.: Evaluation of the global address
space programming interface (GASPI). In: 2014 IEEE International Parallel Dis-
tributed Processing Symposium Workshops (IPDPSW), pp. 717–726, May 2014

5. Chen, W.Y., et al.: A Performance Analysis of the Berkeley UPC Compiler (2003)
6. Dun, N., Fujita, H., Fang, A., Liu, Y., Chien, A.A., Balaj, P., Iskra, K., Bland, W.,

Siegel, A.: Flexible error recovery using versions in global view resilience. In: 2015
IEEE International Conference on Cluster Computing, pp. 512–513, September
2015

7. El-Ghazawi, T., et al.: UPC: Distributed Shared-Memory Programming. Wiley,
Hoboken (2005)

8. Fajerski, J., et al.: Fast in-memory checkpointing with POSIX API for legacy
exascale-applications. In: SPPEXA Symposium 2016 (2016, accepted for publica-
tion)

9. Gamell, M., Katz, D.S., Kolla, H., Chen, J., Klasky, S., Parashar, M.: Exploring
automatic, online failure recovery for scientific applications at extreme scales. In:
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC 2014, pp. 895–906, November 2014

10. GASPI Forum: GASPI: Global Address Space Programming Interface version 16.1
(2016)

11. Machado, R.: (2016). https://github.com/cc-hpc-itwm/gpi cp
12. Machado, R., Lojewski, C.: The fraunhofer virtual machine: a communication

library and runtime system based on the RDMA model. Comput. Sci. Res. Dev.
23, 125–132 (2009)

13. Numrich, R.W., Reid, J.: Co-array fortran for parallel programming. SIGPLAN
Fortran Forum 17(2), 1–31 (1998). http://doi.acm.org/10.1145/289918.289920

14. Rotaru, T.: Best Practice Guide for Writing GASPI-MPI Interoperable Programs
(2016)

15. Shahzad, F., et al.: Building a fault tolerant application using the GASPI commu-
nication layer. In: 2015 IEEE International Conference on Cluster Computing, pp.
580–587 (2015)

16. Vishnu, A., et al.: Fault-tolerant communication runtime support for data-centric
programming models. In: 2010 International Conference on High Performance
Computing, pp. 1–9, December 2010

http://doi.acm.org/10.1145/1654059.1654081
http://doi.acm.org/10.1145/1654059.1654081
https://github.com/cc-hpc-itwm/gpi_cp
http://doi.acm.org/10.1145/289918.289920

Multicore and Manycore Parallelism

Optimized Batched Linear Algebra
for Modern Architectures

Jack Dongarra1,2,3, Sven Hammarling3, Nicholas J. Higham3,
Samuel D. Relton3(B), and Mawussi Zounon3(B)

1 University of Tennessee, Knoxville, TN, USA
dongarra@icl.utk.edu

2 Oak Ridge National Laboratory, Oak Ridge, TN, USA
3 School of Mathematics, The University of Manchester, Manchester, UK

sven.hammarling@btinternet.com,

{nick.higham,samuel.relton,mawussi.zounon}@manchester.ac.uk

Abstract. Solving large numbers of small linear algebra problems simul-
taneously is becoming increasingly important in many application areas.
Whilst many researchers have investigated the design of efficient batch
linear algebra kernels for GPU architectures, the common approach for
many/multi-core CPUs is to use one core per subproblem in the batch.
When solving batches of very small matrices, 2 × 2 for example, this
design exhibits two main issues: it fails to fully utilize the vector units
and the cache of modern architectures, since the matrices are too small.
Our approach to resolve this is as follows: given a batch of small matrices
spread throughout the primary memory, we first reorganize the elements
of the matrices into a contiguous array, using a block interleaved memory
format, which allows us to process the small independent problems as a
single large matrix problem and enables cross-matrix vectorization. The
large problem is solved using blocking strategies that attempt to optimize
the use of the cache. The solution is then converted back to the original
storage format. To explain our approach we focus on two BLAS routines:
general matrix-matrix multiplication (GEMM) and the triangular solve
(TRSM). We extend this idea to LAPACK routines using the Cholesky
factorization and solve (POSV). Our focus is primarily on very small
matrices ranging in size from 2 × 2 to 32 × 32. Compared to both MKL
and OpenMP implementations, our approach can be up to 4 times faster
for GEMM, up to 14 times faster for TRSM, and up to 40 times faster for
POSV on the new Intel Xeon Phi processor, code-named Knights Land-
ing (KNL). Furthermore, we discuss strategies to avoid data movement
between sockets when using our interleaved approach on a NUMA node.

1 Introduction

Over the last decade, the high-performance computing (HPC) community
has made significant strides in solving large-scale matrix problems efficiently.
Another major challenge is to achieve good performance when computing a
large batch of small matrix problems: this situation occurs commonly in applica-
tions including deep learning libraries [1,3], multifrontal solvers for sparse linear
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 511–522, 2017.
DOI: 10.1007/978-3-319-64203-1 37

512 J. Dongarra et al.

systems [5], and radar signal processing [4] etc. In deep learning applications,
for example, many applications require the solution of thousands of indepen-
dent (and very small) general matrix-matrix multiplication (GEMM) in Eq. (1),
where batch count is number of independent problems in the batch.

C(i) ← α(i)A(i)B(i) + β(i)C(i), i = 1 : batch count. (1)

The challenge is to make more efficient use of computational cores than a
simple for loop around a single call to a vendor optimized GEMM kernel, where
there may not be enough work to keep the cores running at full efficiency. Note
that, depending on the application, the batch can contain matrices of different
sizes and α(i) and β(i) can have different values. But in this work, we focus on
the “fixed batch” case, which is more common in applications. In a fixed batch
the values of α and β are the same for all the problems in the batch and the
matrices have a constant size, i.e. the dimensions of A(i) are the same for all i
in [1, batch count] and similarly for the matrices B(i) and C(i).

To address the need for efficient libraries to perform batches of small linear
algebra operations in parallel, new APIs have been investigated and a com-
parative study of these APIs is given in [11]. While most research focuses on
providing high-performance batch linear algebra implementation for GPU archi-
tectures, there is—at the time of writing—no better solution than using one
core per problem when it comes to many/multi-core architectures. When solv-
ing batches of very small matrices, 2 × 2 for example, this design exhibits two
main problems. Due to the small size of the matrices we fail to fully utilize the
vector units and the cache of modern architectures.

In this work, we focus on level 3 BLAS routines because they are the critical
building blocks of many high-performance software. Our motivation to focus on
GEMM and triangular solve (TRSM) is that all of level 3 BLAS routines except
TRSM can be viewed as a specialized GEMM [8]. However, regardless of these
considerations, our proposed solutions are easily extended to all BLAS kernels
including the level 1 and 2 algorithms.

The key aspect of our approach is as follows: given a batch of small matrices
spread throughout RAM we first reorganize the elements of the matrices into a
contiguous array, using a block interleaved memory format, which allows us to
process the small independent problems as a single large matrix problem. The
large problem is solved using blocking strategies that attempt to optimize the
use of the cache. The solution is then converted back to the original storage
format.

Compared to the MKL batched BLAS implementation and an OpenMP for
loop around MKL BLAS kernels, our implementation is up to 4 times faster for
DGEMM and up to 14 times faster for DTRSM on the new self-hosted Intel Xeon
Phi processors, code named Knights Landing (KNL). By extending this idea to
LAPACK routines, specifically the Cholesky factorization and solve (POSV), we
can see that our approach can be extremely efficient and performs up to 40 times
faster than using an OpenMP for loop on the Intel KNL architecture.

The paper is organized as follows. In Sect. 2 we present the current state of the
art in batch BLAS algorithms and their limitations. Section 3 describes our app-

Optimized Batched Linear Algebra for Modern Architectures 513

roach, the block interleaved batch BLAS, followed by some performance analy-
ses. In Sect. 4, we discuss how to extend batch operations to include LAPACK
routines, with a focus on Cholesky factorization and solve. We then discuss the
main performance issues raised when using NUMA nodes in Sect. 5 before giving
some concluding remarks in Sect. 6.

2 Related Work

Motivated by the efficiency of vendor supplied libraries for small problems on
many/multi-core CPU architectures, the currently accepted method for solving
batches of small problems is to have a single core per problem in the batch [6].
Therefore, most of the effort in recent years has been devoted to developing
efficient batch kernels for GPUs. Our aim is to challenge the conventional wisdom
in many/multi-core CPU architectures, however a reader interested in efficient
CUDA kernels for batch BLAS operations may look at [2,7,9,10].

2.1 Multicore CPUs and Xeon Phi Implementations

At first glance, batched BLAS operations on multicore CPUs seemed to be
reduced to the choice between: (i) solving one problem at the time using all
the available cores or (ii) solving many independent problems in parallel using a
single core per problem. Whenever small matrices are used the second approach
is preferred can be implemented simply: merely an OpenMP for loop around
vendor supplied BLAS kernels is required.

When processing thousands of very small matrices, the error checking pro-
cedure implemented by most of optimized vendor kernels can be significantly
time-consuming. To alleviate this overhead, Intel MKL allows us to skip the
error checking thanks to the MKL DIRECT CALL or MKL DIRECT CALL SEQ macros.
Hence, the common wisdom for a fixed batched BLAS implementation con-
sists in checking the arguments once, as all the problems in the batch share the
same error prone arguments, then perform an OpenMP for loop over optimized
BLAS kernels.

While these solutions are acceptable for batches of matrices of medium size,
they may fail to exploit efficiently wide vector units on modern architectures.
For example, the AVX-512 vector units available in the Intel KNL, enable the
completion of 8 double precision vector operations within each cycle, while a
2 × 2 matrix can fill only half of such a vector unit.

Furthermore, some BLAS routines don’t offer enough parallelism. For exam-
ple in the case of batched TRSM, the computation of each entry of each right-
hand side requires a single division before the updates. When one right-hand side
is required, regardless of the matrix size, the common approach will perform only
one double precision division in one clock cycle on a core capable of 8 double
precision divisions. However, by using the interleaved memory layout described
in Sect. 3 one can saturate the vector units at all steps of the algorithm thanks
to cross-matrix vectorization.

514 J. Dongarra et al.

3 Data Layout Optimization

Dealing with thousands of independent, small matrices requires a careful choice
of memory layout, and a good memory layout should be user-friendly without
penalizing performance. There are currently 3 competing data layouts advocated
by the linear algebra community for batched BLAS operations. In this section,
we illustrate the underlying idea of each data layout using the example of solving
three independent 2 × 2 matrix problems (A(1),A(2), A(2)).

3.1 Pointer-to-pointer Layout

Most of the existing interfaces for both CPU and GPU architectures use an array
of pointers, where each pointer leads to a matrix in memory. We call this the
pointer-to-pointers (P2P) layout. As depicted in Fig. 1, it allows us to allocate
matrices independently. This is the solution currently used in cblas dgemm batch
and cublasDgemmBatched, the batch DGEMM kernels available in Intel MKL
11.3 beta and NVIDIA cuBLAS version 4.1, respectively. This approach is very
flexible but has two main issues as reported in [7,11]. First, the allocation and
deallocation of thousands of small matrices can be excessively time-consuming.
Second, processing very small matrices stored separately can increase the number
of memory accesses required and induces sub-optimal cache use. In addition, the
array of pointers approach suffers from high data movement costs when data is
offloaded to hardware accelerators.

Fig. 1. Pointer to pointer (P2P) memory layout. The three matrices are stored in
different memory locations in column major order.

3.2 Strided Layout

To alleviate the design issues intrinsic to the pointer to pointers memory layout,
NVIDIA cuBLAS advocated another interface called the strided layout [12]. It
consists of storing a collection of matrices in one contiguous block of memory.
As illustrated in Fig. 2, this involves allocating a large chunk of memory to store
all the Ai matrices.

Fig. 2. Strided memory layout. The three matrices are stored in one contiguous chunk
of memory.

Optimized Batched Linear Algebra for Modern Architectures 515

3.3 Interleaved Memory Layout

Solving batches of small size matrix problems on modern architectures is chal-
lenging because these architectures are primarily designed to address large-scale
problems. The main objective of the interleaved memory layout approach is to
reformulate the thousands of independent small BLAS operations as a single
large-scale problem. This involves providing a relevant way to store the indepen-
dent matrices. Interleaving the entries of different matrices enables cross-matrix
vectorization to fill the vector units on modern architectures. As illustrated in
Fig. 3, the interleaved layout is a permutation of the strided memory layout.

Fig. 3. Interleaved memory layout. The three matrices are stored in one contiguous
chunk of memory, but their elements are mixed together.

3.4 Design of Interleaved Batch BLAS

While the interleaved layout has the potential for better vectorization and data
locality, it requires redesigning the BLAS algorithms. This is achieved by adding
inner for loops to the original algorithms in order to create batches of float-
ing point operations. We illustrate this in a simplified version of an interleaved
TRSM displayed in Algorithm1. For the sake of simplicity and readability, A
and B denote the interleaved layout containing m×m lower triangular matrices
A(i) and the m × n right hand side matrices B(i), respectively; and the notation
A[i][j][idx] is used to refer to the entry ai,j of the matrix A(idx) in the batch.

Compared to the original TRSM algorithm, our interleaved version has an
additional for loop (Algorithm 1, line 5) that accesses each matrix in the batch.
Some operations have also been moved to the innermost loop (Algorithm 1, line
7 and 10), for the sake of better vectorization without affecting the numerical
stability. The innermost loop contains thousands of floating point operations
parallelized among cores thanks to the #pragma openmp parallel for directive
whilst the simd directive makes use of vector pipelines within each core.

3.5 Block Interleaved Layout

While the interleave layout increases the vectorization within the floating point
units, it may lead to a high cache miss rate: since the first entries of the matrices
are stored followed by the second entries etc., the next entries required by the
algorithm are unlikely to be in the cache at any given time. To alleviate this
problem, we divide the initial batch into small sub-batches (blocks), then apply
the interleaved strategy within each block. The block size is selected such that
each sub-batch could be solved efficiently by a single core. The optimal block size

516 J. Dongarra et al.

Algorithm 1. Interleaved TRSM algorithm:B(i) ← α(A(i))−1B(i)

1: for j ← 1 to n do � Iterate over n right hand sides
2: for k ← 1 to m do � Iterate over rows of A
3: for i ← k to m do � Iterate over columns of A
4: #pragma omp parallel for simd

5: for idx ← 1 to batch count do � Iterate over problems in the batch
6: if k == 0 then
7: B[i][j][idx] ← β × B[i][[j][idx] � Apply α
8: end if
9: if i == k then

10: B[k][j][idx] ← B[k][j][idx]/A[k][k][idx] � Division by ak,k

11: continue
12: end if
13: B[i][j][idx] ← B[i][j][idx] − B[k][j][idx] × A[i][k][idx] � Update
14: end for
15: end for
16: end for
17: end for

is a tunable parameter and depends on the number of cores and the memory
hierarchy of the target machine. In our experiments we let InterleaveTRSM
denote Algorithm 1. For the block interleaved TRSM (BlockInterleaveTRSM)
we replace #pragma omp parallel for simd by #pragma simd in Algorithm 1
and use an OpenMP for loop over the blocks defined above.

3.6 Interleaved Batch BLAS User Interfaces

We note that data layout utilized by the user and that used internally to the
computation need not be the same. Indeed our code has two interfaces: a simple
P2P interface for user convenience (which performs all the memory layout con-
version internally) and, for expert users, we expose the interleaved layout kernels
and the associated conversion functions directly. For the simpler functions with
P2P-based interfaces, the design is as follows:

1. Convert from user layout to block interleaved layout.
2. Call block interleaved kernels.
3. Convert back to the user layout.

The conversion routines are designed for better data locality, and exploit both
thread and vector level parallelism. For safety, the user is required to provide the
extra memory intended for conversion. More details on the API and the codes
can be found on our Github repository1.

1 https://github.com/sdrelton/bblas interleaved.

https://github.com/sdrelton/bblas_interleaved

Optimized Batched Linear Algebra for Modern Architectures 517

3.7 Experimental Results

The aim of this subsection is to evaluate how the block interleaved (Blkintl)
batch kernels compare to both the optimized Intel MKL batch BLAS kernels
(MKL) and OpenMP for loop over Intel MKL BLAS kernels (OpenMP). The
experiments are performed on a 68-core Intel KNL2 configured in flat mode
with all data allocated in the high bandwidth memory. To obtain more reliable
results, we take the average time over ten runs and carefully flush the cache
between each run.

Fig. 4. Performance comparison of different implementations of batch DGEMM using
68 threads on the Intel KNL with different batch sizes on square matrices ranging in
size from 2 × 2 to 16 × 16.

The first experiment displayed in Fig. 4, compares the performance in
GFlop/s (the higher the better) of three batch DGEMM implementations. A
batch containing a few thousand matrices is enough to saturate the KNL, and
the performance doesn’t increase significantly when doubling the batch size. It
is important to notice that we also consider layout conversion time in the per-
formance of Blkintl. The conversion overhead is significant for GEMM because
it involves three batches of matrices (A(i), B(i) and C(i)). Despite this overhead,
Blkintl outperforms MKL for very small matrices ranging from 2 × 2 to 7 × 7,
and OpenMP for matrices up to 11 × 11. In the particular case of a batch of 20,000
2 × 2, Blkintl is four times faster than MKL. As the matrix sizes increase, both
MKL and OpenMP outperform Blkintl for two main reasons: (i) the increasing
cost of data layout conversion, and, (ii) the current Blkintl implementation is
not taking advantage of advanced memory prefetching strategies. Since the three
kernels are performing the same floating point operations in a different order,
we can view this as a race to fill the vector units within the cores.

Furthermore, on average, MKL is 15% better than OpenMP. This suggests that
the MKL approach to batch BLAS is more sophisticated than a simple OpenMP
for loop over optimized BLAS kernels.

2 https://ark.intel.com/products/94035/Intel-Xeon-Phi-Processor-7250-16GB-1
40-GHz-68-core.

https://ark.intel.com/products/94035/Intel-Xeon-Phi-Processor-7250-16GB-1_40-GHz-68-core
https://ark.intel.com/products/94035/Intel-Xeon-Phi-Processor-7250-16GB-1_40-GHz-68-core

518 J. Dongarra et al.

As MKL provides only batch kernels for DGEMM, in Fig. 5 we can only com-
pare the performance of Blkintl and OpenMP for a batch of 10,000 DTRSM.
Compared to GEMM, TRSM has a lower numerical intensity, but the perfor-
mance can be increased by operating on multiple right-hand sides. In Fig. 5a and
b, for example, the performance almost doubled for both OpenMP and Blkintl
from one right-hand side to two. The superiority of Blkintl over OpenMP is
significant even with matrix sizes up to 32 × 32, which is consistent with our
analysis in Subsect. 2.1. Interleaving multiple triangular solves alleviates the syn-
chronization penalty of performing only one division per right-hand side before
parallel updates. Another factor is a lower conversion overhead: since the TRSM
algorithm operates on triangular matrices and a few right-hand sides, the con-
version overhead is reasonably low when compared to GEMM.

Fig. 5. Performance of a batch of 10, 000 DTRSM operations using 68 threads on the
Intel KNL with different numbers of right hand sides (rhs), on matrices ranging in size
from 2 × 2 to 32×32. Blkintl is 14 times better than OpenMP in (a) for 2 × 2 matrices.

4 Application to Batched Cholesky Factorization and
Solve

Efficient LAPACK kernel implementations are commonly achieved by dividing
the matrices in blocks or tiles, and taking advantage of Level 3 BLAS routines as
much as possible to process the blocks or tiles. However, very small matrices can-
not easily be divided into blocks. To solve batches of very small LAPACK prob-
lems we can extend the interleaved approach to LAPACK routines. This allows us
to optimize the use of wide vector units and also take advantage of interleaved
BLAS kernels whenever possible. In particular we will focus on the Cholesky
solve (POSV) algorithm which solves Ax = b, where A is a symmetric definite
positive matrix. It starts with a Cholesky factorization (POTRF) A = LLT ,
then performs a forward substitution (TRSM kernel, Ly = b) before finally per-
forming a backward substitution (TRSM kernel, LTx = y). In this example, the
implementation effort involves mainly developing the Blkintl POTRF kernel,
as Blkintl TRSM has already been discussed above.

Optimized Batched Linear Algebra for Modern Architectures 519

Fig. 6. Performance of batch Cholesky factorization (DPOTRF) using 68 threads on
the Intel KNL, with different batch sizes, on matrices ranging in size from 2 × 2 to
32 × 32. Blkintl is 18 times better than OpenMP in (c) for 2 × 2 matrices.

As illustrated in Fig. 6, Blkintl POTRF outperforms the OpenMP version
for the same reasons discussed for the Blkintl TRSM kernel: better use of the
vector units and low memory conversion overhead, and the conversion cost is
even lower than the TRSM case since it involves only one triangular matrix per
problem in the batch. An overview of the Blkintl POSV algorithm is provided
in Algorithm 2.

Algorithm 2. Blkintl POSV algorithm: B(i) ← (A(i))−1B(i)

1: Conversion of A(i) and B(i) into Blkintl format
2: Call Blkintl POTRF
3: Call Blkintl TRSM (forward substitution)
4: Call Blkintl TRSM (backward substitution)
5: Convert A(i) and B(i) back to the user’s format

The two main features of Algorithm 2 are: (i) conversions are performed once
before using the three Blkintl kernels, (ii) reuse of Blkintl BLAS kernels. In
particular, performing the conversion only once allows us to obtain very good
performance with this approach. The results shown in Fig. 7, for example, show
that the gap in performance between Blkintl and OpenMP is larger than the one
observed for TRSM in Fig. 5.

The same strategy is applicable to other batched LAPACK kernels, with lots
of potential for large speedups over an OpenMP for loop.

5 Efficient Batch Linear Algebra on NUMA Nodes

As explained in Subsect. 3.7, obtaining good performance is a race to fill the
vector units of the cores as quickly as possible. In addition, data layout conver-
sions required by Blkintl make our algorithms sensitive to data locality and
data movement. These two factors are potential limitations for achieving good

520 J. Dongarra et al.

Fig. 7. Performance on a batch of 10, 000 Cholesky solve (DPOSV) using 68 threads
on the Intel KNL with different numbers of right-hand sides, on matrices ranging in
size from 2 × 2 to 32 × 32. Blkintl is 40 times better than OpenMP in (a) for 2 × 2
matrices.

performance on non-uniform memory access (NUMA) nodes. In fact, when run-
ning a batch of very small matrices on a 2-socket NUMA node for example,
the matrices are more likely to be allocated on a single socket, and the second
socket will have only a remote access to data. This induces a high communica-
tion cost and performance drop due to the cost of remote memory access. This
issue is commonly addressed by interleaving the data allocation thanks to the
numactl -interleave=all option available on Linux systems. Memory will
then be allocated using a round robin procedure between the nodes. As depicted
in Fig. 8, there is a slight performance improvement for both Blkintl and OpenMP
when changing the standard memory allocation (Fig. 8a) into the interleaved
allocation configuration (Fig. 8b). In general spreading the memory allocation
improves the performance but, in the case of batch operations, there is no guar-
antee that we will allocate all data required for each independent problem on
the same node. For example A(i) may be allocated on the first socket while the
corresponding B(i) allocated on the second socket.

One way to significantly improve the performance is to split the batch into
two independent batches and use one socket per batch. Unfortunately current
OpenMP runtimes are not NUMA aware, however the user can manage the mem-
ory allocation themselves to enforce optimal data placement, using the libnuma
API for example. The user can then call our batch BLAS kernel on each socket in
parallel. This strategy should improve the performance significantly as observed
in Fig. 8c, but requires a lot of user effort.

On the particular machine we used, the NUMA node vector units are half the
size of the Intel KNL vector units. This explains the decrease of the performance
gap between Blkintl and OpenMP when compared to those observed for Intel
KNL. We believe that further studies can help in designing new efficient batch
kernels which are specially optimized for NUMA nodes.

Optimized Batched Linear Algebra for Modern Architectures 521

Fig. 8. Performance of a batch of 10, 000 Cholesky solve (DPOSV) operations using
20 threads on a NUMA node of two 10-core sockets, Intel Xeon E5-2650 v3 (Haswell),
with different numbers of right-hand sides, on matrices ranging in size from 2 × 2 to
32 × 32.

6 Concluding Remarks

In this research we have explained, and demonstrated the large potential of, the
block interleaved strategy for batched BLAS operations. We have shown that
our approach can offer significant performance improvements over an OpenMP
for loop around vendor optimized BLAS kernels, with speedups of up to 40×
for a batched Cholesky solve.

While generally satisfactory speedups are achieved on the Intel KNL architec-
ture, we noted that further prefetching techniques may help to further improve
the performance of the Blkintl DGEMM kernel. We have also shown that
advanced memory placement configurations are necessary to increase the per-
formance of batched kernels on NUMA nodes.

Finally, this study has focused only on an element-wise interleaving strat-
egy. However, we believe that other data interleaving approaches such as row
interleaving, column interleaving, and mixtures of the above could also provide
similar (or even better) performance. It is clear that there is a large amount of
further investigation to be done in this area.

Acknowledgements. The authors would like to thank The University of Tennessee
for the use of their computational resources. This research was funded in part from
the European Union’s Horizon 2020 research and innovation programme under the
NLAFET grant agreement No. 671633.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., et al.: TensorFlow: large-scale
machine learning on heterogeneous systems (2015). tensorflow.org

2. Abdelfattah, A., Haidar, A., Tomov, S., Dongarra, J.J.: Performance, design, and
autotuning of batched GEMM for GPUs. In: Proceedings of High Performance
Computing - 31st International Conference, ISC High Performance 2016, Frankfurt,
Germany, 19–23 June 2016, pp. 21–38 (2016)

http://tensorflow.org/

522 J. Dongarra et al.

3. Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., et al.:
Theano: a python framework for fast computation of mathematical expressions.
arXiv e-prints, http://arxiv.org/abs/1605.02688, May 2016

4. Anderson, M.J., Sheffield, D., Keutzer, K.: A predictive model for solving small
linear algebra problems in GPU registers. In: 2012 IEEE 26th International Parallel
and Distributed Processing Symposium (IPDPS), pp. 2–13. IEEE (2012)

5. Duff, I., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear
equations. ACM Trans. Math. Softw. 9(3), 302–325 (1983)

6. Haidar, A., Dong, T.T., Tomov, S., Luszczek, P., Dongarra, J.: A framework
for batched and GPU-resident factorization algorithms applied to block house-
holder transformations. In: Kunkel, J.M., Ludwig, T. (eds.) ISC High Perfor-
mance 2015. LNCS, vol. 9137, pp. 31–47. Springer, Cham (2015). doi:10.1007/
978-3-319-20119-1 3

7. Jhurani, C., Mullowney, P.: A gemm interface and implementation on NVIDIA
GPUs for multiple small matrices. J. Parallel Distrib. Comput. 75, 133–140 (2015)

8. K̊agström, B., Ling, P., van Loan, C.: GEMM-based level 3 BLAS: high-
performance model implementations and performance evaluation benchmark.
ACM Trans. Math. Softw. 24(3), 268–302 (1998)

9. Lopez, M.G., Horton, M.D.: Batch matrix exponentiation. In: Kindratenko, V.
(ed.) Numerical Computations with GPUs, pp. 45–67. Springer, Cham (2014).
doi:10.1007/978-3-319-06548-9 3

10. Masliah, I., Abdelfattah, A., Haidar, A., Tomov, S., Baboulin, M., Falcou, J.,
Dongarra, J.: High-performance matrix-matrix multiplications of very small matri-
ces. In: Dutot, P.-F., Trystram, D. (eds.) Euro-Par 2016. LNCS, vol. 9833, pp.
659–671. Springer, Cham (2016). doi:10.1007/978-3-319-43659-3 48

11. Relton, S.D., Valero-Lara, P., Zounon, M.: A comparison of potential interfaces
for batched BLAS computations. MIMS EPrint 2016.42, Manchester Institute for
Mathematical Sciences, The University of Manchester, UK (2016)

12. Shi, Y., Niranjan, U.N., Anandkumar, A., Cecka, C.: Tensor contractions with
extended BLAS kernels on CPU and GPU. arXiv preprint arXiv:1606.05696 (2016)

http://arxiv.org/abs/1605.02688
http://dx.doi.org/10.1007/978-3-319-20119-1_3
http://dx.doi.org/10.1007/978-3-319-20119-1_3
http://dx.doi.org/10.1007/978-3-319-06548-9_3
http://dx.doi.org/10.1007/978-3-319-43659-3_48
http://arxiv.org/abs/1606.05696

New Efficient General Sparse Matrix Formats
for Parallel SpMV Operations

Jan Philipp Ecker1, Rudolf Berrendorf1(B), and Florian Mannuss2

1 Computer Science Department, Bonn-Rhein-Sieg University of Applied Sciences,
Sankt Augustin, Germany

{jan.ecker,rudolf.berrendorf}@h-brs.de
2 EXPEC Advanced Research Center,

Saudi Arabian Oil Company, Dhahran, Saudi Arabia
florian.mannuss@aramco.com

Abstract. The Sparse Matrix-Vector Multiplication (SpMV) is an
important building block in High Performance Computing. Performance
improvements for the SpMV are often gained by the development of new
optimized sparse matrix formats either by utilizing special sparsity pat-
terns of a matrix or by taking bottlenecks of a hardware architecture
into account. In this work a requirements analysis is done for sparse
matrix formats with an emphasis on the parallel SpMV for large general
sparse matrices. Based on these requirements, three new sparse matrix
formats were developed, each combining several optimization techniques
and addressing different optimization goals/hardware architectures. The
CSR5 Bit Compressed (CSR5BC) format is an extension to the existing
CSR5 format and optimized for GPUs. The other two formats, Hybrid
Compressed Slice Storage (HCSS) and Local Group Compressed Sparse
Row (LGCSR), are new formats optimized for multi-core/-processor
architectures including the Xeon Phi Knights Landing. Results show
that all three storage formats deliver good parallel SpMV performance
on their target architectures over a large set of test matrices compared
to other well performing formats in vendor and research libraries.

Keywords: SpMV · Sparse matrix format · Requirements analysis ·
CPU · GPU · Xeon Phi knights landing · CSR5BC · HCSS · LGCSR

1 Introduction

The Sparse Matrix-Vector Multiplication (SpMV) �y ← A ∗ �x is an important
building block for many scientific and engineering applications. Much effort has
been spent in the past to optimize this operation. To do so, many development
parameters have to be considered simultaneously, among them the storage format
for the sparse matrix, the data access pattern in an SpMV operation, the spar-
sity structure of the matrix, performance characteristics of the target processor
architecture, and for a parallel execution the balance of load. This work sub-
sumes requirements for sparse matrix storage formats with an emphasis on an
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 523–537, 2017.
DOI: 10.1007/978-3-319-64203-1 38

524 J.P. Ecker et al.

efficient parallel execution of SpMV operations and summarizes important exist-
ing optimization techniques for such operations on different target platforms.

The main contribution of this work is the description of three new storage
formats targeted for different parallel processor architectures that address most
of the raised requirements. The relevant hardware platforms are the building
blocks in current HPC systems: single- and multi-processor CPU systems, Intel
Xeon Phi Knights Landing and Nvidia GPUs. Each of the newly developed for-
mats has different optimization goals, which resulted in fundamentally different
matrix formats with different performance properties. Two of the three new for-
mats do not assume (and do not take advantage of) any special matrix structure.
The third format is optimized for matrices with many 1D blocks.

The rest of this paper is structured as follows. Section 2 presents the require-
ments analysis of the SpMV operation, a discussion of known optimization tech-
niques and related work. Section 3 introduces the three newly developed matrix
formats. In Sect. 4 the performance of the formats is evaluated on a large set of
test matrices. Section 5 summarizes the findings of the work.

2 Requirements Analysis, Existing Optimization
Techniques and Related Work

In our effort to optimize the parallel SpMV operation, we found several bottle-
necks in existing formats and implementations that could not easily be elimi-
nated. The development of the new formats presented in this work is based on
an extensive requirements analysis of the parallel SpMV operation. The iden-
tified requirements are divided into strong and weak requirements as shown in
Table 1. Strong requirements are essential in the development process for every
sparse matrix format, while weak requirements are more important in the imple-
mentation step. But there is no sharp distinction between the two requirement
types. In the following, we briefly explain the requirements and discuss important
existing optimization techniques that can be used to tackle them. The related
work is in so far included in the following discussion.

The SpMV is due to its low computational complexity for large matrices
a memory bound operation. Therefore the focus of the sparse matrix formats
should be on the reduction of the required memory transfer demand. All sparse
storage formats require much less memory compared to storing a dense matrix,
but even further memory savings (R1) can be reached by using additional opti-
mizations. One approach is the use of blocked formats like Blocked Compressed
Sparse Row (BCSR) [4], blocked row-column (BRC) [3] or Dynamic Blocking
(DynB) [16]). Another widely used optimization is index compression. This
reaches from approaches where smaller data types are used for storing the index
data [19] to complex bit compression strategies [9,21]. These techniques can also
be combined to reach an even higher compression.

Further memory bandwidth savings can be reached by reusing data. For the
SpMV operation, this is only possible for the �x vector (R2), since the data of
the matrix is read only once. Blocking or pattern based formats can be used for

New Efficient General Sparse Matrix Formats for Parallel SpMV Operations 525

Table 1. List of the strong requirements (left) and weak requirements (right).

Table 2. Selection of existing and new formats and their fulfilled requirements.

Format R1 R2 R3 R4 R5 R6 C1 C2 C3 C4 C5 C6 C7 C8

CSR � � � � � � � � �
BCSR � � � � � � � � � � �
ELL � � � � � � � � � �
CSR5 � � � � � � � � � �
ELL-BRO � � � � � � � � � �
SELL-C-σ � � � � � � � � �
DynB � � � � � � � � �
CSR5BC � � � � � � � � � � �
HCSS � � � � � � � � � � � �
LGCSR � � � � � � � � � � �

increasing the data reuse. By storing dense blocks of the matrix, elements with
the same column index are processed as a group. Another technique for data
reuse is a partitioning of the matrix into vertical tiles. When the size of the tiles
is selected appropriately and the slices are processed one after each other, the
data reuse of the �x vector can be improved, since the number of possible column
indices is reduced. This technique has been proposed by Yang et al. [24] and was
also used in other matrix formats [20,23]. Matrix reordering techniques can also
be used to improve locality/data reuse [14].

The accesses on the �x vector depend on the structure of the sparse matrix.
Typically these accesses are not consecutive and they can not be prefetched by
a hardware prefetcher. This can lead to a high memory access latency (R3),
since many elements have to be loaded from the main memory. Reordering tech-
niques [15] can help to provide more consecutive memory accesses to the x vector.
This could allow a more efficient prefetching of the required elements and thus
lead to a lower memory access latency. In general this technique is not very
applicable, since it introduces a significant overhead for the reordering itself.

Efficient sparse matrix formats should furthermore ensure consecutive mem-
ory accesses (R4). This is important especially on GPU-based systems but also
other platforms with vector units can benefit from consecutive accesses [8]. Since

526 J.P. Ecker et al.

all current hardware platforms have vector units or could be described as vector
processors, the utilization of vector units is very important. Whether consecu-
tive memory accesses are possible or not strongly depends on the data layout
of the matrix format. Nevertheless different techniques can be used to increase
consecutive memory accesses and the utilization of vector units (R5). Using
the already mentioned blocking or pattern based approaches can be advanta-
geous. Another rather new approach in this context is the use of a segmented
sum algorithm, which has been proposed with the Block Compressed Common
Coordinate (BCCOO) format [23] and the CSR5 format [13]. The segmented
sum algorithms work independent of the row boundaries, which can improve the
memory access pattern and simplify the efficient utilization of vector units.

On modern hardware the available parallelism is steadily increasing, which
increases the need for a proper load balancing (R6). This is especially prob-
lematic for matrices with a highly irregular structure. Multiple techniques have
been proposed to handle such imbalances. Examples are row-splitting and row-
merging approaches [7,22], which try to reduce/increase the length of rows to
allow a more balanced calculation. Furthermore, the already mentioned seg-
mented sum algorithms can be used to improve the load balancing. By ignoring
the row boundaries, the calculation of the SpMV is independent of the matrix
structure which in theory should improve the load balance.

Additionally to our requirements analysis, we have evaluated a large number
of matrix formats. Table 2 presents a small selection of formats and the fulfilled
requirements. It furthermore presents the same analysis for the three newly
developed formats which will be described in the following section. It can be
seen that most of the existing formats fulfill 10 requirements at the most, with
the only exception being the BCSR format. Additionally none of the formats
fulfill the requirement R3, which is the improvement of the access latency, where
no general optimization technique could be found. As mentioned, reordering
techniques could solve this problem, but these methods introduce significant
overhead to the format conversion and can introduce other, unwanted, changes
to the matrix structure. Furthermore, it can be seen that only about half of
the formats directly tackle the primary performance bottleneck of the SpMV
operation, which is the limited memory bandwidth (requirement R1 and R2).
All our newly developed formats focus on saving memory bandwidth, while not
neglecting the other important requirements. Overall, the developed formats
fulfill a slightly larger number of the identified requirements.

No existing publication could be found, which has done a comprehensive
requirements analysis of the SpMV operation. The work of Langr Tvrd́ık [11]
discusses important criteria when comparing different sparse matrix formats,
which partially imply some of the requirements identified in this work.

3 New Formats for Efficient Parallel SpMV Operations

Based on the systematic requirements analysis and gathering of known optimiza-
tion techniques, we structurally improved (CSR5 Bit Compressed (CSR5BC))

New Efficient General Sparse Matrix Formats for Parallel SpMV Operations 527

and developed completely new formats (Hybrid Compressed Slice Storage
(HCSS), Local Group Compressed Sparse Row (LGCSR)) that address most
requirements and perform well on their target hardware architectures. In the
following sections, the three new sparse matrix formats are motivated and
described.

3.1 CSR5 Bit Compressed—CSR5BC

The CSR5BC format has been developed especially for the use on GPUs and it is
based on the existing CSR5 format of Liu [13]. The original CSR5 format utilizes
a segmented sum algorithm to allow efficient parallel SpMV calculations that are
mostly independent of the matrix structure. The matrix can be partitioned inde-
pendently of the row boundaries, which allows an even distribution of the work
on the available hardware units. This is especially important on GPU proces-
sors. The new format CSR5BC now introduces an additional index compression
technique, which furthermore reduces the memory consumption of the CSR5BC
format compared to Compressed Sparse Row (CSR) and CSR5. It requires less
valuable memory bandwidth by using a little bit more meta information and
some extra computation suitable to a GPU.

We start with a brief description of the original CSR5 format. The CSR5
format organizes the non-zero elements in blocks, which are also called tiles.
The size of these tiles is optimized for the specific hardware platform. The width
ω of the blocks is defined through the size of the available vector units, while the
height σ depends on the hardware platform and matrix structure. For every block
additional meta information has to be stored to allow an efficient calculation of
the SpMV. Further details can be found in the original publication [13].

To further reduce memory bandwidth demands, the additional compression
technique of the CSR5BC format is illustrated in Fig. 1. The compression works
on a tile level and in a first step the index number space is reduced using two
different techniques. First, the smallest column index of the tile, also called
global offset, is identified and subtracted from all column indices of the tile (400
in the example). Afterwards a column-wise delta encoding is calculated. The
delta encoding respects the row boundaries of the elements, which means when
a new row begins, the delta encoding is reset.

In the next step, for each row of the tile the largest column index and the
required number of bits for storing it is determined. The actual number of bits
used for storing all column indices is identical for all elements of the same row.
Since the SpMV calculations of the elements in the same row is done in parallel,
this compression allows coalesced memory access which is an important require-
ment for all GPUs. In addition to the existing data structures of the CSR5 for-
mat, new arrays are required because of the compression. The CSR5BC format
introduces a new array called compressionPointer that holds all required meta
information in one place. This includes the offset in the compressed columnIndex
array and the global offset that has been used to reduce the number space. Fur-
thermore, the number of required bits for every row of the tile is stored, which

528 J.P. Ecker et al.

columnIndex compressionPointer

int size = 10 bit

ω

σ

512

513

540

560

561

400

462

401

470

471

472

521

1. subtract
global offset
(400)

colors represent rows

112

113

140

160

161

0

62

1

70

71

72

121

2. column wise
delta encoding
respecting row
borders

112

1

27

160

1

0

62

1

69

71

1

121

max

160

1

121

bits

8

1

73. compress
and transpose
(ELL scheme)

a

400

32

71

columnIndex start

global offset
001000

0000
01

000111
00

8

1

7

450 560 462 471 432 561

01110000 1 0

112 (8 bit)

1 (1 bit)

011011 0000

27 (7 bit)

Fig. 1. Simplified part of the data structure of the CSR5BC format. One 3× 4 tile is
shown.

is again bit compressed into 6 bit per tile row. This in total results in a signifi-
cant memory reduction and even more important memory bandwidth reduction
compared to the existing CSR5 format.

3.2 Hybrid Compressed Slice Storage—HCSS

The HCSS format is a new hybrid format for CPU-based systems and Xeon Phi
with the focus on a high utilization of the available vector units. The HCSS
format partitions the matrix into slices of a fixed size, equal to the size of the
available vector units and each slice is then stored in an individual most suitable
format. Currently three different slice formats are used: ELLpack (ELL) [17],
compressed ELL and a modified CSR. The ELL format is very well suited for
the use of vector units, since it is inherently aligned. Furthermore, it allows the
processing of multiple rows in parallel, which is advantageous compared to a row-
based approach, because it avoids the use of an additional reduction operation.
For this reason HCSS tries to store as many slices of the matrix using ELL.

The compressed ELL format utilizes the same data organization as the tra-
ditional ELL format, but it introduces a very simple bit compression technique.
To reduce the number space of the column indices, first a delta encoding is done.
Since the delta encoding has no effect on the first column index of every row
and some type of diagonal structure is very often present, the first index of every
row is not compressed and stored using a full integer value (32 bit). All following
elements are stored in groups of two, where an integer value (32 bit) is split into
two (16 bit) parts which are used for storing the index information. Whenever a
row can not be stored evenly using pairs of two (excluding the first element), one
additional padding element is introduced at the end of the row. The compressed
ELL format can only be used for slices with a proper structure, without large
gaps between multiple non-zero values.

New Efficient General Sparse Matrix Formats for Parallel SpMV Operations 529

The biggest drawback of the ELL format is the inherently required padding,
that can result in a very large memory footprint. For this reason the CSR for-
mat is used for slices of the matrix, that would require the introduction of large
amount of padding. To allow a proper memory alignment throughout the com-
plete HCSS format and to simplify the calculation of the CSR slice, a small
amount of padding is introduced to the modified CSR format, that is used in
HCSS. Every row of the CSR format is padded to a number of elements that
is a multiple of the size of the available vector units. Overall, these techniques
ensure that each slice of the matrix is properly aligned.

The proper format for every slice is selected based on the non-zero structure
of the rows in the slice. This is done by a very simple but effective heuristic
that is based on empirical findings. As previously described the heuristic prefers
the use of ELL (and compressed ELL) over CSR. The heuristic compares the
number of non-zero elements of the row with the least and most entries in every
slice and decides on two simple parameters whether the slice should be stored
using ELL or CSR. Elements are only stored using CSR, when the row with the
least entries has at least 16 elements and the row with the highest number of
non-zeros has at least 20% more elements. The compressed ELL format is used,
whenever the row contains at least 3 elements and the slice structure allows a
compression of the elements into values of 16 bits.

Figure 2 shows the simplified data structure of the HCSS format. The HCSS
format overall requires 5 arrays. The rowPtr is identical to the same array in
the CSR format and is only required for the calculation of the CSR slices. The
slicePtr array is similar to the CSR rowPtr and allows the addressing of the
slices in the HCSS format. Because of the used index compression, it stores two
index information per slice, the offset in the values and columnIndex array.
The first 2 bits of every entry, 4 bit per slice, are used for storing the type of
every slice. This allows the use of up to 16 different matrix formats. For systems
with a vector size of at least 4, this step does not reduce the maximal possible

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

1.3 5.1

2.4

6.2 3.8

1.7 9.2 5.1 7.2 5.2

1.7 3.9 9.3

1.5 4.1

6.2

5.2

rowPtr = {0, 2, 3, 5, 10, 13, 15, 16, 17}
sliceP tr = {00, 0, 22, 2, 16, 6, 09, 8, 10, 9}
values = {1.3, 2.4, 5.1, 0.0,

6.2, 3.8, 1.7, 9.2, 5.1, 7.2, 5.2, 0.0,
1.7, 1.5, 3.9, 4.1, 9.3, 0.0,

6.2, 5.2}
columnIndex = {0, 4, 5, 5,

2, 4, 1, 3, 4, 6, 7, 7,

0, 3, (4, 6), (7, 7),

2, 5}

Slice type encoded in first bits 0: ELL 1: comp. ELL 2: CSR

Simplified structure, (a, b) denotes index a and b compressed to 32 bitvector size = 2

slice 1

slice 2

slice 3

slice 4

Fig. 2. Simplified data structure of the HCSS format.

530 J.P. Ecker et al.

matrix size compared to CSR. Since the number of non-zero elements in every
slice is dividable by the vector unit size, the number space can be reduced by the
same factor. Therefore, the first bits can be used to encode the type of the slices.
By using an additional array, called blockStart (not presented in the figure),
the load balance of the format is improved. The array stores the first and last
slice that should be processed by every thread. The distribution is based on the
number of non-zero elements in the relevant rows, but an implementation could
use any block based distribution that is more adequate.

3.3 Local Group Compressed Sparse Row—LGCSR

The LGCSR format is a new matrix format for CPU-based systems that utilizes
row-wise 1D blocks of non-zero values of variable size. This format assumes
therefore more structural properties of a sparse matrix, but in such cases can
deliver an even better performance than general formats. We have found out that
many sparse matrices from different application fields often have many small
variable sized block structures all over the whole matrix that can be efficiently
utilized in one or the other way [16]. The LGCSR format is based on 1D row
blocks and stores the index information of these row blocks or local groups
highly bit compressed. For each group the column index of the first entry and
the number of elements in the group has to be stored. The column index is stored
as delta to the previous group to reduce the number space. To further reduce
the memory consumption, these two information are highly bit-compressed in
so called packages. The structure of these packages is depicted in Fig. 4. Each

0

0

1

1

2

2

3

3

4

4

5

5

6.2

1.79.25.1

1.7 3.9 9.3

1.5 4.1

6.2

5.25.2

rowPtr = {0, 1, 4, 7, 9, 10, 12}
values = {6.2, 5.1, 9.2, 1.7, 1.7, 3.9, 9.3, 1.5, 4.1, 6.2, 5.2, 5.2}
columnPtr = {0, 1, 2, 4, 5, 6, 7}

columnIndex = {(2|1), (1|3), (0|1), (4|2), (1|2), (5|1), (2|2)}
Simplified package structure ({index}|{length}) with 32 bit length

Fig. 3. Simplified data structure of the LGCSR format.

LGCSR package structure

1 01 00 0101...1110 1100...1001

package
type

index
type

group
type

4 to 32 bit
col. index

0 to 27 bit
group size

5 bit header variable length payload

Fig. 4. Detailed description of the package structure of the LGCSR format.

New Efficient General Sparse Matrix Formats for Parallel SpMV Operations 531

package consists of a 5 bit header and the group’s index information itself. The
header encodes the amount of bits necessary for storing each part of the index
information. One bit is used to store whether it is a group or a single element to
handle non-blocks (i.e., single non-zero values) efficiently, too. Two bits encode
the length of the column index and the last two bits encode the length of the
number of elements in the group. Since only two bits are used for encoding the
length information, only one of 4 sizes can be selected. These range from 4 to
32 bits for the column index information and from 4 to 27 bits for the group
length. When the single element is stored, no group size information are stored.
The maximum overall package size is 64 bit.

Figure 3 presents the simplified data structure of the LGCSR format. Overall
5 arrays are necessary for storing the required meta information and non-zero
values. The LGCSR format reuses the rowPtr and values vectors of the classic
CSR format. Because of the index compression, additional addressing is required
for the columnIndex, which is stored in the columnPtr array. It works similar
to the rowPtr and points to the first element of every row in the columnIndex
array. The described, bit compressed, packages are stored in the columnIndex
array. Identical to the HCSS format, an additional blockStart array is used for
load balancing which stores the first and last row every thread should process.

4 Evaluation

In this section the performance of all three presented formats is evaluated. First
the evaluation methodology is explained. Afterwards the performance on the
three relevant hardware platforms is discussed.

4.1 Evaluation Methodology

The performance of the different formats is evaluated by comparing the runtime
of the parallel SpMV operation for a large set of matrices. The set consists
of 78 larger square sparse matrices with different sizes and structural properties
from the University of Florida Sparse Matrix Collection [6] and the Comparative
Solution Project [18]. The CSR memory footprint of the matrices ranges from 62
MB to 9.4 GB using 32 bit indices. The bare SpMV calculation time is measured,
so no memory transfer times are considered (e.g., no transfer times to the GPU).
Each measurement is repeated 100 times and the median runtime is used in the
evaluation.

The CPU measurements have been done on a system with two Intel Xeon
E5-2680 v3 processors (Haswell) with 128 GB of main memory. One GPU of
a Nvidia Tesla K80 has been used for the GPU benchmarks. The system for
the Xeon Phi Knights Landing (KNL) measurements consists of a Xeon 7250
processor with 96 GB of additional main memory. This system is configured in
the quadrant cluster mode using the flat configuration, which requires manual
allocations to utilize the available MCDRAM. The code was compiled using the
Intel compiler version 17.0.0 and CUDA version 8.0.

532 J.P. Ecker et al.

In our test framework we have implemented many different matrix for-
mats ourselves and integrated some formats using third party research libraries
(clSPARSE [1], GHOST [2], CSB library [5], bhSPARSE [12]). In total we used
the formats BCSR, CMRS, COO, CSB, CSC, CSR, CSR5, CSR5BC, DynB,
ELL, ELL-BRO, ESB, HCSS, LGCSR, SELL-C-σ, VBL in our own and/or ven-
dor/research library implementation. The performance of every format imple-
mentation has been measured for varying thread numbers. The final performance
numbers are measured with one fixed number of threads per matrix format, the
best performing one for this format. For all formats shown in the results, on
the CPU the use of the full parallelism or 48 threads delivered the best per-
formance. On the Xeon Phi there were differences between the formats on the
optimal thread count. The MKL implementation of the CSR format and our
HCSS implementation delivered the best performance using 128 threads. Our
own CSR implementation performed optimally using the full parallelism with
272 threads. On the KNL we used 512 bit vector instruction and manually allo-
cated all important data structures in the MCDRAM.

Rather than giving some absolute performance values for the new formats
that might be hard to interpret, we relate the numbers to widely accepted base
performance numbers of vendor library functions. First, we looked for the best
performing matrix format in the vendor library on a system, taking all matrices
into account. On the CPU and the Xeon Phi system that was the CSR format
in the Intel MKL library V2017. On the GPU, this was the HYB format of
Nvidia cuSPARSE. The performance value of this vendor library call for a specific
matrix was used as a base value. For all other matrix formats evaluated, we
measured the SpMV time for every matrix and calculated a speedup value for
that call in relation to the base value.

4.2 Overhead and Memory Footprint Analysis

Figure 5a presents the memory savings compared to the traditional CSR format
for the used matrix set. It can be seen, that the HCSS format achieves only
moderate memory savings for most matrices, with a median of about 8% and
even requires more memory than CSR for a few matrices. This can be explained
by the very simple compression technique used in HCSS. The median mem-
ory savings of the CSR5BC format are much higher with 19%. Furthermore,
the compression factor is much more consistent over the full matrix set, which
is related to the more sophisticated compression approach and no additional
padding of CSR5BC. The utilization of the blocked structure of matrices in the
LGCSR format results in significant memory savings of about 26% in median for
our matrix set. For matrices without 1D blocks the compression of the LGCSR
format does not work and only small or no memory savings can be reached.

Figure 5b presents the sequential conversion times from CSR to the for-
mats measured in the number of sequential iterations that can be done in the
same time using the CSR format. It can be seen, that the conversion over-
head is quite small (8/13/33 SpMV iterations for HCSS/LGCSR/CSR5BC,

New Efficient General Sparse Matrix Formats for Parallel SpMV Operations 533

0.8

1.0

1.2

CSR5BC HCSS LGCSR

Matrix Format

M
em

or
y

sa
vi

ng
s

co
m

pa
re

d
to

 C
SR

10−1

100

101

102

103

CSR5BC HCSS LGCSR

Matrix Format

C

SR
 S

pM
V

ite
ra

tio
ns

 (l
og

 s
ca

le
)

Fig. 5. Comparison of the memory savings and conversion effort of the three developed
formats.

respectively). Overall all the conversion times are very low, compared to the
achieved performance improvements of the formats, which will be presented in
the rest of this section.

4.3 Performance Evaluation

Gathering the speedup values compared to the vendor implementation over all
matrices, the overall results for all three architectures are summarized in Fig. 6
using boxplots which allows a more compact presentation of the data. A small
number of very high outliers has been cut off in the plot for presentation reasons.
In addition to the performance of our new formats, the performance of all best
performing matrix formats is presented in the plots. Formats not shown in the
plots had a worse performance. See Sect. 4.1 for a list of all used formats.

On the CPU-based system, the best performing formats were DynB [16],
HCSS, LGCSR, CSR (our own implementation), CSR5 [13] and CSR5BC. It
can be seen that the performance of the blocked formats, LGCSR and DynB,
varies much more compared to the non blocked formats CSR and HCSS. This
is not surprising, since these formats are more sensitive to matrix structures
and perform well for matrices with related block structures, but often very poor
for matrices without such structures. Overall the formats HCSS and LGCSR
show (additionally to DynB) the best median performance, with a correspond-
ing median speedup of about 15 to 16% compared to MKL CSR. The boxplot
furthermore shows that while the rather general formats CSR and HCSS deliver
very decent performance for most matrices, they are outperformed for a large
number of matrices by the blocked formats that are optimized for such struc-
tures. Overall, the HCSS format shows a significant performance increase over
the MKL CSR implementation without any matrices with performance degra-
dation (i.e., is always better). The blocked LGCSR format has advantages to all
other formats on those matrices that have 1D blocks of non-zeros. Overall both

534 J.P. Ecker et al.

Fig. 6. Performance of all best performing formats on the three hardware platforms.
ELL is for some matrices not possible. See the text for additional remarks.

newly developed formats, HCSS and LGCSR, show good performance numbers
compared to the other existing matrix formats. HCSS is a rather general for-
mat, LGCSR should preferably be used when suitable block structures can be
assumed in the matrix. Both the formats CSR5 and CSR5BC show no signifi-
cant improvement over the MKL CSR implementation. Speedups could only be
reached for a small number of matrices.

On the Xeon Phi KNL, the best performing formats were CSR (our own
implementation) and HCSS. It can be seen that out CSR implementation outper-
forms the library implementation for all matrices and reaches a median speedup
of about 40%. The newly developed HCSS format also outperforms the MKL for
most matrices with a median speedup of about 20%. HCSS delivers a very simi-
lar relative performance compared to the CPU, while the CSR format delivers a
much better relative performance on the KNL. This can be explained by multi-
ple reasons: The CSR format works on a row basis and HCSS works on slices of
rows, which allows the CSR format a finer grained load balance. Furthermore,
the CSR format requires no padding at all and has an even lower code complex-
ity compared to HCSS. The LGCSR format does not perform well on the KNL,
which can be explained by its very high code complexity. The microarchitecture
of the KNL performs less well on complex code than CPUs.

On the GPU, the best performing formats were CSR5BC, CSR5 [13], ELL,
Sell-C-σ [10] and ELL-BRO [21]. It can be seen that all performance values are
much closer to the vendor library values. The newly developed CSR5BC format
outperforms the existing CSR5 format slightly due to the reduced memory band-
width demand. The median performance improvement of CSR5BC over CSR5 is
about 3.5% without relevant performance losses. The CSR5BC format further-
more outperforms all ELL-based matrix formats for most matrices. The median
speedup of CSR5BC to cuSPARSE HYB is about 3.2%. Furthermore, the per-
formance of CSR5BC is much more consistent and achieves good performance
for most matrices, while the performance of the ELL-based formats varies much

New Efficient General Sparse Matrix Formats for Parallel SpMV Operations 535

more. All ELL-based formats suffer high performance losses for matrices with a
disadvantageous matrix structure. Some matrices could even not be processed
using the ELL-based formats, because too much padding was required. This is
different for CSR5BC (and CSR5), which was able to handle all matrices. Over-
all, CSR5BC as an extension to CSR5 is well suited for the use on the GPU.

5 Summary

In this paper we proposed three new matrix formats for the three currently most
popular hardware architectures. The CSR5BC format is based on the existing
CSR5 format and it delivers much more consistent performance results compared
to most ELL-based matrix formats on a GPU. Therefore, it is more universally
applicable and much less dependent on the matrix properties. The same is also
true for the original CSR5 format. Due to the additional index compression and
therefore reduced memory bandwidth demand, CSR5BC has shown small but
regular performance improvements compared to the original CSR5 format on
the GPU. Furthermore it performed reasonable well on the CPU.

The newly developed HCSS and LGCSR formats performed well on the CPU
for almost all matrices. For matrices with many 1D blocks, higher speedups can
be reached when the LGCSR format is used. On the Xeon Phi, only the HCSS
format delivered good performance, because it is better suited for the simpler
microarchitecture. The higher code complexity of the LGCSR format prevented
a similar relative performance gain on the Xeon Phi compared to the CPU.

Acknowledgements. We would like to thank the CMT team at Saudi Aramco
EXPEC ARC for their support and input. Especially we want to thank Ali H. Dogru
for making this research project possible. Additionally we thank Weifeng Liu for giving
us access to his CSR5 code and for discussions. We used the following libraries in our
evaluation where we thank the original authors for access to the code: bhSPARSE,
clSPARSE, GHOST, CSB library.

References

1. clSPARSE. https://github.com/clMathLibraries/clSPARSE. Accessed Feb 2017
2. GHOST. https://bitbucket.org/essex/ghost. Accessed Feb 2017
3. Ashari, A., Sedaghati, N., Eisenlohr, J., Sadayappan, P.: An efficient two-

dimensional blocking strategy for sparse matrix-vector multiplication on GPUs.
In: Proceedings of 28th ACM International Conference on Supercomputing (ICS
2014), pp. 273–282. ACM (2014)

4. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout,
V., Pozo, R., Romine, C., der Vorst, H.V.: Templates for the Solution of Linear Sys-
tems: Building Blocks for Iterative Methods, 2nd edn. SIAM, Philadelphia (1994)

5. Buluç, A.: Compressed Sparse Blocks (CSB) Library. http://gauss.cs.ucsb.edu/
∼aydin/csb/html/index.html. Accessed Feb 2017

6. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
Trans. Math. Softw. 38(1), 1:1–1:25 (2010)

https://github.com/clMathLibraries/clSPARSE
https://bitbucket.org/essex/ghost
http://gauss.cs.ucsb.edu/~aydin/csb/html/index.html
http://gauss.cs.ucsb.edu/~aydin/csb/html/index.html

536 J.P. Ecker et al.

7. Feng, X., Jin, H., Hu, K., Zeng, J., Schao, Z.: Optimization of sparse matrix-
vector multiplication with variant CSR on GPUs. In: Proceedings of 2011 IEEE
17th International Conference on Parallel and Distributed Systems, pp. 165–172.
IEEE (2011)

8. Intel: IntelR© 64 and IA-32 Architectures Optimization Reference Manual,
June 2016. http://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-optimization-manual.pdf. Accessed Feb 2017

9. Kourtis, K., Goumas, G., Koziris, N.: Optimizing sparse matrix-vector multipli-
cation using index and value compression. In: Proceedings of 5th Conference on
Computing Frontiers (CF 2008), pp. 87–96. ACM (2008)

10. Kreutzer, M., Hager, G., Wellein, G., Fehske, H., Bishop, A.R.: A unified sparse
matrix data format for efficient general sparse matrix-vector multiply on modern
processors with wide SIMD units. SIAM J. Sci. Comput. 26(5), C401–C423 (2014)

11. Langr, D., Tvrd́ık, P.: Evaluation criteria for sparse matrix storage formats. IEEE
Trans. Parallel Distrib. Syst. 27(2), 428–440 (2016)

12. Liu, W.: bhSPARSE. https://github.com/bhSPARSE. Accessed Feb 2017
13. Liu, W., Vinter, B.: CSR5: an efficient storage format for cross-platform sparse

matrix-vector multiplication. In: Proceedings 29th International Conference on
Supercomputing (ICS 2015), pp. 339–350. ACM (2015)

14. Pichel, J.C., Heras, D.B., Cabaleiro, J.C., Rivera, F.F.: Improving the locality of
the sparse matrix-vector product on shared memory multiprocessors. In: Proceed-
ings of 12th Euromicro Conference on Parallel, Distributed and Network-Based
Processing, pp. 66–71. IEEE (2004)

15. Pinar, A., Aykanat, C.: Sparse matrix decomposition with optimal load balancing.
In: Proceedings of Fourth International Conference on High-Performance Comput-
ing, pp. 224–229. IEEE (1997)

16. Razzaq, J., Berrendorf, R., Hack, S., Weierstall, M., Mannuss, F.: Fixed and vari-
able sized block techniques for sparse matrix vector multiplication with general
matrix structures. In: Proceedings of Tenth International Conference on Advanced
Engineering Computing and Applications in Sciences (ADVCOMP 2016), pp. 84–
90 (2016)

17. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadel-
phia (2003)

18. Society of Petroleum Engineers: SPE Comparative Solution Project. http://www.
spe.org/web/csp/. Accessed Feb 2017

19. Stathis, P., Vassiliadis, S., Cotofana, S.: A hierarchical sparse matrix storage format
for vector processors. In: Proceedings of International Parallel and Distributed
Processing Symposium, p. 8–pp (2003)

20. Tang, W.T., Zhao, R., Lu, M., Liang, Y., Huyng, H.P., Li, X., Goh, R.S.M.: Opti-
mizing and auto-tuning scale-free sparse matrix-vector multiplication on Intel Xeon
Phi. In: 2015 IEEE/ACM International Symposium on Code Generation and Opti-
mization (CGO), pp. 136–145 (2015)

21. Tang, W., Tan, W., Ray, R., Wong, Y., Chen, W., Kuo, S., Goh, R., Turner, S.,
Wong, W.: Accelerating sparse matrix-vector multiplication on GPUs using bit-
representation-optimized schemes. In: Proceedings of International Conference on
High Performance Computing, Networking, Storage and Analysis (SC 2013). ACM
(2013). Article No. 26

22. Wong, J., Kuhl, E., Darve, E.: A new sparse matrix vector multiplication GPU algo-
rithm designed for finite element problems. Int. J. Numer. Methods Eng. 102(12),
1784–1814 (2015)

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://github.com/bhSPARSE
http://www.spe.org/web/csp/
http://www.spe.org/web/csp/

New Efficient General Sparse Matrix Formats for Parallel SpMV Operations 537

23. Yan, S., Li, C., Zhang, Y., Zhou, H.: yaSpMV: yet another SpMV framework on
GPUs. In: Proceedings of 19th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP 2014), pp. 107–118 (2014)

24. Yang, X., Parthasarathy, S., Sadayappan, P.: Fast sparse matrix-vector multiplica-
tion on GPUs: implications for graph mining. Proc. VLDB Endowment (PVLDB)
4, 231–242 (2011)

Lazy Parallel Kronecker Algebra-Operations
on Heterogeneous Multicores

Wasuwee Sodsong1(B), Robert Mittermayr2, Yoojin Park1,
Bernd Burgstaller1(B), and Johann Blieberger2

1 Yonsei University, Seoul, Korea
wasuwee.s@yonsei.ac.kr, {yoojin1.park,bburg}@cs.yonsei.ac.kr

2 Vienna University of Technology, Vienna, Austria
{robert,blieb}@auto.tuwien.ac.at

Abstract. Kronecker algebra is a matrix calculus which allows the gen-
eration of thread interleavings from the source-code of a program. Thread
interleavings have been shown effective for proving the absence of dead-
locks. Because the number of interleavings grows exponentially in the
number of threads, deadlock analysis is still a challenging problem.

