
Chapter 7
A Brief History of Time Warp

David Jefferson and Richard Fujimoto

Abstract This chapter is about the history of the Time Warp algorithm and opti-
mistic approaches to parallel discrete event simulation. It concentrates on the early
history from our personal perspective as active developers of the ideas over several
decades.

7.1 Introduction

Time Warp is the name of an algorithm for doing discrete event simulation in
parallel. It is an optimistic simulation mechanism, one that takes risks by per-
forming speculative computation which, if subsequently determined to be correct,
saves time, but if incorrect, must be rolled back. Time Warp can be used in any
computation that uses a global temporal coordinate system for synchronization, but
discrete event simulation using simulation time, is by far the most important
example.

Because of its complete embrace of distributed rollback as the fundamental
synchronization primitive instead of more conventional primitives such as locks,
semaphores, or other process blocking constructs, Time Warp was considered a
radical innovation when it first appeared. It is even today, after 35 years, virtually
unique in that respect, but it has proved to be an elegant and powerful parallel
algorithm, able to achieve excellent parallel performance at a scale of almost 2
million cores with 8 million threads and 250 million LPs so far (Barnes et al. 2013).

This chapter is a brief history of the development of Time Warp, largely con-
centrating on the 1980s and 1990s. It is necessarily incomplete, and is entirely from
our personal perspectives. But this volume on the 50th Anniversary of WSC seems

D. Jefferson (✉)
Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore,
CA 94550, USA
e-mail: drjefferson@gmail.com

R. Fujimoto
Georgia Institute of Technology, Atlanta, USA

© Springer International Publishing AG (outside the USA) 2017
A. Tolk et al. (eds.), Advances in Modeling and Simulation, Simulation Foundations,
Methods and Applications, DOI 10.1007/978-3-319-64182-9_7

97



to be the perfect place in which to recall this early history. The first part of the
chapter is by David Jefferson, and the second part by Richard Fujimoto. We hope
that other authors will contribute their recollections as well.

7.2 The Early History of Time Warp: David Jefferson’s
Perspective

This first section provides the perspective of David Jefferson, describing the early
years of Time Warp at RAND, JPL, and within the Jade projects.

7.3 Origin of Time Warp at RAND

The development of Time Warp began with a project at the RAND Corp. in Santa
Monica in 1981. The Air Force was funding research to improve military simula-
tions in two ways: first, to allow models to be specified in a quasi-natural language
so that nonprogrammer generals might build their own models or scenarios, and
second, to speed up simulations through parallelism. I was a young assistant pro-
fessor at the University of Southern California with a background in parallel
computation, which at that time was relatively rare, so they recruited me to work as
a consultant on the project. I thought the first objective of natural language model
building was unlikely to succeed, but I might be able to contribute toward the
second of parallelizing discrete event simulations.

I had never read any literature on parallel discrete event simulation (PDES), of
which there was not much, and I did not immediately do a literature search. I just
started working on the problem from first principles. I was familiar with the
sequential discrete event simulation algorithm based on a priority queue, and I
thought that creating a parallel version of the algorithm would probably be
straightforward. That, of course, turned out to be exceptionally optimistic because
now, 35 years later, there are still basic issues, like load balancing or the rela-
tionship of PDES to the continuous simulation techniques used for numerical
solution of ordinary and partial differential equations, that we are still trying to
understand about PDES.

On my first consulting day at RAND, I recognized the core problem as syn-
chronizing the interaction among many concurrently executing processes (called
“logical processes”, or LPs) sending timestamped event messages to one another.
Every LP receives a stream of timestamped event messages sent by other LPs. The
incoming messages at an LP do not generally arrive in increasing timestamp order,
and in the general case there is no limit on how far out of order they are.
Nonetheless, each LP must process event messages strictly in increasing timestamp
order. If and only if all LPs do that (and have the same tie-breaking rule as well), the

98 D. Jefferson and R. Fujimoto



resulting simulation is equivalent to that of the sequential algorithm, as required.
This was similar (with some minor differences) to the way Chandy and Misra
(1979, 1981), and independently Bryant (1977), had already framed the problem,
though I did not know it yet. The most important conceptual difference was that
they assumed event messages were transmitted within a static graph of
order-preserving message channels between LPs, whereas I assumed any LP could
send an event message to any other at any time, and without requiring order
preservation.

I quickly realized some key facts about the synchronization problem in parallel
discrete event simulations. Except in special cases, one cannot achieve any sig-
nificant parallelism by trying to keep all the LPs of a simulation tightly synchro-
nized in simulation time, or requiring that events in different LPs be executed in
increasing simulation time order. Any such attempt to constrain the simulation
would over-synchronize it and effectively sequentialize execution, no matter how
many processors were used. Instead, a parallel simulator must allow some LPs to
run ahead in simulation time while others lag behind, with no a priori bound on the
time difference. Also, which LPs are ahead or behind must be able to change
dynamically as the simulation progresses. There cannot be a single, globally shared
standard for simulation time as there is in the sequential algorithm and in parallel
time-stepped simulation algorithms. Instead, each LP would need its own simula-
tion clock, and in any hypothetical instantaneous snapshot two such clocks would
rarely, if ever, agree. These observations applied even in the context of shared
memory parallelism, though we were interested in distributed algorithms.

I do not recall the exact moment of realization, but at some point it occurred to
me to think in terms of asynchronous parallel rollback as a possible synchro-
nization primitive instead of the classical primitives based on process blocking and
resumption. In the late 1960s, rollback had been used in limited ways in sequential
(but not parallel) debuggers (Balzer 1969). And rollback limited to the scope of a
single transaction (transaction abortion) had recently been studied in the context of
optimistic parallel database synchronization (Kung and Robinson 1981). Other
work I was at least dimly aware of that may have had some influence on me
included studies of parallel backtracking algorithms in such applications as parallel
tree search, alpha–beta pruning in game trees, and branch-and bound optimization.

But while rollback was conceptually straightforward in the context of sequential
computation or transaction abortion, how could it possibly work at all in the general
case of an asynchronous parallel computation communicating by timestamped
messages, let alone work efficiently? I did not know, but I felt forced in that
direction because I had been able to construct simple artificial models with just two
or three LPs where it seemed impossible to achieve enough parallelism without
rollback. But in implementing rollback, how do you undo the fact that the process
being rolled back may have sent out event messages that should be recalled, and the
receivers of those messages may by now have sent secondary event messages that
also should also be recalled? There would be a potentially large, dynamically- and
asynchronously expanding tree of event messages that must all be recalled because
of the original rollback, and that tree is growing, potentially exponentially, even

7 A Brief History of Time Warp 99



while the rollback is in progress! And in fact many parallel and uncoordinated
rollbacks could be going on simultaneously in various parts of the simulation that
would potentially interact and interfere with one another in unpredictable, nonde-
terministic ways. How was it possible to accomplish a clean rollback in the context
of such a chaotic mess?

These considerations were all something of a disturbing surprise, and it con-
cerned me enough that I checked with the project leader at RAND, Phil Klahr, to be
sure that he was OK with me exploring what seemed like radical approaches to the
problem of parallelizing discrete event simulation. To his great credit Klahr said
that he did not care how I proposed to parallelize a simulation as long as the
algorithm achieved speedup and got the correct results, i.e., the same results as
would be produced by sequential execution. That freed me to think as far outside
the box as I wanted.

7.4 Collaboration with Henry Sowizral

At this point, Klahr also made another crucial decision. He teamed me with a
RAND researcher, Henry Sowizral. This turned out to be an extraordinarily fruitful
partnership. After filling Henry in on my thinking, he immediately saw where it was
going and we worked closely together thereafter. Over the next 9 weeks during my
Friday consulting visits to RAND the two of us jointly developed most of the core
ideas of what came to be known as Time Warp. Our research “method” was to walk
outside along the Santa Monica Pier, the beach, and the palisades above, enjoying
the sun and the sights, and brainstorming continuously for hours about PDES.

That collaboration, though lasting less than 2 years, was one of the most pro-
ductive in my life. Henry and I were complementary and coequal. We adopted
speculative execution with general distributed rollback as our computational para-
digm, and then systematically rethought virtually every other issue in distributed
computation with rollback in mind. This was, and still is, a radical departure from
other paradigms of parallel computation. It allows the computation to execute
speculatively down completely incorrect computational paths that were never
intended or envisioned by the programmer. Eventually the incorrectness is detected
by a causality violation signaled by the arrival of an event message with a timestamp
in the simulation past of the receiving LP. That causes a cascade of actions in which
all LPs in the distributed simulation that have been directly or indirectly affected by
the original erroneous speculative event may be rolled back to times in their past
when their dependencies on the original error began. Execution then proceeds for-
ward in all of them again down a (more nearly) correct path, in a manner that might
be described as many parallel backtracking “searches” for the correct forward paths.

The fact that this approach could be made to work at all was astonishing to us. It
seemed totally counterintuitive that you could profit by (a) doing some distributed
computation speculatively, which might be utterly wrong, while also paying sub-
stantial additional overhead to allow for possible rollback, and then (b) also

100 D. Jefferson and R. Fujimoto



sometimes paying the cost of distributed rollback to undo the speculative compu-
tation when required, before (c) finally redoing the correct computation. But we
became confident, without real proof yet, that the resulting parallel computation
could be faster than an algorithm in which you carefully refrained from doing
anything speculative at all, at least sometimes.

But we were still faced with a lot of difficulties. How could a rollback mecha-
nism be implemented so that the speculative execution converged stably and
deterministically on the correct execution? How could we guarantee that the sim-
ulation made forward progress instead of thrashing forever in rollback activity? If it
was theoretically possible at all, how could it not be overwhelmed by state-saving
or synchronization overhead? How could we reclaim memory and avoid filling it
with data needed to support rollback? And how could this possibly scale well in a
distributed-memory platform?

Henry and I kept struggling with these problems. We conceived of a mechanism
whereby incorrect event messages could be “unsent” by sending special “cancel-
lation” messages that tell the receiver to throw away the cancelled event message
and to undo whatever further computation they may have done based on it. That
was promising, because it would induce a tree of such cancellation messages and
rollbacks in other LPs as necessary. But would this growing tree of cancellations
ever converge? What if, after an LP sent a cancellation message, it had to roll back
again to a time before it sent the cancellation? It seemed that we would then have to
send out a second-order cancellation message to cancel the previous cancellation
message, and third-order cancellations might be required to cancel erroneous
second-order cancellations. Would not that mean we would need an infinite hier-
archy of higher order cancellation types?

At this point an idea occurred to us that I consider the most beautiful one in the
core of Time Warp. Cancelling a cancellation message could be made indistin-
guishable from resending the original event message, and in that case a third-order
cancellation message was indistinguishable from a first-order cancellation. There
was an even–odd parity at play, and we formalized it in terms of a message–
anti-message duality. A regular event message would be considered “positive” and
a cancellation message would be considered “negative”, and they were symmetri-
cal. Either one could cause a rollback, and whenever two messages that are identical
except for sign were enqueued in the same message queue they would “annihilate”
and just disappear. The notion of anti-messages and annihilation made asyn-
chronous distributed rollback work cleanly, and it did so even in all the complex
cases. It worked even though the timing was nondeterministic and messages were
asynchronous and arbitrarily delayed, and even when messages were not delivered
in FIFO order, and even when there were cycles in the communication graph, and
when multiple, asynchronously interacting and mutually interfering rollbacks were
simultaneously in progress, and when anti-messages were delivered before the
messages they were supposed to cancel, and it even worked when all anti-messages
were delivered systematically more slowly than positive messages! Furthermore,
the anti-message mechanism scaled easily to an arbitrarily high degree of paral-
lelism. It seemed miraculous that such a simple, elegant mechanism as timestamped

7 A Brief History of Time Warp 101



anti-messages could also be so powerful, scalable, and robust. (It still seems that
way to me.) Henry and I repeatedly discovered that every issue created by the
introduction of distributed rollback seemed to have an elegant, efficient, but often
surprising solution, unlike anything we had seen in our computer science experi-
ence. That gave us confidence that we were on a very significant research path.

