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Abstract. In histogram shape-based watermarking schemes, watermark
bits are embedded by altering the shape of a histogram extracted from
the host image. Exited embedding algorithms use a group of histogram
bins to embed only one watermark bit, which results in a rather low
watermark capacity. In this paper, we improve the embedding algorithm
in two new ways. The first proposed algorithm performs multi-round
embedding to carry more watermark bits. In each round of embedding,
a specified histogram is extracted so that the embedding operation does
not affect watermark bits embedded in previous rounds. The second pro-
posed algorithm uses a group of histogram bins to embed more than one
watermark bits, where the coefficient transferring is optimized to mini-
mize the embedding distortion. These algorithms can effectively enlarge
the capacity. Furthermore, a histogram preadjustment method, together
with a refined coefficient transferring method, is introduced. As a result,
reasonable performances on robustness and watermarked image quality
are available. The proposed algorithms provide various tradeoff among
capacity, robustness, and perceptibility, which supports a wide range of
applications.

Keywords: Blind watermarking · Robustness · Multilevel histogram ·
Multiple histogram adjustment

1 Introduction

Digital image watermarking is a technique about covertly embedding messages
into host images for certain security purposes. Robustness is an important prop-
erty for a watermarking scheme. It calls for that the embedded messages should
resist various attacks, such as common signal processing and geometric attacks.
Compared with common signal processing, it is more difficult to develop effec-
tive watermarking algorithms robust to geometric attacks, since they will cause
challenging synchronization problem.
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Many watermarking schemes have been suggested to tackle geometric attacks.
By assuming the possible space of attack parameters, some schemes embed nego-
tiated templates and exhaustively resynchronize them in the watermarked image
[1–3]. Geometrically invariant image features can also help synchronize watermark
bits. Invariant feature detectors such as multiscale Harris detector [4], Harris-
Laplace detector [5], scale-invariant feature transform (SIFT) [3], etc., have been
used to extract local embedding areas. A concern related to these approaches is
that they may suffer from expensive computational cost and high false alarm prob-
ability [6]. Some schemes exploit the geometrically invariant domain to gain the
robustness against the corresponded geometric attacks. A pioneering work is the
Fourier-Mellin transformation designed to be invariant to global rotation, transla-
tion, and scaling [7]. Other transformation methods such as moment invariants [8],
uniform log-polar mapping [9], polar harmonic transformation [10] are also devel-
oped to create geometrically invariant domain. The complexity of these schemes
is still high, which is not suitable for real-time applications.

In 2008, Xiang et al. proposed a robust watermarking scheme by utilizing the
histogram shape [11]. The histogram constructed from an entire image is inde-
pendent of pixel locations and thus robust to various geometric distortions. Fur-
thermore, the corresponded watermark extraction does not require local image
information, which reduces the risk of desynchronization. This histogram-based
watermarking method has been further extended in [5,12,13], etc. They improve
robustness by combining other robust watermarking techniques or compensating
the drawback in the original design. However, the watermark embedding algo-
rithm remains almost unchanged. In these schemes, several bins are employed
to embed one watermark bit, which results in a rather low capacity. It is not
satisfactory for many applications.

In this paper, two embedding algorithms are proposed to enlarge the capac-
ity of histogram shape-based watermarking. The first one employs multilevel
histogram. It embeds watermark bits via several rounds, in each of which a
histogram at a specified level is extracted to carry one watermark sequence.
The second one considers multiple bin adjustment. It divides the histogram into
segments, into each of which a number of watermark bits can be embedded simul-
taneously. In the embedding procedure, a histogram preadjustment method is
introduced to make the histogram extracted more suitable for embedding water-
mark bits. The coefficient transferring is also refined to minimize the embedding
distortion. These proposed algorithms present various tradeoff between robust-
ness and perceptibility, which enriches the application of histogram shape-based
watermarking.

2 Previous Works

This section briefly describes the histogram-based watermarking method sug-
gested in [11]. It starts by pre-filtering the host image with a Gaussian low-pass
filter to gain the robustness against common signal processing. Denote the low-
pass filtered image as Ilow, which is of size mI × nI . Then a global histogram
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with #(H) bins, H = {H(i)|1 ≤ i ≤ #(H)}, is extracted from Ilow by

H(i) =
mI∑

x=1

nI∑

y=1

δ

(⌈
Ilow(x, y) − b1

t

⌉
= i

)
(1)

where δ(·) = 1 if and only if its argument is satisfied, otherwise δ(·) = 0. t
denotes the histogram bin width and can be obtained as t = (b2 − b1)/#(H). b1
and b2 define the range of coefficient values used to extract the histogram. That
is, H only involves Ilow(x, y) ∈ [b1, b2]. This range is modeled by the mean of
Ilow.

