
Chapter 12
Parallel Ranking and Selection

Susan R. Hunter and Barry L. Nelson

Abstract The Winter Simulation Conference serves as the initial publication venue

for many advances in ranking and selection (R&S), including the recently developed

R&S procedures that exploit high-performance parallel computing. We formulate

a new stylized model for representing parallel R&S procedures, and we provide an

overview of existing R&S procedures under the stylized model. We also discuss why

designing R&S procedures for a parallel computing platform is nontrivial and spec-

ulate on the future of parallel R&S procedures. In this chapter, “parallel computing”

means multiple processors that can execute distinct simulations independently, rather

than vector or array processors designed to speed up vector-matrix calculations.

12.1 Introduction

The term Ranking and Selection (R&S) broadly refers to solution methods developed

to solve the R&S problem. The R&S problem is a stochastic optimization problem

in which the decision-maker wishes to choose the “best” among a finite set of design

points, or “systems,” when the performance of each system can only be observed

with error. The R&S problem can be considered a special case of the more general

simulation optimization (SO) problem, which is a (usually) nonlinear optimization

problem whose objectives and constraints, if present, can only be observed with error

as output from a stochastic simulation (see, e.g., Pasupathy and Ghosh 2013; Fu

2015 for overviews). Among SO problems, the R&S problem is unique in the sense

that it engenders interesting research questions only in the stochastic context: The

deterministic black-box analog of the R&S problem is complete enumeration. In

contrast, when the system performance measures are defined implicitly through a

S.R. Hunter (✉)

Purdue University, West Lafayette, IN, USA

e-mail: susanhunter@purdue.edu

B.L. Nelson

Northwestern University, Evanston, IL, USA

e-mail: nelsonb@northwestern.edu

© Springer International Publishing AG (outside the USA) 2017

A. Tolk et al. (eds.), Advances in Modeling and Simulation, Simulation Foundations,

Methods and Applications, DOI 10.1007/978-3-319-64182-9_12

249

250 S.R. Hunter and B.L. Nelson

black-box stochastic simulation model, the decision-maker can only observe each

system’s performance by constructing an estimator whose precision depends on the

simulation budget expended. In this context, interesting methodological questions

arise. For example, two key questions are (a) how does one guarantee that at the end

of simulating, the estimated best system is truly the best system with high probability

and (b) how does one allocate a finite simulation budget across systems to efficiently

identify the best system? For more than 60 years, researchers have sought answers to

these questions, resulting in a large body of R&S literature. For overviews and entry

points into this literature, see Bechhofer et al. (1995), Gupta and Panchapakesan

(2002) for origins, and Goldsman and Nelson (1998), Kim and Nelson (2006b), and

Branke et al. (2007) for the stochastic simulation perspective.

R&S was originally developed by the statistics community during the 1950s,

1960s, and 1970s (Bechhofer 1954; Paulson 1964; Fabian 1964; Dudewicz and Dalal

1957; Rinott 1978), but following its appearance at the Winter Simulation Confer-

ence (WSC), the nexus of research shifted from the statistics community to the sto-

chastic simulation community sometime in the 1980s and 1990s. There were two

key reasons for this shift: (a) optimizing a function embedded in a stochastic simu-

lation was a natural goal for simulation practitioners, and early SO researchers bor-

rowed existing methods from the statistics community and (b) efficiency in R&S

often comes from sequential sampling and comparison of systems, and the barrier

to sequential algorithms was far lower in computer experiments than in the indus-

trial and biostatistics applications for which R&S was invented. Further, while the

statistics community was often concerned with having procedures for different (non-

normal) populations, the emphasis in the simulation community was on designing

procedures for larger and larger numbers of alternatives, with normality being plau-

sible due to averaging, e.g., via batch means (Schmeiser 1982).

During this shift, WSC becames a key venue joining the statistics and simula-

tion communities. To the best of our knowledge, R&S first appeared at WSC in a

1976 session entitled, “Statistical Basis for Selection Among Alternatives,” which

contained the work of Turnquist and Sussman (1976) and Dudewicz (1976). R&S

became an increasingly popular topic after Goldsman published a survey paper in

the 1983 WSC Proceedings (Goldsman 1983). Since then, WSC has served as the

initial publication venue for many key advances in the R&S literature, with the area

still active at WSC 2016 (e.g., Dong and Zhu 2016).

The significant advances in computing power over the last 40 years, and partic-

ularly the recent proliferation of parallel computing platforms, is one reason why

R&S is still an active research topic at WSC today.
1

Originally developed with ser-

ial computing platforms in mind, R&S procedures are now being redesigned for

deployment as parallel procedures—a surprisingly nontrivial endeavor. Serial R&S

procedures of the 1990s and early 2000s measure efficiency as the total number of

1
In this paper “parallel computing platform” means multiple processors that can independently

execute simulation experiments and communicate with each other via message passing or shared

memory. We use the term “processors” to refer to cores or threads that can complete computing

tasks, so the total number of processors is cores × (threads/core).

12 Parallel Ranking and Selection 251

simulation observations required on a single processor, ensure efficiency by being

fully sequential, and tend to work well when the number of systems is small. On

a parallel platform, appropriate efficiency measures include processor utilization,

wall-clock time, and monetary cost to rent processors. Fully sequential procedures

may require bottleneck-inducing synchronization. Further, while today’s computing

power ensures we can solve small problems fast, it should also enable us to solve

much bigger problems. Thus, parallel computing platforms require procedures that

minimize new measures of efficiency, guard against the bottlenecks that can arise

in a parallel setting and can handle a large number of systems. A handful of such

parallel R&S procedures exist; all have made their debut at WSC.

Since R&S was originally designed to select among a small number of categorial

or unordered alternatives, one may wonder, when do large R&S problems arise?

First, large problems with categorical choices arise naturally in some applications,

such as drug discovery and plant breeding. The respective goals in these applications

are to find the best drug molecule among many potential drug molecules (Negoescu

et al. 2011), and to find the best plant breeding pairs to produce a progeny population

with desirable properties (Hunter and McClosky 2016). Second, problems with a

very large but finite number of alternatives on an ordered space would seem to be

most naturally solved by using algorithms that can exploit the spatial structure, such

as R-SPLINE (Wang et al. 2013) or COMPASS (Hong and Nelson 2006; Xu et al.

2010). However, because of its simplicity and ability to provide a statistical guarantee

that the selected system is truly the global best, R&S is often a go-to method for

practitioners. For example, R&S can be applied to large problems that are created by

considering all feasible combinations of a set of decision variables. Xu et al. (2010)

describe a SO problem with 5006 feasible solutions obtained by considering all 500
possible values of 6 order-up-to levels in a supply chain problem. A characteristic of

such problems is that many (most) of the feasible solutions are substantially inferior

to the better ones, and R&S procedures can exploit this tendency. Even when a search

algorithm such as R-SPLINE or COMPASS is employed first, R&S can be used to

provide a statistical guarantee as to which of the visited solutions is the best (Boesel

et al. 2003).

In this chapter, we discuss the current state of the art in R&S for large prob-

lems solved on parallel computing platforms. We assume the reader is familiar with

serial R&S procedures, at a broad level. In rethinking R&S procedures for paral-

lel implementation, we provide a new stylized model for representing parallel R&S

methods (Sect. 12.2), discuss mathematical and computational formulations of exist-

ing serial R&S procedures under the stylized model (Sects. 12.3 and 12.4, respec-

tively), discuss design principles for efficiency and validity of parallel R&S proce-

dures (Sect. 12.5), discuss existing parallel R&S procedures (Sect. 12.6), and specu-

late on the future of parallel R&S procedures (Sects. 12.7 and 12.8).

252 S.R. Hunter and B.L. Nelson

12.1.1 Problem Setting and Notational Conventions

R&S addresses the following SO problem: Let the true expected performances of

the k competing systems be denoted

𝜇1 ≤ 𝜇2 ≤ ⋯ ≤ 𝜇k−1 ≤ 𝜇k,

where a larger mean is better, and let S = {1, 2,… , k} denote the set of indices of all

systems. We refer to system k, or any system tied with system k, as the best. Often,

the best system is assumed to be unique, in which case 𝜇k−1 < 𝜇k. Recall that we

are unable to observe the true expected performances directly. Then suppose we are

given a simulation oracle that can provide us with random variables Yi1,Yi2,… ,Yin,

where Yir is a random variable representing the performance of system i on the rth

simulation replication, r = 1, 2,… , n, i ∈ S. For all systems i ∈ S, we estimate the

value of 𝜇i with a consistent estimator such as the sample mean Ȳi(n) ∶=
∑n

r=1 Yir∕n.

An R&S procedure is an algorithm that attempts to return the best system using

only the estimators of the expected system performances. In this chapter, the esti-

mators of the expected system performances after obtaining ni ≥ 1 simulation repli-

cations from each system i ∈ S are {Ȳi(ni)∶ i ∈ S}. We assume an R&S procedure

returns the system with the largest estimated mean as the estimated best system, so

that K̂ ∶= argmaxi∈{1,2,…,k}{Ȳi(ni)∶ i ∈ S} is the estimated best system. (See, e.g.,

Peng et al. 2016, for an example, in which a system other than the one with the largest

estimated mean is returned.) Since we may only assess each system with a finite com-

putational budget, there is always a positive probability that an R&S procedure will

return some system other than the best. Thus, R&S procedures are usually created

to satisfy some form of mathematical or statistical objectives, which we discuss in

Sect. 12.3.