To make the computation of thread interleavings tractable, we propose
a lazy, parallel evaluation method for Kronecker algebra. Our method
incorporates the constraints induced by synchronization constructs. To
reduce problem size, only interleavings legal under the locking behav-
ior of a program are considered. We leverage the data-parallelism of
Kronecker sum- and product-operations for multicores and GPUs. Pro-
posed algebraic transformations further improve performance. For one
synthetic and two real-world benchmarks, our GPU implementation is
up to 5453× faster than our multi-threaded version. Lazy evaluation sig-
nificantly reduces memory consumption compared to both the sequential
and the multicore versions of the SPIN model-checker.

Keywords: Kronecker algebra · Lazy evaluation · Deadlock detection ·
Heterogeneous multicores · GPUs

1 Introduction

The complexity of software-development for multicore processors has raised the
interest in verification techniques for multi-threaded applications. To prove a
property of a multi-threaded program, e.g., deadlock freedom, all possible thread
interleavings must be considered. The number of interleavings increases expo-
nentially in the number of threads. This combinatorial explosion is referred as
the state explosion problem. All state-of-the-art methods suffer from the state
explosion problem, including model checking (see, e.g., [4]).

Kronecker algebra is a matrix calculus that has been applied to model multi-
threaded shared-memory systems [2,10,11,16]. Kronecker algebra encodes the

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 538–552, 2017.
DOI: 10.1007/978-3-319-64203-1 39

Lazy Parallel Kronecker Algebra-Operations on Heterogeneous Multicores 539

control-flow graphs (CFGs) of threads and synchronization primitives as adja-
cency matrices. In applying combinations of Kronecker sum and product opera-
tions, all interleavings of the underlying threads can be generated (see Sect. 2).

Related to the state explosion problem, the order of adjacency matrices
grows exponentially in the number of threads. It has been observed in prior,
unpublished work [10] that it is not necessary to compute adjacency matrices in
their entirety: the use of synchronization constructs in a multi-threaded program
induces constraints that can be exploited to greatly limit the number of thread
interleavings that must be considered by static program analysis.

Kronecker algebra operations have been devised that are able to capture
the constraints on possible thread interleavings resulting from semaphore-based
producer-consumer synchronization and from mutual exclusion using mutexes
and semaphores. Kronecker algebra can be applied with higher-level, monitor-like
synchronization constructs such as Ada’s protected objects, and with barriers [3,
9,10,12].

We propose a lazy evaluation method for Kronecker algebra operations, which
computes only thread interleavings which are legal under the synchronization
behavior of a given program. This lazy evaluation scheme greatly reduces prob-
lem sizes by considering only those distinctive portions of each adjacency matrix,
which represent the legal thread interleavings of the program at hand.

We found the Kronecker matrix calculus to contain a vast amount of data-
parallelism. Our lazy evaluation method is able to harness this parallelism
on multicore CPUs and GPUs. Algebra transformations for particular matrix
instances further enhance the performance of our matrix operations.

This paper thus makes the following contributions:

1. We devise a two-step lazy evaluation scheme for Kronecker sum- and product-
operations: expression trees are constructed and then evaluated lazily.

2. We provide Kronecker algebra operations optimized for multicore CPUs.
3. We devise an execution scheme that utilizes both the multicore CPU and

the GPU. This scheme conducts lazy evaluation of Kronecker algebra oper-
ations on the GPU. CPU cores are used to maintain the computed thread
interleavings, and for coordinating the GPU-based evaluation process.

4. We perform an extensive evaluation, showing that the GPU implementation
is up to 5453× faster than our multi-threaded CPU implementation.

This paper is organized as follows. The relevant background on Kronecker
algebra is discussed in Sect. 2. We provide an overview of our execution scheme in
Sect. 3. Our multicore CPU and GPU implementations are discussed in Sect. 4.
Experimental results are provided in Sect. 5. We review the related work in
Sect. 6 and draw our conclusions in Sect. 7.

2 Background

For the verification of concurrent systems using Kronecker algebra, threads and
semaphores are represented by CFGs. The usual CFG representation consists

540 W. Sodsong et al.

Fig. 1. (a) A Kronecker sum S1 ⊕ S2 of two binary semaphores S1 (b) and S2 (c)
generates all possible interleavings (d).

of nodes representing basic blocks and edges representing transfer of control.
Because our matrix calculus manipulates CFG edges, we move basic blocks onto
the incoming edges of a node. Each CFG is encoded as an adjacency matrix, and
CFG edges are labeled by the elements of a semiring [7,10].

Example CFGs of binary semaphores and their adjacency matrix representa-
tions are depicted in Fig. 1. Each matrix row-index corresponds to the node ID
of the tail of a CFG edge, and the matrix column-index corresponds to the
node ID of the head of a CFG edge. For example, the first row of the result adja-
cency matrix, 0 p2 p1 0, specifies that there is an edge labelled “p2” from Node 1
to Node 2 and another edge labelled “p1” from Node 1 to Node 3. Multiple
outgoing edges represent branches in a program. The Kronecker matrix calcu-
lus interprets the CFG of a thread as a deterministic finite automaton (DFA).
Nodes of the CFG represent DFA states, and edges represent the transitions of
the DFA. The DFA’s start-state corresponds to the entry-node of the CFG, and
the accepting state to the CFG’s exit node. In the remainder of this section we
provide an overview of Kronecker algebra operations. Details and proofs of the
stated properties can be found in [3,9,10,12].

Kronecker Product. Given an m-by-n matrix A and a p-by-q matrix B, their
Kronecker product of size mp-by-nq is defined by

A ⊗ B =

⎛
⎝

a1,1 · B · · · a1,n · B
...

. . .
...

am,1 · B · · · am,n · B

⎞
⎠ . (1)

The Kronecker product A ⊗ B represents a DFA where A and B execute in
lock-step (i.e., A and B perform each transition simultaneously).

Kronecker Sum. Given a square matrix A of order m and B of order n, their
Kronecker sum denoted by A ⊕ B is a matrix of order m × n defined by

A ⊕ B = A ⊗ In + Im ⊗ B, (2)

where Im and In are identity matrices of order m and n respectively. The Kro-
necker sum generates all possible interleavings of DFAs A and B. Figure 1 demon-
strates a Kronecker sum of two binary semaphores S1 and S2. The semaphore

Lazy Parallel Kronecker Algebra-Operations on Heterogeneous Multicores 541

DFAs are depicted in Fig. 1(b) and (c). Their sum S1 ⊕S2 is defined in Fig. 1(a).
Figure 1(d) depicts all possible interleavings of S1 and S2.

A concurrent system is defined by a tuple 〈T ,S,L〉, where T is a set of
threads, S is a set of synchronization primitives, and L are labels. For the
ensemble of k threads T (i) ∈ T , we obtain a matrix T representing the thread
interleavings. Similarly, for all synchronization primitives S(j) ∈ S, we obtain a
matrix S representing the r interleaving semaphores.

Selective Kronecker Product. Given an m-by-n matrix A and a p-by-q
matrix B, we call A �L B their selective Kronecker product. For all l ∈ L ⊆ L
let A �L B = (ai,j) �L (br,s) = (ct,u), where

c(i−1)·p+r,(j−1)·q+s =
{
l if ai,j = br,s = l, l ∈ L,
0 otherwise.

The selective Kronecker product synchronizes identical labels l ∈ Ls of the left
and right matrices. It ensures that a semaphore operation in the left operand is
paired with the operation in the right operand.

An adjacency matrix representing a program P can be computed by

P = T �LS
S + TLV

⊗ Io(S). (3)

Therein, L = LV ∪LS describes the set of CFG edge labels L which is composed
from the label-set LS representing calls to synchronization primitives (e.g., p,
v), and the label-set LV that represents the remaining, non-synchronizing com-
putations of a program (sets LV and LS are disjoint). Intuitively, given a con-
current system 〈T ,S,L〉, matrix P describes all possible interleavings of the
thread ensemble T under the constraints imposed from synchronizing with the
synchronization primitives S [10].

3 Kronecker Algebra Evaluation

A deadlock manifests through unreachable components in a program’s adjacency
matrix [10]. Figure 2(a) depicts a CFG with an invalid use of a binary semaphore:
the p()-operations on the right path constitute a self-deadlock. With the second
p()-operation, the semaphore is unobtainable, which results in self-deadlock at
Node 6; Nodes 5 and 8 are unreachable from the starting node.

Considering two CFGs of m and n nodes, both the space- and time-
complexity of a Kronecker sum or product operation that produces an adja-
cency matrix of m-by-n nodes is O(m2n2). An additional operation to a CFG of
k nodes increases the complexities to O(k2m2n2). Hence, the space- and time-
complexities grow exponentially in the number of Kronecker operations.

Lazy evaluation of Kronecker operations delays all computations until proven
to be required. (Only reachable nodes are analyzed.) In our example in Fig. 2(b),
the reachable nodes (i.e., successors) from the starting node, Node 1, are repre-
sented by the non-zero entries in Row 1 of the 8 × 8 result-matrix, i.e., Node 4
and Node 6. Node 4 has one successor, Node 7. Nodes 6 and 7 have no successors

542 W. Sodsong et al.

Fig. 2. Kronecker analysis of a CFG (a) with a self-deadlock (right path) on a binary
semaphore; Kronecker algebra operation (b), and the resulting graph (c) showing an
unreachable path (Node 5 and Node 8) from the starting node, Node 1. The self-
deadlock manifests through the non-reachability of the exit-node (Node 7) from Node 6.

and all reachable nodes have been visited, thus the analysis terminates. Because
we only require non-zero elements of the result matrix, we restrict the evaluation
of a Kronecker operation to the non-zero elements of its operands.

Lazy evaluation consists of two steps: a Kronecker expression is converted
to an expression tree, followed by the lazy evaluation of the tree’s operations.
We employ sparse matrices for the adjacency matrix representation of CFGs
and semaphores. They are operands of the algebra computation and constitute
the leaf nodes of a tree. Successors of a node are retrievable by reading a sparse
matrix. Kronecker operations constitute internal nodes. The intermediate results
are stored as lazy matrices, which are represented by the algebra operator and
pointers to the operands (i.e., children) in the tree. No actual computation hap-
pens until the result matrix is required, which allows us to optimize expression
trees as they are constructed.

Lazy evaluation starts once the result matrix is required. Algorithm 1 com-
putes all successors of a node. Node IDs and successor IDs of parent operations
are constructable from IDs of child nodes and vice versa. Hence, from the start-
ing node, we recursively find corresponding IDs of child nodes (Line 6–7) until
the leaves are encountered. Successor IDs of leaf nodes are retrievable as they are
presented as sparse matrices. Consequently, the successor IDs of parent nodes,
then, are constructed in a bottom-up fashion. Newly found successors will later
be evaluated. When no more successors are found, evaluation terminates. To
keep track of processed nodes, we hash node IDs in a hash-table.

Kronecker Sum Optimizations: We can compute a Kronecker sum in a single
step, to improve the formulation from Eq. (2). An example sum of order two is
stated in Eq. (4). We observe three properties of the result matrix:

• The elements along the diagonal are the summations of the diagonal elements
of the operands A and B.

• The first Kronecker product term in Eq. (2) produces a dot product of ele-
ments from matrix A and In. The elements of matrix A are spread along the

Lazy Parallel Kronecker Algebra-Operations on Heterogeneous Multicores 543

Algorithm 1. Successor search

1 l i s t succ (Matrix M, T node) :
2 i f M. getOperat ion != +:
3 s izeR= M. getRightMatSize
4 l i d =((node−1)/ s izeR)+1
5 r i d =((node−1)%sizeR)+1
6 l s u=succ (M. le ftMat , l i d)
7 rsu=succ (M. rightMat , r i d)
8 switch (M. getOperat ion) :
9 case +:

10 su=succ (M. le ftMat , node)
11 + succ (M. rightMat , node)
12 case ⊗ : for l in l s u :
13 for r in rsu :
14 su . push ((l −1)∗ s izeR+r)
15 case � : for l in l s u :
16 for r in rsu :
17 i f (l a b e l (l)= l a b e l (r)) :
18 su . push ((l −1)∗ s izeR+r)
19 case ⊕ : for l in l s u :
20 su . push ((l −1)∗ s izeR+r id)
21 for r in rsu :
22 su . push ((l i d −1)∗ s izeR+r)
23 case l ea fNodes :
24 su=readSparseMat (M, node)
25 return su

Algorithm 2. Successor search for
Kronecker sums of same-sized operands

1 l i s t KSumSuccs (SparseMat M,
2 T node ,
3 i n t t o t a l S i z e ,
4 i n t nrKSums) :
5 o f f s e t=0
6 s i z e=M. s i z e
7 for i in (0 : nrKSums+1):
8 s t r i p e=t o t a l S i z e / s i z e
9 l e a f=succ (M, � node

stripe
�% M. s i z e)

10 for su in l e a f :
11 T s i d=o f f s e t
12 +(su∗ s t r i p e)
13 +(node%s t r i p e)
14 su . push (s i d)
15 o f f s e t+=� node

offset+stripe
�∗ s t r i p e

16 s i z e∗= s i z e
17 return su

diagonal of sub-matrices of size n. Successors of a given node ID, x, must be
n elements apart with an initial offset of (x − 1)%n.

• The second Kronecker product term in Eq. (2) duplicates matrix B along the
diagonal of the result matrix. Given a node x, the successors must be located
between 0 to n from
 (x−1)

n � ∗ n.

A ⊕ B =

⎛
⎜⎝

a1 + b1 b2 a2 0
b3 a1 + b4 0 a2

a3 0 a4 + b1 b2
0 a3 b3 a4 + b4

⎞
⎟⎠ =

⎛
⎝ (a1 · I) + B a2 · I

a3 · I (a4 · I) + B

⎞
⎠ (4)

From these properties, the successors of a Kronecker sum operand can be
computed in one operation (see Algorithm 1). We further optimize sum oper-
ations for multiple adjacency matrices of the same order with non-zero values
located at the same locations. This case mainly applies to sums of semaphores.
Figure 3 depicts the results of such Kronecker sums of two and three binary

544 W. Sodsong et al.

Fig. 3. Kronecker sum of (a) two and (b) three binary semaphores.

semaphores. These sums create a pattern that separates the p and v operations
of different semaphores. Binary semaphore p and v are located at the upper-right
and lower-left entry of a 2×2 adjacency matrix respectively. In Fig. 3(b), p1 and
v1 of S1, the left most operand, appear along the diagonal of 4× 4 sub-matrices
at the upper-right and lower-left quadrants of the result matrix. Similarly, p2
and v2 of S2 appear along the diagonal of 2 × 2 sub-matrices of the upper-left
and lower-right 4×4 matrices. The pattern repeats for the remaining Kronecker
sum operations, where the size of sub-matrices is reduced by half after each
operation. Hence, given a node ID, the total number of Kronecker sums and the
shape of the operands’ sparse matrices, we can compute successors of Kronecker
sums of same-sized matrices using Algorithm 2.

The lazy evaluation scheme only evaluates nonzero entries of reachable nodes
in adjacency matrices. Hence, the time complexity is reduced to successor search.
Considering a Kronecker operation produces a result matrix of size m-by-n nodes,
a successor search takes up to O(pq), where the left child’s matrix has p ≤
m successors and the right child’s matrix has q ≤ n successors. The overall
complexity is O(rpq), with r ≤ mn reachable nodes. In practice, the memory
requirement is reduced to the number of reachable nodes, and memory occupied
by nodes queued in unprocessed node queues.

4 Parallel Kronecker Algebra

The computation of finding successor nodes has a dependency between a node
and its successors. Therefore, lazy evaluation is well-suited for parallelization
where a worker thread processes per node instead of per successor. We employ
hash-tables to record nodes that have already been processed, to avoid duplica-
tion of work. For example, with the CFG from Fig. 1(d), Node 2 will be encoun-
tered twice: as a successor of Node 1 and Node 4.

4.1 Multi-threaded CPU Implementation

With our lazy evaluation scheme, each worker thread maintains a local work-
queue to store to-be-processed nodes. A new set of successors will be discov-
ered during the evaluation of a node. We employ a hash-function which hashes

Lazy Parallel Kronecker Algebra-Operations on Heterogeneous Multicores 545

the node IDs of the newly-discovered successors onto the work-queues of the
worker threads. With the help of this hash-function, a worker thread will dis-
tribute the newly-discovered successors among the work-queues of all worker
threads. We have implemented each work-queue as a lock-free queue, employing
the boost::lockfree::queue template of the boost C++ library (version 1.61).
We use the row-index of a node in the adjacency matrix as the node ID (key) with
this hashing operation. The hash-function guarantees that a node is assigned to
exactly one worker.

Note that a worker thread will use the hash-tables of processed nodes to avoid
duplication of work (i.e., re-processing of nodes). Because each worker thread
processes a unique set of node IDs, it maintains a local hash-table of processed
nodes. Only if a node is not already contained in the hash-table, it will be
assigned for processing. If the table already contains a given node, it implies that
this node has already been processed or is currently in a work-queue. Contrary,
successful hashing (i.e., entering a new node into the hash-table) indicates that
this node has not been encountered yet and must be assigned to a worker thread
for processing.

4.2 GPU Implementation

As shown in Algorithm 1, the CPU implementation contains complex control-
flow constructs including a switch-case statement and recursion. Because of
potential branch divergence, such control-flow constructs are prone to low per-
formance on a GPU. However, because all GPU threads will work on the same
matrix algebra operation, they will branch to the same arm in the switch-case
statement. Therefore, we found that the switch-case statement incurred very low
branch divergence with our GPU kernel.

Similarly to the multicore CPU computations, we designed our GPU ker-
nel such that one thread processes one node. A GPU has a considerably smaller
memory than a CPU. As problem sizes grow, GPU memory is insufficient to keep
track of all processed nodes. Hence, we maintain all computed thread interleav-
ings on the CPU, using multiple threads. The list of processed nodes obtained
from the GPU is unsorted. Thus, we utilize one hash-table of processed nodes in
this implementation. Because the hash-table is highly contended, we employ lock-
free synchronization to keep synchronization overhead low. We use libcuckoo,
which is a lock-free hash-table of competitive performance [8]. In analogy to
the multicore CPU implementation, if the table already contains a given node,
it implies that this node has been processed or is currently in a work-queue.
Contrary, successful hashing indicates a newly discovered node which must be
assigned to a worker thread for processing.

Preprocessing: In the initial stage of the parallel execution, we prepare an
expression tree and adjacency matrices for the GPU. Problem sizes vary in the
number of input CFGs and CFG sizes. Each of these CFGs can be relatively
small. A binary semaphore is represented as an adjacency matrix of size 2 × 2.

546 W. Sodsong et al.

Algorithm 3. Successor search on a
GPU

1 void succ (T ∗BigSucc ,T node ,
2 optTree ∗opt ,T ∗ su) :
3 nid [0]= node
4 for i in (1 :NumOpts) :
5 pid=nid [opt [i] . parent]
6 nid [i]=getID (opt [i] , pid)
7 for i in (NumOpts : 0 : −1) :
8 su=succ (opt , nid [i] , BigSucc)

Algorithm 4. Estimation of the maxi-
mum number of successors

1T maxSucc (LazyMat M, T node) :
2 l s u=maxSucc (M. le ftMat , node)
3 rsu=maxSucc (M. rightMat , node)
4 switch (M. getOperat ion) :
5 case +: n=l su+rsu
6 case ⊗ : n=l su ∗ rsu
7 case � : n=min (lsu , rsu)
8 case ⊕ : n=l su ∗ rsu
9 return n

Merging all matrices into a large buffer further decreases the data transfer over-
head between CPU and GPU.

CFG edges are associated with labels in the form of strings. The length of
such strings depends on the input-problem and hence cannot be determined
at compile-time. Performing string operations such as label comparisons with
selective Kronecker products or string concatenation with matrix addition can
be highly difficult and inefficient on a GPU. Thus, we re-code all string labels to a
numeric representation. All labels are known at the time of constructing a prob-
lem’s basic matrices. We implemented a lookup table which converts between
string labels and numbers during the initial execution stage.

Eliminating Recursion: Because of the limited maximum recursion depth of
GPUs, we replaced the recursive calls of our CPU implementation (Algorithm 1)
by two loops as depicted in Lines 4 and 7 in Algorithm3. All intermediate data,
passed between recursive calls, is kept on stacks. The first loop pre-calculates
node IDs at all levels of an expression tree in a top-down fashion. The node IDs
of all intermediate and leaf matrices of the expression tree are stored in a fixed-
length array. Based on the node ID information of the first loop and the known
successors of the leaves, the second loop determines a list of successors in a
bottom-up fashion. Function succ() in Line 8 is similar to Algorithm 1, without
the recursive calls in Lines 6–7, and the successor of the plus operation being a
combination of successors of previously calculated successors of a left- and right-
hand child. The number of successors can vary between nodes. We preserve
the maximum number of slots for each operation. The maximum number of
successors can be estimated beforehand by Algorithm 4. Notably, the selective
Kronecker product finds an exact label match of successors of the left and right
child nodes. Thus, the number of matches cannot exceed the minimum number
of labels of the two children.

Pipelined Execution Scheme: For further performance improvements, we
exploit pipeline-parallelism between the CPU and the GPU. The GPU compu-
tation is split into iterations, where each iteration computes a fixed number of

Lazy Parallel Kronecker Algebra-Operations on Heterogeneous Multicores 547

nodes. We choose heuristically optimal sizes according to GPU performance and
memory usage. Depending on the expression tree, the stacks that store interme-
diate data on the GPU occupied most GPU memory.

Hashing on CPU cores happens in parallel to the GPU kernel computations.
Because hashing requires a list of newly discovered successors from the GPU, it
is not guaranteed to retrieve data in time from the current iteration. Hence, we
delayed the CPU computation by one iteration. CPU threads always hash nodes
from the previous iteration.

5 Experimental Results

We have evaluated our method on one multicore system and three desktop/em-
bedded GPU systems (platform specifications are stated in Table 1). With per-
formance measurements, we have omitted file I/O and GPU context creation
times, because they do not reflect the actual computation times. For measure-
ment consistency, we do not stop our analysis when a deadlock is detected.
Rather, we have the analysis compute all possible, legal thread interleavings
(the entire problem size). Our rationale was that with parallel execution, where
multiple nodes are being analyzed concurrently, the node processing order may
vary, and a deadlock may be detected earlier or later.

We perform deadlock analysis on one synthetic and two real-world examples:
(1) Dijkstra’s Dining Philosopher’s, (2) Linux kernel threads, and a (3) railway
system. We verify the correctness of our optimizations to the unoptimized imple-
mentation proposed in [10]. With the first problem, we employed n philosophers
with n forks placed between them. Each philosopher constitutes an individ-
ual thread; each fork is represented by a binary semaphore. This set-up will
result in the well-known deadlock if all n philosophers pick up their left fork
simultaneously. For the remainder of this section, we refer to the multi-threaded
implementation as KA-N for N threads, and to the GPU implementation as
KA-G.

We use the sequential implementation as our yardstick. Figure 4 shows the
obtained execution times on the GPU systems. Note that the y-axis is in log-
scale: as the number of philosophers (threads) increases, the number of nodes to
be processed grows exponentially. Five philosophers generate 392 nodes reachable

Fig. 4. Execution times on the GPU systems and speedup over KA-1 on the multicore
system for the Dining Philosophers problem

548 W. Sodsong et al.

Table 1. Evaluation Platform Specifications.

GTX680 GT750M GTX970 Xeon E5

CPU Model i7-3770k i7-4850HQ i7-6700 Xeon E5-2697

cores 4 (8 threads) 4 (8 threads) 4 (8 threads) 28 (56 threads)

Memory 32 GB 16 GB 16 GB 256 GB

Clock freq. 3.5 GHz 2.3 GHz 3.4 GHz 1.8 GHz

Bandwidth 15.9 GB/s 11.4 GB/s 20.4 GB/s 12.0 GB/s

GPU Model GeForce GTX 680 GeForce GT 750M GeForce GTX 970 N/A

cores 1536 384 1664

Memory 2048 MB 1971 MB 4029 MB

Clock freq. 1006 MHz 926 MHz 1329 MHz

Bandwidth 12.1 GB/s 6.3 GB/s 12.7 GB/s

from the starting node, while 17 philosophers result in more than 662 million
reachable nodes. Once a problem becomes sufficiently large to fully utilize the
GPU, the GPU implementation shows the best performance. Due to the long
execution time of the single-threaded CPU version, we were unable to measure
our yardstick up to as many philosophers as with the parallel versions. The
GPU implementation is 140×, 176× and 51× faster than the multi-threaded
implementation on the GTX 970, GTX 680 and GT 750M systems. Scalability of
the multi-threaded version is depicted for the XEON E5 platform. The speedups
of KA-8 and KA-16 over single-threaded execution saturate at 7.5× and 13.1×,
respectively. For 12 philosophers, KA-24 is on par with KA-16, but on an upward
trend (whereas KA-16’s scalability is already saturated).

We applied Kronecker algebra to detect deadlocks in Linux kernel threads
(for Linux kernel version 3.10). We analyze two ensembles of three and five
kernel threads that share eight and ten locks. LLVM was used to inline called
functions into kernel threads and to obtain CFGs. Computations unrelated to
synchronization were pruned from CFGs, because they are irrelevant for deadlock
analysis. The details of this automated conversion are outside the scope of this
paper and explained in [15].

Kronecker-based deadlock analysis of railway systems has been introduced
in [14]. Train routes and track sections can be viewed as thread CFGs and
semaphores. At most one train can use a section at any time. During the occu-
pation, a section is locked as if using a semaphore p()-operation. Once the train
leaves the section, the lock is released. We analyze a train system with six train
routes and twelve sections illustrated in Fig. 5. Each route constitutes a thread.
E.g., Route 1 is defined as L1 = p5, v2, p6, p9, v5, v6, p11, v9, p12, v11, v12. The
double-slip switch, located between Sections 4, 6, 7 and 9, is replaced with two
switches connected by Section 6 of zero-length. If a train is too long to fit in a
section, a sufficient number of sections ahead must be reserved. E.g., in Route
L1, because Section 6 has zero-length, Section 9 is reserved ahead of time.

Lazy Parallel Kronecker Algebra-Operations on Heterogeneous Multicores 549

Fig. 5. A train system with six train routes and twelve track sections.

Table 2. Performance of multi-threaded SPIN (SPIN-8) and our multi-threaded (KA-
8) and GPU (KA-G) implementations on three practical problems (times in seconds).

Linux (3 threads) Linux (5 threads) Railway

GTX970 SPIN-8 N/A N/A 1.64

KA-8 154 68024 4.15

KA-G 0.30 14.64 0.050

GTX680 SPIN-8 N/A N/A 1.68

KA-8 181 77107 4.89

KA-G 0.29 14.14 0.049

GT750M SPIN-8 N/A N/A 2.05

KA-8 316 144321 5.86

KA-G 0.52 69.10 0.066

The analysis times obtained for Linux kernel threads and the railway sys-
tem are depicted in Table 2. Sequential execution was intractable and has been
excluded. The speedups of the GPU implementation of up to 5453× are propor-
tional to the problem sizes and memory requirements. The GPU kernel computes
in parallel with the hashing of processed nodes on the CPU. Hence, the GPU
computation is “hidden” behind the CPU computation.

We compared our GPU implementation, KA-G, to SPIN, the state-of-the-art
model checker [5] (version 6.4.5), in Fig. 6 and Table 2. We conducted experi-
ments using one (SPIN-1) and eight threads (SPIN-8). For Dining Philosophers,
KA-G is up to 1.9× faster than SPIN-1. However, it is struggling to outperform
the multi-threaded version of SPIN. In the analysis of railway systems, however,
KA-G is 33× faster than multi-threaded SPIN.

We have observed that the Kronecker algebra approach consumes consider-
ably less memory than SPIN. SPIN reports its total memory usage, and we use
the PAPI library and the CUDA API to observe the memory consumption of our
approach. The smaller CPU memory footprint allows our approach to analyze
larger problem sizes. E.g., the performance comparison reported in Fig. 6 had
to be limited to a maximum of 15 philosophers; With 16 philosophers, SPIN-1’s
memory consumption exceeded the 32 GB RAM of our test-platform, and per-
formance trashed as a result of excessive swapping. (We stopped SPIN on this

550 W. Sodsong et al.

test-run after 48 h.) In comparison, KA-G stores some intermediate buffers in
the GPU memory space; consequently, our approach handled 17 philosophers in
less than 24 GB of RAM. SPIN-8 has higher memory requirements and is thus
unable to handle more than 14 philosophers.

The relative CPU and GPU memory consumption of KA-G to SPIN is shown
in Fig. 7. Up to 12 philosophers, the GPU computation of KA-G consumes more
memory than SPIN-1, because memory must be reserved for each GPU thread.
The GPU kernel operates in iterations, where all buffers are reused. Thus, the
GPU memory requirement does not grow with the problem size. In fact, the GPU
memory consumption grows linearly in proportion to the number of Kronecker
algebra operations while the CPU memory consumption grows in the number of
reachable nodes. Because the CPU and GPU memory spaces are disjoint and the
memory consumption on the GPU does not constrain the problem size, we only
compare our CPU memory consumption to SPIN. Our implementation consumes
up to 4.8× and 8.1× less memory than SPIN-1 and SPIN-8, respectively.

Fig. 6. Speedup comparison of our
GPU implementation to SPIN.

Fig. 7. Relative memory consumption
comparison of KA-G and SPIN-8 with
respect to SPIN-1

6 Related Work

Kronecker algebra-based concurrent program verification has been introduced
in [10] and subsequently extended to support worst-case execution time analy-
sis [11,13], and the analysis of protected objects, semaphores and barri-
ers [3,9,10,12]. Unlike prior work, this paper addresses performance improve-
ments of Kronecker algebra operations, to cope with real-world static analysis
problem sizes. The SPIN model checker [5,6] is a verification tool for concurrent
programs. Spin employs state-transition graphs and depth-first search to check
a program’s safety and liveness properties. Bartocci [1] has parallelized SPIN
on a GPU, such that computed thread interleavings are located in the GPU’s
memory. The limited memory space of GPUs constrains the solvable problem
size to 15 philosophers. Kronecker algebra allows us to store thread interleavings
on the CPU and thereby analyze larger problem sizes.

Lazy Parallel Kronecker Algebra-Operations on Heterogeneous Multicores 551

7 Conclusions

We have optimized Kronecker algebra operations for heterogeneous multicores.
Our two-step lazy-evaluation approach constructs expression trees, followed by
parallel, lazy evaluation. Lazy evaluation substantially speeds up analysis by
omitting all unreachable nodes. Our pipelined execution scheme performs lazy
Kronecker algebra operation evaluation on the GPU and uses the CPU to main-
tain the computed thread interleavings. Our experiments show speedups of up to
5453× over the multicore CPU implementation. Our implementation consumes
up to 8.1× less memory than SPIN and can therefore analyze larger problem
sizes.

Acknowledgments. This research was supported by the Austrian Science Fund
(FWF) project I 1035N23, and by the Next-Generation Information Computing Devel-
opment Program through the National Research Foundation of Korea (NRF), funded
by the Ministry of Science, ICT & Future Planning under grant NRF2015M3C4A-
7065522.

References

1. Bartocci, E., DeFrancisco, R., Smolka, S.A.: Towards a GPGPU-parallel SPIN
model checker. In: 2014 International SPIN Symposium on Model Checking of
Software, pp. 87–96. ACM (2014)

2. Buchholz, P., Kemper, P.: Efficient computation and representation of large reach-
ability sets for composed automata. Discrete Event Dyn. Syst. 12(3), 265–286
(2002)

3. Burgstaller, B., Blieberger, J.: Kronecker algebra for static analysis of Ada pro-
grams with protected objects. In: Ada-Europe International Conference on Reliable
Software Technologies, vol. 8454, pp. 27–42 (2014)

4. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Progress on the state explosion
problem in model checking. In: Wilhelm, R. (ed.) Informatics. LNCS, vol. 2000,
pp. 176–194. Springer, Heidelberg (2001). doi:10.1007/3-540-44577-3 12

5. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23, 279–295
(1997). IEEE Computer Society

6. Holzmann, G.J., Bosnacki, D.: The design of a multicore extension of the SPIN
model checker. IEEE Trans. Softw. Eng. 33, 659–674 (2007)

7. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Springer, Heidelberg
(1986)

8. Li, X., Andersen, D.G., Kaminsky, M., Freedman, M.J.: Algorithmic improvements
for fast concurrent cuckoo hashing. In: Proceedings of the Ninth European Con-
ference on Computer Systems, EuroSys 2014. ACM (2014)

9. Mittermayr, R., Blieberger, J.: Static partial-order reduction of concurrent systems
in polynomial time. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17,
pp. 619–633. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88479-8 44

10. Mittermayr, R., Blieberger, J.: Shared memory concurrent system verification using
Kronecker algebra. Technical report 183/1-155, TU Vienna. http://arxiv.org/abs/
1109.5522 (Sept 2011)

http://dx.doi.org/10.1007/3-540-44577-3_12
http://dx.doi.org/10.1007/978-3-540-88479-8_44
http://arxiv.org/abs/1109.5522
http://arxiv.org/abs/1109.5522

552 W. Sodsong et al.

11. Mittermayr, R., Blieberger, J.: Timing analysis of concurrent programs. In: 12th
International Workshop on Worst-Case Execution Time Analysis, pp. 59–68 (2012)

12. Mittermayr, R., Blieberger, J.: Kronecker algebra for static analysis of barriers in
Ada. In: Bertogna, M., Pinho, L.M., Quiñones, E. (eds.) Ada-Europe 2016. LNCS,
vol. 9695, pp. 145–159. Springer, Cham (2016). doi:10.1007/978-3-319-39083-3 10

13. Mittermayr, R., Blieberger, J.: Deadlock and WCET analysis of barrier-
synchronized concurrent programs. Computing pp. 1–22 (2017)

14. Mittermayr, R., Blieberger, J., Schöbel, A.: Kronecker algebra-based deadlock
analysis for railway systems. PROMET-Traffic Transp. 24(5), 359–369 (2012)

15. Park, Y.: Kronecker algebra-based deadlock analysis in the Linux ker-
nel. Technical report, Yonsei University. http://elc.yonsei.ac.kr/publications/
KernelDeadlockAnalysis.pdf

16. Plateau, B.: On the stochastic structure of parallelism and synchronization models
for distributed algorithms. In: ACM SIGMETRICS, vol. 13, pp. 147–154 (1985)

http://dx.doi.org/10.1007/978-3-319-39083-3_10
http://elc.yonsei.ac.kr/publications/KernelDeadlockAnalysis.pdf
http://elc.yonsei.ac.kr/publications/KernelDeadlockAnalysis.pdf

Performance Evaluation of Computation
and Communication Kernels of the Fast
Multipole Method on Intel Manycore

Architecture

Mustafa Abduljabbar1(B), Mohammed Al Farhan1(B), Rio Yokota2,
and David Keyes1

1 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
{Mustafa.AbdulJabbar,mohammed.farhan,david.keyes}@kaust.edu.sa

2 Tokyo Institute of Technology, Tokyo, Japan
rioyokota@gsic.titech.ac.jp

Abstract. Manycore optimizations are essential for achieving perfor-
mance worthy of anticipated exascale systems. Utilization of manycore
chips is inevitable to attain the desired floating point performance of
these energy-austere systems. In this work, we revisit ExaFMM, the
open source Fast Multiple Method (FMM) library, in light of highly
tuned shared-memory parallelization and detailed performance analysis
on the new highly parallel Intel manycore architecture, Knights Landing
(KNL). We assess scalability and performance gain using task-based par-
allelism of the FMM tree traversal. We also provide an in-depth analy-
sis of the most computationally intensive part of the traversal kernel
(i.e., the particle-to-particle (P2P) kernel), by comparing its performance
across KNL and Broadwell architectures. We quantify different configu-
rations that exploit the on-chip 512-bit vector units within different task-
based threading paradigms. MPI communication-reducing and NUMA-
aware approaches for the FMM’s global tree data exchange are examined
with different cluster modes of KNL. By applying several algorithm- and
architecture-aware optimizations for FMM, we show that the N -Body
kernel on 256 threads of KNL achieves on average 2.8× speedup com-
pared to the non-vectorized version, whereas on 56 threads of Broadwell,
it achieves on average 2.9× speedup. In addition, the tree traversal ker-
nel on KNL scales monotonically up to 256 threads with task-based pro-
gramming models. The MPI-based communication-reducing algorithms
show expected improvements of the data locality across the KNL on-chip
network.

Keywords: AVX-512 · Fast multipole method · Intel knights landing

1 Preliminaries and Outline

Contemporary High-Performance Computing (HPC) systems are assembled from
thousands of shared-memory compute nodes, which are progressively metamor-
phosing from multicore to manycore architecture with a hybrid layered memory
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 553–564, 2017.
DOI: 10.1007/978-3-319-64203-1 40

554 M. Abduljabbar et al.

hierarchy. Emerging manycore processors feature energy efficient, low frequency
compute cores that support lightweight processing thread(s). For example, the
second generation Intel Xeon Phi “Knights Landing” (KNL) can accommodate,
in a single chip, up to 72 cores and 4 threads per core, which access an on-die
high bandwidth memory. This immense computational power can be exploited
by compute-intensive scientific algorithms.

The N -Body problem is used to sum up mutual interactions of discrete enti-
ties in O(N2) steps, which is a practical example of a compute-intensive kernel
that can utilize the emerging manycore hardware. Its importance stems from
the fact that it appears in many scientific applications such as electromagnet-
ics, electrostatics, fluid mechanics, and astrophysics. In the form of the Fast
Multipole Method (FMM), it is used either as a direct solver, or as an accelera-
tor within an iterative solver for particular matrix-vector multiplications arising
from the solution of Laplace or Helmholtz Partial Differential Equations (PDEs).
N -Body methods can be considered as “matrix-free” methods, where a matrix
is dynamically built before being multiplied by the source-point vector. This
makes them favorable when the geometry of a problem changes rapidly such as
particle-based methods where particles evolve every time step [15]. Tree codes
like Barnes-Hut [3] build a geometric quad/oct tree to bring the quadratic com-
plexity of N -body problem down to O(N log N). This is done by introducing
a cutoff distance beyond which particles interact as cells located at the center
of mass. FMM is an example of a tree code that uses hierarchical multipole
expansions to approximate the far-field interactions up to specific error bound
(ε) derived from the Multipole Acceptance Criteria (MAC) [7]. It solves the N -
Body problem in asymptotically linear time complexity (O(N)). FMM is a highly
computationally intensive algorithm that is favorable to manycore architectures.

1.1 Main Components of Parallel FMM

The general scheme of any parallel Fast Multipole solver consists of the several
modules specified below. These typically execute in a fork-join sequence, with
some exceptions mentioned in [2,17].

– Partitioning stage: Domain-decomposes the input while maximizing locality
across processes. Foundations can be found in [12].

– Oct/Quad tree construction.
– Upward pass: A bottom-up sweep of the tree to execute the Particle-to-

Multipole (P2M) and Multipole-to-Multipole (M2M) kernels. FMM kernels
are explained in [7].

– Traversal: A depth-first local and global tree traversal to calculate near-field
interaction by calling the Particle-to-Particle (P2P) or aggregate multipoles
to local expansions for the far-field (i.e., Multipole-to-Local (M2L)).

– Communication: The far-field cells are propagated to other processes in a
sender-initiated fashion.

– Downward pass: A top-down traversal that reduces local expansions using
Local-to-Local (L2L) and Local-to-Particle (L2P).

Performance Evaluation of Computation and Communication Kernels 555

Sections 2 through 4 briefly explain the P2P, traversal and communication
modules, which contribute to the bulk of the total execution time, in the context
of manycore parallelism.

Major fundamental and incremental contributions describe parallel FMM
algorithms and implementations on shared and distributed memory [6]. Among
these contributions are parallel FMM libraries that include PVFMM [13], pfa-
clON, PEPC and ExaFMM [16]. Our choice for this paper is ExaFMM due
to its reported efficient shared-memory optimizations, which range from adapt-
ability to different task-based threading models to low-level Advanced Vector
eXtension (AVX) vectorization. On a single socket Intel Xeon X560, ExaFMM
outperforms the traditional FMM libraries [14]. Furthermore, Bédorf et al. pro-
vide an implementation and analysis of a gravitational N -Body tree code, that
has been redesigned to run on top of the GPU architecture [4]. This results in a
processing rate of 2.8 million particles/second.

1.2 Paper Contributions

The main contributions of this paper are:

– Exploit aggressive Single Instruction Multiple Data (SIMD) optimizations to
vectorize the N -Body kernel, and also optimize the outer and the inner loop
via certain loop tiling techniques with a specific stride size.

– Perform performance comparisons and analysis of the N -Body kernel
between: (1) handwritten vectorization code using Intel Intrinsics and the
compiler’s auto-vectorization, and (2) inner and the outer loop tiling, on the
state-of-the-art manycore and multicore Intel architectures.

– Carry out in-depth performance analysis and benchmarking of different task-
based programming paradigms to parallelize the Tree Traversal kernel of
FMM on KNL architecture.

– Analyze the performance of various MPI-based NUMA-aware communication
algorithms of FMM within a single node to overcome the hurdles of cache line
transfer inside the on-chip network of KNL, and study multiple cluster modes
of KNL.

2 Direct N-Body Kernel on Modern Intel Architectures

The direct N -Body Kernel is manifested as the P2P near-field interactions within
FMM. Along with the M2L kernel, P2P contributes to the bulk of execution time
by performing the largest share of FMM computations [9]. The number of Float-
ing Point Operations (FLOPs) per each P2P call is 20×ni ×nj , where ni is the
size of the target cell (outer loop), nj is the size of the source cell (inner loop),
and 20 is the number of operations needed to calculate: (1) the smoothed Laplace
potential (φi =

∑N
j=1

mj

rij
), (2) the accelerations (ai = ∇φi = −∑N

j=1
mjrij
r3ij

), and

(3) the distance between bodies located at xi and xj , given ε as the smoothing
factor (rij =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 + ε2). We store source and

556 M. Abduljabbar et al.

target fields in separate vectors to avoid loop conflict dependencies. This facil-
itates automatic and handwritten SIMD optimizations to exploit each core’s
two Vector Processing Units (VPUs) [10]. The outer loop is parallelized using
OpenMP and the effect of hyperthreading is explored with two and four threads
per a KNL core. A classical question that arises in the situation of nested for
loops is at which level the loop should be vectorized. Along with the SIMD opti-
mization techniques, this question is addressed thoroughly in the subsequent
results section.

3 Task-Based Traversal of ExaFMM

As mentioned in Sect. 1.1, the traversal stage calculates near-field or self inter-
actions (P2P); whereas far-field potentials are aggregated to well-separated cells
through M2L kernel calls. The essential difference between pure tree codes and
FMM is that the former usually constructs the tree using a linked-list data struc-
ture; the tree is traversed in a recursive top-down manner, and well-separated
cells are identified by applying the MAC. In contrast, adaptive FMM does not
traverse the tree, nor does it construct a linked-list between parent and child cells.
It, however, constructs a Hilbert/Morton key by interleaving bits of X − Y − Z
cell coordinates. Typically the parent’s neighbor’s child cell is considered well-
separated. Nonetheless, there are several downsides of this technique, which are
highlighted in [14].

Due to potential task-based parallelism, we configure ExaFMM to use Dual-
Tree-Traversal (DTT), which traverses the source and target cells at the same
time. Classical OpenMP threading is not applicable for the lack of an outer-
loop over target cells. DTT takes a source and a target cell, and expands the
larger until either MAC is satisfied or both are leaf cells. Algorithms 1 and 2
demonstrate the general structure of DTT code. Nested task-parallelism can be
effectively incorporated by passing an integer nspawn that indicates the size of
cells that can spawn a task as shown in Line 8 of Algorithm2.

Algorithm 1. DualTreeTraversal(Ci, Cj)

1 if Ci > Cj then
2 foreach ci in Cj .Children do
3 Interact (ci,Cj)

4 else
5 foreach cj in Ci.Children do
6 Interact (Ci,cj)

Performance Evaluation of Computation and Communication Kernels 557

Algorithm 2. Interact(Ci, Cj)

1 if Ci and Cj are leafs then
2 P2P(Ci,Cj)
3 else
4 if Ci and Cj satisfy MAC then
5 M2L(Ci,Cj)
6 else
7 if SizeOf (Ci,Cj)> nspawn then
8 Spawn (DualTreeTraversal (Ci,Cj))
9 else

10 DualTreeTraversal (Ci,Cj)

4 NUMA-Aware Communication Reducing Algorithms

The local essential tree (LET) is the union of trees representing the entire domain
as perceived by the local process. LET communication is known to be the major
factor that hinders FMM’s perfect scaling. References [1,8] describe specific com-
munication protocols named HSDX and NBX respectively. They provide opti-
mizations that are specific to distributed sparse data exchange, which generally
suits the communication structure of FMM’s global tree. We explore the effect
of different communication strategies within the KNL chip. Note that we imple-
mented all of these strategies on an ExaFMM branch [16]. Table 1 briefly high-
lights various techniques that we benchmark. Note that “Hierarchical” protocol
means that the data is aggregated along a structured hierarchy such as graphs
and trees, whereas “sparse-aware” protocol avoids direct communication with
partitions without or with very little data to exchange (almost negligible). In
the context of NUMA systems, hierarchical protocols tend to maximize locality
of the data within each local caches, and in the case of data exchange, each
process requires the data only from its neighboring MPI ranks. Hence, the com-
munication is mostly localized inside the NUMA socket. However, if the required
data happens to be in different NUMA socket, then MPI would communicate
the cache line from the socket’s memory, which is very negligible in proportion
to locality maximizing communication protocols.

5 Results and Discussions

5.1 Experimental Setup

For KNL experiments, we used two Linux servers that run CentOS Linux
7.3.1611 Operating System. Both servers are powered by Intel Xeon Phi CPU
7210, which is equipped with 64 hardware cores that execute at 1.30 GHz clock
frequency, and both have access to 116 GB of DRAM. The typical specifications
of the KNL chip that we used here can be found in [10]. For Broadwell experi-
ments, we used a Linux server that runs Ubuntu 14.04.5 LTS Operating System.

558 M. Abduljabbar et al.

Table 1. MPI-based communication paradigms

Name MPI calls Complexity Hierarchical Sparse-aware

Alltoallv MPI Alltoallv MPI specific Yes No

Hierarchical Alltoallv MPI Comm Split

MPI Alltoallv

MPI specific Yes No

Point-to-Point MPI Isend

MPI Irecv

MPI Wait

O(P) No No

Hypercube MPI Comm Split

MPI Isend

MPI Irecv

O(logP) Yes Yes

NBX MPI Ssend

MPI Srecv

MPI Ibarrier

O(logP) No Yes

HSDX MPI Distgraph create

MPI Neighbor alltoallv

Ω(logP) O(log2 P) Yes Yes

One-sided MPI Win create

MPI Get

O(P) No No

The server is powered by dual sockets of Intel Xeon CPU E5-2680 v4, each of
which is equipped with 14 hardware cores that execute at 2.40 GHz clock fre-
quency. Each socket has access to a single address space of size 64 GB of DRAM.
Therefore, the server has a NUMA node of in total 28 hardware cores and 128 GB
of DRAM. For KNC experiments, we used a Linux server that runs Scientific
Linux release 6.4 (Carbon) Operating System. The server is powered by two
Intel Xeon Phi 7120P coprocessors, each of which is equipped with 61 hardware
cores that run at 1.238 GHz clock frequency, and each has access to 16 GB of
DRAM. The typical specifications of the KNC chip that we used here can be
found in [5]. The two KNC chips are hosted by a dual socket Intel Sandy Bridge
E5-2670 CPU. Each socket consists of 8 hardware cores (in total 16 cores). The
CPU clock speed is 2.6 GHz. Both sockets share a 64 GB DRAM (32 GB per
socket). All of the experiments here were run with Intel Parallel Studio XE 2017
as the main software stack that comes with Intel ICC, MPI, TBB, OpenMP, and
Cilk. The data sets are based on a single precision Laplace kernel with Cartesian
coordinates, and the FMM order of expansion is set to 4. For the KNL results,
all of the experiments are ran with -xMIC-AVX512, and for KNC, we use -mmic
compiler option. For Broadwell, on the other hand, we use -xHost compiler flag.
All of the experiments are compiled with -O3 compiler optimization flag. All of
the experiments here are summarized using the arithmetic mean of the CPU
wall clock time across 10 independent runs, which forms the sample space, and
an error bar is drawn to show the +/− standard deviation of the mean for each
experimental sample.

5.2 SIMD Optimizations of the N-Body Kernel

The N -Body kernel is constructed with two nested for loops. The outer
loop is the target loop and the inner loop is the source loop. We explore loop

Performance Evaluation of Computation and Communication Kernels 559

57 (Broadwell) 256 (KNL)
Number of Threads

0

10

20

30

40

50

60

M
ea

n
T

im
e

[s
]

Target-Intrin
Source-Intrin
Target-Auto
Source-Auto
No-Vec

Fig. 1. Direct N -Body kernel running on two Intel architectures, KNL (quadrant clus-
ter and flat memory modes) and Broadwell [Problem Size: 1 million Particles]

tiling on each loop, with 16 stride size for KNL. Therefore, in a single CPU
cycle, each OpenMP thread fetches 16 bytes of data into the vector unit. In
the case of two threads per core, each thread processes 16 bytes simultane-
ously utilizing the two vector units per core of KNL. However, if one thread
per core is running, the next 16 bytes are pipelined in the second vector unit,
and the thread scheduler alternates between them in a serialized manner, which
keeps the core busy as much as possible. Furthermore, when the full number
of threads per core are running, the threads are pipelined to process the data
of both vector units. Therefore, with four threads per core, KNL utilizes both
vector units and the pipelining potentials available in the out-of-core execution
of the core’s instruction pipeline. We observe that tiling targets’ as opposed
to sources’ wins consistently in KNL; in each outer loop iteration, cache lines
pertaining to elements in the target vector are loaded only once to AVX512
register using mm512 load ps intrinsic. This in turn does not require calling
mm512 reduce add ps after iterating over sources, which must be done other-
wise because vectorizing effects of source fields must eventually be reduced to
one value at target. Note that this kernel is run independent of FMM to explore
the effect of the used techniques in detail, hence the chosen problem sizes are rel-
atively small due to the quadratic compute and memory complexities. Figure 1
presents the performance of the N -Body kernel running on KNL comparing five
different optimization techniques: (1) Target-Intrin: N -Body outer-loop tiling.
(2) Source-Intrin: N -Body inner-loop tiling. (3) Target-Auto: outer-loop wrap-
ping with #pragma simd. (4) Source-Auto: inner-loop wrapping with #pragma
simd. (5) No-vec: scaler code.

We note that the handwritten vectorization does not improve much over auto-
vectorization in KNL. It even appears that the ICC compiler was able to detect
the event of reciprocal square root known as mm512 rsqrt28 ps. Overall, vec-
torization benefits the kernel and shows significant improvements compared to

560 M. Abduljabbar et al.

10 12 14 16 18
log 2 N

0

500

1000

1500

2000

2500

G
Fl

op
s

Target-Intrin
Source-Intrin
Target-Auto
Source-Auto

(a) KNL - 256 Threads

10 12 14 16 18
log 2 N

0

200

400

600

800

1000

1200

1400

1600

G
Fl

op
s

Target-Intrin
Source-Intrin
Target-Auto
Source-Auto

(b) KNC - 244 Threads

Fig. 2. FLOP/s performance across the 2 Intel manycore generations, KNL (quadrant
cluster and flat memory modes) and KNC

the non-vectorized version of the code. This is not entirely the case in Broadwell;
the variations are not proportional to their rivals in KNL, which suggests that
outer-loop manual tiling cannot be avoided in Broadwell. We infer that KNL’s
AVX512 has a more sophisticated mechanism of matching correct vectorization
than AVX2.

Figure 2 draws a comparison between floating point applicabilities of the 2
manycore generations by Intel, namely KNC and KNL, in terms of the aforemen-
tioned vectorization techniques. Error bars suggest reasonable stability in clock-
ing frequency in both generations. Auto-vectorization in KNL reaches maximum
FLOPs rate in an at least four times smaller problem, which strongly suggest
that it utilizes local caches in a much more efficient manner. The drop in perfor-
mance for slow versions happens exactly at the time when the performance of
manual target vectorization saturates. This also suggests that the drop happens
when prefetching and cache reuse could no more hide the overhead caused by
source vectorization [5], which is 215 in KNL (Fig. 2a) and 214 in KNC (Fig. 2b).

5.3 Dual Tree Traversal with Task-Based Threading

Figure 3 shows traversal scalability using several threading libraries. The pur-
pose of this test is to assess the DTT (Algorithm 1) performance using task-
based/lightweight threading libraries on manycore architectures. Error bars are
hardly observable, because frequency scaling has been disabled on KNL to sta-
bilize performance. As expected, there is a general loss of scalability aspect
when hyperthreading is enabled. Intel TBB perfectly scales up to 64 threads (1
thread/core). Scaling to the full chip, i.e., 256 threads, its relative speedup is
14, 94, with an efficiency of 0.469, compared to 0.4249 in Intel Cilk and 0.1912 in
OpenMP tasks. It is observed that there is a weak separation between user-level
and OS-level threads in OpenMP tasks. This is due to the very marginal perfor-
mance gain from enabling hyperthreading in OpenMP tasks [5] (1.1× speedup

Performance Evaluation of Computation and Communication Kernels 561

8 16 32 64 128 256
Number of Threads

10 1

10 2

M
ea

n
Ti

m
e

[s
]

Intel TBB
Intel Cilk Plus
OpenMP Tasks
Perfect Scaling

Fig. 3. Dual tree traversal using different task threading models. [Problem Size: 100
million Particles]

between 64 and 128 threads). Intel TBB, therefore, has the lowest task creation
overhead, due to its efficient performance for heavily recursive tasks. However,
Cilk does not seem to pose significant degradation in performance although it has
minimal development time since it is integrated as a C++ language extension
in modern Intel compilers.

5.4 Communication Reducing on KNL

As compute nodes are packaged with more low frequency cores, it is essential
that MPI communication scales within main memory or across the NUMA sock-
ets. Therefore, we apply various MPI communication reducing algorithms from
Table 1 to FMM’s tree communication. Results that are shown in Fig. 4 are exe-
cuted with 64 MPI ranks, and a single thread per each rank, so that the effect
of locality-maximizing behavior can be clearly observed.

HSDX (Distgraph) performs better that the others, and this is due to
restricting exchanges to neighbors only, which makes it potentially NUMA-aware
and yields acceptable on-chip performance. In other words, in HSDX algorithm,
we tend to maintain a load balance between the KNL tiles, so that each tile acts
like a sender and receiver of the cache lines. Thus, this model of communication
prevents any long distance cache line transfer inside the chip, and maintains load
balance of the cache line distributions across the tiles. To further prove this, we
investigate this phenomena when we change the cluster mode of KNL. As you
can see in Fig. 5, the HSDX the cluster modes of KNL do not have significant
performance impact on the algorithm, and the performance differences between
different modes are very negligible. Note that SNC-2 and SNC-4 modes are still
experimental modes [11].

One-sided communication has a large overhead for shared window creation
using MPI Win create, which requires soft locking prior to data access. This
latency cannot be hidden when fetching sparse data either from the memory or

562 M. Abduljabbar et al.

Hall
toa

ll

Dist
gr

ap
h

OneS
ided

AllT
oA

ll
NBX

P2P
0

0.5

1

1.5

M
ea

n
T

im
e

[s
]

Fig. 4. Comparison of different MPI communication algorithms of LET communication
kernel running on KNL (quadrant cluster/flat memory modes) [Problem Size: 80 million
Particles]

Quad
ra

nt

All2
All

SNC-4

SNC-2

Hem
isp

her
e

0

0.2

0.4

0.6

0.8

1

1.2

M
ea

n
T

im
e

[s
]

Fig. 5. Comparison of different cluster modes of KNL running Distgraph communica-
tion algorithm with 64 MPI ranks and 1 TBB Thread per MPI rank [problem size is
80 million particles]

from the other L2 caches. Even though, KNL has a great support for AVX512
prefetching instructions, locking the window before accessing the data imposes
an implicit synchronization barrier on every data read. This creates a significant
overhead on a cache-coherent systems.

6 Conclusion and Future Work

Facing manycore processors with high degree of fine-grained thread parallelism
within a single shared-memory compute node, practitioners are now compelled
to investigate strong thread scaling. In this paper, we present optimizations and
thorough analysis of an FMM code on a modern high performance Intel manycore

Performance Evaluation of Computation and Communication Kernels 563

architecture, KNL. We extract the potential SIMD and thread-level parallelisms
of three different computationally intensive kernels, namely P2P, tree traver-
sal, and LET communication kernels. We demonstrate several shared-memory
optimizations on these kernels, including different task-based threading para-
digms, vectorization, loop tiling, and NUMA-aware communication-reducing.
Our shared-memory optimizations present significant improvements that are
reflected on the N -Body kernel compare to the out-of-the-box compilation of the
non-optimized version. These feature in excess of 2.8x speedup on two Intel multi
and many architectures, KNL and Broadwell. Furthermore, the task-based paral-
lelism of the tree traversal kernel shows almost linear scaling, within a massively
parallel single compute node, up to 64 thread contexts of KNL. With hyper-
threading the performance gain becomes slightly monotonic. The NUMA-aware
communication algorithm based on optimizing MPI alltoall communication pro-
tocol to maintain load balancing and shorter cache line transfers within a chip
are explored. It is found that HSDX performs considerably faster than any
other communication models; even across different cluster modes of KNL it still
maintains marginally the same performance.

In the future, we plan to carry out a comprehensive comparison study across
other FMM codes optimized for multi and manycore architectures. We are
extending the study to include other x86 architectures, including IBM POWER8,
and the bleeding edge release of Intel Xeon (i.e., Skylake). In addition, we
are exploring multiple problem sizes to study the performance effects of work-
load variations on KNL. We are applying certain algorithmic optimizations to
improve the performance of FMM on KNL, especially to overcome the stag-
nation and saturation of performance with hyperthreading enabled. To exploit
the MCDRAM, we are working on optimizing the tree traversal kernels, which
include the N -Body kernel. This is achieved by issuing simultaneous memory
accesses throughout the kernel execution and utilizing the AVX512 prefetching
instructions. Finally, we are building an extensive performance model to analyze
the behavior of hybrid programming paradigms (MPI+TBB) on KNL. Multiple
strategies are being developed to extract the best combinations of different pro-
gramming models within a chip. These include thread/task pinning to a thread,
core, tile, quadrant, and node, through low-level programming interfaces.