Then each two neighboring bins form a group to embed one watermark bit.
Suppose two bins H(2i − 1) and H(2i), 1 ≤ i ≤ #(H)/2, are used to embed
watermark bit M(i). Their population is then adjusted in order to satisfy

{
H(2i−1)+n

H(2i)−n ≥ α if M(i) = 1
H(2i)−n

H(2i−1)+n ≥ α if M(i) = 0
(2)

where threshold α controls the population gap between bins, and n represents
the number of coefficients that are transferred from H(2i) to H(2i − 1). n is
negative when coefficients need to be transferred from H(2i − 1) to H(2i). Its
value can be calculated as

n =

⎧
⎨

⎩
max

{
α×H(2i)−H(2i−1)

1+α , 0
}

if M(i) = 1

min
{

α×H(2i−1)−H(2i)
1+α , 0

}
if M(i) = 0

(3)

to minimize the number of transferred coefficients.
At the extraction phase, the histogram H̃ is extracted from the received

image. Watermark bits are extracted according to

M̃(i) =

{
1, if H̃(2i − 1) ≥ H̃(2i)
0, otherwise

(4)

Mean value and Gaussian kernel are searched in addition to increase the proba-
bility of watermark matching. Note that these searchings require the embedded
message to be known at the receiver.

It can be observed that the maximum payload of the embedding algorithm
given in Eq. (2) is #(M) = �(b2 − b1)/(2t)�. This scheme has been extended
in many approaches, e.g., [5,12,13]. However, the embedding algorithm remains
similar. As a result, they suffer from the same payload limitation. In the next
sections, we present two improved embedding algorithms, which can enlarge the
payload effectively.

3 Improved Algorithm 1

3.1 Coefficient Transferring

The histogram shape-based embedding method requires transferring a cer-
tain number of low-frequency coefficients from one histogram bin to another.
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Denote the operation of transferring n coefficients from H(i) to H(j) as H(i) n−→
H(j). We propose a new transferring method to minimize the coefficient modi-
fication with respect to the Peak Signal to Noise Ratio (PSNR) index.

Take the situation H(i) n−→ H(j), i < j, as an example. Since the value range
of the coefficients in H(j) is [b1 + (j − 1) × t, b1 + j × t), these coefficients can
be changed to b1 + (j − 1) × t + 0.1 to restrict the embedding distortion. Let
B = {(xk, yk)|1 ≤ k ≤ n} denote the set of the best n coefficients. The k-th
element of B can be obtained as

(xk, yk) = arg min
(xp,yp)∈H′(i)

(b1 + (j − 1) × t + 0.1 − Ilow(xp, yp))
2 (5)

where
H′(i) = H(i) − {(xp, yp)|1 ≤ p ≤ k − 1} (6)

where (xk, yk) ∈ H(i) holds if Ilow(xk, yk) belongs to H(i). The situation when
i > j is similar, except the objective function defined in Eq. (5) now becomes

(xk, yk) = arg min
(xp,yp)∈H′(i)

(b1 + j × t − 0.1 − Ilow(xp, yp))
2 (7)

3.2 Histogram Preadjustment

Occasionally some bins of the histogram extracted from the host image are thinly
populated and thus not suitable to carry watermark bits. Herein we introduce a
histogram preadjustment method to guarantee good population for each bin. It
transfers coefficients from the other bins to those whose population is less than
a threshold β. This preadjustment is detailed in Algorithm1. The selection of β
will be discussed in Sect. 5.1.

Algorithm 1. Histogram Adjustment
Require: original histogram H, threshold β.
1: for i = 1 to #(H) − 1 do

2: n ←
(∑#(H)

j=i H(j)
)

− (#(H) − i) × β.

3: if H(i) > n then

4: H(i)
H(i)−n−−−−−→ H(i + 1).

5: end if
6: n ← β − H(i), j ← i + 1.
7: while n > 0 do
8: n′ ← min{H(j), n}.