12.1.2 Scope

We classify as R&S any procedures that include three key ingredients: (a) they are

applied to a finite number of systems whose expected performance can only be

observed with error as simulation output, (b) the procedure will simulate all of the

systems and construct consistent estimators of their expected performance, and (c)

the decision-maker wishes to select the best by comparing these systems to each

other. While we consider only the single-objective problem formulation, we note that

stochastically constrained and multiobjective versions of the R&S problem exist. For

example, see Andradottir and Kim (2010), Pasupathy et al. (2014) for the stochas-

tically constrained case and Lee et al. (2010), Feldman et al. (2015), Feldman and

Hunter (2016), Hunter et al. (2017) for the multiobjective case.

R&S is closely related to some versions of best-arm identification in stochas-

tic multi-armed bandit (MAB) problems; see Bubeck and Cesa-Bianchi (2012)

12 Parallel Ranking and Selection 253

and Jamieson and Nowak (2014). However, there are differences: MAB is often con-

cerned with online decision-making so as to accumulate the most reward, while R&S

is always an offline optimization problem. Perhaps more critically, the key assess-

ment of an MAB algorithm is its “big-O” computational complexity (convergence

rate) when selecting the best, while R&S is concerned with finite-time performance,

even when asymptotic methods are used in the analysis. As a result, MAB algo-

rithms tend to be simple, have few distribution-specific assumptions, and their com-

putational complexity is determined up to some unknown constants; as compared

to R&S that tries to exploit specific distributions to gain efficiency and to assure

validity even when unknown constants must be estimated. We focus exclusively on

R&S.

12.2 A Stylized Computational Model for R&S

Throughout this chapter, we use a stylized computational model to facilitate our dis-

cussion of both serial and parallel R&S procedures. In this section, we define and

discuss the stylized model.

We formulate a stylized computational model for parallel R&S procedures by

breaking all simulation and calculation tasks that must be completed during an R&S

procedure into jobs. All R&S procedures contain two primary tasks for processors

to complete: (a) performing simulation replications, and (b) calculations completed

after simulation replication output is obtained, such as comparing the performances

of systems to each other to select the estimated best. Thus we define job j as the

ordered list comprised of obtaining simulation replications and performing calcula-

tions,

Jj ∶= {(Qj, 𝛥j,Uj), (Pj,Cj)},

where

∙ Qj ⊆ S a set containing the indices of systems to be simulated;

∙ 𝛥j = {𝛥ij} specifies how many samples to take from each system i ∈ Qj;

∙ Uj is the assigned block of random numbers with which to perform the simulation

replications;

∙ Pj is a list of jobs whose termination must precede the calculation Cj, if any, and

∙ Cj is a list of non-simulation calculations or operations to perform.

We allow (Qj, 𝛥j,Uj) or (Pj,Cj) to be null, so that a job can consist of just simula-

tions or just calculations. Since Jj is ordered, we assume that the simulation replica-

tions in (Qj, 𝛥j,Uj) are completed before the calculation Cj begins. In the presence

of only one processor, the list of jobs is usually created and performed dynamically

by a single processor. In the presence of multiple processors, the list of jobs must

be coordinated to preserve precedence requirements. For example, some simulation

replications must be obtained from each system before their performances can be

compared to each other.

254 S.R. Hunter and B.L. Nelson

When the number of processors p ≥ 2, we broadly assume that parallel algorithms

operate in what is known as a master–worker framework. In this framework, one

master processor coordinates the activities of one or more worker processors. The

workers execute jobs determined by the master, and report results back to the mas-

ter. Communication may occur through shared memory or via message passing. A

master–worker framework can also be implemented in multiple tiers, in which each

worker acts as a master to, and coordinates the tasks of, one or more sub-workers.

For simplicity and ease of exposition, we assume only one such tier for now.

Remark 12.1 We acknowledge the existence of various parallel computing archi-

tectures and frameworks for parallel algorithm design (see, e.g., Barlas and Kauf-

man 2015). We take a higher level approach that enables us to focus on broad R&S

procedure design concepts, instead of the details related to the underlying parallel

computing architecture.

When a master sends a job to a worker, we assume that all data required to do

the job is also transferred, or is otherwise accessible by shared memory. Likewise,

when a worker completes a task, we assume relevant data is transferred back to the

master. Ensuring efficient data transfer is an important part of designing parallel

algorithms; however for exposition, we suppress data transfer information in our

framework. Thus while a worker’s job may entail performing simulation replications

and calculating statistics such as a sample mean, we do not explicitly denote whether

the worker transfers just the sample mean back to the master, or the sample mean and

all data used to compute the sample mean.

In the master–worker framework, we assume the (possibly dynamic) list of jobs

J ∶= {Jj ∶ 1 ≤ j ≤ M},

is created and maintained by the master processor, where job 1 ≤ M ≤ ∞ is some

(possibly random) terminal job; M = ∞ denotes the list of jobs for a non-terminating

algorithm. When a worker processor completes a job or becomes idle, it communi-

cates any results back to the master processor and requests a new job. Henceforth,

let 0 < Tj < ∞ be the wall-clock time that job Jj finishes, so that

Te(J) = max
j=1,2,…,M

Tj

is the (possibly random) ending time of the procedure.

Remark 12.2 We assume the master creates jobs that can be sent to the workers for

execution. Some jobs, particularly jobs containing only calculations, may be exe-

cuted by the master. Since only the master creates jobs, we do not consider the cre-

ation of jobs to be a job.

In modern computing environments, R&S procedures may be completed by pur-

chasing processing power from a service. Since cores may often be purchased in

increments such as 4, 8, 16, 48, or 64, with the price per hour varying by the type

12 Parallel Ranking and Selection 255

of processing power provided, we formulate the general cost to purchase p proces-

sors for s time units as a function c(p, s). For a total budget b, we require c(p, s) ≤ b.

Define the function t(p, b) as the maximum amount of time we purchase on p proces-

sors, so that

t(p, b) ∶= max{s∶ c(p, s) ≤ b}.

12.3 Mathematical Formulations of Existing R&S
Procedures

Recall that because we cannot simulate every system infinitely often, upon termina-

tion, R&S procedures have some positive probability of selecting a system other than

the true best. However, most R&S procedures are designed to control this error prob-

ability. In this section, we formulate the common goals of existing R&S procedures

using the stylized model in Sect. 12.2.

First, we note that most R&S procedures are in some way concerned with the

optimality gap between the true best system and the estimated best system, 𝜇k − 𝜇K̂ .

We say that a correct selection (CS) event occurs if this optimality gap is zero, and

𝜇k = 𝜇K̂ . An ideal R&S procedure would always deliver a CS for any computational
budget n ≥ k. Since this ideal is impossible in the presence of noise, compromises

are made, and the chosen compromise affects the nature of the procedure. R&S pro-

cedures may be classified by a number of different approaches and compromises,

although these boundaries are not always sharp (see also Pasupathy and Ghosh 2013;

Dong and Zhu 2016):

Fixed-precision versus fixed-budget guarantee Fixed-precision procedures exe-

cute until some form of guarantee holds, usually on the optimality gap between

the selected and true best systems. Fixed-budget procedures attempt to allocate a

fixed computational budget in a way that minimizes a loss function that penalizes

an incorrect selection event.

Finite-sample versus asymptotic validity Finite-sample procedures provide

some provable guarantee within a finite sample size, such as achieved probabil-

ity of correct selection (PCS). Asymptotic validity procedures achieve guarantees

only in some meaningful limit.

Frequentist versus Bayesian guarantee Frequentist probabilistic guarantees are

averaged over (conceptually) repeated applications of the procedure. Bayesian

probabilistic guarantees are conditioned on the data and averaged over the sources

of parameter uncertainty.

In the next two sections, we discuss some of the standard compromises and

approaches for creating R&S procedures. Later, we argue that the relevant com-

promises may be affected by the decision to implement the procedure in a parallel

computing environment. In our discussion, we group procedures by whether they are

fixed-precision or fixed-budget procedures, which often, but not always, determines

the computational formulation of the R&S procedure, as we discuss in Sect. 12.4.

256 S.R. Hunter and B.L. Nelson

12.3.1 Mathematical Formulation of Fixed-Precision
Guarantees

Ideally, fixed-precision R&S procedures are guaranteed to deliver the optimal solu-

tion with a pre-specified frequentist probability, which we denote by 1 − 𝛼 for

1 − 𝛼 ∈ (1∕k, 1). This guarantee is called the probability of correct selection (PCS)

guarantee, and is expressed as

ℙ{𝜇K̂ = 𝜇k} ≥ 1 − 𝛼.

If there are multiple optima, or several solutions with close performance, delivering

this guarantee can be computationally infeasible. As a result, making one of the

following additional compromises is typical.

∙ One can assume that the best is unique, and accept the possibility of substantial

computation before termination, as in Fan et al. (2016).

∙ One can allow for a practically significant difference 𝛿 > 0, also called an

indifference-zone (IZ) parameter, and instead require

ℙ{K̂ = k ∣ 𝜇k − 𝜇k−1 ≥ 𝛿} ≥ 1 − 𝛼.

The IZ compromise has been widely adopted.

∙ One can be satisfied with returning a good solution with optimality gap no larger

than a user-specified 𝛿:

ℙ{𝜇k − 𝜇K̂ ≤ 𝛿} ≥ 1 − 𝛼.

Some of the procedures that deliver a guaranteed PCS also deliver a guaranteed

probability of good selection (PGS), but this is not always the case.