For such a brand-new and different kind of algorithm the correctness and per-
formance properties of asynchronous distributed rollback really should be formally
proved. I had substantial background in program verification, so I went through a
private exercise of trying to prove both weak and strong correctness. I believe I
could have done it but it would have required developing of great deal of new
formal machinery which would have been a distraction from my main goals at the
time. Still, the exercise of trying convinced me privately that there were no flaws for
a simulation with a finite number of LPs. I do not think that even today anyone has
published a formal proof of correctness of the full Time Warp algorithm (e.g.,
including the cancelback protocol), but Bagrodia et al. (1991) may have come
closest. Of course many analytical and empirical papers have been published on the
performance properties of Time Warp.

In those first few weeks, Henry and I considered many variations on Time
Warp. The state restoration parts of the rollback mechanisms we considered were
all based on saving snapshots of the state of an LP, but we considered several
possibilities, including incremental and variable frequency state-saving. We also
considered various message cancellation schemes and distinguished two of them,
lazy and aggressive cancellation. We defined GVT (global virtual time), and
articulated how it resolved commitment issues such as I/O, error handling, and
termination detection, and at the same time allowed us to recycle memory using a
technique we dubbed fossil collection, intentionally echoing the term garbage
collection. We considered how an LP going down an incorrect execution path might
commit a runtime error or get into an infinite loop, and yet even those problems
could be cleanly handled by properly implemented rollback. We dealt with the
semantics of handling ties in virtual time, i.e., two events at the same LP at the same
simulation time, and invented the superposition concept in which the entire set of
tying event messages are processed together in a single event execution. We spent
an inordinate amount of time worrying about the problem of repeatability with the
use of pseudorandom number generators (PRNGs) in the context of asynchronous
rollback. For a long time, I had something of a blind spot and failed to realize the
obvious, that when you just treat the PRNG seed and state as part of the model state
that could be rolled back, rather than as part of the simulator state, then there is no
problem at all.

For the most part, it is not possible to separate Henry’s and my contributions to
the early ideas in Time Warp. However, I specifically remember that Henry came
up with the name “Time Warp”. At first I did not like it at all because it sounded
like science fiction to me and I thought such a significant algorithm deserved a more
dignified and serious name. Eventually I caved, however, because other people
liked it and because I had nothing better to offer. It turned out to be a wonderful
choice because once people heard the details of the algorithm the catchy name

102 D. Jefferson and R. Fujimoto



really helped them remember it. I contributed the term “antimessages” myself.
People instantly got the allusion to particles and antiparticles in physics, and that
also helped sell the unorthodox idea to the research community.

Henry and I did the first proof-of-concept implementation of Time Warp on a
network of four Xerox Dolphin workstations used at RAND. We wrote in InterLisp
because we could get something working interactively very quickly. Henry was at
the keyboard with me looking over his shoulder kibitzing at every line. After we got
the Time Warp code barely turning over we needed a benchmark simulation model
to demonstrate that it worked. We chose to write a parallel event-driven version of
the cellular automaton known as the Game of Life because it was easy, it could
scale it to any size, it had plenty of parallelism available, and it could be trivially
load balanced. By giving each LP responsibility for larger or smaller “chunks” of
the two-dimensional region we could control the event granularity and the
communication-to-computation ratio. That model also forced us to deal with event
message ties because each cell in the Game of Life is updated only when it gets
simultaneous (in simulation time) inputs from its eight neighbors. And finally, The
Game of Life was simple and deterministic and easy validate, so we would know
instantly if there was a problem.

The first few times we ran it we got no speedup at all compared to sequential
execution, and in fact we measured a severe slowdown. To fix this we had to do our
measurements after hours when we were not competing for cycles and network
bandwidth with other users of the Dolphins. We had to turn off background
computations and system services, such as various daemons, demand paging and
lisp garbage collection. We also had to turn off our own debugging and trace
instrumentation, which otherwise did file I/O for each event. Only then, when all
those heavy performance drags and sources of performance noise were eliminated
were we able to see the parallelism and measure any speedup. As I recall, we
achieved almost a 2.5x speedup on our four-node network under optimal condi-
tions, though no records of those initial runs survive.

Eventually the collaboration between Henry and myself ended as we began
moving in different directions. Henry had not yet finished his PhD dissertation and
had to get back to it, and thus wanted to hold off for some months before he could
resume work on Time Warp, whereas I had a tenure clock running and students to
engage, and wanted to take the research to the next level immediately. Also,
inexplicably, RAND did not support our desire to apply for additional research
funding to allow us to bring more people to the project. Fortunately for me, as a
USC professor, I was not subject to RAND management, and could get my own
funding. Before the collaboration ended Henry and I wrote the first paper on Time
Warp in the form of a RAND Tech Report (Jefferson and Sowizral 1982). The title,
“Fast Concurrent Simulation Using the Time Warp Method, Part I: Local Control”,
hints at a forthcoming Part II, describing global control (GVT, etc.), but we never
got around to writing it.

7 A Brief History of Time Warp 103



7.5 Conservative Versus Optimistic Synchronization

After Henry and I had developed the core Time Warp methods and while we were
still working together I finally began to study the published literature on PDES,
mostly that by Mani Chandy and Jay Misra. They approached the synchronization
of discrete event simulation by what I viewed as more conventional means, using
algorithms based on process block-and-resume primitives rather than rollback.
They introduced the now classic Null Message algorithm (Chandy and Misra 1979),
a similar version of which had been independently invented earlier by Bryant
(1977). Later they introduced another another algorithm based on a repeated cycle
of running to global deadlock and breaking the deadlock (Chandy and Misra 1981).

With the Null Message algorithm (also known as CMB after the inventors) the
authors were targeting simulations of queueing systems, dataflow architectures,
computer networks, and other systems that are characterized by a static set of
components and a static graph of interactions among them. When I finally studied
their algorithm my reaction at the time was not favorable. The algorithm required
not just a static graph topology, but one using strictly FIFO communication
channels among the LPs (called “lines” in their paper), with the event messages sent
down each channel required to be in increasing timestamp order. It allowed neither
dynamic creation of new LPs nor of new channels between LPs. These seemed to
me to be strong restrictions on the class of discrete models that the algorithm could
be applied to. Henry and I had military combat simulations in mind, and it never
occurred to us to assume a static graph of interactions. We needed a method that
could simulate models that were much more dynamically malleable, permitting any
LP to send an unexpected event message to any other. One could do that within the
CMB paradigm only by assuming a complete graph of channels among the set of n
LPs, and that would entail O(n2) channels, and in some cases O(n2) messages
(mostly null) per unit of simulation time, which was clearly unscalable. We also
wanted to allow dynamic creation and destruction of LPs at runtime, a capability
that was incompatible with a static graph of LPs.

The CMB restriction that in each channel event messages must be transmitted in
increasing timestamp order had other, less obvious consequences. An LP A with
four successive events at times 10, 20, 30, and 40 might want to send one message
per event to another LP B with timestamps 90, 80, 70, and 60 respectively, so that
the event messages must be processed at the receiver in the reverse of the order in
which they were sent. Chandy and Misra’s version was based on Hoare’s Com-
municating Sequential Processes and could only handle an inverted sequence of n
messages from A to B if B were divided into n separate LPs and there were at n
separate channels from A to each of them, with each message sent along a different
channel. Since the number of channels had to be static, there was always a static
limit on how long a sequence of inverted order messages could be sent from A to B.
As a practical matter it is rare for an LP to want to send a long inverted sequence of
event messages, but there is no theoretical reason to adopt any static restriction, and

104 D. Jefferson and R. Fujimoto



no such restriction is needed by either by the sequential discrete event algorithm or
by Time Warp.

Finally, I was also concerned that the Null Message algorithm required addi-
tional logic in the model code to decide when to send null messages and what
timestamp to send on them. Null messages were required to assure good perfor-
mance and to avoid deadlocks. This extra logic sometimes required fairly deep
understanding of the mechanics of parallel simulation on the part of the model
programmer, understanding that may not have been within his or her expertise. In
some cases even though deadlock was avoided, it was sometimes only barely
avoided, possibly requiring a large number of null messages to make a small
amount of simulation progress. In current terminology, we would say that such
models have very poor lookahead, and it is inherently difficult for them to achieve
good performance with any kind of conservative synchronization, including CMB.
Such additional logic is not required in either the sequential algorithm or in Time
Warp.

These strong limitations led to my low opinion of the Null Message algorithm at
the time. It seemed to me at best a special-purpose simulation algorithm, not a
general discrete event simulator. In fairness, it was always presented as a network
simulation algorithm, but many, if not most, readers thought that it applied much
more broadly. For all its good qualities, I was then acutely aware at the time of the
Null Message algorithm’s limitations.

I hasten to add here that despite those limitations the Null Message algorithm has
stood the test of time. There are many important “network” models that fit perfectly
within its restrictions, and for them, it is often ideal. Even nonnetwork models can
often be profitably shoehorned into network form so that it applies. In the inter-
vening years I have implemented it, applied it in real applications, and taught it
several times myself, and I have grown to appreciate it much more.

But in the early 1980s, with the Null Message algorithm’s limitations paramount
in my mind, I developed something of a competitive attitude. I foresaw great
difficulty in getting an exotic rollback-based algorithm like Time Warp to be taken
seriously when there seemed to be much simpler, more approachable and more
understandable algorithms based on conventional synchronization.

Around this time I took a tour of universities, lecturing about Time Warp, and I
visited U. T. Austin where I met Chandy and Misra for the first time. The meeting
was a little awkward as I recall. In giving my usual lecture on Time Warp I would
have compared it to their published algorithms, and probably argued to the audience
that Time Warp was a superior approach. That may not have been the most politic
thing to do at their own university. For the first time upon meeting them I realized
that they were both quite distinguished and senior to me and thus deserved some
deference. I think they may have been mildly irritated at my presentation, though
they were totally professional about it. As I recall, it was in that first conversation
with them that the terms “optimistic” and “conservative” were adopted to apply to
speculative, rollback-based methods versus unspeculative, process-blocking meth-
ods. I had been using the term “optimistic” to describe Time Warp-like methods, by
analogy with optimistic transaction synchronization, and the natural contrasting

7 A Brief History of Time Warp 105



term I had been using was “pessimistic” to describe nonspeculative methods.
Chandy and Misra, understandably, did not like their algorithms characterized as
“pessimistic”, and proposed, if I recall correctly, that we perhaps refer to the two
approaches as “liberal” and “conservative”. I was not happy with the overtones
those two terms evoked. However that conversation went, and it is very fuzzy to me
now, by the end we agreed that each of us would choose our own term to describe
the methods we had developed. I chose “optimistic”, and they chose “conserva-
tive”. That is how that asymmetric pair of terms came to be adopted.

For maybe two decades or longer a rivalry of sorts continued between propo-
nents of optimistic and conservative methods. Each camp had its advocates, who
pointed out the strengths of their methods and the weaknesses of the others. These
positions were often inherited by the next generation or two of graduate students as
well. I recall one of the more dramatic moments in the competition was an occasion
when a prominent professor boomed to a conference audience that “Conservative
methods are doomed! Doomed!”. Another moment in the opposite direction was
publication by Nicol and Liu of a significant paper entitled “The Dark Side of Risk
(What your mother never told you about Time Warp)” (Nicol and Liu 1997). We all
laugh about the controversy now, but for a long while the positions were pas-
sionately held on both sides. I was partly responsible for this rivalry, but I was
certainly not alone. In my defense, I felt that I had a very uphill battle to make the
case that a radically different, even bizarre, algorithm such as Time Warp, should
even be considered for PDES or any other application. Most researchers initially
assumed that conservative PDES synchronization, which was invented earlier and
was easier to understand and implement, was the natural and reasonable approach.
I thus thought it was necessary not only to demonstrate the advantages of optimistic
methods, but also to articulate what I thought of as the inherent limitations of
conservative methods.