9: H(j)
n′−→ H(i).

10: j ← j + 1, n ← n − n′.
11: end while
12: end for
13: return adjusted histogram H.
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3.3 Embedding Algorithm Based on Multilevel Histogram

The first embedding algorithm embeds watermark bits via several rounds. Sup-
pose in the first embedding round, a histogram H(1) with #(H(1)) bins, which
are of width t(1), is extracted, and the #(M (1)) watermark bits to be embed-
ded are M (1) =

{
M (1)(i)

∣∣1 ≤ i ≤ #(M (1))
}
. Then each two neighboring bins

H(1)(2i−1) and H(1)(2i), 1 ≤ i ≤ #(H(1))/2, are employed to embed watermark
bit M (1)(i) by using Eq. (2).

In the u-th embedding round, a finer histogram H(u) is extracted by dividing
each bin in H(u−1), namely H(u−1)(i), into two neighboring bins H(u)(2i − 1)
and H(u)(2i) of equal width. It can be implemented equivalently by perform-
ing Eq. (1) with bin width t(u) = t(u−1)/2. There are #(H(u)) = 2#(H(u−1))
bins in H(u). Consequently, another watermark sequence of length #(M (u)) =
2#(M (u−1)) can be embedded. The embedding processing is as same as that in
the first round. Since it satisfies that

H(u)(2i − 1) + H(u)(2i) = H(u−1)(i) (8)

reassigning coefficients between H(u)(2i − 1) and H(u)(2i) does not alter the
shape of H(u−1).

3.4 The Embedding Procedure

This section presents a watermarking scheme by using the first embedding algo-
rithm. Suppose the number of embedding round is #(u). The procedure of
embedding watermark bits with the first algorithm consists of the following
steps.

1. Low-pass filter the host image I with a Gaussian filter similar to that in [11]
to obtain the low-frequency component Ilow and the high-frequency residual
Ihigh = I − Ilow.

2. Initialize the embedding round as u = 1 and the intermediate watermarked
low-frequency component as Īlow = Ilow.

3. Extract the u-th level histogram H(u) from Īlow via Eq. (1) with bin width
t(u).

4. If u = 1, adjust the histogram by Algorithm 1. Otherwise, adjust the his-
togram by using

⎧
⎪⎪⎨

⎪⎪⎩

H(2i − 1)
γ(u)−H(2i)−−−−−−−→ H(2i), if H(2i) < γ(u)

H(2i)
γ(u)−H(2i−1)−−−−−−−−−→ H(2i − 1), if H(2i − 1) < γ(u)

No modification, otherwise

(9)

where γ(u) denotes the lower bound of bin population for the u-th round of
embedding.

5. Embed the i-th watermark bit M (u)(i) into H(u)(2i − 1) and H(u)(2i) by
Eqs. (2) and (3) with threshold α(u). Note that all coefficient modifications
are carried out on Īlow.
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6. Repeat Step 5 until all the #(M (u)) watermark bits have been embedded,
which gives a new Īlow.

7. Increase the embedding round as u = u + 1. If u ≤ #(u), set t(u) = t(u−1)/2
and redo the embedding procedure from Step 3 to perform the next round of
embedding. Go to Step 8 otherwise.

8. Post-process the Īlow obtained after the last round of embedding in a way
similar to that in [11]. That is, for the (x, y)-th coefficient that belongs to
H(#(u))(i),

Īlow(x, y) =
⎧
⎪⎨

⎪⎩

(i − 1) × t(#(u)) + b1 + 0.75, if Īlow(x, y) < (i − 1) × t(#(u)) + b1 + 0.75
i × t(#(u)) + b1 − 0.75, if Īlow(x, y) > i × t(#(u)) + b1 − 0.75
Īlow(x, y), otherwise

(10)

9. Reconstruct the watermarked image Ī by Ī = Īlow + Ihigh.

In the above procedure, γ(u) and α(u) for each round of embedding should be
carefully set so that there are enough coefficients for each coefficient transferring.
They will be experimentally discussed in Sect. 4.1. The embedding parameters,
b1, b2, t(1), γ(u), and α(u), should be prefixed. At the extraction phase, parameters
b1, b2, and t(1) are required. The extraction procedure can be derived accordingly
and omitted here due to limited space.