References

1. Abduljabbar, M., Markomanolis, G.S., Ibeid, H., Yokota, R., Keyes, D.: Commu-
nication reducing algorithms for distributed hierarchical N-body problems with
boundary distributions. In: Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.)
ISC 2017. LNCS, vol. 10266, pp. 79–96. Springer, Cham (2017). doi:10.1007/
978-3-319-58667-0 5

2. AbdulJabbar, M., Yokota, R., Keyes, D.: Asynchronous execution of the fast mul-
tipole method using CHARM++. arXiv preprint arXiv:1405.7487 (2014)

3. Barnes, J., Hut, P.: A hierarchical o(n logn) force-calculation algorithm. Nature
324(6096), 446–449 (1986)

http://dx.doi.org/10.1007/978-3-319-58667-0_5
http://dx.doi.org/10.1007/978-3-319-58667-0_5
http://arxiv.org/abs/1405.7487

564 M. Abduljabbar et al.

4. Bédorf, J., Gaburov, E., Zwart, S.P.: A sparse octree gravitational N-body code
that runs entirely on the GPU processor. J. Comput. Phys. 231(7), 2825–2839
(2012)

5. Farhan, M.A.A., Kaushik, D.K., Keyes, D.E.: Unstructured computational aerody-
namics on many integrated core architecture. Parallel Comput. 59, 97–118 (2016).
Theory and Practice of Irregular Applications

6. Greengard, L., Gropp, W.D.: A parallel version of the fast multipole method.
Comput. Math. Appl. 20(7), 63–71 (1990)

7. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput.
Phys. 73(2), 325–348 (1987)

8. Hoefler, T., Siebert, C., Lumsdaine, A.: Scalable communication protocols for
dynamic sparse data exchange. In: Proceedings of the 15th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP 2010, pp.
159–168. ACM, New York (2010). http://doi.acm.org/10.1145/1693453.1693476

9. Ibeid, H., Yokota, R., Keyes, D.: A performance model for the communication in
fast multipole methods on high-performance computing platforms. Int. J. High
Perform. Comput. Appl. 30, 423–437 (2016)

10. Jeffers, J., Reinders, J., Sodani, A.: Intel Xeon Phi Processor High Performance
Programming (Knights Landing Edition), 2nd edn. Morgan Kaufmann, Boston
(2016)

11. Ramos, S., Hoefler, T.: Capability models for manycore memory systems: a case-
study with xeon phi KNL. In: Proceedings of the 31st IEEE International Parallel
& Distributed Processing Symposium (IPDPS 2017). IEEE, May 2017

12. Warren, M.S., Salmon, J.K.: A fast tree code for many-body problems. Los Alamos
Sci. 22(10), 88–97 (1994)

13. Ying, L., Biros, G., Zorin, D., Langston, H.: A new parallel kernel-independent fast
multipole method. In: 2003 ACM/IEEE Conference Supercomputing, p. 14. IEEE
(2003)

14. Yokota, R.: An FMM based on dual tree traversal for many-core architectures. J.
Algorithms Comput. Technol. 7(3), 301–324 (2013)

15. Yokota, R., Abduljabbar, M.: N-body methods. In: Reinder, J., Jeffers, J. (eds.)
High Performance Parallelism Pearls - Multicore and Many-Core Programming
Approaches, Chap. 10, pp. 175–183. Elsevier, Amsterdam (2014). 1 edn

16. Yokota, R., et al.: ExaFMM (2016). https://github.com/exafmm/exafmm
17. Zandifar, M., Abdul Jabbar, M., Majidi, A., Keyes, D., Amato, N.M., Rauchw-

erger, L.: Composing algorithmic skeletons to express high-performance scientific
applications. In: Proceedings of the 29th ACM on International Conference on
Supercomputing, ICS 2015, pp. 415–424. ACM (2015)

http://doi.acm.org/10.1145/1693453.1693476
https://github.com/exafmm/exafmm

Efficient Non-blocking Radix Trees

Varun Velamuri(B)

Siemens Corporate Research, Bangalore, India
varun.velamuri@siemens.com

Abstract. Radix trees belong to the class of trie data structures, used
for storing both sets and dictionaries in a way optimized for space and
lookup. In this work, we present an efficient non-blocking implementation
of radix tree data structure that can be configured for arbitrary alphabet
sizes. Our algorithm implements a linearizable set with contains, insert
and remove operations and uses single word compare-and-swap (CAS)
instruction for synchronization. We extend the idea of marking the child
edges instead of nodes to improve the parallel performance of the data
structure. Experimental evaluation indicates that our implementation
out-performs other known lock-free implementations of trie and binary
search tree data structures using CAS by more than 100% under heavy
contention.

Keywords: Concurrent · Non-blocking · Lock-free · Radix tree · Trie ·
Performance

1 Introduction

A trie is an efficient information retrieval data structure which stores keys with
a common prefix under the same sequence of edges, eliminating the need for
storing the same prefix each time for each key. Radix trees are space optimized
tries in which any node that is the only child is merged with its parent. They are
widely used in practical applications like IP address lookup in routing systems
[6], memory management in Linux kernel [3] etc.

The search complexity of a radix tree is O(k) where k is the key length. For
fixed length key sets like integers, this becomes O(log U) where U is the size
of integer universe. In a sequential setting, other balanced tree data structures
like AVL or red-black trees offer a better search complexity of O(log n) (where
n is the number of keys in the set) as n < U . These data structures re-balance
the tree after updates to guarantee logarithmic search complexity. In a concur-
rent scenario, re-balancing the data structure requires complex synchronization
as nodes move higher up the tree which can significantly impact the parallel
performance of these data structures.

Radix trees do not require re-balancing and still guarantee logarithmic search
complexity for integer key sets. For variable length key sets like strings, radix
trees have a better search complexity of O(k) compared to AVL and red-black

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 565–579, 2017.
DOI: 10.1007/978-3-319-64203-1 41

566 V. Velamuri

trees whose complexity is O(k log n). The simplicity of the structure and better
search complexity makes radix trees good candidates for concurrent applications.

Various constructions for concurrent non-blocking tries exist in the literature.
Non-blocking implementations ensure that system-wide progress is guaranteed
even in presence of multiple thread failures making them desirable for concurrent
applications. Shafiei [10] proposed a non-blocking implementation of Patricia trie
data structure using compare-and-swap (CAS) instruction. A Patricia trie is a
binary radix tree or a radix tree with radix value equal to 2. They extend the
node level marking scheme from Ellen et al. [4] to tries. Each node in their
algorithm has a structure linked to it which will be updated with the necessary
information required to complete an operation. Any thread that is blocked by
an on-going operation reads this structure to help finish the operation thereby
achieving non-blocking progress. Even though this approach guarantees non-
blocking progress, not more than one thread can simultaneously update a node
limiting the parallelism of the structure. This can significantly influence the
parallel performance of the structure especially with large number of operating
threads.

Prokopec et al. [9] proposed a non-blocking hash trie data structure using
CAS instruction. Hash tries are space efficient tries which combine the features of
hash tables and tries. Each node in the hash trie maintains an invariant that the
length of array containing the child pointers is always equivalent to the number of
non-null children in the node. This eliminates sparse child arrays with null values,
making them space efficient. The index of the child that needs to be traversed
is calculated using a hash function. Non-blocking progress is achieved using the
node level marking scheme from Ellen et al. [4] because of which the algorithm
does not support simultaneous updates at a node limiting the amount of par-
allelism in the structure. Repetti et al. [11] proposed a non-blocking radix tree
data structure using restricted transactional memory (RTM) extensions. The
limited availability of transactional memory extensions in commercial processor
architectures restricts the applicability of their algorithm.

In this work, we propose a concurrent non-blocking implementation of a radix
tree data structure using single word compare-and-swap (CAS) instruction. Our
algorithm can be configured to support arbitrary alphabet sizes and implements
a linearizable set with Contains, Insert, and Remove operations. We extend
the idea of marking the individual child pointers from Natarajan and Mittal [7]
to radix trees. This allows threads to simultaneously update a node which can
significantly improve the parallel performance of the structure. To the best of
our knowledge, this is the first non-blocking implementation of a radix tree data
structure using single word CAS that can be configured for arbitrary alphabet
sizes and supports simultaneous updates on a node.

We implemented our algorithm in C++ and compared its performance with
other non-blocking tries, binary search tree (BST) and k-ary tree data structures.
Experimental results indicate that our algorithm performs better and scales best
among other known lock-free algorithms. Due to space constrains, only a brief
outline of the correctness proof is presented in this paper and the complete proof

Efficient Non-blocking Radix Trees 567

is provided elsewhere [12]. In the next few sections, we discuss our algorithm in
detail and later present the experimental evaluation of our implementation.

2 Overview

We assume an asynchronous shared memory multiprocessor system that sup-
ports atomic compare-and-swap (CAS) instruction along with atomic read and
write instructions. A CAS(ptr, old, new) instruction compares the value in
memory referenced by ptr to old value and if they are same, then updates the
memory referenced by ptr with new value atomically. Duplicate keys are not
considered in our model. The size of an alphabet that is used to represent the
key (e.g. binary, hexadecimal or ASCII) can be configured at the beginning of
algorithm and it remains constant throughout.

Each node in our tree stores the prefix of a key, the size of the prefix in
number of symbols and a boolean value to distinguish between leaf and internal
nodes. Additionally, internal nodes have an array of child pointers. Leaf nodes
store the key with all its symbols i.e. the actual or full key. This means that a
key is considered to be present in the tree only if it matches the key in a leaf
node.

The Contains(k) validates the presence of key k in the tree and returns
true if k is found to be present in a leaf node. Otherwise, it returns false. An
Insert(k) operation updates the data structure with a leaf node containing key
k only if k is not already present in the tree. It returns false if the target key
is found in the tree at the time of traversal. A suitable location for insertion
is identified by traversing the tree and a leaf node containing the target key
is updated into the tree using a CAS instruction. On a successful CAS, insert
operation returns true.

A Remove(k) operation removes key k from the tree only if a leaf node
containing k is found to be present in the tree at the time of traversal. Otherwise,
remove operation returns false. The leaf node containing k is removed from the
tree by updating the memory referenced by the parent pointer to NULL value
using CAS instruction. After removing the leaf node, the number of non-null
child pointers of the parent node is counted and if it is found to have ‘0’ or
‘1’ non-null child pointers, then the parent node is removed from the tree and
remove operation returns true. This ensures that any internal node with zero
or one child will always be removed thereby maintaining the space efficiency of
radix trees.

If Insert or Remove operations are blocked by an on-going update operation,
they will first help finish the on-going update to complete and then restart their
operation. Also, if the CAS instruction that is used to update the tree fails
because of simultaneous updates by other threads, the corresponding operation
is restarted. For simplicity, we assume that the memory allocated to nodes that
are not a part of the tree is not reclaimed. This allows us to assume that all the
new nodes have unique addresses and ignore the ABA problem.

568 V. Velamuri

3 Algorithm

In this section, we present the structures used in our algorithm and the imple-
mentation details of Contains, Insert and Remove operations.

3.1 Data Structures

The declarations of various structures used are presented as pseudo-code in Algo-
rithm 1. Our data structure is built using leaf (lNode) and internal (iNode) node
objects which are subtypes of Node object. Each node in our data structure
contains three fields: label of type KEY to store the prefix, size of type integer
to store the size of label in number of symbols and isLeaf of type boolean to
distinguish between leaf nodes and internal nodes. The value of isLeaf is set to
true for leaf nodes and false for internal nodes. For fixed length key sets like
integers, KEY refers to an integer and for variable length key sets like strings,
KEY refers to an array of characters. The fields label, isLeaf, and size of a node
are immutable i.e. their value will not change after initialization. Each internal
node additionally has an array of child pointers with the size of array equivalent
to the size of the alphabet (ALPHABET SIZE) i.e. 16 for a hexadecimal alphabet
and 2 for a binary alphabet.

Two bits from each of the child pointers are used to represent the state of an
on-going remove operation. On most modern machines, memory is aligned on a
4/8-byte boundary leaving the lower 2/3 bits of the address unused. These bits
can be used to store auxiliary information like the state of an operation which
can be used by other threads to help complete the operation in case of contention.
Two of these bits represented by boolean values flag and freeze are used from
each of the child pointers to represent the state of an remove operation.

For a pointer, if the value of freeze bit is set to ‘1’, it means that the node
containing the pointer is undergoing removal from the tree and the pointer is
considered frozen. Similarly for a pointer, if the value of flag bit is set to ‘1’,
it means that the node referred by the pointer is being removed from the tree
and the pointer is considered flagged. For the tree shown in Fig. 1c, node B is
undergoing removal and therefore, node A’s child pointer has the flag bit set to
‘1’ and all the child pointers of B has the freeze bit set to ‘1’. In the pseudo-
code presented, we use the notation <ptr, flag, freeze> to represent the value
of pointer, flag and freeze bits. E.g., <ptr, 1, ∗> implies that the value of pointer
is ptr, the value of flag bit is ‘1’ and the value of freeze bit can either be ‘0’
or ‘1’.

The SeekRecord structure is used to store the result of tree traversal. It
contains 5 members: (i) curr: Last traversed node in the tree (ii) par: Parent
node of curr (iii) currIndex: Index of the curr node in the child pointer array
of par node (iv) gPar : Grandparent of curr node or parent of par node (v)
parIndex: Index of the par node in the child pointer array of gPar node.

The root node always points to the head of the tree. It is initialized as an
internal node with an empty label (ε) and zero label size. Two leaf nodes lMin
and lMax are always assumed to be present in the tree and are never deleted.

Efficient Non-blocking Radix Trees 569

1 struct lNode : Node { // Leaf node structure. Subtype of Node structure

2 KEY label; // Stores the key’s prefix
3 Int size; // Size of ‘label’ in number of alphabets
4 Bool isLeaf ; // Value is true for leaf nodes
5 };
6 struct iNode : Node { // Internal node structure. Subtype of Node structure

7 KEY label; // Stores the key’s prefix
8 Int size; // Size of ‘label’ in number of alphabets
9 Bool isLeaf ; // Value is false for internal nodes

// Array of child pointers initialized to NULL
10 {NodePtr ref, Bool flag, Bool freeze} child[ALPHABET SIZE];
11 };
12 struct SeekRecord {

// Grand parent of curr node, parent of curr node and curr node
13 NodePtr gPar, par, curr ;

// Index of ‘curr’ node in ‘par’ child array, ‘par’ node in ‘gPar’ child array
14 Int currIndex, parIndex ;
15 };

// root will always point to the head of tree
16 NodePtr root = new Node(ε, 0, false);
17 NodePtr lMin = new Node(KEY MIN, Sizeof(KEY MIN), true);
18 NodePtr lMax = new Node(KEY MAX, Sizeof(KEY MAX), true);
19 root→ child[0] = lMin;
20 root→ child[ALPHABET SIZE - 1] = lMax;

Algorithm 1. Structure declarations and initializations

This ensures that the root node has at least two leaf nodes always present and
is never removed from the tree. We use the SizeOf(k) method to count the
number of symbols present in key k.

3.2 Search

Search is a helper method used by Contains, Insert and Remove operations
to locate the position of a node containing the target key (key) or a target
node (node) in the tree. The pseudo-code is presented in Algorithm 2. Starting
from the root node, Search method traverses the tree one node at a time by
comparing the node’s label with first ‘size’ number of symbols from target key’s
prefix. The MatchPrefix method (Line 27) performs this comparison and returns
true if there is a match. Otherwise, MatchPrefix method returns false and
Search terminates the traversal.

On a successful prefix match, the search proceeds further by traversing
through a child pointer located at the index corresponding to the ‘size+1’ sym-
bol in the target key. The GetIndex method (Line 29) computes the index of
child pointer that needs to be traversed. It takes the target key and the size of
current node’s label as inputs and returns the index corresponding to the symbol
at prefix location ‘size+1’ in the target key.

Search method continues with the traversal until a NULL child pointer or a
leaf node is encountered i.e. the nodes after which the tree does not exist. Also,
if the location of the target node is found, Search method will terminate the
traversal. The results of traversal are updated in the record object (Line 31).

570 V. Velamuri

21 void Search(KEY key, NodePtr targetNode, SeekRecordPtr record)
22 begin

// Initialize the search parameters
23 NodePtr <gPar, *, *> = root, <par, *, *> = root, <curr, *, *> = root;
24 Int parIndex = -1, currIndex = -1;
25 Bool flagged = false, frozen = false;

// Traverse the tree until a NULL node is encounterd
26 while (curr != NULL) do

/* Stop the traversal if ‘curr’ is leaf node or target node of interest or the
node’s label doesnot match the key’s prefix */

27 if (curr→isLeaf or (curr == targetNode) or (MatchPrefix(key, curr)) == false)
then break;

28 gPar = par, par = curr, parIndex = currIndex;
// Get the index of the child pointer that needs to be traversed

29 currIndex = GetIndex(key, curr→size);
30 <curr, flaged, frozen> = curr→child[currIndex];

// Update the recod structure with the results of traversal
31 *record = {gPar, par, <curr, flagged, frozen>, parIndex, currIndex};

32 Bool Contains(KEY key, SeekRecord *record)
33 begin
34 Search(key, NULL, record); // Locate the poistion of ‘key’ using Search
35 NodePtr <curr, *, *> = record→curr;
36 return (curr == NULL ? false : ((curr→label == key) and curr→isLeaf));

Algorithm 2. Search and Contains methods

3.3 Contains

The pseudo-code for Contains method is presented in Algorithm2. It uses the
results of traversal by Search method to validate the presence of a key in the
tree. If the last traversed node (i.e. curr) is either NULL or an internal node,
then Contains method returns false as all valid keys are stored in the leaf nodes
of the tree. Otherwise, it returns the result of comparison between curr node’s
label and target key (Line 36).

3.4 Remove

The pseudo-code for Remove operation is presented in Algorithm 3. It first val-
idates the presence of a key using the Contains method (Line 39) and returns
false if the key is not found to be present in the tree. Otherwise, it tries to remove
the leaf node containing the target key from the tree using CAS (Line 46) by
updating memory referenced by the parent pointer to NULL value. If this CAS
fails due to simultaneous updates on the node, Remove operation is restarted to
locate the new position of the node containing target key.

On a successful CAS, the MakeConsistent method is called to count the
number of non-null child pointers of par node and remove it from the tree
if it has less than two non-null child pointers. This ensures that any internal
node with zero or one child will always be removed thereby maintaining the
space efficiency of radix trees. The pseudo-code for MakeConsistent method is
presented in Algorithm 4.

Removal of an internal node begins by updating the flag bit of the parent
pointer to ‘1’ using CAS (Line 70). Note that, the flag bit is set to ‘1’ only

Efficient Non-blocking Radix Trees 571

37 Bool Remove(KEY key, SeekRecordPtr record)
38 begin

// Validate the presence of target key
39 if (Contains(key, record) == false) then return false;

40 NodePtr <gPar, *, *> = record→gPar, <par, *, *> = record→par;
41 NodePtr <curr, *, frozen> = record→curr;
42 Int currIndex = record→currIndex, parIndex = record→parIndex;

43 if frozen then // ‘par’ node is undergoing removal. Help remove the ‘par’ node
44 HelpFreeze(par); RemoveNode(gPar, par, parIndex);
45 return Remove(key, record);

// Remove the leaf node with target key from the tree
46 else if CAS(par→child[currIndex], <curr, 0, 0>, NULL) then

/* Check the number of non-null children of ‘par’ node and remove it if the
count is less than 2 */

47 MakeConsistent(gPar, par, parIndex, record);
48 return true;

49 else return Remove(key, record);// Restart as CAS failed due to contention

Algorithm 3. Remove method

(a) (b) (c) (d)

Fig. 1. Removal of internal node and simultaneous insertion

for pointers referring to internal nodes and pointers referring to leaf nodes will
never be flagged. Also, we maintain an invariant that both the flag and freeze
bits of a pointer can not have the value ‘1’ at the same time. This means that,
if the parent pointer of curr node is flagged, the node containing parent pointer
i.e. par node can not be removed from the tree until the flag bit is cleared which
can happen only during the successful removal of curr node from the tree.

After successfully flagging the parent pointer, the HelpFreeze method is
called (Line 71) to set the freeze bit of all the child pointers to ‘1’ using CAS.
Once the freeze bit of a pointer is set to ‘1’, it can not be undone. This prevents
any further insertions at the internal node and therefore the node can safely be
removed from the tree. HelpFreeze returns only after all the child pointers have
the freeze bit set to ‘1’. This means that once a thread decides to freeze the
node, by calling HelpFreeze method it can not be undone. When freezing the
child pointers, if any of the pointer is observed to have the flag bit set to ‘1’,
then HelpFreeze helps the removal of the node referred by child pointer and
then attempts to set the freeze bit again. Freezing the child pointers begins only
after flagging the parent. This means that if a child pointer has freeze bit set to
‘1’, then it’s parent is already flagged.

572 V. Velamuri

50 Void MakeConsistent(NodePtr par, NodePtr curr, SIZE currIndex, SeekRecordPtr record)
51 begin

// Count the number of non-null children and return if count is greater than 1
52 Int childCount = CheckChild(curr); if (childCount > 1) then return;
53 NodePtr gPar = NULL; Int parIndex = -1;

// Parent information not known. Search in the tree for the location of ‘curr’ node
54 if par == NULL then
55 Search(curr→label, curr, record);
56 NodePtr <newCurr, *, *> = record→curr;
57 if newCurr == curr then
58 gPar = record→gPar, par = record→par;
59 currIndex = record→currIndex, parIndex = record→parIndex;
60 NodePtr <*, flagged, frozen>=record→curr;

61 else return; // ‘curr’ node is removed from the tree. Therefore, return

62 if frozen then // ‘par’ node is being removed from the tree. Help remove ‘par’ node
63 HelpFreeze(par); Search(par→label, par, record);
64 NodePtr <newPar, *, *> = record→curr;
65 if newPar == par then
66 gPar = record→par, parIndex = record→currIndex;
67 RemoveNode(gPar, par, parIndex);
68 MakeConsistent(record→gPar, gPar, record→parIndex, record);

// Check the consistency of ‘curr’ node after ‘par’ node removal
69 return MakeConsistent(NULL, curr, currIndex, record);

// Flag parent pointer in-order to remove ‘curr’ node from the tree
70 else if (flagged or CAS(par→child[currIndex], curr, <curr, 1, 0>)) then
71 HelpFreeze(curr); RemoveNode(par, curr, currIndex);
72 return MakeConsistent(gPar, par, currIndex, record);

// Another thread inserted new node at par. Check consistency with new parent
73 else if <par→child[currIndex], *, *> != curr then
74 return MakeConsistent(NULL, curr, currIndex, record);

Algorithm 4. MakeConsistent method

75 Void HelpFreeze(NodePtr node)
76 begin
77 Int index = 0;
78 while (index < ALPHABET SIZE) do // For each child pointer of the node
79 NodePtr <child, flagged, frozen> = node→child[index];
80 if flagged then // Help the removal of node referred by ‘child’ before freezing
81 HelpFreeze(child), RemoveNode(node, child, index);

// Freeze the child pointer using CAS instruction
82 else if (frozen or CAS(node→child[index], <child, 0, 0>, <child, 0, 1>)) then
83 index++;

84 Int CheckChild(NodePtr node)
85 begin
86 Int childCount = 0, index = 0;
87 while (index <ALPHABET SIZE) do // Count the number of non-null child

pointers in node
88 NodePtr <ptr, *, *> = node→child[index];
89 if ptr != NULL then childCount++;
90 index++;

91 return childCount;

Algorithm 5. Helper methods for remove

Efficient Non-blocking Radix Trees 573

The RemoveNode method presented in Algorithm 6 removes an internal node
from the tree. It updates the parent pointer to point to the new child or to a NULL
value if all the child pointers are NULL. A particularly tricky case can arise when
removing an internal node from the tree which is illustrated in Fig. 1. Thread T1
finds the leaf node of interest i.e. node C and removes it from the tree. As node
B has only one non-null child, T1 decides to freeze the child pointers of node
B. Simultaneously, thread T2 successfully inserts new leaf node D as child of
B. After freezing all the child pointers, node B contains more than one non-null
child pointer and therefore should not be removed from the tree.

92 Bool RemoveNode(NodePtr par, NodePtr curr, Int currIndex)
93 begin

// Count the number of non-null child pointers
94 Int childCount = CheckChild(curr), index = 0;
95 NodePtr ptr = NULL;

96 if childCount == 1 then // Update ‘ptr’ to point to the only valid child node
97 while (index < ALPHABET SIZE) do
98 NodePtr <childPtr, *, *> = node→child[index];
99 if childPtr != NULL then ptr = childPtr, break;

100 index++;

/* More than one non-null child pointers. Create a new internal node and copy the
non-null child pointers to child array of new internal node */

101 else if childCount > 1 then
102 ptr = new Node(node→label, node→size, false);// Create new internal node

while (index < ALPHABET SIZE) do
103 NodePtr <childPtr, *, *> = node→child[index];
104 if childPtr != NULL then ptr→child[index] = childPtr;
105 index++;

// Remove ‘curr’ node from the tree using CAS and update parent to point to ‘ptr’
106 CAS(par→child[currIndex], <curr, 1, 0>, <ptr, 0, 0>);

Algorithm 6. RemoveNode method

This scenario is taken care by checking the non-null pointer values after
freezing the child array. If more than one non-null pointer value exists, then a
new internal node is created and all the child pointer values are copied to the
new internal node (Lines 102–105). Otherwise, the parent pointer is updated to
point to the only leaf node or to a NULL value (if all the pointer values in child
array are NULL) using CAS (Line 106). The MakeConsistent method repeats
this process recursively until an internal node with more than one non-null child
pointer is encountered and only then the Remove operation returns true.

When flagging the parent pointer, the CAS (Line 70) can succeed only if the
parent pointer is not frozen for deletion and it refers to the node of interest (i.e.
curr node). If the parent pointer is frozen, MakeConsistent will first remove
the parent node from the tree (Lines 61–69) and then tries to remove the node of
interest. If the information about parent node is not available, then its location
is identified by traversing down the tree using Search method. Similarly, when
removing the leaf node from the tree, if the parent pointer is frozen for deletion,
the remove operation will first help removal of the parent node from the tree
before trying to remove the leaf node of interest.

574 V. Velamuri

3.5 Insert

The pseudo code for Insert method is presented in Algorithm7. An Insert(k)
operation updates the tree with a node containing key k only if it is not already
present in the tree. The presence of a key is validated using the Contains method
(Line 109) and Insert operation returns false if target key is found to be present
in the tree. Otherwise, it creates a new node(s) and adds them to the tree using
CAS (Line 128). The location for insertion is obtained from the record structure
which is updated with the result of traversal during Contains operation.

107 Bool Insert(KEY key, SeekRecord* record)
108 begin
109 if Contains(key, record) then return false;// Validate the presence of target key

110 NodePtr <gPar, *, *> = record→gPar, <par, *, *> = record→par;
// Read the last traversed node from ‘record’ along with the pointer status

111 NodePtr <curr, flagged, frozen> = record→curr; NodePtr ptr = NULL;
112 Int currIndex = record→currIndex, parIndex = record→parIndex;

// Search terminated at null node. Therefore, create a leaf node
113 if curr == NULL then ptr = new Node(key, Sizeof (key), true) ;
114 else // Create new internal and leaf nodes

// Find common prefix between target key and label of last traversed node
115 KEY commonPrefix = GetCommonPrefix(key, curr);
116 Int commonSize = SizeOf(commonPrefix);

// Create internal node with common prefix and leaf node with target key
117 ptr = new Node(commonPrefix, commonSize, false);
118 NodePtr leaf = new Node(key, SizeOf(key), true);
119 Int leafIndex = GetIndex(key, commonSize);
120 Int newCurrIndex = GetIndex(curr→label, commonSize);
121 ptr→child[newCurrIndex] = curr; ptr→child[leafIndex] = leaf;

122 if flagged then // ‘curr’ node undergoing removal. Help remove ‘curr’ node
123 HelpFreeze(curr), RemoveNode(par, curr, record);
124 return Insert(key, record);

125 else if frozen then // ‘par’ node undergoing removal. Help remove ‘par’ node
126 HelpFreeze(par), RemoveNode(gPar, par, record);
127 return Insert(key, record);

// Insert node with target key into the tree using CAS
128 else if CAS(par→child[currIndex], <curr, 0, 0>, <ptr, 0, 0>) then return true;

// CAS failed. Retry insert operation
129 else return Insert(key, record);

Algorithm 7. Insert method

If the traversal has terminated at a null child, a new leaf node is created
with the label as target key (Line 113). If the traversal has terminated at a non-
null child, then it implies that there exists a prefix mismatch between the label
of last traversed node and the target key. In this case, two nodes are created:
an internal node containing the largest common prefix between the target key
and the last traversed node, a leaf node containing the target key (Lines 117–
121). The GetCommonPrefix method (Line 115) computes the largest common
prefix between the node’s label and target key. The child pointers of the newly
created internal node are updated to point to the curr node and new leaf node
(Line 121).

Efficient Non-blocking Radix Trees 575

CAS at line 128 adds the newly created node(s) into the tree. A successful
CAS implies that the node with target key is now reachable from the root node
and therefore Insert method returns true. CAS (Line 128) can succeed only
if the parent pointer is not flagged or frozen for deletion. If the parent pointer
is already flagged or frozen, then Insert will help the corresponding remove
operation before trying to update the node(s). The status of the parent pointer
is retrieved from the result of traversal (Line 111).

The status flagged implies that the curr node is undergoing removal and
status frozen implies that the par node undergoing removal. In both the cases,
Insert method will help the removal of the corresponding node by freezing all
its child pointers and later removing it from the tree. After the removal, Insert
restarts its operation to locate the new position for insertion. If the CAS at line
128 fails due to a simultaneous insertion at the same location by another thread,
Insert will restart the operation to locate the new position of target key in the
tree.

4 Correctness

In this section, we define the linearization points for each of Contains, Insert
and Remove operations and prove the non-blocking nature of our implementation.
Due to space constraints, we only provide a brief sketch of proof and the complete
proof is presented in [12].

4.1 Linearizability

The Contains operation has two possible outcomes, either the key is present in
tree or not. For a successful Contains, if the leaf node returned by the Search
method is still a part of the tree, then its linearization point is defined to be
the point at which the Search method terminates the traversal. Otherwise, its
linearization point is defined to be the point just before the leaf node is removed
from the tree. For an unsuccessful Contains, the linearization point is the point
at which the Search method terminates the traversal.

The linearization point of an successful Insert operation is defined to be the
point at which it performs CAS instruction (Line 128) successfully. For an unsuc-
cessful Insert, the linearization point is same as that of a successful Contains
where the target key is already found to be present in the tree. The linearization
point of Remove operation is defined to be the point at which the CAS instruc-
tion successfully removes the leaf node containing target key from the tree (Line
46). For an unsuccessful Remove, the linearization point is same as that of an
unsuccessful Contains, where the target key is not found in the tree. It can be
proved that, when the operations are ordered according to their linearization
points, then the resulting sequence of operations is legal.

576 V. Velamuri

4.2 Non-blocking Progress

The non-blocking property of our algorithm is proved by describing various
interactions between reading and writing threads. If the system reaches a state
in which no update operation completes, then a non-faulty thread performing
Contains will always return as the tree does not undergo any structural changes.

A non-faulty thread trying to modify the tree can remain blocked in two
scenarios: (i) An infinite number of insert operations succeed adding new nodes
to the tree. This means that other threads are able to make progress by adding
new nodes (i.e. achieving system-wide progress) making the implementation non-
blocking (ii) The state of the pointer is not normal i.e. either the flag or freeze
bit is set to ‘1’. It is easy to observe from the Insert and Remove methods
that, during update if a thread encounters a pointer whose flag or freeze bit is
set to ‘1’, it first helps the removal of the corresponding node and then restarts
its operation only after the node is removed from the tree. This ensures that
next time the thread is traversing the tree, the node containing the pointer is
no longer present in the tree.

If all the pointers in the thread’s path have then flag or freeze bits set to ‘1’,
then Insert or Remove methods will help the removal of all the corresponding
nodes. As root node is never removed from the tree, the operation will eventually
complete unless other threads update the tree. In either cases, at least one thread
makes a progress with its operation making the implementation non-blocking.

5 Experimental Evaluation

For our experiments, we considered four different alphabet sizes: binary (2-RT),
quaternary (4-RT), octal (8-RT) and hexadecimal (16-RT). The source code of
our implementation is available at [12]. We compared the results of our imple-
mentation with three other implementations: (i) PatTrie: Patricia trie from
Shafiei [10] (ii) NBBST: Non-blocking binary search tree from Natarajan and
Mittal [7] (iii) K4AryTree: Non-blocking k-ary free from Brown and Helga [2]
with k = 4. The source code for NBBST is taken from syncrobench [5] test suite,
for PatTrie the Java version of the source code is taken from the author and
ported to C++. For K4AryTree, the Java version of the source code is taken
from [1] and was ported to C++.

The experiments were conducted on a machine equipped with Ubuntu 14.04
OS, 64 GB RAM and two Intel Xeon E5-2680 v2 processors each clocked at
2.80 GHz with 32 KB L1D cache per core and 2.5 MB LLC. Each processor has
10 physical cores with hyperthreading enabled yielding 40 logical cores in total.
Hyperthreading is enabled prior to a simulation run and thread binding to cores
is disabled to facilitate context switching. All our implementations are written in
C/C++ and compiled using g++ 4.8.4 with optimization level set to O3. Ran-
dom integers were considered for keys which were generated using a Mersenne
twister generator from the C++11 random library on 32-bit word length.

Each experiment was run for fifty seconds, and the total number of operations
completed by end of the run were calculated to determine the system throughput.

Efficient Non-blocking Radix Trees 577

The results were averaged over five runs. To capture the steady state behavior,
the tree is pre-populated with 50% of its maximum size prior to starting a
simulation run. The cache performance of the data structure is analyzed using
cachegrind from Valgrind [8] toolchain. To compare the performance of different
implementations, we considered four different key ranges from one thousand to
one million and the number of threads was varied from 1 to 256. Three different
workloads i.e. write-dominated (0% contains, 50% inserts and 50% removes),
mixed (70% contains, 20% inserts and 10% removes) and read-dominated (90%
contains, 5% inserts and 5% removes) were considered.

The results of our experiments are presented in Fig. 2. Table 1 presents the
comparison of cache performance for a mixed workload with 32 threads. From

2-RT 4-RT 8-RT 16-RT NBBST PatTrie K4AryTree

Write-Dominated Mixed Read-Dominated

10
00

+
ke

ys

M
ill

io
ns

 o
f o

pe
ra

on
s p

er
 se

co
nd

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 32 64 128 256
0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128 256
0

50

100

150

200

250

1 2 4 8 16 32 64 128 256

10
00

0+
 k

ey
s

M
ill

io
ns

 o
f o

pe
ra

on
s p

er
 se

co
nd

0

10

20

30

40

50

60

1 2 4 8 16 32 64 128 256
0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128 256
0

50

100

150

200

250

1 2 4 8 16 32 64 128 256

10
00

00
+

ke
ys

M
ill

io
ns

 o
f o

pe
ra

on
s p

er
 se

co
nd

20

30

40

50

60

70

0

10

20

1 2 4 8 16 32 64 128 256
0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128 256
0

50

100

150

200

250

1 2 4 8 16 32 64 128 256

10
00

00
0+

 k
ey

s

M
ill

io
ns

 o
f o

pe
ra

on
s p

er
 se

co
nd

0

5

10

15

20

25

30

35

40

45

1 2 4 8 16 32 64 128 256
0

20

40

60

80

100

120

1 2 4 8 16 32 64 128 256
0

50

100

150

200

250

1 2 4 8 16 32 64 128 256

Threads Threads Threads

Fig. 2. Experimental results for different workloads

Table 1. Comparison of D1 cache miss percentage

Key range 2-RT 4-RT 8-RT 16-RT PatTrie NBBST K4AryTree

1000+ keys 1.3% 0.9% 1.6% 1.3% 3% 2.1% 2%

10000+ keys 2.3% 2.1% 3.3% 2.7% 6% 4.1% 3.5%

100000+ keys 4.8% 4.3% 5.2% 3.1% 10.1% 8.7% 6.3%

1000000+ keys 8.6% 3.9% 6% 3.7% 13.4% 7.9% 7.6%

578 V. Velamuri

the graphs, it is clear that our algorithm has better throughput (by more than
100% in some scenarios) compared to other implementations. This is because our
algorithm supports simultaneous updates on a node and has better cache perfor-
mance compared to other implementations (Table 1). For smaller key ranges in
all the workloads, the performance of 4-RT is better compared to 8-RT and 16-
RT as nodes in 8-RT and 16-RT were spread across multiple cache lines resulting
in higher cache miss percentage. For the 2-RT implementation, the number of
pointer accesses were relatively high which contributed to higher cache miss per-
centage and slowdown in performance. For larger key ranges, 16-RT performed
better as the impact of contention is reduced which resulted in less cache miss
percentage and the number of pointer accesses required to traverse the leaf node
are also reduced because of high branching factor.

Table 2. CAS instructions
Insert Remove

2-RT 1 5

PatTrie 3 4

NBBST 1 3

In write dominated workload, for smaller key
ranges, it can be see than NBBST performs slightly
better compared to the 2-RT implementation as they
use fewer atomic CAS instructions (Table 2) for syn-
chronization compared to our implementation. How-
ever, for larger key ranges, the maximum height of
the tree was observed to be twice more than logN (N being the maximum
key range) which resulted in more pointer accesses and slowed down the imple-
mentation. High synchronization cost and serialization of update operations in
PatTrie and K4AryTree resulted in slowness of their implementation. Also, the
cache miss percentage of K4AryTree was observed to be relatively high. This is
because, in their algorithm, during insert operations each k-ary node is replaced
with a new k-ary node. Similar behavior is also observed in remove operations in
some cases. Therefore, even though the nodes individually support good cache
locality, updating the nodes resulted in higher cache miss percentage. This is not
the case in our implementation as we update only the child pointers in most of
the scenarios.

6 Conclusion

We presented a concurrent, non-blocking and linearizable design for radix tree
data structure. We implemented it using C++ and measured its performance
against Shafiei [10] Patricia trie, BST from Natarajan and Mittal [7] and k-ary
search tree from Brown and Helga [2]. Experimental results indicated that our
implementation performs better and scales best for small and large key ranges
under all types of workloads. The cache performance of our implementation was
also analyzed and the D1 cache miss percentage is observed to be less compared
to other implementations which contributed to the better performance of our
algorithm.

References

1. Brown, T., Helga, J.: Source code for non-blocking k-ary search trees. http://www.
cs.toronto.edu/∼tabrown/ksts/

http://www.cs.toronto.edu/~tabrown/ksts/
http://www.cs.toronto.edu/~tabrown/ksts/

Efficient Non-blocking Radix Trees 579

2. Brown, T., Helga, J.: Non-blocking k -ary search trees. In: Fernàndez Anta, A.,
Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 207–221. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25873-2 15

3. Corbet, J.: Trees I: Radix trees. Linux kernel data structures. Linux Weekly News
(2006). http://lwn.net/Articles/175432

4. Ellen, F., Fatourou, P., Ruppert, E., van Breugel, F.: Non-blocking binary search
trees. In: Proceedings of ACM PODC, pp. 131–140 (2010)

5. Gramoli, V.: More than you ever wanted to know about synchronization: syn-
chrobench. In: Proceedings of ACM PPoPP, pp. 1–10 (2015)

6. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown,
R.B.: Mibench: a free, commercially representative embedded benchmark suite.
In: Proceedings of the Workload Characterization, WWC 2001, pp. 3–14 (2001)

7. Natarajan, A., Mittal, N.: Fast concurrent lock-free binary search trees. In: Pro-
ceedings of ACM PPoPP, pp. 317–328 (2014)

8. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. SIGPLAN Not. 42(6), 89–100 (2007)

9. Prokopec, A., Bronson, N.G., Bagwell, P., Odersky, M.: Concurrent tries with
efficient non-blocking snapshots. In: Proceedings of ACM PPoPP, pp. 151–160
(2012)

10. Shafiei, N.: Non-blocking patricia tries with replace operations. In: Proceedings of
IEEE ICDCS, pp. 216–225 (2013)

11. Repetti, T.J., Herlihy, M.P.: A Case Study in Optimizing HTM-Enabled Dynamic
Data Structures: Patricia Tries (2015). https://cs.brown.edu/research/pubs/
theses/masters/

12. Velamuri, V.: Appendix and source code for efficient non-blocking radix trees
(2017). https://github.com/varun1312/RadixTrees

http://dx.doi.org/10.1007/978-3-642-25873-2_15
http://lwn.net/Articles/175432
https://cs.brown.edu/research/pubs/theses/masters/
https://cs.brown.edu/research/pubs/theses/masters/
https://github.com/varun1312/RadixTrees

A Concurrency-Optimal Binary Search Tree

Vitaly Aksenov1,2, Vincent Gramoli3, Petr Kuznetsov4, Anna Malova5,
and Srivatsan Ravi6(B)

1 Inria Paris, Paris, France
aksenov.vitaly@gmail.com

2 ITMO University, Sankt-peterburg, Russia
3 University of Sydney, Sydney, Australia

vincent.gramoli@sydney.edu.au
4 LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France

petr.kuznetsov@telecom-paristech.fr
5 Washington University in St. Louis, St. Louis, USA

an.forgotenn@gmail.com
6 Information Sciences Institute, University of Southern California, Los Angeles, USA

srivatsan@srivatsan.in

Abstract. The paper presents the first concurrency-optimal implemen-
tation of a binary search tree (BST). The implementation, based on a
standard sequential implementation of a partially-external tree, ensures
that every schedule, i.e., interleaving of steps of the sequential code, is
accepted unless linearizability is violated. To ensure this property, we use
a novel read-write locking protocol that protects tree edges in addition
to its nodes.

Our implementation performs comparably to the state-of-the-art
BSTs and even outperforms them on few workloads, which suggests that
optimizing the set of accepted schedules of the sequential code can be an
adequate design principle for efficient concurrent data structures.

Keywords: Concurrency optimality · Binary search tree · Linearizabil-
ity

1 Introduction

To meet modern computational demands and to overcome the fundamental lim-
itations of computing hardware, the traditional single-CPU architecture is being
replaced by a concurrent system based on multi-cores or even many-cores. There-
fore, at least until the next technological revolution, the only way to respond to
the growing computing demand is to invest in smarter concurrent algorithms.

Synchronization, one of the principal challenges in concurrent programming,
consists in arbitrating concurrent accesses to shared data structures: lists, hash
tables, trees, etc. Intuitively, an efficient data structure must be highly con-
current : it should allow multiple processes to “make progress” on it in paral-
lel. Indeed, every new implementation of a concurrent data structure is usually
claimed to enable such a parallelism. But what does “making progress” mean
precisely?
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 580–593, 2017.
DOI: 10.1007/978-3-319-64203-1 42

A Concurrency-Optimal Binary Search Tree 581

Optimal Concurrency. If we zoom in the code of an operation on a typi-
cal concurrent data structure, we can distinguish data accesses, i.e., reads and
updates to the data structure itself, performed as though the operation works
on the data in the absence of concurrency. To ensure that concurrent opera-
tions do not violate correctness of the implemented high-level data type (e.g.,
linearizability [1] of the implemented set abstraction), data accesses are “pro-
tected” with synchronization primitives, e.g., acquisitions and releases of locks
or atomic read-modify-write instructions like compare-and-swap. Intuitively, a
process makes progress by performing “sequential” data accesses to the shared
data, e.g., traversing the data structure and modifying its content. In contrast,
synchronization tasks, though necessary for correctness, do not contribute to the
progress of an operation.

Hence, “making progress in parallel” can be seen as allowing concurrent exe-
cution of pieces of locally sequential fragments of code. The more synchroniza-
tion we use to protect “critical” pieces of the sequential code, the less schedules,
i.e., interleavings of data accesses, we accept. Intuitively, we would like to use
exactly as little synchronization as sufficient for ensuring linearizability of the
high-level implemented abstraction. This expectation brings up the notion of a
concurrency-optimal implementation [2] that only rejects a schedule if it does
violate linearizability.

To be able to reason about how concurrent two different implementations
of the same data structure employing different synchronization techniques are,
we consider the recently introduced metric of the “amount of concurrency”
defined via sets of accepted (correct) schedules [2]. A correct schedule, intu-
itively, requires the sequence of sequential steps locally observed by every given
process to be consistent with some execution of the sequential algorithm. Note
that these sequential executions can be different for different processes, i.e., the
execution may not be serializable [3]. Combined with the standard correctness
criterion of linearizability, the concurrency properties of two correct data struc-
ture implementations can be compared on the same level: implementation A is
“more concurrent” than implementation B if the set of schedules accepted by A
is a strict superset of the set of schedules accepted by B. Thus, a concurrency-
optimal implementation accepts all correct schedules.

A Concurrency-Optimal Binary Search Tree. It is interesting to consider
binary search trees (BSTs) from the optimal concurrency perspective, as they are
believed, as a representative of search data structures [4], to be “concurrency-
friendly” [5]: updates concerning different keys are likely to operate on disjoint
sets of tree nodes (in contrast with, e.g., operations on queues or stacks).

We present a novel linearizable concurrent BST-based set implementation.
We prove that the implementation is concurrency-optimal with respect to a stan-
dard partially-external sequential tree [2]. The proposed implementation employs
the optimistic “lazy” locking approach [6] that distinguishes logical and physical
deletion of a node and makes sure that read-only operations are wait-free [1],
i.e., cannot be delayed by concurrent processes.

582 V. Aksenov et al.

The algorithm also offers a few algorithmic novelties. Unlike most implemen-
tations of concurrent trees, the algorithm uses multiple locks per node: one lock
for the state of the node, and one lock for each of its descendants. To ensure that
only conflicting operations can delay each other, we use conditional read-write
locks, where the lock can be acquired only under a certain condition. Intuitively,
only changes in the relevant part of the tree structure may prevent a thread from
acquiring the lock. The fine-grained conditional read-write locking of nodes and
edges allows us to ensure that an implementation rejects a schedule only if it
violates linearizability.

Concurrency-Optimality and Performance. Of course, optimal concur-
rency does not necessarily imply performance nor maximum progress (à la wait-
freedom [7]). An extreme example is the transactional memory (TM) data struc-
ture. TMs typically require restrictions of serializability as a correctness criterion.
And it is known that rejecting a schedule only if it is not serializable (the prop-
erty known as permissiveness), requires very heavy local computations [8,9].
But the intuition is that looking for concurrency-optimal search data structures
like trees pays off. And this work answers this question in the affirmative by
demonstrating empirically that the Java implementation of our concurrency-
optimal BST is either out-performing or is competitive against state-of-the-art
BST implementations [10–13] on all basic workloads. Apart from the obvious
benefit of producing a highly efficient BST, this work suggests that optimizing
the set of accepted schedules of the sequential code can be an adequate design
principle for building efficient concurrent data structures.

Roadmap. The rest of the paper is organized as follows. Section 2 describes
the details of our BST implementation, including the sequential implementa-
tion of partially-external binary search tree and our novel conditional read-write
lock abstraction. Section 3 formalizes the notion of concurrency-optimality and
sketches the relevant proofs; detailed proofs are given in the technical report [14].
Section 4 provides details of our experimental methodology and extensive evalua-
tion of our Java implementation. Section 5 articulates the differences with related
BST implementations and presents concluding remarks.

2 Binary Search Tree Implementation

This section consists of two parts. At first, we describe our sequential imple-
mentation of the set type using partially-external binary search tree. Then,
we present our concurrent implementation (Algorithm2), constructed from the
sequential one by adding synchronization primitives.

We begin with a formal specification of the set type. A set object stores a set
of integer values, initially empty, and exports operations insert(v), remove(v),
contains(v). The update operations, insert(v) and remove(v), return a boolean

A Concurrency-Optimal Binary Search Tree 583

Algorithm 1. Concurrent implementation: node structure and traversal
function.
1: Shared Variables:
2: node is a record with fields:
3: val, its value
4: slock = Lock¡state¿, a lock that guards

its state,
5: where state ∈ {DATA,ROUTING}
6: llock = Lock¡left¿, a lock that guards

a pointer left to the left child
7: rlock = Lock¡right¿, a lock that guards

a pointer right to the right child
8: deleted, a boolean flag indicating

the node is logically deleted or not
9: Initially the tree contains one node root,

10: root.val ← +∞
11: root.slock.init(DATA)
12: root.llock.init(null)
13: root.rlock.init(null)
14: deleted ← false

15: traversal(v): � wait-free traversal from
vertex start

16: gprev ← null; prev ← null
17: curr ← root � starting traversal from

root
18: while curr �= null do
19: if curr.val = v then
20: break
21: else
22: gprev ← prev
23: prev ← curr
24: if curr.val < v then
25: curr ← curr.left � go to the left

subtree
26: else
27: curr ← curr.right � go to the right

subtree
28: return 〈gprev, prev, curr〉

response, true if and only if v is absent (for insert(v)) or present (for remove(v))
in the set. After insert(v) is complete, v is present in the set, and after remove(v)
is complete, v is absent. The contains(v) returns a boolean response, true if and
only if v is present.

A binary search tree (BST) is a rooted ordered tree in which each node v has
a left child and a right child, either or both of which can be null. A node without
children is called a leaf. The order is carried by a value property : the value of
each node is strictly greater than the values in its left subtree and strictly smaller
than the values in its right subtree.

2.1 Sequential Implementation

As for a sequential implementation, we chose the well-known partially-external
binary search tree. Such a tree combines the idea of an internal binary search
tree, where the values from all nodes constitute the implemented set, and an
external binary search tree, where the set is represented by the values in the
leaves, and the internal nodes are used for “routing” from the root to the leaves.
A partially-external tree supports two types of nodes: routing and data. To
bound the number of routing vertices by the number of data nodes, the tree
should satisfy an additional condition that all routing nodes must have exactly
two children.

The traversal function takes a value v, traverses the tree down from the
root respecting the value property, as long as the current node is not null or its
value is not v. The function returns the last three visited nodes. The contains
function takes a value v, checks the last node visited by the traversal and returns
whether it is null. The insert function takes a value v and uses the traversal
function to find the place to insert the value. If the node with value v is found,

584 V. Aksenov et al.

the algorithm checks whether the node is data or routing: in the former case, the
function returns false (v is already in the set); in the latter case, the algorithm
simply changes the state of the node from routing to data. If the node with
value v is not found, then the algorithm assumes that v is not in the set and
inserts a new node with value v as the child of the latest non-null node visited
by the traversal function call. The delete function takes a value v and uses the
traversal function to find the node to delete. If the node with value v is not
found or its state is routing, the algorithm assumes that v is not in the set and
finishes. Otherwise, there are three cases depending on the number of children
that the found node has: (i) if the node has two children, then the algorithm
changes its state from data to routing; (ii) if the node has one child, then the
algorithm unlinks the node; (iii) finally, if the node is a leaf then the algorithm
unlinks the node, in addition if the parent is a routing node then it also unlinks
the parent.

2.2 Concurrent Implementation

Our concurrency-optimal BST is built on top of the described above sequen-
tial implementation using the optimistic approach. Traversals are wait-free (no
synchronization is employed), the locations to be modified are locked and then
the reads performed during the traversal are validated. If validation fails, the
operation is restarted.

Read Fields. Since our algorithm is optimistic, we do not want to read the
same field twice. To overcome this problem when the algorithm reads the field
it stores it in the “cache” and further accesses return the “cached” value. For
example, the reads of the left field in Lines 53 and 54 of Algorithm2 return the
same (cached) value.

Deletion Mark. As usual in concurrent algorithms with wait-free traversals,
the deletion of the node happens in two stages. At first, the delete operation
logically removes a node from the tree by setting the boolean flag to deleted.
Secondly, the delete operation updates the links to physically remove the node.
By that, any traversal that suddenly reaches the “under-deletion” node, sees the
deletion node and could restart the operation.

Locks. At the beginning of the section we noted that we have locks sepa-
rately for each field of a node and the algorithm takes only the necessary
type of lock: read or write. For that, we implemented read-write lock simply
as one lock variable. The smallest bit of lock indicates whether the write lock
is taken or not, the rest part of the variable indicates the number of readers
that have taken a lock. In other words, lock is zero if the lock is not taken,

A Concurrency-Optimal Binary Search Tree 585

lock is one if the write lock is taken, otherwise, lock divided by two repre-
sents the number of times the read lock is taken. The locking and unlocking
are done using the atomic compare-and-set primitive. Along, with standard
tryWriteLock, tryReadLock, unlockWrite and unlockRead we provide additional six
functions on a node: tryLockLeftEdge(Ref|Val)(exp), lockRightEdge(Ref|Val)(exp)
and try(Read|Write)LockState(exp) (from there on, we use the notation of bar |
to not duplicate the similar names; such notation should be read as either we
choose the first option or the second option.).

Function tryLock(Left|Right)EdgeRef(exp) ensures that the lock is taken only
if the field (left or right) guarded by that lock is equal to exp, i.e., the child node
has not changed, and the current node is not deleted, i.e., its deleted mark is
not set. Function tryLock(Left|Right)EdgeVal(exp) ensures that the lock is taken
only if the value of the node in the field (left or right) guarded by that lock is
equal to exp, i.e., the node could have changed but the value inside did not,
and the current node is not deleted, i.e., its deletion mark is not set. Function
try(Read|Write)LockState(exp) ensures that the lock is taken only if the value of
the state is equal to exp and the node is not deleted, i.e., its deletion mark is
not set.

These six functions are implemented in the same manner: the function
reads necessary fields and a lock variable, checks the conditions, if successful
it takes a corresponding lock, then checks the conditions again, if unsuccessful
it releases the lock. In most cases in the pseudocode we used a substitution
tryLockEdge(Ref|Val)(node) instead of tryLock(Left|Right)Edge(Ref|Val)(exp).
This substitution, given not-null value, decides whether the node is the left or
right child of the current node and calls the corresponding function providing
node or node.value.

Concurrency-Optimal BST. Above we already described everything needed
to write the algorithm. Each node is represented as a union of records (see
Algorithm 1): val, the value in the node of arbitrary comparable type, slock, the
lock that guards the state, llock and rlock, the locks that guard the pointers to
left and right children, correspondingly, and deleted, the flag of logical deletion.
The pseudocode of the concurrent algorithm is provided in Algorithms 1 and 2.
To shrink the pseudocode in size we have not put a restart instruction explicitly
for all failed “try lock” operations, but it should be read so. The traversal function
is identical to the sequential algorithm (see Algorithm1). The contains has an
additional check, whether the node’s deleted mark is set or not. In the former
case, the function returns false. The insert and delete functions largely follow
the structure of the sequential code, but take locks on the modification part
of the tree using the above described read-write conditional lock. Due to space
constraints, we refer the reader to the pseudocode of Algorithm2 for the specifics
of the implementation.

586 V. Aksenov et al.

Algorithm 2. Concurrent implementation.

1: contains(v):
2: 〈gprev, prev, curr〉 ← traversal(v)
3: return curr �= null ∧ curr.state = DATA

4: insert(v):
5: 〈gprev, prev, curr〉 ← traversal(v)
6: if curr �= null then

7: go to Line 12
8: else

9: go to Line 16

10: Release all locks
11: return true

Update existing node

12: if curr.state = DATA then

13: return false

14: curr.tryWriteLockState(ROUTING)
15: curr.state ← DATA

Insert new node

16: newNode.val ← v

17: if v < prev.val then

18: prev.tryLockLeftEdgeRef(null)
19: prev.slock.tryReadLock()
20: if prev.deleted then

21: Restart operation

22: prev.left ← newNode

23: else

24: prev.tryLockRightEdgeRef(null)
25: prev.slock.tryReadLock()
26: if prev.deleted then

27: Restart operation

28: prev.right ← newNode

29: delete(v):
30: 〈gprev, prev, curr〉 ← traversal(v)

� All restarts are from this Line
31: if curr = null ∨ curr.state �= DATA then

32: return false
33: if curr has exactly 2 children then

34: go to Line 44

35: if curr has exactly 1 child then

36: go to Line 53

37: if curr is a leaf then

38: if prev.state = DATA then

39: go to Line 73
40: else

41: go to Line 83

42: Release all locks
43: return true

Delete node with two children

44: curr.tryWriteLockState(DATA)
45: if curr does not have 2 children then

46: Restart operation

47: curr.state ← ROUTING

Lock acquisition routine for vertex with one child

48: curr.tryLockEdgeRef(child)
49: prev.tryLockEdgeRef(curr)
50: curr.tryWriteLockState(DATA)
51: if curr has 0 or 2 children then

52: Restart operation

Delete node with one child

53: if curr.left �= null then

54: child ← curr.left

55: else

56: child ← curr.right

57: if curr.val < prev.val then

58: perform lock acquisition at Line 48
59: curr.deleted ← true

60: prev.left ← child

61: else

62: perform lock acquisition at Line 48
63: curr.deleted ← true

64: prev.right ← child

Lock acquisition routine for leaf

65: prev.tryLockEdgeV al(curr)
66: if v < prev.key then � get current child
67: curr ← prev.left

68: else

69: curr ← prev.right

70: curr.tryWriteLockState(DATA)
71: if curr is not a leaf then

72: Restart operation

Delete leaf with DATA parent

73: if curr.val < prev.val then

74: perform lock acquisition at Line 65
75: prev.tryReadLockState(DATA)
76: curr.deleted ← true

77: prev.left ← null

78: else

79: perform lock acquisition at Line 65
80: prev.tryReadLockState(DATA)
81: curr.deleted ← true

82: prev.right ← null

Delete leaf with ROUTING parent

83: if curr.val < prev.val then

84: child ← prev.right

85: else

86: child ← prev.left

87: if prev is left child of gprev then

88: perform lock acquisition at Line 65
89: prev.tryEdgeLockRef(child)
90: gprev.tryEdgeLockRef(prev)
91: prev.tryWriteLockState(ROUTING)
92: prev.deleted ← true

93: curr.deleted ← true

94: gprev.left ← child

95: else

96: perform lock acquisition at Line 65
97: prev.tryEdgeLockRef(child)
98: gprev.tryEdgeLockRef(prev)
99: prev.tryWriteLockState(ROUTING)
100: prev.deleted ← true

101: curr.deleted ← true

102: gprev.right ← child

A Concurrency-Optimal Binary Search Tree 587

3 Concurrency Optimality and Correctness

In this section, we show that our implementation is concurrency-optimal [2].
Intuitively, a concurrency-optimal implementation employs as much synchro-
nization as necessary for ensuring correctness of the implemented high-level
abstraction—in our case, the linearizable set object [1].

Recall our sequential BST implementation and imagine that we run it in a
concurrent environment. We refer to an execution of this concurrent algorithm
as a schedule. A schedule thus consists of reads, writes, node creation events,
and invocation and responses of high-level operations.

Notice that in every such schedule, any operation witnesses a consistent tree
state locally, i.e., it cannot distinguish the execution from a sequential one. It is
easy to see that the local views across operations may not be mutually consis-
tent, and this simplistic concurrent algorithm is not linearizable. For example,
two insert operations that concurrently traverse the tree may update the same
node so that one of the operations “overwrites” the other (so called the “lost
update” problem). To guarantee linearizability, one needs to ensure that only
correct (linearizable) schedules are accepted. We show first that this is indeed
the case with our algorithm: all the schedules it accepts are correct. More pre-
cisely, a schedule σ is accepted by an algorithm if it has an execution in which
the sequence of high-level invocations and responses, reads, writes, and node
creation events (modulo the restarted fragments) is σ [2].

Theorem 1 (Correctness). The schedule corresponding to any execution of
our BST implementation is observably correct.

A complete proof of Theorem 1 is given in the technical report [14].
Further, we show that, in a strict sense, our algorithm accepts all correct

schedules. In our definition of correctness, we demand that at all times the
algorithm maintains a BST that does not contain nodes that were previously
physically deleted. Formally, a set of nodes reachable from the root is a BST if:
(i) they form a tree rooted at node root ; (ii) this tree satisfies the value property :
for each node with value v all the values in the left subtree are less than v and
all the values in the right subtree are bigger than v; (iii) each routing node in
this tree has two children.

Now we say that a schedule is observably correct if each of its prefixes σ
satisfies the following conditions: (i) subsequence of high-level invocations and
responses in σ is linearizable with respect to the set type; (ii) the data structure
after performing σ is a BST; (iii) the BST after σ does not contain a node x
such that there exist σ′ and σ′′, such that σ′ is a prefix of σ′′, σ′′ is a prefix of
σ, x is in the BST after σ′, and x is not in the BST after σ′′.

We say that an implementation is concurrency-optimal if it accepts all
observably correct schedules.

Theorem 2 (Optimality). Our BST implementation is concurrency-optimal.

588 V. Aksenov et al.

(a) Scenario depicting a concurrent execu-
tion of insert(1) and insert(3); rejected by
popular BSTs like [10–13], it is accepted by
a concurrency-optimal BST

(b) Scenario depicting an execution of two concurrent delete(3) operations, followed
by a successful insert(3); rejected by all the popular BSTs [10–13, 15], it is accepted
by a concurrency-optimal BST

Fig. 1. Examples schedules rejected by concurrent BSTs not concurrency-optimal

A proof of Theorem2 is given in the technical report [14]. The intuition
behind the proof is the following. We show that for each observably correct
schedule there exists a matching execution of our implementation. Therefore,
only schedules not observably correct can be rejected by our algorithm. The
construction of an execution that matches an observably correct schedule is
possible, in particular, due to the fact that every critical section in our algorithm
contains exactly one event of the schedule. Thus, the only reason to reject a
schedule is that some condition on a critical section does not hold and, as a result,
the operation must be restarted. By accounting for all the conditions under
which an operation restarts, we show that this may only happen if, otherwise,
the schedule violates observable correctness.

Suboptimality of Related BST Algorithms. To understand the hardness
of building linearizable concurrency optimal BSTs, we explain how some typical
correct schedules are rejected by current state-of-the-art BST algorithms against
which we evaluate the performance of our algorithm. Consider the concurrency
scenario depicted in Fig. 1a. There are two concurrent operations insert(1) and
insert(3) performed on a tree. They traverse to the corresponding links (part a))
and lock them concurrently (part b)). Then they insert new nodes (part c)).
Note that this is a correct schedule of events; however, most BSTs including
the ones we compare our implementation against [10–13] reject this schedule or
similar. However, using multiple locks per node allows our concurrency-optimal
implementation to accept this schedule.

The second schedule is shown in the Fig. 1b. There is one operation p =
delete(3) performed on a tree shown in part a). It traverses to a node v with
value 3. Then, some concurrent operation delete(3) unlinks node v (part b)).
Later, another concurrent operation inserts a new node with value 3 (part c)).

A Concurrency-Optimal Binary Search Tree 589

Operation p wakes up and locks a link since the value 3 is the same (part d)).
Finally, p unlinks the node with value 3 (part e)). Note that this is a correct
schedule since both the delete operations can be successful; however, all the
BSTs we are aware of reject this schedule or similar [10–13,15]. While, there is
an execution of our concurrency-optimal BST that accepts this schedule.

4 Implementation and Evaluation

Experimental Setup. For our experiments, we used two machines to evaluate
our concurrency-optimal binary search tree. The first is a 4-processor Intel Xeon
E7-4870 2.4 GHz server (Intel) with 20 threads per processor (yielding 80 hard-
ware threads in total), 512 Gb of RAM, running Fedora 25. The second machine
is a 4-processor AMD Opteron 6378 2.4 GHz server (AMD) with 16 threads
per processor (yielding 64 threads in total), 512 Gb of RAM, running Ubuntu
14.04.5. Both machines have Java 1.8.0 111-b14 and HotSpot JVM 25.111-b14.

