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Foreword

The Winter Simulation Conference is a special conference. It is not necessarily
special because of the content, which is world-class, or the venues, which are
outstanding. The Winter Simulation Conference is a special conference because it is
undertaken every year by a group of volunteers who love to put on the world’s
leading simulation conference. In my career, I have worked for several organiza-
tions, both public and private, and I have been intimately involved in volunteer
organizations in my communities and nationally, and I can say with utmost con-
fidence that WSC is the best-run, best-organized, highest-quality labor of love that
I am associated with. In my various conference roles since 1985, including
Proceedings Editor, Program Chair and now the President of the Winter Simulation
Conference Foundation, I have seen that commitment from hundreds of people who
liberally give their time and professional expertise to make this conference a suc-
cess. Everyone in the simulation community is indebted to this outstanding group of
people.

This publication celebrates the 50th anniversary of the Winter Simulation
Conference. The second Winter Simulation Conference, held in New York City in
1968, was the first to have a Proceedings. It was a purely academic conference with
no tracks and 22 sessions. This year, the conference will have 26 tracks, including a
vendor track and case studies track. The conference will also continue its strong
Ph.D. Colloquium and practical workshops. In addition, there is the Modeling and
Analysis of Semiconductor Manufacturing (MASM) Conference, multiple keynotes
and the Titans of Simulation talks. WSC is now a strong and vibrant conference that
is both theoretical and applied while serving a wide variety of interests.

This book looks back on 50 years of WSC and tracks the key simulation topics
that the conference has covered. Each of the authors is part of the group that
I mentioned above—people who love the conference and liberally give their time to
make it a success. In addition, each person is a great researcher and an expert in
their field. The topics, like the conference, are a mix of theory and practice. The
authors look back at history and then imagine where simulation will take us. At the
same time, we are looking forward, by featuring some of our “rising stars,”
presenting their research.
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Where will the Winter Simulation Conference be in the future? That is hard to
predict. In 2003, I was on a panel session titled, “The Future of The Winter
Simulation Conference.” As part of that panel, we were asked to predict where the
conference would be in 10 years. As with most predictions 10 years out, I missed
almost everything. But I did get one thing right—“I will meet my old(er) friends
there.” In 2013, I did meet my older friends there and I plan to do so for as long as
I am able.

I am confident of this as well. This year, there will be a 25-year-old that will
attend the conference for the first time. That person will have a passion for simu-
lation that will grow over the years. That person and other like-minded people will
join the group of committed volunteers of this conference and guarantee its quality
for another generation. That is the future of the Winter Simulation Conference.

Here’s to another 50 years!

Ricki G. Ingalls
President, Winter Simulation Conference Foundation

Diamond Head Associates, USA
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Preface

This book is a contribution to celebrating the 50th anniversary of the Winter
Simulation Conference. The editors are a group of volunteers who also serve
currently on the Board of Directors. The chapters are contributed by long-time
supporters and Titans of the simulation domain, augmented by rising stars who are
starting to shape the community with their research contributions. As such, the
chapters touch on where we are coming from, where we are, and where we will
hopefully be going.

The book is organized into 16 invited chapters providing an overview of history,
research, and applications. As such, it addresses scholars, students, and practitioners
of the field who are interested not only in the state of the art, but also in the way this
state was reached. These reflections are purposefully written from the personal
viewpoints of experts who often were the driving power behind the efforts
described in the chapter. The material can therefore be used for background
research assignments in graduate and postgraduate education or simply to learn
something more about such topics.

The topics addressed in this book are modeling activities, calibration, validation,
and input model risk. The evolution of simulation modeling will be visited, and a
history about Time Warp is presented. A tutorial on design and analysis of simu-
lation experiments as well as simulation contributions to the Big Data challenge are
covered. Research on Bayesian belief models, optimization under uncertainty, and
parallel ranking and selection shows the close relation of operations research and
simulation. From the application domains, overviews are presented on defense and
security, social and behavioral simulation, as well as semiconductor manufacturing.
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Finally, profiling research shows the influence of research presented at the con-
ferences justifying the title of this book: Advances in Modeling and Simulation—
Seminal Research from 50 Years of Winter Simulation Conferences.