4 Improved Algorithm 2

4.1 Embedding Algorithm Based on Multiple Adjustment

The second embedding algorithm uses a group of histogram bins to embed more
than one watermark bit. The histogram extracted from the host image is first
divided into segments containing π neighboring bins. Then, each segment is used
to embed π − 1 watermark bits.

Take the first histogram and watermark segments, denoted as [H(1), . . . ,
H(π)] and [M(1), . . . , M(π − 1)], respectively, as an example. Each two neigh-
boring histogram bins in the segment, H(j) and H(j+1), embed one watermark
bit, M(j), by using the rule

{
H(j) ≥ αH(j + 1) for M(j) = 1
H(j + 1) ≥ αH(j) for M(j) = 0

(11)

The desired coefficient transferring should minimize the total embedding distor-
tion while guaranteeing the population gaps between neighboring bins and the
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lower bound of bin population. Still consider PSNR as the perceptual measure-
ment. Then the best coefficient transferring can be obtained by solving

arg min
N

∑

j,k

((j − k − 1) × t + δ)2 |N(j, k)| (12)

s.t. for 1 ≤ ∀j,∀k ≤ π :

H(j) −
∑

p

N(j, p) +
∑

q

N(q, j) ≥ γ

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H(j) − ∑
p N(j, p) +

∑
q N(q, j) ≥

α
(
H(j + 1) − ∑

p N(j + 1, p) +
∑

q N(q, j + 1)
)

, if M(j) = 1

H(j + 1) − ∑
p N(j + 1, p) +

∑
q N(q, j + 1) ≥

α
(
H(j) − ∑

p N(j, p) +
∑

q N(q, j)
)

, if M(j) = 0

N(j, k) = 0, if j > k

where γ represents the allowable thinnest population for each bin, and N denotes
the π×π sized transferring number matrix. N(j, k) > 0 means we should perform

H(j)
N(j,k)−−−−→ H(k), and N(j, k) < 0 calls for the operation H(k)

−N(j,k)−−−−−→ H(j).
By rewriting the above l1-norm problem to a linear program, and using, for

example, the dual-simplex algorithm, we can obtain a solution, say N ′. Then the
histogram segment is modified according to N ′ by starting from the transferring
with the largest distance, namely N ′(j′, k′) with

(j′, k′) = arg min
j,k

|j − k| s.t. N ′(j, k) 	= 0 (13)

The processing of embedding the i-th watermark segment into the i-th his-
togram segment is similar. Since the influences of modifying coefficients on PSNR
are independent of each other and strictly convex, the above embedding algo-
rithm can achieve the minimum embedding distortion with respect to PSNR.

4.2 The Embedding Procedure

A watermarking scheme using the second embedding algorithm is developed
here. Note that all the coefficient transferring involved in this scheme is still
performed via the method introduced in Sect. 3.1. The embedding parameters,
b1, b2, t, π, γ, and α need to be prefixed. The procedure of embedding watermark
bits with the second algorithm is as follows.

1. Obtain the low-frequency component Ilow and the high-frequency residual
Ihigh in the same way as described in Step 1 in Sect. 3.4.

2. Extract histogram H from Ilow via Eq. (1) with bin width t. Then adjust the
histogram by Algorithm 1.

3. Divide H into histogram segments of length π, and divide M into watermark
segments of length π − 1.
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4. Use the i-th histogram segment to embed the i-th watermark segment accord-
ing to Eq. (12). Repeat this step until all the watermark segments have been
embedded, which gives the watermarked low-frequency component Īlow.

5. Post-process Īlow and reconstruct the watermarked image Ī via the same ways
as described in Steps 8 and 9 in Sect. 3.4.

At the watermark extraction phase, parameters b1, b2, t, and π should be
known in advance. Note that the extraction rule slightly differs from Eq. (4). Still
take the the first histogram segment extracted at the receiver as an example. Sup-
pose it is

[
H̃(1), . . . , H̃(π)

]
. Then each two neighboring bins H̃(j) and H̃(j +1)

are used to extract the j-th watermark bit according to

M̃(j) =

{
1, if H̃(j) ≥ H̃(j + 1)
0, otherwise

(14)

The extraction procedure can be obtained easily and still omitted here because
of limited space.