Binary Search Tree Implementations. We compare our algorithm, denoted
as Concurrency Optimal or CO, against four other implementations of concur-
rent BST. They are: (1) the lock-based Concurrency Friendly (or CF) tree by
Crain et al. [10], (2) the lock-based Logical Ordering (or LO) AVL-tree by Drach-
sler et al. [11], (3) the lock-based BCCO tree by Bronson et al. [12], and (4) the
lock-free EFRB tree by Ellen et al. [13]. All these implementations are written
in Java and taken from the synchrobench repository [16]. In order to make a fair
comparison, we remove rotation routines from the CF-, LO- and CO- trees imple-
mentations. We are aware of efficient lock-free tree by Natarajan and Mittal [15],
but, unfortunately, we are unaware of any implementation in Java.

Experimental Methodology. For our experiments, we use the environment
provided by the Synchrobench library. To compare the performance we consid-
ered the following parameters: (i) Workloads. Each workload distribution is
characterized by the percent x% of update operations. This means that the tree
will be requested to make 100 − x% of contains calls, x/2% of insert calls and
x/2% of delete calls. We considered three different workload distributions: 0%,
20% and 100%. (ii) Tree size. On the above workloads, the tree size depends
on the size of the key space (the size is approximately half of the range). We
consider three different key ranges: 215, 219 and 221. To ensure consistent results,
rather than starting with an empty tree, we pre-populated the tree before exe-
cution. (iii) Degree of contention. This depends on the number of hardware
threads, but we take enough points to reason about the behavior of curves.

In fact, we made experiments on a larger number of settings but we shortened
our presentation due to lack of space. We chose the settings such that we had two
extremes and one middle point. We chose 20% of attempted updates as a middle
point, because it corresponds to real life situation in database management where
the percentage of successful updates is 10%. (In our testing environment we
expect only half of update calls to succeed.)

590 V. Aksenov et al.

0 20 40 60 80
0

50

100

150

21
5

0 20 40 60 80
0

50

100

150

0 20 40 60 80
0

20

40

60

80

0 20 40 60 80
0

50

100

21
9

0 20 40 60 80
0

20

40

60

80

0 20 40 60 80
0

20

40

60

0 20 40 60 80
0

20

40

60

22
1

0 20 40 60 80
0

20

40

0 20 40 60 80
0

20

40

(a) Evaluation of BST implementations on Intel

0 20 40 60
0

50

100

0 20 40 60
0

20

40

60

0 20 40 60
0

10

20

30

0 20 40 60
0

10

20

30

0 20 40 60
0

10

20

30

0 20 40 60
0

10

20

0 20 40 60
0

5

10

15

0 20 40 60
0

5

10

15

0 20 40 60
0

5

10

15

(b) Evaluation of BST implementations on AMD

Fig. 2. Performance evaluation of concurrent BSTs

Results. To get meaningful results we average through 25 runs. Each run is
carried out for 10 seconds with a warmup of 5 seconds. Figure 2a (and resp.
Fig. 2b) contains the results of executions on Intel (and resp. AMD) machine. It
can be seen that with the increase of the size the performance of our algorithm
becomes better relatively to CF-tree. This is due to the fact that with the bigger
size the cleanup-thread in CF-tree implementation spends more time to clean
the tree out of logically deleted vertices, thus, the traversals have more chances
to pass over deleted vertices, leading to longer traversals. By this fact and the
shown trend, we could assume that CO-tree outperforms CF-tree on bigger sizes.
On the other hand, BCCO-tree was much worse on 215 and became similar to
CO-tree on 221. This happened because the races for the locks become more
unlikely. This helped the BCCO-tree, because its locking is coarse-grained. Since,
our algorithm is “exactly” the same without the order of locking, on bigger sizes
we could expect that CO- and BCCO-trees will perform similarly. We could
conclude that our algorithm works well regardless of the size. As the percentage
of contains operations increases, the difference between our algorithm and CF-
tree becomes smaller and in most workloads, we perform better than other BSTs.

5 Related Work and Discussion

Measuring Concurrency. Measuring concurrency via comparing a concurrent
data structure to its sequential counterpart was originally proposed [17]. The
metric was later applied to construct a concurrency-optimal linked list [18], and

A Concurrency-Optimal Binary Search Tree 591

to compare synchronization techniques used for concurrent search data struc-
tures, organizing nodes in a directed acyclic graph [2]. Although lots of efforts
have been devoted to improve the performance of BSTs as under growing con-
currency, to our knowledge, the existence of a concurrency-optimal BST has not
been earlier addressed.

Concurrent BSTs. The transactional red-black tree [19] uses software trans-
actional memory without sentinel nodes to limit conflicts between concurrent
transactions, but restarts the update operation after its rotation aborts. Opti-
mistic synchronization, as seen in transactional memory, was used to implement
a practical lock-based BST [12]. The speculation-friendly tree [20] is a partially-
external binary search tree that marks internal nodes as logically deleted to
reduce conflicts between software transactions. It decouples a structural oper-
ation from abstract operations to rebalance when contention disappears. Some
red-black trees were optimized for hardware transactional memory and com-
pared with bottom-up and top-down fine-grained locking techniques [21]. The
contention-friendly tree [10] is a lock-based partially-external binary search tree
that provides lock-free lookups and rebalances when contention disappears. The
logical ordering tree [11] combines the lock-free lookup with on-time removal
during deletes. The first lock-free tree proposal [13] uses a single-word CAS and
does not rebalance. Howley and Jones [22] proposed an internal lock-free binary
search tree where each node keeps track of the operation currently modifying
it. Chatterjee et al. [23] proposed a lock-free BST, but we are not aware of
any implementation. Natarajan and Mittal [15] proposed an efficient lock-free
binary search tree implementation that uses edge markers. It outperforms both
the lock-free BSTs from Howley and Jones [22] and Ellen et al. [13]. Since it is not
implemented in Java, we could not compare it against ours; however, we know
that neither this nor any of the above mentioned BSTs are concurrency-optimal
(cf. Fig. 1).

Search for Concurrency-Optimal Data Structures. Concurrent BSTs
have been studied extensively in literature; yet by choosing to focus on minimiz-
ing the amount of synchronization, we identified an extremely high-performing
concurrent BST implementation. We proved our implementation to be formally
correct and established the concurrency-optimality of our algorithm. Apart from
the intellectual merit of understanding what it means for an implementation
to be highly concurrent, our findings suggest a relation between concurrency-
optimality and efficiency. We hope this work will inspire the design of other
concurrency-optimal data structures that currently lack efficient implementa-
tions.

Acknowledgements. Vincent Gramoli was financially supported by the Australian
Research Council (Discovery Projects funding scheme, project number 160104801 enti-
tled “Data Structures for Multi-Core”). Vitaly Aksenov was financially supported by
the Government of Russian Federation (Grant 074-U01) and by the European Research
Council (Grant ERC-2012-StG-308246).

592 V. Aksenov et al.

References

1. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
123–149 (1991)

2. Gramoli, V., Kuznetsov, P., Ravi, S.: In the search for optimal concurrency. In:
Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 143–158. Springer, Cham
(2016). doi:10.1007/978-3-319-48314-6 10

3. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM
26, 631–653 (1979)

4. Chaudhri, V.K., Hadzilacos, V.: Safe locking policies for dynamic databases. J.
Comput. Syst. Sci. 57(3), 260–271 (1998)

5. Sutter, H.: Choose concurrency-friendly data structures. Dr. Dobb’s J. (2008)
6. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer, W.N., Shavit, N.: A lazy

concurrent list-based set algorithm. In: OPODIS, pp. 3–16 (2006)
7. Herlihy, M., Shavit, N.: On the nature of progress. In: OPODIS, pp. 313–328 (2011)
8. Guerraoui, R., Henzinger, T.A., Singh, V.: Permissiveness in transactional memo-

ries. In: DISC, pp. 305–319 (2008)
9. Kuznetsov, P., Ravi, S.: On the cost of concurrency in transactional memory.

In: International Conference on Principles of Distributed Systems (OPODIS),
pp. 112–127 (2011)

10. Crain, T., Gramoli, V., Raynal, M.: A contention-friendly binary search tree. In:
Wolf, F., Mohr, B., Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 229–240.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40047-6 25

11. Drachsler, D., Vechev, M., Yahav, E.: Practical concurrent binary search trees via
logical ordering. In: Proceedings of 19th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2014, pp. 343–356 (2014)

12. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: A practical concurrent binary
search tree. In: PPoPP (2010)

13. Ellen, F., Fatourou, P., Ruppert, E., van Breugel, F.: Non-blocking binary search
trees. In: PODC, pp. 131–140 (2010)

14. Aksenov, V., Gramoli, V., Kuznetsov, P., Malova, A., Ravi, S.: A concurrency-
optimal binary search tree. CoRR abs/1702.04441 (2017)

15. Natarajan, A., Mittal, N.: Fast concurrent lock-free binary search trees. In: PPoPP,
pp. 317–328 (2014)

16. Gramoli, V.: More than you ever wanted to know about synchronization: Syn-
chrobench, measuring the impact of the synchronization on concurrent algorithms.
In: PPoPP, pp. 1–10 (2015)

17. Gramoli, V., Kuznetsov, P., Ravi, S.: From sequential to concurrent: correctness
and relative efficiency (brief announcement). In: Principles of Distributed Com-
puting (PODC), pp. 241–242 (2012)

18. Gramoli, V., Kuznetsov, P., Ravi, S., Shang, D.: A concurrency-optimal list-based
set (brief announcement). In: Distributed Computing - 29th International Sympo-
sium, DISC 2015, Tokyo, Japan, 7–9 October 2015

19. Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford trans-
actional applications for multi-processing. In: IISWC (2008)

20. Crain, T., Gramoli, V., Raynal, M.: A speculation-friendly binary search tree. In:
PPoPP, pp. 161–170 (2012)

21. Siakavaras, D., Nikas, K., Goumas, G., Koziris, N.: Performance analysis of con-
current red-black trees on HTM platforms. In: 10th ACM SIGPLAN Workshop on
Transactional Computing (Transact) (2015)

http://dx.doi.org/10.1007/978-3-319-48314-6_10
http://dx.doi.org/10.1007/978-3-642-40047-6_25

A Concurrency-Optimal Binary Search Tree 593

22. Howley, S.V., Jones, J.: A non-blocking internal binary search tree. In: SPAA, pp.
161–171 (2012)

23. Chatterjee, B., Nguyen, N., Tsigas, P.: Efficient lock-free binary search trees. In:
PODC (2014)

Scalable Fine-Grained Metric-Based Remeshing
Algorithm for Manycore/NUMA Architectures

Hoby Rakotoarivelo1,2(B), Franck Ledoux1, Franck Pommereau2,
and Nicolas Le-Goff1

1 CEA, DAM, DIF, 91297 Arpajon, France
{franck.ledoux,nicolas.le-goff}@cea.fr

2 IBISC, Université d’Évry Val d’Essonne, Évry, France
{hoby.rakotoarivelo,franck.pommereau}@ibisc.fr

Abstract. In this paper, we present a fine-grained multi-stage metric-
based triangular remeshing algorithm on manycore and NUMA archi-
tectures. It is motivated by the dynamically evolving data dependencies
and workload of such irregular algorithms, often resulting in poor per-
formance and data locality at high number of cores. In this context, we
devise a multi-stage algorithm in which a task graph is built for each ker-
nel. Parallelism is then extracted through fine-grained independent set,
maximal cardinality matching and graph coloring heuristics. In addition
to index ranges precalculation, a dual-step atomic-based synchronization
scheme is used for nodal data updates. Despite its intractable latency-
boundness, a good overall scalability is achieved on a NUMA dual-socket
Intel Haswell and a dual-memory Intel KNL computing nodes (64 cores).
The relevance of our synchronization scheme is highlighted through a
comparison with the state-of-the-art.

Keywords: Irregular parallelism · Manycore · Anisotropic remeshing

1 Introduction

In computational fluid dynamics, large-scale direct numerical simulations require
a high discretization (mesh) resolution to achieve a good accuracy. Moreover, the
computational domain needs to be periodically re-discretized to avoid degener-
ated or mixed cells in case of lagrangian-based or multi-materials simulations [4].
In this context, triangular mesh adaptation aims at reducing the computational
effort of these simulations while preserving the required accuracy. However, its
parallelization remains challenging due to dynamically evolving data dependen-
cies and workload, resulting in a poor locality and efficiency at high number of
cores. On the other hand, manycore architectures have been emerged in hpc
landscape, with an increasing number of cores but a decreasing memory and
frequency per core, and an asymmetric memory latency in case of numa multi-
socket machines. To take advantage of these architectures, the challenge is to
expose a high concurrency and data locality for such an irregular algorithm.
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 594–606, 2017.
DOI: 10.1007/978-3-319-64203-1 43

Scalable Fine-Grained Metric-Based Remeshing Algorithm 595

related works. Most of existing parallel remeshing schemes are coarse-
grained, and not suitable to manycore machines. They rely on domain parti-
tioning and dynamic cell migration for load balancing. They focus on reducing
the unavoidable synchronization for domain interface consistency, and on find-
ing reliable heuristics for cell migration [7]. Fine-grained schemes have emerged
but most of them rely on a speculative execution model [2,5]. In 2015, Rokos
et al. devised a clean lock-free scheme in [11,12], based on an initial idea of
Freitag et al. [6]. Task conflicts are expressed by a graph, and non-conflictual
tasks are then explicitely extracted. To avoid data races, mesh data updates are
stacked locally and committed later. Their solution scaled well on a dual-socket
sandy-bridge machine, but worse on a quad-socket opteron one due to numa
effects. Indeed, data placement is not taken into account on tasklists reduction.
Furthermore, their deferred updates scheme involves a lot of data moves, increas-
ing numa effects while reducing the arithmetic intensity. In [10], we extended
their work by using kernel-specific graphs to increase parallelism, and a combi-
natorial map [3] data structure to avoid synchronization for mesh data updates.
We attempted a theoretical characterization of performance metrics, based on
machine parameters (e.g. bandwidth). Our solution scaled well on a dual-socket
haswell machine, but the contraction kernel suffers from memory indirections on
stencil data retrieval.

contributions. This paper is an extension of our preliminary work in [10]. It
differs from [10–12] in many points:

1. We use a dual-step atomic-based synchronization scheme for topological
updates, with a node-centered data structure. We show that it is a good trade-
off between data locality and synchronization cost (overhead, data moves).
This way, we improve the efficiency of the contraction kernel which was the
main drawback in [10]. We also show that taking into account the graph num-
ber of connected components would increase the parallelism for this kernel.

2. We use a fine-grained maximal graph matching heuristic for task extraction
in the swapping kernel. We are the first to apply such a scheme in parallel
meshing and we show that it is efficient in practice.

3. Evaluations are made on both a numa dual-socket and a dual-memory
machines. Our results show that the latency-boundness of such an algorithm
is intractable due to its high irregularity, but may be eased by the use of
hyperthreading. Such an evaluation was not yet done on intel xeon-phi KNL
in parallel meshing context.

2 Problem Overview

The purpose is to rebuild a discretization (mesh) of a domain Ω, such that the
interpolation error of a given solution field u is bounded and equi-distributed
on Ω. It is done by an iterative procedure, and involves a numerical solver and
a metric-based remesher. It ends when a given error treshold is achieved (Algo-
rithm1). In our context, a node refers to a mesh point and a cell refers to a mesh
triangle.

596 H. Rakotoarivelo et al.

remeshing. To control the interpolation error of u, cells size and density must
fit the variation of the physical solution field over the domain. Basically, it may
be achieved by three ways:

– variational: node sampling is obtained by minimizing an energy function, and
resulting nodes are then triangulated using a Delaunay kernel.

– hyperspace embedding: nodal coordinates, solution field and related gradient
are embedded in R6. The domain is then remeshed in this hyperspace, using
local or global kernels.

– metric-based: a tensor field is associated to each node vi, and encodes cell
size and stretching (anisotropy) prescription in the vicinity of vi. An uniform
mesh is then built in the riemannian metric space induced by the tensor field.

We opt for a metric-based scheme since it is local and preserve well anisotropy
compared to the two others. A standard sequence of operations is used for that
purpose. First, we compute a nodewise tensor field from nodal discrete second
derivatives. A gradation is then performed to smooth out sudden changes in size
requirements. Afterwards, we apply the geometric and topological operations on
mesh, using 4 local kernels:

– the refinement which aims at splitting long edges by recursive cell dissection.
– the contraction which aims at collapsing short edges by vertex merging.
– the swapping which improves cell pair qualities by edge flips.
– the smoothing which improves stencil qualities by relocating nodes using an

anisotropic laplacian operator.

Algorithm 1. Adaptive loop
input: mesh, error and quality tresholds.
output: optimal couple mesh-solution.

repeat
solve the solution field (up) on mesh.
derive a tensor field from (up).
apply gradation on tensor field.
while min. quality not optimal do

refinement
contraction
swapping
smoothing

end while
until error threshold is reached
return couple mesh-solution

Algorithm 2. Kernel parallel stages
repeat

1. filter active nodes/cells.
2. build a task graph G = (V, E)
3. extract non-conflictual tasks
4. apply operations
5. repair topology

until no marked cells

parallelization. Remeshing is a data-driven algorithm. Tasks (gradation,
refinement, contraction, swapping, smoothing) are related to a dynamically evolv-
ing subset of nodes or cells. In fact, processing a task may generate some others,
and need to be propagated. In our case, the required number of rounds is data-
dependent. Finally, tasks within a same round may be conflictual [9].

Scalable Fine-Grained Metric-Based Remeshing Algorithm 597

Here, data dependencies are related to mesh topology, and evolves accordingly:

– gradation, contraction and smoothing involve the vicinity of each active node;
– refinement involves a subset of the vicinity of each active cell;
– swapping involves the vicinity of each active cell pair.

In fact, two issues must be addressed: topological inconsistency and data races.
Indeed, conflictual tasks may invalid the mesh (crosses, holes or boundary loss)
whereas nodal or incidence data may be corrupted if updates are not synchro-
nized. The former is solved by an explicit parallelism extraction (Sect. 3), whereas
the later is solved by an explicit synchronization scheme (Sect. 4).

Kernels are parallelized independently using a fork-join model. Each of them
iteratively performs 5 stages (Algorithm 2). Here, any data updated in a given
stage cannot be used within the same stage.

3 Extracting Fine-Grained Parallelism

For each kernel, we extract a task graph G = (V,E). Their descriptions are
given in Fig. 1. However, no graph is required for refinement since cells may
be processed asynchronously. V is a set of active tasks, and E represents task
conflicts. Parallelism is then extracted through fine-grained graph heuristics
(Table 1).

Table 1. Task graphs per kernel and related heuristics

Kernel Graph extracted from Heuristic

Gradation Mesh primal graph Coloring

Refinement None –

Contraction Mesh primal graph Indep. set

Swapping Mesh dual graph Matching

Smoothing Mesh primal graph Coloring

contraction. For each topological update, mesh conformity must be preserved
such that holes and edge crosses are avoided. However, collapsing two neighbor-
ing nodes may result in a hole, so they cannot be processed concurrently. Thus,
the idea is to extract independent nodes such that they can be processed in a
safe way. For it, we derived a heuristic from a graph coloring scheme in [1]. Here,
the number of connected components σG of G increase through iterations. In
our case, we always pick the lowest available color according to neighbors val-
ues, then the ratio of independent tasks increases according to σG. We resolve
conflicts only for the first color to accelerate the procedure. Also, tie breaks are
based on vertex degree (Algorithm 3). A comparison with a monte-carlo based
heuristic [8] shows that taking the variation of σ is relevant in our context.
Indeed, the ratio of independent nodes on |V| is greater in this case (Fig. 2).

598 H. Rakotoarivelo et al.

(a) mesh = primal graph (b) mesh dual graph (c) cell matching

Fig. 1. Graph descriptions and cell pair matching in swapping kernel

swapping. Flipping more than one edge per cell may result in an edge cross.
For each cell Ki, the unique edge e to be flipped, and thus the neighboring cell
Kj sharing e, must be identified. Therefore, we aim at extracting a subset of cell
pairs to be flipped. For it, the idea is to extract a maximal cardinality matching
from the dual graph (Fig. 1). To do that, we adapt the karp-sipser’s heuristic. It
is based on vertex-disjoint augmenting path retrievals using depth first searches
in G (Algorithm 4). Here, it is irrelevant to maintain different tasklist according
to cell degrees, since we know that they are whether 2 or 3. The ratio of matched
cells shows that this greedy scheme is convenient for our purposes (Fig. 2).

Algorithm 3. Nodes extraction
U ← V
repeat

∀v ∈ U, select smallest available
color according to Nv

(do not care about data races)
for vertex v ∈ U in parallel

if col[v] = 1, ∃w ∈ Nv, col[w] = 1
if deg[v] ≥ deg[w] then

add v to R

U ← R, R ← ∅
until U = ∅
return I ← {v | col[v] = 1}

Algorithm 4. Cell matching

M ← ∅, visited[] ← {0}
for marked cell K in parallel

S ← {K} � local stack
repeat

u ← S[0]
if compare swap(visited[u])=0 then

for cell v ∈ NK do
if compare swap(visited[v])=0

add (u, v) to M
for w ∈ Nv do

if fetch sub(deg[w],1)=2
push w in S

until S ← ∅
return M

gradation and smoothing. In these kernels, the computed value of a given
node vi is interpolated from its neighbors N [vi]. However, processing vi and any
vj ∈ N [vi] may result in data races. Thus, we aim at extracting a nodal partition
such that no two neighboring nodes will be scheduled concurrently. For that, we
use a fine-grained graph coloring in [1]. In our case, kernels convergence rate
decreases linearly on the number of colors. Thanks to the planarity of the graph,
the practical number of colors remains low (between 5 and 7).

Scalable Fine-Grained Metric-Based Remeshing Algorithm 599

 50

 60

 70

 80

 90

 100

 110

 0 2 4 6 8 10 12 14 16

In
de

p
(%

)

contraction iterations

Intel Haswell

shock metivier
shock first-fit

(a) Ratio comparison of our heuristic
(First-fit) and a Monte-Carlo based scheme
(Metivier) on independent nodes extraction.

 80

 85

 90

 95

 100

 105

 110

 0 5 10 15 20 25 30 35

ce
ll

m
at

ch
es

 (
%

)

swapping iterations

Intel Haswell

shock round 1
shock round 2
shock round 3

(b) Ratio of matched cells throughout swap-
ping rounds while |V| is decreasing linearly

Fig. 2. Heuristics performance on tasks extraction for contraction and swapping
kernels (Color figure online)

4 Synchronizing for Topological Updates

In our case, mesh topology is explicitely stored by maintaining incidence lists.
Here, extracting non-conflictual tasks does not avoid data races on topological
data updates. To resolve it, we define an explicit thread synchronization scheme.

cell insertions. For the sake of spatial data locality, we store mesh data in
shared flat arrays. Since we don’t use the same pattern for refinement, then
the number of nodes and cells to be inserted cannot be predicted. They can be
stacked locally before being globally copied like in [11,12], but it would result in
a high amount of data moves. Instead we infer the number of new cells in order
to find the right index range per thread. First, we store the pattern to be applied
for each cell in an array pattern during the filtering step. Then, each thread ti
performs a reduction on pattern within its iteration space (n/p) · [i, i + 1], with
n the number of tasks and p the number of threads. The result is then stored in
an array offset[i]. Finally a prefix-sum is done on offset to retrieve the right
index ranges per thread for cell insertions.

incidence data updates. We use a node-centered data structure: each node
stores the index of cells connected to it. Here, updates may be stacked locally
using the deferred mechanism in [11,12] (Table 2). Due the huge amount of data
moves, it would increase significantly the overhead of this step (Fig. 8). We use
a dual-step synchronization scheme instead. First, cells indices are added asyn-
chronously in nodal incidence lists (Algorithm 5). For that, threads increment
atomically a nodal offset array deg. Each node is then atomically marked as to be
fixed, since its incidence list may contain obsolete references. Finally, incidence
lists of each marked node are fixed in a separate step (Algorithm 6).

600 H. Rakotoarivelo et al.

Table 2. Deferred updates mechanism in [11,12]. Thread ti stores data of node vk in
def op[i][j] list, with j=hash(k)%p. Finally, each thread ti copy all data in def op[k][i]k=1,p

in mesh

Algorithm 5. step 1: asynch. adds
input: data, n

atomic compare swap(fix[i], 1)
k ← atomic fetch add(deg[i], n)
if n + k exceeds incid[i] capacity then

#pragma omp critical
/* double check pattern */
if not yet reallocated then

realloc incid[i] to twice its capacity
end if
copy data to incid[i][k]

Algorithm 6. step 2: repair sweep

R ← ∅ � local to thread
for node vi in mesh in parallel

if fix[i] then
for cell K in incid[i] do

if vi ∈ K then
add K in R

incid[i] ← ∅, deg[i] ← |R|
sort R and swap with incid[i].

end if

5 Evaluation

Our algorithm is implemented in C++ using OpenMP4 and C++11 capabilities.

benchmark parameters. Our code is compiled with the intel compiler suite
(version 15) with -O3 flag enabled. Thread-core affinity is done by setting the
environment variable KMP AFFINITY to scatter on normal mode and compact on
hyperthreading. Benchmarks are run on a numa dual-socket Intel xeon Haswell
E5-2698 v3 machine (2× 16 cores at 2.3ghz, 3 cache levels), and an Intel xeon-
phi KNL machine (72 cores at 1.5ghz, 2 cache levels, 4 ht/core). KNL has two
memory: an on-chip MCDRAM at 320GB/s and a DDR4 at 60GB/s. We use the
quadrant clustering mode to ease cache misses worst case penalties (Fig. 3).

We use 3 solution fields with different anisotropy levels for our tests (Fig. 4).
For each testcase, an input grid of 1 005 362 cells and 504 100 nodes is used. It is
initially renumbered by a hilbert space-filling curve scheme, but no reordering is
done during the execution. For each run, a single adaptation is performed with 3
rounds. Mesh density factor is set to 0.9, and no metric gradation is performed.

Scalable Fine-Grained Metric-Based Remeshing Algorithm 601

(a) Cache/memory hierarchy in Haswell.
L2/L3 cache latencies ≈ 4.7 ns and 6.4 ns.
Local and remote memory ≈ 18 ns, 40 ns.

(b) KNL quadrant clustering mode. Each
tile consists of a dual-core and a shared L2
cache. Physical addresses are mapped to
tag directories such that memory requests
do not need to go across quadrants.

Fig. 3. Cache and memory organization in Intel Haswell and KNL computing nodes.

(a) shock (b) gauss (c) waves

Fig. 4. Solution fields used in our benchmarks

strong scaling. The mean makespan and scaling efficiency Ep = t1/(p · tp)
are given in Fig. 5, with tn the makespan on n threads. Hyperthreading is sys-
tematically used on KNL (4 per core) to hide memory access latency (30 and 28
ns for MCDRAM and DDR4 respectively). We use both MCDRAM and DDR4 by
binding memory through numactl. All testcases behaves similarly and a good
scaling is achieved on both architectures. Surprisingly, there was no significant
improvement in the use of the high bandwidth MCDRAM. Indeed, the algorithm
is not bandwidth-sensitive. The efficiency falls to 30% on KNL on 256 threads due
to high contentions, but scales better than on Haswell on lower number of cores.
Makespan is still improved when using hyperthreading on Haswell, and numa
effects are significantly eased, thanks to a locality-aware data updates scheme.

602 H. Rakotoarivelo et al.

 2

 4

 8

 16

 32

 64

 128

 256

 1 2 4 8 16 32 64

HT

HT

M
ak

es
pa

n
(s

)

cores

Intel Haswell [1 T/core] vs Intel KNL [4 HT/core]

hsw shock
hsw gauss
hsw waves
KNL shock DDR
KNL shock MCD
KNL gauss MCD
KNL waves MCD
linear

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64

HT

E
ffi

ci
en

cy
 (

%
)

cores

Intel Haswell [2 sockets] vs Intel KNL [4 HT/core]

hsw shock
hsw gauss
hsw waves
KNL shock DDR
KNL shock MCD
KNL gauss MCD
KNL waves MCD

Fig. 5. Mean makespan and scaling efficiency on 3 rounds.

overheads per kernel. For each kernel, the time spent distribution per step is
given in Fig. 6. Overheads related to parallelism extraction and synchronization
are depicted in red. These steps do not exceed 15% of the makespan for all
kernels. Furthermore, they are negligible in case of contraction and smoothing.
Also, these ratios remain constant despite the number of threads, and scale at the
same rate as other steps. For the refinement, operations are structured such that
no parallelism extraction is required. Moreover, the filtering step does not require
a full consistent mesh topology for adjacency requests, in the sense that stored
incidence lists may contain obsolete references, but each new cell K : (v0, v1, v2)
must be referenced in incidence lists of (vi) ∈ K. For this kernel, the repair sweep
involved in the synchronization scheme is performed once at the very end of the
procedure. For the contraction, the vicinity N [vi] of each node vi is required by
the filtering step in order to find the right vj ∈ N [vi] where vi should collapse
to (even in sequential). Hence, the primal graph is recovered at the beginning of
each round. This step mainly consist of data accesses but represents roughly 22%
of the overall makespan. It involved a high amount of cache misses in [10] due
to memory indirections when requesting the combinatorial map data structure.
In our case, stencil retrieval involves only one level of indirection (instead of
two), leading to a better scalability (Algorithms 7 and 8). For swapping, the
main overhead is related to graph matching stage with a mean ratio of 15%. Its
convergence is linear to the search depth δG on augmenting paths retrievals. This
step is highly irregular and is asymptotically in O(log n) with n the number of
vertices of the dual graph. In practice, δG ≈ 4 with static scheduling, and nearly
12 rounds is required for step convergence. For smoothing, the primal graph is
recovered at the beginning of the procedure, but no synchronization sweep is
required since mesh topology remains unchanged. For this kernel, the unique
overhead is related to the graph coloring step. In practice, a low number of
rounds is required for convergence (roughly 3).

Scalable Fine-Grained Metric-Based Remeshing Algorithm 603

 0

 20

 40

 60

 80

 100

2 4 8 16 32

R
at

io
 (

%
)

cores

Refinement

filter
steiner

split
repair

 0

 20

 40

 60

 80

 100

2 4 8 16 32

R
at

io
 (

%
)

cores

Contraction

primal
filter

indep
merge
repair

 0

 20

 40

 60

 80

 100

2 4 8 16 32

R
at

io
 (

%
)

cores

Swapping

filter
dual

match
flip

repair

 0

 20

 40

 60

 80

 100

2 4 8 16 32

R
at

io
 (

%
)

cores

Smoothing

primal
color
qualit

laplacian

Fig. 6. Time ratio distribution per step for each kernel on Haswell.

Algorithm 7. stencil retrieval of vi
for each K : (p0, p1, p2) ∈ incid[vi] do

if pi = vi then
(j, k) : (i+1 mod 3, i+2 mod 3)
add pj , pk in N [vi]

sort N [vi] and remove duplicates

Algorithm 8. stencil retrieval in [10]

init ← vi.edge; cur ← init
repeat

add cur.v2 to N [vi]
inv ← opp[cur], cur ← next[inv]

until cur = init

performance per kernel. Task and floating-point operations (flop) rates
per kernel on Haswell are given in Fig. 7. Refinement and swapping have higher
task rates since they are both much local and less compute-intensive than the
two others. Refinement involves the vicinity N [K] of each cell K, because when an
edge is split then the two surrounding cells are dissected. However, the dissection
step is purely local because the index of the node to be inserted is already
resolved in the steiner point computation step. Therefore, cells may be dissected
individually. Swapping steps involve the shell of each edge1 to be flipped which
size is constant, whereas contraction and smoothing steps involve the stencil
N [vi] of each node vi, whose size is variable and related to anisotropy.

All kernels scale well in terms of flop rate. Most of floating-point opera-
tions occur during the filtering step, except for smoothing. This step involves
geodesic distance calculation for refinement and contraction, and cell quality
computation sweep for swapping and smoothing. In our case, the arithmetic

1 The two cells (K1,K2) sharing this edge, and the stencil N [vk] of each vk ∈ Ki.

604 H. Rakotoarivelo et al.

intensity (the ratio of flop on the amount of data accesses) remain roughly
constant with respect to the number of threads. Thus data-movement involved
by the synchronization scheme has not a significant impact on flop rate, even
on higher number of threads. Smoothing scales even better since it has higher
arithmetic intensity. In the anisotropic laplacian computation step, coordinates
and metric tensor of a given node vi are interpolated from those of its vicin-
ity N [vi], and reajusted iteratively such that vi remain inside the geometrical
convex hull of N [vi]. Thus, it involves a better reuse of cached data.

104

105

106

107

108

32
2 sockets

64
hyper

 1 2 4 8 16

ta
sk

s
/ s

ec

threads

Intel Haswell

shock-refine
shock-collapse
shock-swap
shock-smooth

 0.5

 1

 2

 4

 8

 16

 32

 64

32
2 sockets

64
hyper

 1 2 4 8 16

G
F

lo
p

/ s
ec

threads

Intel Haswell

shock-refine
shock-collap
shock-swap
shock-smooth

Fig. 7. Task rate and floating-point operations per second of each kernel on Haswell

synchronization cost. We faithfully implemented the deferred mechanism
used in [11,12] (Table 2) in order to compare it with our dual-step atomic-based
synchronization scheme for nodal data updates. To reduce numa effects, first-
touch policy is applied and no memory reallocation is performed on both cases.
Makespan and related overheads are given in Fig. 8 on Haswell and KNL. Both
schemes scale well, but makespan has doubled in case of the deferred update
scheme. In this case, data movement overhead has a significant impact on total
execution time of the algorithm. Indeed, deferred mechanism overheads are 5
times the overhead of our synchronization scheme for contraction and swapping
kernels.

Scalable Fine-Grained Metric-Based Remeshing Algorithm 605

 2

 4

 8

 16

 32

 64

 128

 256

 1 2 4 8 16 32 64

M
ak

es
pa

n
(s

)

cores

Shock

hsw atomic
hsw deferred
KNL atomic
KNL deferred

 0

 2

 4

 6

 8

 10

 12

refine collapse swap

S
yn

ch
ro

ni
za

tio
n

tim
e

(s
)

kernels

Shock

hsw atomic
hsw deferred
KNL atomic
KNL deferred

Fig. 8. Cost comparison of atomic-based and deferred synchronization schemes

6 Conclusion

A fine-grained multi-stage algorithm for anisotropic triangular mesh adapta-
tion on manycore and numa architectures is proposed. It is based on explicit
parallelism extraction using fine-grained graph heuristics, and a dual-step syn-
chronization scheme for topological data updates. It follows a fork-join model
and is implemented in C++ using OpenMP4 and auto-vectorization capabilities.
Its scalability is evaluated on both a numa dual-socket Intel Haswell and dual-
memory Intel KNL computing nodes. A good overall scalability is achieved since
a mean efficiency of 48% and 65% is reached on Haswell and KNL on 32 cores.
Due to higher contentions, a lower efficiency (roughly 30%) is achieved on KNL

on 64 cores with 256 threads. Task rate and floating-point operations per sec-
ond scale in a nearly linear way for all kernels. Overheads related to parallelism
extraction as well as synchronization do not exceed 15% of overall makespan.
They remain negligible for contraction and smoothing (5–7%), and scale linearly
on other stages makespan. Further efforts have to be done to reduce the latency-
sensitiveness of the algorithm, and to take advantage of the high bandwidth
on-chip MCDRAM in KNL. Also, a comparison with a task-based version with
work-stealing capabilities would be interesting. It would highlight performance
sensitiveness if whether data locality is privileged at expense of load imbalance
and vice-versa. An extension to a distributed-memory scheme is expected, with
a constraint that the bulk-synchronous property of the algorithm should be pre-
served. In this case, a multi-bulk synchronous parallel bridging model [13] may be
used to theoretically characterize its performance, given bandwidth and latency
at each level of the memory hierarchy.

606 H. Rakotoarivelo et al.

References

1. Çatalyurek, U., et al.: Graph colouring algorithms for multicore and massively
multithreaded architectures. JPC, 576–594 (2012)

2. Chrisochoides, N.P., et al.: A multigrain Delaunay mesh generation method for
multicore SMT-based architectures. JPDC, 589–600 (2009)

3. Damiand, G., Lienhardt, P.: Combinatorial Maps: Efficient Data Structures for
Computer Graphics and Image Processing. A.K.Peters, Natick (2014)

4. Del Pino, S.: Metric-based mesh adaptation for 2D Lagrangian compressible flows.
JCP, 1793–1821 (2011)

5. Foteinos, P.A., et al.: High quality real-time image-to-mesh conversion for finite
element simulations. In: ICS 27, pp. 233–242 (2013)

6. Freitag, L.A., Jones, M.T., Plassmann, P.E.: The scalability of mesh improvement
algorithms. In: Heath, M.T., Ranade, A., Schreiber, R.S. (eds.) Algorithms for
Parallel Processing. The IMA Volumes in Mathematics and its Applications, vol.
105, pp. 185–211. Springer, New York (1998). doi:10.1007/978-1-4612-1516-5 9

7. Loseille, A., et al.: Parallel generation of large-size adapted meshes. In: IMR 24,
pp. 57–69 (2015)

8. Métivier, Y., et al.: An optimal bit complexity randomized distributed MIS algo-
rithm. JDC 23, 331–340 (2011)

9. Pingali, K., et al.: Amorphous data-parallelism in irregular algorithms. Technical
report 09–05, University of Texas (2009)

10. Rakotoarivelo, H., et al.: Fine-grained locality-aware parallel scheme for anisotropic
mesh adaptation. In: IMR 25, pp. 123–135 (2016)

11. Rokos, G.: Scalable multithreaded algorithms for mutable irregular data with appli-
cation to anisotropic mesh adaptivity. Ph.D. thesis, Imperial College London (2014)

12. Rokos, G., et al.: Thread parallelism for highly irregular computation in anisotropic
mesh adaptation. In: EASC, pp. 103–108 (2015)

13. Valiant, L.: A bridging-model for multicore computing. JCSS, 154–166 (2011)

http://dx.doi.org/10.1007/978-1-4612-1516-5_9

Performance Evaluation of Thread-Level
Speculation in Off-the-Shelf Hardware

Transactional Memories

Juan Salamanca1(B), José Nelson Amaral2, and Guido Araujo1

1 Institute of Computing, UNICAMP, Campinas, SP, Brazil
{juan,guido}@ic.unicamp.br

2 Computing Science Department, University of Alberta, Edmonton, AB, Canada
amaral@cs.ualberta.ca

Abstract. Thread-Level Speculation (TLS) is a hardware/software
technique that enables the execution of multiple loop iterations in paral-
lel, even in the presence of some loop-carried dependences. TLS requires
hardware mechanisms to support conflict detection, speculative storage,
in-order commit of transactions, and transaction roll-back. There is no
off-the-shelf processor that provides direct support for TLS. Speculative
execution is supported, however, in the form of Hardware Transactional
Memory (HTM)—available in recent processors such as the Intel Core
and the IBM POWER8. Earlier work has demonstrated that, in the
absence of specific TLS support in commodity processors, HTM support
can be used to implement TLS. This paper presents a careful evaluation
of the implementation of TLS on the HTM extensions available in such
machines. This evaluation provides evidence to support several impor-
tant claims about the performance of TLS over HTM in the Intel Core
and the IBM POWER8 architectures. Experimental results reveal that
by implementing TLS on top of HTM, speed-ups of up to 3.8× can be
obtained for some loops.

Keywords: Thread-Level Speculation · Transactional memory

1 Introduction

Loops account for most of the execution time in programs and thus extensive
research has been dedicated to parallelize loop iterations [2]. Unfortunately, in
many cases these efforts are hindered when the compiler cannot prove that a
loop is free of loop-carried dependences. However, sometimes when static analy-
sis concludes that a loop has a may dependence—for example when the analysis
cannot resolve a potential alias relation—the dependence may actually not exist
or it may occur in very few executions of the program [12]. Thread-Level Spec-
ulation (TLS) is a promising technique that can be used to enable the parallel
execution of loop iterations in the presence of may loop-carried dependences.
TLS assumes that the iterations of a loop can be executed in parallel—even in
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 607–621, 2017.
DOI: 10.1007/978-3-319-64203-1 44

608 J. Salamanca et al.

the presence of potential dependences—and then relies on a mechanism to detect
dependence violations and correct them. The main distinction between TLS and
HTM is that in TLS speculative transactions must commit in order.

Recently hardware support for speculation has been implemented in com-
modity off-the-shelf microprocessors [3,4]. However, the speculation support in
these architectures was designed with Hardware Transactional Memory (HTM)
in mind and not TLS. The only implementation of hardware support for TLS to
date is in the IBM Blue Gene/Q (BG/Q), a machine that is not readily available
for experimentation or usage. HTM extensions, available in the Intel Core and in
the IBM POWER8 architectures, allow for the speculative execution of atomic
program regions [3–5]. Such HTM extensions enable the implementation of three
key features required by TLS: (a) conflict detection; (b) speculative storage; and
(c) transaction roll-back.

Until now, the majority of the attempts to estimate the performance ben-
efits of TLS were based on simulation studies [10,11]. Unfortunately, studies
of TLS execution based on simulation have serious limitations. The availability
of speculation support in commodity processors allowed for the first study of
TLS on actual hardware and led to some interesting research questions: (1) can
the existing speculation support in commodity processors, originally designed
for HTM, be used to support TLS? and (2) if it can, what performance effects
would be observed from such implementations? Earlier work has provided a cau-
tiously positive answer to the first question, i.e. supporting TLS on top of HTM
hardware is possible, but it requires several careful software adaptations [9].
To address the second question, this paper presents a careful evaluation of the
implementation of TLS on top of the HTM extensions available in the Intel Core
and in the IBM POWER8. This evaluation uses the same loops from an earlier
study by Murphy et al. [6] and led to some interesting discoveries about the
relevance of loop characterization to predict the potential performance of TLS.
The experimental results indicate that: (1) small loops are not amenable to be
parallelized with TLS on the existing HTM hardware because of the expensive
overhead of: (a) starting and finishing transactions, (b) aborting a transaction,
and (c) setting up loop for TLS execution; (2) loops with potential to be success-
fully parallelized in both Intel Core and IBM POWER8 architectures have better
performance on the POWER8 because TLS can take advantage of the ability
of this architecture to suspend and resume transactions to implement ordered
transactions; (3) the larger storage capacity for speculative state in Intel TSX
can be crucial for loops that execute many read and write operations; (4) the
ability to suspend/resume a transaction is important for loops that execute for
a longer time because their transactions may abort due to OS context switching;
and (5) the selected size of the strip can be critical for the increase of aborts due
to order inversion.

The remainder of this paper is organized as follows. Section 2 describes
the relevant aspects of the implementation of HTM in both Intel Core and
IBM POWER8 architectures. Section 3 details the related work. Benchmarks,

Performance Evaluation of Thread-Level Speculation in Off-the-Shelf HTM 609

methodology and settings are described in Sect. 4. Finally, Sect. 5 shows experi-
mental results and a detailed analysis.

2 How to Support TLS over HTM

This section reviews HTM extensions and discusses how they can be effectively
used to support the TLS execution of hard-to-parallelize loops containing (may)
loop-carried dependences.

2.1 Intel Core and IBM POWER8

Transactional memory systems must provide transaction atomicity and isolation,
which require the implementation of the following mechanisms: data versioning
management, conflict detection, and conflict resolution [9].

Both Intel and IBM architectures provide instructions to begin and end
a transaction, and to force a transaction to abort. To perform such opera-
tions Intel Core’s Transactional Synchronization Extensions (TSX) implements
the Restricted Transactional Memory (RTM), an instruction set that includes
xbegin, xend, and xabort. The corresponding instructions in the POWER8 are
tbegin, tend, and tabort.

All data conflicts are detected at the granularity of the cache line size because
both processors use cache mechanisms—based on physical addresses—and the
cache coherence protocol to track transactional states. Aborts may be caused by:
memory access conflicts, capacity issues due to excessively large transactional
read/write sets or overflow, conflicts due to false sharing, and OS and micro-
architecture events that cause aborts (e.g. system calls, interrupts or traps) [4,7].

The main differences between POWER8 and the Intel Core HTMs, summa-
rized in Table 1, are: (1) transaction capacity; (2) conflict granularity; and (3)

Table 1. HTM implementations of
Intel Core and IBM POWER [7].

Processor type Intel i7-4770 POWER8

Conflict-
detection
granularity
(cache line)

64B 128B

Tx load
capacity

4MB 8KB

Tx store
capacity

22KB 8KB

L1 data cache 32KB, 8-way 64KB

L2 data cache 256KB 512KB,
8-way

SMT level 2 8

Table 2. HTM Architectural Features.

Features TLS Intel P8

Eager conflict detection

Resolution conflict policy

Ordered transactions

Multi-versioned caches

Suspend/resume

Lazy conflict detection

Data forwarding

Word conflict detection

610 J. Salamanca et al.

1 for(count = 0; count < WEIGHT; count++){
2 /* Start sequential segment 1 */
3 if (cond) glob++; /* Global scalar*/
4 /* End sequential segment 1 */
5

6 /* Start sequential segment 2 */
7 for(i = 0; i < factor; i++){
8 /* Global array, A */
9 int tmp = A[factor*(count%4) + i];

10 tmp += count*5;
11 if(tmp%2 == 0){
12 A[factor*(count%4) + i] = tmp;
13 }
14 }
15 /* End sequential segment 2 */
16 }

Fig. 1. A loop with two may loop-
carried dependences. Adapted
from [6].

1 d= STRIP_SIZE;
2 inc=(NUM_THREADS-1)*STRIP_SIZE;
3 count=param->count;
4

5 for(; count < WEIGHT; count += inc){
6 prev_count=count;
7 Retry:
8 if (!BEGIN()){
9 for (; count-prev_count < d &&

count < WEIGHT; count++){
10 if(cond) glob++;
11 }
12 END();
13 }
14 else goto Retry;
15 }

Fig. 2. Code of each thread to paral-
lelize Fig. 1’s loop with TLS on ideal
HTM system.

ability to suspend/resume a transaction. The maximum amount of data that
can be accessed by a transaction in the Intel Core is much larger than in the
POWER8. This speculative storage capacity is limited by the resources needed
both to store read and write sets, and to buffer transactional stores.

In POWER8 the execution of a transaction can be paused through the use
of suspended regions—implemented with two new instructions: tsuspend and
tresume. As described in [9], this mechanism enables the implementation of an
ordered-transaction feature in TLS [5].

2.2 Thread-Level Speculation

Thread-Level Speculation (TLS) has been widely studied [10,11]. Proposed TLS
hardware systems must support four primary features: (a) data conflict detec-
tion; (b) speculative storage; (c) ordered transactions; and (d) rollback when
a conflict is detected. Some of these features are also supported by the HTM
systems found in the Intel Core and the POWER8, and thus these architectures
have the potential to be used to implement TLS. Table 2 shows the necessary
features required to enable TLS on top of an HTM-supporting mechanism, and
its availability in some modern architectures. Neither Intel TSX nor the IBM
POWER8 provide all the features necessary to carry out TLS effectively [9].

Lets examine how TLS can be applied to a simplified version of the loop
example of Fig. 1 (the inner loop is omitted) when it runs on top of an ideal HTM
system containing: (a) ordered transactions in hardware; (b) multi-versioning
cache; (c) eager-conflict detection; and (d) conflict-resolution policy. Figure 2
shows the loop after it was strip-mined and parallelized for TLS on four cores.
Assume that the END instruction implements: (a) ordered transactions, i.e., a
transaction executing an iteration of the loop has to wait until all transactions
executing previous iterations have committed, and (b) a conflict-resolution policy

Performance Evaluation of Thread-Level Speculation in Off-the-Shelf HTM 611

that gives preference to the transaction that is executing the earliest iteration
of the loop while rolling back later iterations. Multi-versioning allows for the
removal of Write-After-Write (WAW) and Write-After-Read (WAR) loop-carried
dependences on the glob variable. As shown in Fig. 3, in the first four iterations
cond evaluates false and the iterations finish without aborts. Then, at iteration
4, the eager-conflict detection mechanism detects the RAW loop-carried depen-
dence violation on variable glob between iterations 4 and 5, thus rolling back
iteration 5 because it should occur after iteration 4. Subsequent iterations wait
for the previous iterations to commit.

Fig. 3. Execution flow of Fig. 2’s code with STRIP SIZE= 1 and NUM THREADS= 4.

3 Previous Research on TLS

Murphy et al. [6] propose a technique to speculatively parallelize loops that
exhibit transient loop-carried dependences—a loop where only a small subset of
loop iterations have actual loop-carried dependences. The code produced by their
technique uses a TM hardware (TCC hardware) and software (Tiny STM) model
running on top of the HELIX time emulator. They developed three approaches
to predict the performance of implementing TLS on the HELIX time emu-
lator: coarse-grained, fine-grained, and judicious. The coarse-grained approach
speculates a whole iteration while the fine-grained approach speculates sequen-
tial segments and executes parallel segments without speculation. The judicious
approach uses profile data at compile time to choose which sequential segment
to speculate or synchronize so as to satisfy (may) loop-carried dependences.
They conclude that TLS is not only advantageous to overcome limitations of the
compiler static data-dependence analysis, but that performance might also be
improved by focusing on the transient nature of dependences.

Murphy et al. evaluated TLS on emulated HTM hardware using cBench pro-
grams [1] and, surprisingly, predicted up to 15 times performance improvements
with 16 cores [6]. They arose at these predictions even though they did not
use strip mining to decrease the overhead of starting and finishing transactions

612 J. Salamanca et al.

as previous work suggested [8,9]. Particularly, fine-grained speculation without
strip mining can result in large overheads due to multiple transactions (sequen-
tial segments) per iteration, even larger than coarse-grained speculation. They
parallelized loops in a round-robin fashion which can result in small transactions,
large number of transactions, high abort ratio, bad use of memory locality, and
false sharing. Their over-optimistic predictions are explained by the fact that
their emulation study does not take into account the overhead of setting TLS
up—which is specially high without strip mining. For instance, their emulation
study predicted speed-ups even for small loops. However, when executing such
loops in real hardware, the TLS overhead—setup, begin/end transactions, and
aborts—would nullify any gain from parallel execution.

Odaira and Nakaike, Murphy et al. and Salamanca et al. use coarse-grained
TLS to speculate a (strip-mined) whole iteration and perform conflict detec-
tion and resolution at the end of the iteration to detect RAW dependence vio-
lations [6,8,9]. The advantages of coarse-grained TLS are: (a) it is simple to
implement because it does not need an accurate data dependence analyzer. (b)
the number of transactions is smaller than or equal to the fine-grained or judi-
cious approaches; and (c) there is no synchronization in the middle of an itera-
tion. The downside is that even a single frequent actual loop-carried dependence
will cause transactions to abort and serialize the execution. To illustrate this,
assume an execution of the example of Fig. 1 where cond always evaluates true,
and thus the glob variable is increased at each iteration of the outer loop. With
coarse-grained TLS the execution of this outer loop would be serialized.

Salamanca et al. describe how speculation support designed for HTM can
also be used to implement TLS [9]. They focused their work on the impact
of false sharing and the importance of judicious strip mining and privatization
to achieve performance. They provide a detailed description of the additional
software support that is necessary in both the Intel Core and the IBM POWER8
architectures to support TLS. This paper uses that method to carefully evaluate
the performance of TLS on Intel Core and POWER8 using 22 loops from cBench
focusing on the characterization of the loops. This loop characterization could
be used in the future to decide if TLS should be used for a given loop.

4 Benchmarks, Methodology and Experimental Setup

The performance assessment reports speed-ups and abort/commit ratios (Trans-
action Outcome) for the coarse-grained TLS parallelization of loops from the
Collective Benchmark (cBench) benchmark suite [1] running on Intel Core and
IBM POWER8. For all experiments the default input is used for the cBench
benchmarks. The baseline for speed-up comparisons is the serial execution of
the same benchmark program compiled at the same optimization level. Loop
times are compared to calculate speed-ups. Each software thread is bound to
one hardware thread (core) and executes a determined number of pre-assigned
iterations. Each benchmark was run twenty times and the average time is used.
Runtime variations were negligible and are not presented.

Performance Evaluation of Thread-Level Speculation in Off-the-Shelf HTM 613

Table 3. Loops extracted from cBench applications.

Class Loop Previous ID Benchmark Location Function %Cov Invocations

I A 14 automotive bitcount bitcnts.c,65 main1 100% 560

B 18 automotive susan c susan.c,1458 susan corners 83% 344080

C 22 automotive susan e susan.c,1118 susan edges 18% 165308

D 24 automotive susan e susan.c,1057 susan edges 56% 166056

E 28 automotive susan s susan.c,725 susan smoothing 100% 22050

F 15 automotive bitcount bitcnts.c,59 main1 100% 80

II G 19 automotive susan c susan.c,1457 susan corners 83% 782

H 23 automotive susan e susan.c,1117 susan edges 18% 374

I 25 automotive susan e susan.c,1056 susan edges 56% 374

J 29 automotive susan s susan.c,723 susan smoothing 100% 49

III K 1 consumer jpeg c jfdcint.c,154 jpeg fdct islow 5% 1758848

L 2 consumer jpeg c jfdcint.c,219 jpeg fdct islow 5% 1758848

M 4 consumer jpeg c jcphuff.c,488 encode mcu AC first 10% 5826184

N 6 consumer jpeg d jidcint.c,171 jpeg idct islow 14% 7280000

O 7 consumer jpeg d jidcint.c,276 jpeg idct islow 15% 7280000

P 13 automotive bitcount bitcnts.c,96 bit shifter 35% 90000000

Q 16 automotive susan c susan.c,1615 susan corners 7% 344080

R 26 automotive susan s susan.c,735 susan smoothing 96% 198450000

S 34 security rijndael d aesxam.c,209 decfile 7% 31864729

T 3 consumer jpeg c jccolor.c,148 rgb ycc convert 10% 439712

U 5 consumer jpeg c jcphuff.c,662 encode mcu AC refine 17% 5826184

Others V 17 automotive susan c susan.c,1614 susan corners 7% 782

Loops from cBench were instrumented with the necessary code to implement
TLS, following the techniques described by Salamanca et al. [9]. They were
then executed using an Intel Core i7-4770 and the IBM POWER8 machines,
and their speed-ups measured with respect to sequential execution. Based on
the experimental results, the loops studied are placed in four classes that will be
explained later. Table 3 lists the twenty two loops from cBench used in the study.
The table shows (1) the loop class (explained later); (2) the ID of the loop in
this study; (3) the ID of the loop in the previous study [6]; (4) the benchmark of
the loop; (5) the file/line of the target loop in the source code; (6) the function
where the loop is located; (7) %Cov, the fraction of the total execution time
spent in this loop; and (8) the number of invocations of the loop in the whole
program.

This study uses an Intel Core i7-4770 processor with 4 cores with 2-way SMT,
running at 3.4 GHz, with 16 GB of memory on Ubuntu 14.04.3 LTS (GNU/Linux
3.8.0-29-generic x86 64). The cache-line prefetcher is enabled (by default). Each
core has a 32 KB L1 data cache and a 256 KB L2 unified cache. The four
cores share an 8 MB L3 cache. The benchmarks are compiled with GCC 4.9.2
at optimization level −O3 and with the set of flags specified in each benchmark
program.

The IBM processor used is a 4-core POWER8 with 8-way SMT running at
3 GHz, with 16 GB of memory on Ubuntu 14.04.5 (GNU/Linux 3.16.0-77-generic
ppc64le). Each core has a 64 KB L1 data cache, a 32 KB L1 instruction cache,
a 512 KB L2 unified cache, and a 8192 KB L3 unified cache. The benchmarks
are compiled with the XL 13.1.1 compiler at optimization level −O2.

614 J. Salamanca et al.

5 Classification of Loops Based on TLS Performance

The cbench loops were separated into four classes according to their performance
when executing TLS on top of HTM. The following features, shown in Table 4,
characterize the loops: (1) N , the average number of loop iterations; (2) Tbody,
the average time in nanoseconds of a single iteration of the loop on Intel Core;
(3) Tloop, Tbody×N ; (4) %lc, the percentage of iterations that have loop-carried
dependences for the default input; (5) the average (and maximum) size in bytes
read/written by an iteration. The right side of Table 4 describes TLS execution:
(1) the type of privatization within the transaction used in TLS implementation;1

(2) ss, the strip size used for the experimental evaluation in Intel Core; (3)
Transaction Duration in the Intel Core, which is the product ss×Tbody ; (4) the
average speed-ups with four threads for Intel Core after applying TLS; (5) the ss
for POWER8; (6) the speed-ups for POWER8; and (7) the predicted speed-up
from TLS emulation reported in [6] for coarse-grained (C), fine-grained (F), and
judicious (J) speculation using 16 cores.

For all the loops included in this study N > 4, thus they all have enough
iterations to be distributed to the four cores in each architecture. When the
duration of a loop, Tloop, is too short there is not enough work to parallelize
and the performance of TLS is low—in the worst case, LoopS, TLS can be
100 times slower than the sequential version. Even a small percentage of loop-
carried dependences, %lc, materializing at runtime may have a significant effect
on performance depending on the distribution of the loop-carried dependences
throughout loop iterations at runtime; thus TLS performance for those loops is
difficult to predict. The size of the read/write set in each transaction can also
lead to performance degradation because of capacity aborts. For the Intel Core
the duration of each transaction is important: rapidly executing many small
transactions leads to an increase of order-inversion aborts2. The number of such

Table 4. Characterization and TLS Execution of Classes.

Class
Loop Loop Characterization TLS Execution
ID N Intel’s Tbody Intel’s Tloop %lc Read Size Write Size Privatization Intel Core IBM POWER8 Speed-ups in [6]

(ns) (ns) avg max avg max ss Duration (ns) Speed-up ss Speed-up C F J

I

A 1125000 5.0 5680000 0% 12 B 24 B 0 B 20 B Reduction 502 2600.0 2.20 502 3.80 14.0 14.3 14.3
B 590 12.7 7500 0% 48 B 176 B 0 B 36 B No 59 749.0 1.20 59 1.59 10.2 12.0 12.0
C 592 8.1 4810 0% 14 B 192 B 0 B 32 B Array 72 584.0 1.20 68 1.21 7.5 8.0 8.0
D 594 14.1 8420 0% 76 B 176 B 0 B 28 B Array 88 1240.0 1.28 72 2.22 13.0 15.0 15.0
E 600 198.0 118000 0% 14 B 192 B 0 B 32 B Array 15 2970.0 1.60 15 3.18 14.0 15.0 15.0
F 7 5840000.0 40800000 0% 48 B 268 B 155 B 604 B Array 1 5840000.0 0.98 2 2.40 1.0 2.5 2.5

II

G 440 7710.0 3390000 0% 2 KB 3 KB 29 B 328 B No 1 7710.0 1.23 1 1.15 13.0 15.0 15.0
H 442 4790.0 2120000 0% 3 KB 8 KB 37 B 260 B Array 1 4790.0 2.09 2 0.84 12.0 13.8 13.8
I 444 8680.0 3850000 0% 4 KB 4 KB 206 B 1 KB Array 2 17300.0 1.76 1 1.05 13.0 15.0 15.0
J 450 117000.0 52900000 0% 3 KB 8 KB 37 B 260 B Array 1 117000.0 1.89 1 0.73 0.5 1.0 1.0

III

K 8 8.7 69 0% 16 B 32 B 16 B 32 B Array 1 8.7 0.07 1 0.03 5.5 6.0 6.0
L 8 8.5 68 0% 16 B 32 B 16 B 32 B Array 1 8.5 0.06 1 0.03 5.5 6.0 6.0
M 38 5.4 205 100% 12 B 68 B 4 B 36 B Scalar 1 5.4 0.07 1 0.02 0.5 1.0 0.5
N 8 8.1 65 0% 23 B 64 B 16 B 32 B Array 1 8.1 0.05 1 0.05 4.0 4.2 4.2
O 8 9.4 75 0% 24 B 68 B 5 B 16 B Array 1 9.4 0.07 1 0.05 5.8 6.0 6.0
P 23 1.1 26 0% 4 B 12 B 4 B 16 B Reduction 3 3.4 0.02 3 0.02 1.0 2.3 2.3
Q 590 1.0 567 0.14% 4 B 212 B 0 B 36 B Scalar 118 113.0 0.46 95 0.49 9.0 8.5 8.5
R 15 1.8 27 0% 12 B 68 B 4 B 56 B Reduction 10 18.2 0.05 10 0.04 4.0 4.0 4.0
S 16 1.3 21 0% 7 B 8 B 4 B 16 B Array 2 2.6 0.02 2 0.01 1.0 3.0 3.0
T 162 2.5 404 0% 40 B 44 B 12 B 24 B Array & Scalar 8 19.9 0.15 30 0.33 11.0 11.0 2.0
U 63 4.6 289 30% 7 B 8 B 4 B 20 B Scalar 9 41.4 0.20 10 0.16 10.0 11.0 11.0

Others V 440 511.0 225000 34% 1 KB 4 KB 20 B 196 B Scalar 1 511.0 1.25 1 1.34 2.5 2.5 1.0

1 A Reduction privatization is a scalar privatization of a reduction operation.
2 A order-inversion abort rolls back a transaction that completes execution out of

order using an explicit abort instruction (xabort).

Performance Evaluation of Thread-Level Speculation in Off-the-Shelf HTM 615

Fig. 4. Speed-ups and abort ratios for TLS execution on TSX and POWER8.

aborts is lowest for medium-sized transactions that have balanced iterations—
when the duration of different iterations of the loop varies the number of order-
inversion aborts also increases. Finally, long transactions in both architectures
may cause aborts due to traps caused by the end of the OS quantum.