∙ One can be satisfied with

ℙ{K̂ ∈ [k, k − 1, k − 2,… , k − m + 1]} ≥ 1 − 𝛼.

That is, one can be satisfied with selecting a top-m solution based on rank order,

irrespective of the actual optimality gap. This is the compromise behind ordinal

optimization (see, e.g., Chen and Lee 2010).

∙ One can be satisfied with a subset Ŝ ⊆ S such that

ℙ{k ∈ Ŝ} ≥ 1 − 𝛼.

Subset procedures are closely related to multiple comparison procedures that pro-

vide simultaneous confidence intervals on some set of differences, and in particu-

lar to multiple comparisons with the best (MCB, Hsu 1984). Subset guarantees can

often be delivered with weak assumptions, but the conclusion may also be weak if

the subset is large. Subset procedures may be used within other R&S procedures

12 Parallel Ranking and Selection 257

for screening or removing systems from the consideration that are estimated as

inferior.

While all R&S procedures strive to be efficient, fixed-precision procedures require

statistical guarantees to hold. Thus we formulate the objective of fixed-precision

procedures by placing a hard constraint on the guarantee, but we wish to purchase

processors p and create a job schedule J such that we minimize the expected (scaled)

completion time of the procedure plus the (scaled) monetary cost of the R&S proce-

dure. Under the stylized model in Sect. 12.2, we formulate this problem as

minimizep,J 𝔼[𝛽tTe(J) + 𝛽cc(p,Te(J))] s.t. ℙ{G} ≥ 1 − 𝛼,

where 𝛽t ≥ 0 and 𝛽c ≥ 0 are scaling coefficients, and the event G denotes a “good

event” upon termination of the procedure, in whatever form. For example, G =
(K̂ = k ∣ 𝜇k − 𝜇k−1 ≥ 𝛿) for an IZ compromise, and G = (k ∈ Ŝ) for a subset selec-

tion compromise. Usually, 𝛽t ∈ {0, 1} and 𝛽c = 1 − 𝛽t, so that only expected wall-

clock time or only expected cost is minimized, depending on the cost structure of the

parallel computing environment. To ensure the probabilistic guarantee constraint is

satisfied, we require purchasing as many processor hours as the procedure requires

to terminate at time Te(J); thus, the monetary budget for purchasing processor hours

should be b = ∞.

12.3.2 Mathematical Formulation of Fixed-Budget
Guarantees

In contrast with fixed-precision procedures, in which the simulation budget is deter-

mined in part by the required precision, the goal of most fixed-budget procedures

is to identify the best system efficiently under a fixed simulation budget. Thus most

fixed-budget procedures provide an “efficiency guarantee,” which we formulate as

minimizep,J 𝔼[L(Gc
, J)] s.t. t(p, b) ≤ t∗,

where the function L is some type of loss function that depends on an undesirable

event (which, loosely speaking, we denote as Gc
) upon termination of the procedure,

and t∗ is a fixed limit on processor hours we purchase. This formulation implies that

we wish to choose the processors and the job configuration to minimize the expected

loss associated with an incorrect decision, subject to a hard budgetary constraint on

the amount of processor hours. The budgetary constraint on the amount of processor

hours differs from the traditional constraint on the total number of simulation repli-

cations; this formulation provides a more accurate way to measure cost in a parallel

computing setting. Note that equivalently, we could formulate the constraint in terms

of monetary cost instead of time.

258 S.R. Hunter and B.L. Nelson

Several prominent fixed-budget guarantee methods include those provided by

OCBA (Optimal Computing Budget Allocation) (Chen et al. 2000), the Bayesian

Expected Value of Information (EVI) (Chick et al. 2010) and Knowledge Gradient

(KG) (Frazier et al. 2008) methods, and the frequentist SCORE (Sampling Criteria

for Optimization using Rate Estimators) framework (Pasupathy et al. 2014), which

generalizes the work of Glynn and Juneja (2004) and has a close relationship with

OCBA and EVI (Ryzhov 2016).

12.3.3 Guarantees Require Standard Assumptions

Whether assuring a desired PCS or minimizing an expected loss, there is an underly-

ing output distribution with respect to which the PCS or expected loss is evaluated.

This underlying distribution may be derived from a strong assumption about the

simulation output data, or hold asymptotically under weaker conditions. Establish-

ing that these probability guarantees hold in small samples usually requires strong

distribution assumptions. Asymptotic analysis (e.g., as 𝛿 → 0) can establish attain-

ment in a large-sample sense. In either case, the actual distribution depends on both

(a) the simulation model itself and (b) the sequence of jobs executed. Dependence on

(b) is typically not a concern when there is only a single processor, but as discussed

in Sect. 12.5, it is critical when jobs are executed in parallel.

To ensure the guarantees from the previous two sections hold, we define the stan-

dard output assumptions as follows. Recall that Yir is a random variable represent-

ing the performance of the ith system on the rth simulation replication, for each

r = 1, 2,… and all i ∈ S.

Definition 12.1 The standard output assumptions comprise the following:

1. (Within) for all systems i ∈ S, the random variables Yir, r = 1, 2,… are i.i.d. nor-

mally distributed with finite variance, and

2. (Between) for all pairs of systems i, i′ ∈ S, the random variables Yir and Yi′r′ are

independent for all r = 1, 2,… and all r′ = 1, 2,….

The validity of a serial R&S procedure can usually be established under the stan-

dard output assumptions. However, these assumptions may be overly stringent. We

now provide several common relaxations to the standard output assumptions.

Within Relaxations for all systems i ∈ S, the random variables Yir, r = 1, 2,…,

(a) are i.i.d. with finite variance; (b) are stationary with finite variance; or

(c) appropriately standardized, satisfy a Functional Central Limit Theorem.

Between Relaxations for all pairs of systems i, i′ ∈ S, the random variables Yir
and Yi′r are positively correlated for all r = 1, 2,… ,where the positive correlation

is induced by the use of common random numbers (CRN).

CRN is a rule for assigning a set of jobs {Jj, j ∈ B(b)} a “common” block of

random numbers Uj = U(b)
for all j ∈ B(b)

, so that the blocks b = 1, 2,… exhaust

12 Parallel Ranking and Selection 259

all jobs that require simulation replications in J. The use of CRN across systems

to induce a positive correlation and thereby reduce the variance of the difference

Ȳi(n) − Ȳi′ (n) has long been a staple of R&S methods to improve statistical effi-

ciency; see for instance Nelson (2013). Because CRN can, in fact, increase variance

if simulation outputs are not appropriately paired with equal numbers of observations

across systems, the use of CRN imposes an additional coordination problem when

there are multiple processors. As a result, CRN has not yet been central to parallel

R&S procedures. Therefore, we assume independent blocks of random numbers for

each job from here on unless specifically indicated. For simplicity in our stylized

model, whenever the blocks of random numbers are independent, we drop the the

specification of Uj and instead write

Jj ∶= {(Qj, 𝛥j), (Pj,Cj)}.

12.4 Computational Formulations of Existing Serial R&S
Procedures

Once we have a mathematical formulation of the goals of the R&S procedure, we

require a computational formulation of the procedure that can be implemented on

one or more processors. To naïvely implement existing serial R&S procedures in

a parallel computing setting, we require an assignment of jobs to processors such

that the standard assumptions from the original serial procedure, in whatever form

they exist, are still satisfied. The simplest way to accomplish this goal is to paral-

lelize only the parts of the procedure that can be completed in an embarrassingly

parallel fashion, and complete all other tasks in the original sequence. As is com-

mon in the parallel computing literature, we use the term embarrassingly parallel to

refer to jobs that are trivially implemented in parallel and require no coordination or

synchronization.

Before we provide naïve parallel computational formulations of existing serial

fixed-precision and fixed-budget R&S procedures, we define the concepts of cou-
pled operations and stages, which are concepts that assist with ordering jobs. First,

recall that Cj is a list of calculations that are performed as part of a job j. Typical

calculations that arise in R&S procedures include

∙ determining the sample mean and sample variance of the ith system, Ȳi(n) and

S2
i (n) ∶= (n − 1)−1

∑n
r=1(Yir − Ȳi(n))2, respectively,

∙ performing a pairwise comparison Ȳi − Ȳi′ for two systems i and i′,
∙ determining the paired sample variance

S2
i,i′ (n) ∶= (n − 1)−1

∑n
r=1(Yir − Yi′r − (Ȳi(n) − Ȳi′ (n)))2,

∙ updating a sample allocation rule ℜ in a fixed-budget procedure like OCBA, and

∙ updating a posterior distribution in a Bayesian R&S procedure.

260 S.R. Hunter and B.L. Nelson

Since operations like pairwise comparisons and calculating paired sample variances

require the simulation output of two or more systems, we refer to these operations as

coupled.

Definition 12.2 We define the following:

∙ A coupled operation or coupling is an operation or calculation in which the sim-

ulation output of two or more systems is required.

∙ A fully coupled operation or full coupling is an operation or calculation that

requires the simulation output of all systems still in contention at that point in

the procedure.

Thus coupled operations occur when the estimated system performances must be

compared to each other, as in a pairwise comparison, or when some key quantity

must be calculated that requires the compilation of simulation output from multiple

systems. For example, calculating the estimated best system K̂ = argmaxi∈S{Ȳi(ni)}
is a fully coupled operation. Coupling is distinct from the concept of synchronization
in parallel algorithms, since coupling is across systems, and synchronization is usu-

ally across processors. However, when there is a cost to switch from simulating one

system to another, it may make sense to assign processors to simulate particular sys-

tems, in which case a coupled operation may require synchronization of simulation

output across processors.