The rivalry slowly faded. Thankfully it never became personal. Echoes of it still
crop up indirectly on panels and over drinks at conferences, especially among old
timers of my generation. But today there is widespread recognition and under-
standing of the merits and limitations of both conservative and optimistic syn-
chronization methods. My own position has now matured as well. I now believe
that when and where there is good lookahead information that is easily computed,
conservative methods will generally dominate optimistic methods. When there is
not, optimistic methods will dominate. In complex models where some parts have
good lookahead and others do not, a hybrid synchronization system is called for.

7.6 The Virtual Time Paper

In 1983, I wrote a new paper, “Virtual Time” (Jefferson 1985), based on Time
Warp. My collaboration with Henry had ended, and for a lot of reasons it was not
going to be possible for us to write a jointly authored paper. Thus, he was not a
coauthor, though arguably he should have been. Henry, as a RAND employee, was

106 D. Jefferson and R. Fujimoto



bound by their slow and ponderous rules for submitting anything for publication,
whereas with a tenure clock running I could not afford the year-long submission
delays he would be subject to. Instead, to justify my sole authorship, I included as
much new material of my own as possible beyond what we had already published.
The new paper framed the Time Warp algorithm as a general purpose synchro-
nization protocol, useful for an array of applications beyond just simulation, such as
database concurrency control (Jefferson and Witkowski 1984; Jefferson and Motro
1986). I still believe that it has potentially widespread value in parallel applications
with complex synchronization, fault recovery, and load balancing requirements.
The paper also presented an extended analogy between rollback-based synchro-
nization and demand paging implementations of virtual memory, in which a roll-
back (“time fault”) is considered analogous to a page fault (“space fault”). This
analogy is what inspired the title, “Virtual Time”. That paper became very well
known, winning the Most Original Paper award at an international conference in
1983, and becoming over the years one of the most frequently cited papers in
computer science, and the catalyst for much further research on optimistic
synchronization.

7.7 Research with My Students at the University
of Southern California

After my collaboration with Henry ended, there was still a huge amount of research
to do to flesh out the mechanisms and provide useful theoretical underpinnings for
Time Warp. Fortunately, I had funding and graduate students at the University of
Southern California that enabled us to make further progress.

Critical path lower bound on time performance: One question we addressed was
just how much parallelism is available in a parallel discrete event simulation, and
how much of that parallelism Time Warp can capture. With my student Orna Berry,
now a distinguished scientist and entrepreneur in Israel, we used a critical path
approach to define the amount of parallelism available in a simulation model or,
equivalently, to define a lower bound on the time it takes to execute a simulation in
parallel. We were able to prove that no conservative algorithm could execute in less
time than the length of its critical path. Time Warp was also bound by the same
critical path length if it used aggressive cancellation but, in an extremely unex-
pected result, Berry proved in her dissertation that Time Warp with lazy cancel-
lation could sometimes actually execute faster than the critical path lower bound
(Berry and Jefferson 1985; Jefferson and Reiher 1991). Even now, after 30 years,
this result is not widely appreciated, and its consequences are still relatively
unexplored.

Flow control: Another issue we had not considered in the original Time Warp
research was message flow control. (I was not even aware of flow control as a
generic distributed systems issue until I started teaching operating system courses at

7 A Brief History of Time Warp 107



USC.) In the original work at RAND there was no mechanism to prevent
fast-sending producer LPs from filling up the memory of slow-processing consumer
LPs with queued-up event messages, fatally choking the simulation. Classical
“windowing” flow control algorithms do not apply in Time Warp (or any other
general PDES simulator) because there are no message “channels” and message
streams from multiple senders are merged at the receiver, because unexpected
messages from new senders can arrive any time without warning, and because the
order in which messages must be processed at the receiver (timestamp order) is not
generally the same as the order in which they are sent, nor the order in which they
arrive. Eventually, Darren West at Jade Simulations in Calgary, and I, working
partially independently, came up with a very elegant solution, one based on the idea
that a receiving LP whose incoming message queue was excessively long could
send high-timestamped messages back to their sending LPs to make room for
incoming messages with lower timestamps, in a protocol we called cancelback.
When the sending LP receives a sentback message, it rolls back to before it sent the
message, and executes forward again and resends the message later (Jefferson
1990).

The idea of sending a message backward from receiver to sender is another
highly unorthodox feature of Time Warp that cannot work in most parallel com-
putation paradigms because they lack the ability to roll back. Sending messages
backward is a communication idea that is nicely symmetric to the computational
idea of rollback, and meshes perfectly with it. That observation and others led to
greater emphasis on elegance and symmetry in future presentations of the Time
Warp algorithm.

Unfortunately, even though Time Warp has been implemented many times in the
last 30 years, most implementations leave out the cancelback protocol. This leaves
them open to unpredictable and unrepeatable runtime failures due to memory
exhaustion in an LP. That kind of nondeterministic failure behavior is essentially a
Heisenbug, and when it occurs people can waste a huge amount of time trying to
figure out what the problem is or work around it. Fortunately, experience so far
shows this does not happen very often, probably because the models we are
interested in tend to be approximately well balanced, or because some kind of
active throttling of optimism is used. But I expect that as the complexity of models
increases, especially with federated and multiscale models, this memory manage-
ment hazard will also increase in urgency. We should consider the cancelback
protocol as a fundamental part of any Time Warp implementation.

Global memory management and memory bounds: The consideration of flow
control led to a larger concern of more global memory management, and the
question of the minimal memory requirements for a Time Warp simulation. It was
obvious that to get good performance a Time Warp simulation would normally
require at least several times more memory than an equivalent sequential simulation
because it had to store both a sequence of snapshots of each LP’s state and

108 D. Jefferson and R. Fujimoto



previously processed event messages and anti-messages for every message the LP
sent, and it had to retain them at least as far back as GVT. There was a danger that
the memory requirements would grow without bound, and the simulation would be
unstable for that reason. We needed a theory for how to manage Time Warp
memory, and as part of that we wanted to know the minimal amount of memory
required for a Time Warp simulation to complete (though more memory was
always better).

My student, Anat Gafni, proved in her dissertation that Time Warp, using both
the cancelback and fossil collection protocols together, could be guaranteed to
complete a simulation if given no more than about twice the memory that a
sequential execution of the same simulation would require (Gafni 1985). We later
improved that result by a factor of two, so that in theory Time Warp could complete
in about the same amount of memory as a sequential execution when running on a
shared memory (or virtual shared memory) platform (Jefferson 1990). Of course,
the runtime performance would be terrible when Time Warp is constrained to run
with memory near the minimum, but the result made the point that Time Warp
could be space optimal. Surprisingly, I was also able to prove that asynchronous
conservative methods were far from space optimal in general. I constructed artificial
models that, with unfortunate timing, could require many times the memory of the
sequential execution, although that was not typical.

Symmetry: The success of the cancelback protocol, in which message sendback
was a direct analog to computational rollback, and the success of the analogy
between virtual time and virtual memory, led me to adopt symmetry as an explicit
goal in the Time Warp algorithm. Symmetry helped me present the algorithm more
compactly and convincingly, and it led me to search for other places in the algo-
rithm that had near symmetries and to correct them to make them perfect. Over the
years I came to recognize a lot of symmetries, including message–anti-message
symmetry, state–message symmetry, forward–backward time symmetry, forward–
backward message transmission symmetry (cancelback), virtual memory–virtual
time symmetry, and others. In the end, the bedrock reason I personally remained
inspired by optimistic simulation was fundamentally aesthetic. I did not see similar
symmetries in conservative methods, so I did not find them so compelling.

These results from the 1980s gave us confidence that optimistic methods,
unorthodox as they were, should be taken seriously, both practically and theoreti-
cally, and that conservative methods had some genuine limitations. But the real
tests would have to come with a serious parallel implementation of Time Warp and
performance studies using both benchmark models and realistic models. We needed
to demonstrate that Time Warp, with its heavy overheads and its poorly understood
dynamical behavior, could nonetheless achieve real speedup from parallelism on
real applications, and could be competitive with conservative algorithms in at least
some useful application areas.

7 A Brief History of Time Warp 109



7.8 The Time Warp Operating System at Jet Propulsion
Laboratory

On a visit to Caltech I had the opportunity to give a series of two talks. Since it is
hard to get people to come to a second talk after a week’s interregnum I tried a
dramatic trick to attract them back. I described the PDES synchronization problem
in the first lecture and convinced the audience that the problem, as I framed it, was
essentially impossible to solve. I left a cliffhanger, promising to resolve it a week
later in the second talk. When that day came, I had a full room and presented Time
Warp, cleanly solving all the apparent problems. It was the introduction of rollback,
which I had not mentioned in the first talk, that made the problem as I had framed it
soluble. Those two lectures turned out to be especially important subsequently
because the audience was full of physics-oriented people from the Jet Propulsion
Laboratory (JPL) and Caltech who appreciated the analogies between Time Warp
and physics (symmetries, anti-messages, etc.). Soon afterward when we started a
multiyear Time Warp development effort at the Jet Propulsion Laboratory, some of
the core members of that team, especially Brian Beckman, had been present in that
audience, and others who were there became supportive of the project.

By 1984 I had moved to UCLA and begun the relationship with JPL that lasted
for 7 years. A coincidence of three circumstances made this possible. First the
Army, a sponsor at JPL, was interested in speeding up combat models and looked to
parallel discrete event simulation as a key enabler. Second, researchers at Caltech
and JPL were designing and building a parallel computer with a new architecture,
the Caltech hypercube, and were looking for projects that would make constructive
use of it and demonstrate its value. And finally, because my collaboration at RAND
had ended, I was available and eager to work on the project and was invited to
lead it.

The Caltech Hypercube was a 32-node distributed-memory cluster with Intel
80286/87 processors connected by 128 KB/s communication channels in a 5-D
hypercube topology. Each node had 256 KB of RAM. It was an ideal machine on
which to build the first serious implementation of Time Warp. At that time 32 nodes
constituted a very large parallel computer. It was much larger, and more tightly
coupled, than the four-node network Henry and I had used—large enough that we
would be able to demonstrate significant parallelism and do useful scaling studies.
The fact that the Hypercube did not have shared memory was in my view an
advantage. I did not want to be tempted to use shared memory as a performance
crutch in any way, since any such dependence would leave doubt about the scal-
ability of Time Warp on platforms larger than the practical limit of shared memory.

The Caltech Hypercube had no operating system per se that we could use. This
was before the first release of Linux, and long before it became almost a de facto
standard OS for cluster machines. The only system software it had was what today
we would call a two-sided, synchronous, order-preserving message system, like a
primitive MPI that was intended to support what we would today call the Single
Program Multiple Data (SPMD) parallel programming model. But we could not use

110 D. Jefferson and R. Fujimoto



that because Time Warp needed a one-sided, asynchronous, interrupting message
system, and we did not need order preservation. Thus, we had to build our own
messaging layer, and that layer rested essentially on the “bare metal” of the hy-
percube. Even this I did not view as a handicap because it fit with my view that
Time Warp should be thought of not just as a simulator, but as a special-purpose
operating system. The project was therefore named TWOS—the Time Warp
Operating System (Jefferson et al. 1985, 1987; Wieland et al. 1989).

I think of Time Warp more as an operating system than as an application because
a full implementation requires the same software components as an operating
system for a parallel machine, but with alternative, virtual time- and rollback-
friendly algorithms in place of the classical ones.

• Time Warp needs a process scheduler with a lowest virtual-time-first discipline
rather than any variation on round-robin.

• Its primary synchronization is based on asynchronous interrupting messages and
general distributed rollback, not on locks, semaphores or process blocking.

• It needs timestamp-order priority queues with anti-message annihilation, rather
than FIFO message queues.

• Its message flow control and global storage management need to be based on
fossil collection and cancelback rather than garbage collection and windowing.

• It needs daemons for distribution of GVT (global virtual time), using what today
would be called asynchronous all-to-all reduction.

• It needs special normal and abnormal termination detection and error handling,
based on GVT.