5 Experimental Results

The two embedding algorithms are evaluated by testing the corresponded
schemes on natural images. 50 images of size 512 × 512 randomly selected from
the BOWS2 database [14] are employed as the test images. Some of them are
illustrated in Fig. 1. The perceptual quality of watermarked images is measured
by PSNR, while the robustness is measured by bit error rate (BER). The consid-
ered attacks comprise of common image processing (including JPEG compression
and additive white Gaussian noise (AWGN)) and geometric attacks (including
rotation, cropping, warping and random bending). These attacks are simulated
by Checkmark [15].

5.1 Parameter Setting

Our experiments suggest that a suitable range of coefficient values for the his-
togram extraction is [15, 240], that is, b1 = 15 and b2 = 240. This setting can
effectively remove the thinly populated bins at the first and last of the histogram.
In the first scheme, γ(u) can be set larger than 10 to compensate the detection
error caused by thinly populated bins. However, further increasing γ(u) cannot
improve robustness obviously. Note that β used in the histogram preadjustment
and γ(u) used in coarser level histograms should be amplified accordingly so
that γ(u) can be reached for each level histogram. The case in the second scheme
is similar. The settings of β, γ(u), and γ are listed in Table 1. There are two
parameters left in the first scheme, α(u) and #(H(u)), and three parameters left
in the second scheme, α, #(H), and π, that require to be prefixed. Herein we
experimentally discuss their settings by using the test images mentioned above.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 1. Examples of host and watermarked images. In the first row are the test images:
(a) “8137.pgm”, (b) “7088.pgm”, (c) “452.pgm”, and (d) “5149.pgm”. (e)–(h) are the
watermarked versions obtained by Scheme I with #(M) = 56. (i)–(l) are the corre-
sponded embedding modifications, i.e., |Ī − I|. (m)–(p) are the watermarked images
obtained by Scheme II with #(M) = 56, and (q)–(t) are the corresponded embedding
modifications. Parameters of Schemes I and II in this case are listed in Table 2. The
display range of [0, 255] is employed to represent a modification value varying from 0
to 10 in (i)–(l) and (q)–(t).
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Fig. 2. Demonstration of the influences of α(1) in the first scheme. (a) shows the influ-
ence on image quality, while (b) to (e) are on the robustness. γ(1) = 10. β is set
according to Table 1.

α(u) should be set according to current #(H(u)) in the first scheme, since the
less the bin number, the more the coefficients contained in each bin and thus
in each coefficient transferring. We test their influences on image quality and
robustness by using a single level histogram, that is, #(u) = 1. The robustness
is evaluated in the presences of no attacks, JPEG compression with compression
rate 30%, AWGN with standard deviation σ = 5, and rotation with angle 25◦.
Figure 2 demonstrates this influence by considering PSNR and BER as functions
of α(1). It can be observed that coarser level histograms perform slightly worse
than finer level histograms on both image quality and robustness when fixing
α(1). It may be because changing the shape of coarser level histograms will
cause more coefficient modifications, which will aggravate the side effect of the
Gaussian filtering. In addition, robustness turns to rise slowly when α(1) becomes
larger. In view of these, we set α(u) as given in Table 1, which experimentally
presents good tradeoff between robustness and perceptibility.

Table 1. Partial parameter settings in proposed schemes.

α(u) (or α) γ(u)(or γ) β Total payload

Scheme I 1 +
#(H(u))

64

if u < #(u) :

γ(u+1) ×
(

1−
(

α(u)
)2

1−α(u)

)

if u = #(u) :

10

1−
(

α(1)
)2

2−2α(1) × γ(1)
#(H(#(u)))

×
(
1− ( 1

2

)#(u)
)

Scheme II 1 +
#(H)
64

×
√

2
π

10 1−απ

(1−α)×π
× γ #(H)−

⌈
#(H)

π

⌉
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In the second scheme, both #(H) and π will affect the choice of α. Their
influences are assessed on single level histogram with scenarios similar to those
in the first scheme. Figure 3 shows the influence of varying α. It can be observed
that increasing π makes watermarked image quality more sensitive to α, but
affects robustness marginally. This is because increasing π will pressure some
coefficients to be transferred among histogram bins with larger distance, which
impairs watermarked image quality. However, disturbing one histogram bin only
affects two embedded watermark bits. Therefore robustness keeps unchanged
when varying π. Note that β used in the histogram preadjustment rises expo-
nentially with π. This may also incur the rising of the BER-α curve in the case
of π = 12. Therefore, α should be small enough to guarantee the success of
embedding watermark bits. As a result, α is set as given in Table 1.