Since R&S procedures consist of simulations and comparisons, they are usually

implemented in what are called stages. While the definition of the term “stage” has

not always been consistent in the R&S literature, in the context of our stylized model,

we define a stage as follows:

Definition 12.3 A stage is a portion of an R&S procedure that begins with the first

simulation output obtained after initialization or after the last fully coupled opera-

tion, and ends when the next fully coupled operation terminates.

While the individual calculations required in the full coupling may be split into jobs

that are carried out by multiple processors, when the final calculation of the full cou-

pling is complete, then the stage is over. When variances are unknown, the minimum

number of stages is two (Dudewicz and Dalal 1957); the variances are estimated in

the first stage. Thus, the first stage almost always consists of obtaining n0 ≥ 2 obser-

vations from each system, and ends with a fully coupled calculation of key informa-

tion for implementing the next stage.

In the computational formulations that follow, our goal is to demonstrate the cou-

pling structure of naïve parallelization of each type of serial procedure. Thus, we

provide only a straightforward formulation of jobs Jj. We acknowledge that many

such formulations exist; some are more efficient than others.

12 Parallel Ranking and Selection 261

12.4.1 Computational Formulation of Fixed-Precision
Procedures

To create a computational formulation for fixed-precision procedures, we begin

by formulating existing serial procedures using the stylized model described in

Sect. 12.2. We provide a basic formulation of two prominent versions of fixed-

precision procedures that have different coupling structures: two-stage procedures,

which have exactly two stages with two full couplings, and fully sequential proce-

dures, which have many stages and frequent full couplings.

The first stage of a two-stage procedure usually begins with obtaining n0 ≥ 2
simulation replications from each system, and ends with fully coupled operations

that use rules to screen systems and to calculate second-stage sample sizes such

that desired statistical guarantees hold. The screening and sampling rules, which we

denote as rules ℜ, are often functions of the user-specified parameters 𝛼 and 𝛿, and

the variances of the system performances. The simulation replications in each of

the two stages can be farmed out to worker processors in an embarrassingly paral-

lel fashion, while the master completes all coupled operations. The full coupling at

the end of each stage requires a full synchronization across all processors. A naïve

two-stage fixed-precision procedure with an optional subset selection step is pro-

vided in Algorithm 1. Prominent two-stage procedures include Rinott (1978) and

NSGS (Nelson et al. 2001). Ni et al. (2014) provide a parallel version of NSGS that

is slightly different from Algorithm 1, called NSGSp.

Algorithm 1 Naïve Two-Stage Fixed-Precision Procedure (Less Coupling)

1: procedure TWOSTAGE(𝛼, 𝛿, n0,ℜ1,ℜ2) ⊳ Inputs: problem parameters 𝛼 ∈ (1∕k, 1) and

𝛿 ∈ (0,∞), first-stage sample size n0 ≥ 2, (optional) rule ℜ1 for subset selection, and rule ℜ2
for second-stage sample size determination.

2: Initialize: Set Q= S. Master creates jobs Ji = {(i, n0), (∅, {Ȳi(n0), S2
i (n0)})} for all i ∈ Q.

3: Stage 1: (Simulate: Embarrassingly Parallel) Workers complete jobs {Ji ∶ i ∈ Q}.

4: (Subset Selection: Fully Coupled) Master eliminates inferior systems from Q using ℜ1. If

|Q| = 1, return the system in Q as the estimated best, K̂. Otherwise, continue.

5: (Calculation: Fully Coupled) Master determines second-stage sample sizes Ni,2 using ℜ2.

6: For each i ∈ Q, Master creates Ji,2 = {(i,max{0,Ni,2 − n0}), (∅, Ȳi(Ni,2))}.

7: Stage 2: (Simulate: Embarrassingly Parallel) Workers complete jobs {Ji ∶ i ∈ Q}.

8: (Compare: Fully Coupled) Master returns K̂ = argmaxi∈Q{Ȳi(Ni,2)}.

9: end procedure ⊳ Algorithm inspired by Pasupathy and Ghosh (2013, p. 127).

While two-stage procedures can be completed using mostly embarrassingly

parallel computation with little synchronization, they are less efficient than fully

sequential procedures in terms of the expected total number of simulation repli-

cations required. Fully sequential procedures gain sampling efficiency by frequent

comparisons and screening. Arguably, fully sequential procedures have the maxi-

mum number of stages and hence a “maximal” coupling structure. In each Stage 2+,

one simulation replication is obtained from each system still in contention, sample

262 S.R. Hunter and B.L. Nelson

means and paired variances are updated, and inferior systems are screened out. Since

the number of simulation replications per system is equal across surviving systems

in each stage of the procedure, that is, ni = ni′ for all i, i′ ∈ Q, some fully sequential

procedures such as KN can be implemented with CRN, further enhancing efficiency.

However, screening is an inherently coupled operation—especially when screening

requires all pairwise comparisons between systems. Thus when adapting R&S pro-

cedures to a parallel computing platform, there exists a tension between sampling

efficiency gained by frequent screening, and the potential inefficiency of attempt-

ing to perform frequent coupled screening operations across many processors. A

generic, naïvely parallelized fully sequential procedure is provided in Algorithm 2.

Prominent fully sequential procedures include KN (Kim and Nelson 2001).

Algorithm 2 Naïve Fully Sequential Fixed-Precision Procedure (More Coupling)

1: procedure FULLY SEQUENTIAL(𝛼, 𝛿, n0,ℜs) ⊳ Inputs: problem parameters

𝛼 ∈ (1∕k, 1) and 𝛿 ∈ (0,∞), first-stage sample size n0 ≥ 2, a screening rule ℜs.

2: Initialize: Set the total samples per system n = n0 and the systems in contention Q= S.

Master creates jobs Ji = {(i, n0), (∅, {Ȳi(n0)})} for all i ∈ Q.

3: Stage 1+: (Simulate: Embarrassingly Parallel) Workers complete jobs {Ji ∶ i ∈ Q}.

4: (Calculation: Coupled) Master computes S2
i,i′ (n) for all i, i′ ∈ Q, i ≠ i′.

5: (Screen: Fully Coupled) Master uses ruleℜs on (Ȳi(n), S2
i,i′ (n)), i, i

′ ∈ Q to eliminate inferior

systems from Q. If |Q| = 1, return the system in Q as the estimated best, K̂. Otherwise, set

n = n + 1. Master creates new jobs Ji,n = {(i, 1), (∅, Ȳi(n))} for each i ∈ Q.

6: Go to the next stage, Step 3.

7: end procedure ⊳ Algorithm inspired by Pasupathy and Ghosh (2013, p. 129).

12.4.2 Computational Formulation of Fixed-Budget
Procedures

Fixed-budget procedures often take a similar computational structure, outlined in

Algorithm 3. As in the fixed-precision procedures, the first stage begins by obtain-

ing n0 ≥ 2 simulation replications from each system, and ends with a (usually) fully

coupled operation that determines how to allocate the 𝛥 simulation replications in

the next stage, using a sampling rule ℜ. This process of obtaining 𝛥 simulation repli-

cations per stage and updating the sampling rule is repeated until the total simula-

tion time has been exhausted. Since the frequency of the coupling and the number of

stages is determined by the parameter 𝛥, these procedures tend to have a flexible cou-

pling frequency. We note that some procedures are designed for myopic sampling,

such that 𝛥 = 1, while other procedures are more flexible in the choice of 𝛥.

12 Parallel Ranking and Selection 263

Algorithm 3 Fixed-Budget Procedure (Flexible Coupling Frequency)

1: procedure EFFICIENCY(n0, 𝛥, t∗,ℜ) ⊳ Inputs: initial simulation budget n0 ≥ 2, stagewise

simulation budget 𝛥, limit on total effort t∗ > 0, and rule ℜ for stagewise allocation.

2: Initialize: Set stage𝓁 = 1, sample sizes ni,𝓁 = n0 for all i ∈ S, total effort t0 = 0, and Master

creates jobs Ji = {(i, n0), (∅, {Ȳi(n0), S2
i (n0)})} for all i ∈ S.

3: while t𝓁−1 ≤ t∗ do
4: Stage 𝓁: (Simulate: Embarrassingly Parallel) Workers complete jobs {Ji}.

5: (Calculation: Fully Coupled) Master applies rule ℜ to statistical history to find

next stage sample allocation {ni,𝓁+1∶
∑

i∈S ni,𝓁+1 = 𝛥}. Master creates jobs Ji =
{(i, ni,𝓁+1), (Ȳi(ni,𝓁+1), S2

i (ni,𝓁+1))} for all i ∈ {i′∶ i′ ∈ S, ni′ ,𝓁+1 ≥ 1}.

6: Master updates total effort expended so far t𝓁 .

7: Master sets 𝓁 = 𝓁 + 1.

8: end while
9: return K̂ = argmaxi∈S{Ȳi(

∑
ni,𝓁)}.

10: end procedure ⊳ Algorithm inspired by Pasupathy and Ghosh (2013, p. 132).

12.5 Parallelization: Efficiency and Validity

Having presented fairly straightforward parallel computational frameworks for exist-

ing serial R&S procedures that should preserve the standard assumptions from the

original serial procedure, one may wonder, why not simply use these procedures?