• It needs special I/O commitment, also keyed to GVT. (It would be nice to also
have a file system that supports rollback, but no one has ever built one.)

• It needs custom instrumentation to measure quantities such as events executed,
events rolled back, message annihilations, message cancelbacks, and various
other performance metrics unique to Time Warp that have no analog in con-
ventional operating systems.

Later in its development, Time Warp also needed special mechanisms for
rollback-friendly LP creation and destruction, dynamic LP migration to support
load balancing (Reiher and Jefferson 1990), and advanced dynamic message routing
to deliver messages to migrating target processes (Ravi and Jefferson 1988).

Despite these considerations, today everyone implements Time Warp as a run-
time system on top of an OS, rather than as an OS itself. But however practical that
decision is, we should be aware that there are performance costs to it. It entails two
levels of scheduling, two levels each of synchronization, message queuing, memory
management, error handling, and termination detection, as well as reliance on a
level of polling for incoming messages.

The TWOS project at JPL was fairly large, with a full-time development staff of
anywhere from 8 to 12 at any one time over the 7 years. Two people wrote the core
Time Warp algorithms, initially Brian Beckman and later Peter Reiher, both of
whom did brilliant work. The project would never have succeeded without them.

7 A Brief History of Time Warp 111



Phil Hontalas had the highly technical task of writing the low-level asynchronous
messaging system complete with routing and interrupt handling, etc., and then
porting it twice to subsequent parallel machines. Mike DiLoreto was a master
debugger and performance specialist jack-of-all trades. John Wedell built a high
performance sequential simulator that was semantically identical to the TWOS
simulator and used for performance comparisons. He kept improving its perfor-
mance, which challenged the team working on TWOS since its performance was
evaluated relative to the performance of Wedell’s sequential engine. Fred Wieland
built the main parallel benchmark simulations and wargame models for the Army.
Steve Bellenot did R&D on GVT algorithms. Van Warren was our graphics spe-
cialist. Others, including Leo Blume, Joe Ruffles, Kathy Sturdevant, Larry Hawley,
Abe Feinberg, Pierre Laroche, John Spagnuolo, Todd Litwin and two fine interns,
Maria Ebling and Matthew Presley, contributed benchmarks, instrumentation,
documentation, ran performance studies, etc. Jack Tupman and Herb Younger were
our managers interfacing with the Army sponsors, JPL upper management and the
proprietors of the Hypercube, and husbanding the finances.

After the first few years, JPL built a new, much more powerful hypercube: the
JPL Mark III. It had 64 nodes arranged in a 6-D hypercube, and was based on the
Motorola 68020/68881 processor/coprocessor pair with a comparatively whopping
4 MB of RAM per node! Still later our project purchased a BBN Butterfly GP1000,
a shared memory machine with 112 nodes, also with 68020/68881 processors and
4 MB per node. We ported TWOS to each of these machines in succession, which
allowed us to run still larger models, achieve higher degrees of parallelism, and
demonstrate the portability and scalability of Time Warp.

The following graphs, which are re-scans of the original plastic transparencies I
used in 1988 in various presentations, illustrate the performance of TWOS about
midway through the 7-year project. Figure 7.1 shows a strong scaling study of a
military ground combat model called STB88 that the Army commissioned us to
build as a benchmark. It had 380 LPs and was run for 326,997 events. The graph
shows speedup of the combat model as a function of the number of nodes used on
the Mark III Hypercube. The speedup is relative to the performance of our fast
sequential simulator, not to Time Warp executing on one node. That is important
because if we had chosen the performance of our algorithm on one node as a basis
for comparison, which parallel computation researchers often did in those days, it
would have yielded much higher but quite artificial speedup values, since a
one-node Time Warp execution would pay high and unnecessary overheads for
support of rollback and would consequently run much slower than our sequential
simulator. The curve in Fig. 7.1 shows approximately linear scaling, from a
speedup of about 2.5 on 4 nodes to about 16.5 on 32 nodes. The data in the
documentation box shows that the sequential simulation took 1.4 h, while the time
on 32 nodes under Time Warp was 5.3 min. The initials of Fred P. Wieland in the
last line of the box show that he performed the runs. The sponsor was very happy,
and so were we—we put this graph on a T-shirt!

The next two figures show a performance study a few months later of TWOS
running essentially the same combat model as in Fig. 7.1, but this time done on the

112 D. Jefferson and R. Fujimoto



BBN Butterfly by Fred Wieland and Phil Hontalas. Figure 7.2 is another plot of
speedup as a function of the number of nodes applied. In this case, we reached a
speedup factor of over 35x using 100 nodes and with an approximately linear
speedup almost to full scale. We did some runs two or three times, and you can see
up to 10% variation in performance even with the exact same configuration

Fig. 7.1 Strong scaling study of TWOS relative to sequential execution of an Army combat
model (STB88) running on the JPL Mark III Hypercube in July, 1988

Fig. 7.2 Strong scaling study of TWOS relative to sequential execution of an Army combat
model STB88 running on the BBN Butterfly in October 1988

7 A Brief History of Time Warp 113



measured twice. The variation shown between runs on different numbers of nodes is
larger, and is primarily because the combat model was irregular in structure and the
load was not always as well balanced at one scale as it was at another.

Figure 7.3 shows a plot of the number of rollbacks measured in the exact same
runs plotted in Fig. 7.2. (It may not appear that way because in both graphs there
are cases where multiple measurements at the same scale were so close that points
coincide.) Figure 7.3 illustrates the fact that in Time Warp the number of rollbacks
generally increases as a model is spread over more and more processors. In fact
when running over 100 nodes, there were over 400,000 rollbacks when the total
number of committed events was 419,797. Although a huge percentage of the
events were rolled back and executed more than once, the speedup as shown in
Fig. 7.2 continues to increase, at least up to the scale reached in this study.

This result is characteristic of Time Warp and very surprising to people new to it.
How can it be that the speedup continues to increase even though the number of
rollbacks does also? It is because the great majority of those rollbacks are for events
that are way off the critical path of the computation, and thus they do not slow down
the global progress of the simulation. While there is such a thing as excessive
optimism and too many rollbacks, this graph makes it clear that in tuning a Time
Warp simulation one must not just naïvely make it a goal to reduce the number of
rollbacks.

Fig. 7.3 Rollbacks as a function of number of nodes, using the same runs as in Fig. 7.2

114 D. Jefferson and R. Fujimoto



7.9 Jade Simulations

During roughly the same years as the JPL project, Brian Unger at the University of
Calgary started a company, Jade Simulations, that had the goal of commercializing
Time Warp. I was a Board member and advisor. Jade built a completely new
distributed implementation of Time Warp that ran well on both networks and
clusters. Unfortunately Jade never successfully found a market, partly I think
because the relentless acceleration of sequential computation due to Moore’s Law
allowed people who needed higher performance simulations to just wait a couple of
years, and partly because Jade was a Canadian company that was not permitted to
compete for U.S. military simulation business. But I also think that Jade was just
ahead of its time, when parallel computers were still very expensive. It would take
several more years before any market matured sufficiently to make commercial-
ization viable.

7.10 Subsequent Years

The most significant new PDES idea in many years came in 1999 when Richard
Fujimoto and his students, Kalyan Perumalla and Chris Carothers, introduced the
idea of reversible computation (Carothers et al. 1999). This was a dramatically
different and more efficient approach to implementing rollback, and leads some
tantalizing programming theory and programming language ideas as well. At the
time I had left the field of PDES, and only learned about it several years later when I
reconnected. But then I was deeply impressed. Eventually, when I found myself in
position to work on it again at Lawrence Livermore National Laboratory, Markus
Schordan, at my instigation, built a compiler that can take literally any program
written in C++ and create reverse code for it (Schordan et al. 2015; Schordan
2016). We hope this development may make reversible computation the standard
way of accomplishing rollback and remove most of the last remaining software
engineering barriers to the widespread adoption of optimistic synchronization.

Time Warp has been implemented many times in the years since the RAND,
JPL, and Jade projects. Richard Fujimoto, as he describes in the next section of this
chapter, created Georgia Tech Time Warp (GTW), originally as a platform through
which to study major improvements that could be made to Time Warp in a shared
memory environment. He was the first person to do fair comparison studies
between conservative and optimistic methods on the same problem and to verify
that in many cases (but not all) the optimistic methods could indeed outperform
conservative methods. Later his students developed their own implementations of
Time Warp, derived to some extent from their experience with GTW. Kalyan
Perumalla, now at Oak Ridge National Laboratory, developed the μsik simulator,
which he still uses for advanced studies of PDES (Perumalla 2005). And Chris

7 A Brief History of Time Warp 115



Carothers, now at RPI, developed the ROSS simulator, which is open source and
available to all researchers who wish to work with it (Carothers et al. 2002).

In at least one respect ROSS is now the state of the art in Time Warp imple-
mentations. It holds the world record to date (2017) for the largest scale and fastest
discrete event simulations ever executed. In 2013 my colleagues Peter Barnes,
Chris Carothers and Justin LaPre and I ran a series of benchmark runs on the
Sequoia supercomputer at Lawrence Livermore National Laboratory, which at that
time was the second fastest computer in the world. On the standard PHold
benchmark with 251 million LPs we achieved a sustained 5.04 billion events per
second using almost 2 million cores and almost 8 million hardware threads (Barnes
et al. 2013). Those runs proved that the Time Warp algorithm can scale to gigantic
degrees of parallelism.

In the 35 years since Henry Sowizral and I built the first primitive four-node
implementation, Time Warp has achieved over a million-fold increase in demon-
strated parallelism. While I anticipate a temporary pause in this peak performance
increase as the architectures of supercomputers are changing in the current era in
ways that do not benefit Time Warp or PDES, the future is nonetheless long and it
is very hard to imagine what the next 35 years might bring.

7.11 My Adventures in Time Warp: Perspectives
by Richard Fujimoto

The second section of this chapter provides the perspectives of Richard Fujimoto.

7.12 Beginnings

I first became interested in parallel discrete event simulation (PDES) when I was a
doctoral student at the University of California in Berkeley (1978–1983). As an
undergraduate student at the University of Illinois I became interested in computer
architecture, and embarked on a doctoral dissertation at Berkeley looking at high
speed switches to interconnect microprocessors, which at that time were just
becoming powerful enough to be interesting, to create parallel computers. In order
to evaluate our ideas about switches we needed parallel applications to generate
realistic message traffic. It immediately became clear to me then that the discrete
event simulator I had developed to evaluate our switches would be a perfect
benchmark program. This of course led to consideration of the synchronization
problem, and ideas akin to those developed by Chandy, Misra, and Bryant (pub-
lished a few years earlier, but unknown to me) came to mind, but my main interest
was in hardware design, so I did not embark on any serious studies of the problem
while I was a graduate student.

116 D. Jefferson and R. Fujimoto



It was not until years later that I renewed my interest in this area. I then came
across Chandy and Misra’s and other’s papers concerning conservative synchro-
nization, and Jefferson’s work on Time Warp. At the time, the initial algorithms
were in the published literature, but no one knew which approach was better, and
under what circumstances one approach might dominate the other. My attention
focused on doing a serious comparison of these algorithms. This work launched a
career-long exploration of parallel and distributed simulation techniques.

7.13 Conservative Versus Optimistic Performance

Foremost in my thinking was the need to have a very efficient sequential simulation
to determine the speedup obtained using parallel computing. This led to an
exploration of the literature in event list implementations for sequential simulations.
A paper by Doug Jones comparing different priority queues for discrete event
simulations caught my attention (Jones 1986). This comparison, and others that had
appeared at the time, were all based on something called the HOLD model, which
seemed to be the standard benchmark for evaluating sequential event list perfor-
mance. I developed a parallel version of the HOLD model, first described in
(Fujimoto 1988), which later become known as PHOLD (Parallel HOLD). I used
PHOLD in my initial comparisons of the Chandy/Misra/Bryant null message and
deadlock detection and recover algorithms, and later Time Warp (Fujimoto 1990).
PHOLD continues to be used to this day to evaluate parallel simulation
performance.