Hampton, USA Andreas Tolk
Tempe, USA John Fowler
Gaithersburg, USA Guodong Shao
Fontainebleau, France Enver Yücesan
June 2017

x Preface
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Chapter 1
A Brief Introduction to the Winter
Simulation Conference

Andreas Tolk, John Fowler, Guodong Shao and Enver Yücesan

Abstract The Winter Simulation Conference celebrates its 50th anniversary in
December 2017. Over these years, it became one of the leading simulation con-
ferences worldwide, with more than 600 annual participants and thousands of
publications shaping the international simulation research. This chapter describes
the history of the conference, presents some high-level statistics on attendance and
publications, describes the current tracks of the conference, and presents the con-
tributions of the various chapters of this book.

1.1 Introduction

In December 2017, the Winter Simulation Conference (WSC) celebrates its 50th
anniversary. Among the special events planned to commemorate this milestone will
be a track highlighting the history and fundamental contributions these conferences
have made over the last decades to help in establishing the discipline of modeling
and simulation. The interested reader is referred to the upcoming proceedings that
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Methods and Applications, DOI 10.1007/978-3-319-64182-9_1
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promise to provide a significant contribution to capturing the history of WSC and
its topics and accomplishments for the society.

This book is another contribution to this celebration, not only providing with its
chapters an additional view at the seminal contributions of our titans, but also
featuring our rising stars: honoring our past, but at the same time preparing for a
great future. We invited a wide selection of authors who are well known in the
WSC community as well as in the broader Modeling and Simulation (M&S)
community. We also invited authors who have already shown that they will
influence this community with their contributions, as the early work has already
influenced other contributions to our conference.

1.2 The History of the Winter Simulation Conference

The early years of simulation are described by Goldsman et al. (2009, 2010),
showing how several ideas culminated in the late sixties, leading to an expansion
period of computer simulation related research within this timeframe. The Com-
puter Simulation Archive at North Carolina State University (http://d.lib.ncsu.edu/
computer-simulation/) chronicles many of the simulation pioneers and provides
access to their collection of papers, leading to the blossoming of this new discipline.

The WSC started in this period of expanding research as the Conference on the
Applications of Simulation Using GPSS1 in 1967. After the first four years, the
conference was officially referred to as the Winter Simulation Conference, the name
under which it celebrates its 50th anniversary.

James R. Wilson is one of the leading veterans and titans of WSC and sum-
marized the history in an article for OR/MS Today, the magazine for members of the
Institute for Operations Research and the Management Sciences (Wilson 1996). His
overview has been reused in front matter material summaries for WSC proceedings
ever since; augmented by complementary information from Reitman (2008), it also
helped in writing this chapter.

In the late 1940s, seminars started to be organized addressing the possibility of
computer simulation. The General Purpose Simulation System, a simulation pro-
gramming language used to build computer models for discrete-event simulations,
started to create a common foundation for users of simulation. In the spring of
1967, the interest in a common conference at the national level was perceived to be
strong enough to bring sponsors from the Association for Computing Machinery
(ACM), the Institute of Electrical and Electronics Engineers (IEEE), and a scientific
users’ group of IBM, called SHARE, together to organize the first conference.
Motivated by the technical and financial success, a second conference was orga-
nized the following year. The sponsorship was broadened to include the Simulation
Councils, Inc. (SCi) that later became the Society for Computer Simulation (SCS)