While such procedures surely can be implemented, they are unlikely to scale well

to larger problem instances and to achieve the levels of speedup and efficiency we

would like to see from a parallel R&S algorithm. The concepts of speedup and effi-

ciency (or scalability) are defined in Barlas and Kaufman (2015) as follows. Sup-

pose we are handed a parallel algorithm that requires tp wall-clock time to be run

on p identical processors in parallel, and ts wall-clock time to be run on only one

of the processors. Then the speedup is defined as the ratio of the sequential time to

the parallel time, 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 ∶= ts∕tp. Given p ≥ 1 processors, the efficiency is defined

as the scaled speedup, efficiency ∶= s∕p = ts∕(ptp). Thus speedup gives a measure

of how beneficial it is to execute the algorithm in parallel, while efficiency mea-

sures the utilization of the available processors. An Efficiency of 1 corresponds to

linear speedup, in which case the speedup is equal to the number of processors, p.

Embarrassingly parallel jobs that are appropriately load-balanced across cores tend

to achieve almost linear speedup.

Since embarrassingly parallel implementations achieve almost linear speedup,

it seems that two-stage procedures would perform the best in parallel. However,

recall that two-stage procedures require more simulation replications, on average,

than those that have more frequent coupled operations like screening. Thus it may

benefit the procedure to introduce more frequent coupled operations. However, we

have two potential forms of idleness that arise: (a) the master may be idle waiting for

every simulation replication to complete before it performs any coupled operations—

especially if simulation replication completion times are random—and (b) if screen-

ing and fully coupled operations take significant computational effort on the master,

many worker processors must wait for the master to create new jobs.

264 S.R. Hunter and B.L. Nelson

Then, we may wish to design a procedure that does not require the processors to

wait for each other. Unfortunately, the standard assumptions are most easily assured
by one-job-at-a-time execution. Estimators can become biased if we do not wait

for all parallelized simulation replications to complete; such bias was investigated

by Heidelberger (1988) and Glynn and Heidelberger (1990, 1991). Further, serious

violations of the standard assumptions can occur if jobs are executed in parallel but

output data are used as available and without enforcing conformance with single-

processor execution. These include the following, as described in Luo et al. (2015),

Ni et al. (2013, 2017).

Random sample size The number of observations from system i when the nth

overall observation is obtained may be random if job execution time is variable.

Not i.i.d. The observations ni from system i may not be i.i.d. if the order in which

jobs complete is not the order in which the jobs were dispatched, and there is a

dependence between returned value and execution time.

Dependence across systems A difficult-to-characterize dependence across sys-

tems’ outputs can be induced if elimination of system i by system i′ frees proces-

sors that affect the number of observations obtained from other systems.

These issues suggest that we must employ output coordination strategies that ensure

all calculations (Pj,Cj) across jobs j are executed as they would be if there were only a

single processor. However, this still leads to a potential degradation of efficiency and

speedup from the two forms of idleness: master waiting for simulation replications,

and workers waiting for the master’s calculations.

Based on this analysis, efficient parallel R&S requires procedures with one or

more of the following characteristics: (a) they implement careful load balancing to

retain the standard assumptions without significant idling and overwhelming com-

munication; or (b) they are valid under weaker assumptions than the standard ones;

or (c) the procedure uses a combination of the strategies above. We discuss existing

parallel R&S procedures of both types in the next section.

12.6 Existing Parallel Ranking and Selection Procedures

Existing parallel R&S procedures overcome some of the shortcomings of the naïve

parallelization of existing serial R&S procedures. We now discuss the state of the art

in both fixed-precision and fixed-budget parallel ranking and selection procedures.

12.6.1 Parallel Fixed-Precision Procedures

We describe four parallel fixed-precision procedures and formulate each procedure

in terms of the types of jobs created and deployed to the workers. First, Luo and Hong

(2011), Luo et al. (2015) extend the KN procedure (Kim and Nelson 2006a, 2001),

12 Parallel Ranking and Selection 265

which provides a PCS guarantee, to the parallel setting in two distinct ways: a conser-

vative vector-filling procedure (VFP) that strictly enforces the standard assumptions,

and an aggressive asymptotic parallel selection (APS) procedure that is valid under

weaker assumptions. Both algorithms resemble Algorithm 2 in that they use elimi-

nation at every stage; their key difference is in how they define the completion of a

stage. Then, we discuss a simple divide-and-conquer approach by Chen (2005) for

when the number of processors is small. Finally, a substantial extension of the divide-

and-conquer approach is provided by the good selection procedure (GSP) of Ni et al.

(2017), which provides a PGS guarantee.

Of these procedures, we highlight two procedures for their strategies related

enhancing efficiency and maintaining validity. First, APS never allows the master to

idle waiting for simulation replications, but maintains its validity under conditions

weaker than the standard ones. Second, GSP maintains validity under the standard

assumptions, but performs careful load balancing to maintain efficiency.

12.6.1.1 VFP: Vector-Filling Procedure

In VFP, the master creates/executes three types of jobs:

1. Initialization jobs:

J0 =
[
{(1, n0), (∅)}, {(2, n0), (∅)}… , {(k, n0), (∅)}, {(∅), (P0,C0)}

]

where the set P0 includes the k preceding simulation jobs, and the calculations

C0 include computing the variance of all pairwise differences, making pairwise

comparisons of the sample means of all k systems, and possibly eliminating some

systems.

2. Round-robin simulation jobs: Conceptually, there is an infinite set of sets of sim-

ulation jobs

J𝓁 =
[
{(1, 1), (∅)}, {(2, 1), (∅)}… , {(k, 1), (∅)}

]
,𝓁 = 1, 2,…

that obtain one additional replication from each system. However, if at stage 𝓁′

system i′ is eliminated, then all {(i′, 1), (∅)} jobs are eliminated from the unexe-

cuted simulation job set. Upon completion of a simulation job, a worker pulls the

next simulation job in the sequence to execute.

3. Elimination jobs: Stage 𝓁 is defined by an elimination job {(∅), (P𝓁 ,C𝓁)}, where

P𝓁 contains all simulation jobs J𝓁 , and C𝓁 performs pairwise comparisons of all

systems that have not been eliminated at an earlier stage. The elimination jobs

are executed by the master.

The VFP terminates when there is only one system that has not been eliminated. The

term “vector filling” is appropriate because the VFP enforces the standard assump-

tions by associating each simulation output with its job set J𝓁 , and only performing a

full coupling for stage 𝓁 when all jobs in J𝓁 have completed. For this reason, outputs

266 S.R. Hunter and B.L. Nelson

from later job sets, say J𝓁+1, that complete before jobs in J𝓁 must be held in a vector

for later elimination calculations.

12.6.1.2 APS: Asymptotic Parallel Selection

The APS procedure is superficially similar to the VFP, but a small change makes its

computational profile quite different.

1. Initialization jobs:

J0 =
[
{(1, n0), (∅)}, {(2, n0), (∅)}… , {(k, n0), (∅)}, {(∅), (P0,C0)}

]

where the set P0 includes the k preceding simulation jobs, and the calculations

C0 include computing the marginal variance of all k systems, making pairwise

comparisons of the sample means of all k systems, and possibly eliminating some

systems. (These initialization jobs are the same as those in VFP.)

2. Round-robin simulation jobs: Conceptually, there is an infinite set of sets of sim-

ulation jobs

J𝓁 =
[
{(1, 1), (∅)}, {(2, 1), (∅)}… , {(k, 1), (∅)}, {(phantom, 0), (∅)}

]
,𝓁 = 1, 2,…

that obtain one additional replication from each real system, and no replications

from a “phantom” system. Again, if at stage 𝓁′
real system i′ is eliminated, then

all {(i′, 1), (∅)} jobs are elminated from the unexecuted simulation job set. Upon

completion of a simulation job, a worker pulls the next simulation job in the

sequence to execute, which could be a phantom.

3. Elimination jobs: Stage 𝓁 is defined by an elimination job {(∅), (P𝓁 ,C𝓁)}, where

P𝓁 is the 𝓁th phantom job. The calculation C𝓁 updates marginal variances and

performs pairwise comparisons of all systems that have not been eliminated at an

earlier stage using all available simulation output data. The elimination jobs are

executed by the master.

The APS procedure defines a stage as the completion of a phantom job, but other-

wise makes no attempt to process simulation jobs in any order. Thus, it is aggressive

in that the master never idles waiting for a particular real simulation job to com-

plete, but it is subject to all of the violations of standard assumptions described in

Sect. 12.5. The validity of APS is asymptotic, as 𝛿 → 0, with the key insight being

that since there are p < ∞ processors the simulation jobs may only be out of order

by an asymptotically negligible p jobs.

12 Parallel Ranking and Selection 267

12.6.1.3 Simple Divide-and-Conquer

An early paper by Chen (2005) describes a simple approach that is sensible when

the number of processors p is small; GSP below can be considered a substantial

extension of this idea. There are two types of jobs:

1. Group R&S jobs: The k systems are divided as evenly as possible into p nonover-

lapping groups of systems, say G1,G2,…Gp, and p jobs are formed

Jj = {(Gj, 𝛥j), (Gj,Cj)}, j = 1, 2,… , p

where each job j is a complete R&S procedure that returns a group-best selected

system îj along with its accumulated output data.

2. Final R&S job: Let Q = {̂i1, î2,… , îp}, the group bests. Then the final job is

Jp+1 = {(Q, 𝛥p+1), (Q,Cp+1)}, j = 1, 2,… , p

which performs a R&S procedure on the group-best systems Q starting with their

previously accumulated data and Cp+1 computes the sample means and selects

the best.