There were a couple of central conclusions that came from these comparisons
that drove much of my work that followed. First, these results showed conclusively
that both Time Warp and the conservative algorithms could achieve excellent
speedup relative to efficient sequential implementations using state-of-the-art event
list data structures. Prior to that time much of the work had reported speedups of
conservative methods, but often compared the parallel implementation against a
sequential execution of the parallel algorithm, or did not use a particularly efficient
sequential implementation. For example, I recall some results reported super-linear
speedup. But on closer examination, this work compared performance against a
sequential simulator using a linear list implementation of the event list, an approach
that becomes very inefficient for large numbers of pending events, leading to
inflated parallel performance. There was a dearth of empirical results reporting
Time Warp performance at the time, though measurements of the Time Warp
Operating System (TWOS) for realistic applications would soon appear.

A second conclusion from this (and other) work was that conservative algo-
rithms relied on exploiting knowledge of the simulation application in order to
extract good “lookahead” information, essential to obtaining efficient parallel
execution. Briefly, lookahead is a guarantee made by the simulator that any new
events it schedules are at least a certain amount of simulation time into the future.
The greater the lookahead, the better. Intimate knowledge of the application is

7 A Brief History of Time Warp 117



required in order to make such a guarantee. This suggested significant drawbacks
with conservative synchronization algorithms. It meant that the application itself
had to possess good lookahead properties; not all applications possessed such
properties. For example, if two entities in the simulation could interact in a small
amount of time, e.g., two radios in a simulation of a wireless network could
instantaneously communicate, large lookahead may be difficult or impossible to
obtain. Further, even if one could build the simulation to have good lookahead, if
the simulation model had to be later modified, such modification might destroy
these lookahead properties, defeating the parallelization approach. For example, in
a queueing network simulation, if one added high priority jobs that preempted
service from lower priority jobs, it greatly reduces the lookahead, and could lead to
a dramatic reduction in performance, even if there were only a few high priority
jobs in the system. As a result, conservative simulation applications were prone to
becoming brittle in that if details of the simulation model changed, the original
parallelization approach might not yield acceptable performance, or it might not
even run at all.

It was quite apparent to me early on that two facts seemed inescapable. The first
was that Time Warp stood the best chance of realizing a general purpose parallel
discrete event simulation engine over which a variety of applications could be
developed. This, of course, seemed to be the most viable path for the technology to
see real-world use and have widespread impact because it would enable exploita-
tion of the technology in a wide variety of application domains without intimate
knowledge of parallel processing or the synchronization mechanism. In much the
same way the developers of sequential simulation models did not need to be
concerned with the priority queue data structure that was used. Expecting domain
experts, who would be the ones who developed the simulation models, to be experts
in parallel computation and PDES seemed a stretch. The reliance of conservative
methods on intimate knowledge of the application called for domain experts to have
much more expertise in PDES than I thought realistic.

A second observation was that there were significant challenges that needed to
be addressed for Time Warp to yield acceptable performance. Two hurdles seemed
obvious. The first problem was one that everyone immediately understands as soon
as they learn about Time Warp, namely that the computation could spend most of
its time rolling back events and recovering from errors rather than completing
computations for the simulation model. This problem appeared to be solvable,
however, and approaches to addressing this problem began to appear soon after
Time Warp had been invented. A second problem that seemed somewhat more
difficult was the need for state-saving in order to allow the computation to be rolled
back. This could consume much time and memory. Both of these problems were
important and interesting, but the state-saving problem was the one that captured
my attention first. With my background and interest in computer architecture, I
envisioned this was something that could be addressed with hardware.

118 D. Jefferson and R. Fujimoto



7.14 The Rollback Chip, Virtual Time Machine,
and Reverse Execution

As an undergraduate I had been enamored with clever techniques to manipulate
memory addresses in digital circuits to implement cache and virtual memory sys-
tems. It seemed natural to use such techniques to implement state-saving in hard-
ware for Time Warp. One only needed to intercept memory writes, and modify the
memory address to preserve the original contents of the memory location. Some
additional work was needed to implement memory reads, in order to ensure the
correct version of memory was accessed. This was straightforward to accomplish in
hardware by keeping track of which blocks of memory had been written. These
ideas led to a kind of memory management circuit that we called the rollback chip
(Fujimoto et al. 1992). Separately, I was approached by two electrical engineers
who were keen to develop prototype hardware, and were able to get some funding
for the same, resulting in an initial proof-of-concept prototype implementation of
the system (Buzzell et al. 1990).

The next logical step beyond the rollback chip work was to extend hardware
support beyond state-saving, to other aspects of Time Warp. Here, the conceptual
model I found useful was the data dependence, or task graph, where nodes represent
event computations, and links represent dependencies between events. Specifically,
each event within a logical process (LP) depends on (or more precisely, could
depend on) the preceding event in the LP with the next smaller time stamp. And if
one event schedules a second, then there is obviously a dependence of the sched-
uled event on the one that scheduled it. Data dependence graphs had been around
for some time and were widely used to study parallel computations. One of David
Jefferson’s students, Orna Berry, used this model to determine properties of the
computation such as average parallelism and minimum possible execution time
(Berry and Jefferson 1985). Task graphs also greatly influenced my work in
developing Time Warp software, described later. I realized that a hardware repre-
sentation of the task graph, stored in the shared memory of a multiprocessor system,
could be used as the basis for a general parallel computer based on Time Warp.

I called the resulting parallel computer the Virtual Time Machine (VTM) (Fuji-
moto 1989a, b), giving a nod to Jefferson’s original Time Warp paper entitled
Virtual Time (Jefferson 1985). Admittedly, I also liked the sci-fi-ish nature of the
name. A distinction between the VTM design and Time Warp is that it did away
with logical processes, and used a shared memory rather than a message-based
computation model. At the core of VTM was the space-time memory system, a
memory system addressed by a time value in addition to a conventional memory
address.

We envisioned the VTM to be a general purpose parallel computer using roll-
back as its core synchronization primitive that could be used broadly for parallel
computation, not just simulations. After all, one could, in principle, take any
sequential computation, divide its execution up into blocks of instructions, assign
each block a time stamp reflecting its sequential order of execution, and the result

7 A Brief History of Time Warp 119



would be a discrete event simulation computation where each block represented an
event. We envisioned the VTM could be used to automatically parallelize
sequential computations, something compiler writers at the time had been strug-
gling with for years.

This vision proved to be a bridge-too-far, however. We focused on the use of the
VTM to automatically parallelize sequential discrete event simulations as a first step
toward this bigger, broader objective. This was examined by Jya-Jang Tsai for his
doctoral research, who had completed some of the early simulation studies of the
rollback chip. But even in this friendlier domain, it was difficult to reduce the
computation overheads to an acceptable level, and only a modest amount of success
was achieved. The computer architecture world at the time was moving toward
reduced-instruction-set-computers (RISC) so the trend was toward simpler rather
than more complex, and the VTM approach did not fit well into this movement. At
a deeper level, sequential programs not written for parallel execution often do not
exhibit sufficient parallelism for an approach such as this to succeed; the code needs
to be structured for parallel execution earlier on in the software development cycle.
So, we did not continue to pursue the VTM hardware architecture, though the VTM
ideas influenced much of our later work in distributed simulation.

For example, a software-based distributed simulation approach derived from the
Virtual Time Machine and Time Warp was a technique we termed “ad hoc dis-
tributed simulations” (Fujimoto et al. 2007). The context for this work was in the
use of distributed simulation online to manage operational systems. Here we
repurposed the space-time memory used in the VTM to hold a projected future state
of the system. Simulations computed forward, ahead of wall clock time to predict
future system states, which were stored in the space-time memory. If measurements
of the actual system deviated from predictions by more than a specified threshold, a
Time Warp style rollback mechanism was used to automatically correct the pre-
dictions. Although the approach is applicable to a variety of systems, our work
largely focused on evaluating this approach for traffic management applications,
and more broadly, systems modeled as queueing networks (Huang et al. 2012).

Getting back to Time Warp, since the VTM hardware approach was never able
to get much traction, we focused more on software-based ideas. In particular, the
next chapter in our work in addressing Time Warp’s state-saving problem was to
move away with state-saving entirely, and instead employ a reverse execution
method to undo incorrect computations. Chris Carothers and Kalyan Perumalla
pursued much of this work, with Kalyan pursuing it for his doctoral research
(Carothers et al. 1999). Both continued to work on reverse computation after
completing their work at Georgia Tech. Actually, reverse computation did not
entirely eliminate state-saving because some computations are inherently irre-
versible; state-saving was used as a fallback approach in situations where the
inverse computation could not be created. Nevertheless, reverse computation can
significantly reduce the memory footprint of Time Warp programs and greatly
reduce the time required for state-saving. Much of our work in reverse computation
focused on proving its viability for various simulation applications. In addition to
standard benchmarks such as communication networks, some of this effort focused

120 D. Jefferson and R. Fujimoto



on applying the technique to scientific computing applications such as modeling the
earth’s magnetosphere in collaboration with Homa Karimabadi and his group at
Scibernet, a start-up company in California, and a graduate student named Yarong
Tang (Tang et al. 2006).

Developing the code to invert a computation is not straightforward, and prone to
error. To address this problem Kalyan Perumalla developed a reverse execution
compiler to automatically instrument the forward execution and generate the
reverse code for his PhD dissertation. This work was subsequently continued in
collaboration with David Jefferson and others at Lawrence Livermore National
Laboratory (LLNL) and Georgia Tech to create the backstroke compiler (Vulov
et al. 2011; Schordan et al. 2015, 2016).

7.15 Simulation Ensembles

We never reached the point of creating a hardware realization of the Virtual Time
Machine. But as mentioned earlier, the computation model it used formed the basis
of other work. One line of research focused on accelerating the completion of
multiple simulation runs, called ensemble simulations. Virtually all simulation
studies require many runs. Often these runs are similar, and have many computa-
tions in common. Our focus was on performing these common computations only
once, and sharing their results. As will be seen, some ideas from Time Warp can be
used to achieve this goal.

We used task graphs not unlike those used in VTM extensively in this work.
Specifically, Steve Ferenci developed something we called updateable simulations
(Ferenci et al. 2002). The basic idea is to record the task graph for a computation.
Then, to complete subsequent runs of simulations similar to the recorded one, use a
VTM/Time Warp style rollback mechanism to “update” the simulation execution in
accordance with differences in the new run.

A related idea, developed earlier by Maria Hybinette for her doctoral research,
was to use an incremental cloning mechanism to compute a set of similar simulation
runs (Hybinette and Fujimoto 2001). This work used the traditional PDES logical
process model and Time Warp, although her work did not require the use of Time
Warp. Motivated by the use of Time Warp to assess alternate possible futures for air
traffic control simulations, the idea was to identify points in the future when
decisions would need to be made, and then to replicate or clone the parallel sim-
ulation to concurrently explore these alternate futures. The central idea in Maria’s
work was to use an incremental LP replication method where LPs were replicated
as needed as the computations of the different runs diverged. This enabled us to
share the results that were common among the different replications.

7 A Brief History of Time Warp 121



7.16 Georgia Tech Time Warp

Let me “roll back” now to 1988 and come back to our software implementation of
Time Warp. I recognized early on that there were several important challenges in
realizing an efficient implementation. My early work focused on developing tech-
niques to create a fast Time Warp system using a variety of methods developed by
our research group. These techniques were incorporated into a software system we
called Georgia Tech Time Warp (GTW).

My initial work focused on developing an efficient implementation of Time
Warp on shared memory multiprocessors. Motivated by the task graph model, my
first implementation focused on, in effect, storing the task graph in the shared
memory of the multiprocessor system. In particular, when one event scheduled
another, we simply stored a pointer from the scheduling event to the event being
scheduled. This greatly simplified the Time Warp implementation because it
eliminated the need for separate anti-messages, with the pointer effectively
implementing an anti-message. It also eliminated the need to create a copy of each
scheduled message, and avoided the need to search for the matching positive
message when an anti-message was received. I called this technique direct can-
cellation (Fujimoto 1989b). Direct cancellation allowed one to rapidly track down
and correct errors resulting from out of order executions. I believed this was
important because while one used anti-messages to correct these computations, the
wrong computations themselves were spreading, so it was important to track down
the errors as quickly as possible to minimize the damage they caused. The resulting
shared memory data structure used to implement Time Warp motivated the
space-time memory used subsequently in the Virtual Time Machine work described
earlier.