1General Purpose Simulation System.
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and today is the Society for Modeling and Simulation. With the new sponsorship,
the focus was also broadened as SCi did not focus on GPSS, but were at this time
more interested in continuous systems simulation, which was the main focus of the
Summer Simulation Conferences. The new scope attracted new attendees and
increased the number of papers, leading to the first proceedings. The third con-
ference included the American Institute of Industrial Engineers, the predecessor of
today’s Institute of Industrial and Systems Engineers (IISE), and The Institute of
Management Sciences/College of Simulation and Gaming (TIMS/CSG), the pre-
decessor of today’s Institute for Operations Research and the Management Sciences
(INFORMS) as new sponsors. In 1971, the name was officially changed to Winter
Simulation Conference. Although no records survived from the 1971 conference, it
is believed to have been the largest conference in the history of WSC. Due to
growing administrative and organizational challenges resulting from the rapid
growth, the conference planned for 1972 slipped into 1973. The Operations
Research Society of America (ORSA) became a sponsor of the conference in 1974.
However, by that time, the attendance numbers had already decreased since the ad
hoc nature of the early days could not sustain a conference of this new magnitude.
By 1975, the administrative structure imploded, leading to the necessity to cancel
the 1975 WSC completely.

This could have easily been the end of the WSC, but a group of highly devoted
simulation experts took the initiative to set the WSC back on solid tracks. Robert G.
Sargent, Paul F. Roth, Harold J. Highland, and Thomas J. Schriber revived the idea
of a national simulation conference by establishing a Board of Directors (BoD) and
a set of bylaws to overcome the administrative shortcomings. They also brought the
National Bureau of Standards (NBS), the predecessor of today’s National Institute
of Standards and Technology (NIST), into the circle of sponsors. With the BoD and
rigorous guidelines ensuring academic excellence in place, the WSC started to grow
again. Industry started to become interested in supporting an exhibition of emerging
simulation tools in 1984. The American Statistical Association joined as a sponsor
in 1985, bringing a new group of simulation methods and simulation software users
to the conference. The academic rigor was strengthened by formalizing the
peer-review process, requiring written referee reports for every contributed paper in
1990. With the transformation to a totally web-based system for submission,
review, and final delivery of all articles in 1999, these processes were further
enhanced. By constantly and consistently updating their bylaws, updating the scope
of the conference, and utilizing latest technical developments, the WSC became a
stable factor in the conference landscape not only for the M&S community, but for
leading scientists in general.

Table 1.1 shows the location, leadership, and paid attendance for the WSC from
1967 to 2016, as published on the official website for the annual conference (http://
www.wintersim.org). For the periods 1967–1968 and 1974–2016, the attendance
figures shown in the table represent total paid attendance including students, but
excluding exhibitor-only registrants. For the period 1969–1973, no surviving
records of WSC attendance are held by any of the sponsoring societies. Conse-
quently, attendance estimates were obtained by discussions with the Program

1 A Brief Introduction to the Winter Simulation Conference 3
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Chairs and General Chairs for this period. Although the figures for the years 1969–
1973 are subject to some uncertainty, there is little doubt that in the period 1970–
1971, attendance at the WSC was substantially higher than in all other years.

Table 1.1 uses the following abbreviations to denote the leadership roles:
General Chair (GC), Program Chair (PC), Associate Program Chair (APC), Pro-
ceedings Editor (PE), Proceedings Co-Editor (PCE), and Associate Proceedings
Editor (APE).

The attendance is plotted in Fig. 1.1.
Today, WSC is sponsored by a broad variety of professional organizations and

societies, namely

• American Statistical Association (ASA)
• Arbeitsgemeinschaft Simulation (ASIM)
• Association for Computing Machinery: Special Interest Group on Simulation

(ACM/SIGSIM)
• Institute for Operations Research and the Management Sciences: Simulation

Society (INFORMS-SIM)
• Institute of Electrical and Electronics Engineers/Systems, Man, and Cybernetics

Society (IEEE/SMCS)
• Institute of Industrial and Systems Engineers (IISE)
• National Institute of Standards and Technology (NIST)
• The Society for Modeling and Simulation International (SCS)

ACM/SIGSIM, IISE, INFORMS-SIM, and SCS, which are financial sponsors
sharing equal fiduciary responsibility, also send two representatives each to form
the voting members of the Board of Directors. The other organizations are technical
co-sponsors of the conference. Each technical co-sponsor has a single representa-
tive on the Board of Directors; these representatives vote on all issues before the
Board except those with financial implications. However, they participate in tiger
teams to address new challenges, provide technical and organizational advice, and
are the liaison to their societies and organizations.