Chen (2005) suggests some specific R&S procedures for each type of job, but the

framework is flexible. The simplicity of this strategy is appealing, but it will lose

effectiveness when k ≫ p so that the group R&S jobs themselves are challenging.

12.6.1.4 GSP: Good Selection Procedure

The GSP procedure of Ni et al. (2017) (also see Ni et al. 2013, 2014, 2015) pro-

vides a PGS guarantee, instead of the usual PCS guarantee, under the standard output

assumptions. GSP exhibits good speedup and efficiency using careful load-balancing

and reduced computation. Several key strategies of GSP include: (a) distributing

screening tasks to the workers in a divide-and-conquer fashion to avoid overwhelm-

ing the master with screening calculations; (b) using only a reduced number of pair-

wise comparisons instead of completing all pairwise comparisons; and (c) carefully

constructing load-balanced jobs of large-enough size to prevent overwhelming the

master with communication. As a result, when implemented in a high-performance

computing (HPC) environment in C with MPI, the master is idle most of the time.

However in its idleness, the master usually is ready to communicate and can ensure

the workers are not idle most of the time.

GSP has three stages and one “phase,” which is a sequential portion of the algo-

rithm containing multiple stages. GSP’s stages and phases are: an optional load-

balancing stage; an initialization stage with screening; a sequential phase that con-

tains multiple stages and is somewhat similar in structure to Algorithm 2 after ini-

tialization; and a Rinott stage, similar in structure to Algorithm 2. The sequential

268 S.R. Hunter and B.L. Nelson

phase is intended to harness the efficiency of sequential screening to create a subset

of contender systems likely to contain the best. In the Rinott stage, the appropri-

ate sample sizes for the remaining systems are calculated, and the simulations for

remaining competitive systems are completed in an embarrassingly parallel fashion.

In this section, we assume we have p worker processors, where the zeroth proces-

sor is the master. In each stage or phase, the master creates the following types of

jobs:

1. Optional load-balancing jobs: The master randomly permutes the systems in S

and assigns an approximately equal number of systems to groups G1
0,… ,G

p
0, for

each processor. Then the master creates jobs

J0 = {(Gw
0 , n

∗
0), (∅, {T̄i ∶ i ∈ Gw

0 })}
p
w=1,

where T̄i is the average simulation completion time across all replications n∗0 from

simulating system i. After calculating statistics T̄i, the simulation output is thrown

away, due to potential dependence between the output random variable Yir and the

simulation replication completion time Tir.

2. Initialization jobs: Using information from the optional load-balancing step if

available, the master partitions the systems in S into load-balanced simulation

groups G1
1,… ,G

p
1 for each processor. Then the master creates jobs

J1 = {(Gw
1 , n0), (∅, {(Ȳi(n0), S2

i (n0),C1) ∶ i ∈ Gw
1 })}

p
w=1,

where C1 is a screening calculation that only reports the surviving systems and

their sufficient statistics to the master. The master updates the surviving sys-

tems Q.

3. Sequential phase jobs: The master divides the systems into approximately load-

balanced screening groups G1
2,… ,G

p
2 using rule ℜGSP

1 , so that each processor

always screens the same set of systems. The master also uses rule ℜGSP

2 to deter-

mine an appropriate “batch size” bi of simulation replications to obtain from each

system i ∈ Q in each simulation job, so that the master is not overwhelmed with

communication. The sequential phase ends when a pre-determined maximum

number of batches has been simulated, or when |Q| = 1.

a. Simulation jobs: The master creates and maintains an ordered list of batched

simulation jobs for each system i ∈ Q. Whenever a worker becomes idle and

the master indicates that some systems in its screening group are not ready

for screening, the worker requests the next simulation job in the list, for any

system i ∈ Q. For each system still in contention i ∈ Q, the 𝜈th simulation

job is

Ji,𝜈 = {(i, bi), (∅, Ȳ(bi))}, 𝜈 = 1, 2,… .

b. Within-group and best-across-processor screening jobs: Whenever a proces-

sor becomes idle and the 𝜈th simulation batch has completed for all systems

12 Parallel Ranking and Selection 269

in its screening group, the processor pulls the “screening job” for its group

from the master,

Jw
𝜈
= {∅, ({Ji,𝜈 ∶ i ∈ Gw

2 },C
w
𝜈
)},

where Cw
𝜈

is an all pairwise screening job within the group Gw
2 , as well as

among the best systems who have completed batch 𝜈 from the other screen-

ing groups. The processor then reports the indices of eliminated systems to

the master, who updates the set of systems still in contention, Q. Note that

the 𝜈th screening must occur before the (𝜈 + 1)th screening, and so on. Per

Definition 12.3, each within-group screening that uses the best systems from

screening groups on all the other processors constitutes the end of a stage.

4. Rinott stage jobs: If |Q| > 1, the master uses a rule ℜ to determine the Rinott

stage sample sizes Ni,4 for all remaining systems i ∈ Q. Let Ni be the total num-

ber of simulation replications observed from each system i ∈ Q so far before the

Rinott stage, and define N+
i,4 ∶= max{0,Ni,4 − Ni} as the number of additional

simulation replications required from system i. The master then arranges the

required additional simulation replications for each system into load-balanced

“batched” jobs; for ease of exposition, we omit the batching notation in this stage.

Then for all i ∈ Q such that N+
i,4 > 0, the master creates the jobs

J4,i = {(i,N+
i,4), (∅, Ȳi(Ni,4))}.

After all simulation replications terminate, the master updates the sample means

with the latest data and returns the estimated best system K̂.

12.6.2 Parallel Fixed-Budget Procedures

Luo et al. (2000) is the first reported effort to parallelize an R&S procedure, specifi-

cally OCBA in the fixed-budget setting. Their base algorithm resembles Algorithm 3,

and they assume a master–worker environment with a small number of workers

(p ≤ 3 in their experiments).

The master creates/executes three types of jobs:

1. Initialization jobs:

[
{(1, n0), (∅)}, {(2, n0), (∅)}… , {(k, n0), (∅)}, {(∅), (P0,C0)}

]

where the set P0 includes the k preceding simulation jobs, and the calculations

C0 include computing the marginal sample means and variance of the k systems.

2. Simulation jobs: In the 𝓁th stage, p jobs {(ij, 𝛥), (∅)} for j = 1, 2… , p are created,

where ij ∈ {1, 2,… , k} denote p distinct systems, each allocated the same number

of replications, 𝛥. These jobs are executed by the p workers in parallel.

270 S.R. Hunter and B.L. Nelson

3. OCBA jobs: {(∅), (P𝓁 ,C𝓁)}, where P𝓁 contains all of the simulation jobs from

the 𝓁th simulation stage, and C𝓁 performs the OCBA optimization to find the p
systems for whom an allocation of 𝛥 additional replications would most rapidly

increase an approximate posterior PCS expression. Simulation jobs are then cre-

ated for these p systems.

By having the OCBA job hold for the return of all of the ongoing simulation jobs, this

algorithm enforces the single-processor assumptions behind OCBA at each stage. As

noted by the authors, there is a loss of statistical efficiency by simulating the top-p
OCBA systems at each stage, rather than simulating the single best then reevaluating,

but there is a gain in computational efficiency. The algorithm terminates when a fixed

number-of-replications budget is expended. A related paper by Yoo et al. (2009) also

applies OCBA in a parallel search setting where not all systems are expected to be

simulated.

12.6.3 Available Implementations of Parallel R&S
Procedures

To the best of our knowledge, only one commercial simulation product, Simio (http://

www.simio.com), has implemented R&S procedures that exploit parallel comput-

ing. Simio has implemented two fixed-precision procedures: KN (Kim and Nelson

2001, 2006a) which uses multiple processors on a local PC, and GSP (Ni et al.

2017) which is specifically designed to use high-performance or cloud computing.

KN gains efficiency by obtaining replications in parallel; in every other sense it is

the single-processor algorithm and it implements full synchronization at every stage.

There are also public code repositories that contain parallel versions of R&S pro-

cedures. In this paragraph, the citations provide links to code repositories that are

publicly available at the time of writing. GSP has been implemented in MapReduce

(Ni 2015a), MPI (Ni 2015b), and Spark (Ni 2015c). Code for a parallel version of

OCBA is available (Li 2017). As a repository for the simulation optimization com-

munity, http://www.simopt.org (Henderson 2016), also contains test problems for a

variety of problem types, as well as an algorithms library with publicly available

code.

12.7 A Future Research Agenda

Effective and efficient parallel R&S procedures of the future seem likely to be

obtained by a careful coordination of a number of ideas. Here is a part of the roadmap

as we see it.

Assignment of jobs to processors is clearly a type of stochastic parallel-machine

scheduling problem as addressed by the operations research literature (see for

http://www.simio.com
http://www.simio.com
http://www.simopt.org

12 Parallel Ranking and Selection 271

instance Pinedo 2015). The objective in such problems is often to minimize

makespan, which is analogous to our objective in the fixed-precision formulation,

and sequencing constraints are similar to our dependence of certain computations on

the completion of particular jobs, (Pj,Cj). A key difference is that the jobs that need

scheduling in parallel R&S may evolve based on the simulation outputs obtained

from earlier jobs, rather than being all available in advance or arriving according

to some exogeneous stochastic process. Nevertheless, this is a deep literature whose

lessons should not be ignored.