We developed several other innovations to create an efficient shared memory
Time Warp system, described in (Das et al. 1994; Fujimoto 2000a, b). For example,
working with PhD student Maria Hybinette, we developed an efficient shared
memory algorithm for computing Global Virtual Time (GVT) (Fujimoto and
Hybinette 1997). GVT is needed in Time Warp to determine a lower bound on the
time stamp of future rollbacks, enabling reclamation of memory (fossil collection)
and committing irrevocable operations such as I/O. We also developed an efficient,
“lazy” approach to implement fossil collection that we called on-the-fly fossil
collection. It avoided the need to search through lists to identify chunks of memory
that needed to be reclaimed.

Sequential discrete event simulations often use a mechanism to “unschedule”
previously scheduled events. This is necessary to model activities such as pre-
emption where some “normal” activity is interrupted by some other event, e.g., in a
queueing network, servicing a job might be preempted by the arrival of a higher
priority job. We realized that anti-messages, which needed to be implemented in
Time Warp for synchronization purposes, could be used to implement this
unscheduling of events. The difference now is that the generation of anti-messages
was triggered by the application program itself, not the underlying simulation

122 D. Jefferson and R. Fujimoto



engine. A small wrinkle was that these application-invoked event cancellations
could themselves be rolled back, but this was easily accomplished by sending a
copy of the original event. The simplicity of the mechanism derived from the
simplicity and symmetry of the original Time Warp algorithm. Working with my
PhD student Samir Das we developed the algorithms and an implementation, and
evaluated its performance. Later, we found that Greg Lomow working with Brian
Unger at the University of Calgary independently developed a similar mechanism,
but had not published the work because they were working on commercializing the
effort in the context of a company called Jade Simulations that Brian was devel-
oping. We agreed to jointly publish the work (Lomow et al. 1991).

As we developed new innovations we incorporated them into the GTW Time
Warp software (Das et al. 1994). Based on my initial implementation that focused
on the direct cancellation mechanism, Samir Das did much of the work in furthering
the development of the system. Various developments were incorporated into GTW
in the years ahead, including extension to message passing and distributed com-
puting architectures. GTW formed the basis for most of our experimental work in
Time Warp such as the reverse execution work described earlier.

GTW was used for a variety of applications, but perhaps the most memorable
was its use to create fast air traffic control simulations. In the summer of 1989, I had
the pleasure of spending a 3-month period working with David Jefferson and his
research group at the Jet Propulsion Laboratory. They were working on the Time
Warp Operating System (TWOS) project. During this period, I met Fred Wieland
who was one of the TWOS developers, focusing on implementing a combat sim-
ulation model. After TWOS, Fred went on to work on simulation applications in the
aviation industry with the MITRE Corporation. Fred is a likable guy, and we had
good discussions on Time Warp, parallel discrete event simulation, and aviation
over many years that followed. Anyway, Fred was interested in creating a fast
parallel simulator to model the U.S. aviation system, and learned about GTW. He
embarked on developing an air traffic simulation called the Detailed Policy
Assessment Tool (DPAT) on our Time Warp system (Mitre Corp. 1997). DPAT
was deployed for air traffic analyses, making it at the time one of the few real-world
deployments of Time Warp for real-world applications (Wieland 2001). The
DPAT/GTW system subsequently formed a basis for Maria Hybinette’s work in
parallel simulation cloning, discussed earlier.

7.17 Analytic Models, Memory, and Load Management

In 1990, I began work with Ian Akyildiz, a colleague at Georgia Tech, on a project
funded by the Ballistic Missile Defense Organization (BMDO), later renamed the
Missile Defense Agency (MDA). BMDO was working on developing the tech-
nologies for the Strategic Defense Initiative more commonly known as the “Star
Wars” program that aimed, among other things, to create the ability to intercept
incoming ballistic missiles. Simulation was a key part of the program. The program

7 A Brief History of Time Warp 123



manager, Lou Lome, was particularly interested in developing PDES technology,
and funded some of our work. This project was the first in a string of BMDO
projects that funded our work on Time Warp. Our program was part of BMDO’s
basic research program aimed to develop the underlying technologies to create fast
parallel and distributed simulations. Our basic research program ran another
10 years; I was later told we were the only group still funded by this program when
BMDO decided to end its basic research program.

Ian had background in developing mathematical performance models. This led
to a collaboration focusing on developing analytic models of Time Warp. With PhD
student Anurag Gupta we developed a model to predict the performance of
homogeneous Time Warp systems where all LPs behave similarly, as would be the
case in, for example, many queueing network simulations (Gupta et al. 1991).
Development of a model for something as complex as Time Warp required some
approximations to be made to make the mathematics tractable, so we validated that
the model gave accurate predictions by comparing results produced by the model
with measurements of GTW.

We later expanded this collaboration to include Dick Serfozo, another expert in
stochastic models and a Georgia Tech professor in the School of Industrial and
Systems Engineering. Our interest here was in understanding Time Warp perfor-
mance when one limited the amount of memory allocated to the parallel simulation.
At the time, there was much interest in developing techniques to execute Time
Warp in situations with limited memory. David Jefferson had recently published his
work on the cancelback algorithm that enabled Time Warp to execute, albeit
slowly, within a constant factor of the amount of memory needed for a sequential
execution. We wanted to examine how Time Warp performance would change as
additional memory was provided. One of Dick’s PhD students, Liang Chen, did the
heavy lifting in developing an analytic model for Time Warp with limited memory
(Akyildiz et al. 1993). We found that Time Warp performance increases rapidly as
more memory is added, then hits a knee where diminishing returns set in, and
subsequent additional memory provide modest or no benefit. In fact, if too much
memory is provided, performance can actually decline as Time Warp becomes
overly optimistic, and rolls back more computation than desired. Like our earlier
work, we validated the models by comparing performance predictions made by the
model with experimental results of the cancelback algorithm which Samir Das
added to GTW.

While the analytic modeling work provided a window into Time Warp perfor-
mance, it really only analyzed Time Warp performance rather than improving it.
Our subsequent efforts focused on putting this work to good use to design efficient
Time Warp systems. Specifically, this work highlighted the fact that memory could
be used as a way to “throttle” the computation to avoid overly optimistic execution
(Das and Fujimoto 1997a). We realized that by monitoring the execution of the
Time Warp program and limiting the amount of memory that was provided we
could adaptively control the execution of Time Warp to maximize its performance.
Specifically, the goal was to keep Time Warp operating near the knee of the
performance–memory curve so that Time Warp reaped the performance benefits of

124 D. Jefferson and R. Fujimoto



additional memory, but did not utilize additional memory as that provided only
marginal benefit. It also prevented the computation from moving into overly
optimistic modes of execution, something that could occur by giving it too much
memory. Samir Das designed, implemented, and validated this approach by
showing that his algorithm could dynamically control the amount of memory
provided to move the execution to the knee of the performance–memory curve (Das
and Fujimoto 1997b). While other researchers had proposed other mechanisms to
prevent overly optimistic execution, Samir’s work was distinguished by having
analytic modeling work as a basis for understanding the throttling mechanism.
Further, this work provided a way to automatically adapt the execution to contin-
ually optimize performance throughout the parallel execution.

Our interest in monitoring the Time Warp execution and development of
adaptive mechanisms to optimize its behavior led to an exploration of load bal-
ancing techniques. Here, we were particularly interested in the “background”
execution of Time Warp on a distributed computing platform that was shared with
other computations. We realized that execution of Time Warp on shared platforms
presented a challenging test case because LPs that had to compete with many other
computations to get CPU cycles would advance in simulation time slowly com-
pared to LPs that had fewer other competitors for CPU cycles. This would cause the
latter to race ahead, leading to much rollback and an inefficient execution. PhD
student Chris Carothers developed a dynamic load distribution algorithm for GTW
that would control the Time Warp execution in such circumstances. He imple-
mented the algorithm and showed that it would yield efficient execution of Time
Warp programs in the presence of other computations (Carothers and Fujimoto
2000).

Independent of our research, the concept of executing codes on shared remote
servers became increasingly popular in industry, and is now referred to as cloud
computing. We continued to have interest in this area. Our initial work was
motivated by a somewhat different paradigm, that used in the Search for
Extra-Terrestrial Intelligence (SETI) project that farmed out computations to remote
servers, e.g., otherwise idle workstations. Alfred Park developed a novel execution
approach based on farming out computations and later collecting their results (Park
and Fujimoto 2007, 2012). While much of his early work focused on conservatively
synchronized codes, he also examined the execution of Time Warp in grid com-
puting environments (Park and Fujimoto 2008). Other subsequent work looked at
the implementation of Time Warp in cloud computing environments (Malik et al.
2010).

7.18 The High-Level Architecture

In the U.S., the Department of Defense (DoD) was one of the principle organiza-
tions interested in developing modeling and simulation technologies. Beginning in
the 1980’s with a highly successful Defense Advanced Research Projects Agency

7 A Brief History of Time Warp 125



(DARPA) project called SIMNET (Miller and Thorpe 1995), the hot topic in DoD
concerned how to reuse existing simulation models and get them to interoperate
using distributed computing platforms. By the 1980s simulators to train pilots and
equipment operators had become common, and were increasing in realism and
sophistication with advances in computer graphics. Around that time local area
networks were being invented, raising the possibility of interconnecting these
simulators to create a kind of virtual battlefield with many simulated platforms to
train military personnel. This was the forerunner to multiplayer video games that
are common today. The SIMNET project demonstrated that this was a feasible
concept. Throughout the 1990s there was a great emphasis, and investment, in
creating interoperable distributed simulations. For example, the Distributed Inter-
active Simulations (DIS) (IEEE Std 1278.2-1995 1995) standards were developed
to facilitate interoperability. While SIMNET and DIS focused on training simula-
tions, the desire for interoperability spread to simulation models used for analysis,
the area where Time Warp focused. An effort focusing on integrating wargame
simulations called the Aggregate Level Simulation Protocol (ALSP) had begun
with this objective (Wilson and Weatherly 1994).

In the mid-1990s an ambitious effort began to, in effect, combine the lessons
learned in DIS and ALSP to create a common modeling and simulation architecture
spanning the entire DoD. This effort, called the High-Level Architecture (HLA) was
being led by Judith Dahmann of the Defense Modeling and Simulation Organiza-
tion (DMSO). Just as HLA was getting underway, I received a phone call from
Richard Weatherly of the MITRE Corporation. Richard had led the ALSP effort,
and now was tasked with developing prototype implementations of the new HLA
standard that was being developed. I had not met Weatherly before, but he had read
some of my papers on parallel discrete event simulation, and asked if I was
interested in getting involved in the HLA effort. I immediately accepted and became
the technical lead of a working group tasked with defining the time management
services of the standard that were largely concerned with synchronization issues in
distributed simulations.

How does HLA relate to Time Warp? HLA was about getting separately
developed simulations to work together in distributed computing environments. As
such, a central objective of the time management services was to get simulations
utilizing different mechanisms for time advancement to mesh together and inter-
operate. This meant getting time stepped and event-driven simulations to be able to
synchronize and coordinate their time advances. With parallel discrete event sim-
ulation technologies becoming mature and finding some use in the DoD, e.g.,
through the ballistic missile defense program mentioned earlier, we extended this
object to include parallel simulators, including both ones synchronized using
conservative synchronization algorithms as well as optimistic ones such as Time
Warp. Developing an approach to integrate all of these mechanisms together, while
still ensuring that a reasonably efficient implementation could be realized was a
significant challenge. Our task was to define the application program interface
(API) that would be used by these different simulations, both parallel and
sequential.