Fig. 3. Demonstration of the influences of α in the second scheme. (a) shows the
influence on image quality, while (b) to (e) are on the robustness. #(H) = 64. γ = 10.
β is set according to Table 1.

Table 1 also lists the payloads provided by the proposed schemes. Note that
the residual #(H)−�#(H)/π�×π bins can form an additional histogram segment
to embed more watermark bits in the second scheme. It can be observed that
the numbers of watermark bits that can be embedded by both schemes tend to
be as same as the number of histogram bins, which is much larger than existed
histogram-based embedding algorithms.

5.2 Performance Comparison

We evaluate the proposed schemes by comparing them with those suggested in
[11,13]. The number of histogram bins #(H) in the compared two schemes can
be increased to enlarge the payload. However, their supported payloads are still
rather small. In view of this, we firstly compare all the schemes in the cases of
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Table 2. Parameter settings for all the schemes.

Payload (#(M)) 32 48 56 63

Scheme I Coef. range [15, 240] [15, 240] [15, 240] [15, 240]

#(u) 1 2 3 2

#(H(1)) 64 32 16 42

The other parameters are given in Table 1.

Scheme II Coef. range [15, 240] [15, 240] [15, 240] [15, 240]

π 2 4 8 4

#(H) 64 64 64 84

The other parameters are given in Table 1.

Xiang et al. [11] Coef. range [0.3A, 1.7A] [0.3A, 1.7A] – –

α 2 6 – –

#(H) 64 96 – –

Zong et al. [13] Coef. range [0, 255] [0, 255] – –

α 2 4 – –

t 3 2 – –

#(H) 64 96 – –

A denotes the mean of a histogram.

#(M) = 32 and #(M) = 48, then the two proposed schemes (denoted as Scheme
I and Scheme II) are further compared with respect to higher payloads. The
embedding threshold α in [11,13] is set to keep the PSNR scores of watermarked
images similar, which ensures a fair comparison. Parameter settings of these
schemes are listed in Table 2.

The watermarked images obtained by Schemes I and II with watermark bit
length #(M) = 56 are demonstrated in Figs. 1(e)–(h) and (m)–(p), respectively,
and their embedding modifications are depicted in Figs. 1(q)–(t) and (i)–(l),
respectively. The corresponded PSNR scores are compared in Table 3. It can
observed that Scheme I with 3 embedding rounds gives watermarked images
with the worst quality. This is because embedding watermark bits in a rather
coarse level histogram will cause severe distortions. Nevertheless, as shown in
Figs. 1(e)–(h), this quality still seems acceptable in practice.

Table 3. Comparison of PSNRs among Different Schemes.

Payload (#(M)) 32 48 56 64

Averaged PSNR Scheme I 46.92 44.07 38.99 42.37

Scheme II 46.92 43.69 43.40 41.67

Xiang et al. [11] 46.85 43.97 – –

Zong et al. [13] 46.12 43.46 – –
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Fig. 4. Robustness performance of different schemes under: (a) JPEG compression, (b)
AWGN, (c) rotation, (d) cropping, (e) warping, and (f) random bending.

We test the robustness of these schemes under common signal processing
and geometric attacks. The testing results are reported in Fig. 4. It can be
observed that the proposed schemes outperform the compared even in the case
of small payload, which can be attributed to the coefficient transferring and
histogram preadjustment methods proposed. It also shows that increasing the
payload affects robustness marginally. Furthermore, the proposed two schemes
perform similarly, except that Scheme I presents better robustness in the case
of #(M) = 56, which is at the cost of watermarked image quality. This suggests
that we can choose the embedding algorithm according to practical requirements.