Strategies that avoid full coupling seem critical as the number of all pairwise

comparisons grows as O(k2). Thus, as k increases it becomes computationally pru-

dent to simulate more outputs than strictly needed for, say, correct selection to avoid

coupling. This can be done from at least two directions:

1. Distributed screening: Couplings of k′ ≪ k systems to screen out inferior sys-

tems and pass competitors to full couplings, thereby reducing the comparisons to

O((k′)2).
2. Distributed killers: Obtaining high-precision estimates of an apparently good

solution and distributing it to all or groups of systems to screen out inferior ones;

this type of screening is O(k).

The fixed-budget formulation, when expressed as a limit on the number of simulation

replications, has always been somewhat artificial. A fixed monetary or time budget

for parallel computation, on the other hand, is both concrete and relevant. To us, the

joint choice of a number of processors p and jobs to execute J to minimize expected

loss with respect to a monetary budget looks very challenging indeed. We suspect

that a strategy that chooses p based on a priori problem characteristics, and then

treats it as fixed when optimizing over J, will be the most productive avenue.

Finally, parallel R&S for very large numbers of systems should cause us to revisit

the standard R&S objectives as described in Sects. 12.3.1–12.3.2. For very large k
a PGS guarantee seems more relevant and easier to obtain than a PCS guarantee,

as it seems likely there are many close competitors. More critically, any objective

that returns a single system K̂ without additional inference about the others seems

questionable. Consider an alternative objective:

Suppose, based on previous experience with similar problems, a known standard

for “good” performance of 𝜇
⋆

can be established. Finding, with high probability, the

subset of systems with 𝜇i ≥ 𝜇
⋆

is a fully uncoupled problem that is embarrassingly

parallel. A related approach by Singham and Szechtman (2016) defines inclusion of

inferior systems in the subset as a “false discovery” and sets as the objective bounding

the false discovery rate. In terms of both conservatism of the inference and growth

of computation, these ideas scale better than the traditional objectives.

272 S.R. Hunter and B.L. Nelson

12.8 WSC 2017

At the time of writing, we are aware of at least one paper on parallel R&S under

review for WSC 2017. Thus parallel R&S continues to be an active research area at

WSC.

Acknowledgements Hunter’s research was partially supported by the National Science Foundation

under Grant Number CMMI-1554144. Nelson’s research was partially supported by the National

Science Foundation under Grant Number CMMI-1537060 and GOALI co-sponsor SAS Institute.

References

Andradóttir S, Kim SH (2010) Fully sequential procedures for comparing constrained systems via

simulation. Nav Res Logist 57(5):403–421. doi:10.1002/nav.20408

Barlas G, Kaufman M (2015) Multicore and GPU programming: an integrated approach. Elsevier

Bechhofer RE (1954) A single-sample multiple decision procedure for ranking means of normal

populations with known variances. Ann Math Stat 25(1):16–39

Bechhofer RE, Santner TJ, Goldsman D (1995) Design and analysis of experiments for statistical

selection. Screening and multiple comparisons, Wiley, New York

Boesel J, Nelson BL, Kim SH (2003) Using ranking and selection to ‘clean up’ after simulation

optimization. Oper Res 51(5):814–825

Branke J, Chick SE, Schmidt C (2007) Selecting a selection procedure. Manage Sci 53(12):1916–

1932

Bubeck S, Cesa-Bianchi N et al (2012) Regret analysis of stochastic and nonstochastic multi-armed

bandit problems. Foundations and trends‸. Mach Learn 5(1):1–122

Chen CH, Lee LH (2010) Stochastic simulation optimization: an optimal computing budget allo-

cation. World Scientific, Hackensack, NJ

Chen CH, Lin J, Yücesan E, Chick SE (2000) Simulation budget allocation for further enhancing

the efficiency of ordinal optimization. Discrete Event Dyn Syst 10(3):251–270. doi:10.1023/A:

1008349927281

Chen EJ (2005) Using parallel and distributed computing to increase the capability of selection

procedures. In: Kuhl ME, Steiger NM, Armstrong FB, Joines JA (eds) Proceedings of the 2005

winter simulation conference. Institute of Electrical and Electronics Engineers Inc, Piscataway,

NJ, pp 723–731

Chick SE, Branke J, Schmidt C (2010) Sequential sampling to myopically maximize the expected

value of information. INFORMS J Comput 22(1):71–80

Dong J, Zhu Y (2016) Three asymptotic regimes for ranking and selection with general sample

distributions. In: Roeder TMK, Frazier PI, Szechtman R, Zhou E, Huschka T, Chick SE (eds)

Proceedings of the 2016 Winter Simulation Conference. IEEE, Institute of Electrical and Elec-

tronics Engineers Inc, Piscataway, NJ, pp 277–288

Dudewicz EJ (1976) Statistics in simulation: how to design for selecting the best alternative. In:

Highland HJ, Schriber TJ, Sargent RG (eds) Proceedings of the 1976 bicentennial winter simu-

lation conference, pp 67–71. http://informs-sim.org/wsc76papers/1976_0012.pdf

Dudewicz EJ, Dalal SR (1975) Allocation of observations in ranking and selection with unequal

variances. Sankhya Indian J Stat B37:28–78

Fabian V (1964) Note on Anderson’s sequential procedures with triangular boundary. Ann Stat

2(1):170–176

Fan W, Hong LJ, Nelson BL (2016) Indifference-zone-free selection of the best. Oper Res

64(6):1499–1514

http://dx.doi.org/10.1002/nav.20408
http://dx.doi.org/10.1023/A:1008349927281
http://dx.doi.org/10.1023/A:1008349927281
http://informs-sim.org/wsc76papers/1976_0012.pdf

12 Parallel Ranking and Selection 273

Feldman G, Hunter SR (2016) SCORE allocations for bi-objective ranking and selection. Optim

Online. http://www.optimization-online.org/DB_HTML/2016/06/5469.html

Feldman G, Hunter SR, Pasupathy R (2015) Multi-objective simulation optimization on finite sets:

optimal allocation via scalarization. In: Yilmaz L, Chan WKV, Moon I, Roeder TMK, Macal

C, Rossetti MD (eds) Proceedings of the 2015 winter simulation conference. IEEE, Institute

of Electrical and Electronics Engineers, Inc, Piscataway, NJ, pp 3610–3621. doi:10.1109/WSC.

2015.7408520

Frazier PI, Powell WB, Dayanik S (2008) A knowledge-gradient policy for sequential information

collection. SIAM J Control Optim 47(5):2410–2439

Fu M (ed) (2015) Handbook of simulation optimization. In: International series in operations

research & management science, vol 216. Springer, New York. doi:10.1007/978-1-4939-1384-

8

Glynn PW, Heidelberger P (1990) Bias properties of budget constrained simulations. Oper Res

38(5):801–814

Glynn PW, Heidelberger P (1991) Analysis of parallel replicated simulations under a completion

time constraint. ACM Trans Model Comput Simul 1(1):3–23

Glynn PW, Juneja S (2004) A large deviations perspective on ordinal optimization. In: Ingalls

RG, Rossetti MD, Smith JS, Peters BA (eds) Proceedings of the 2004 winter simulation confer-

ence. IEEE, Institute of Electrical and Electronics Engineers, Inc, Piscataway, NJ, pp 577–585.

doi:10.1109/WSC.2004.1371364

Goldsman D (1983) Ranking and selection in simulation. In: Roberts S, Banks J, Schmeiser B

(eds) Proceedings of the 1983 winter simulation conference, pp 387–393. http://informs-sim.

org/wsc83papers/1983_0017.pdf

Goldsman D, Nelson BL (1998) Statistical screening, selection, and multiple comparison proce-

dures in computer simulation. In: Medieros DJ, Watson EF, Carson JS, Manivannan MS (eds)

Proceedings of the 1998 winter simulation conference. Institute of Electrical and Electronics

Engineers, Piscataway, NJ, pp 159–166

Gupta, S.S., Panchapakesan, S.: Multiple decision procedures: theory and methodology of selecting

and ranking populations. SIAM (2002)

Heidelberger P (1988) Discrete event simulations and parallel processing: statistical properties.

Siam J Stat Comput 9(6):1114–1132

Henderson SG, Pasupathy R (2016) Simulation optimization library. http://www.simopt.org

Hong LJ, Nelson BL (2006) Discrete optimization via simulation using COMPASS. Oper Res

54(1):115–129

Hsu JC (1984) Constrained simultaneous confidence intervals for multiple comparisons with the

best. Ann Stat 12:1136–1144

Hunter SR, Applegate EA, Arora V, Chong B, Cooper K, Rincón-Guevara O, Vivas-Valencia C

(2017) An introduction to multi-objective simulation optimization. Optim Online. http://www.

optimization-online.org/DB_HTML/2017/03/5903.html

Hunter SR, McClosky B (2016) Maximizing quantitative traits in the mating design problem

via simulation-based Pareto estimation. IIE Trans 48(6):565–578. doi:10.1080/0740817X.2015.