126 D. Jefferson and R. Fujimoto



The main observation that enabled us to define an API for integrating these
simulations was to realize that there was actually much commonality between
conservative and optimistic approaches. This had been realized earlier, as described
in work such as Chandy and Sherman’s space-time simulation approach (Chandy
and Sherman 1989). For example, the key quantity that conservative simulation
algorithms needed to compute was a lower bound on the timestamp (LBTS) of
messages that might be later received by an LP, because once this had been
computed, the LP would know that all events with time stamp less than its LBTS
value could be safely processed without fear of later receiving an event with smaller
timestamp. LBTS is a close cousin of Global Virtual Time (GVT) used in Time
Warp to determine a lower bound on the timestamp of any future rollback; rollbacks
are also caused by receiving a message or anti-message in an LP’s simulated past.
Thus, if the time management services provided a means of computing LBTS and
returning this information to each LP, or federate in HLA terminology, such a
service would support both conservative and optimistic simulations.

A second observation was that Time Warp could be viewed as a conservative
execution, but with the ability to optimistically process messages with time stamp
larger than the LBTS value. Our approach in the HLA was to start with a con-
servatively synchronized distributed simulation, and add the mechanisms needed to
allow optimistic processing. At the heart of the HLA’s conservative synchroniza-
tion approach were two mechanisms: one that guaranteed that messages would be
delivered to a federate in timestamp order, and a second that enabled a federate to
advance its simulation time in a way that guaranteed it would not receive any
messages in its simulated past. To support Time Warp, a service was needed to also
deliver optimistic messages to each federate, i.e., messages where it was possible a
smaller timestamp message might later be received. This led to the Flush Queue
Request service that when invoked, delivered all incoming messages to the federate
invoking the service, regardless of its timestamp relative to LBTS or other events
that had been previously delivered. Once these optimistic events were delivered to
the federate, it was free to process them optimistically, risking the need for rollback.
Should rollback be later required, this (specifically state-saving) was something the
federate would have to implement on its own, so the API did not have to deal with
this concern. Finally, the other part that was needed was a way to implement Time
Warp anti-messages. Here, we leveraged our prior work in application-defined
event cancellation (Lomow et al. 1991), discussed earlier. We realized that event
retraction, i.e., an application unscheduling a previously scheduled event was a
desirable application feature, independent of the underlying synchronization
approach, be it optimistic or conservative. This led to the creation of the Retract
Message service that could be used by conservative federates to unschedule events,
as well as optimistic federates to implement Time Warp anti-messages. The services
were defined so that the retraction of previously scheduled messages was trans-
parent to conservative federates receiving the retracted message in that the original
message would not be delivered to the federate until it could be guaranteed that it
would not be later retracted. Of course, this guarantee could not be preserved for
optimistic federates that were using the Flush Queue service. In this case, if the

7 A Brief History of Time Warp 127



message being retracted had already been delivered to the federate, the retraction
request was simply treated by the receiving federate as an anti-message, and pro-
cessed according to Time Warp event processing rules. In this way, the HLA time
management services could support both conservative and optimistic simulations
executing within the same federated distributed simulation. In the end, all this came
together relatively smoothly. I worked out many of the technical details on planes
between Atlanta and DC, a place free from phone calls, emails (this was well before
inflight wifi), and visitors and students coming to my door.

Technical issues aside, a perhaps bigger challenge in the HLA effort was to build
consensus among the various stakeholders who had their own ideas of how things
should be done. Many folks in the DoD M&S community were not familiar with
PDES technologies, and had never heard of CMB or Time Warp. Fortunately, I had
some help here. A piece of Jade Simulations, a company founded by Brian Unger at
the University of Calgary, was bought by Science Applications International Cor-
poration (SAIC), a major defense contractor with a large stake in defense M&S in
general, and HLA in particular. Two of Brian’s former students, Darrin West and
Larry Mellon, were leading much of the HLA effort in SAIC, and were very well
versed in PDES. Together with a small team representing various constituencies we
managed to get consensus on the specifications.

The High-Level Architecture was approved as the standard architecture for all
M&S in the U.S. Department of Defense in 1996, and was subsequently stan-
dardized by IEEE (IEEE Std 1516.2-2000 2000) and later updated (IEEE Std
1516.1-2010 2010). Although the HLA “mandate” that originally required all M&S
programs in the U.S. Department of Defense to become compliant with HLA was
later rescinded, I was pleased to see HLA come up over the years in many different
application areas other than defense. In retrospect, I have the highest regard for
many of the individuals involved in the HLA effort. Richard Weatherly and his
team at MITRE proved to be very capable developers. I never envied their task of
developing an implementation of the standard while the standard itself was being
changed! Richard was open to new ideas, and willing to incorporate changes that
seemed well motivated. There were substantial differences and plenty of heated
arguments during the HLA development. Many of these conflicts came to Judith
Dahmann. I also did not envy her task. I found Judy to be both personable as well as
being a strong and capable leader. She deserves enormous credit in seeing the HLA
effort through to completion. I will also remember Judith as having a subtle sense of
humor. The HLA effort had periodic meetings of the Architecture Management
Group (AMG) at the DMSO headquarters in Alexandria Virginia, that included
perhaps a hundred or so key stakeholders across the DoD M&S community. At one
meeting, just before Christmas, Judith delivered a present to each attendee—a
screw, with, for good measure, an attached bolt. Her only comment at the meeting
was that the interpretation was left entirely up to each of us!

128 D. Jefferson and R. Fujimoto



7.19 Pivoting to Federated Simulations

Subsequent to the adoption and standardization of the HLA by IEEE, my research
program made a deliberate shift toward the federated simulation approach used in
HLA. One of the challenges back then in the PDES community that persists even
today concerned creation of PDES codes. Despite substantial efforts, application
development still requires a certain amount of sophistication in parallel computing
in addition to model expertise. The HLA demonstrated a pathway to take sequential
simulation code that had never been developed for parallel or distributed execution,
and transform it into a form suitable for parallel execution. Even in the pre-HLA
days I saw that developers in the DoD were creating distributed simulations by, in
effect, federating a code with itself to create a distributed version. This was in fact
easier than federating different simulations because many interoperability issues
associated with interconnecting different codes such as use of different model
abstractions and representations disappeared. Thus, this seemed to be a practical
approach to easily creating parallel discrete event simulations.

In order to get self-federation to work, one needed high performance runtime
infrastructure software to implement synchronization (time management) and
communication services. While my work in the previous decade focused on the
Georgia Tech Time Warp software that served as a platform for our research in
PDES, I decided to make a deliberate shift, to focus on HLA-like federated sim-
ulations. I spent the 1997–98 academic year on leave from Georgia Tech at the
Defense Evaluation Research Agency in Malvern, England, with the intent of
developing a new software base to support future research in federated simulation
systems. The target platform used in this work was a set of workstations inter-
connected by a fast, Myrinet switch. Using communications software called
fast-messages developed at the University of Illinois, in a few weeks I developed
the first version of the RTI-Kit software and demonstrated it using a simplified
version of the HLA API to implement communications and time management
services (Fujimoto and Hoare 1998). In my initial work, I conducted a number of
benchmarking experiments that demonstrated that RTI-Kit could achieve high
performance, and was thus suitable for implementing parallel discrete event
simulations.

Over the years that followed, RTI-Kit evolved into the Federated Distributed
Simulations Kit (FDK) that became a central software base used by our research
group over the next decade. We demonstrated that one could take existing
sequential simulation codes and create high performance parallel versions suitable
for execution on supercomputers. Not all simulations were suitable for paral-
lelization using this approach. For example, we found that some simulations
making extensive use of global data structures that were accessed throughout the
entire code could not be easily parallelized. However, well-structured codes could
be parallelized.

Our most successful illustration of this approach was to create a high perfor-
mance, parallel version of the NS2 communication network simulator (Fall 1999).

7 A Brief History of Time Warp 129



The original NS2 was developed with no consideration of parallel implementation.
In an effort by PhD student George Riley whom I co-supervised with networking
research Mostafa Ammar, we created a parallel version dubbed PDNS
(parallel/distributed NS) (Riley et al. 2004). Through a DARPA-funded project
focused on large scale network simulation we demonstrated the largest available
discrete event network simulations of the day, executing on more than a thousand
processors of a supercomputer at the Pittsburgh Supercomputing Center (Fujimoto
et al. 2003).

Much of our work in federated parallel simulations focused on conservative
synchronization techniques, because existing sequential codes were not coded to
include rollback, and adding rollback mechanisms was not straightforward. How-
ever, the federated approach is applicable to Time Warp simulations, or codes that
were designed to include rollback. We demonstrated the use of HLA time man-
agement services to create Time Warp simulations with a prototype that a student
named Steve Ferenci developed (Ferenci et al. 2000).

7.20 In Conclusion: The Future

More than 35 years since Time Warp was invented research continues both in its
application and the technology itself. The goal of a general purpose parallel discrete
event simulation engine that application developers can readily use without
knowledge of parallel processing techniques continues to be elusive and the tech-
nology has not fulfilled its potential to see widespread adoption in industry.
However, modern research in Time Warp systems is being driven more by the
changing world and new technology developments rather than classical PDES
problems defined decades ago.

One direction for research in Time Warp is driven from below: new computing
platforms on which Time Warp simulations execute. Cloud computing, massively
parallel supercomputers, graphical processing units (GPUs), and mobile computing
platforms all present new challenges for running Time Warp simulations. For
example, cloud computing platforms raise challenges due to the shared nature of the
platform, and substantial communication delays, as noted earlier. Massively parallel
machines raise questions concerning scalability, especially for real-world applica-
tions that are often highly irregular and contain inherent bottlenecks. GPUs, and
more broadly heterogeneous computing platforms utilize SIMD, data parallel
modes of execution that are very different from the platforms on which Time Warp
was originally invented. Mobile computing platforms where data-driven simula-
tions are used to monitor and manage operational systems again present new
unexplored challenges for Time Warp. These challenges are discussed in greater
detail in Fujimoto (2016).

Another research challenge faced by data centers, supercomputers, and mobile
computing platforms concerns the amount of power consumed by the simulation.
For mobile computing platforms energy consumption affects battery life, so it is an

130 D. Jefferson and R. Fujimoto



area of great concern. In supercomputers, power consumption has become a major
issue, limiting the performance of supercomputing nodes, and incurring substantial
costs in operating data centers. Little is known concerning the power and energy
consumption properties of Time Warp, and distributed simulations in general. This
represents another important line of inquiry for future research in Time Warp.

More than three decades after its creation, Time Warp continues to be an active
area of study and investigation in the parallel and distributed simulation commu-
nity. While much progress has been made, the world has changed, raising new
research challenges and opportunities that did not exist when it was invented. While
much has been learned concerning Time Warp and its application, it will likely
remain at the center of much parallel and distributed simulation research into the
foreseeable future.