6 Discussion and Conclusion

In this paper, we propose two improved embedding algorithms to enlarge the
capacity provided by histogram shape-based image watermarking methods. In
existed approaches originally suggested in [11], each histogram bin can only
embed 0.5 watermark bits at most. This value rises to almost 1 in the pro-
posed algorithms via exploiting multilevel histogram and multiple histogram
adjustment. Two new operations, namely histogram preadjustment and coeffi-
cient transferring, are developed to further enhance robustness. In the embed-
ding procedure, we alter the embedding algorithm while retaining the other
operations as given in [11], such as the low-pass filtering and post-processing, to
compare different embedding algorithms. The comparison results show that the
proposed algorithms can achieve good performances on both watermarked image
quality and robustness. Furthermore, our algorithms present different tradeoff
between robustness and perceptibility, which can support various applications.
Experimentally we find that the side effect of the Gaussian filtering seriously
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degrades the performance of the proposed algorithms. Designing more effective
compensative method is our future research.
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2. Dugelay, J.L., Roche, S., Rey, C., Doërr, G.: Still-image watermarking robust to
local geometric distortions. IEEE Trans. Image Process. 15(9), 2831–2842 (2006)

3. Su, P.C., Chang, Y.C., Wu, C.Y.: Geometrically resilient digital image watermark-
ing by using interest point extraction and extended pilot signals. IEEE Trans. Inf.
Forensics Secur. 8(12), 1897–1908 (2013)

4. Gao, X., Deng, C., Li, X., Tao, D.: Geometric distortion insensitive image water-
marking in affine covariant regions. IEEE Trans. Syst. Man Cybern. Part C Appl.
Rev. 40(3), 278–286 (2010)

5. Deng, C., Gao, X., Li, X., Tao, D.: Local histogram based geometric invariant
image watermarking. Sig. Process. 90(12), 3256–3264 (2010)

6. Licks, V., Jordan, R.: Geometric attacks on image watermarking systems. IEEE
Multimed. 3, 68–78 (2005)

7. Ruanaidh, J.J.O., Pun, T.: Rotation, scale and translation invariant spread spec-
trum digital image watermarking. Sig. Process. 66(3), 303–317 (1998)

8. Zhang, H., Shu, H., Coatrieux, G., Zhu, J., Wu, Q.J., Zhang, Y., Zhu, H., Luo,
L.: Affine legendre moment invariants for image watermarking robust to geometric
distortions. IEEE Trans. Image Process. 20(8), 2189–2199 (2011)

9. Kang, X., Huang, J., Zeng, W.: Efficient general print-scanning resilient data hiding
based on uniform log-polar mapping. IEEE Trans. Inf. Forensics Secur. 5(1), 1–12
(2010)

10. Li, L., Li, S., Abraham, A., Pan, J.S.: Geometrically invariant image watermarking
using polar harmonic transforms. Inf. Sci. 199, 1–19 (2012)

11. Xiang, S., Kim, H.J., Huang, J.: Invariant image watermarking based on statistical
features in the low-frequency domain. IEEE Trans. Circuits Syst. Video Technol.
18(6), 777–790 (2008)

12. He, X., Zhu, T., Yang, G.: A geometrical attack resistant image watermarking
algorithm based on histogram modification. Multidimension. Syst. Sig. Process.
26(1), 291–306 (2015)

13. Zong, T., Xiang, Y., Natgunanathan, I., Guo, S., Zhou, W., Beliakov, G.: Robust
histogram shape-based method for image watermarking. IEEE Trans. Circuits Syst.
Video Technol. 25(5), 717–729 (2015)

http://dx.doi.org/10.1007/11922841_36


Improved Algorithms for Robust Histogram 289

14. Bas, P., Furon, T.: BOWS-2 (2007). http://bows2.gipsa-lab.inpg.fr/
15. Pereira, S., Voloshynovskiy, S., Madueno, M., Marchand-Maillet, S., Pun, T.: Sec-

ond generation benchmarking and application oriented evaluation. In: Moskowitz,
I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 340–353. Springer, Heidelberg (2001).
doi:10.1007/3-540-45496-9 25

http://bows2.gipsa-lab.inpg.fr/
http://dx.doi.org/10.1007/3-540-45496-9_25

	Improved Algorithms for Robust Histogram Shape-Based Image Watermarking
	1 Introduction
	2 Previous Works
	3 Improved Algorithm 1
	3.1 Coefficient Transferring
	3.2 Histogram Preadjustment
	3.3 Embedding Algorithm Based on Multilevel Histogram
	3.4 The Embedding Procedure

	4 Improved Algorithm 2
	4.1 Embedding Algorithm Based on Multiple Adjustment
	4.2 The Embedding Procedure

	5 Experimental Results
	5.1 Parameter Setting
	5.2 Performance Comparison

	6 Discussion and Conclusion
	References