WSC Proceedings are peer-reviewed contributions to the body of knowledge of
M&S and archived by the digital libraries of ACM as well as IEEE. The Pro-
ceedings have also been indexed in the Thomas Reuters Institute for Scientific
Information (ISI) Proceedings since 2000. All proceedings since 1968 have been
digitized and can be accessed as PDF files via the program archives hosted by
INFORMS and the digital libraries of ACM and IEEE.2

Academic rigor in the peer-review process was understood to be as important as
the professional preparation of the proceedings and has been following a formalized
process since 1990. Table 1.2 summarizes the numbers of submitted and accepted
papers and the resulting acceptance rate since this information was tracked in 1994.

2The first conference did not produce proceedings, but Julian Reitman edited a special issue of the
IEEE Transactions on Systems Science and Cybernetics (Volume SSC-4, Number 4, November
1968) that contained some of the papers presented at the 1967 conference.
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Table 1.1 Location, leadership, and paid attendance of the winter simulation conferences

Conference, date, and location Leadership Attendance

Conference on the Applications of Simulation Using
GPSS
13–14 November 1967
Hilton Hotel, New York, NY

Harold G. Hixson (GC)
Julian Reitman (PC)

401

Second Conference on the Applications of Simulation
2–4 December 1968
Hotel Roosevelt, New York, NY

Julian Reitman (GC)
Arnold Ockene (PC)

856

Third Conference on the Applications of Simulation
8–10 December 1969
International Hotel, Los Angeles, CA

Arnold Ockene (GC)
Philip J. Kiviat (PC)

400

Fourth Conference on the Applications of Simulation
9–11 December 1970
Waldorf-Astoria Hotel, New York, NY

Philip J. Kiviat (GC)
Michael Araten (PC)

1100

The 1971 Winter Simulation Conference
8–10 December 1971
Waldorf-Astoria Hotel, New York, NY

Michael Araten (GC)
Joseph Sussman (PC)

1200

The 1973 Winter Simulation Conference
17–19 January 1973
St. Francis Hotel, San Francisco, CA

Joseph Sussman (GC)
Austin C. Hoggatt (PC)

600

The 1974 Winter Simulation Conference
14–16 January 1974
Washington Hilton Hotel, Washington, DC

Michael F. Morris (GC)
Harold Steinberg (PC)
Harold J. Highland (PE)

463

The 1976 Bicentennial Winter Simulation Conference
6–8 December 1976
National Bureau of Standards, Gaithersburg, MD

Harold J. Highland (GC)
Thomas J. Schriber (PC)
Robert G. Sargent (APC)

306

The 1977 Winter Simulation Conference
5–7 December 1977
National Bureau of Standards, Gaithersburg, MD

Robert G. Sargent (GC)
J. William Schmidt (PC)
Harold J. Highland (PE)

465

The 1978 Winter Simulation Conference
4-6 December 1978
The Deauville Hotel, Miami Beach, FL

Larry G. Hull (GC)
Norman R. Nielsen (PC)
Harold J. Highland (PE)

388

The 1979 Winter Simulation Conference
3–5 December 1979
Holiday Inn Embarcadero, San Diego, CA

Mitchell G. Spiegel (GC)
Robert Shannon (PC)
Harold J. Highland (PE)

375

The 1980 Winter Simulation Conference
3–5 December 1980
Orlando Marriott, Orlando, FL

Paul Roth (GC)
Tuncer I. Ören (PC, PE)
Charles M. Shub (APC)

205

The 1981 Winter Simulation Conference
9–11 December 1981
Peachtree Plaza Hotel, Atlanta, GA

Claude M. Delfosse (GC)
Charles M. Shub (PC)
Tuncer I. Ören (PE)

267

The 1982 Winter Simulation Conference
6–8 December 1982
Holiday Inn Embarcadero, San Diego, CA

Yen W. Chao (GC)
Orlando Madrigal (PC)
Harold J. Highland (PE)

274

The 1983 Winter Simulation Conference
12–14 December 1983
Crystal Gateway Marriott Hotel, Arlington, VA

Jerry Banks (GC)
Bruce W. Schmeiser (PC)
Stephen D. Roberts (PE)