References

Akyildiz IF, Chen L, Das SR, Fujimoto RM, Serfozo R (1993) The effect of memory capacity on
time warp performance. J Parallel Distrib Comput 18(4):411–422

Bagrodia R, Chandy KM, Liao WT (1991) A unifying framework for distributed simulation. ACM
Trans Model Comput Simul 1(4):348–385

Barnes Jr PD, Carothers C, Jefferson D, LaPre J (2013) Warp speed: executing time warp on
1,966,080 cores. In: ACM SIGSIM principles of advanced discrete simulation (PADS),
Montreal, Quebec, Canada, May 2013

Balzer RM (1969) EXDAMS: extendable debugging and monitoring system. In: Proceedings
AFIPS’69 spring joint computer conference, pp 567–580, May 14–16, 1969

Berry O, Jefferson D (1985) Critical path analysis of distributed simulation. In: Society for
Computer Simulation Conference on Distributed Simulation, San Diego, January 24–26, 1985

Bryant R (1977) Simulation of packet communication architecture computer systems. MS thesis,
MIT/LCS/TR-188, November 1977

Buzzell CA, Fujimoto RM, Robb MJ (1990) Modular VME rollback hardware for time warp. In:
SCS distributed simulation conference, pp 153–156

Carothers CD, Bauer D, Pearce S (2002) ROSS: A high-performance, low-memory, modular time
warp system. J Parallel Distrib Comput 62(11):1648–1669

Carothers CD, Fujimoto RM (2000) Efficient execution of time warp programs on heterogeneous,
NOW platforms. IEEE Trans Parallel Distrib Syst 11(3):299–317

Carothers CD, Perumalla K, Fujimoto RM (1999) Efficient optimistic parallel simulation using
reverse computation. ACM Trans Model Comput Simul 9(3):224–253

Chandy KM, Misra J (1979) Distributed simulation: a case study in design and verification of
distributed programs. IEEE Trans Softw Eng SE-5(5)

Chandy KM, Misra J (1981) Asynchronous distributed simulation via a sequence of parallel
computations. In: CACM, vol 24, no 11, April 1981

Chandy KM, Sherman R (1989) Space, time, and simulation. Proceedings of the SCS
multiconference on distributed simulation, SCS simulation series 21:53–57

Das S, Fujimoto RM, Panesar K, Allison D, Hybinette M (1994) GTW: a time warp system for
shared memory multiprocessors. In: Proceedings of the 1994 winter simulation conference,
pp 1332–1339

Das SR, Fujimoto RM (1997a) adaptive memory management and optimism control in time
warp. ACM Trans Model Comput Simul 7(2):239–271

7 A Brief History of Time Warp 131



Das SR, Fujimoto RM (1997b) An empirical evaluation of performance-memory tradeoffs in time
warp. IEEE Trans Parallel Distrib Syst 8(2):210–224

Fall K (1999) Network emulation in the VINT/NS simulator. In: Proceedings IEEE international
symposium on computers and communications, pp 244—250

Ferenci S, Fujimoto R, Ammar MH, Perumalla K (2002) Updateable simulation of communication
networks. In: 16th workshop on parallel and distributed simulation

Ferenci S, Perumalla K, Fujimoto R (2000) An approach to federating parallel simulators. In: 14th
workshop on parallel and distributed simulation

Fujimoto R (2000) Parallel and distributed simulation systems. Wiley
Fujimoto R, Hunter M, Sirichoke J, Palekar M, Kim H-K, Suh W (2007) Ad hoc distributed

simulations. Principles of advanced and distributed simulation. IEEE, San Diego, CA, pp 15–
24

Fujimoto RM (1988) Performance measurements of distributed simulation strategies. Distrib
Simul SCS. 10:14–20

Fujimoto RM (1989a) Time warp on a shared memory multiprocessor. Trans Soc Comput Simul 6
(3):211–239

Fujimoto RM (1989) The virtual time machine. In: International symposium on parallel algorithms
and architectures, pp 199–208

Fujimoto RM (1990) Performance of time warp under synthetic workloads. Proc SCS Multiconf
Distrib Simul 22:23–28

Fujimoto RM (2016) Research challenges in parallel and distributed simulation. ACM Trans
Model Comput Simul 24(4)

Fujimoto RM, Hoare P (1998) HLA RTI performance in high speed LAN environments. In:
Proceedings of the fall simulation interoperability workshop, Orlando, FL

Fujimoto RM, Hybinette M (1997) Computing global virtual time in shared memory
multiprocessors. ACM Trans Model Comput Simul 7(4):425–446

Fujimoto RM, Perumalla KS, Park A, Wu H, Ammar M, Riley GF (2003) Large-scale network
simulation—how big? How fast? Modeling, analysis and simulation of computer and
telecommunication systems

Fujimoto RM, Tsai JJ, Gopalakrishnan GC (1992) Design and evaluation of the rollback chip:
special purpose hardware for time warp. IEEE Trans Comput 41(1):68–82

Fujimoto RM (2000) Parallel and distributed simulation systems. Wiley (2000)
Gafni A (1985) Space management and cancellation mechanisms for time warp. PhD dissertation,

Department of Computer Science, University of Southern California, TR-85–341, December
1985

Gupta A, Akyildiz IF, Fujimoto RM (1991) Performance analysis of time warp with multiple
homogeneous processors. IEEE Trans Softw Eng 17(10):1013–1027

Huang Y-L, Alexopoulos C, Hunter M, Fujimoto RM (2012) Ad hoc distributed simulation
methodology for open queueing networks. Trans Soc Model Simul Int 88(7)

Hybinette M, Fujimoto RM (2001) Cloning parallel simulations. ACM Trans Model Comput
Simul 11(2):378–407

IEEE Std 1278.2-1995 (1995) IEEE standard for distributed interactive simulation—communi-
cation services and profiles. Institute of Electrical and Electronics Engineer Inc, New York, NY

IEEE Std 1516.1-2010 (2010) IEEE standard for modeling and simulation (M&S) high level
architecture (HLA)—interface specification. Institute of Electrical and Electronic Engineers
Inc, New York, NY

IEEE Std 1516.2-2000 (2000) IEEE standard for modeling and simulation (M&S) high level
architecture (HLA)—object model template (OMT) specification. Institute of Electrical and
Electronic Engineers Inc, New York, NY

Jefferson D, Sowizral H (1982) Fast concurrent simulation using the time warp method, Part I:
Local control. RAND note N-1906-AF, The RAND corporation, Santa Monica, California,
December 1982

132 D. Jefferson and R. Fujimoto



Jefferson D, Witkowski A (1984) An approach to performance analysis of timestamp-oriented
synchronization mechanisms. In: acm symposium on the principles of distributed computing,
Vancouver, BC, August 1984

Jefferson D, Beckman B, Hughes S, Levy E, Litwin T, Spagnuolo J, Vavrus J, Wieland F,
Zimmerman B (1985) Implementation of time warp on the caltech hypercube. Society for
Computer Simulation Conference on Distributed Simulation, San Diego, January 24–26, 1985

Jefferson D (1985) Virtual time. ACM Trans Program Lang Syst (TOPLAS) 7(3):404–425
Jefferson D, Motro A (1986) The time warp mechanism for database concurrency control. In:

Proceedings of the IEEE 2nd international conference on data engineering, Los Angeles, CA,
February 4–6 1986

Jefferson D, Beckman B, Wieland F, Blume L, DiLoreto M, Hontalas P, Laroche P, Sturdevant K,
Tupman J, Warren V, Wedel J, Younger H, Bellenot S (1987) Distributed simulation and the
time warp operating system. In: 11th symposium on operating systems principles (SOSP),
Austin, TX, November 1987

Jefferson D (1990) Virtual time II: the cancelback protocol for storage management in time
warp. In: Proceedings of the ACM symposium on the principles of distributed computing,
Quebec City, Quebec, August 1990

Jefferson D, Reiher P (1991) Supercritical speedup. In: ANSS’91 proceedings of the 24th annual
symposium on simulation, 1991

Jones DW (1986) An empirical comparison of priority-queue and event-set implementations.
Commun ACM 29(4):300–311

Kung HT, Robinson JT (1981) On optimistic methods for concurrency control. ACM Trans
Database Syst 6(2):213–226 (1981)

Lomow G, Das SR, Fujimoto RM (1991) Mechanisms for user invoked retraction of events in time
warp. ACM Trans Model Comput Simul 1(3):219–243

Malik AW, Park AJ, Fujimoto RM (2010) An optimistic parallel simulation protocol for cloud
computing environments. SCS Model Simul Mag 1(4). Society for Modeling and Simulation
International

Miller DC, Thorpe JA (1995) SIMNET: the advent of simulator networking. Proc IEEE 83
(8):1114–1123

Mitre Corp (1997) DPAT: detailed policy assessment tool, brochure, Center for Advanced
Aviation System Development (CAASD)

Nicol D, Liu X (1997) The dark side of risk (what your mother never told you about time warp).
In: Proceedings of 11th workshop on parallel and distributed simulation (PADS), Lockenhaus,
Austria, June 1997

Park A, Fujimoto RM (2007) A scalable framework for parallel discrete event simulations on
desktop grids. In: 8th IEEE/ACM International Conference On Grid Computing

Park A, Fujimoto RM (2008) Optimistic parallel simulation over public resource-computing
infrastructures and desktop grids. In: Workshop on distributed simulations and real-time
applications

Park A, Fujimoto RM (2012) Efficient master/worker parallel discrete event simulation on
metacomputing systems. IEEE Trans Parallel Distrib Syst 23(5)

Perumalla KS (2005) μsik-a micro-kernel for parallel/distributed simulation systems. In:
Workshop on principles of advanced and distributed simulation. IEEE, pp 59–68

Ravi TM, Jefferson D (1988) Message routing to migrating processes. In: Proceedings of the 1988
international conference on parallel processing (ICPP), August 15–18, 1988

Reiher P, Jefferson D (1990) Virtual time-based dynamic load management in the time warp
operating system. In: Distributed simulation, Nicol D, Fujimoto R (eds), Simulation series, vol
22, no 2. Society for Computer Simulation, San Diego, January 1990

Riley G, Ammar M, Fujimoto RM, Park A, Perumalla K, Xu D (2004) A federated approach to
distributed network simulation. ACM Trans Model Comput Simul 14(1):116–148

Schordan M, Jefferson D, Barnes Jr P, Oppelstrup T, Quinlan D (2015) Reverse code generation
for parallel discrete event simulation. In: 7th conference on reversible computation, Grenoble,
France, July 16–17, 2015

7 A Brief History of Time Warp 133



Schordan M, Oppelstrup T, Jefferson D, Barnes P, Quinlan D (2016) Automatic generation of
reversible C++ code and its performance in a scalable kinetic Monte-Carlo application. In:
SIGSIM PADS (Principles of advanced discrete simulation), Banff, Alberta, Canada, May 16–
18, 2016

Tang Y, Perumalla KS, Fujimoto RM, Karimabadi H, Driscoll J, Omelchenko Y (2006) Optimistic
simulations of physical systems using reverse computation. Simul: Trans Soc Model Simul Int
82(1):61–73

Vulov G, Hou C, Vuduc R, Quinlan D, Fujimoto RM, Jefferson D (2011) The backstroke
framework for source level reverse computation applied to parallel discrete event simulation.
In: Winter simulation conference

Wieland F (2001) Practical parallel simulation applied to aviation modeling. In: 15th workshop on
parallel and distributed simulation, Lake Arrowhead, CA

Wieland F, Hawley L, Feinberg A, DiLoreto M, Blume L, Reiher P, Beckman B, Hontalas P,
Bellenot S, Jefferson D (1989) Distributed combat simulation and time warp: the model and its
performance. In: Distributed simulation, Unger B, Fujimoto R (eds) Simulation series, vol 21,
no 2. Society for Computer Simulation, San Diego, 1989

Wilson AL, Weatherly RM (1994) The aggregate level simulation protocol: an evolving system.
In: Proceedings of the 1994 winter simulation conference, pp 781–787

134 D. Jefferson and R. Fujimoto


	7 A Brief History of Time Warp
	Abstract
	7.1 Introduction
	7.2 The Early History of Time Warp: David Jefferson’s Perspective
	7.3 Origin of Time Warp at RAND
	7.4 Collaboration with Henry Sowizral
	7.5 Conservative Versus Optimistic Synchronization
	7.6 The Virtual Time Paper
	7.7 Research with My Students at the University of Southern California
	7.8 The Time Warp Operating System at Jet Propulsion Laboratory
	7.9 Jade Simulations
	7.10 Subsequent Years
	7.11 My Adventures in Time Warp: Perspectives by Richard Fujimoto
	7.12 Beginnings
	7.13 Conservative Versus Optimistic Performance
	7.14 The Rollback Chip, Virtual Time Machine, and Reverse Execution
	7.15 Simulation Ensembles
	7.16 Georgia Tech Time Warp
	7.17 Analytic Models, Memory, and Load Management
	7.18 The High-Level Architecture
	7.19 Pivoting to Federated Simulations
	7.20 In Conclusion: The Future
	References