616 J. Salamanca et al.

1 for (i=0; i < FUNCS; i++){//loopF
2 for (j=n=0, seed=1;

j<iterations; j++, seed+=
13)//loopA

3 n += pBitCntFunc[i](seed);
4 if (print)
5 printf("%-38s> Bits: %ld\n",

text[i], n);
6 }

Fig. 5. loopA and loopF

1 for (is=0; is<FUNCS; is+=STRIP_SIZE){//loopF
2 for (i=is; i-is < STRIP_SIZE && i<FUNCS; i++)
3 for (j = n_arr[i] = 0, seed=1; j<iterations;

j++,seed+=13)//loopA
4 n_arr[i] += pBitCntFunc[i](seed);
5 if (print)
6 for (i=is; i-is < STRIP_SIZE && i< FUNCS; i++)
7 printf("%-38s> Bits: %ld\n", text[i],

n_arr[i]);
8 }

Fig. 6. loopF after applying strip min-
ing and dividing into two components.

5.1 Class I: Low Speculative Demand and Better Performance
in POWER8

The speculative storage requirement of loops in this class is below 2 KB and thus
they are amenable for TLS, and see speed-ups, in both architectures. A suf-
ficiently small speculative-storage requirement is more relevant for POWER8
which has smaller speculative-storage capacity (see Table 1). These loops also
result in better scaling in POWER8, when compared to Intel Core, because
they can take advantage of the suspend and resume instructions of POWER8
to implement ordered transactions in software. They do not scale much beyond
two threads on Intel Core due to the lack of ordered transactions support.

Table 4 shows the characterization of Class I. These loops typically provide
a sufficient number of iterations to enable their distribution among the threads.
They also have a relatively moderate duration, as shown by the Tloop values,
and thus they have enough work to be parallelized. TLS makes most sense when
the compiler cannot prove that iterations are independent, but dependences do
not occur at runtime, therefore most loops that are amenable for TLS (loops in
Class I and II) have %lc of zero.

A typical example of a loop in Class I is loopA, shown in Fig. 5. This loop
achieves speed-ups of up to 3.8× with four threads. This loop calls the same
bit-counting function with different inputs for each iteration. Even though this
loop has may loop-carried dependences inside the functions called, none of these
dependences materialize at runtime. A successful technique to parallelize this
loop relies on the privatization of variable n and partial accumulation of results
to a global variable after each transaction commits. The successful parallelization
of loopA stems from a moderate duration (Tloop), no actual runtime depen-
dences, and a read/write set size that is supported by the HTM speculative-
storage capacity. The large number of iterations of this loop allows increasing
the strip size (ss), and thus the new Tbody (after strip mining)—ss × Tbody—
is longer; after that, order-inversion aborts decrease (loopB has more order-
inversion aborts than loopA, although its Tbody is longer).

For most of the loops in this class the performance is directly related to
the effective work to be parallelized, represented by Tloop. In the Intel Core
the proportion of order-inversion aborts is inversely related to the transaction

Performance Evaluation of Thread-Level Speculation in Off-the-Shelf HTM 617

1 for(j=mask_size;j<x_size-mask_size;j++){//loopE
2 area = 0;
3 total = 0;
4 centre = in[i*x_size+j];
5 ...// calulating area and total
6 tmp = area-10000;
7 if (tmp==0)
8 *out++=median(in,i,j,x_size);
9 else

10 *out++=((total-(centre*10000))/tmp);
11 }

Fig. 7. loopE

1 n=0;
2 for(i=5;i<y_size-5;i++)//loopV
3 for(j=5;j<x_size-5;j++){//loopQ
4 x = r[i][j];
5 if (x>0 &&(/*compare x*/)){
6 corner_list[n].info=0;
7 corner_list[n].x=j;
8 corner_list[n].y=i;
9 ...

10 n++;
11 }
12 }

Fig. 8. loopQ and loopV

duration because very short transactions may reach the commit point even before
previous iterations could commit. Another issue is that very long transactions
may abort due to traps caused by the end of OS quantum. loopF has the longest
ss×Tbody among all loops evaluated and thus many transactions abort due to
traps caused by the end of the OS quantum, which explains this loop showing a
high abort ratio by other causes in Fig. 4. Whole Coarse-grained TLS paralleliza-
tion of loopF is not possible because each iteration has a printf statement that
is not allowed within a transaction in either architecture. Therefore, each itera-
tion of loopF must be divided into two components: loopA and the printf (as
shown in Fig. 6), before applying TLS only to the first component. The second
component is always executed non-speculatively.

The performance of loopC from one to three threads is higher on Intel Core
than on POWER8 because the larger speculative store capacity in the Intel
Core allows for the use of a larger strip size. With four threads, there is a
small improvement in POWER8 due to the reduction of order-inversion aborts.
The increment in the number of threads intensifies the effect of order inversion
in performance. Therefore, for machines with a higher number of cores, better
speed-ups should be achieved in POWER8 than in Intel Core.

In loopC, loopD, and loopE consecutive iterations write to consecutive mem-
ory positions leading to false sharing when these iterations are executed in
parallel in a round-robin fashion. For instance, loopE, shown in Fig. 7, writes
to *out++ (consecutive memory positions) in consecutive iterations generating
false sharing in a round-robin parallelization. The solution is privatization: write
instead into local arrays during all the transaction and copy the values back to
the original arrays after commit [9] (Fig. 8).

5.2 Class II: High Speculative Demand and Better Performance in
Intel Core

These loops can scale better in the Intel Core compared to the POWER8 because
of the larger transaction capacity of the Intel Core: the read/write sizes of these
loops overflow the transaction capacity of the POWER8 (see Table 1) leading to
a high number of capacity aborts.

618 J. Salamanca et al.

Table 4 shows the characterization of loops in Class II. With more than 400
iterations and a loop execution time Tloop larger than 2 ms these loops have
enough work to be parallelized. Also, no dependences materialize at runtime for
the default inputs (%lc = 0).

The smaller write size in loopG means that 50% of its transactions do not
overflow the POWER8 speculative-storage capacity resulting in this loop show-
ing speed-ups of up to 15% with four threads on POWER8. In the Intel Core
this loop has a large number of order-inversion aborts because it has significant
imbalance between its iterations [6]. A contrast is loopH that has better perfor-
mance in the Intel Core even though its transactions are shorter. loopH results
in much fewer order-inversion aborts because the durations of its transactions
are balanced. loopJ has long transaction duration and suffer aborts due to OS
traps.

5.3 Class III: Not Enough Work to Be Parallelized with TLS

These are loops where TLS implementation does not have enough work to be
distributed among the available threads resulting in poor performance in any
architecture. The overhead of setting up TLS for these loops is too high in com-
parison to the benefits of parallelization. Murphy et al. [6] reported speed-ups in
these loops because their emulation of TLS hardware did not take into consid-
eration these costs. The experiments in this section reveal that their emulated
numbers overestimate the potential benefit of TLS for these loops. As shown in
Table 4 the available work to be parallelized, Tloop in all the loops in this class
is below 0.6µs, which is too small to benefit from parallelization. For instance,
loopO (and other loops as loopP) has no aborts in POWER8, but their perfor-
mance is poor because of the overhead of setting TLS up.

Most of the loops in this category have many order-inversion aborts in Intel
Core because their transaction duration is below 120 ns leading to a fast end of
the transactions/iterations probably even before previous iterations could com-
mit. loopT presents a high order-inversion abort rate in Intel Core because its
transactions last less than 20 ns. In POWER8, the strip size needed to increase
the loop body and the privatization of three arrays lead to aborts because the
speculative capacity of the HTM is exceeded.

5.4 Others

They are a special case because of they are loops that have sufficient work to be
parallelized but whose dependences materialize at runtime. For instance, loopV
has 34% of probability of loop-carried dependences, but TLS can still deliver
some performance improvement. As explained in [6], this loop finds local maxima
in a sliding window, with each maximum being added to a list of corners, each
iteration of loopQ processes a single pixel whereas a complete row is processed
by each iteration of loopV. The input of this loop is a sparse image with most
of the pixels set to zero, and the suspected corners (iterations with loop-carried
dependences) are processed close to each other.

Performance Evaluation of Thread-Level Speculation in Off-the-Shelf HTM 619

Table 5. Characterization of 6 loops from SPEC CPU 2006.

Loop ID Benchmark Location %Cov N Tbody (ns) Tloop (ns) %lc Iteration Size Class

mcf 429.mcf pbeampp.c,165 40% 300 20 6000 3% 300 B Others

milc 433.milc quark stuff.c,1523 20% 160000 94 15000000 0% 1 KB I

h264ref 464.h264ref mv-search.c,394 36% 1089 156 170000 0% 6 KB II

sphinx3 482.sphinx3 vector.c,513 37% 2048 29 60000 0% 1 KB I

astar 473.astar Way2 .cpp,100 60% 1234 41 50000 20% 1 KB Others

lbm 470.lbm lbm.c,186 99% 1300000 55 71000000 0% 500 B I

Fig. 9. Four SPEC2006 Loops. Speed-ups and abort ratios for coarse-grained TLS
execution on TSX and POWER8.

5.5 Predicting the TLS Performance for Other Loops

The characterization of the loops given in Table 4 and the performance evalu-
ation presented could also be used to predict the potential benefit of applying
TLS for new loops that were not included in this study. For loops with short
Tloop, such as those in class III, TLS is very unlikely to result in performance
improvements in either architecture. For loops with small read/write sets and no
dependences materializing at runtime, such as those in class I, TLS is likely to
result in modest improvement for the Intel Core and more significant improve-
ments for the POWER8. Loops that have sufficient work to be parallelized and
no actual dependences but have larger read/write sets, such as those in Class
II, are likely to deliver speed improvements in the Intel Core but will result
in little or no performance gains in the POWER8 because of the more limited
speculative capacity in this architecture. Finally, loops that have sufficient work
to be parallelized but whose dependences materialize at runtime are difficult to
predict—such as loopV. The distribution of loop-carried dependences among the
iterations of such loops must be studied.

Six loops from the SPEC CPU 2006 suite are characterized (Table 5) to
predict to which class they belong according to the classification described in
Sect. 5. Loops milc, sphinx3, and lbm are classified as Class I; h264ref as Class
II; and mcf and astar as Others. Based on this classification a prediction can
be made about the relative performance of the loops on TLS over HTM for both

620 J. Salamanca et al.

Table 6. TLS Execution for 6 loops from SPEC CPU 2006.

Loop ID ss Intel Tx Duration (ns) Speed-up Loop Class

Intel P8 Intel P8

mcf 20 48 400 1.45 0.60 Others

milc 4 4 375 1.44 1.50 I

h264ref 16 6 2490 1.74 1.27 II

sphinx3 8 16 234 1.16 1.95 I

astar 128 256 5180 0.74 0.49 Others

lbm 33 17 1800 0.69 1.30 I

architectures. Results of TLS parallelization of these loops are shown in Table 6
and Fig. 9 and confirm the predictions.

6 Conclusions

This paper presents a detailed performance study of an implementation of TLS
on top of existing commodity HTM in two architectures. Based on the perfor-
mance results it classifies the loops studied and doing so provides guidance to
developers as to what loop characteristics make them amenable to the use of
TLS on the Intel Core or on the IBM POWER8 architectures. Future design of
hardware support for TLS may also benefit from the observations derived from
this performance study.

Acknowledgments. The authors would like to thank FAPESP (grants 15/04285-5,
15/12077-3, and 13/08293-7) and the NSERC for supporting this work.

References

1. cTuning Foundation: cBench: Collective benchmarks (2016). http://ctuning.org/
cbench

2. Hurson, A.R., Lim, J.T., Kavi, K.M., Lee, B.: Parallelization of doall and doacross
loops-a survey. Adv. Comput. 45, 53–103 (1997)

3. IBM: Power ISA Transactional Memory (2012). www.power.org/wp-content/
uploads/2012/07/PowerISA V2.06B V2 PUBLIC.pdf

4. Intel Corporation: Intel architecture instruction set extensions programming refer-
ence. Intel transactional synchronization extensions, Chap. 8 (2012)

5. Le, H., Guthrie, G., Williams, D., Michael, M., Frey, B., Starke, W., May, C.,
Odaira, R., Nakaike, T.: Transactional memory support in the IBM POWER8
processor. IBM J. Res. Dev. 59(1), 8:1–8:14 (2015)

6. Murphy, N., Jones, T., Mullins, R., Campanoni, S.: Performance implications of
transient loop-carried data dependences in automatically parallelized loops. In:
International Conference on Compiler Construction (CC), pp. 23–33, Barcelona,
Spain (2016)

http://ctuning.org/cbench
http://ctuning.org/cbench
www.power.org/wp-content/uploads/2012/07/PowerISA_V2.06B_V2_PUBLIC.pdf
www.power.org/wp-content/uploads/2012/07/PowerISA_V2.06B_V2_PUBLIC.pdf

Performance Evaluation of Thread-Level Speculation in Off-the-Shelf HTM 621

7. Nakaike, T., Odaira, R., Gaudet, M., Michael, M.M., Tomari, H.: Quantitative
comparison of hardware transactional memory for Blue Gene/Q, zEnterprise EC12,
Intel Core, and POWER8. In: International Conference on Computer Architecture
(ISCA), pp. 144–157, Portland, OR (2015)

8. Odaira, R., Nakaike, T.: Thread-level speculation on off-the-shelf hardware trans-
actional memory. In: International Symposium on Workload Characterization
(IISWC), pp. 212–221, Atlanta, Georgia, USA, October 2014

9. Salamanca, J., Amaral, J.N., Araujo, G.: Evaluating and improving thread-level
speculation in hardware transactional memories. In: IEEE International Paral-
lel and Distributed Processing Symposium (IPDPS), pp. 586–595, Chicago, USA
(2016)

10. Steffan, J., Mowry, T.: The potential for using thread-level data speculation to
facilitate automatic parallelization. In: High Performance Computer Architecture
(HPCA), p. 2, Washington, DC, USA (1998)

11. Steffan, J.G., Colohan, C.B., Zhai, A., Mowry, T.C.: A scalable approach to thread-
level speculation. In: International Conference on Computer Architecture (ISCA),
pp. 1–12, Vancouver, BC, Canada (2000)

12. Tournavitis, G., Wang, Z., Franke, B., O’Boyle, M.F.: Towards a holistic app-
roach to auto-parallelization: integrating profile-driven parallelism detection and
machine-learning based mapping. In: Programming Language Design and Imple-
mentation (PLDI), pp. 177–187, PLDI 2009, ACM, Dublin, Ireland (2009)

Theory and Algorithms for Parallel
Computation and Networking

Addressing Volume and Latency Overheads in
1D-parallel Sparse Matrix-Vector Multiplication

Seher Acer, Oguz Selvitopi, and Cevdet Aykanat(B)

Bilkent University, 06800 Ankara, Turkey
{acer,reha,aykanat}@cs.bilkent.edu.tr

Abstract. The scalability of sparse matrix-vector multiplication
(SpMV) on distributed memory systems depends on multiple factors
that involve different communication cost metrics. The irregular sparsity
pattern of the coefficient matrix manifests itself as high bandwidth (total
and/or maximum volume) and/or high latency (total and/or maximum
message count) overhead. In this work, we propose a hypergraph par-
titioning model which combines two earlier models for one-dimensional
partitioning, one addressing total and maximum volume, and the other
one addressing total volume and total message count. Our model relies
on the recursive bipartitioning paradigm and simultaneously addresses
three cost metrics in a single partitioning phase in order to reduce volume
and latency overheads. We demonstrate the validity of our model on a
large dataset that contains more than 300 matrices. The results indicate
that compared to the earlier models, our model significantly improves
the scalability of SpMV.

Keywords: Communication cost · Sparse matrix-vector multiplication ·
Hypergraph partitioning · One-dimensional partitioning

1 Introduction

A key building block found in many applications is the ubiquitous sparse matrix-
vector multiplication (SpMV) operation. The scalability of this kernel operation
on distributed memory systems heavily depends on the communication over-
heads. The irregular sparsity pattern of the coefficient matrix may cause high
volume and/or latency overhead and necessitate addressing multiple communi-
cation cost metrics for efficient parallel performance.

There are several communication cost metrics that determine the volume
overhead such as total volume and maximum volume of data communicated by
a processor. Similarly, the latency overhead is determined by cost metrics such as
total message count and maximum message count. As the communication cost
of SpMV generally depends on more than one of these metrics, solely minimizing
a single one of them may not always lead to a scalable performance.

In this work, we propose a hypergraph partitioning model for one-
dimensional-parallel (1D-parallel) SpMV, which reduces three important com-
munication cost metrics simultaneously: total volume, maximum volume, and
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 625–637, 2017.
DOI: 10.1007/978-3-319-64203-1 45

626 S. Acer et al.

total message count. Our model utilizes two earlier models [1,9], where [1]
addresses multiple volume-based cost metrics, whereas [9] addresses total vol-
ume and message count. The proposed model achieves partitioning in a single
phase and exploits the recursive bipartitioning (RB) paradigm in order to target
the cost metrics other than total volume. In our model, the maximum volume is
addressed by representing the amount of communicated data with vertex weights
while the total message count is addressed by encapsulating the communicated
messages as message nets. We present our model for rowwise partitioning with
conformal partitions on input and output vectors, however, it can easily be
adapted to columnwise partitioning.

There are a few early works [2,5,12] as well as some recent works [1,3,7,9,10]
that focus on reducing multiple communication cost metrics. Among these, the
works in [2,3,12] are two-phase methods, where different cost metrics are handled
in distinct phases. The disadvantage of these two-phase methods is that each
phase is oblivious to the metrics handled in the other phase. Our model is able
to address all cost metrics in a single phase. In [5], the checkerboard hypergraph
model is proposed for reducing total volume and bounding message count. This
work differs from ours in the sense that it achieves a nonconformal partition
on vectors. UMPa [7] is a single-phase hypergraph partitioning tool that can
handle multiple metrics. Despite this, it imposes a prioritization on the metrics
in which the secondary metrics are considered only in the tie-breaking cases in
the refinement algorithm. This may lead to poor optimization of the secondary
metrics. There are very recent works [1,9] that are both single-phase and based
on the RB paradigm. Our work builds upon these two works.

The rest of the paper is organized as follows. Section 2 provides the back-
ground material. We present the proposed hypergraph partitioning model in
Sect. 3. Section 4 gives the experimental results and Sect. 5 concludes.

2 Background

2.1 Hypergraph Partitioning

A hypergraph H = (V,N) is a general type of graph that consists of vertices and
nets where edges/nets can connect more than two vertices. V and N respectively
denote the sets of vertices and nets. The set of vertices connected by net n ∈ N
is denoted with Pins(n). Each vertex v ∈ V is assigned a weight denoted with
w(v). Similarly, each net n ∈ N is assigned a cost denoted with c(n).

Π(H) = {V1, . . . ,VK} is a K-way vertex partition of H, if each vertex part
Vk is nonempty, parts are pairwise disjoint, and the union of the parts gives V.
In Π(H), λ(n) denotes the number of parts in which net n connects vertices,
i.e., the number of parts connected by n. A net n ∈ N is a cut net if it connects
at least two parts, i.e., λ(n) > 1. The cutsize of a partition Π(H) is defined as

cut(Π(H)) =
∑

n∈N
(λ(n) − 1)c(n).

Addressing Volume and Latency Overheads in 1D-parallel SpMV 627

The weight W (Vk) of part Vk is the sum of the weights of the vertices in Vk.
Π(H) is said to be balanced if W (Vk) ≤ Wavg(1 + ε) for all k = 1, . . . , K,
where Wavg and ε respectively denote the average part weight and a maximum
allowed imbalance ratio. Then, the hypergraph partitioning problem is defined
as obtaining a K-way partition of a given hypergraph with the objective of
minimizing cutsize and the constraint of maintaining balance on the part weights.

2.2 Reducing Total Volume via Hypergraph Partitioning

There are two hypergraph models [4] (column-net and row-net) for obtaining
one-dimensional (1D) partitioning of a given SpMV of the form y = Ax. The
column-net and row-net models are used for obtaining rowwise and columnwise
partitions, respectively. We only discuss the column-net model since they are
dual of each other.

In the column-net hypergraph H = (V,N), V contains a vertex vi for each
row i of A, whereas N contains a net nj for each column j. nj connects vi if
and only if aij �= 0. In a conformal partition, xi and yi are assigned to the same
processor for each i. To achieve a conformal partition, vi represents row i, xi, yi,
and the inner product associated with row i, i.e., yi = 〈ai∗ ·x〉, where ai∗ denotes
row i. nj represents the dependency of the inner products on xj . Note that an
inner product 〈ai∗ · x〉 depends on xj if and only if aij �= 0. The weight w(vi) of
vi ∈ V is the number of nonzeros in row i, which is the number multiply-and-add
operations in 〈ai∗ · x〉. Each nj ∈ N is assigned a unit cost. A K-way partition
Π(H) is decoded as assigning row i, xi, and yi to processor Pk, for each vi ∈ Vk.
This is often visualized as block-partitioned matrix

Aπ = QAQT =

⎡

⎢⎣
R1

...
RK

⎤

⎥⎦ =

⎡

⎢⎣
A11 · · · A1K

...
. . .

...
AK1 · · · AK1

⎤

⎥⎦ ,

where Q is the permutation matrix. Here, row stripe Rk and the correspond-
ing y- and x-vector elements are assigned to processor Pk. The processor that
owns a row performs the computations regarding its nonzeros due to the owner-
computes rule [8]. In Aπ, each nonzero segment of column j in off-diagonal block
A�k incurs a unit communication as Pk sends xj to P�. Then, the volume of com-
munication incurred by sending xj is equal to the number of nonzero segments
of column j in off-diagonal blocks of Aπ. The segment of column j in block A�k

is a nonzero segment if and only if net nj connects part V�. Assuming all the
diagonal entries are nonzero in A, the total volume then amounts to the cutsize
of Π(H). Hence, the objective of minimizing cutsize corresponds to minimiz-
ing total volume. Since each processor Pk performs multiply-and-add operations
proportional to the number of nonzeros in Rk, maintaining balance on the part
weights corresponds to maintaining balance on the computational loads of the
processors.

628 S. Acer et al.

3 Simultaneous Reduction of Maximum Volume, Total
Volume and Total Message Count

The proposed model relies on the recursive bipartitioning (RB) paradigm to
address the cost metrics other than total volume. In RB, a given hypergraph
H is recursively bipartitioned until the desired number of parts is reached. This
process induces a full binary tree in which nodes represent hypergraphs. The
rth level of the RB tree contains 2r hypergraphs: Hr

0, . . . ,Hr
2r−1. Note that the

level that a hypergraph belongs to is indicated in the superscript. Bipartitioning
Hr

k = (Vr
k ,N r

k) generates hypergraphs Hr+1
2k and Hr+1

2k+1. At the end of the RB
process, vertex sets of the hypergraphs in the lg2 Kth level induce the resulting
K-way partition of the given hypergraph H as Π(H) = {V lg K

0 , . . . ,V lg K
K−1}.

Our model is summarized in Algorithm 1. As inputs, it takes the column-net
hypergraph H = (V,N) of a given y = Ax, the number of processors K, the
maximum allowable imbalance ratio ε, and coefficients α and β. We first com-
pute the imbalance ratio ε′ used in each bipartitioning in order to result in an
imbalance ratio not exceeding ε in the final K-way partition (line 1). We start
the RB process with the given column-net hypergraph H as H0

0 = H (line 2).
The nets in H are referred to as volume nets as they capture the total commu-
nication volume of the corresponding parallel SpMV. The bipartitionings in the
RB process are carried out in breadth-first order, as seen in lines 3–4 of Algo-
rithm1. At each RB step, after obtaining bipartition Π(Hr

k) = {Vr+1
2k ,Vr+1

2k+1}
(line 8), hypergraphs Hr+1

2k and Hr+1
2k+1 belonging to the next level of the RB tree

are immediately formed with volume nets via cut-net splitting technique (lines
9–12). The function calls in lines 6–7 enable the simultaneous reduction of cost
metrics. These function calls introduce an additional cost of O(V lg2 K) to the
overall partitioning.

In our model, the matrix rows and x- and y-vector elements corresponding
to the vertices in Hr

k are assumed to be assigned to processor group Pr
k , for

each hypergraph Hr
k in the RB tree. We also assume that the RB process is

currently at the beginning of the for-loop iteration in which hypergraph Hr
k is

bipartitioned. In the current RB tree, the leaf hypergraphs are listed from left
to right as Hr+1

0 , . . . ,Hr+1
2k−1,Hr

k, . . . ,Hr
2r−1.

3.1 Reducing Maximum Volume

We formulate the objective of minimizing the maximum volume of processors as
additional constraints [1]. These constraints are satisfied by maintaining balance
on the communication loads of processor groups Pr+1

2k and Pr+1
2k for each bipar-

tition Π(Hr
k). To do so, in addition to the standard vertex weights that capture

the computational loads of processors, we utilize vertex weights that capture the
communication loads.

ADD-COMMUNICATION-WEIGHTS function assigns the communication
loads to the vertices in Hr

k (line 6 of Algorithm 1). The details of this function are
given in Algorithm 2. Here, we consider the maximum volume as the maximum

Addressing Volume and Latency Overheads in 1D-parallel SpMV 629

Algorithm 1. The Proposed Hypergraph Partitioning Model
Input : Column-net hypergraph H = (V, N), number of processors K,

imbalance ratio ε, coefficients α and β.
Output: K-way partition of H.

1 ε′ ← (1 + ε)
1

lg K − 1
2 H0

0 ← H � N contains only volume nets

3 for r ← 0 to lg K − 1 do
4 for k ← 0 to 2r − 1 do
5 if r > 0 then

� Addressing maximum volume

6 ADD-COMMUNICATION-WEIGHTS(H, Vr
k , α)

� Addressing total message count

7 ADD-MESSAGE-NETS(H, Hr
k, β)

8 Π(Hr
k) = {Vr+1

2k , Vr+1
2k+1} ← HypergraphPartitioning(Hr

k, 2, ε′)
� Form Hr+1

2k and Hr+1
2k+1 with volume nets by net splitting

9 N r+1
2k ← Split volume nets of Hr

k in Vr+1
2k

10 N r+1
2k+1 ← Split volume nets of Hr

k in Vr+1
2k+1

11 Hr+1
2k ← (Vr+1

2k , N r+1
2k)

12 Hr+1
2k+1 ← (Vr+1

2k+1, N r+1
2k+1)

13 return Π(H) = {V lg K
0 , . . . , V lg K

K−1}

send volume of the processors. Recall that processor group Pr
k owns xi for each

vi ∈ Vr
k . Hence, Pr

k sends xi to each processors group Pq
� that needs xi, where

q ∈ {r, r + 1}. Note that Pq
� needs xi if it is assigned a row j with aji �= 0. This

situation is captured by net ni connecting vertex vj where vj ∈ Vq
� (lines 3–4).

Here, we utilize the global view of net ni of the initial column-net hypergraph H
to determine the communications between Pr

k and the other processor groups.
The communication volume incurred by sending xi amounts to the number

of parts connected by ni different than Vr
k . This value is denoted with |Con(ni)|

in Algorithm 2 and computed in lines 2–5.
The communication weight |Con(ni)| associated with vertex vi is unified

to its computational weight (line 6). This unification scheme is proven to be
more successful than assigning the communication weights as separate second
weights [1]. The unification scheme scales the communication weight by a coef-
ficient α which denotes the ratio of the per-word transfer time to the per-word
multiply-and-add time in the parallel system. As a result, the unified weight
gives the time required to send xi and to compute inner product of row i with
x in terms of the time of an individual multiply-and-add operation.

With the unified communication and computation vertex weights, maintain-
ing balance on the part weights while bipartitioning Hr

k corresponds to main-
taining a unified balance on the computational and communication loads of
processor groups Pr+1

2k and Pr+1
2k+1. Balancing the communication volumes of

processors corresponds to minimizing the maximum volume of processors under
the condition that the total communication volume is minimized.

630 S. Acer et al.

Algorithm 2. ADD-COMMUNICATION-WEIGHTS
Input : Original hypergraph H = (V, N), vertex set Vr

k , coefficient α
1 foreach vi ∈ Vr

k do
2 Con(ni) ← ∅
3 foreach vj ∈ Pins(ni) in H do
4 if vj /∈ Vr

k then
� Let vj ∈ Vq

�

5 Con(ni) ← Con(ni) ∪ {Vq
� }

� |Con(ni)| is the communication load due to sending xi

6 w(vi) ← w(vi) + α|Con(ni)|

Algorithm 3. ADD-MESSAGE-NETS
Input : Original hypergraph H = (V, N), hypergraph Hr

k to be bipartitioned,
message net cost β

1 foreach vi ∈ Vr
k do

2 foreach vj ∈ Pins(ni) in H do
3 if vj /∈ Vr

k then
� Let vj ∈ Vq

�

4 if message net sq
� ∈ N r

k then
5 Pins(sq

�) ← Pins(sq
�) ∪ {vi}

6 else
7 c(sq

�) ← β
8 Pins(sq

�) ← {vi} and N r
k ← N r

k ∪ {sq
�}

9 foreach nj in H with vi ∈ Pins(nj) do
10 if vj /∈ Vr

k then
� Let vj ∈ Vq

�

11 if message net rq
� ∈ N r

k then
12 Pins(rq

�) ← Pins(rq
�) ∪ {vi}

13 else
14 c(rq

�) ← β
15 Pins(rq

�) ← {vi} and N r
k ← N r

k ∪ {rq
� }

3.2 Reducing Total Message Count

We use message nets in order to encapsulate the messages sent and received [9].
A message net connects the vertices that represent the rows or vector elements
that require a message together. To encapsulate the up-to-date messages among
processor groups in the RB process, the message nets are formed and added to
the hypergraphs just prior to their bipartitioning (line 7 in Algorithm1). Note
that on the contrary, since volume nets do not depend on the state of the other
parts, we form them as soon as their vertex set is formed (lines 9–10).

ADD-MESSAGE-NETS function adds message nets to hypergraph Hr
k,

which contains only volume nets before the respective function call. The details
of this function are given in Algorithm3. There are two types of message nets:
send nets and receive nets. For each processor group Pq

� that Pr
k sends a mes-

Addressing Volume and Latency Overheads in 1D-parallel SpMV 631

sage to, we add a send net sq
� to Hr

k. Net sq
� connects vertices that represent the

x-vector elements to be sent to Pq
� . Pr

k sends xi to Pq
� if a row j with aji �= 0 is

assigned to Pq
� . Then, the set of vertices connected by net sq

� is formulated as

Pins(sq
�) = {vi : ni of H connects Vq

� },

as computed in lines 2–8. As in Sect. 3.1, we make use of the global view of
ni of the initial column-net hypergraph H to determine the communications
Pr

k performs. Similarly, for each processor group Pq
� that Pr

k receives a message
from, we add a receive net rq

� to Hr
k. Net rq

� connects vertices that represent the
A-matrix rows whose multiplications need x-vector elements to be received from
Pq

� . Pr
k receives xj from Pq

� if row i and xj are respectively assigned to Pr
k and

Pq
� , where aij �= 0. Then, the set of vertices connected by net rq

� (computed in
lines 9–15) is formulated as

Pins(rq
�) = {vi : nj of H connects Vr

k due to vi and vj ∈ Vq
� }.

The message nets are assigned a cost of β whereas the volume nets are
assigned unit cost. Here, coefficient β denotes the ratio of per-message startup
time to per-word transfer time in the parallel system. With both volume and
message nets having the mentioned costs, minimizing the cutsize in each biparti-
tioning throughout the RB process corresponds to minimizing total volume and
total message count in 1D-parallel SpMV.

4 Experiments

4.1 Setting

We consider a total of four schemes for comparison. The total volume metric
is common to all schemes and it is addressed by default in all schemes. One
scheme addresses a single metric, two schemes address two metrics and the pro-
posed scheme addresses three metrics simultaneously. These schemes are listed
as follows:

– BL: Proposed in [4], this scheme solely addresses total volume (Sect. 2.2).
– MV: Proposed recently in [1], this scheme considers two metrics related to

volume: total volume and maximum send volume. α is set to 10.
– TM: Proposed in another recent work [9], this scheme considers one metric

related to volume and one metric related to latency: total volume and total
message count. β is set to 50.

– MVTM: This scheme is the one proposed in this work (Sect. 3) and considers all
three metrics: total volume, maximum volume and total message count.

The values of α and β are respectively picked in the light of the experiments
of [1] and [9]. For a more detailed discussion on these parameters, we refer the
reader to these two studies. Note that MV and TM are special cases of MVTM, with
α = 10 and β = 0 for MV, and α = 0 and β = 50 for TM.

632 S. Acer et al.

We test for five different number of processors: K ∈ {64, 128, 256, 512, 1024}.
The partitioning experiments are conducted on an extensive set of matrices from
the SuiteSparse Matrix Collection [6]. We selected the square matrices that have
more than 5,000 rows/columns and nonzeros between 50,000 and 50,000,000,
resulting in 964 matrices. Among these, in order to select the matrices that
have high volume and/or latency overhead, we used the following two criteria
considering the partitioning statistics of BL for any tested K: (i) the partitions
whose maximum volume is greater than or equal to 1.5 times the average volume
and (ii) the partitions whose average message count is greater than or equal to
1.3 lg2 K. The first criterion aims to include the matrices that are volume bound,
i.e., the matrices with more than 50% imbalance in volume when partitioned with
BL. The second criterion aims to include the matrices that are latency bound. We
empirically found out that the matrices having around lg2 K number of messages
per processor exhibit insignificant latency overhead. By multiplying this value
with a coefficient of 1.3 we were able to filter out such matrices. Note that our
aim in this work is not to show the proposed scheme is better than the other
tested three schemes for any matrix, but for the matrices that are bound by both
volume and latency, hence the motivation to the selection criteria. After filtering,
there exist respectively 317, 335, 363, 374 and 373 matrices for 64, 128, 256, 512
and 1024 processors. Partitionings regarding the four schemes are performed on
these sets of matrices. Parallel runtime experiments with the SpMV operation
are performed on a set of 15 matrices for 64, 128, 256, and 512 processors.

The schemes are realized using the hypergraph partitioner PaToH [4] (line 8
of Algorithm 1). The parallel SpMV is realized in C using the message passing
paradigm [11]. The parallel experiments are performed on a Lenovo NeXtScale
supercomputer1 that consists of 1512 nodes. A node on this system has two 18-
core Intel Xeon E5-2697 Broadwell processors clocked at 2.30 GHz each with 64
GB of RAM. The network topology of this system is a fat tree.

4.2 Partitioning and Parallel Runtime Results

Table 1 presents the average values obtained by the compared schemes in terms
of three different communication cost metrics for 64, 128, 256, 512 and 1024
processors. These metrics are total volume, maximum volume and total message
count, which are respectively denoted in the table as “tot vol.”, “max vol.” and
“tot msg.”. Total and maximum volume are in terms of number of words. The
table consists of two column groups. In the first group, the actual values obtained
by the schemes are given. In the second group, the values obtained by MV, TM
and MVTM are normalized with respect to those obtained by BL. Each value is the
geometric mean of the values obtained for the matrices in the respective dataset.

Considering maximum volume and total message count metrics, the best
values obtained in these metrics belong to MV and TM, respectively, as expected.
For example for 512 processors, MV obtains an improvement of 26% in maximum
volume compared to BL, while TM obtains an improvement of 24% in message

1 https://www.cineca.it/en/content/marconi.

https://www.cineca.it/en/content/marconi

Addressing Volume and Latency Overheads in 1D-parallel SpMV 633

Table 1. Partition statistics of four schemes.

K Scheme Actual values Normalized w.r.t. BL

Tot vol. Max vol. Tot msg. Tot vol. Max vol. Tot msg.

64 (317 matrices) BL 52331 1757 1316 – – –

MV 51250 1454 1344 0.98 0.83 1.02

TM 64242 2279 887 1.23 1.30 0.67

MVTM 62788 1855 911 1.20 1.06 0.69

128 (335 matrices) BL 67310 1253 3298 – – –

MV 65940 991 3419 0.98 0.79 1.04

TM 87462 1732 2219 1.30 1.38 0.67

MVTM 85248 1342 2296 1.27 1.07 0.70

256 (363 matrices) BL 92008 944 7556 – – –

MV 90013 728 7846 0.98 0.77 1.04

TM 122337 1379 5306 1.33 1.46 0.70

MVTM 118801 967 5546 1.29 1.02 0.73

512 (374 matrices) BL 129345 792 17174 – – –

MV 125915 589 17869 0.97 0.74 1.04

TM 171887 1145 13030 1.33 1.45 0.76

MVTM 165680 733 13712 1.28 0.93 0.80

1024 (373 matrices) BL 176058 735 35768 – – –

MV 170016 518 37364 0.97 0.71 1.04

TM 228866 1036 29073 1.30 1.41 0.81

MVTM 217871 613 30996 1.24 0.83 0.87

count compared to BL. Since these two schemes address solely one of these metrics
along with total volume, they are clear winners in those metrics. MVTM reveals
itself as a tradeoff between MV and TM by ranking second among these three
schemes in both metrics. In other words, its maximum volume is worse than MV
but better than TM, while its total message count is worse than TM but better
than MV.

Another important aspect of MVTM is that, when we compare MV, TM and MVTM
in maximum volume and total message count metrics in Table 1, MVTM always
appears to be the second best scheme and the difference between MVTM and the
best scheme is generally smaller than the difference between MVTM and the third
best scheme. For example for 256 processors, MVTM’s maximum volume is 33%
worse than MV’s while TM’s maximum volume is 89% worse than MV’s, and MVTM’s
message count is 5% worse than TM’s while MV’s message count is 48% worse
than TM’s. For these reasons, MVTM is expected to be a better remedy compared
to MV and TM for the matrices with high volume and latency overhead, which is
validated by the parallel experiments given in the rest of the section.

634 S. Acer et al.

The performances of four schemes are compared in terms of parallel SpMV
runtimes for 15 matrices on 64, 128, 256 and 512 processors. These matrices
and the obtained parallel runtimes are presented in Table 2. The times are in
microseconds and correspond to a single SpMV operation. We only give the
detailed results for 128 and 512 processors, as similar improvements are observed
for 64 and 256 processors. On 128 processors, MVTM obtains the best runtimes
in 11 of 15 matrices, while MV obtains the best runtimes in three matrices and
TM obtains in only one. On 512 processors, MVTM obtains the best runtimes in
all matrices. These results indicate that MVTM is more successful than the other
three schemes in addressing volume and latency overheads.

In Table 3, we present the parallel SpMV runtime averages (geometric means)
for four schemes for these 15 matrices on 64, 128, 256 and 512 processors. The
first column group of the table gives the actual values obtained by the schemes
while the second column group gives the normalized values of MV, TM and MVTM
with respect to those of BL. In any number of processors, the best scheme is

Table 2. Detailed parallel SpMV runtimes (microseconds).

matrix #rows/ #nonzeros 128 processors 512 processors

#columns BL MV TM MVTM BL MV TM MVTM

144 144, 649 2, 148, 786 139.5 135.1 153.9 116.8 91.8 83.5 91.7 79.5

598a 110, 971 1, 483, 868 93.8 92.6 93.7 77.4 77.8 67.6 58.4 54.9

ASIC 680ks 682, 712 2, 329, 176 184.1 165.9 154.1 131.8 128.6 127.2 153.2 106.3

cage13 445, 315 7, 479, 343 453.0 413.0 445.0 416.5 336.4 332.2 288.9 284.7

cfd1 70, 656 1, 828, 364 97.1 94.0 88.8 86.7 65.5 60.2 60.9 54.2

crystk03 24, 696 1, 751, 178 87.3 88.6 83.9 82.6 67.8 67.6 52.3 50.5

Ga19As19H42 133, 123 8, 884, 839 484.3 437.2 427.1 440.8 417.4 281.0 281.4 256.0

gas sensor 66, 917 1, 703, 365 90.6 90.8 84.5 78.5 64.4 67.9 46.7 44.3

kkt power 2, 063, 494 14, 612, 663 604.0 582.5 610.7 586.9 261.8 234.7 244.2 198.9

m14b 214, 765 3, 358, 036 162.5 169.4 165.2 146.0 105.8 95.5 95.7 74.5

offshore 259, 789 4, 242, 673 202.1 182.5 202.7 178.4 113.1 114.1 116.1 97.4

pre2 659, 033 5, 959, 282 246.3 240.3 245.2 243.3 120.2 117.5 109.7 91.5

raefsky4 19, 779 1, 328, 611 69.3 65.8 67.4 62.8 63.9 63.9 46.8 44.4

Si34H36 97, 569 5, 156, 379 315.2 300.1 303.2 289.2 348.1 258.9 243.7 212.6

webbase-1M 1, 000, 005 3, 105, 536 248.4 271.3 210.5 192.0 274.0 301.1 243.1 173.7

Table 3. Average parallel SpMV runtimes (microseconds).

K Actual values Normalized w.r.t. BL

BL MV TM MVTM MV TM MVTM

64 280.1 277.2 275.7 268.8 0.99 0.98 0.96

128 185.7 179.7 178.1 163.5 0.97 0.96 0.88

256 144.9 136.6 134.8 115.9 0.94 0.93 0.80

512 134.4 124.8 115.0 99.2 0.93 0.86 0.74

Addressing Volume and Latency Overheads in 1D-parallel SpMV 635

MVTM, followed by TM, MV and BL. For example on 512 processors, MVTM obtains
a 26% improvement over BL, while MV and TM respectively obtain 7% and 14%
improvement over BL. Observe that with increasing number of processors, the
improvements obtained by all schemes over BL become more pronounced. This
can be attributed to the increased importance of different communication cost
metrics with increasing number of processors, which implies that addressing
more cost metrics leads to better parallel runtime performance.

64 128 256 512

158

64 128 256 512

80

160

64 128 256 512

66

132

64 128 256 512

298

596

1192

64 128 256 512

110

220

64 128 256 512

146

292

64 128 256 512

136

272

544

64 128 256 512

318

64 128 256 512

260

Fig. 1. Strong scaling plots of four schemes.

In Fig. 1, we plot the parallel SpMV runtimes obtained by the schemes for
nine matrices. These nine matrices are a subset of the matrices given in Table 2.
The x and y axes in the plots are both log-scale and respectively denote the
number of processors and SpMV runtime (microseconds). As seen from these
plots, MVTM scales significantly better than the other three schemes. These plots
validate the claim that MVTM handles the tradeoff between volume and latency
overheads better than TM and MV.

636 S. Acer et al.

5 Conclusion

This work focused on the aspects of reducing communication bottlenecks of a key
kernel, sparse matrix-vector multiplication. We argued that there exist several
communication cost metrics that affect the parallel performance and proposed
a model to reduce three such metrics simultaneously: total volume, maximum
volume and total message count. With extensive experiments, it is shown that
the proposed model strikes a better tradeoff between these volume- and latency-
related cost metrics compared to the other models that address only one or two
cost metrics. Realistic experiments up to 512 processors on a large-scale system
showed that our model leads to better scalability and validated that it is a better
remedy for the SpMV instances that are bound by both volume and latency.

Acknowledgments. We acknowledge PRACE for awarding us access to resource
Marconi (Lenovo NextScale) based in Italy at CINECA Supercomputing Centre. This
work was supported by The Scientific and Technological Research Council of Turkey
(TUBITAK) under Grant EEEAG-114E545. This article is also based upon work from
COST Action CA 15109 (COSTNET).

References

1. Acer, S., Selvitopi, O., Aykanat, C.: Improving performance of sparse matrix dense
matrix multiplication on large-scale parallel systems. Parallel Comput. 59, 71–96
(2016). Theory and Practice of Irregular Applications

2. Bisseling, R.H., Meesen, W.: Communication balancing in parallel sparse matrix-
vector multiply. Electron. Trans. Numer. Anal. 21, 47–65 (2005)

3. Boman, E.G., Devine, K.D., Rajamanickam, S.: Scalable matrix computations on
large scale-free graphs using 2D graph partitioning. In: Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage and
Analysis SC 2013, NY, USA, pp. 50:1–50:12. ACM, New York (2013)

4. Çatalyürek, U.V., Aykanat, C.: Hypergraph-partitioning-based decomposition for
parallel sparse-matrix vector multiplication. IEEE Trans. Parallel Distrib. Syst.
10(7), 673–693 (1999)

5. Çatalyürek, U., Aykanat, C.: A hypergraph-partitioning approach for coarse-grain
decomposition. In: Proceedings of the 2001 ACM/IEEE Conference on Supercom-
puting SC 2001, NY, USA, pp. 28–28. ACM, New York (2001)

6. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
Trans. Math. Softw. 38(1), 1:1–1:25 (2011)

7. Deveci, M., Kaya, K., Uçar, B., Çatalyürek, U.: Hypergraph partitioning for multi-
ple communication cost metrics: model and methods. J. Parallel Distrib. Comput.
77, 69–83 (2015)

8. Kumar, V.: Introduction to Parallel Computing, 2nd edn. Addison-Wesley Long-
man Publishing Co., Inc., Boston (2002)

9. Selvitopi, O., Acer, S., Aykanat, C.: A recursive hypergraph bipartitioning frame-
work for reducing bandwidth and latency costs simultaneously. IEEE Trans. Par-
allel Distrib. Syst. 28(2), 345–358 (2017)

10. Slota, G.M., Madduri, K., Rajamanickam, S.: PuLP: Scalable multi-objective
multi-constraint partitioning for small-world networks. In: 2014 IEEE International
Conference on Big Data (Big Data), pp. 481–490, October 2014

Addressing Volume and Latency Overheads in 1D-parallel SpMV 637

11. Uçar, B., Aykanat, C.: A library for parallel sparse matrix vector multiplies. Tech-
nical report BU-CE-0506, Bilkent University (2005)

12. Uçar, B., Aykanat, C.: Encapsulating multiple communication-cost metrics in par-
titioning sparse rectangular matrices for parallel matrix-vector multiplies. SIAM
J. Sci. Comput. 25(6), 1837–1859 (2004)

Improving the Network of Search Engine
Services Through Application-Driven Routing

Joe Carrión1(B), Daniel Franco1, Veronica Gil-Costa2, Mauricio Marin3,
and Emilio Luque1

1 Computer Architecture and Operative Systems Department,
Universitat Autónoma de Barcelona, 08193 Bellaterra, Spain

joe.carrion@caos.uab.es, {daniel.franco,emilio.luque}@uab.es
2 Universidad Nacional de San Luis, San Luis, Argentina

gvcosta@unsl.edu.ar
3 Universidad de Santiago de Chile, Santiago, Chile

mauricio.marin@usach.cl

Abstract. We studied a search engine service in order to evaluate the
impact of the traffic pattern on network performance. This paper focuses
on how the routing algorithm can improve the query latency of a search
engine. The architecture of the service includes three main components:
Front Service, Cache Service and Index Service. This service receives
queries from users, and after a process of seeking in a cluster, a set of
results are returned to users. This workload produces unbalanced traf-
fic throughout the network. As a result, this behavior impacts the net-
work performance in terms of latency and throughput and increases the
user timeout. This paper proposes an application-driven routing pol-
icy based on the application architecture which merges a set of crite-
ria and prioritizes the Cache Service messages. We evaluated the per-
formance using real traces and simulation techniques. The experiment
results show a reduction of network latency and throughput when we
apply the application-driven routing policy.

Keywords: Routing · Application-driven network · Search engine ser-
vices

1 Introduction

Large-scale search engines can be seen as multicomponent systems whose indi-
vidual design, implementation, deployment, and operation are always in constant
evolution. A search engine is usually built as a collection of services deployed
on a large cluster of processors, wherein each service is distributed onto a set
of processors. Such services include the computation of the top-k documents,
advertisement, snippet computation, etc. The processors and the communica-
tion network are expected to be constructed from commodity hardware. Mes-
sage passing is performed among processors through a high speed communication
network such as the Fat-tree [1].
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 638–650, 2017.
DOI: 10.1007/978-3-319-64203-1 46

Improving the Network of SES Through Application-Driven Routing 639

In this work, we studied a Search Engine Service (SES) with a typical con-
figuration based on three components: Front Service (FS), Cache Service (CS)
and Index Service (IS). These components are deployed on a cluster of proces-
sors designed to support the query processing. To achieve an efficient SES, the
deployment of the services on the cluster of processors has to consider user
demand which is reflected in query traffic and the popularity of queries. The
scope of this proposal improves current configurations of the network for the
search engine by tuning the routing mechanism on the network devices based on
the communication pattern generated by the SES.

The SES demands three basic requirements, the first one is to keep the time
to solve a user query under a peak; the second one is holding a distributed work-
load on nodes, and finally, a balance between incoming and outgoing requests
(throughput). These requirements are addressed by two approaches: application
design and topology design. Application design focuses on three system compo-
nents: FS, CS and IS. The components divide the workload and use algorithms
to distribute the queries among the nodes. On the other hand, the network is
designed taking into account the topology and the network size. The network
size is computed based on the network latency and the network throughput.

In this context, we have evaluated the traffic behaviour and concluded that we
can apply the same approach as CS. We know that traffic generated by FS to CS
introduces new workload into the network fabric, traffic from FS to IS produces
a large workload, but on the other hand traffic from CS to FS is lightweight
and could potentially provide queries solved for the final user. However, the CS
traffic competes with heavy traffic (FS and IS), causing CS traffic to spend time
on queues among channel buffers.

We propose a routing algorithm based on the application (Application-driven
routing). We analysed the software components, the traffic pattern and how this
traffic impacts network performance in terms of network latency and throughput.
Experiment results outperform current default settings and routing mechanisms
from literature.

2 Problem Statement

The SES process users query through a FS. The user query (Q) is solved by the
support of a CS or IS [8]. The FS sends the queries to the CS to check if they
have been previously processed. If not, the queries are sent to the IS. The output
of the system is a list of relevant documents (K) for Q. The main requirement
of the SES is processing a Q in a defined period of time, time is related to the
Throughput (T) of the service. T is defined by the relation between the number
of K divided by number of Q.

SES is supported by a large number of resources in terms of nodes, links and
network devices. The number of users submitting queries can be of thousands
of Q per second. There are two main scenarios by which this problem can be
addressed; first, the application design based on the architecture provided by
FS, CS and IS components; and second, the network infrastructure.

640 J. Carrión et al.

We focus on the latter, but started our research with an analysis of the soft-
ware architecture, after which, we studied the network infrastructure, and then
analyzed in detail the communication pattern generated for a specific configura-
tion of the system, in terms of network size, topology and mapping. We analyzed
the impact of the traffic on network performance in order to propose a better
network configuration with an alternative routing algorithm.

3 Search Engine Service Architecture

The workload is distributed among the FS, CS and IS. The FS that handles sub-
mitted user queries by routing them to the appropriate service, it also manages
the delivery of final results (K) to the user. The CS implements a partitioned dis-
tributed cache storing previously computed results for the most popular queries.
And the IS, holds an index of the document collection and it is responsible of
delivering partial results to FS. To reduce query response times and increase
throughput of Q, most services are implemented as arrays of P×D processing
nodes, where P is the level of partitioning and D is the level of replication of
each service partition. These services are deployed on clusters of computers and
its processing nodes are allocated in racks connected via network switches.

Each query is received by the FS, which redirects it towards the CS (as status
new). The CS then checks whether the same query has already been solved and
if its results (document IDs) are stored in the service. The CS answers to FS with
either a cache hit or a cache failure (query status hit or no hit). In the latter,
the FS sends the query to the IS (as new for IS), which proceeds to compute
the top-K results of the query and sends them back to the FS (as status done).
The IS performs a ranking operation with the documents to retrieve the most
relevant document for the query. We show a basic overview in Fig. 1(a)

(a)
(b)

Fig. 1. (a) Overview of query flows through SES. (b) Scenarios to compute the QL

The architecture is described in detail in [6,7,9]. It uses partitioning and
redundancy schemes to improve the performance of the SES in terms of Q
response time. The sets of nodes are created based on the network addressing,
and they are installed on different racks, we call them Point of Delivery (POD).

Improving the Network of SES Through Application-Driven Routing 641

FS, CS and IS instances are mapped among POD using a technique based on
performance. Figure 2(a) shows a scheme of the mapping, each POD includes
instances of FS, CS and IS. Figure 2(b) depicts a sample of the interconnection
scheme using the Fat-tree topology with 16 nodes. This scheme causes some Q
be solved by nodes located in the same rack or nodes located in different racks.

The nodes are grouped in different segments of a network addressing and a
set of racks. The nodes support instances of the FS, CS and IS according to the
number of nodes and topology capacity.

(a) (b)

Fig. 2. Overview of SES infrastructure and mapping.

3.1 SES Network Architecture

The architecture and the network addressing are based on [1]. The network
configuration used is a Fat-tree topology, with k xn. The switches are arranged
in n levels (Level 0 to n−1). FS, CS and IS are deployed over the nodes according
with a defined configuration. The configuration has been computed based on
benchmarks and experiments with real workload in order to compute the number
of FS, CS and IS nodes. For instance in Fig. 2(b) we show a sample of a topology
and configuration with sixteen nodes, four POD, four FS, four CS and eight IS.

4 Performance Evaluation of SES

This section focuses on evaluation of the current system in order to identify the
main challenges in terms of network performance. A performance evaluation in
terms of software architecture is out of the scope of this paper.

First, we describe the configuration used for this research. Table 1 summarizes
the traces used to analyze the network performance. This analysis uses a two
real trace files for two networks. We use simulation techniques and a modified
version of Booksim simulator published in [8].

642 J. Carrión et al.

Table 1. Summary of settings for a SES using two set of parameters

Parameter Trace A Trace B

Front service (nodes) 12 40

Cache service (nodes) 3 20

Index service (nodes) 100 180

Network topology 3-level Fat-tree 3-level Fat-tree

Qty of core switches 16 25

Qty of aggregation switches 32 50

Qty of edge switches 32 50

Qty of pods 8 10

Qty of nodes per pod 16 25

Max. nodes capacity 128 250

Qty (current) hosts 115 240

4.1 Traffic Pattern

Each node contacts a delimited set of the services. For instance, a CS node
submits messages to FS nodes, and a IS node submits messages only to FS
nodes. Using the Flow-traffic conditions of the SES described in Fig. 1(a), the
set of couples is deterministic. The tendency reduces the set of couples and
creates an unbalanced traffic. On the one hand, if there are unused resources
the network could be reduced. On the other hand, there are buffers overloaded
producing bottlenecks.

4.2 Performance SES

This section describes the performance of the SES based on the query latency
(QL). The QL is defined by the time needed to solve Q. The are two main
scenarios; the first one is a Q solved by the CS (which we call Cached queries);
and the second one, Q is solved by the IS (which we call Indexed queries). QL is
defined by the arriving time to the CS plus the time to be processed by the CS
and the time to return to the FS. In the second scenario, the QL is increased by
time required to reach to the IS plus the processing time in the IS and the time
required to return to FS. Figure 1(b) summarizes both scenarios.

The mapping used to deploy the instances of services on each nodes impacts
upon network latency, because some queries are solved by nodes located in the
same network device (switch), or some queries are solved by nodes located in
different switches in the same rack. Additionally, some queries are solved by a
node connected to another rack. Figure 3(a) depicts how the queries are solved
based on the location of the instances of FS, CS and IS. This context allow us to
classify the queries by the number of switches the queries need to pass through.
The trace produces three kind of queries. Queries solved by 1, 2 or 5 switches.

Improving the Network of SES Through Application-Driven Routing 643

(a)

(b)

Fig. 3. QL comparison by hops (h)

It is possible that Indexed queries have passed by the three Cached queries
scenarios. In this case we have twelve scenarios in total.

The configuration we are evaluating produces eight scenarios. Figure 3(b)
shows the QL on axis Y and on axis X the eight scenarios in brackets. We see that
scenario (1) and (2) reach the lowest QL and they are Cached Queries, then we
conclude that the number of hops (2h and 4h) does not impact the QL. However,
scenarios (3) to (8) show that QL increases considerably for Indexed Queries.
Also, the best QL for Indexed Queries is achieved with two hops (scenarios 3
and 4). Finally, the worst QL are scenarios (5) and (8).

5 Previous Work

Interconnection networks studies related to adapting the resources on demand go
back until Active Network Research proposed in [10]. Studies like [4] describe how
application traffic pattern has an impact on network status. Adaptive routing
algorithms aim to make decisions based on network status. For instance, [5]
introduced Distributed Routing Balancing (DRB), which adapt the resources by
creating new paths between nodes and reducing the path-length. The output
is a balanced message distribution. In [3], PR-DRB (Predictive DRB) extends
DRB to real applications by monitoring the best paths and storing them to make
routing decisions based on alternative paths.

The authors in [2] described an application pattern analysis of SES and the
behaviour on buffer channels was depicted. In addition, the traffic was compared
with synthetic traffic based on mathematical models to highlight the importance
of conducting a research based on the application traffic pattern.

6 Application-Driven Routing Policy

Based on the analysis presented in previous sections, we present a routing pol-
icy called Application-Driven Routing (ADR), which allocates network resources
based on application profile. This routing algorithm has been designed and tuned

644 J. Carrión et al.

Fig. 4. Query processing sequence scheme. Real sequence with default settings and
target sequence with network settings based on application

to process a specific application, i.e. SES, then we call it Search Engine - Appli-
cation Driven Routing (SE-ADR). However, the QL depends on the time to
process the query on nodes plus the network performance. This paper focuses
on the network, and we show in Fig. 4 a scheme of this approach. There is a real
sequence of query processing. We propose to improve the network performance
in order to reduce the QL.

6.1 Criteria Based on Application

The architecture of SES defines two main flows. We call traffic between FS and
CS workload of CS (Wcs). The traffic between FS and IS is Workload Wis.
Cached queries need less time than Indexed queries, thereby while IS processes
the queries, there is time to process Cached queries. We propose a fair policy to
balance network resources by prioritizing the Wcs.

We propose to distinguish the traffic between Primary traffic (Wcs) and Sec-
ondary traffic (Wis) based on the software architecture and we introduce this
criteria on network settings. Next criterion is to balance the traffic among chan-
nels and the path length that queries need for being solved. This idea is based
on network topology. Figure 5(a) summarizes the idea to introduce a model of
routing algorithm based on application traffic.

The workload generated by IS is very high compared to CS workload. How-
ever, traffic generated by CS is potentially output for users. If we process more
CS traffic we improve the throughput of the SES. The time needed to solve an
Indexed query is higher compared to Cached query. Then we allocate network
resources with high priority for Cached queries; and we penalize the Indexed
queries without impacting the time to process them. With this context, we ana-
lyze the buffer occupancy in order to balance the traffic and we submit the
Primary traffic to less used buffers. Default network settings produce CS spends
time waiting for a channel while it is used by IS traffic. The initial scenario shows
that traffic FS only competes with itself, later CS competes with high workload
produced by FS. Figure 5(b) shows this idea. This paper proposes a policy to

Improving the Network of SES Through Application-Driven Routing 645

(a)
(b)

Fig. 5. (a) Model to define an application-driven routing algorithm. Primary traffic is
based on application and network architecture. Balancing approach is based on fair
network allocation. (b) Default buffer occupancy scheme.

move CS traffic with priority to the less used buffer. As you can see in Fig. 5, in
a period of time, messages from nodes go inside the switch (L2) through ports
0 to 4. However, as new traffic arrives, the buffers are shared by traffic from FS,
CS and IS. In this case CS has to wait for messages from FS or IS, then it is
necessary too distinguish the traffic based on SES requirements and to move the
CS toward buffers with lower occupancy.

6.2 Criteria Based on Network Architecture

Currently the routing algorithm applied in real system is based on a Two-
Level Routing Table proposed by [1]. This algorithm scales when network size
increases, and it avoids the network cost increasing. The current technology
allows increase the number of channels and bandwidth. The links provided by
the current network are misused and they allow us to use alternative paths. We
take advantage of them to balance the workload among different channels.

6.3 Criteria Based on Traffic

We propose a routing policy based on prioritizing the Primary traffic by monitor-
ing the buffer occupancy. Figure 6 shows the routing policy model. Three main
components are introduced into the routing policy. The first one is a Buffer
occupancy monitor (BOM), the second one is a Deep Packet Inspection (DPI)
mechanism and finally a Decision Maker (DM). BOM monitors the buffer occu-
pancy. DPI checks if a packet belongs to a specific service. The DM based on
information of BOM and DPI redirects the traffic by allocating output channels.
Packets belonging to Primary traffic are redirected to output ports with less BO.
This approach allows us to allocate network resources proportionally to service
demand. The workload is distributed toward less-used network areas.

646 J. Carrión et al.

Fig. 6. Routing policy components based on application for SES.

7 Evaluation

This research uses trace log files generated by a SES and a mapping file. The
data for the experimentation corresponds to trace files used by authors of [6]
and it was obtained by Yahoo Search Engine in 2005. The mapping file defines
the topology, network size and the host distribution among the racks. The trace
file is the workload generated by the users and the messages between the nodes.
We analyze the latency and throughput of the network.

7.1 Experimental Environment

We use simulation techniques to process as entry the trace file (tf) and mapping
file (mf). We compute the QL and the throughput based on the trace. The mf
includes one line per host, the POD where the host is located, the instance (FS,
CS, IS) installed in the host and a flag R for replica or NR for none-replica and
finally the IP of the replica. The tf includes a query identifier, timestamp of the
host, the operation executed by the host, a flag to recognize the processing time,
sender, receiver, switch, message size and processing time on host.

We parsed tf and mp to generate the topology to be loaded into the sim-
ulator. This simulator has been modified to process the tf and simulate the
query injection into the network. The simulator processes the trace without the
real time (timestamp) column, because we are simulating the query processing
instead of the real time; after, real time is replaced by simulation time. The
simulator generates a Trace File Simulated (tfs) for future review.

7.2 Results

Based on literature, the topology supports different routing approaches; cur-
rently a routing policy is used based on tables (deterministic routing). However,
the network supports channel redundancy, therefore it is possible to use different
paths to reach the destination (adaptive routing). Finally, we can distribute the
traffic among channels to balance the workload.

Improving the Network of SES Through Application-Driven Routing 647

We compared SE-ADR with three routing modeles compared on scheme on
Fig. 7. A deterministic routing algorithm which provides the shortest path (min-
imum path: min), an adaptive algorithm which chooses different paths with a
round robin criteria (diversity path: div), and finally we balance the workload
monitoring the buffer occupancy (balanced routing bal). SE-ADR adds a new
tier to this stack by dividing the workload based on the application.

Fig. 7. Current routing models to manage the traffic.