1096430

Jamieson K, Nowak R (2014) Best-arm identification algorithms for multi-armed bandits in the

fixed confidence setting. In: 2014 48th Annual conference on information sciences and systems

(CISS). IEEE, pp 1–6

Kim SH, Nelson BL (2001) A fully sequential procedure for indifference-zone selection in simula-

tion. ACM Trans Model Comput Simul 11(3):251–273

Kim S, Nelson BL (2006a) On the asymptotic validity of fully sequential selection procedures for

steady-state simulation. Oper Res 54(3):475–488. doi:10.1287/opre.1060.0281

Kim SH, Nelson BL (2006b) Selecting the best system. In: Henderson SG, Nelson BL (eds) Simu-

lation, handbooks in operations research and management science, vol 13. Elsevier, Amsterdam,

pp 501–534

http://www.optimization-online.org/DB_HTML/2016/06/5469.html
http://dx.doi.org/10.1109/WSC.2015.7408520
http://dx.doi.org/10.1109/WSC.2015.7408520
http://dx.doi.org/10.1007/978-1-4939-1384-8
http://dx.doi.org/10.1007/978-1-4939-1384-8
http://dx.doi.org/10.1109/WSC.2004.1371364
http://informs-sim.org/wsc83papers/1983_0017.pdf
http://informs-sim.org/wsc83papers/1983_0017.pdf
http://www.simopt.org
http://www.optimization-online.org/DB_HTML/2017/03/5903.html
http://www.optimization-online.org/DB_HTML/2017/03/5903.html
http://dx.doi.org/10.1080/0740817X.2015.1096430
http://dx.doi.org/10.1080/0740817X.2015.1096430
http://dx.doi.org/10.1287/opre.1060.0281

274 S.R. Hunter and B.L. Nelson

Lee LH, Chew EP, Teng S, Goldsman D (2010) Finding the non-dominated Pareto set for multi-

objective simulation models. IIE Trans 42:656–674. doi:10.1080/07408171003705367

Li H (2017) Parallel OCBA. https://gitlab.com/o2des_dev/ParallelOCBA

Luo J, Hong LJ (2011) Large-scale ranking and selection using cloud computing. In: Jain S, Creasey

RR, Himmelspach J, White KP, Fu M (eds) Proceedings of the 2011 winter simulation confer-

ence. IEEE, Institute of Electrical and Electronics Engineers, Inc, Piscataway, NJ, pp 4051–4061.

doi:10.1109/WSC.2011.6148094

Luo J, Hong LJ, Nelson BL, Wu Y (2015) Fully sequential procedures for large-scale ranking-

and-selection problems in parallel computing environments. Oper Res 63(5):1177–1194.

doi:10.1287/opre.2015.1413

Luo YC, Chen CHYücesan E, Lee I (2000) Distributed web-based simulation optimization. In:

Joines JA, Barton RR, Kang K, Fishwick PA (eds) Proceedings of the 2000 winter simulation

conference. Institute of Electrical and Electronics Engineers, Inc, Piscataway, NJ, pp 1785–1793.

doi:10.1109/WSC.2000.899170

Negoescu DM, Frazier PI, Powell WB (2011) The knowledge-gradient algorithm for sequencing

experiments in drug discovery. INFORMS J Comput 23(3):346–363

Nelson B (2013) Foundations and methods of stochastic simulation: a first course. Springer (2013)

Nelson BL, Swann J, Goldsman D, Song W (2001) Simple procedures for selecting the best simu-

lated system when the number of alternatives is large. Oper Res 49(6):950–963

Ni EC (2015a) MapRedRnS: parallel ranking and selection using mapreduce. https://bitbucket.org/

ericni/mapredrns

Ni EC (2015b) mpiRnS: Parallel ranking and selection using MPI (2015). https://bitbucket.org/

ericni/mpirns

Ni EC (2015c) SparkRnS: parallel ranking and selection using spark. https://bitbucket.org/ericni/

sparkrns

Ni EC, Ciocan DF, Henderson SG, Hunter SR (2015) Comparing message passing interface and

mapreduce for large-scale parallel ranking and selection. In: Yilmaz L, Chan WKV, Moon I,

Roeder TMK, Macal C, Rossetti MD (eds) Proceedings of the 2015 winter simulation confer-

ence. IEEE, Institute of Electrical and Electronics Engineers, Inc, Piscataway, NJ, pp 3858–3867.

doi:10.1109/WSC.2015.7408542

Ni EC, Ciocan DF, Henderson SG, Hunter SR (2017) Efficient ranking and selection in parallel

computing environments. Oper Res 65(3):821–836. doi:10.1287/opre.2016.1577

Ni EC, Henderson SG, Hunter SR (2014) A comparison of two parallel ranking and selection pro-

cedures. In: Tolk A, Diallo SD, Ryzhov IO, Yilmaz L, Buckley S, Miller JA (eds) Proceedings of

the 2014 winter simulation conference. IEEE, Institute of Electrical and Electronics Engineers,

Inc, Piscataway, NJ, pp 3761–3772. doi:10.1109/WSC.2014.7020204

Ni EC, Hunter SR, Henderson SG (2013) Ranking and selection in a high performance comput-

ing environment. In: Pasupathy R, Kim S, Tolk A, Hill R, Kuhl ME (eds) Proceedings of the

2013 winter simulation conference. IEEE, Institute of Electrical and Electronics Engineers, Inc,

Piscataway, NJ, 833–845. doi:10.1109/WSC.2013.6721475

Pasupathy R, Ghosh S (2013) Simulation optimization: a concise overview and implementation

guide. In: Topaloglu H (ed) TutORials in operations research, chap 7. INFORMS, Catonsville,

MD, pp 122–150. doi:10.1287/educ.2013.0118

Pasupathy R, Hunter SR, Pujowidianto NA, Lee LH, Chen C (2014) Stochastically constrained

ranking and selection via SCORE. ACM Trans Model Comput Simul 25(1):1–26. doi:10.1145/

2630066

Paulson E (1964) A sequential procedure for selecting the population with the largest mean from k

normal populations. Ann Math Stat 35(1):174–180

Peng Y, Chen C, Fu MC, Hu J (2016) Dynamic sampling allocation and design selection. INFORMS

J Comput 28(2):195–208. doi:10.1287/ijoc.2015.0673

Pinedo M (2015) Scheduling. Springer

Rinott Y (1978) On two-stage selection procedures and related probability-inequalities. Commun

Stat Theory Methods A7:799–877

http://dx.doi.org/10.1080/07408171003705367
https://gitlab.com/o2des_dev/ParallelOCBA
http://dx.doi.org/10.1109/WSC.2011.6148094
http://dx.doi.org/10.1287/opre.2015.1413
http://dx.doi.org/10.1109/WSC.2000.899170
https://bitbucket.org/ericni/mapredrns
https://bitbucket.org/ericni/mapredrns
https://bitbucket.org/ericni/mpirns
https://bitbucket.org/ericni/mpirns
https://bitbucket.org/ericni/sparkrns
https://bitbucket.org/ericni/sparkrns
http://dx.doi.org/10.1109/WSC.2015.7408542
http://dx.doi.org/10.1287/opre.2016.1577
http://dx.doi.org/10.1109/WSC.2014.7020204
http://dx.doi.org/10.1109/WSC.2013.6721475
http://dx.doi.org/10.1287/educ.2013.0118
http://dx.doi.org/10.1145/2630066
http://dx.doi.org/10.1145/2630066
http://dx.doi.org/10.1287/ijoc.2015.0673

12 Parallel Ranking and Selection 275

Ryzhov IO (2016) On the convergence rates of expected improvement methods. Oper Res

64(6):1515–1528. doi:10.1287/opre.2016.1494

Schmeiser B (1982) Batch size effects in the analysis of simulation output. Oper Res 30(3):556–568

Singham DI, Szechtman R (2016) Multiple comparisons with a standard using false discovery rates.

In: Proceedings of the 2016 winter simulation conference. Institute of Electrical and Electronic

Engineers Inc, Piscataway, NJ, pp 501–511

Turnquist MA, Sussman JM (1976) A Bayesian approach to the design of simulation experiments.

In: Highland HJ, Schriber TJ, Sargent RG (eds) Proceedings of the 1976 bicentennial winter

simulation conference, pp 59–64. http://informs-sim.org/wsc76papers/1976_0011.pdf

Wang H, Pasupathy R, Schmeiser BW (2013) Integer-ordered simulation optimization using R-

SPLINE: retrospective search using piecewise-linear interpolation and neighborhood enumera-

tion. ACM Trans Model Comput Simul 23(3): doi:10.1145/2499913.2499916

Xu J, Nelson BL, Hong LJ (2010) Industrial Strength COMPASS: A comprehensive algorithm and

software for optimization via simulation. ACM Trans Model Comput Simul 20:1–29

Yoo T, Cho H, Yücesan E (2009) Web services-based parallel replicated discrete event simulation

for large-scale simulation optimization. Simulation 85(7):461–475

http://dx.doi.org/10.1287/opre.2016.1494
http://informs-sim.org/wsc76papers/1976_0011.pdf
http://dx.doi.org/10.1145/2499913.2499916

	12 Parallel Ranking and Selection
	12.1 Introduction
	12.1.1 Problem Setting and Notational Conventions
	12.1.2 Scope

	12.2 A Stylized Computational Model for R&S
	12.3 Mathematical Formulations of Existing R&S Procedures
	12.3.1 Mathematical Formulation of Fixed-Precision Guarantees
	12.3.2 Mathematical Formulation of Fixed-Budget Guarantees
	12.3.3 Guarantees Require Standard Assumptions

	12.4 Computational Formulations of Existing Serial R&S Procedures
	12.4.1 Computational Formulation of Fixed-Precision Procedures
	12.4.2 Computational Formulation of Fixed-Budget Procedures

	12.5 Parallelization: Efficiency and Validity
	12.6 Existing Parallel Ranking and Selection Procedures
	12.6.1 Parallel Fixed-Precision Procedures
	12.6.2 Parallel Fixed-Budget Procedures
	12.6.3 Available Implementations of Parallel R&S Procedures

	12.7 A Future Research Agenda
	12.8 WSC 2017
	References