On Fig. 8(a) we show the network latency obtained by the four routing algo-
rithms. On axis X we show the traffic injected to the network. The current
settings provided by static routing (min) are outperformed by others. The best
latency reached by DIV, BAL and SE-ADR methods belongs to the interval
from 15% to 35% of the network capacity. And from 20% to 30% we can see that
SE-ADR slightly outperforms other mechanisms in a light way, for this interval,
on average, SE-ADR outperforms BAL by 7%.

(a) (b)(a)

Fig. 8. Latency and throughput comparison with 115 nodes.

The network throughput is shown in Fig. 8(b). The injection rate does not
have impact using routing static (min) because it always uses the same path and
the workload is not distributed uniformly to the channels. When the network
works at less than 17% of its capacity, methods DIV, BAL and SE-ADR do
not impact the throughput because they produce the same accepted traffic. But
when the network workload is over 18% of its capacity, the accepted traffic

648 J. Carrión et al.

decreases, and then it is necessary to apply a different routing algorithm. When
the network works from 20% to 38% of its capacity, SE-ADR provides the best
performance. The increase reaches 15% over other methods.

In order to evaluate the performance when the size of the network increases,
we applied the routing algorithm with Trace B from Table 1. The results for
network with 240 host show that, the network latency grow up as injection rate
increases, as you can see in Fig. 9(a). Therefore we concentrate on throughput
to define an interval with the best throughput. Figure 9(b) shows that from 20%
to 30%, the proposed method SE-ADR provides the higher value. On average
the gain provided by SE-ADR is around 5% against BAL. However regarding
the latency, the SE-ADR outperforms BAL on an average 15%.

(a) (b)(a)

Fig. 9. Latency and throughput comparison with 240 nodes.

Figure 10 shows the real QL and the simulated QL. We achieve in the simula-
tion a QL of 35.8 ms. against 34.8 ms. in the real trace, which indicates a 97.1%
of accuracy. Now we get almost the same QL using different routing algorithms,
however we plan to explore different configurations of the SES properties, such
as mapping, topology or network size in order to take advantage of the better
latency and throughput of the network.

0 100 200 300 400 500

10
30

50

Query stream to Front Service

Q
ue

ry
 la

te
nc

y
(N

or
m

al
iz

ed
)

Real
Simulator

Fig. 10. Sequence of input using a sample of 480 queries.

Improving the Network of SES Through Application-Driven Routing 649

8 Conclusions

In this paper we presented a routing algorithm to improve the network perfor-
mance of a datacenter supporting a Search Engine Service. We based our method
around an analysis of the service architecture, the topology and mapping and
the application pattern; we balance the workload based on traffic generated by
CS. Experiments using real traces show that our method outperforms the cur-
rent configuration of the system and we improve methods based on literature.
Our method reaches a reduction of latency for an interval of network capacity.
Finally, we increase the throughput for an interval of network capacity. Future
work will be focused on balancing the network capacity and the cost while the
network reaches its best performance in terms of users query.

Acknowledgments. This research has been supported by the MINECO Spain under
contract TIN2014-53172-P. SENESCYT (Secretaŕıa Nacional de Educación Superior,
Ciencia, Tecnoloǵıa e Innovación) under contract 2013-AR7L335. The authors would
like to thank to Centro de Biotecnoloǵıa y Bioinformática under Basal Project.

References

1. Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network
architecture. In: ACM SIGCOMM Computer Communication Review, vol. 38, pp.
63–74. ACM (2008)

2. Carŕıon, J., Franco, D., Luque, E.: Application-aware routing policy based on appli-
cation pattern traffic. In: Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA), p. 142. The
Steering Committee of The World Congress in Computer Science, Computer Engi-
neering and Applied Computing (WorldComp) (2015)

3. Castillo, C.N., Lugones, D., Franco, D., Luque, E., Collier, M.: Predictive and
distributed routing balancing, an application-aware approach. Procedia Comput.
Sci. 18, 179–188 (2013)

4. Dally, W.J., Towles, B.P.: Principles and practices of interconnection networks.
Elsevier, Amsterdam (2004)

5. Franco, D., Garces, I., Luque, E.: A new method to make communication latency
uniform: distributed routing balancing. In: Proceedings of the 13th international
conference on Supercomputing, pp. 210–219. ACM (1999)

6. Gil-Costa, V., Lobos, J., Inostrosa-Psijas, A., Marin, M.: Capacity planning for
vertical search engines: an approach based on coloured petri nets. In: Haddad, S.,
Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 288–307. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31131-4 16

7. Inostrosa-Psijas, A., Wainer, G., Gil-Costa, V., Marin, M.: DEVS modeling of
large scale web search engines. In: 2014 Winter Simulation Conference (WSC), pp.
3060–3071. IEEE (2014)

8. Jiang, N., Balfour, J., Becker, D.U., Towles, B., Dally, W.J., Michelogiannakis, G.,
Kim, J.: A detailed and flexible cycle-accurate network-on-chip simulator. In: 2013
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), pp. 86–96. IEEE (2013)

http://dx.doi.org/10.1007/978-3-642-31131-4_16

650 J. Carrión et al.

9. Marin, M., Gil-Costa, V.: Simulating search engines. Comput. Sci. Eng. 1, 1–1
(2017)

10. Tennenhouse, D.L., Smith, J.M., Sincoskie, W.D., Wetherall, D.J., Minden, G.J.:
A survey of active network research. IEEE Commun. Mag. 35(1), 80–86 (1997)

Parallel Numerical Methods and
Applications

Accelerating the Tucker Decomposition
with Compressed Sparse Tensors

Shaden Smith(B) and George Karypis

University of Minnesota, Minneapolis, USA
{shaden,karypis}@cs.umn.edu

Abstract. The Tucker decomposition is a higher-order analogue of the
singular value decomposition and is a popular method of performing
analysis on multi-way data (tensors). Computing the Tucker decomposi-
tion of a sparse tensor is demanding in terms of both memory and com-
putational resources. The primary kernel of the factorization is a chain of
tensor-matrix multiplications (TTMc). State-of-the-art algorithms accel-
erate the underlying computations by trading off memory to memoize the
intermediate results of TTMc in order to reuse them across iterations.
We present an algorithm based on a compressed data structure for sparse
tensors and show that many computational redundancies during TTMc
can be identified and pruned without the memory overheads of mem-
oization. In addition, our algorithm can further reduce the number of
operations by exploiting an additional amount of user-specified memory.
We evaluate our algorithm on a collection of real-world and synthetic
datasets and demonstrate up to 20.7× speedup while using 28.5× less
memory than the state-of-the-art parallel algorithm.

1 Introduction

Tensors, which are the generalization of matrices to higher orders, are a natural
way of representing multi-way data (i.e., data which features variables interacting
in more than two dimensions). Tensors occupy three or more dimensions (called
modes) which can represent multi-way interactions between variables. Tensor
factorization is a technique for enabling structure discovery on multi-way data.
The objective of tensor factorization is to model the potentially high-dimensional
data in a low rank form that captures the key multi-way interactions found
in the data. Tensor factorization is used extensively in areas such as anomaly
detection [9], healthcare [29], recommender systems [20], and web search [28].
Common traits among all of these applications are the high dimensionality and
extreme level of sparsity of the data.

Tensor factorization takes several forms, with the two most popular being the
canonical polyadic decomposition (CPD) and the Tucker decomposition [14].
The CPD has been extensively studied by the HPC community in recent
years [12,13,26]. However, the Tucker decomposition, which is computationally
more challenging than the CPD, has received relatively less attention. Com-
puting the Tucker decomposition of a sparse tensor is challenging in terms of
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 653–668, 2017.
DOI: 10.1007/978-3-319-64203-1 47

654 S. Smith and G. Karypis

both time and space. At its core is a tensor-times-matrix chain (TTMc), which
multiplies a sparse tensor by dense matrices aligned to all but one of its modes.

Existing strategies for performing TTMc either rely on memoizing intermedi-
ate results to save computation [2,11] or operating in a memory-efficient manner
at the expense of additional floating-point operations (FLOPs) [15]. The memory
overhead of memoization is closely tied to the dimensionality and the sparsity
pattern of the tensor, and can result in significant memory overhead. Meanwhile,
the memory-efficient strategies require orders of magnitude more computation
and are often impractical for large and sparse tensors.

We restructure the underlying computations in order to remove two forms of
redundant computations that occur during TTMc. We present an algorithm for
performing TTMc with a sparse tensor that is often as computationally efficient
as memoized algorithms, while requiring a negligible amount of additional inter-
mediate memory. Our algorithm relies on the recently-developed data structure
for tensors called compressed sparse fiber (CSF) [22]. The CSF data structure
provides a view of the tensor’s sparsity structure that makes these redundan-
cies possible to exploit. Furthermore, we show that an additional, user-specified
amount of memory can be used to further reduce computational costs by con-
structing additional views of the tensor. Our contributions include:

1. A parallel algorithm for TTMc which is memory-efficient while being compu-
tationally competitive to the state-of-the-art.

2. An analysis of the TTMc algorithm and demonstration of its potential for
asymptotic improvement.

3. A strategy for leveraging multiple compressed tensor representations to fur-
ther reduce the number of required operations.

4. An experimental evaluation against the state-of-the-art parallel algorithms
across a variety of real-world datasets.

5. Integration of our source code into SPLATT [23], an open source library for
sparse tensor factorization.

The rest of the paper is organized as follows. Section 2 provides an overview
of tensors and tensor factorization. Section 3 reviews related work on TTMc.
Section 4 presents and analyzes our algorithm for performing TTMc operations
that leverage the sparse tensor representation. Section 5 discusses the benefits
of using multiple views of the tensor data and provides a heuristic algorithm
for selecting advantageous views. Section 6 presents experimental results. Lastly,
Sect. 7 offers concluding remarks.

2 Preliminaries

2.1 Notation

Matrices are denoted using bold letters (A) and tensors using bold calligraphic
letters (X). Tensors have N modes with lengths I1, . . . , IN , respectively. We
denote the number of non-zeros in a tensor as nnz(X). Entries in matrices and

Accelerating the Tucker Decomposition with Compressed Sparse Tensors 655

Fig. 1. TTMc with an I ×J ×K tensor. The result is a dense tensor Y ∈ RI×F2×F3 ,
which can conceptually be unfolded to Y(1) ∈ RI×F2F3 .

tensors are denoted A(i, j) and X (i1, . . . , iN), respectively. A colon in the place
of an index takes the place of all non-zero entries. For example, X (i, j, :, . . . , :) is
the set of all non-zeros in X whose first two indices are (i, j). Similarly, A(i, :) is
the ith row of A. A fiber is the generalization of a row or column and is the result
of holding all but one index constant (e.g., X (i1, . . . , iN−1, :) or X (:, i2, . . . , iN)).

2.2 Tensor and Matrix Operators

Unfolding. Tensors can be “unfolded” along a mode to form a matrix. Unfolding
is accomplished by forming columns from the fibers that run along the desired
mode. For example, a mode-1 unfolding is denoted X(1) and has dimension
I1×

∏N
j=2 Ij .

Kronecker Product. The Kronecker product (KP) of A ∈ Rm×n and B ∈ Rp×q,
denoted A ⊗ B, is an mp×nq matrix and defined as

A ⊗ B =

⎡

⎢
⎣

A(1, 1)B . . . A(1, n)B
...

. . .
...

A(m, 1)B . . . A(m,n)B

⎤

⎥
⎦ .

The KP is a generalization of the vector outer product. Throughout our discus-
sion, we will work in terms of KPs but refer to visualizations of outer products.
They are the same operations, but outer products better visualize growth in
dimensionality.

Tensor-Matrix Product. The tensor-matrix product, or n-mode product [14],
multiplies a tensor by a matrix along the nth mode. Suppose B is an F × In

matrix. The tensor-matrix product for the nth mode, denoted X ×n B, emits a
tensor with dimensions I1× . . .×In−1×F×In+1× . . .×IN . Elementwise,

(X×nB)(i1, . . . , in−1, f, in+1, . . . , iN) =
In∑

in=1

X (i1, . . . , iN)B(f, in).

656 S. Smith and G. Karypis

Fig. 2. A rank-{F1, F2, F3} Tucker factorization of an I × J ×K tensor.

Note that the resulting mode-n fibers are generally dense regardless of the spar-
sity pattern of X .

A common task is to multiply a tensor by a set of matrices. This operation is
called the tensor-times-matrix chain (TTMc). When multiplication is performed
with all N modes, we write X × {A}, where {A} is the set of N matrices.
More commonly, one wishes to multiply with all modes but one. We write this
operation as X ×−n {B}, where n is the mode left unmultiplied:

X×−n{B} = X ×1 B(1) ×2 · · · ×n−1 B(n−1) ×n+1 B(n+1) ×n+2 · · · ×N B(N).

This case is the focus of this work, and we will refer to solely it as TTMc for
the remaining discussions. TTMc for n = 1 is illustrated in Fig. 1. Due to the
increasingly dense output of each n-mode product, the size of the intermediate
results during TTMc can greatly exceed the size of the inputs or output. This is
referred to as the intermediate blowup problem [15].

2.3 Tucker Decomposition

Illustrated in Fig. 2, the objective of the Tucker decomposition is to model a
tensor X with a set of orthonormal matrices A(1) ∈ RI1×F1 , . . . ,A(N) ∈ RIN×FN

and a core tensor, G ∈ RF1×...×FN . The orthonormal matrices are referred to as
factor matrices. The resulting optimization problem is non-convex:

minimize
{A},G

1
2 ||X − G × {A}||2F

subject to A(n)T A(n) = I n = 1, . . . , N.

Several optimization algorithms have been developed to compute the Tucker
decomposition, including the higher-order SVD (HOSVD) [7] and higher-order
orthogonal iterations (HOOI) [8]. HOSVD is popular for decomposing dense
tensors and efficient parallel algorithms have been developed [1,5]. However, the
computation becomes progressively more dense during HOSVD and it is not
often applied to sparse computations. Thus, HOOI is the most popular algo-
rithm for sparse tensors and is the focus of this work. HOOI is an iterative

Accelerating the Tucker Decomposition with Compressed Sparse Tensors 657

Algorithm 1. Tucker Decomposition with HOOI
1: while G not converged do
2: for n = 1, . . . , N do
3: Y ← X ×−n {AT }
4: A(n) ← Fn leading left singular vectors of Y(n)

5: end for
6: G ← Y ×N A(N)T

7: end while

Fig. 3. Two encodings of a 2 × 2× 2× 3 tensor with 5 non-zeros.

algorithm which cyclically updates each factor matrix until convergence. Algo-
rithm1 details the steps in computing the factor matrices and core tensor using
HOOI. TTMc (Line 3) is the dominant computation during each update.

Most applications involving sparse tensors are not interested in an exact
model of a tensor, but instead a low-rank factorization. Therefore, in this work
we focus on the case when max(F1, . . . , FN) � max(I1, . . . , IN).

2.4 Data Structures for Sparse Tensors

The most prevalent data structure for representing sparse tensors is coordinate
format. Each non-zero is encoded as a tuple of indices and a non-zero value
(Fig. 3a). Dimension trees are flexible data structures which partition the modes
of a tensor in a hierarchical fashion [10]. An important configuration arranges the
tensor modes into a binary tree with N leaves [11]. A special case of the dimension
tree is the linear arrangement of modes equivalent to coordinate format.

In previous work, we proposed a compressed data structure for sparse tensors
called compressed sparse fiber (CSF) [22,26]. CSF can be viewed as a general-
ization of compressed sparse row, a popular storage format for sparse matrices.
Shown in Fig. 3b, CSF stores the sparsity pattern as a forest of I1 trees, each
with N levels. Each path from a root to a leaf node encodes a non-zero. The
nnz(X) leaf nodes store the final index in the non-zero’s coordinate and are also
accompanied by the non-zero value.

3 Related Work

Li et al. developed parallel algorithms for performing a single TTM kernel for
both dense [16] and sparse [17] tensors.

658 S. Smith and G. Karypis

Memory-Efficient Tucker [15] avoids memory blowup by selectively comput-
ing columns or elements of Y(n) at a time. Intermediate memory costs are mini-
mized at the expense of additional FLOPs and passes over the tensor structure.

Baskaran et al. [2] observed that partial computations can be reused across
TTMc kernels. Consider updating the first two factors of a four-mode tensor.
Each TTMc kernel constructs the partial computation X ×3 A(3)T ×4 A(4)T ,
despite its value not changing between kernels. Baskaran et al. introduced mem-
oization to TTMc by partitioning the tensor modes into two halves, and reusing
the computations from one half to accelerate the computations in the other half.
Kaya and Uçar extended this memoization strategy by using binary dimension
trees to accelerate both the Tucker decomposition [11] and CPD [13]. They store
intermediate computations in the nodes of the tree and can effectively limit the
number of individual n-mode products to log(N) per TTMc operation.

Kaya and Uçar also showed that one can avoid intermediate blowup by
processing individual non-zeros [11]. For example, the following is used for
mode-1:

Y(1)(i1, :) ← Y(1)(i1, :) + X (i1, . . . , iN)
[
A(2)(i2, :) ⊗ · · · ⊗ A(N)(iN , :)

]
. (1)

A row of Y(1) is the only memory required to process a non-zero. The com-
putational complexity of using (1) to perform one TTMc kernel via streaming
through each non-zero is

nnz(X)
N∑

i=2

i∏

j=2

Fj

︸ ︷︷ ︸
KP construction

+ nnz(X) 2
N∏

j=2

Fj

︸ ︷︷ ︸
accumulation

= O
⎛

⎝nnz(X)
N∏

j=2

Fj

⎞

⎠ . (2)

4 TTMc with a Compressed Sparse Tensor

We now detail our operation- and memory-efficient parallel algorithm for TTMc.
We first perform a reformulation of the underlying computations in order to
remove redundancies and then describe a parallel algorithm which uses CSF to
exploit these redundancies. We then analyze the computational complexity of
our algorithm.

4.1 Formulation

We work from (1) which processes individual non-zeros. There are two forms of
arithmetic redundancies that we eliminate during TTMc:

Distributive Kronecker Products. Consider two adjacent non-zeros in a three-
mode tensor. Performing a TTMc operation for the first mode results in the
following computations:

Y(1)(i, :) ← Y(1)(i, :) + X (i, j, k1)
[
A(2)(j, :) ⊗ A(3)(k1, :)

]
, (3a)

Y(1)(i, :) ← Y(1)(i, :) + X (i, j, k2)
[
A(2)(j, :) ⊗ A(3)(k2, :)

]
. (3b)

Accelerating the Tucker Decomposition with Compressed Sparse Tensors 659

Fig. 4. TTMc with CSF and coordinate data structures. The number of FLOPs per-
formed on a node is equal to its volume. Circled nodes produce updates to the output.

The KP is a distributive operation, and so we combine (3a) and (3b) to eliminate
a KP and reach a more efficient update:

Y(1)(i, :) ← Y(1)(i, :) + A(2)(j, :) ⊗
[
X (i, j, k1)A

(3)(k1, :) + X (i, j, k2)A
(3)(k2, :)

]
.

This can be exploited for any set of non-zeros that reside in the same fiber.
For each fiber, we accumulate all of the linear combinations of rows of A(3)

into a row vector, followed by a single KP. This eliminates the construc-
tion and accumulation of nnz(X (i, j, :))−1 KPs, resulting in a reduction of
2F2F3 (nnz(X (i, j, :))−1) FLOPs. This strategy generalizes to any number of
modes:

Y(1) ←
∑

X(i1,:,...,:)
A

(2)(i2, :)⊗

⎛

⎜⎜⎝
∑

X(i1,i2,:,...,:)
A

(3)(i3, :)⊗. . .

⎛

⎜⎜⎝
∑

X(i1,...,iN−1,:)
X(i1, . . . , iN)A(N)(iN , :)

⎞

⎟⎟⎠

⎞

⎟⎟⎠.

Redundant Kronecker Products. Consider the case of performing mode-3 TTMc:

Y(3)(k1, :) ← Y(3)(k1, :) + X (i, j, k1)
[
A(1)(i, :) ⊗ A(2)(j, :)

]
,

Y(3)(k2, :) ← Y(3)(k2, :) + X (i, j, k2)
[
A(1)(i, :) ⊗ A(2)(j, :)

]
.

Note that [A(1)(i, :) ⊗ A(2)(j, :)] appears in the processing of both non-zeros.
We eliminate operations by reusing the KP for both non-zeros. Reusing the
shared KP for an entire fiber saves F1F2(nnz(X (i, j, :))−1) FLOPs. As before,
this process can be generalized to any number of tensor modes.

Operation-Efficient Algorithm. Using the two previous optimizations, we
can devise an algorithm which uses the CSF data structure to eliminate redun-
dant operations. A branch in the tree structure at the ith level represents a set
of non-zeros which overlap in the previous i−1 indices, which is precisely the sce-
nario that the previous optimizations target. Our TTMc algorithm is described
in Algorithm 2 and illustrated in Fig. 4. Intuitively, partial computations begin at

660 S. Smith and G. Karypis

Algorithm 2. TTMc with a CSF Tensor (Fig. 4).
1: function TTMc(X , mode)
2: for i1 = 1, . . . , IN in parallel do
3: construct(X (i1, :, . . . , :), mode, 1)
4: end for
5: end function
6: � Construct Kronecker products and push them down to level mode−1.
7: function construct(node, mode, above)
8: d ← level(node) � The level in the tree (i.e., distance from the root).
9: id ← node id(node) � The partial coordinate of a non-zero (Fig. 3).
10:
11: if d < mode then
12: above ← above ⊗ A(d)(id, :)
13: for c ∈ children(node) do
14: construct(c,mode, above)
15: end for
16:
17: else if d = mode then
18: below ←∑

c∈children(node) accumulate(c)

19: Lock mutex id.
20: Y(d)(id, :) ← Y(d)(id, :) + (above ⊗ below) � Update Y(d).

21: Unlock mutex id.
22: end if
23: end function
24: � Pull Kronecker products up from the leaf nodes.
25: function accumulate(node)
26: id ← node id(node)
27: if level(node) = N then

28: return X (i1, . . . , id) · A(N)(id, :)
29: else
30: return A(d)(id, :) ⊗∑c∈children(node) accumulate(c)

31: end if
32: end function

the root and leaf levels of the tree and grow inward towards the level represent-
ing the mode of computation. Algorithm2 avoids intermediate memory blowup
by processing the tree depth-first, which limits the intermediate memory to a
single row of Y(n).

Parallelism. Algorithm 2 is parallelized by distributing the I1 trees to threads.
Each thread performs a depth-first traversal, and thus the thread-local storage
overhead is asymptotically limited to a single row of Y(n). A consequence of
this distribution is the potential for write conflicts when updating any modes
other than the first. This can be observed in Fig. 3, in which node IDs are only
unique within the root-level nodes. The same synchronization challenges are
present while computing the CPD, which was the first application of the CSF
data structure. We present synchronization using mutexes for simplicity, but
note that the algorithm can benefit from other mechanisms such as tiling [22] or
transactional memory [25].

4.2 Complexity Analysis

We now analyze the computational complexity of Algorithm2. Let nodes(i) be
the number of nodes present in the ith level of a CSF structure (by convention,

Accelerating the Tucker Decomposition with Compressed Sparse Tensors 661

the 1st level is the root level). The number of FLOPs required to perform TTMc
for the nth mode is

∑N
i=1 nodes(i) × cost(i, n), where “cost” is defined as

cost(i, n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

i−1∏

j=1

Fj if i < n,

2
N∏

j=i

Fj if i > n,

2
N∏

j=1
j �=i

Fj if i = n.

(4)

Intuitively, the cost of a node above level-n is the cost of constructing a KP, and
the cost at or below level-n is the cost of constructing and accumulating a KP.

When computing for the leaf mode of the tensor, Algorithm2 assembles KPs
and pushes them down the tree from root to leaves. The complexity grows with
each level of the tree, with the final level having the same asymptotic complexity
as (2). At the other extreme, when n = 1, the computation moves upwards from
leaves to root. Interestingly, the dimensionality of the KPs is non-decreasing, and
at the same time the number of nodes in each level is non-increasing. In the worst
case, non-zeros have no overlapping indices and the algorithm is equivalent to
operating with a tensor stored in coordinate format. However, lower complexities
are possible under some assumptions on the CSF structure and the ranks of the
factorization. To see, compare the costs of levels i and i−1:

nodes(i) × 2
∏N

j=i Fj

nodes(i−1) × 2
∏N

j=i−1 Fj

=
nodes(i)

nodes(i−1)Fi−1
.

Suppose that the cost of the ith mode always exceeds mode i−1:

nodes(i) > nodes(i−1)Fi−1, i = 2, . . . , N

then the Nth mode dominates the computation, arriving at a reduced complexity
of O(nodes(N)FN) = O(nnz(X)FN).

5 Utilizing Additional CSF Representations

Section 4.2 showed that Algorithm 2 has the potential for an asymptotic speedup
over the competing memory-efficient approaches. This depends on the costs of
the lower levels of the tree dominating those at the top, which is possible if: (i)
the branching factor at each level is larger than the corresponding rank; and
(ii) the mode on which we are operating is found at or near the top of the
tree. Fortunately, CSF places no restriction on the ordering of modes. Indeed,
constructing a unique CSF representation for each mode of the tensor was used in
other kernels to expose parallelism [26] and to reduce communication costs [24].

662 S. Smith and G. Karypis

Table 1. Summary of datasets.

Dataset Modes Non-zeros Dimensions

NELL-2 [4] 3 77M 12K, 9K, 29K

Netflix [3] 3 100M 480K, 18K, 2K

Enron [19] 4 54M 6K, 6K, 244K, 1K

Alzheimer [27] 5 6.27M 5, 1K, 156, 1K, 396

Poisson3D, Poisson4D [6] 3,4 100M 3K, . . . , 3K

K and M stand for thousand and million, respectively.

We construct multiple CSF representations in order to minimize the required
number of operations. Utilizing multiple CSF representations allows computa-
tions to occur near the roots of the tree structures while also favoring mode
orderings which result in large branching factors.

There are N ! possible orderings of the tensor modes. To evaluate the cost of a
representation, we must sort the non-zeros in order to inspect the tree structure
and count the number of nodes. Thus, an exhaustive search is impractical for
even small values of N . We begin from an existing heuristic: sort the modes by
their lengths, with the shortest mode placed at the top level [26]. The intuition
behind this heuristic is that ordering shorter modes prior to longer ones discovers
indices with high levels of overlap, resulting in a large branching factor.

Suppose there is memory available for up to K representations of the tensor
data, denoted X 1, . . . ,XK . We select X 1 by sorting the modes as previously
discussed. The remaining K−1 representations are selected in a greedy fashion:
at step k, use (4) to examine the costs associated with TTMc for each mode
when provided with X 1, . . . ,X k−1. The mode with the highest cost is placed at
the top level of X k, and the remaining modes are sorted by increasing length.
At the end of this procedure, each mode has the choice of K representations to
use for TTMc computation. We assign each mode to the representation with the
lowest cost, and use that representation for TTMc. Importantly, if ties are broken
in a consistent manner, then it happens in practice that several modes can be
assigned to the same X k, meaning that fewer than K representations need be
kept in memory for computation. This is later demonstrated in Sect. 6.2.

6 Experimental Methodology and Results

6.1 Experimental Setup

Experiments are conducted on the Mesabi supercomputer at the Minnesota
Supercomputing Institute. Compute nodes have two twelve-core Intel Haswell
E5-2680v3 processors and 256 GB of RAM. Our source code is written in C and
parallelized with OpenMP. All source code is configured to use double-precision
floating point numbers and 32-bit integers. We compile with the Intel compiler
version 16.0.3 and Intel MKL for BLAS/LAPACK routines. We bind threads to
cores via KMP AFFINITY=granularity=fine,compact,1.

Accelerating the Tucker Decomposition with Compressed Sparse Tensors 663

Reported runtimes are the arithmetic mean of twenty iterations. We measure
only the time spent on TTMc, as that is the focus of this study and the remaining
computational steps do not differ between the implementations. Reported times
and speedups are based on performing all of the required computations for TTMc
over a full HOOI iteration. Measuring a full HOOI iteration instead of individual
kernels allows us to compare memoized and non-memoized algorithms.

We compare against two algorithms implemented in the C++ library Hyper-
Tensor [11], the state-of-the-art parallel software for the Tucker decomposition.
HyperTensor uses MPI for distributed-memory parallelism and OpenMP for
shared-memory parallelism. The efficient distributed-memory algorithm used by
HyperTensor combines the communication steps associated with the TTMc and
the following truncated SVD, preventing us from measuring the runtime cor-
responding to only TTMc. Thus, we run HyperTensor with one MPI rank and
twenty-four OpenMP threads. We denote the two algorithms as HT-FLAT, which
is a direct implementation of (1), and HT-BTREE, which uses memoization via
binary dimension trees.

Datasets. Table 1 provides an overview of the datasets used in our evaluation.
NELL-2 is from the Never Ending Language Learning project [4] and its modes
represent entities, relations, and entities. Netflix [3] is constructed from movie
ratings and has modes representing users, movies, and dates. Enron [19] is parsed
from an email corpus spanning three years. Its non-zero values are word fre-
quency and its modes represent senders, receivers, words, and dates. Alzheimer
is constructed from public gene expression data related to Alzheimer’s disease,
provided by MSigDB [27]. Its values are binary and its five modes represent cell
type, drug, binned dosage, gene, and binned amplitudes. Poisson is a set of
synthetically-generated tensors whose values follow a Poisson distribution. We
generated tensors following the method of Chi and Kolda [6] with three and four
modes of length 3000 and 100-million non-zeros. All tensors except Netflix and
Alzheimer are freely available as part of the FROSTT collection [21].

6.2 Results

Operation Efficiency. Figure 5 shows the number of FLOPs required to per-
form TTMc. HT-FLAT (coordinate format) is used as a baseline because a CSF
tensor will match its complexity if it achieves no compression.

A single CSF representation (CSF-1) reduces computational costs by 59% −
83% compared to the baseline. Interestingly, CSF-1 is nearly identical in cost to
the memoized HT-BTREE algorithm on the three-mode datasets. This is due to
the limited amount of memoization possible for a three-mode tensor: one TTMc
is computed at full cost and is used to optimize the remaining two operations.
This matches the limitation of CSF-1, in which the leaf-level mode must still be
computed at full cost. Optimizing for the leaf mode by using CSF-2 is sufficient
to achieve the best-possible FLOP performance on all three-mode tensors.

Both HT-BTREE and the CSF variants improve over HT-FLAT as the num-
ber of modes increase, because additional tensor modes bring additional TTMc

664 S. Smith and G. Karypis

Fig. 5. The number of required FLOPs for rank-20 TTMc on all modes, relative to
HT-FLAT (i.e., coordinate form). CSF-X is the solution found using X CSF represen-
tations. No dataset utilized more than three CSF representations. CSF-BEST is the
optimal configuration using multiple CSF representations, found by exhaustive search.

operations which can be optimized. The benefits of CSF are most apparent on
the five-mode Alzheimer tensor, in which the greedily-selected CSF-A requires
555× fewer FLOPs than HT-FLAT and 61× fewer FLOPs than HT-BTREE.

Observe that HT-BTREE is more operation-efficient than CSF-based meth-
ods on the synthetic Poisson4D tensor. The number of X (i1, i2, :, . . . , :) sub-
tensors is 88% of the total number of non-zeros, meaning that the redundancies
that CSF exploits do not exist in the lower levels of the tree.

Parallel Scalability. Figure 6 shows speedup as we scale from 1 to 24 cores.
We include results for CSF-A which dedicates a CSF representation for each
mode of the tensor, despite fewer representations being sufficient in terms of
FLOP efficiency. CSF-A allows us to measure performance without fine-grained
synchronization overheads because there are no race conditions to consider when
the output mode is located at the root level of the tree.

Synchronization overheads prevent CSF-1 from scaling beyond one CPU
socket, whereas additional CSF representations achieve near-linear scaling. The
cost of synchronization dominates when computing for the bottom levels of the
CSF structure: there are more nodes present in the tree (i.e., more synchroniza-
tions) and also the amount of work performed during synchronizations exponen-
tially increases.

All methods exhibit poor scalability on the Alzheimer tensor. This is
attributed to its unusually short dimensions; the presented methods parallelize

Accelerating the Tucker Decomposition with Compressed Sparse Tensors 665

Fig. 6. Parallel speedup for rank-20 TTMc. CSF-A denotes dedicating one CSF rep-
resentation for each mode of the tensor.

over the outer dimensions of the tensor and thus have idle threads when the outer
dimension is small. This limitation has also been observed in other tensor ker-
nels [18], and has been remedied via alternative parallel decompositions [2,25].
Exploring these alternative decompositions is left to future work.

Runtime and Memory Trade-Offs. Figure 7 shows the memory costs and
average runtime for TTMc. We measure memory consumption via instrumented
source code which tracks the storage used for the tensor structure, thread-local
storage, and memoization. We omit the storage dedicated to the factor matrices
and output because they are the same between methods.

Despite CSF-A not providing additional computational savings, we can see
that it always achieves the best runtime across all datasets and algorithms. This
is expected due to its lack of synchronization overheads and structured writes
to memory. CSF-A ranges from 1.5× − 20.7× faster than HT-BTREE, and also
uses less memory for four of the six datasets. We note that while Poisson4D
is the only tensor for which memoization achieves a better operation reduction
than the CSF variants, but CSF-A is 1.5× faster in runtime.

We can see the benefit of supporting a flexible number of CSF representa-
tions. CSF-1 is always the most space-efficient, while CSF-A is always the fastest
algorithm. CSF-2 provides a reasonable trade-off when time and space are both
limited by dedicating a special CSF representation to the most expensive mode
which will also exhibit the highest synchronization costs.

666 S. Smith and G. Karypis

Fig. 7. Time and space trade-offs for rank-20 TTMc on 24 cores. Time is the mean
number of seconds spent on TTMc during a full iteration of HOOI. Memory is the
storage required for the tensor memoization, and structures for parallelism.

7 Conclusions and Future Work

A sparse tensor-times-matrix chain (TTMc) is the key computational kernel
when computing the Tucker decomposition, which is an important technique for
analyzing sparse tensors. We presented a formulation, complexity analysis, and
performance evaluation for performing sparse TTMc with a compressed data
structure (CSF). We showed that our formulation is both memory-efficient and
can be asymptotically faster than competing methods. Our performance evalua-
tion demonstrated up to 20× speedup over the state-of-the-art while at the same
time using 28× less memory on a real-world dataset. This effectively reduces the
time-to-solution from several hours to a few minutes on a workstation.

Furthermore, we presented a method of tuning the trade-off between the
time and memory footprint of the computation. Users can have either the fastest
execution, the smallest memory footprint, or in-between the two extremes.

There are several topics of future work. One major advantage of multiple CSF
representations is the enhanced scalability via eliminated mutexes. Other CSF
algorithms have had success with techniques such as tiling [22,25] or transac-
tional memory [25], and we will investigate their benefits on TTMc. Alternative
parallel decompositions (such as tiling) are also expected to improve parallel scal-

Accelerating the Tucker Decomposition with Compressed Sparse Tensors 667

ability on tensors such as Alzheimer, which presented difficulties for all methods.
Lastly, our cost model could be improved by considering synchronization costs.

Acknowledgments. The authors would like to thank Oguz Kaya for sharing the
HyperTensor source code, Muthu Baskaran for providing the Alzheimer tensor, Jee
W. Choi for providing the synthetic tensor generator, and anonymous reviewers for
their valuable feedback. This work was supported in part by NSF (IIS-0905220, OCI-
1048018, CNS-1162405, IIS-1247632, IIP-1414153, IIS-1447788), Army Research Office
(W911NF-14-1-0316), a University of Minnesota Doctoral Dissertation Fellowship, Intel
Software and Services Group, and the Digital Technology Center at the University of
Minnesota. Access to research and computing facilities was provided by the Digital
Technology Center and the Minnesota Supercomputing Institute.

References

1. Austin, W., Ballard, G., Kolda, T.G.: Parallel tensor compression for large-scale
scientific data. In: International Parallel and Distributed Processing Symposium
(IPDPS’17), pp. 912–922. IEEE (2016)

2. Baskaran, M., Meister, B., Vasilache, N., Lethin, R.: Efficient and scalable com-
putations with sparse tensors. In: 2012 IEEE Conference on High Performance
Extreme Computing (HPEC), pp. 1–6. IEEE (2012)

3. Bennett, J., Lanning, S.: The netflix prize. In: Proceedings of KDD cup and work-
shop, vol. 2007, p. 35 (2007)

4. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E.R., Mitchell, T.M.:
Toward an architecture for never-ending language learning. In: In AAAI (2010)

5. Chakaravarthy, V.T., Choi, J.W., Joseph, D.J., Liu, X., Murali, P., Sabharwal, Y.,
Sreedhar, D.: On optimizing distributed tucker decomposition for dense tensors. In:
31st IEEE International Parallel and Distributed Processing Symposium (IPDPS
2017) (2017)

6. Chi, E.C., Kolda, T.G.: On tensors, sparsity, and nonnegative factorizations. SIAM
J. Matrix Anal. Appl. 33(4), 1272–1299 (2012)

7. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decom-
position. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000a)

8. De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-(r
1, r 2,., rn) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl.
21(4), 1324–1342 (2000b)

9. Fanaee-T, H., Gama, J.: Tensor-based anomaly detection: an interdisciplinary sur-
vey. Knowl.-Based Syst. 98, 130–147 (2016)

10. Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J.
Matrix Anal. Appl. 31(4), 2029–2054 (2010)

11. Kaya, O., Uçar, B.: High-performance parallel algorithms for the tucker decompo-
sition of higher order sparse tensors. Technical report (2015a)

12. Kaya, O., Uçar, B.: Scalable sparse tensor decompositions in distributed memory
systems. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, p. 77. ACM (2015b)

13. Kaya, O., Uçar, B.: Parallel CP decomposition of sparse tensors using dimension
trees. Research report RR-8976, Inria - Research Centre Grenoble - Rhône-Alpes,
November 2016

668 S. Smith and G. Karypis

14. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev.
51(3), 455–500 (2009)

15. Kolda, T.G., Sun, J.: Scalable tensor decompositions for multi-aspect data mining.
In: 2008 Eighth IEEE International Conference on Data Mining, ICDM 2008, pp.
363–372. IEEE (2008)

16. Li, J., Battaglino, C., Perros, I., Sun, J., Vuduc, R.: An input-adaptive and in-
place approach to dense tensor-times-matrix multiply. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, p. 76. ACM (2015)

17. Li, J., Ma, Y., Yan, C., Vuduc, R.: Optimizing sparse tensor times matrix on
multi-core and many-core architectures. In: Proceedings of the Sixth Workshop
on Irregular Applications: Architectures and Algorithms, pp. 26–33. IEEE Press
(2016)

18. Rolinger, T.B., Simon, T.A., Krieger, C.D.: Performance evaluation of parallel
sparse tensor decomposition implementations. In: Proceedings of the 6th Workshop
on Irregular Applications: Architectures and Algorithms. IEEE (2016)

19. Shetty, J., Adibi, J.: The enron email dataset database schema and brief statistical
report. Information Sciences Institute Technical report 4, University of Southern
California (2004)

20. Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Hanjalic, A., Oliver, N.:
TFMAP: optimizing MAP for top-n context-aware recommendation. In: Proceed-
ings of the 35th international ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pp. 155–164. ACM (2012)

21. Smith, S., Choi, J.W., Li, J., Vuduc, R., Park, J., Liu, X., Karypis, G.: FROSTT:
the formidable repository of open sparse tensors and tools (2017a). http://frostt.io/

22. Smith, S., Karypis, G.: Tensor-matrix products with a compressed sparse tensor.
In: 5th Workshop on Irregular Applications: Architectures and Algorithms (2015)

23. Smith, S., Karypis, G.: SPLATT: The Surprisingly ParalleL spArse Tensor Toolkit
(2016). http://cs.umn.edu/splatt/

24. Smith, S., Park, J., Karypis, G.: An exploration of optimization algorithms for high
performance tensor completion. In: Proceedings of the 2016 ACM/IEEE conference
on Supercomputing (2016)

25. Smith, S., Park, J., Karypis, G.: Sparse tensor factorization on many-core proces-
sors with high-bandwidth memory. In: 31st IEEE International Parallel & Distrib-
uted Processing Symposium (IPDPS 2017) (2017b)

26. Smith, S., Ravindran, N., Sidiropoulos, N.D., Karypis, G.: SPLATT: efficient and
parallel sparse tensor-matrix multiplication. In: International Parallel and Distrib-
uted Processing Symposium (IPDPS 2015) (2015)

27. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette,
M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al.: Gene set
enrichment analysis: a knowledge-based approach for interpreting genome-wide
expression profiles. Proc. Nat. Acad. Sci. 102(43), 15545–15550 (2005)

28. Sun, J.T., Zeng, H.J., Liu, H., Lu, Y., Chen, Z.: Cubesvd: a novel approach to
personalized web search. In: Proceedings of the 14th International Conference on
World Wide Web, pp. 382–390. ACM (2005)

29. Wang, Y., Chen, R., Ghosh, J., Denny, J.C., Kho, A., Chen, Y., Malin, B.A., Sun,
J.: Rubik: knowledge guided tensor factorization and completion for health data
analytics. In: Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1265–1274. ACM (2015)

http://frostt.io/
http://cs.umn.edu/splatt/

Shared Memory Pipelined Parareal

Daniel Ruprecht1,2(B)

1 School of Mechanical Engineering, Leeds LS2 9JT, UK
d.ruprecht@leeds.ac.uk

2 Institute of Computational Science, Università della Svizzera italiana,

Via Giuseppe Buffi 13, 6900 Lugano, Switzerland

Abstract. For the parallel-in-time integration method Parareal,
pipelining can be used to hide some of the cost of the serial correction
step and improve its efficiency. The paper introduces a basic OpenMP
implementation of pipelined Parareal and compares it to a standard
MPI-based variant. Both versions yield almost identical runtimes, but,
depending on the compiler, the OpenMP variant consumes about 7%
less energy and has a significantly smaller memory footprint. However,
its higher implementation complexity might make it difficult to use in
legacy codes and in combination with spatial parallelisation.

Keywords: Parareal · Parallel-in-time integration · Pipelining ·
OpenMP

1 Introduction

Computational science faces a variety of challenges stemming from the massive
increase in parallelism in state-of-the-art high-performance computing systems.
One important requirement is the development of new and inherently parallel
numerical methods. Parallel-in-time integration has been identified as a promis-
ing direction of research for the parallelisation of the solution of initial value
problems [6].

Probably the most widely studied and used parallel-in-time method is
Parareal [13], but see Gander’s overview for a discussion of a variety of other
methods [7]. Parareal iterates between an expensive fine integrator run in par-
allel and a cheap coarse method which runs in serial and propagates correc-
tions forward in time. While the unavoidable serial part limits parallel efficiency
according to Amdahl’s law, some of its cost can be hidden by using a so-called
pipelined implementation [2,14]. Pipelining reduces the effective cost of the serial
correction step in Parareal and therefore improves speedup. Even more optimisa-
tion is possible by using an event-based approach [5], but this requires a suitable
execution framework that is not available on all machines.

Pipelining happens automatically when implementing Parareal in MPI but
it is not straightforward in OpenMP and so far no shared memory version of
Parareal with pipelining has been described. Previous studies almost exclusively

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 669–681, 2017.
DOI: 10.1007/978-3-319-64203-1 48

670 D. Ruprecht

used MPI to implement Parareal and the very few using OpenMP considered
only the non-pipelined version [11]. However, using shared memory can have
advantages, since it avoids e.g. the need to allocate buffers for message pass-
ing. The disadvantage is that naturally OpenMP is limited to a shared memory
unit. Since convergence of Parareal tends to deteriorate if too many parallel time
slices are computed [8] and given the trend to “fat” compute nodes with large
numbers of cores, shared memory Parareal might nevertheless be an attractive
choice. It could be useful, e.g., for simulations of power grids and other appli-
cations where comparatively small systems of differential(-algebraic) equations
have to be solved faster than real-time [12]. This paper introduces an OpenMP-
based version of pipelined Parareal and compares it to a standard MPI-based
implementation. It relies on standard features like parallelised loops, following
a fork-join paradigm, while leaving the investigation of more recent OpenMP
features providing task-base parallelism [3] for future work.

2 The Parareal Parallel-in-Time Integration Method

The starting point for Parareal is an initial value problem

q̇ = f(q(t), t), q(0) = q0, t ∈ [0, T], (1)

which, in the numerical example below, arises from the spatial discretisation of
a PDE (“method-of-lines”) with q ∈ R

Ndof being a vector containing all degrees-
of-freedom. Let Fδt denote a numerical procedure for the approximate solution
of (1), for example a Runge-Kutta method. Denote further by q = Fδt (q̃, t2, t1)
the result of approximately integrating (1) forward in time from some starting
value q̃ at a time t1 to a time t2 > t1 using Fδt.

To parallelise the numerical integration of (1), decompose [0, T] into time-
slices [tp, tp+1], p = 0, . . . , P − 1 where P is the number of cores, equal to the
number of processes (MPI) or threads (OpenMP). For simplicity, assume here
that all time slices have the same length and that the whole interval [0, T] is
covered with a single set of time slices so that no restarting or “sliding window”
is required [17].

Parareal needs a second time integrator denoted GΔt, which has to be cheap
to compute but can be much less accurate (commonly referred to as the “coarse
propagator”). It begins with a prediction step, computing rough guesses of the
starting value q0

p for each time slice by running the coarse method once. Here,
subscript p indicates an approximation of the solution at time tp. It then com-
putes the iteration

qk
p+1 = GΔt(qk

p, tp+1, tp) + Fδt(qk−1
p , tp+1, tp) − GΔt(qk−1

p , tp+1, tp) (2)

concurrently on each time slice for p = 0, . . . , P − 1, k = 1, . . . ,K. Because the
computationally expensive evaluation of the fine propagator can be parallelised
across time slices, iteration (2) can run in less wall clock time than running
Fδt serially – provided the coarse method is cheap enough and the number of
required iterations K is small.

Shared Memory Pipelined Parareal 671

Fig. 1. Execution diagram for Parareal without (left) and with (right) pipelining. Red
blocks correspond to cf, the time needed to run the fine integrator Fδt over one time
slice [tp, tp+1] while blue blocks correspond to cc, the time required by the coarse
method GΔt. Pipelining allows to hide some of the cost of the coarse method. While
it comes naturally when using MPI to implement Parareal (there, Thread would refer
to a Process), using simple loop-based parallelism with OpenMP results in the non-
pipelined version shown on the left. (Color figure online)

The expected performance of Parareal can be described by a simple theoret-
ical model [14]. Denote by cc the cost of integrating over one time slice using
GΔt and by cf the cost when using Fδt. Because all time slices are assumed to
consist of the same number of steps and an explicit method is used here, it can
be assumed that cf and cc are identical for all time slices. Neglecting overhead,
speedup of Parareal using K iterations against running the fine method in serial
is approximately

snp(P) =
Pcf

(1 + K) Pcc + Kcf
=

1
(1 + K) cc

cf
+ K

P

. (3)

It is possible to hide some of the cost of the coarse propagator and the name
pipelining has been coined for this approach [14]. Figure 1 sketches the execution
diagrams of both a non-pipelined (left) and pipelined (right) implementation for
four time slices. As can be seen, pipelining reduces the effective cost of the coarse
correction step in each iteration from P × cc to cc – but note that the initial
prediction step still has cost P ×cc as before. For pipelined Parareal, estimate (3)
changes to

sp(P) =
Pcf

Pcc + Kcc + Kcf
=

1
(
1 + K

P

)
cc
cf

+ K
P

. (4)

Because K/P � K, the pipelined version allows for better speedup, that is
snp(P) ≤ sp(P). However, because pipelining only hides cost from the coarse
integrator, the effect is smaller when the coarse method is very cheap and cc/cs �
1. In that case, the term K/P dominates the estimate which is not affected by
pipelining.

672 D. Ruprecht

3 Pipelined Parareal in OpenMP

The implementation of Parareal with pipelining in OpenMP is sketched in
Algorithm 1. A description of how Parareal is implemented using MPI is available
in the literature [1] and is therefore not repeated here.

Threads are spawned by the OMP PARALLEL directive in line 1.2 and termi-
nated by OMP END PARALLEL in line 1.37. Manual synchronisation is required so
that P OpenMP locks are created using OMP INIT LOCK in line 1.4, one for each
thread. During the fine integrator and update step, these locks are set and unset
using OMP SET LOCK and OMP UNSET LOCK to protect buffers during writes and
avoid race conditions.

The algorithm consists of the following parts:

– Prediction step: lines 1.5–1.13. Each thread is computing its own coarse
prediction of its starting value q0

p in a parallelised loop. The coarse value
GΔt(q0

p, tp+1, tp) is also computed and stored for use in the first iteration.
The later the time slice (indicated by a higher thread number p), the more
steps the thread must compute and thus the larger its workload (cf. Fig. 1).
Therefore, at the end of the coarse prediction loop, the NOWAIT clause is
required to avoid implicit synchronisation and enable pipelining.

– Parareal iteration: lines 1.14–1.36. Here, both the fine integrator and
update step are performed inside a single loop over all time slices, paral-
lelised by OMP DO directives. Because parts of the loop (the update step) have
to be executed in serialised order, the ORDERERD directive has to be used in
line 1.15. Again, to avoid implicit synchronisation at the end of the loop, the
NOWAIT clause is required in line 1.35.

• Fine integrator: lines 1.17–1.20. Before the fine integrator is executed,
an OMP LOCK is set to indicate that the thread will start writing into buffer
q(p). Because thread p − 1 accesses this buffer in its update step, locks
are necessary to prevent race conditions and incorrect solutions. After the
lock is set, the thread proceeds with the computation of Fδt(qk

p, tp+1, tp)
and computation of the difference δq between coarse and fine value. Then,
since q(p) is now up to date and δq ready, the lock can be released.

• Update step: lines 1.21–1.33. The update step has to be performed in
proper order, from first to last time slice. Therefore, it is enclosed in
ORDERED directives, indicating that this part of the loop is to be executed
in serial order. Then, as in the two other versions, the update step is
initialised with qk+1

0 = q0. For every time slice, the coarse value of the
updated initial guess is computed and the update performed. The updated
end value is written into buffer q(p+1) to serve as the new starting value
for the following time slice. However, to prevent thread p from writing
into q(p + 1) while thread p + 1 is still running the fine integrator, thread
p sets OMP LOCK number p + 1 while performing the update.

Shared Memory Pipelined Parareal 673

Algorithm 1: Parareal with pipelining using OpenMP
input: Initial value q0; number of iterations K

1.1 q(0) ← q0

1.2 OMP PARALLEL

1.3 P = OMP GET MAX THREADS()
1.4 OMP INIT LOCK(P)
1.5 OMP DO

1.6 for p = 0, P − 1 do
1.7 q(p) ← q(0)
1.8 if Thread not first then
1.9 q(p) ← G(q(p), tp, 0)

1.10 end
1.11 gc(p) ← G(q(p), tp+1, tp)

1.12 end
1.13 OMP END DO NOWAIT

1.14 for k = 1, K do
1.15 OMP DO ORDERED

1.16 for p = 0, P − 1 do
1.17 OMP SET LOCK(p)

1.18 q(p) ← Fδt(q(p), tp+1, tp)
1.19 δq(p) ← q(p) − qc(p)
1.20 OMP UNSET LOCK(p)

1.21 OMP ORDERED

1.22 if Thread is first then
1.23 OMP SET LOCK(0)

1.24 q(0) ← q0

1.25 OMP UNSET LOCK(0)

1.26 end
1.27 qc(p) ← GΔt(q(p), tp+1, tp)
1.28 if Thread not last then
1.29 OMP SET LOCK(p+1)

1.30 q(p + 1) ← qc(p) + δq(p)
1.31 OMP UNSET LOCK(p+1)

1.32 end
1.33 OMP END ORDERED

1.34 end
1.35 OMP END DO NOWAIT

1.36 end
1.37 OMP END PARALLEL

The implementation described here computes a fixed number of iterations K.
While useful for testing, this is not necessarily optimal since it will perform
iterations even on time slices that have already converged. A simple optimisation
would be to leave threads idle for time slices that have converged. For larger
problems where not the whole time interval can be covered with time slices,
either restarting or some form of “sliding window” should be employed. Both
cases require to replace the outer FOR loop by some form of adaptive control of
iterations and are not considered here.

674 D. Ruprecht

4 Numerical Results

This section compares the pipelined OpenMP implementation to a straightfor-
ward MPI variant with respect to runtime, memory footprint and energy con-
sumption. The code used here for benchmarking is written in Fortran 90 and
available for download [16]. It is special-purpose and solves the nonlinear 3D
Burgers’ equation

ut + u · ∇u = νΔu (5)
on [0, 1]3 ⊂ R

3 with periodic boundary conditions using finite differences. Both
implementations of Parareal use the same modules to provide the coarse and fine
integrator and spatial discretisation. Tests guarantee that the two implementa-
tions of Parareal produce results that are identical up to a tolerance of ε = 10−14

and thus essentially to round-off error. To detect possible race conditions, the
comparison is run multiple times. Up to 100 instances of the test were passed
on both used architectures. Furthermore, both implementations of Parareal use
three auxiliary buffers per time-slice: q to store the fine value and for communi-
cation, δq to store the difference Fδt(q) − GΔt(q) needed in the correction step
and qc to store the coarse value from the previous iteration.

A strong stability preserving Runge-Kutta method (RK3-SSP) [18] with a
fifth order WENO finite difference discretisation [18] for the advection term and
a fourth order centred difference for the diffusion term is used for Fδt. For GΔt, a
first order forward Euler with a simple first order upwind stencil for the advection
term and a second order centred stencil for the diffusive term is used. Being a
simplified version of the Navier-Stokes equations, (5) is a popular benchmark
and finite difference stencils are a widely used motif in computational science,
so that the results can be expected to hold for more general scenarios, at least
qualitatively.

Parameters for the simulation are a viscosity parameter of ν = 0.02 and a
spatial discretisation on both levels with Nx = Ny = Nz = 40 grid points in
every direction. The simulation is run until T = 1.0 with a coarse time step of
Δt = 1/192 and a fine step of δt = 1/240. Because of the high computational
cost of the WENO-5 method in comparison to a cheap first order upwind scheme
and the fact that RK3SSP needs three evaluations of the right hand side per
step while the Euler method needs only one, the coarse propagator is about a
factor of forty faster, despite the fact that the coarse step is only a factor of 1.25
larger than the fine. Using a coarse time step Δt ≈ δt prevents stability issues
in the coarse propagator and improves convergence of Parareal.

To fix the number of iterations to a meaningful value which guarantees com-
parable accuracy from Parareal and serial fine integrator, we estimate the dis-
cretisation error of Fδt by comparing against a reference solution with time
step δt/10. This gives estimates for the fine relative error at T = 1 of about
efine ≈ 5.9 × 10−5 and for the coarse error of about ecoarse ≈ 7.3 × 10−2. For
P = 24 time slices, after three iterations, the defect between Parareal and the
fine solution is approximately 1.4 × 10−4, after four iterations 1.5 × 10−5. We
therefore fix the number of iterations to K = 4 so that for all values of P Parareal
produces a solution with the same accuracy as the fine integrator.

Shared Memory Pipelined Parareal 675

Benchmarks are run on two systems. The first is a commodity work station
with an 8-core Intel Xeon(R) E5-1660 CPU and 32 GB of memory running Cen-
tOS Linux 7. Flags -O3 and -fopenmp were used when compiling the code for
maximum optimisation and to enable OpenMP. As the code is stand alone no
external libraries have to be linked. The used MPI implementation is mpich-
3.0.4, compiled with GCC-4.8.5.

The second system is one node of Piz Dora at the Swiss National Super-
computing Centre CSCS.1 Dora is a Cray XC40 with a total of 1, 256 compute
nodes. Each node contains two 12-core Intel Broadwell CPUs and has 64 or
128 GB of RAM and nodes are connected through a Cray Aries interconnect,
using a dragonfly network topology. Two compilers are tested, the GCC-4.9.2
and the Cray Fortran compiler version 8.3.12. Both use the MPICH MPI library
version 7.2.2. Compiler flags -O3 and -fopenmp (GCC) or omp (Cray compiler)
are used for compilation. Performance data for each completed job is generated
using the Cray Resource Utilisation Reporting tool RUR [4]. RUR collects com-
pute node statistics for each job and provides data on user and system time,
maximum memory used, amount of I/O operations, consumed energy and other
metrics. However, it only collects data for a full node and not for individual
CPUs or cores.

4.1 Wall Clock Time and Speedup

At first, runtime and speedup compared to the serial execution of the fine inte-
grator are assessed. On both the Linux work station and Dora, five runs are
performed for each variant of Parareal and each value of P and the average run-
time is reported. Measured runtimes are quite stable across different runs: the
largest relative standard deviation of all performed five-run ensembles is smaller
than 0.05 on Linux and smaller than 0.01 on dora. Therefore, plots show only
the average values without error bars, because those are hardly recognisable and
clutter the figure.

Figure 2 shows runtimes in seconds depending on the number of cores on
Dora using the Cray compiler (left) and Linux (right). The Cray compiler
generates faster code than GCC in the case studied here, but for comparison
results using GCC on Dora are shown in Fig. 4. The runtime of the serial fine
integrator is indicated by a horizontal black line. The CPU in the Linux system
has a slightly higher clock speed so that runtimes are a bit faster than on dora.
For P = 8 cores, for example, OpenMP-Parareal runs in slightly less than 5 s
there while taking about 5.7 s on dora. Differences between the OpenMP and
MPI version are small on both systems, but for P = 8 OpenMP-Parareal is
marginally faster than the MPI version on the work station.

In addition, Fig. 3 shows the speedup relative to the fine integrator run seri-
ally. The black line indicates projected speedup according to (4). Both versions
fall short of the theoretically possible speedup. Because of overheads, running
P instances of Fδt on P cores does take longer than running a single instance.

1 http://www.cscs.ch/.

http://www.cscs.ch/

676 D. Ruprecht

(a) Piz Dora (b) Linux work station

Fig. 2. Five run averages of runtime with relative standard deviation below 0.01 on
dora (2a) and 0.05 on a Linux work station (2b).

(a) Piz Dora (b) Linux work station

Fig. 3. Speedup computed from average runtimes shown in Fig. 2 on dora (3a) and a
Linux work station (3b).

However, differences between MPI and OpenMP are small. As far as runtimes
and speedup are concerned, there is no indication that using the more complex
OpenMP version provides significant benefits.

Shared Memory Pipelined Parareal 677

(a) Piz Dora (GCC) (b) Piz Dora (GCC)

Fig. 4. Runtime (4a) and speedup (4b) on Piz Dora using GCC.

4.2 Memory Footprint

The memory footprint of the code is measured only on dora where RUR is
available. In contrast to runtime and energy, the memory footprint, as expected,
does not vary between runs. Therefore Fig. 5 shows a visualisation of the data
from a single run with no averaging. The bars indicate the maximum required
memory in MegaByte (MB) while the black line indicates the expected memory
consumption using P cores computed as

m(P) = P × mserial (6)

where mserial is the value measured for a reference run of the fine integrator.
Because copies of the solution have to be stored for every time slice, the total
memory required for Parareal can be expected to increase linearly with the
number of cores in time. Note, however, that memory required per core stays
constant if it follows (6).

For the OpenMP variant compiled with GCC, the memory footprint shown in
Fig. 5a exactly matches the expected values. The Cray compiler, shown in Fig. 5b,
leads to a smaller than expected memory footprint, but memory requirements
still increase linearly with the number of time slices. For both compilers, the MPI
version causes a noticeable overhead in terms of memory footprint, most likely
because of internal allocation of additional buffers for sending and receiving [15].
For both OpenMP and MPI, the total memory footprint is larger for the Cray
than for the GCC compiler, but the effect is much more pronounced for the MPI
implementation (329 MB versus 261 MB) than for the OpenMP variant (200 MB
versus 193 MB).

It is important to note that both implementations allocate three auxiliary
buffers per core. The overhead in terms of memory in MPI does thus not simply

678 D. Ruprecht

(a) GCC compiler (b) Cray compiler

Fig. 5. Maximum memory allocated in MegaByte for GCC (5a) and Cray compiler
(5b) for the three different versions of Parareal depending on the number of used cores
P . The black line indicates expected memory consumption computed as number of
cores time memory footprint of serial fine integrator.

stem from allocating an additional buffer for communication but comes from
within the MPI library. The OpenMP implementation avoids this overhead.

It should be pointed out that the MPI baseline relies on two-sided MPI RECV
and MPI SEND directives for communications. Exploring whether an implementa-
tion based on one-sided remote memory access in MPI [9] retains the advantages
of OpenMP would be an interesting continuation of the presented work.

4.3 Energy-to-Solution

The RUR tool reports the energy-to-solution for every completed job. Because
RUR can only measure energy usage for a full node, results are reported here
for runs using the full number of P = 24 cores available on a dora node. Unfor-
tunately, this makes measuring the energy consumption of the fine propagator
largely meaningless since it can use only a single core of the node. Therefore, no
corresponding measurements were taken to quantify the overhead of Parareal in
terms of energy.

In contrast to runtimes and memory footprint, energy measurements show
significant variations between runs due to random fluctuations. Thus, the
presented values are averages over ensembles of 50 runs for each version of
Parareal. This number of runs has been sufficient to reduce the relative stan-
dard deviation to below 0.09 in both configurations and therefore gives a robust
indication of actual energy requirements. Table 1 shows the results including
95% confidence intervals, assuming energy-to-solution is normally distributed.
For comparison, energy-to-solution is also shown for a simple non-pipelined

Shared Memory Pipelined Parareal 679

OpenMP implementation where only the loop around Fδt is parallelised using
OMP PARALLEL DO.

Table 1. Average energy-to-solution for the three different variants run on P = 24
cores. Since RUR only measures energy consumption of a full node, it was not possible
to meaningfully measure energy-to-solution of the serial propagator and quantify the
energy overhead.

GCC compiler

∅energy (Joule) confidence (Joule) ∅runtime (s)

MPI 844.04 ±15.89 2.455

OpenMP 801.14 ±13.18 2.930

OpenMP (pipelined) 783.72 ±11.53 2.448

Cray compiler

∅energy (Joule) confidence (Joule) ∅runtime (s)

MPI 784.24 ±11.93 2.146

OpenMP 833.12 ±20.99 2.400

OpenMP (pipelined) 784.72 ±12.18 2.088

When using the GCC compiler, MPI-Parareal consumes more energy than
both the pipelined and non-pipelined OpenMP versions. The averages are well
outside the confidence interval for the MPI version, so this is very unlikely
just a chance result. Moreover, because runtimes are almost identical for MPI
and pipelined OpenMP, the differences in energy-to-solution cannot solely be
attributed to differences in time-to-solution. This is supported by the fact that
non-pipelined OpenMP, despite being significantly slower, still consumes less
energy than the MPI variant. Tracking down the precise reason for the differ-
ences in energy-to-solution and power requirement will require detailed tracing
of power uptake which is only possible on specially prepared machines [10] and
thus left for future work.

For code generated with the Cray compiler, both OpenMP and MPI lead to
almost identical energy requirements. Confidence intervals are 784.24 ± 11.93 J
for MPI and 784.24 ± 12.18 J for OpenMP. It seems likely that the compiler
optimises the message passing to take advantage of the shared memory on the
single node. Supposedly, the MPI version handles communication in a way that is
similar to what is explicitly coded in the OpenMP version. However, as shown in
Subsect. 4.2, this automatic optimisation comes at the expense of a significantly
larger memory footprint.

Note that the energy consumption of Parareal has previously been studied [1].
By comparing against a simple theoretical model, it has been shown that the
energy overhead of Parareal (defined as energy-to-solution of Parareal divided
by energy-to-solution of the fine serial integrator), is mostly due to Parareal’s
intrinsic suboptimal parallel efficiency. While improving parallel efficiency of

680 D. Ruprecht

parallel-in-time integration clearly remains the main avenue for improving energy
efficiency, the results here suggest that in some cases a shared memory approach
can provide non-trivial additional savings.

5 Summary

The paper introduces and analyses an OpenMP implementation of the parallel-
in-time method Parareal with pipelining. Pipelining allows to hide some of the
cost of the serial coarse correction step in Parareal and is important to opti-
mise its efficiency (even though it cannot relax the inherent limit on parallel
efficiency given by the inverse of the number of required iterations). Pipelin-
ing comes naturally in a distributed memory MPI implementation, but is not
straightforward when using OpenMP. The new OpenMP implementation is com-
pared to the standard MPI variant in terms of runtime, memory footprint and
energy consumption for both a Cray compiler and the GCC. Both versions pro-
duce essentially identical runtimes. For both compilers, using OpenMP leads to
reductions in memory footprint, but the effect is more pronounced for the Cray
compiler. In terms of energy-to-solution, the results strongly depend on the com-
piler: while for GCC the OpenMP version is more energy efficient than the MPI
version, there is no difference for the Cray compiler.

The results show that contemplating a shared memory strategy to imple-
ment “parallel-across-the-steps” methods like Parareal can be worthwhile. Even
though it is more complicated, it can reduce memory requirements. However,
more advanced features like task-based parallelism in OpenMP, remote mem-
ory access for MPI or a more advanced iteration control to prevent superfluous
computation on converged time slices are not explored here. Another potential
caveat is whether the benefits carry over to the full space-time parallel case,
where a parallel-in-time method is combined with spatial decomposition. For
Parareal without pipelining the potential of such a hybrid space-time parallel
approach has been illustrated [11] but whether this applies to the pipelined ver-
sion introduced here remains to be seen.

References

1. Arteaga, A., Ruprecht, D., Krause, R.: A stencil-based implementation of parareal
in the C++ domain specific embedded language STELLA. Appl. Math. Comput.
267, 727–741 (2015). http://dx.doi.org/10.1016/j.amc.2014.12.055

2. Aubanel, E.: Scheduling of tasks in the parareal algorithm. Parallel Comput. 37,
172–182 (2011). http://dx.doi.org/10.1016/j.parco.2010.10.004

3. Ayguade, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Teruel, X.,
Unnikrishnan, P., Zhang, G.: The design of OpenMP tasks. IEEE Trans. Parallel
Distrib. Syst. 20(3), 404–418 (2009)

4. Barry, A.: Resource utilization reporting: gathering and evaluating HPC system
usage. In: CUG 2013 Proceedings (2013). https://cug.org/proceedings/cug2013
proceedings/includes/files/pap103.pdf

http://dx.doi.org/10.1016/j.amc.2014.12.055
http://dx.doi.org/10.1016/j.parco.2010.10.004
https://cug.org/proceedings/cug2013_proceedings/includes/files/pap103.pdf
https://cug.org/proceedings/cug2013_proceedings/includes/files/pap103.pdf

Shared Memory Pipelined Parareal 681

5. Berry, L.A., Elwasif, W.R., Reynolds-Barredo, J.M., Samaddar, D., Sánchez,
R.S., Newman, D.E.: Event-based parareal: a data-flow based implementation of
parareal. J. Comput. Phys. 231(17), 5945–5954 (2012). http://dx.doi.org/10.1016/
j.jcp.2012.05.016

6. Dongarra, J., et al.: Applied mathematics research for exascale comput-
ing. Technical report, LLNL-TR-651000, Lawrence Livermore National Labora-
tory (2014). http://science.energy.gov/%7E/media/ascr/pdf/research/am/docs/
EMWGreport.pdf

7. Gander, M.J.: 50 years of time parallel time integration. In: Carraro, T., Geiger,
M., Körkel, S., Rannacher, R. (eds.) Multiple Shooting and Time Domain Decom-
position Methods. CMCS, vol. 9, pp. 69–113. Springer, Cham (2015). doi:10.1007/
978-3-319-23321-5 3

8. Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel
time-integration method. SIAM J. Sci. Comput. 29(2), 556–578 (2007).
http://dx.doi.org/10.1137/05064607X

9. Gerstenberger, R., Besta, M., Hoefler, T.: Enabling highly-scalable remote memory
access programming with MPI-3 one sided. Sci. Program. 22(2), 75–91 (2014)

10. Isci, C., Martonosi, M.: Runtime power monitoring in high-end processors: method-
ology and empirical data. In: Proceedings of 36th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 36, p. 93 (2003). http://dl.acm.org/
citation.cfm?id=956417.956567

11. Krause, R., Ruprecht, D.: Hybrid space–time parallel solution of Burgers’ equation.
In: Erhel, J., Gander, M.J., Halpern, L., Pichot, G., Sassi, T., Widlund, O. (eds.)
Domain Decomposition Methods in Science and Engineering XXI. LNCSE, vol. 98,
pp. 647–655. Springer, Cham (2014). doi:10.1007/978-3-319-05789-7 62

12. Lecouvez, M., Falgout, R., Woodward, C., Top, P.: A parallel multigrid reduc-
tion in time method for power systems (2016). http://www.osti.gov/scitech/biblio/
1281664

13. Lions, J.L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s.
Comptes Rendus de l’Académie des Sciences - Series I - Mathematics 332, 661–668
(2001). http://dx.doi.org/10.1016/S0764-4442(00)01793-6

14. Minion, M.L.: A hybrid parareal spectral deferred corrections
method. Commun. Appl. Math. Comput. Sci. 5(2), 265–301 (2010).
http://dx.doi.org/10.2140/camcos.2010.5.265

15. Rabenseifner, R., Hager, G., Jost, G.: Hybrid MPI/OpenMP parallel programming
on clusters of multi-core SMP nodes. In: 17th Euromicro International Conference
on Parallel, Distributed and Network-based processing, pp. 427–436 (2009)

16. Ruprecht, D.: PararealF90: shared memory pipelined Parareal (2017). http://doi.
org/10.5281/zenodo.260095

17. Schreiber, M., Peddle, A., Haut, T., Wingate, B.: A decentralized parallelization-
in-time approach with Parareal (2015). http://arxiv.org/abs/1506.05157

18. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-
capturing schemes II. J. Comput. Phys. 83, 32–78 (1989)

http://dx.doi.org/10.1016/j.jcp.2012.05.016
http://dx.doi.org/10.1016/j.jcp.2012.05.016
http://science.energy.gov/%7E/media/ascr/pdf/research/am/docs/EMWGreport.pdf
http://science.energy.gov/%7E/media/ascr/pdf/research/am/docs/EMWGreport.pdf
http://dx.doi.org/10.1007/978-3-319-23321-5_3
http://dx.doi.org/10.1007/978-3-319-23321-5_3
http://dx.doi.org/10.1137/05064607X
http://dl.acm.org/citation.cfm?id=956417.956567
http://dl.acm.org/citation.cfm?id=956417.956567
http://dx.doi.org/10.1007/978-3-319-05789-7_62
http://www.osti.gov/scitech/biblio/1281664
http://www.osti.gov/scitech/biblio/1281664
http://dx.doi.org/10.1016/S0764-4442(00)01793-6
http://dx.doi.org/10.2140/camcos.2010.5.265
http://doi.org/10.5281/zenodo.260095
http://doi.org/10.5281/zenodo.260095
http://arxiv.org/abs/1506.05157

Nonintrusive AMR Asynchrony
for Communication Optimization

Muhammad Nufail Farooqi1(B), Didem Unat1(B), Tan Nguyen2,
Weiqun Zhang2, Ann Almgren2, and John Shalf2

1 Koç University, Istanbul, Turkey
{mfarooqi14,dunat}@ku.edu.tr

2 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
{tannguyen,weiqunzhang,asalmgren,jshalf}@lbl.gov

Abstract. Adaptive Mesh Refinement (AMR) is a well known method
for efficiently solving partial differential equations. A straightforward
AMR algorithm typically exhibits many synchronization points even
during a single time step, where costly communication often degrades
the performance. This problem will be even more pronounced on future
supercomputers containing billion way parallelism, which will raise the
communication cost further. Re-designing AMR algorithms to avoid syn-
chronization is not a viable solution due to the large code size and com-
plex control structures. We present a nonintrusive asynchronous app-
roach to hiding the effects of communication in an AMR application.
Specifically, our approach reasons about data dependencies automati-
cally using domain knowledge about AMR applications, allowing asyn-
chrony to be discovered with only a modest amount of code modification.
Using this approach, we optimize the synchronous AMR algorithm in the
BoxLib software framework without severely affecting the productivity
of the application programmer. We observe around 27–31% performance
improvement for an advection solver on the Hazel Hen supercomputer
using 12288 cores.

Keywords: Asynchronous execution · Adaptive mesh refinement ·
AMR algorithm · Communication hiding

1 Introduction

Many computational science and engineering problems are modelled in the form
of partial differential equations (PDEs). Although a high resolution mesh is
required for improved accuracy of PDE solvers, usually some mesh regions are of
more interest, where additional accuracy is desired. Adaptive mesh refinement
(AMR) provides the mechanism to locally refine areas of interest [8]. Block-
structured AMR (SAMR) is a type of AMR method that uses structured grids
organized into a grid hierarchy. Areas of interest are refined gradually in a nested
manner from the coarsest level, which covers the whole domain to the finest.

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 682–694, 2017.
DOI: 10.1007/978-3-319-64203-1 49

Nonintrusive AMR Asynchrony for Communication Optimization 683

One of the scalability challenges for AMR applications is that they consist
of many synchronization points. These costly synchronization points appear in
the nearest-neighbor communication including boundary exchange, in the global
reduction, and in the inter-AMR level update. The former has become increas-
ingly costly due to the system design trend focusing on fewer but more powerful
compute nodes [6]. Asynchronous execution can reduce synchronization cost with
the help of description of dependencies between AMR subgrids and the partial
ordering among them. Given the partial ordering information, a scheduler can
assign ready subgrids on available resources while other subgrids are waiting on
their inputs.

In this paper we propose an asynchronous AMR algorithm that reduces the
most of the synchronization costs without bringing too much programming over-
head. In our asynchronous algorithm, each subgrid at different AMR levels is
considered as a task. A task within a specific level can perform computation
independent of other tasks at the same level as soon as its boundary data is avail-
able. Even though there is more opportunity for overlap in an AMR algorithm,
for example, a subgrid located at any level can perform computation indepen-
dent of other subgrids, we enforce the completion of computation of subgrids in
a single level before moving onto the computation at other levels for the sake
of programming simplicity. Our method enables legacy application implemented
using the synchronous AMR algorithm to get the benefits of the communication
and computation overlap. We discuss the implementation of our asynchronous
algorithm in the context of the BoxLib AMR framework and present results on
the advection solver, which contains all the communication scenarios present in
a typical AMR application. We compared our results with the existing BoxLib
execution model, where communication at each level is completed before starting
computation. The performance improvement is about 27% for both strong and
weak scaling on 12288 cores.

Rest of the paper is organized as follows. Next section discusses related work.
In Sect. 3 we provide some background on Block-Structured AMR. Section 4
explains the AMR algorithm in general and Sect. 5 proposes a methodology
to asynchronously execute the AMR algorithm. Implementation is discussed in
Sect. 6. Results are shown in Sect. 7. Finally, Sect. 8 concludes the paper.

2 Related Work

A plethora of work can be found in literature that focuses on speeding up of
AMR computations using diverse techniques while targeting specific problems
or architectures. Some of the high level AMR frameworks are BoxLib [1], Cac-
tus [12], Chombo [10], Enzo [2], FLASH [11], and Paramesh [15]. Wahib et
al. [20] presented a compiler-based framework named Daino that generates par-
allel AMR code optimized for GPUs from an annotated uniform grid code. In
[19], authors introduced an asynchronous integration scheme with local time
stepping for multi-scale gas discharge simulations.

Chan et al. [9] classified AMR execution models into four modes ranging from
fully synchronous to fully asynchronous. The trade-off between the modes is the

684 M.N. Farooqi et al.

amount of synchronization and the programmability. The more asynchronous
the execution becomes, the harder it is to program and debug. Full synchro-
nous is the most restricted one, which will be discussed in Algorithms 1 and 3
in Sect. 4. Rank synchronous reduces the global synchronization down to rank
level and runs synchronously within a rank. Rank synchronous model avoids
global synchronization but enforces local restrictions on task processing order.
BoxLib currently implements a rank synchronous model. In phase asynchronous,
a subgrid within a specific level can perform computation independent of other
subgrids at the same level as soon as dependencies are met and communication
for a subgrid is overlapped within a single time step. Each rank will finish its
communication for all the subgrids before starting computation on any subgrid.
In a fully asynchronous model, a subgrid located at any level can perform com-
putation independent of other subgrids as soon as its own dependencies are met.
Here we present an asynchronous AMR algorithm that is analogous to the phase
asynchronous execution model.

To the best of our knowledge, the literature that explains the asynchronous
AMR algorithm and its corresponding implementation is rare. A few notable
contributions are as follows. Langer et al. [14] proposed a distributed regridding
algorithm to enable fully asynchronous AMR execution for oct-tree based AMR
implementations. They used Charm++ [13] for implementation where each sub-
grid is represented by a chare that can run independently and communication
of one chare is overlapped with computation of another. Our proposed asyn-
chronous algorithm can work with traditional regridding algorithms and can be
implemented using any threading library. Uintah [16] is a software framework
that implements a runtime to execute AMR applications asynchronously. They
also use subgrid level asynchronous task execution to overlap communication
and computation. They mostly discussed the runtime optimization details but
do not explain the asynchronous AMR algorithm.

3 Block-Structured Adaptive Mesh Refinement (SAMR)

AMR provides a computationally efficient approach for solving PDEs by using
finer meshes only at regions of interest. SAMR [8], one of the many AMR meth-
ods, is established on a chain of nested and logically rectangular grids. Starting
from a coarse grid that covers the entire domain at level 0, grids are refined to
finer grids at the higher levels with the finest grid at the top level. Figures 1a
and b show sample SAMR grids having two levels of refinements. Each level is
composed of non-overlapping rectangular grids nested from grids on the lower
level in the hierarchy. The nested grid at a finer level is extended from a single
grid or multiple adjacent grids at the coarser level. All grids at a level are of
the same resolution. Given maximum number of levels at start, the number of
refinement levels can vary dynamically during the simulation.

Generally, two types of communication are involved in the parallel AMR
implementations: (1) intra-level communication is only between neighbor-
ing/adjacent grids, and (2) inter-level communication is only between consec-
utive levels. Two basic operations, restriction and prolongation, are needed for

Nonintrusive AMR Asynchrony for Communication Optimization 685

Level 0

Level 1

Level 2

(a) 3D view (b) Top view

Fig. 1. Block-structured AMR in 2 dimensions with two levels of refinement

inter-level communication. In prolongation, data is interpolated when commu-
nicated from a coarser grid to a finer one. In restriction, data is averaged when
copied from a finer to coarser grid.

4 Synchronous AMR Algorithm

Algorithms 1 and 2 show the basic AMR algorithm described in [18]. Algorithm 1
contains a time step loop, which runs a specified number of times. In each iter-
ation it first finds the time step dt for the current time step. Computing dt
generally involves a global reduction operation to find a minimum value. Next a
recursive procedure AMRTimeStep is called that starts from the coarsest level
and iterates over all levels to compute a single time step.

Algorithm 2 shows the recursive procedure that computes a single time step of
the AMR algorithm. The procedure first checks whether regridding the finer level
is needed. If needed, it estimates the error at finer level (l+1) and regrids the finer
level. When a regrid operation is performed on a finer level, it will subsequently
be carried out for all the upper levels up to the finest level. Boundary data is filled
from current refinement level l if available otherwise data is filled from physical
boundary conditions or interpolated from the coarser level l− 1. Upon receiving
of all the boundary data, all the grids at the current level l are integrated in
time. Next, the AMRTimeStep procedure is called r times recursively to compute
the finer level at smaller time steps. This is known as subcycling in time where
r specifies the desired number of cycles that is normally set to the refinement
ratio. The value of r can be set to 1 if no-subcycling is desired. Data between
the current level and the finer level is synchronized after the finer level reaches
the same time t as the current level. All the levels are integrated independent of
each other. Lastly, data is synchronized between two successive levels to resolve
the inconsistencies at coarse and fine level boundaries.

In the synchronous execution of an AMR algorithm there are multiple syn-
chronization points. First synchronization point is in the computation of time
step value dt where a global reduction operation occurs. Next synchronization
point is when boundary data is filled and this synchronization happens every time

686 M.N. Farooqi et al.

Algorithm 1 Basic AMR algorithm Algorithm 2 Single Time Step

Procedure AMRTimeLoop(time t,
num of steps s)
for i ← 1 to s do

dt ← compute dt()
AMRTimeStep(0, t, dt)
t ← t + dt

end for
Procedure AMRTimeLoop

Procedure AMRTimeStep(level l, time
t, dt)
if isRegrid(l + 1) then

estimateError(l + 1)
generateGrids(l + 1)

end if
if l = 0 then

fillBoundary(level 0 ← level 0)
else

fillBoundary(l ← l and l - 1)
end if
for each grid g in grids at level l do

integrate(l, t + dt, g)
end for
if l < lmax then

repeat j ← 1 to r times:
AMRTimeStep (l + 1, t, j×dt

r
)

end if
synchronizeData(l ← l + 1)
End Procedure AMRTimeStep

the AMRTimeStep procedure is called. Last synchronization is when data is syn-
chronized between two adjacent levels to correct coarse and fine level boundaries.
Next, we discuss our proposed asynchronous algorithm that overcomes some of
these synchronization overheads.

5 Asynchronous AMR Algorithm

In the AMR algorithm listed in Algorithm 2 data needed for all grids at a level
is communicated before starting computation on that level. Thus all the grids at
the same level are computed when all of their dependencies are fulfilled. In the
synchronous algorithm, all grids at the same level are considered as one big task
that is carried out as a whole. For an asynchronous execution, we reduce the task
granularity to subgrid size where each subgrid is considered as a task. A task
can start computing as soon as its dependencies are fulfilled. Here, dependencies
for a task are the data at boundaries that are copied from other tasks.

The asynchronous version of Algorithm 1 is the same as the synchronous
except the reduction operation is performed asynchronously. Algorithm 3 shows
the asynchronous AMR algorithm for a single time step. Before executing Algo-
rithm 1, a task graph is created that contains information about tasks at all levels
and their dependencies. Dependencies in the task graph are based on the grid
structure therefore the task graph remains valid until there is a change in the
grid structure. Asynchronous task graph is updated when a regridding occurs to

Nonintrusive AMR Asynchrony for Communication Optimization 687

reflect the changes in the grids and their dependencies. In Algorithm 3 all the
fillboundary send calls are non-blocking while the receives are blocking.

Algorithm 3 Asynchronous AMR Algorithm - Single Time Step
Procedure AMRTimeStep(level l, time t, dt, iteration iter)
if isRegrid (l + 1) then

estimateError(l + 1)
generateGrids(l + 1)
updateTaskGraph(l + 1)

end if
if FirstT imeStep and iter = 1 and l < lmax then

if l = 0 then fillBoundary send allGrids (level 0 ← level 0) //non-blocking
fillBoundary send allGrids (l + 1 ← l + 1) //non-blocking

end if
for each grid g in grids at level l do //Out-of-order loop iterator

if l = 0 then
fillBoundary receive(level 0 ← level 0, g) //blocking

else
fillBoundary receive(l ← l and l - 1, g) //blocking

end if
integrate(l, t + dt, g)
if l < lmax then

fillBoundary send (l+1 ← l, g) //non-blocking
else

fillBoundary send (l ← l, g) //non-blocking
end if

end for
if l < lmax then

repeat j ← 1 to r time: AMRTimeStep (l + 1, t, j×dt
r

, j)
end if
if l < lmax then synchronizeData receive allGrids (l ← l + 1) //blocking
if l > 0 then synchronizeData send allGrids (l - 1 ← l) //non-blocking
if l < lmax then fillBoundary send allGrids (l ← l) //non-blocking
End Procedure AMRTimeStep

In the first time step, to overlap the intra-level communication at the finer
level (l+1) for timestep (t) with computation of the current level (l) for timestep
(t), we can start sending the boundary data for the finer level because data
at that level is already initialized during the initialization of the application.
After initiating the intra-level communication at the finer level, a loop iterates
over all grids at the current level. The loop iterator is designed to iterate over
the grids for which dependencies are met and it uses the dependency graph to
identify the task dependencies. This out-of-order execution enables ready grids
to start computing while allowing more time for grids which are still waiting
for their boundary data. Receive calls although blocking do not wait idle for
communication because the loop iterator ensures that the dependencies for the

688 M.N. Farooqi et al.

1

2

3 4 5
6

G0

G1

G3 G4

Fig. 2. Asynchronous computation and communication overlap

subgrid are already met. As the dependencies for the task are met, the grid fills
the boundaries with the received data from current and coarser level (l−1). After
performing the computation (integrate) on the grid, the boundary data is sent to
the dependent grids at finer level(l+1) when current level is not the finest level.
If the current level is the finest level (l = lmax) then it sends the boundary data
to dependent grids at the same level for next time step (t+ dt) or next iteration
if subcycling is enabled. Thus boundary data communication between adjacent
levels or within the finest level for next subcycling iteration is overlapped with
computation of the current level (l) or current subcycling iteration. Next, data
at current level is synchronized with the received data from the finer level for
all grids and the synchronized data is then sent to the coarser level. Lastly, for
levels below the finest level we can initiate its intra-level communication for the
next time step (t + dt) or the next subcycling iteration. This enables to overlap
intra-level boundary data communication for finer levels with the computation
at next time step of their coarser levels. However, for iterations within a time
step when subcycling is enabled the overlap will only be with the computation of
grids at the same level. For the coarsest level (0), this can be possibly overlapped
with the global reduction operation required for the next time step value.

Figure 2 shows an example how we enable overlap of computation and com-
munication for Algorithm 3. After computation of grid G0 at level 0, communi-
cation for boundary data takes place as shown by arrows 1 and 2. For example,
if the communication represented by arrow 1 completes first the grid G1 at level
1 will start computation. After G1 finishes computation it can start sending
the boundary data (shown with arrows 3 and 4) to the grids G3 and G4 at
level 2. Communication represented with arrows 3 and 4 will be overlapped with

Nonintrusive AMR Asynchrony for Communication Optimization 689

computation of the grid G2 at level 1. After completion of the grid G2 and initi-
ating the boundary data communication (shown with arrows 5 and 6), any grid
at level 2 that receives its boundary data can start computation. That is if 3
finishes first then G3 can start its computation or if both 4 and 5 finish first
then G4 can start its computation. Similarly G5 can start computation when 6
is finished.

6 Implementation

We implemented the asynchronous AMR algorithm in BoxLib [1], which is a
publicly available software framework used for implementing Block-Structured
AMR applications. Some of the large BoxLib applications are for astrophysics
(CASTRO [3] and MAESTRO [7]), cosmology (Nyx [5]) and low Mach num-
ber combustion (LMC [4]) simulations. BoxLib contains two notable classes,
Amr and AmrLevel, that are related to the AMR algorithm implementation.
The Amr class implements the AMR algorithm described in Algorithms 1 and 2.
AmrLevel manages data and operations required on them for a single level. Amr-
Level contains some virtual functions that the application programmers override
to implement their solver. These virtual functions are called for each level inside
the Amr class’s function that implements the AMR algorithm. Two of these
virtual functions are advance and post timestep. The advance subroutine should
implement the fill boundary data and integration part of the AMR algorithm.
Data management and MPI communication is handled by BoxLib as it provides
fillPatch subroutine that manages the fill boundary data and the programmer
can use it in the advance subroutine to fill the boundary data. Programmer over-
rides the post timestep subroutine to synchronize data between the levels. Data
synchronization between the levels also known as restriction can be performed
using the average down subroutine provided by BoxLib.

To implement the asynchronous execution of the AMR algorithm, we
extended some of the BoxLib functionalities. We added two more virtual func-
tions initAsynchronousExec and finalizeAsynchronousExec to the AmrLevel class
so that applications can override them to initialize and destroy asynchronous
task graphs for a level. Task graphs from all levels are combined together inside
BoxLib to construct dependencies for the entire AMR grid hierarchy. FillPatch
and average down previously implement synchronous MPI communication for
all grids at a level. To enable communication for a single grid without waiting
for the other grids, we divided the execution of FillPatch and average down into
two parts; push and pull. FillPatch push starts sending boundary data from a
single grid to all dependent grids whether at current level or at the finer level.
FillPatch pull receives the boundary data for a single grid from all the relevant
grids. To pick the ready tasks, we implemented an iterator that iterates over
all the tasks in the asynchronous task graph. Our scheduler similar to the run-
time scheduler in [17], backs the iterator to support out-of-order execution. The
scheduler keeps track of the ready tasks and handles all the communications
generated by the asynchronous fillPatch and average down subroutines.

690 M.N. Farooqi et al.

Both new applications and legacy applications developed using BoxLib can be
easily adapted to the new asynchronous framework with reasonable programming
effort. Application programmers need to implement the initAsynchronousExec
and finalizeAsynchronousExec virtual functions to initialize the task graphs for
the corresponding level. To ease this process, we implemented a class named
RegionGraph that can create a task graph for a level automatically using the
metadata from BoxLib. A programmer can create a task graph simply by passing
an object of the MultiFab class to the RegionGraph class constructor. A MultiFab
contains all grids for a single level. A programmer has to replace the function calls
to fillPatch and average down with their asynchronous push and pull versions.
Inside the newly developed task graph iterator, programmers can first pull, then
compute, and then push the tasks using these asynchronous function calls. End
users are insulated from the rest of the complexity involved in the asynchronous
execution, which is handled inside the asynchronous BoxLib framework.

Currently, our implementation of the asynchronous AMR algorithm is
restricted to a single time step. The asynchronous execution starts before com-
putation of the coarsest level and continues all the way up to the finest. We
synchronize all the processes after data is synchronized for the coarsest level.
We currently compute the time step using a synchronous global reduction and
our implementation does not support asynchronous regridding yet. In the future
we will further increase asynchrony, which would support asynchronous task
graph update when grid structure changes, asynchronous global reduction to
compute time step, and asynchronous communication across time steps.

7 Results

We carried out performance study on the Hazel Hen supercomputer located
at the HPC Centre, Stuttgart Germany. Compute node specifications on Hazel
Hen are provided in Table 1. For performance measurement we use an explicit
advection code based on BoxLib. The advection solver advects a scalar field
with a prescribed time-dependent velocity on adaptive meshes. A finite-volume
method with explicit time stepping is employed to solve the PDE. Although this
is a simple system, the code contains all the AMR algorithmic components and
communication patterns for building an explicit solver for a more complicated
system of conservation law equations such as gas dynamics. For example, inter-
and intra-AMR-level communication are needed for filling ghost cells. The mis-
match of finite-volume flux at the coarse/fine interface needs to be corrected so
that the conservation law is preserved. For comparison we use the existing Boxlib
execution model as our baseline which implements Algorithm 2 with rank syn-
chronous execution model discussed in the related work section. BoxLib reduces
the global synchronization down to rank level and runs synchronously within a
rank. All the experiments were performed using three levels of refinement, two
subcycling iterations and a refinement ratio of 2.

Figure 3 shows strong scaling up to 12K cores where each bar is labeled with
percent improvement obtained by the proposed asynchronous algorithm over

Nonintrusive AMR Asynchrony for Communication Optimization 691

Table 1. Machine specifications for Hazel Hen

CPUs Intel E5-2680 v3
(Haswell)

Shared L3 (MB) 30

Sockets/cores per socket 2/12 Main memory (GB) 128

Threads per core 2 Memory bandwidth 68 (GB/s)

Clock rate (GHz) 2.5 Network bandwidth 11.7 (GB/s)

20.9%

22.7%

26.8%
28.6% 23.4% 14.8% 4.8%

0

5

10

15

20

192 384 768 1536 3072 6144 12288

Ti
m

e
pe

r t
im

es
te

p
(s

)

Number of Cores

Proposed Asynchronous BoxLib (Rank Synchronous)

Fig. 3. Strong scaling for advection code on Hazel Hen

BoxLib. We used 10243 grid size as input for strong scaling studies. The y-axis
shows the time spent in a single step of Algorithms 2 and 3. It does not include
the time spent in timestep dt computation and global reduction. Proposed asyn-
chronous algorithm achieves up to 28.6% performance improvement over BoxLib
on 1536 cores. Performance improvement declines as we further increase the num-
ber of cores because the number of subgrids per process becomes too small to
overlap any computation. There are a total of 6041 subgrids with size ranging
from 1283 to 83. For the maximum performance improvement case there are
about 95 subgrids/rank while it reduces to less than 12 subgrids/rank in 12K
cores. Although not shown here, we observe the same strong scaling behavior
when two levels of refinements with subcycling and three levels of refinements
without subcycling are used.

Figure 4 compares weak scaling for BoxLib’s rank synchronous and proposed
asynchronous algorithms. Grid size starts from 10243 for 768 cores and then
doubled in x, y and z directions respectively. The proposed asynchronous algo-
rithm achieves the same weak scaling behavior as BoxLib but with sustained
performance improvement of more than 27%. This is possible because there are
always sufficient number of subgrids per process to hide communication.

A breakdown (for strong scaling) of the time spent during computation (inte-
gration), restriction and prolongation for rank synchronous algorithm compared

692 M.N. Farooqi et al.

Fig. 4. Weak scaling for advection code on Hazel Hen

Fig. 5. Breakdown of performance for strong scaling achieved on Hazel Hen

to the proposed asynchronous algorithm is shown in Fig. 5. Both restriction and
prolongation introduce communication. We can overlap only prolongation with
computation because while performing restriction there is no computation to
overlap with. The proposed asynchronous algorithm hides about 80% of the
communication overhead due to prolongation behind the computation as shown
in Fig. 5.

8 Conclusions

In this paper, we presented an asynchronous execution model for the AMR algo-
rithm. Our asynchronous execution model allows a subgrid within a level to

Nonintrusive AMR Asynchrony for Communication Optimization 693

perform computation independent of other subgrids at the same level to pro-
vide scalability but also maintains the programming simplicity for both AMR
framework developers and the end users. We also discussed how our asynchro-
nous algorithm can be integrated into an AMR framework. The results show
that with affordable programming effort our asynchronous AMR algorithm can
be adapted into AMR software frameworks to achieve decent speedup and
scalability.

Acknowledgments. Authors from Koç University are supported by the Turkish Sci-
ence and Technology Research Centre Grant No: 215E185. Dr. Unat is supported by
the Marie Sklodowska Curie Reintegration Grant 655965 by the European Commis-
sion. We acknowledge PRACE for awarding us access to the Hazel Hen supercomputer
in Germany. Authors from Lawrence Berkeley National Laboratory were supported by
the Office of Advanced Scientific Computing Research in the Department of Energy
Office of Science under contract number DE-AC02-05CH11231.

References

1. Boxlib: An AMR software framework. https://ccse.lbl.gov/BoxLib/
2. Enzo: AMR project. http://enzo-project.org/
3. Almgren, A.S., Beckner, V.E., Bell, J.B., Day, M.S., Howell, L.H., Joggerst, C.C.,

Lijewski, M.J., Nonaka, A., Singer, M., Zingale, M.: CASTRO: a new compress-
ible astrophysical solver. I. Hydrodynamics and self-gravity. Astrophys. J. 715(2),
1221–1238 (2010)

4. Almgren, A.S., Bell, J.B., Rendleman, C.A., Zingale, M.: Low Mach Number Mod-
eling of Type la Supernovae. I. Hydrodynamics. Astrophys. J. 637(2), 922–936
(2006)

5. Almgren, A., Bell, J., Lijewski, M., Lukić, Z., Van Andel, E.: Nyx: a massively
parallel AMR code for computational cosmology. Astrophys. J. 765, 39 (2013)

6. Ang, J., Barrett, R., Benner, R., Burke, D., Chan, C., Cook, J., Donofrio, D.,
Hammond, S., Hemmert, K., Kelly, S., Le, H., Leung, V., Resnick, D., Rodrigues,
A., Shalf, J., Stark, D., Unat, D., Wright, N.: Abstract machine models and proxy
architectures for exascale computing. In: 2014 Hardware-Software Co-Design for
High Performance Computing, pp. 25–32. IEEE, November 2014

7. Bell, J.B., Day, M.S., Lijewski, M.J.: Simulation of nitrogen emissions in a premixed
hydrogen flame stabilized on a low swirl burner. Proc. Combust. Inst. 34(1), 1173–
1182 (2013)

8. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differen-
tial equations. J. Comput. Phys. 53(3), 484–512 (1984)

9. Chan, C.P., Bachan, J.D., Kenny, J.P., Wilke, J.J., Beckner, V.E., Almgren, A.S.,
Bell, J.B.: Topology-aware performance optimization and modeling of adaptive
mesh refinement codes for exascale. In: Proceedings of 1st Workshop on Opti-
mization of Communication in HPC, COM-HPC 2016, pp. 17–28. IEEE Press,
Piscataway (2016)

10. Colella, P., Graves, D.T., Johnson, J.N., Johansen, H.S., Keen, N.D., Ligocki, T.J.,
Martin, D.F., Mccorquodale, P.W., Modiano, D., Schwartz, P.O., Sternberg, T.D.,
Straalen, B.V.: Chombo software package for AMR applications design document.
Technical report (2003)

https://ccse.lbl.gov/BoxLib/
http://enzo-project.org/

694 M.N. Farooqi et al.

11. Fryxell, B., Olson, K., Ricker, P., Timmes, F.X., Zingale, M., Lamb, D.Q.,
MacNeice, P., Rosner, R., Truran, J.W., Tufo, H.: Flash: an adaptive mesh hydro-
dynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J.
Suppl. Ser. 131(1), 273 (2000)

12. Goodale, T., Allen, G., Lanfermann, G., Massó, J., Radke, T., Seidel, E., Shalf, J.:
The cactus framework and toolkit: design and applications. In: Palma, J.M.L.M.,
Sousa, A.A., Dongarra, J., Hernández, V. (eds.) VECPAR 2002. LNCS, vol. 2565,
pp. 197–227. Springer, Heidelberg (2003). doi:10.1007/3-540-36569-9 13

13. Kale, L.V., Krishnan, S.: Charm++: a portable concurrent object oriented system
based on C++. In: Proceedings of Conference on Object Oriented Programming
Systems, Languages and Applications, pp. 91–108 (1993)

14. Langer, A., Lifflander, J., Miller, P., Pan, K.C., Kalé, L.V., Ricker, P.: Scalable
algorithms for distributed-memory adaptive mesh refinement. In: 2012 IEEE 24th
International Symposium on Computer Architecture and High Performance Com-
puting, pp. 100–107, October 2012

15. MacNeice, P., Olson, K.M., Mobarry, C., de Fainchtein, R., Packer, C.: PARA-
MESH: a parallel adaptive mesh refinement community toolkit. Comput. Phys.
Commun. 126(3), 330–354 (2000)

16. Meng, Q., Luitjens, J., Berzins, M.: Dynamic task scheduling for the Uintah frame-
work. In: 2010 IEEE Workshop on Many-Task Computing on Grids and Supercom-
puters (MTAGS), pp. 1–10. IEEE (2010)

17. Nguyen, T., Unat, D., Zhang, W., Almgren, A., Farooqi, N., Shalf, J.: Perilla:
Metadata-based optimizations of an asynchronous runtime for adaptive mesh
refinement. In: Proceedings of International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC 2016, pp. 81:1–81:12. IEEE Press,
Piscataway (2016)

18. Rendleman, C.A., Beckner, V.E., Lijewski, M., Crutchfield, W., Bell, J.B.: Paral-
lelization of structured, hierarchical adaptive mesh refinement algorithms. Comput.
Vis. Sci. 3(3), 147–157 (2000)

19. Unfer, T., Boeuf, J.P., Rogier, F., Thivet, F.: Multi-scale gas discharge simulations
using asynchronous adaptive mesh refinement. Comput. Phys. Commun. 181(2),
247–258 (2010)

20. Wahib, M., Maruyama, N., Aoki, T.: Daino: a high-level framework for parallel
and efficient AMR on GPUs. In: Proceedings of International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2016, pp. 53:1–
53:12. IEEE Press, Piscataway (2016)

http://dx.doi.org/10.1007/3-540-36569-9_13

Accelerator Computing

Balanced CSR Sparse Matrix-Vector Product
on Graphics Processors

Goran Flegar(B) and Enrique S. Quintana-Ort́ı

Departamento de Ingenieŕıa y Ciencia de Computadores,
Universidad Jaume I, 12071 Castellón, Spain

{flegar,quintana}@uji.es

Abstract. We propose a novel parallel approach to compute the sparse
matrix-vector product (SpMV) on graphics processing units (GPUs),
optimized for matrices with an irregular row distribution of the non-zero
entries. Our algorithm relies on the standard CSR format to store the
sparse matrix, requires an inexpensive pre-processing step, and consumes
only a minor amount of additional memory compared with significantly
more expensive GPU-specific sparse matrix layouts. In addition, we pro-
pose a simple heuristic to determine whether our method or the standard
CSR SpMV algorithm should be used for a specific matrix. As a result,
our proposal, combined with the standard CSR SpMV, can be adopted
as the default choice for the implementation of SpMV in general-purpose
sparse linear algebra libraries for GPUs.

Keywords: Sparse matrix-vector product · Sparse matrix data layouts ·
Sparse linear algebra · Performance · GPUs

1 Introduction

The sparse matrix-vector product (SpMV) is a classical yet pivotal kernel for
the solution of numerical linear algebra problems via iterative methods [10]. In
the last years, this operation has also gained relevance for big data analytics [3]
and web search [6]. It is thus natural that, over the past decades, a considerable
research effort has been applied to design specialized data structures that offer a
compact representation of the problem data to reduce the storage requirements,
facilitate its manipulation, and diminish the volume of data movements for sparse
computational kernels such as SpMV.

Among the variety of storage layouts for sparse matrices, the CSR (Com-
pressed Sparse Row) format [10] conforms the current standard layout because
of its storage efficiency which, in general, results in faster serial algorithms [2]. For
this reason, CSR has become ubiquitous in sparse matrix computations [2,4,10].

For graphics processing units (GPUs), CSR can be outperformed by special-
ized sparse matrix layouts that sacrifice storage efficiency for fast (coalesced)
memory access. Among these GPU-oriented formats, ELLPACK, ELLR-T [11]
and SELL-C-σ [1,5] have shown notable performance. Unfortunately, none of
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 697–709, 2017.
DOI: 10.1007/978-3-319-64203-1 50

698 G. Flegar and E.S. Quintana-Ort́ı

these formats is truly general. Some suffer from increased memory consump-
tion, which can grow significantly for irregular sparsity patterns, while others
(like NVIDIA’s HYB [9]) are only suitable for a few types of matrix operations
(computational kernels) and/or require expensive format conversions. Another
common issue arising in SpMV computations on GPUs is load imbalance. This
has been a topic of some recent research, resulting in new matrix formats like
CSR5 [7] and BCCOO [12], which enable well-balanced SpMV algorithms.

In this paper, we re-visit the CSR format, proposing a CSR-based SpMV
variant that provides increased efficiency on GPUs and offers the following prop-
erties compared with standard CSR algorithm and GPU-specific solutions:

– Our balanced CSR algorithm for irregular matrices (CSR-I) ensures an even
distribution of the workload among the CUDA threads participating in the
SpMV, at the cost of using atomic updates to avoid race conditions.

– CSR-I maintains the same data structure as CSR, and augments this with
an additional vector of a dimension that is linear in the amount of available
parallelism. For moderate to large-scale problems this introduces a negligible
storage overhead, in general much lower than that incurred by ELLPACK-
type formats and sliced versions (SELL-∗).

– The additional data structure leveraged by CSR-I can be built at execution
time, e.g. the first time an SpMV is invoked, for a very small computational
cost, similar to that of reading once the solution vector for the SpMV.

– Our experiments with a subset of a sparse matrix benchmark show that CSR-I
outperforms CSR for about 40–50% of the cases on NVIDIA architectures pro-
viding hardware support for atomic updates. Furthermore, it is easy to detect
a priori when CSR-I should be the preferred option. This property leads to
an optimal hybrid kernel that employs either CSR-I or CSR, depending on
the target problem.

2 CSR-Based Formats and Algorithms for SPMV

CSR represents a sparse matrix A ∈ Rm×n in compact form using three arrays:
vector val stores the nz non-zero values by rows; colidx keeps the column
index for each value in the same order; and rowptr contains m + 1 row pointers
that mark the initial and final position of each row within the other two arrays;
see Fig. 1. Storing the sparse matrix A in CSR format thus requires SCSR =
nz(sv + si) + (m + 1)si bytes, where sv and si respectively denote the number
of bytes occupied by each value and integer index.

In [8], Bell and Garland (BG) explored the performance of different sparse
formats and implementations of SpMV for throughput-oriented GPUs from
NVIDIA. BG’s SpMV kernels based on CSR parallelize the product across the
matrix rows, with one CUDA thread assigned to each row in the scalar kernel
(CSR-s) or, alternatively, one warp per row in the vector kernel (CSR-v). CSR-s
has two major issues though: first, for sparse matrices with an irregular row dis-
tribution of their non-zero entries, many threads within a warp will likely remain
idle. Second, since each thread of a warp works on a different row, the memory

Balanced CSR Sparse Matrix-Vector Product on Graphics Processors 699

0 1 2 3 4 5 6 7 8

0.3 1.1 1.5 3.2 5.1 5.3 5.6 6.4 7.0

nz

nz

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

1.1

0.3

1.5

3.2

5.1 5.3 5.6

6.4

7.0

Sparse matrix in dense format

Size:

val

rowptr 0 1 3 3 4 4 7 8 9

3 1 5 2 1 3 6 4 0colidx

Size:

Size: m+1

CSR format

Fig. 1. Data layouts for an 8 × 8 sparse matrix with nz = 9 nonzero entries.

accesses are noncoalesced. CSR-v aims to amend the second issue, though it
requires that the rows contain a number of nonzeros greater than the warp size
in order to deliver high performance [8].

A couple of examples illustrate the advantages/deficiencies of CSR-s and
CSR-v. Consider first an arrowhead matrix, with all its nonzero entries lying on
the main diagonal and the last column/row of the matrix. (This problem type
appears in domain decomposition methods, when discretizing partial differential
equations.) This matrix structure poses an ill-case scenario for both BG kernels,
as it produces a highly unbalanced mapping of the workload to the threads.
In contrast, a tridiagonal matrix (often encountered in computational physics),
results in an almost perfectly balanced distribution of the workload for both BG
CSR kernels, but yields a significant waste of resources for CSR-v.

Figure 2 provides a motivating example for our work. The left-hand side
plot there shows the sparsity pattern for matrix Freescale/transient from
the SuiteSparse Matrix Collection.1 The distribution of the nonzeros for this
problem, arising in circuit simulation, shows quite an unbalanced pattern, with
most of the elements concentrated in a few rows of the matrix. Concretely, more
than 95% of the rows contain 10 or less nonzeros; 99.95% comprise 100 or less
nonzeros; only 5 rows contain more than 103 nonzeros; and only 2 more than
104, with the densest row comprising 60,423 nonzero entries.

The right-hand side plot in Fig. 2 reports the execution time on an NVIDIA
GTX1080 GPU for double-precision SpMV kernels based on CSR and HYB
(implemented in cuSPARSE [9]), SELL-P (from MAGMA-sparse2), and our bal-
anced version of CSR (CSR-I). ELL and ELLR-T are not included because, for
this problem instance, they both need to store an m×60, 423 matrix just for the
array val (i.e., more than 79.5 Gbytes in double precision), which exceeds the
memory of the target GPU. For this particular matrix both CSR and SELL-P

1 Formerly known as the University of Florida Matrix Collection: http://www.cise.ufl.
edu/research/sparse/matrices/.

2 http://icl.cs.utk.edu/magma/.

http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/
http://icl.cs.utk.edu/magma/

700 G. Flegar and E.S. Quintana-Ort́ı

8.23

0.16

10.50

0.15

11.68

18.00

38.34

11.70

CSR HYB SELL-P CSR-I
0

2

4

6

8

10

12

0

5

10

15

20

25

30

35

40

Fig. 2. Left: sparsity pattern for Freescale/transient. Right: execution time (blue)
and memory consumption (red) on a GTX1080 using different SpMV kernels. (Color
figure online)

exhibit poor performance compared with HYB and CSR-I. SELL-P also suf-
fers from considerably higher memory consumption than other implementations.
CSR-I is the best performing algorithm in this case, achieving slightly better per-
formance than HYB, while maintaining the storage efficiency of CSR.

3 Balanced SPMV Kernel

The culprit for the unbalance in the SpMV implementations discussed in Sect. 2
is the irregular distribution of arrays val and colidx (and therefore workload)
among the threads. This irregularity can result in significant performance loss,
since the two vectors comprise the majority of CSR’s data structure. Hence, the
key objective of our kernel is to attain a balanced distribution of these arrays
among the threads. The trade-off for this comes in the form of an increased
number of integer operations and the introduction of potential race conditions,
which may result in slightly lower performance on regular sparsity patterns.

General Idea. In order to distribute the arrays val and colidx, both of size nz,
evenly among T threads, thread k ∈ {0, 1, . . . , T − 1} is given a segment of the
arrays starting at �knz/T � (inclusive) and ending at �(k + 1)nz/T � (exclusive).
During the execution of the SpMV y := Ax + y, with an m × n matrix A, each
thread multiplies the elements in its segment of val with those of the input
vector x determined by the corresponding indices in colidx (dot product). The
result has to be accumulated into the correct position of the output vector y.
Thus, the thread has to keep track of the current row it is operating on, as well
as the last entry of the row, in order to detect a change to the next row once
this entry is reached. The sequential C routine in Fig. 3 illustrates this idea.
Since there can be multiple threads operating on the same row, the updates on
the solution vector y have to be implemented as atomic transactions, resulting
in one transaction per matrix element which rapidly becomes a performance
bottleneck. However, this problem can be amended by accumulating the result

Balanced CSR Sparse Matrix-Vector Product on Graphics Processors 701

1 const int T = thread_count; // degree of thread concurrency
2 void SpMVI(int m, int *rowptr , int *colidx , float *val , float *x, float *y) {
3 int row = -1, next_row = 0, nnz = rowptr[m];
4 for (int k = 0; k < T; ++k) { // this loop should be parallelized
5 for (int i = k*nnz / T; i < (k+1)*nnz / T; ++i) {
6 while (i >= next_row) next_row = rowptr[++row+1];
7 y[row] += val[i] * x[colidx[i]];
8 }}}

Fig. 3. A (sequential) C implementation of the CSR-I algorithm. In a parallel imple-
mentation each thread needs to efficiently determine its starting value of the row vari-
able. This is discussed in Sect. 3, “Determining the first row of each segment”.

to a thread-local variable, and updating the output vector only after the thread
has finished processing the row. With this option, the upper limit on the number
of atomic transactions is reduced to m + T .

Achieving Good Performance on GPUs. Although the approach underlying
CSR-I does result in a balanced distribution of the data among the threads, it
is not suitable for GPUs in such form. Concretely, since each thread operates on
a different matrix segment, with that formulation the memory accesses of the
threads within a warp will be noncoalesced. In a memory-bounded kernel like
SpMV, this severely reduces performance. To tackle the issue, the segments can
be distributed at the warp-level, so that each segment is assigned to one warp
(instead of to one thread). The warp then reads its segment in chunks of 32
elements, with each thread within the warp reading one value of the chunk and
accumulating the result into its local registers. After reaching the end of a row,
all threads need to write their results to the output vector. If this was realized
using atomic instructions, it would cause significant overhead, as the threads
inside one warp are synchronized and all of them would then try to update
the result at exactly the same time. Instead, the results are first accumulated
by a single thread, using reduction via warp shuffles, and then a single atomic
addition updates the result in global memory.

A second question arising from the warp-level segment distribution is how to
handle rows that end in the middle of a chunk. Waiting for the entire warp to
complete the processing of a row before moving to the next one would cause a
partial serialization in case the rows consisted of a few elements only. To address
this, the threads are allowed to work on different rows at the same time, and the
information about the current and the next rows becomes thread-specific. As
a consequence, the algorithm to accumulate the results before writing to main
memory needs to be changed. Each time at least one of the threads moves to a
different row, the entire warp executes a segmented scan (instead of a reduction)
which accumulates the result for each row in the register of the first thread
working on that particular row. At this point the local results of the remaining
threads are reset to zero, while the first threads will update the global output
vector once they are finished with their row. This eliminates all race conditions
inside a warp, since each thread updates a different location of the output vector.
Determining whether at least one thread moved to the next row can be realized
in only one instruction per chunk by using warp vote functions.

702 G. Flegar and E.S. Quintana-Ort́ı

Warp-level segment distribution also causes additional reads from rowptr,
since each thread may need to move multiple rows after each chunk. However, as
the last thread in a warp always has the most up-to-date information about the
starting row of the next chunk, the number of reads can be reduced by broad-
casting this information to the other threads within the warp using a single warp
shuffle. Finally, in order to ensure aligned accesses to arrays val and colidx,
and fully utilize each fetched cache line, the segment sizes can be restricted to
an integer multiple of the chunk size. Since the chunk size is a multiple of the
cache-line size, if val and colidx arrays are aligned, the start of each segment
will also be aligned.

Determining the First Row of Each Segment. At the beginning of the
CSR-I algorithm each warp has to determine the first row of its segment. This
can be done by first constructing a histogram of rowptr with T bins associated
with the segments of val and colidx. The number of elements ni in each bin
corresponds to the number of rows which end in the segment associated with this
particular bin. Since the first row of segment k is equal to the number of rows
ending in previous segments (i.e., srowk = n1 + n2 + . . . + nk−1), the indices
of these first rows can be determined by computing the exclusive scan of the
histogram.

In order to avoid repeating this computation at each SpMV invocation, the
array srow can be saved and “attached” to the CSR matrix structure. We note
that the optimal number of warps T does not depend on the matrix A, but
only on the hardware-specific degree of thread-concurrency, adding a constant
amount of storage overhead. Even though the procedure can be realized on the
GPU in parallel, this is generally not needed, as its computational cost is very
low compared with that of SpMV: the entire computation requires only one pass
over rowptr and one over the resulting histogram, comprising a total of m + T
data accesses and integer operations. Instead, it can be performed sequentially
on the CPU and overlapped with the (initial) memory transfer of matrix A to
the GPU.

4 Experimental Evaluation

Setup and Metrics. The GPUs used in the experiments cover a fair subset of
recent compute capabilities from NVIDIA: 3.5 (“Kepler” K40) and 6.1 (“Pascal”
GTX1080). Since the experiments run only on the GPU, the details of the host
CPU are not relevant. Experiments on even older architectures (Fermi and ear-
lier) are not possible since these GPUs do not support warp shuffle instructions
required by the CSR-I algorithm. We use NVIDIA’s compilers in the CUDA
toolkit 8.0, and report numbers for single precision (SP) and double precision
(DP) arithmetic. All kernels are implemented using the CUDA programming
model and are designed to be integrated into the MAGMA-sparse library, which
is also leveraged as a testing environment. In addition, the CSR-I algorithm will
be publicly available in a future version of MAGMA.

Balanced CSR Sparse Matrix-Vector Product on Graphics Processors 703

CSR CSR-I ELL ELLR-T SELL-P HYB
101

102

103

104

105

106

107

108

109

CSR-I ELL ELLR-T SELL-P HYB

100

101

102

103

104

105

106

Fig. 4. Storage consumption of different sparse matrix formats (left) and overhead
compared to CSR for these formats (right). The data is shown for 100 selected matrices
from SMC, assuming sv = 8 (double precision) and si = 4.

Among the implementations of SpMV based on CSR we compare the two
variants from BG: CSR-s, which is implemented in MAGMA-sparse and an
implementation of CSR-v taken from BG’s article, as well as the CSR algo-
rithm from NVIDIA’s cuSPARSE library. Among the specialized formats, we
include the implementations of SpMV for ELLPACK, ELLR-T and SELL-P
from MAGMA-sparse, and that for the HYB format from cuSPARSE.

In order to obtain a comprehensive evaluation we compare the storage for-
mats and SpMV implementations from the perspectives of performance and
storage cost. For the performance, we report either the speed-up/slow-down rel-
ative to the CSR kernel from cuSPARSE or the absolute performance in terms
of GFLOPS rate (billions of floating-point arithmetic operations, or flops, per
second). The flop count for SpMV used for all examples is 2nz, even though
some of the implementations of SpMV may actually perform a larger number
of flops (because they operate with zero entries). All experiments are repeated
1,000 times and the average time of these runs is used in the calculations.

The CSR-I algorithm has one tunable parameter: the number of warps T
launched to compute the SpMV. The optimal value for T is proportional to the
degree of hardware concurrency, i.e. T = l · nC/32, where nC is the number
of CUDA cores available on the GPU and l is the desired load per core. Our
experiments reveal that the optimal load is l = 64 for both the K40 and GTX1080
architectures and this setting is used for all experiments in this section.

We determine the storage requirements for the CSR, ELLPACK and ELLR-T
formats from the basic properties of the matrix A as:

SCSR, SELL = m · lM (sv + si), and SELLR−T = SELL + m · si,

where lM is the number of nonzero elements in the densest matrix row. Deter-
mining the storage requirements for the remaining two formats is more involved.
For SELL-P we use a conversion routine from CSR to SELL-P implemented
in MAGMA-sparse and modify each memory allocation to instead increase a

704 G. Flegar and E.S. Quintana-Ort́ı

CSR-I CSR CSR-s CSR-v HYB SELL-P
10-2

10-1

100

101

102

CSR-I CSR CSR-s CSR-v HYB SELL-P
10-2

10-1

100

101

102

CSR-I CSR CSR-s CSR-v HYB SELL-P
10-2

10-1

100

101

102

CSR-I CSR CSR-s CSR-v HYB SELL-P
10-2

10-1

100

101

102

Fig. 5. GFLOPS distribution of SpMV implementations on K40 (top) and GTX1080
(bottom), using SP and DP arithmetic (left and right, respectively).

counter by the amount that it was supposed to allocate. This is not possi-
ble for HYB, as the source code is not available. For this case, we use the
cudaMemGetInfo routine from the CUDA Runtime API to get the total amount
of free device memory before and after allocating the matrix in HYB format.
The difference between the two values is the actual storage required by HYB.
This strategy allows us to measure the storage consumption without actually
allocating the required data for all formats except HYB. Thus, we are able to
evaluate the cost even if the problem does not fit into the GPU memory.

The experiments are carried out using a subset of the SuiteSparse Matrix
Collection (SMC). Concretely, we first filtered the complete collection (2,757
problem instances) keeping only real-valued instances with 106 ≤ nz < 108 (491
problems), and then randomly selected 100 cases3 among these (about 20% of
the filtered problems and 3.6% of the complete collection). The limits for nz were
chosen to allow the utilization of the full processing potential of GPUs, while
keeping the storage requirements low enough to fit the matrix into the GPU
memory. We believe this is a representative subset of the problems for which a
GPU accelerator can be beneficial, not being biassed to any particular format.

3 The list of cases employed in the experiments can be downloaded from http://www3.
uji.es/∼flegar/2017 csri/matrices.txt.

http://www3.uji.es/~flegar/2017_csri/matrices.txt
http://www3.uji.es/~flegar/2017_csri/matrices.txt

Balanced CSR Sparse Matrix-Vector Product on Graphics Processors 705

0 10 20 30 40 50 60 70 80 90 100
10-1

100

101

102

0 10 20 30 40 50 60 70 80 90 100
10-1

100

101

102

0 10 20 30 40 50 60 70 80 90 100
10-1

100

101

102

0 10 20 30 40 50 60 70 80 90 100
10-1

100

101

102

Fig. 6. Comparison of SpMV implementations on K40 (top) and GTX1080 (bottom),
using SP and DP arithmetic (left and right, respectively).

Memory Consumption. We commence our evaluation with an analysis of
storage consumption of different matrix formats for the 100 selected matrices
from SMC. Figure 4 shows that, for most cases, CSR is the format that requires
the lowest amount of memory, and the additional storage required to save the
srow array in CSR-I is negligible. HYB requires some additional memory, but this
is still within a limit of 2× compared with CSR. SELL-P performs quite poorly
for some cases, consuming up to 11× more memory than CSR; while ELLPACK
and ELLR-T consume even up to 5 orders of magnitude more storage space in
some cases. As a result, even though the storage required by CSR and HYB is
under 1 Gbyte for all selected problems, the storage requirements can grow to
3 Gbytes for SELL-P and even to 100 Tbytes for ELLPACK and ELLR-T. This
shows that the last two layouts cannot be considered as general formats. Since
the focus of this work is on SpMV algorithms for general matrices, possibly
with an irregular nonzero distribution, we omit ELLPACK and ELLR-T from
the following experiments.

Global Comparison. The results in Fig. 5 show the distribution of the
GFLOPS rates by means of “box-and-whisker” plots. This experiment reveals
that the median GFLOPS rate for our CSR-I format (red line inside the blue
boxes) is similar to those of the specialized kernel for CSR in cuSPARSE, HYB
and SELL-P; and all four present considerably higher GFLOPS medians than

706 G. Flegar and E.S. Quintana-Ort́ı

0 10 20 30 40 50 60 70 80 90 100
10-1

100

101

102

0 10 20 30 40 50 60 70 80 90 100
10-1

100

101

102

0 10 20 30 40 50 60 70 80 90 100
10-1

100

101

102

0 10 20 30 40 50 60 70 80 90 100
10-1

100

101

102

Fig. 7. Comparison between CSR and CSR-I implementations of SpMV on K40 (top)
and GTX1080 (bottom), using SP and DP arithmetic (left and right, respectively).

those observed for CSR-s and CSR-v. For this reason, we omit CSR-s and CSR-v
from further discussion. Furthermore, the lower “whisker” attached to the boxes
in Fig. 5, which comprises the first quartile (i.e. 25%) of the cases, show that both
CSR and SELL-P encounter a considerable number of “ill-conditioned” cases
from the point of view of performance, delivering notably lower GFLOPS rates
for those. In contrast, CSR-I and HYB feature a more consistent performance
rate. This behaviour can also be observed in Fig. 6. (The problem instances in
this figure are ordered by speed-up/slow-down of CSR-I over cuSPARSE CSR.)
For regular cases, appearing in the left-hand side of the plots, CSR-I is outper-
formed by all implementations due to its higher arithmetic intensity and use of
atomic operations. In contrast, for irregular problems, in the right-hand side of
the plots, the only implementation that matches its performance is HYB, which,
in addition to higher storage consumption, is not suitable for other types of oper-
ations. We do not evaluate the cost of transformation from CSR to the other
formats included in our experiments. For CSR-I, as discussed in the previous
section, this cost is small, or even negligible if this transformation is overlapped
with the first transfer of the matrix data to the GPU memory.

Detailed Comparison of CSR and CSR-I. As argued at the beginning
of this paper, the specific goal for our CSR-I variant is to ensure an efficient
execution of SpMV when the matrix exhibits an irregular row distribution of its

Balanced CSR Sparse Matrix-Vector Product on Graphics Processors 707

10-3 10-2 10-1 100 101 102 103
10-1

100

101

102

103

10-3 10-2 10-1 100 101 102 103
10-1

100

101

102

103

10-3 10-2 10-1 100 101 102 103
10-1

100

101

102

103

10-3 10-2 10-1 100 101 102 103
10-1

100

101

102

103

Fig. 8. Relationship between s[nzr]/E[nzr] (x-axis) and speed-up/slow-down of CSR-I
over CSR (y-axis) on K40 (top) and GTX1080 (bottom) using SP and DP arithmetic
(left and right, respectively).

nonzero entries, while maintaining the data layout of the regular version of CSR
(and roughly its memory requirements). To close the experiments, we evaluate
the performance of these two formats in more detail. Figure 7 illustrates the
throughput of the CSR-I variant with respect to that of CSR from cuSPARSE
for each problem instance. In these plots, we employ a logarithmic scale for the
y-axis, and the problems instances are sequenced in the x-axis in increasing order
of difference in favour of CSR-I. For three of the configurations: K40-SP and
GTX 1080-SP/DP, CSR-I outperforms CSR in about 40–50% of the problems,
and the difference in favour of the former comes in a factor that can raise more
than 100×. Compared with this, the highest loss of CSR-I shows a factor that is
at most 0.3×. For K40-DP CSR-I is superior for 24% of the problem instances.
This is explained by the lack of hardware support for DP atomic updates in this
architecture.

Even though CSR-I shows notable acceleration over CSR for a fair fraction
of the problem instances, an optimal hybrid strategy is obtained if CSR-I is
applied to compute SpMV for matrices in this subset only, while the operation
relies on CSR for the remaining cases. Note that this is possible because CSR-I
maintains the same structure as CSR, with just an additional vector to store
the starting rows of each segment. In contrast, an attempt to combine CSR with

708 G. Flegar and E.S. Quintana-Ort́ı

any of the other GPU-specialized formats (HYB, SELL-P, ELLPACK, ELLR-T)
would incur a considerable increase in the amount of stored information (even
a complete duplication). Still, a relevant question is whether we can choose a
priori to rely on either CSR or CSR-I for a particular SpMV. Figure 8 shows
that this is indeed the case if we have a rough statistical estimation of the
distribution of the number of nonzero entries per row nzr. Concretely, the figure
depicts the relationship between the performance of CSR-I over CSR and the
standard deviation-to-mean ratio: s[nzr]/E[nzr]. The plots in the figure show
a clear separation at s[nzr]/E[nzr] = 1 for both architectures and precisions.
For ratios grater than one, CSR-I is slightly slower for only one test matrix
and shows a significant acceleration for the rest of the cases on GTX1080. The
K40 GPU exhibits a similar behaviour, with only several cases slightly slower
and the majority achieving significantly higher performance for ratios above this
threshold. For ratios between 0.1 and 1, the faster algorithm depends on the
matrix, but the majority of cases favour cuSPARSE CSR. For extremely regular
sparsity patterns, with ratios below 0.1, cuSPARSE CSR is the clear winner.

5 Conclusions

We have re-formulated the parallelization of SpMV based on the CSR sparse
matrix format to enforce a balanced partitioning of the data (and workload)
on GPUs, optimized for matrices with an irregular row distribution of the non-
zero entries. Our approach departs from the conventional parallelization across
matrix rows advocated by standard implementations of CSR SpMV and other
GPU-specific formats, instead facing potential race conditions via atomic trans-
actions (supported by hardware in recent GPU architectures). Furthermore, our
algorithm preserves the standard CSR format to store the sparse matrix, aug-
mented with a vector which holds the row indexes of some key matrix elements.
This additional array can be built inexpensively and consumes only a minor
amount of additional memory.

Our experiments on two recent GPU architectures from NVIDIA, using both
single and double precision arithmetic, show that our algorithm can be composed
with the standard CSR SpMV to yield a GPU kernel that becomes a strong
candidate for the implementation of SpMV in general-purpose sparse linear
algebra libraries for this type of accelerators.

Acknowledgements. This work was supported by the CICYT project TIN2014-
53495-R of the MINECO and FEDER and the EU H2020 project 732631 “OPRE-
COMP. Open Transprecision Computing”.

References

1. Anzt, H., Tomov, S., Dongarra, J.: Implementing a sparse matrix vector product
for the SELL-C/SELL-C-σ formats on NVIDIA GPUs. Technical report, ut-eecs-
14-727, University of Tennessee (2014)

Balanced CSR Sparse Matrix-Vector Product on Graphics Processors 709

2. Buluç, A., Fineman, J.T., Frigo, M., Gilbert, J.R., Leiserson, C.E.: Parallel sparse
matrix-vector and matrix-transpose-vector multiplication using compressed sparse
blocks. In: Proceedings of the 21st Annual Symposium on Parallelism in Algorithms
and Architectures, SPAA 2009, pp. 233–244. ACM (2009)

3. Buono, D., Gunnels, J.A., Que, X., Checconi, F., Petrini, F., Tuan, T.C., Long, C.:
Optimizing sparse linear algebra for large-scale graph analytics. Computer 48(8),
26–34 (2015)

4. Davis, T.A.: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia (2006)
5. Kreutzer, M., Hager, G., Wellein, G., Fehske, H., Bishop, A.R.: A unified sparse

matrix data format for efficient general sparse matrix-vector multiplication on mod-
ern processors with wide SIMD units. SIAM J. Sci. Comput. 36(5), C401–C423
(2014)

6. Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of
Search Engine Rankings. Princeton University Press, Princeton (2011)

7. Liu, W., Vinter, B.: CSR5: an efficient storage format for cross-platform sparse
matrix-vector multiplication. In: Proceedings of the 29th ACM on International
Conference on Supercomputing, pp. 339–350. ACM (2015)

8. Nathan, B., Michael, G.: Efficient sparse matrix-vector multiplication on CUDA.
Technical report, NVIDIA Technical Report NVR-2008-004 (2008)

9. NVIDIA. cuSPARSE library (2017). http://docs.nvidia.com/cuda/cusparse/
10. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)
11. Vázquez, F., Fernández, J.J., Garzón, E.M.: A new approach for sparse matrix

vector product on NVIDIA GPUs. Concur. Comput.: Pract. Exp. 23(8), 815–826
(2011)

12. Yan, S., Li, C., Zhang, Y., Zhou, H.: yaSpMV: yet another SPMV framework on
GPUs. In: ACM SIGPLAN Notices, vol. 49, pp. 107–118. ACM (2014)

http://docs.nvidia.com/cuda/cusparse/

To Distribute or Not to Distribute:
The Question of Load Balancing

for Performance or Energy

Esteban Stafford1(B), Borja Pérez1(B), Jose Luis Bosque1(B), Ramón Beivide1,
and Mateo Valero2

1 Universidad de Cantabria, Santander, Spain
{esteban.stafford,borja.perez,joseluis.bosque,ramon.beivide}@unican.es

2 Barcelona Supercomputing Center, Barcelona, Spain
mateo@ac.upc.edu

Abstract. Heterogeneous systems are nowadays a common choice in
the path to Exascale. Through the use of accelerators they offer out-
standing energy efficiency. The programming of these devices employs
the host-device model, which is suboptimal as CPU remains idle during
kernel executions, but still consumes energy. Making the CPU contribute
computing effort might improve the performance and energy consump-
tion of the system. This paper analyses the advantages of this approach
and sets the limits of when its beneficial. The claims are supported by
a set of models that determine how to share a single data-parallel task
between the CPU and the accelerator for optimum performance, energy
consumption or efficiency. Interestingly, the models show that optimis-
ing performance does not always mean optimum energy or efficiency as
well. The paper experimentally validates the models, which represent an
invaluable tool for programmers when faced with the dilemma of whether
to distribute their workload in these systems.

1 Introduction

There is an ever growing interest on heterogeneous systems in the HPC commu-
nity, by integrating GPUs, as they increase the computing power and improve
the energy efficiency of these large systems [10]. The programming of these is
based mainly in frameworks or APIs like CUDA and OpenCL, designed around
the Host-Device programming model. Which relies on offloading data-parallel sec-
tions to the accelerator while the CPU remains idle. During the latter, despite
not contributing computational effort to the system, the devices still draw a
significant amount of power, known as static power consumption [5]. This leads
to think that a load-balanced co-execution might be necessary to improve the
efficiency of the system. However, with the above frameworks, co-execution is
possible but far from trivial, and neither is determining the optimal load balance.

Despite the difficulties, co-execution can give benefits in terms of performance
and energy efficiency. If the task is successfully balanced among the devices, the

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 710–722, 2017.
DOI: 10.1007/978-3-319-64203-1 51

To Distribute or Not to Distribute: The Question of Load Balancing 711

Po
w

er

Time

a) GPU executes alone

Po
w

er

Time

b) GPU and CPU cooperate

CPU
GPU

Fig. 1. Power using a host device model versus device cooperation.

computing power of the heterogeneous system is the sum of that of the devices,
consequently improving the performance. Regarding energy consumption, with-
out co-execution idle devices still require energy to operate, called static energy,
consequently reducing the energy efficiency of the heterogeneous system as a
whole. Given the execution of a data-parallel task, Fig. 1.a shows the power con-
sumed by the system when only the GPU is used. The CPU consumes power
even though it is only waiting for the GPU. Figure 1.b shows that the collabo-
ration of the CPU improves performance, as the computation is finished faster,
but might also improve the total energy consumption.

This paper studies, from an analytical point of view, whether co-execution of
a single massively data-parallel kernel in a heterogeneous system with two devices
is beneficial. And how load balancing affects each of the proposed metrics: the
performance, the energy consumption or the energy efficiency, and if they can
be optimised simultaneously. This allows programmers decide beforehand on the
suitability of co-execution in their applications, thus reducing the programming
effort.

The main contributions of this paper are:

– To aid the programmer to take an early decision on whether it is worth
dividing the workload of a single kernel among the devices of a heterogeneous
system.

– Obtaining a series of models that allow determining the workload sharing
proportion that optimises the performance, energy consumption or efficiency.

– Conducting an experimental study that proves the validity of the proposed
models. The values given by the models match those of the experiments.

Some proposals can be found in the literature, that allow the CPU and
the accelerator to share the execution of data-parallel sections [2,3,6–9,12,15].
These focus on sharing the workload among the devices to maximise perfor-
mance. Some of these include both static [7,8] and dynamic [2,3,6,9,15] load
balancing algorithms. In general, these allow optimising only the performance
of the systems, ignoring their energy consumption, which is one of the most
important challenges of computers nowadays. There are other approaches to the
problem of optimising the performance of single kernels co-executed on several
devices [16]. But, to the extent of the authors’ knowledge, this paper is the first

712 E. Stafford et al.

that proposes an analytical model that can be used to take an a priori decision
on the suitability of co-execution, taking energy into account.

The rest of this paper is organized as follows. Section 2 describes the proposed
load balancing models. Section 3 explains the experimental methodology, while
Sect. 4 evaluates the proposals. Finally in Sect. 5, the most important conclusions
are presented.

2 Load Balancing Model

To sustain the claims of this paper, it is necessary to obtain a series of models
and algorithms that allow determining an optimal share of the load among the
computing devices. A definition of a set of concepts and parameters is necessary,
as they characterize both the parallel application and the devices of the system.

– Work-item: in OpenCL is the unit of concurrent execution. This paper
assumes that each one represents the same amount of compute load.

– Total Workload (W): is the number of work-items needed to solve a prob-
lem. It is determined by some input parameters of the application.

– Device Workload (WC ,WG): is the number of work-items assigned to each
device: WC for the CPU and WG for the GPU.

– Processing speeds of devices (SC , SG): are the number of work-items that
each device can execute per time unit, taking into account the communication
times.

– Processing speed of the system (ST): is the sum of the speeds of all the
devices in the system.

ST = SC + SG

– Device execution time (TC , TG): is the time required by a device to com-
plete its assigned workload.

TC =
WC

SC
TG =

WG

SG

– Total execution time (T): is the time required by the whole system to
execute the application, determined by the last device to finish its task.

T = max{TC , TG}
– Workload partition (α): dictates the proportion of the total workload that

is given to the CPU. Then, the proportion for the GPU is 1 − α.

WC = αW WG = (1 − α)W

Based on the above, the total execution time (T) is obtained from the work-
load of each device and their processing speed:

T = max

{
α

W

SC
, (1 − α)

W

SG

}
(1)

To Distribute or Not to Distribute: The Question of Load Balancing 713

It is also necessary to model the energetic behaviour of the system, by con-
sidering the specifications of the devices.

– Static power (PS
C , PS

G): is consumed by each device while idle. This is
unavoidable and will be consumed throughout the execution of the appli-
cation.

– Dynamic power (PD
C , PD

G): is consumed when the devices are computing.
– Device energy (EC , EG): is consumed by each device during the execution.
– Total energy (E): is the drawn by the heterogeneous system while executing

the application. And it is the sum of the energy of each device.

The total consumed energy is the addition of the static (first term in Eq. 2)
and dynamic (second term in Eq. 2) energies. The static energy is consumed by
both devices throughout the execution of the task. Thus is obtained by multi-
plying the static power of the devices PS

C , PS
G by the total execution time T

(Eq. 1). The dynamic energy is consumed only when the device is computing.
The dynamic energy of the CPU is PD

C TC and PD
G TG for the GPU.

E =
[
(PS

C + PS
G) max

{
α

W

SC
, (1 − α)

W

SG

}]
+

[
αPD

C

W

SC
+ (1 − α)PD

G

W

SG

]
(2)

2.1 Optimal Performance Load Balancing

Attending strictly to performance, an ideal load balancing algorithm causes both
devices to take the same time Topt to conclude their assigned workload. Because
none of them incur in idle time waiting for the other to finish.

Topt = TC = TG =
W

ST

The question remains as to which that work distribution is, or what α satisfies
the above equation. Intuitively, it will depend on the speeds of the devices. In
Expression 1, it was shown that the execution times of each device are determined
by the workload assigned to them, as well as their processing speed.

TC = α
W

SC
TG = (1 − α)

W

SG

Both times are linear with α, so they each define a segment in the range
(0 ≤ α ≤ 1). TC has positive slope and its maximum value is reached at α = 1.
While TG has its maximum value at α = 0 and negative slope. Then, where both
segments cross, both devices are taking the same time to execute, and therefore
the optimal αopt share is found.

αopt
W

SC
= (1 − αopt)

W

SG
⇒ αopt(

W

SC
+

W

SG
) =

W

SG
⇒ αopt =

SC

SC + SG
(3)

Finally, it is also possible to determine the gain (or speedup) of the optimal
execution compared to running on each of the devices alone.

GC =
1

αopt
GG =

1
1 − αopt

714 E. Stafford et al.

2.2 Optimal Energy Load Balancing

The value of αopt determined by Expression 3 tells how to share the workload
between both devices to obtain the best performance. Now it is interesting to
know if this sharing also gives the best energy consumption.

Regarding the total energy of the system (Expression 2), note that it uses
the maximum function. To analyse this, also note that αopt is the turning point
where the CPU finishes earlier than the GPU, and where the maximum is going
to change its result. Then the total energy of the system can be expressed in a
piece-wise manner with two linear segments joined at αopt. This expression is
not differentiable but it is continuous. In order to determine local minima, three
cases have to be analysed.

1. Both segments have positive slope, so α = 0 will give the minimum energy.
2. Both segments have negative slope. Then the minimum is found at α = 1.
3. The slope of the left segment is negative and the right is positive. Then the

minimum occurs at αopt = SC

SC+SG
.

The problem is now finding when each of the cases occur. For this, each
segment has to be analysed separately.

Left Side. In the range of (0 < α < αopt) the CPU is being underused. Its
workload is not enough to keep it busy and has to wait for the overworked GPU
to finish. Therefore the execution time is dictated by the GPU, and the energy
of the whole system is:

E = (PS
C + PS

G + PD
G)(1 − α)

W

SG
+ PD

C α
W

SC

To find when the segment has a negative slope, it is differentiated with respect
to α and compared to 0:

dE

dα
= −(PS

C + PS
G)

W

SG
+ PD

C

W

SC
− PD

G

W

SG
< 0 ⇒ SG

SC
<

PS
C + PS

G + PD
G

PD
C

(4)

Right Side. In the range (αopt < α < 1) the opposite situation occurs. The
CPU is overloaded, taking longer to complete its workload than the GPU. Then
the execution time is determined by the CPU, and the system energy is:

E = (PS
C + PS

G + PD
C)α

W

SC
+ PD

G (1 − α)
W

SG

As before the slope of the segment is found differentiating, only this time it
is desired to find when the slope is positive.

dE

dα
= (PS

C + PS
G)

W

SC
+ PD

C

W

SC
− PD

G

W

SG
> 0 ⇒ SG

SC
>

PD
G

PS
C + PS

G + PD
C

(5)

To Distribute or Not to Distribute: The Question of Load Balancing 715

Satisfying both Expressions (4 and 5) means that the third case occurs, where
the minimum energy is found at αopt = SC

SC+SG
. Combining these leads to:

PD
G

PS
C + PS

G + PD
C

<
SG

SC
<

PS
C + PS

G + PD
G

PD
C

(6)

This indicates that the ratio between the speeds of the devices must lie within
a given range in order for the sharing to make sense from an energy perspective.
The energy consumed in this case can be expressed as:

E =
W

ST
(PS

C + PS
G + PD

C + PD
G) (7)

Should the above condition not be satisfied, then it is advisable to use only
one of the devices. If SG

SC
<

PD
G

PS
C+PS

G+PD
C

, then the minimum appears at α = 0.
Meaning that using the CPU is pointless, as no matter how small the portion of
work, it is going to waste energy. The consumption in this case is:

E =
W

SG
(PS

C + PS
G + PD

G) (8)

When the condition is not satisfied on the other side: SG

SC
>

PS
C+PS

G+PD
G

PD
C

, the
minimum is found at α = 1. Then it is the CPU that must be used exclusively.
As assigning the smallest workload to the GPU is going to be detrimental to the
energy consumption of the system.

E =
W

SC
· (PS

C + PS
G + PD

C) (9)

2.3 Optimal Energy Efficiency Load Balancing

Finally, this section analyses the advantage of co-execution when considering the
energy efficiency. The metric used to evaluate the efficiency is the Energy-Delay
Product (EDP), of the product of the consumed energy and the execution time
of the application. The starting point is then combining the expressions of time
and energy (1 and 2) of the system.

Again, since both expressions include the maximum function they have to be
analysed in pieces. This time, both pieces will be quadratic functions of α, that
may have local extrema at any point in the curve. Therefore it is necessary to
equate the differential to 0 and solve for α.

Left Side. If (0 < α < SC

ST
) the expressions for time and energy are multiplied

obtaining the EDP. Differentiating on α and solving the differential equated to
0 leads to an extreme point at αleft.

αleft =
2SC(PS

C + PS
G + PD

G) − SGPD
C

2SC(PS
C + PS

G + PD
G) − 2SGPD

C

716 E. Stafford et al.

Right Side. Now the range (SC

ST
< α < 1) is considered. Again, combining the

time and energy expressions for this interval gives the EDP, which is differenti-
ated and equated to 0 to locate the extremum at αright.

αright =
SCPD

G

2
[
SCPD

G − SG(PS
C + PS

G + PD
C)

]
The analysis of both sides shows that determining the minimum EDP is less

obvious than in previous analysis. There are five possible α values. The first
three are, α = 0, αopt and α = 1. But due to the quadratic nature of both parts
of the EDP expression, it is possible to find a local minimum in each of them. As
was shown above, these can occur in αleft and αright. However, these minima
are only relevant if they lie within the appropriate ranges 0 < αleft < SC

ST
and

SC

ST
< αright < 1. To find the optimum workload share, the energy efficiency is

evaluated at the relevant points, and the best is chosen. Again, if the optimal α
is not 0 or 1, it means that it is advisable to use co-execution.

3 Methodology

To validate the above models, a set of experiments has been carried out on
two different machines. The first machine used for experimentation is composed
of two 2.0 GHz Intel Xeon E5-2620 CPUs with six cores each and a Kepler
GPU. Thanks to the QPI connection the CPUs are treated as a single device.
Therefore, throughout the remainder of this document, any reference to the
CPU of this system includes both processors. The GPU is a NVIDIA K20m
with 13 stream multiprocessors, 2496 cores. The experiments for this system
have been performed with the maximum and minimum frequencies supported
by the GPU: 324 and 758 MHz. Henceforth referenced as Kepler 324 and Kepler
758. Increasing the frequency naturally escalates the power consumption and
reduces the execution times, all having an impact in the energy efficiency of the
system. At the lowest frequency, the computing speed of GPU is comparable to
that of the CPU, thus making the system less heterogeneous.

The second system includes one 3.60 GHz Intel i3-4160 CPU with two cores
and a NVIDIA GTX950 with 6 Stream Multiprocessors and 768 cores. Any
reference to this system will be labeled as GTX950.

The experiments have been carried out with a static algorithm. This means
that the work assigned to each device is determined at the beginning of the exe-
cution, allowing full control of how the workload is assigned to each device. Six
benchmarks have been used, four of which are part of the AMD APP SDK [1]
(MatMul, NBody, Binomial, Mandelbrot) and two are in-house developments.
One performs a bidimensional Taylor approximation for a set of points and the
other calculates the Gaussian blur of an image. Each application has been run
using a problem size big enough to justify its distribution among the available
devices. For MatMul 12800 by 12800 matrices were used. For NBody 51200 ele-
ments were considered for simulation. Binomial uses 20480000 options. Mandel-
brot generates a 20480 by 20480 pixel image. Taylor calculates the approximation

To Distribute or Not to Distribute: The Question of Load Balancing 717

for a mesh of 1000 by 1000 points. Finally, Gaussian performs the blur on a 8000
by 8000 pixel image using an 81 by 81 pixel filter.

The performance has been measured as the time required to complete the
kernel execution, including data distribution, kernel launch overhead and result
collection. From these times the values for the computational speeds SC and
SG were calculated. Additionally, the consumed energy must be measured. A
measurement application, named Sauna was developed to, periodically monitor
the different compute devices and gather their power consumption [13]. This
takes advantage of the Running Average Power Limit (RAPL) registers [14] in
Intel CPUS and the NVIDIA Management Library (NVML) [11] for the GPUs.
The sampling rate used for the measurements was 33 Hz. To obtain the energy
efficiency of the system, the time and energy measurements must be multiplied,
giving the EDP [4].

4 Experimental Evaluation

This section presents the results of the experiments performed to validate
the models proposed in Sect. 2. Due to the similar behaviour of MatMul and
Gaussian to that of NBody and Binomial, only the results of the latter are
presented. The four applications executed on the three systems lead to twelve
different scenarios. Table 1 shows the parameters of the models, extracted from
test executions, where the performance is shown normalised to SC . Figures 2,
3 and 4 all have a similar structure, they show the execution time, consumed
energy and EDP of the different benchmarks and the three systems: Kepler 324,
Kepler 758 and GTX950. Note that this last system is referred to the right axis.
The horizontal axis sweeps α from 0, where all the work is done by the GPU,
through 1, where only the CPU is used.

Regarding execution time, the first observation that can be made is that all
benchmarks present a minimum time value that depends on the ratio of the
computing speeds of the devices (See Fig. 2). The exact values of α where the
execution time is minimum are listed in Table 1, together with the measured
optimal α. It is noteworhty that the model accurately predicts the results. The
small discrepancies between the model and experiments are due to the interval
with which α was swept.

In the case of the GTX950, with Taylor and Mandelbrot, a larger error is
observed. The explanation is a combination of two factors. For these benchmarks,
the device speed ratio SG

SC
is less than 1, meaning that the CPU is more productive

than the GPU. On the other hand, when the GPU concludes its workload, it rises
an interrupt that the CPU must handle immediately. And taking into account
that this machine has only two cores, one of them will be devoted entirely to
attending the GPU interruption. The observed error is then explained because
the CPU suffers an overhead that was not included in the model. This lowers
the effective speed of the CPU and the observed value of αopt, as the GPU has
more time to do extra work. This has been experimentally confirmed, running
the benchmarks in one core, leaving the other free to attend the GPU.

718 E. Stafford et al.

Fig. 2. Execution time for each benchmark and system.

Table 1. Model parameters, theoretical and experimental α values

Machine Benchmark SG
SC

PS
C PS

G PD
C PD

G αopt Exp. αopt Rel. Error

Kepler 324 Binomial 3.3559 50 16.5 70 27.5 0.23 0.22 4.5%

Nbody 3.1370 50 16.5 50 27.5 0.24 0.22 9%

Mandelbrot 0.8916 50 16.5 70 44 0.53 0.50 6%

Taylor 0.9375 50 16.5 50 29.5 0.52 0.50 4%

Kepler 758 Binomial 7.9220 50 48 70 98.5 0.11 0.10 10%

Nbody 7.9012 50 48 50 105.5 0.11 0.10 10%

Mandelbrot 2.0711 50 48 70 115 0.33 0.30 10%

Taylor 2.2083 50 48 50 103.5 0.31 0.30 3.3%

GTX950 Binomial 9.7893 41 12.5 18 54 0.09 0.06 50%

Nbody 17.7458 33 12 9 76 0.05 0.04 25%

Mandelbrot 0.9730 40 10 7 48 0.51 0.45 13%

Taylor 0.7175 32 12 10.55 46 0.58 0.50 16%

Regarding the energy, the model gives three possibilities for the optimum α
depending on whether the device speed ratio SG

SC
falls within a particular range or

not (Expression 6). Figure 3 shows examples of the three behaviours and confirm
the predictions of the model.

With Binomial and NBody, the minimum energy is consumed with α = 0.
This is because the speed ratio falls on the left side of the range, and consequently
both segments in the energy graph have positive slope. In practical terms this
means that although from a pure performance point of view the CPU contributes,
from an energy perspective using it becomes wasteful. On the Mandelbrot and

To Distribute or Not to Distribute: The Question of Load Balancing 719

Fig. 3. Total energy consumption for each benchmark and system.

Table 2. Theoretical and experimental αopt for energy-efficiency

Machine αopt Binomial Nbody Mandelbrot Taylor

Kepler 324 αopt 0 0.242 0.529 0.516

Exp. αopt 0 0.22 0.5 0.5

Rel. Error 0% 10% 5.8% 3.2%

Kepler 758 αopt 0 0 0.326 0.312

Exp. αopt 0 0 0.3 0.3

Rel. Error 0% 0% 8.6% 4%

GTX950 αopt 0 0.053 0.507 1

Exp. αopt 0 0.06 1 1

Rel. Error 0% 13% 97% 0%

Taylor benchmarks, and both Kepler 324 and Kepler 758, the ratio lies within the
range. Meaning that the points of optimum energy consumption and maximum
performance coincide in the same αopt. However, on the GTX950, the ratio falls
to the right, indicating that both segments will have negative slope and the
minimum energy will be found at α = 1. That is, the GPU is wasting energy.
These results show that co-execution is only worth pursuing in four of the twelve
analysed cases, two of them benefit of using the CPU alone, while in the rest
using only the GPU is the most advisable solution.

Finally, regarding the energy efficiency of the system, the model presented
in Sect. 2 declares five points susceptible of being the optimal workload share.
Namely α = 0, αopt, α = 1, αleft and αright. For the tested benchmarks and
systems, αleft and αright always lie outside their valid ranges, except for αleft for

720 E. Stafford et al.

Fig. 4. EDP for each benchmark and system.

Binomial on Kepler 324. Studying these points, it was determined that the min-
imum EDP would occur at the α values specified in Table 2. This also presents
the corresponding experimental α, extracted from the results shown in Fig. 4.

It can be said that the model for energy efficiency always predicted the correct
α value that minimises the EDP. A second observation reveals that these points
coincide with either the α that maximises performance or the one that minimises
energy. However, the model states that this might not always be the case as local
minimums could be found. In fact, there are many cases, those with α = 0 or
α = 1 in Table 2, where it is better using only one device to optimise EDP, even
when this does not give the optimum performance.

5 Conclusion

This paper analyses the advantages of co-execution and load balancing in hetero-
geneous systems when considering three different metrics: performance, energy
consumption and energy efficiency. Through the proposal of a set of analytical
models, it allows determining if co-execution is beneficial in terms of the three
metrics. Since co-execution represents a large programming effort, the use of
these models allow the programmer to predict if such an approach is worth.

From a performance perspective, the model shows that there is always an
advantage in co-execution. It also predicts the gain of this solution. In practical
terms, if the gain is very small it might not be noticeable due to diverse over-
heads in the load balancing algorithm. On contrast, when considering energy
consumption or efficiency, the model clearly shows that there are cases in which
it is not advisable to use co-execution. Through experimental evaluation, the

To Distribute or Not to Distribute: The Question of Load Balancing 721

paper shows that the models accurately predict the observed results. The pro-
posed models consider an ideal load balancing algorithm, this means that pro-
vided that the used algorithm is good enough, the predictions of the models will
be met, regardless of it being static or dynamic.

In the future, it is intended to extend the models to systems with more than
two devices, and consider irregular applications. Also, the experimentation will
be extended to cover other kinds of accelerator devices.

Acknowledgments. This work has been supported by the University of Cantabria
(CVE-2014-18166), the Spanish Science and Technology Commission (TIN2016-76635-
C2-2-R), the European Research Council (G.A. No 321253) and the European HiPEAC
Network of Excellence. The Mont-Blanc project has received funding from the Euro-
pean Unions Horizon 2020 research and innovation programme under grant agreement
No 671697.

References

1. AMD Accelerated Parallel Processing (APP) Software Development Kit (SDK)
V3. http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-para
llel-processing-app-sdk/. Accessed November 2016

2. Binotto, A., Pereira, C., Fellner, D.: Towards dynamic reconfigurable load-
balancing for hybrid desktop platforms. In: Proceedings of IPDPS, pp. 1–4. IEEE
Computer Society, April 2010

3. Boyer, M., Skadron, K., Che, S., Jayasena, N.: Load balancing in a changing world:
dealing with heterogeneity and performance variability. In: Proceedings of the ACM
International Conference on Computing Frontiers, pp. 21:1–21:10 (2013)

4. Castillo, E., Camarero, C., Borrego, A., Bosque, J.L.: Financial applications on
multi-CPU and multi-GPU architectures. J. Supercomput. 71(2), 729–739 (2015)

5. Hong, S., Kim, H.: An integrated GPU power and performance model. SIGARCH
Comput. Archit. News 38(3), 280–289 (2010)

6. Kaleem, R., Barik, R., Shpeisman, T., Lewis, B.T., Hu, C., Pingali, K.: Adaptive
heterogeneous scheduling for integrated GPUs. In: Proceedings of PACT. ACM
(2014)

7. de la Lama, C.S., Toharia, P., Bosque, J.L., Robles, O.D.: Static multi-device load
balancing for OpenCL. In: Proceedings of ISPA, pp. 675–682. IEEE Computer
Society (2012)

8. Lee, J., Samadi, M., Park, Y., Mahlke, S.: Transparent CPU-GPU collaboration
for data-parallel kernels on heterogeneous systems. In: Proceedings of PACT, pp.
245–256. IEEE Press, Piscataway (2013)

9. Ma, K., Li, X., Chen, W., Zhang, C., Wang, X.: GreenGPU: a holistic approach to
energy efficiency in GPU-CPU heterogeneous architectures. In: 41st International
Conference on Parallel Processing, ICPP (2012)

10. Mittal, S., Vetter, J.S.: A survey of methods for analyzing and improving GPU
energy efficiency. ACM Comput. Surv. 47(2), 19:1–19:23 (2014)

11. NVIDIA: NVIDIA Management Library (NVML). https://developer.nvidia.com/
nvidia-management-library-nvml. Accessed April 2016

12. Pérez, B., Bosque, J.L., Beivide, R.: Simplifying programming and load balancing
of data parallel applications on heterogeneous systems. In: Proceedings of the 9th
Workshop on General Purpose Processing using GPU, pp. 42–51 (2016)

http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml

722 E. Stafford et al.

13. Pérez, B., Stafford, E., Bosque, J.L., Beivide, R.: Energy efficiency of load balancing
for data-parallel applications in heterogeneous systems. J. Supercomput. 73(1),
330–342 (2017)

14. Rotem, E., Naveh, A., Rajwan, D., Ananthakrishnan, A., Weissmann, E.: Power
management architecture of the 2nd generation Intel Core microarchitecture, for-
merly codenamed Sandy Bridge. In: IEEE International Symposium on High-
Performance Chips (2011)

15. Wang, G., Ren, X.: Power-efficient work distribution method for CPU-GPU hetero-
geneous system. In: International Symposium on Parallel and Distributed Process-
ing with Applications, pp. 122–129, September 2010

16. Zhang, F., Zhai, J., He, B., Zhang, S., Chen, W.: Understanding co-running behav-
iors on integrated CPU/GPU architectures. IEEE Trans. Parallel Distrib. Syst.
28(3), 905–918 (2017)

Author Index

Abdelhafez, Hazem A. 92
Abduljabbar, Mustafa 553
Acer, Seher 625
Aghababaie Beni, Laleh 482
Ainsworth, Mark 3
Aksenov, Vitaly 580
Al Farhan, Mohammed 553
Allen, Bryce 3
Almgren, Ann 682
Amaral, José Nelson 607
Amaris, Marcos 220
Antoniu, Gabriel 385
Araujo, Guido 607
Asenjo, Rafael 273
Aumage, Olivier 260
Aupy, Guillaume 385
Aykanat, Cevdet 625

Balaji, Pavan 470
Barthou, Denis 260
Bartsch, Valeria 497
Beivide, Ramón 710
Benoit, Anne 134
Berrendorf, Rudolf 523
Bessac, Julie 3
Blieberger, Johann 538
Boktor, Andrew 92
Bosilca, George 49
Bosque, Jose Luis 710
Bravo Ferreira, José 358
Buluç, Aydın 79
Burgstaller, Bernd 538

Calotoiu, Alexandru 36, 106
Canon, Louis-Claude 232
Cappello, Franck 3
Carrión, Joe 638
Casas, Marc 247
Castelló, Adrián 470
Cello, Marco 358
Chandramowlishwaran, Aparna 482
Chasparis, Georgios C. 164
Chiba, Shigeru 442
Choi, Jong Youl 3

Constantinescu, Emil 3
Cook, Brandon 79

Dao, Thanh-Chung 442
Davis, Philip E. 3
de Camargo, Edson Tavares 415
de Laat, Cees 345
Demassey, Sophie 23
Di, Sheng 3
Di, Wendy 3
Diaz Carreño, Emmanuell 399
Diener, Matthias 399
Dimić, Vladimir 247
Dong, Liming 303
Dongarra, Jack 511
Duarte Jr., Elias P. 415
Dupros, Fabrice 192

Ecker, Jan Philipp 523
Egan, Rob 79
Ellis, Marquita 79
Endo, Toshio 119

Farooqi, Muhammad Nufail 682
Flegar, Goran 697
Foster, Ian 3
Foyer, Clément 49
Franco, Daniel 638

Gaspary, Luciano Paschoal 399
Georganas, Evangelos 79
Gil-Costa, Veronica 638
Giovanni, Giuliani 23
Gonzalez-Escribano, Arturo 457
Gramoli, Vincent 580
Guo, Hanqi 3

Habich, Dirk 149
Hagimont, Daniel 332
Haine, Christopher 260
Halawa, Hassan 92
Hammarling, Sven 511
Hermenier, Fabien 23

Higham, Nicholas J. 511
Hofmeyr, Steven 79
Hu, Yang 345

Ibrahim, Shadi 385
Iglesias, Jesús Omana 358
Ilyas, M. Kashif 36

Janjic, Vladimir 164
Jeannot, Emmanuel 49

Kaeli, David 273
Kanewala, Thejaka Amila 428
Karypis, George 653
Katsogridakis, Pavlos 289
Keller Tesser, Rafael 192
Keyes, David 553
Kissinger, Thomas 149
Klasky, Scott 3
Krause, Alexander 149
Kurc, Tahsin 3
Kuznetsov, Petr 580

Ledoux, Franck 594
Lefèvre, Laurent 134
Le-Goff, Nicolas 594
Legrand, Arnaud 192
Lehner, Wolfgang 149
Li, Renchuan 303
Liu, Qing 3
Liu, Weidong 303
Llanos, Diego R. 457
Lübbe, Felix Donatus 65
Lucarelli, Giorgio 220
Lumsdaine, Andrew 428
Luque, Emilio 638

Machado, Rui 497
Malik, Abid 3
Malova, Anna 580
Mannuss, Florian 523
Marchal, Loris 232
Marin, Mauricio 638
Martin, Paul 345
Mathá, Roland 319
Mayo, Rafael 470
Mehta, Kshitij 3
Mello Schnorr, Lucas 192
Mercier, Guillaume 49

Merten, Dirk 497
Milani, Andre 23
Mittermayr, Robert 538
Mommessin, Clément 220
Moretó, Miquel 247
Moreton-Fernandez, Ana 457
Mueller, Klaus 3
Munson, Todd 3

Navarro, Angeles 273
Navaux, Philippe O.A. 399
Nguyen, Tan 682

Oliker, Leonid 79
Olivier Alexandre Navaux, Philippe 192
Orgerie, Anne-Cécile 134
Ostouchov, George 3

Papagiannaki, Sofia 289
Papauré, Guillaume 49
Parashar, Manish 3
Park, Yoojin 538
Pascual, Fanny 206
Pedone, Fernando 415
Peña, Antonio J. 470
Pérez, Borja 710
Perez, Christian 372
Peterka, Tom 3
Pfreundt, Franz-Josef 497
Phan, Tien-Dat 385
Plata, Oscar 273
Pommereau, Franck 594
Pouchard, Line 3
Pratikakis, Polyvios 289
Prodan, Radu 319
Prokopec, Aleksandar 177

Quintana-Ortí, Enrique S. 470, 697

Rahn, Mirko 497
Raïs, Issam 134
Rakotoarivelo, Hoby 594
Ravi, Srivatsan 580
Reisert, Patrick 106
Relton, Samuel D. 511
Ripeanu, Matei 92
Ristov, Sasko 319
Rodriguez-Gutiez, Eduardo 457
Roloff, Eduardo 399
Rossbory, Michael 164

724 Author Index

Ruprecht, Daniel 669
Rzadca, Krzysztof 206

Salamanca, Juan 607
Sato, Yukinori 119
Selvitopi, Oguz 625
Seo, Sangmin 470
Shalf, John 682
Shudler, Sergei 106
Silva, Pedro 372
Smith, Shaden 653
Sodsong, Wasuwee 538
Stafford, Esteban 710

Taal, Arie 345
Tao, Dingwen 3
Tchana, Alain 332
Teabe, Boris 332
Trystram, Denis 220
Tugluk, Ozan 3

Ubal, Rafael 273
Unat, Didem 682

Valero, Mateo 247, 710
Van Dam, Kerstin Kleese 3

Velamuri, Varun 565
Villegas, Alejandro 273
Vivien, Frédéric 232
Voigt, Hannes 149

Wang, Junchao 345
Wapet, Patrick Lavoisier 332
Wild, Stefan 3
Wolf, Felix 36, 106
Wolf, Matthew 3
Wozniak, Justin M. 3

Xu, Wei 3

Yelick, Katherine 79
Yokota, Rio 553
Yoo, Shinjae 3

Zalewski, Marcin 428
Zhang, Tiejun 303
Zhang, Weiqun 682
Zhao, Weiguo 303
Zhao, Zhiming 345
Zhou, Amelie Chi 385
Zhou, Huan 345
Zounon, Mawussi 511

Author Index 725

	Preface
	Organization
	Contents
	Invited Paper
	Computing Just What You Need: Online Data Analysis and Reduction at Extreme Scales
	1 Introduction
	2 Related Work and Context
	3 Example Applications
	3.1 Climate Science
	3.2 Fusion Science
	3.3 Materials Science
	3.4 Real-Time Decisions and Data Assimilation

	4 A High-Performance Co-design Architecture
	4.1 The Need for Modular Implementations
	4.2 CODAR System Components

	5 CODAR Data Services
	5.1 Analysis Services
	5.2 Reduction Services
	5.3 Monitoring Services

	6 The CODAR Runtime
	7 Conclusion
	References

	Support Tools and Environments
	Scaling Energy Adaptive Applications for Sustainable Profitability
	1 Introduction
	2 CARVER Overview
	2.1 Architecture
	2.2 The EASC Description Script
	2.3 General Workflow

	3 Implementation
	4 Evaluation
	4.1 Environment Setup
	4.2 Results

	5 Related Works
	6 Conclusion
	References

	Off-Road Performance Modeling -- How to Deal with Segmented Data
	1 Introduction
	2 Performance Modeling with Extra-P
	3 Approach
	3.1 Detecting Segmentation
	3.2 Identifying the Change Point

	4 Evaluation
	4.1 Synthetic Data
	4.2 Case Studies

	5 Related Work
	6 Conclusion
	References

	Online Dynamic Monitoring of MPI Communications
	1 Introduction
	2 Related Work
	3 Background
	4 Design
	5 Implementation
	6 Results
	6.1 Overhead Measurement
	6.2 MPI Collective Operations Optimization
	6.3 Use Case: Fault Tolerance with Online Monitoring
	6.4 Static Process Placement of Applications

	7 Conclusion
	References

	Performance and Power Modeling, Prediction and Evaluation
	Micro-benchmarking MPI Neighborhood Collective Operations
	1 Problem Statement
	2 Performance Guidelines for Neighborhood Collectives
	3 The Benchmark
	3.1 Kernel
	3.2 Framework Scripts

	4 Experimental Setup
	5 Results
	6 Conclusion and Outlook
	References

	Performance Characterization of De Novo Genome Assembly on Leading Parallel Systems
	1 Introduction
	2 The Parallel HipMer Assembly Pipeline
	2.1 k-mer Analysis
	2.2 Contig Generation
	2.3 Read-to-Contig Sequence Alignment
	2.4 Scaffolding and Gap Closing
	2.5 Summary of Communication Patterns

	3 Experimental Results and Analysis
	3.1 Single-Node Performance Analysis
	3.2 Scalability from Single Node to Multiple Nodes
	3.3 Large Scale Experimental Results

	4 Related Work
	5 Conclusion
	References

	NVIDIA Jetson Platform Characterization
	1 Introduction
	2 Methodology
	2.1 CPU Micro-Benchmarks
	2.2 GPU Micro-Benchmarks
	2.3 Other Methodology Notes

	3 Platform Characterization
	3.1 CPU Characterization
	3.2 GPU Characterization

	4 Case Study: Matrix Multiplication
	5 Related Work
	6 Summary and Discussion
	6.1 Implications for Application Developers
	6.2 Implications for Device Manufacturers

	References

	Following the Blind Seer -- Creating Better Performance Models Using Less Information
	1 Introduction
	2 Empirical Performance Modeling with Extra-P
	2.1 The Performance Model Normal Form
	2.2 Model Generation

	3 Approach
	3.1 The SMAPE Metric
	3.2 Revisiting the PMNF
	3.3 Iterative Refinement

	4 Evaluation
	4.1 Synthetic Data
	4.2 Case Studies

	5 Related Work
	6 Conclusion
	References

	An Accurate Simulator of Cache-Line Conflicts to Exploit the Underlying Cache Performance
	1 Introduction
	2 Modeling Cache Structures in Modern CPUs
	3 Cache-Line Conflict Simulator
	3.1 FA Cache Based Conflict Detection
	3.2 Reasoning Around Line Conflicts
	3.3 Advanced Cache Modeling for Accurate Simulation

	4 Evaluation
	4.1 Methodology
	4.2 Verification of Our Simulator
	4.3 Accuracy for Line Conflict Detection
	4.4 Reasoning Around Line Conflicts for Performance Tuning

	5 Related Works
	6 Conclusions
	References

	Shutdown Policies with Power Capping for Large Scale Computing Systems
	1 Introduction
	2 Modeling Shutdown Policies
	2.1 Model Inputs
	2.2 Model Definitions
	2.3 Model Usages

	3 Experimental Setup
	4 Experimental Validation
	4.1 Sequence-Aware Models: Seq-Aw-T and Seq-Aw-E
	4.2 Power-Capping Model

	5 Related Work
	6 Conclusion
	References

	Scheduling and Load Balancing
	Partitioning Strategy Selection for In-Memory Graph Pattern Matching on Multiprocessor Systems
	1 Introduction
	2 Graph Pattern Matching on NUMA Systems
	3 Graph Partitioning Strategies
	4 Experimental Evaluation
	4.1 Evaluation on a Medium-Scale Multiprocessor System
	4.2 Evaluation on a Large-Scale Multiprocessor System
	4.3 Lessons Learned

	5 Related Work
	6 Conclusions and Future Work
	References

	Efficient Dynamic Pinning of Parallelized Applications by Reinforcement Learning with Applications
	1 Introduction
	2 Problem Formulation and Objective
	2.1 Static Optimization and Issues
	2.2 Measurement- or Learning-Based Optimization
	2.3 Objective

	3 Reinforcement Learning (RL)
	3.1 Strategy Update
	3.2 Discussion

	4 Experiments
	4.1 Ant Colony Optimization (ACO)
	4.2 Parallelization and Experimental Setup
	4.3 Experiment 1: ACO Under Uniform CPU Availability
	4.4 Experiment 2: ACO Under Non-uniform CPU Availability
	4.5 Experiment 3: ACO Under Time-Varying CPU Availability

	5 Conclusions and Future Work
	References

	Accelerating by Idling: How Speculative Delays Improve Performance of Message-Oriented Systems
	1 Introduction
	2 A Model of Speculative Lagging
	2.1 Determining the Sample Size
	2.2 Estimating Speculation Benefits
	2.3 Better Time-to-Speculation with an Adaptive Sampling Rate

	3 Algorithm and Implementation
	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Using Simulation to Evaluate and Tune the Performance of Dynamic Load Balancing of an Over-Decomposed Geophysics Application
	1 Introduction
	2 Ondes3D: A Typical Imbalanced MPI Code
	2.1 Identifying New Sources of Load Imbalance
	2.2 Need for Dynamic Load Balancing: The AMPI Approach
	2.3 Costly Tuning of Load Balancing Parameters in Real Platforms

	3 Simulated Adaptive MPI (SAMPI)
	4 Experimental Results and Evaluation
	4.1 Validation: Comparing SAMPI (Simulation) Against AMPI
	4.2 Tuning Load-Balancing Parameters with Simulation

	5 Related Work
	6 Conclusion
	References

	Optimizing Egalitarian Performance in the Side-Effects Model of Colocation for Data Center Resource Management
	1 Introduction
	2 Side-Effects of Colocating Tasks: A Model
	3 Complexity and Hardness of MSE for T Not Fixed
	4 Approximation for Fixed Number of Types
	4.1 A PTAS
	4.2 A Greedy List-Scheduling Approximation

	5 Heuristics
	6 Experiments
	7 Related Work
	8 Conclusion
	References

	Generic Algorithms for Scheduling Applications on Hybrid Multi-core Machines
	1 Introduction
	2 Related Works
	3 Preliminaries and Lower Bounds
	4 Algorithms
	4.1 Allocation Phase
	4.2 Scheduling Phase

	5 Experiments
	5.1 Benchmark
	5.2 Environment and Algorithms
	5.3 Analysis of Results

	6 Conclusions
	References

	Low-Cost Approximation Algorithms for Scheduling Independent Tasks on Hybrid Platforms
	1 Introduction
	2 Problem Formulation
	3 Algorithm Description
	4 Approximation Ratio Proof
	5 Lower Bound
	6 Simulations
	7 Conclusion
	References

	High Performance Architectures and Compilers
	Runtime-Assisted Shared Cache Insertion Policies Based on Re-reference Intervals
	1 Introduction
	2 Related Work
	3 Runtime-Assisted Insertion Policies in the LLC
	3.1 Task Type Aware Probabilistic Insertion
	3.2 Dependency Type Aware Insertion
	3.3 Implementation

	4 Evaluation
	4.1 Simulation Infrastructure
	4.2 Benchmarks
	4.3 TTIP Parameters Space Exploration
	4.4 Performance Results
	4.5 Design Costs

	5 Conclusions
	References

	Rewriting System for Profile-Guided Data Layout Transformations on Binaries
	1 Introduction
	2 Motivating Examples
	3 Layout Description and Transformations
	3.1 Data Layout Description
	3.2 Finding the Initial Multidimensional Layout
	3.3 Transformations
	3.4 Exploring Layouts

	4 Transformation Evaluation
	4.1 Principle of Mock-Up Evaluation
	4.2 Automatic Mock-Up Generation Technique
	4.3 Combining Layout Restructuring with SIMDization

	5 Experimental Results
	6 Related Work
	7 Conclusion
	References

	Hardware Support for Scratchpad Memory Transactions on GPU Architectures
	1 Introduction
	2 Background and Related Work
	3 GPU-LocalTM Design
	4 GPU-LocalTM Modeling
	5 Evaluation
	6 Conclusions
	References

	Parallel and Distributed Data Management and Analytics
	Execution of Recursive Queries in Apache Spark
	1 Introduction
	2 Spark Support for Nested Operations
	3 Scheduling
	4 Evaluation
	5 Related Work
	6 Conclusions
	References

	Replica-Aware Partitioning Design in Parallel Database Systems
	1 Introduction
	2 Related Work
	3 Motivation and Overview of Our Approach
	3.1 Analysis of Contradiction
	3.2 Overview of Our Approach

	4 Clustering the Workload
	4.1 Distance Function
	4.2 The Number of Clusters
	4.3 Clustering Algorithm

	5 Generating Partitioning Plan
	6 Routing Statements
	6.1 New Statement
	6.2 Update Statement

	7 Experimental Evaluation
	7.1 Data Sets and Experimental Platform
	7.2 Proportion of Single-Site Statements
	7.3 Performance of Our Approach
	7.4 Comparison of Execution Time

	8 Future Work
	9 Conclusion
	References

	Cluster and Cloud Computing
	A Simplified Model for Simulating the Execution of a Workflow in Cloud
	1 Introduction
	2 Related Work
	3 Modeling the Workflow and Cloud
	3.1 Workflow Application Model
	3.2 Cloud Infrastructure Model
	3.3 Experiment and Test Case Model

	4 Noise Simulation Model
	4.1 Workflow Noisiness
	4.2 Cloud Noisiness
	4.3 Modeling the Noising

	5 Testing Methodology
	5.1 Synthetic Workflow
	5.2 Cloud Testing Environment
	5.3 Simulation Testing Environment

	6 Evaluation
	7 Conclusion and Future Work
	References

	Dealing with Performance Unpredictability in an Asymmetric Multicore Processor Cloud
	1 Introduction
	2 Background
	2.1 The Xen Hypervisor
	2.2 CPU Allocation in Xen

	3 Performance Predictability Enforcement Systems
	3.1 The First Solution
	3.2 The Second Solution
	3.3 Comparison of the Two Solutions

	4 Evaluations
	4.1 The Effectiveness
	4.2 The Overhead

	5 Related Work
	6 Conclusion
	References

	Deadline-Aware Deployment for Time Critical Applications in Clouds
	1 Introduction
	2 Problem Statement
	3 Deadline-Aware Deployment System
	3.1 Design Principles
	3.2 Scheduling Algorithm

	4 Evaluation
	4.1 Repository Evaluation
	4.2 Testbed Experiments
	4.3 Large-Scale Simulations

	5 Related Work
	6 Conclusion
	References

	More Sharing, More Benefits? A Study of Library Sharing in Container-Based Infrastructures
	1 Introduction
	2 Motivation
	3 Analysis Description
	3.1 Abstract Representation of a Cloud Environment
	3.2 Analysis Methodology
	3.3 Simulator

	4 Performance Evaluation
	4.1 Mathematical Analysis
	4.2 Simulations
	4.3 Real Case Scenario

	5 Conclusions and Future Work
	References

	An Efficient Communication Aware Heuristic for Multiple Cloud Application Placement
	1 Introduction
	2 Related Work
	2.1 Discussion

	3 The 2PCAP Heuristic
	3.1 Two Phase Communication Aware Placement Heuristic
	3.2 Discussion

	4 Evaluation
	4.1 Methodology
	4.2 2PCAP Performance on Small Problems
	4.3 2PCAP Performance on Large Problems

	5 Conclusion and Future Work
	References

	Energy-Driven Straggler Mitigation in MapReduce
	1 Introduction
	2 Related Work
	3 On the Energy Inefficiency of Speculative Execution
	3.1 Huge Energy Waste Due to Unsuccessful Speculative Copies
	3.2 Speculative Copy Allocation Matters

	4 Architectural Model
	5 Hierarchical Straggler Detection Mechanism
	6 Energy-Aware Speculative Copy Allocation
	6.1 Problem Definition
	6.2 Copy Allocation Heuristic

	7 Evaluation
	7.1 Experimental Setup
	7.2 Evaluation

	8 Conclusion
	References

	Leveraging Cloud Heterogeneity for Cost-Efficient Execution of Parallel Applications
	1 Introduction
	2 Performance and Cost Differences in the Cloud
	2.1 Methodology of the Analysis
	2.2 Cost of Homogeneous Clouds
	2.3 Load Imbalance

	3 A Mechanism to Improve Cost Efficiency in the Cloud
	3.1 Mechanism Inputs
	3.2 Mechanism Outputs

	4 Results
	4.1 The NAS Benchmarks
	4.2 BRAMS and Alya

	5 Related Work
	6 Conclusions
	References

	Distributed Systems and Algorithms
	A Consensus-Based Fault-Tolerant Event Logger for High Performance Applications
	1 Introduction
	2 Log-Based Rollback Recovery
	2.1 The Event Logger

	3 Consensus and Message Logging
	3.1 Consensus and State Machine Replication
	3.2 The Paxos Protocol
	3.3 Consensus-Based Message Logging

	4 Evaluation
	4.1 The Event Logger
	4.2 AMG
	4.3 LU and MG

	5 Conclusion
	References

	Families of Graph Algorithms: SSSP Case Study
	1 Introduction
	2 Abstract Graph Machine (AGM)
	3 SSSP Algorithms in AGM
	4 Extended Abstract Graph Machine
	5 Experiments and Results
	5.1 Scaling Results

	6 Related Work
	7 Conclusions
	References

	SEMem: Deployment of MPI-Based In-Memory Storage for Hadoop on Supercomputers
	1 Introduction
	2 Motivation
	2.1 Running Hadoop MapReduce on Supercomputers
	2.2 In-Memory Approach and Deployment

	3 Experiment Design
	4 Experimental Results
	4.1 Deployment Strategies
	4.2 SEMem (Dedicated-Node) vs. Central-Disk (HDD) and SSD
	4.3 Communication Protocol
	4.4 Storage Size of SEMem

	5 Related Work
	6 Conclusion
	References

	Parallel and Distributed Programming, Interfaces, and Languages
	Supporting the Xeon Phi Coprocessor in a Heterogeneous Programming Model
	1 Introduction
	2 Approach to Support MIC Accelerators
	3 Programming with the Controller Model
	4 Integrating MIC coprocessors in the Controller library
	4.1 Attaching and Detaching Data Structures on the MIC
	4.2 New Kernel Definitions
	4.3 Queue Management and Kernel Launching

	5 Experimental Study
	5.1 Study Cases
	5.2 Performance Study
	5.3 Development Effort Measures

	6 Conclusions
	References

	GLT: A Unified API for Lightweight Thread Libraries
	1 Introduction
	2 Related Work
	3 Background
	4 Benefits of a Unified LWT API
	5 GLT Programming Model
	6 GLT Design and Implementation Details
	6.1 API
	6.2 Implementations
	6.3 Semantic Mapping

	7 Performance Evaluation
	7.1 Microbenchmarks
	7.2 N-Queens
	7.3 UTS Benchmark

	8 Conclusions
	References

	PASCAL: A Parallel Algorithmic SCALable Framework for N-body Problems
	1 Introduction and Motivation
	2 Related Work
	3 N-body Problems
	4 PASCAL Framework
	5 Domain-Specific Optimizations and Parallelization
	6 Experimental Setup
	7 Results and Discussion
	8 Conclusions
	References

	GASPI/GPI In-memory Checkpointing Library
	1 Introduction
	2 Related Work
	3 In-memory Checkpointing
	3.1 Short Description of GASPI/GPI
	3.2 Application View
	3.3 Initialization Phase
	3.4 Checkpointing
	3.5 Fault Detection
	3.6 Recovery

	4 Results
	4.1 Performance Metrics
	4.2 Performance Measurement with a Simple Stencil Code Example
	4.3 Performance Measurement with a Real-Life Application: GRT Angle Migration

	5 Conclusions
	References

	Multicore and Manycore Parallelism
	Optimized Batched Linear Algebra for Modern Architectures
	1 Introduction
	2 Related Work
	2.1 Multicore CPUs and Xeon Phi Implementations

	3 Data Layout Optimization
	3.1 Pointer-to-pointer Layout
	3.2 Strided Layout
	3.3 Interleaved Memory Layout
	3.4 Design of Interleaved Batch BLAS
	3.5 Block Interleaved Layout
	3.6 Interleaved Batch BLAS User Interfaces
	3.7 Experimental Results

	4 Application to Batched Cholesky Factorization and Solve
	5 Efficient Batch Linear Algebra on NUMA Nodes
	6 Concluding Remarks
	References

	New Efficient General Sparse Matrix Formats for Parallel SpMV Operations
	1 Introduction
	2 Requirements Analysis, Existing Optimization Techniques and Related Work
	3 New Formats for Efficient Parallel SpMV Operations
	3.1 CSR5 Bit Compressed---CSR5BC
	3.2 Hybrid Compressed Slice Storage---HCSS
	3.3 Local Group Compressed Sparse Row---LGCSR

	4 Evaluation
	4.1 Evaluation Methodology
	4.2 Overhead and Memory Footprint Analysis
	4.3 Performance Evaluation

	5 Summary
	References

	Lazy Parallel Kronecker Algebra-Operations on Heterogeneous Multicores
	1 Introduction
	2 Background
	3 Kronecker Algebra Evaluation
	4 Parallel Kronecker Algebra
	4.1 Multi-threaded CPU Implementation
	4.2 GPU Implementation

	5 Experimental Results
	6 Related Work
	7 Conclusions
	References

	Performance Evaluation of Computation and Communication Kernels of the Fast Multipole Method on Intel Manycore Architecture
	1 Preliminaries and Outline
	1.1 Main Components of Parallel FMM
	1.2 Paper Contributions

	2 Direct N-Body Kernel on Modern Intel Architectures
	3 Task-Based Traversal of ExaFMM
	4 NUMA-Aware Communication Reducing Algorithms
	5 Results and Discussions
	5.1 Experimental Setup
	5.2 SIMD Optimizations of the N-Body Kernel
	5.3 Dual Tree Traversal with Task-Based Threading
	5.4 Communication Reducing on KNL

	6 Conclusion and Future Work
	References

	Efficient Non-blocking Radix Trees
	1 Introduction
	2 Overview
	3 Algorithm
	3.1 Data Structures
	3.2 Search
	3.3 Contains
	3.4 Remove
	3.5 Insert

	4 Correctness
	4.1 Linearizability
	4.2 Non-blocking Progress

	5 Experimental Evaluation
	6 Conclusion
	References

	A Concurrency-Optimal Binary Search Tree
	1 Introduction
	2 Binary Search Tree Implementation
	2.1 Sequential Implementation
	2.2 Concurrent Implementation

	3 Concurrency Optimality and Correctness
	4 Implementation and Evaluation
	5 Related Work and Discussion
	References

	Scalable Fine-Grained Metric-Based Remeshing Algorithm for Manycore/NUMA Architectures
	1 Introduction
	2 Problem Overview
	3 Extracting Fine-Grained Parallelism
	4 Synchronizing for Topological Updates
	5 Evaluation
	6 Conclusion
	References

	Performance Evaluation of Thread-Level Speculation in Off-the-Shelf Hardware Transactional Memories
	1 Introduction
	2 How to Support TLS over HTM
	2.1 Intel Core and IBM POWER8
	2.2 Thread-Level Speculation

	3 Previous Research on TLS
	4 Benchmarks, Methodology and Experimental Setup
	5 Classification of Loops Based on TLS Performance
	5.1 Class I: Low Speculative Demand and Better Performance in POWER8
	5.2 Class II: High Speculative Demand and Better Performance in Intel Core
	5.3 Class III: Not Enough Work to Be Parallelized with TLS
	5.4 Others
	5.5 Predicting the TLS Performance for Other Loops

	6 Conclusions
	References

	Theory and Algorithms for Parallel Computation and Networking
	Addressing Volume and Latency Overheads in 1D-parallel Sparse Matrix-Vector Multiplication
	1 Introduction
	2 Background
	2.1 Hypergraph Partitioning
	2.2 Reducing Total Volume via Hypergraph Partitioning

	3 Simultaneous Reduction of Maximum Volume, Total Volume and Total Message Count
	3.1 Reducing Maximum Volume
	3.2 Reducing Total Message Count

	4 Experiments
	4.1 Setting
	4.2 Partitioning and Parallel Runtime Results

	5 Conclusion
	References

	Improving the Network of Search Engine Services Through Application-Driven Routing
	1 Introduction
	2 Problem Statement
	3 Search Engine Service Architecture
	3.1 SES Network Architecture

	4 Performance Evaluation of SES
	4.1 Traffic Pattern
	4.2 Performance SES

	5 Previous Work
	6 Application-Driven Routing Policy
	6.1 Criteria Based on Application
	6.2 Criteria Based on Network Architecture
	6.3 Criteria Based on Traffic

	7 Evaluation
	7.1 Experimental Environment
	7.2 Results

	8 Conclusions
	References

	Parallel Numerical Methods and Applications
	Accelerating the Tucker Decomposition with Compressed Sparse Tensors
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Tensor and Matrix Operators
	2.3 Tucker Decomposition
	2.4 Data Structures for Sparse Tensors

	3 Related Work
	4 TTMc with a Compressed Sparse Tensor
	4.1 Formulation
	4.2 Complexity Analysis

	5 Utilizing Additional CSF Representations
	6 Experimental Methodology and Results
	6.1 Experimental Setup
	6.2 Results

	7 Conclusions and Future Work
	References

	Shared Memory Pipelined Parareal
	1 Introduction
	2 The Parareal Parallel-in-Time Integration Method
	3 Pipelined Parareal in OpenMP
	4 Numerical Results
	4.1 Wall Clock Time and Speedup
	4.2 Memory Footprint
	4.3 Energy-to-Solution

	5 Summary
	References

	Nonintrusive AMR Asynchrony for Communication Optimization
	1 Introduction
	2 Related Work
	3 Block-Structured Adaptive Mesh Refinement (SAMR)
	4 Synchronous AMR Algorithm
	5 Asynchronous AMR Algorithm
	6 Implementation
	7 Results
	8 Conclusions
	References

	Accelerator Computing
	Balanced CSR Sparse Matrix-Vector Product on Graphics Processors
	1 Introduction
	2 CSR-Based Formats and Algorithms for SPMV
	3 Balanced SPMV Kernel
	4 Experimental Evaluation
	5 Conclusions
	References

	To Distribute or Not to Distribute: The Question of Load Balancing for Performance or Energy
	1 Introduction
	2 Load Balancing Model
	2.1 Optimal Performance Load Balancing
	2.2 Optimal Energy Load Balancing
	2.3 Optimal Energy Efficiency Load Balancing

	3 Methodology
	4 Experimental Evaluation
	5 Conclusion
	References

	Author Index