416

The 1984 Winter Simulation Conference
28–30 November 1984
Sheraton Dallas Hotel, Dallas, TX

Udo W. Pooch (GC)
C. Dennis Pegden (PC)
Sallie Sheppard (PE)

350

The 1985 Winter Simulation Conference
11–13 December 1985

Gerard C. Blais (GC)
Susan L. Solomon (PC)

369

(continued)
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Table 1.1 (continued)

Conference, date, and location Leadership Attendance

San Francisco Hilton and Tower, San Francisco, CA Donald T. Gantz (PE)

The 1986 Winter Simulation Conference
8–10 December 1986
Radisson Mark Plaza Hotel, Washington, DC

James O. Henriksen (GC)
Stephen D. Roberts (PC)
James R. Wilson (PE)

531

The 1987 Winter Simulation Conference
14–16 December 1987
The Ritz Carlton, Buckhead, Atlanta, GA

Hank Grant (GC)
W. David Kelton (PC)
Arne Thesen (PE)

475

The 1988 Winter Simulation Conference
12–14 December 1988
San Diego Marriott, San Diego, CA

Peter L. Haigh (GC)
John C. Comfort (PC)
Michael A. Abrams (PE)

535

The 1989 Winter Simulation Conference
4–6 December 1989
Capital Hilton Hotel, Washington, DC

Kenneth J. Musselman (GC)
Philip Heidelberger (PC)
Edward A. MacNair (PE)

619

The 1990 Winter Simulation Conference
9–12 December 1990
The Fairmont Hotel, New Orleans, LA

Randall
P. Sadowski (GC)
Richard E. Nance (PC)
Osman Balci (PE)

517

The 1991 Winter Simulation Conference
8–11 December 1991
The Arizona Biltmore, Phoenix, AZ

W. David Kelton (GC)
Gordon M. Clark (PC)
Barry L. Nelson (PE)

540

The 1992 Winter Simulation Conference
13–16 December 1992
Crystal Gateway Marriott Hotel, Arlington, VA

Robert C. Crain (GC)
James R. Wilson (PC)
James J. Swain (PE)
David Goldsman (APE)

734

The 1993 Winter Simulation Conference
12–15 December 1993
The Biltmore Hotel, Los Angeles, CA

Edward C. Russell (GC)
William E. Biles (PC)
Gerald W. Evans (PE)
Mansooreh Mollaghasemi (APE)

572

The 1994 Winter Simulation Conference
11–14 December 1994
Walt Disney World Swan Hotel, Orlando, FL

Deborah A. Sadowski (GC)
Andrew F. Seila (PC)
Jeffrey D. Tew (PCE)
S. Manivannan (PCE)

667

The 1995 Winter Simulation Conference
3–6 December 1995
Hyatt Regency Crystal City, Arlington, VA

William R. Lilegdon (GC)
David Goldsman (PC)
Christos Alexopoulos (PCE)
Keebom Kang (PCE)

652

The 1996 Winter Simulation Conference
8–11 December 1996
Hotel Del Coronado, Coronado, CA

Daniel T. Brunner (GC)
James J. Swain (PC)
John M. Charnes (PCE)
Douglas J. Morrice (PCE)

649

The 1997 Winter Simulation Conference
7–10 December 1997
Renaissance Waverly Hotel, Atlanta, GA

David H. Withers (GC)
Barry L. Nelson (PC)
Sigrún Andradóttir (PE)
Kevin J. Healy (APE)

634

The 1998 Winter Simulation Conference
13–16 December 1998
Grand Hyatt Washington, Washington DC

John S. Carson (GC)
Mani S. Manivannan (PC)
D. J. Medeiros (PCE)
Edward F. Watson (PCE)

778

(continued)
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Table 1.1 (continued)

Conference, date, and location Leadership Attendance

The 1999 Winter Simulation Conference
5–8 December 1999
Squaw Peak, Phoenix, AZ

David T. Sturrock (GC)
Gerald W. Evans (PC)
P. A. Farrington (PCE)
H. B. Nemhard (PCE)

671

The 2000 Winter Simulation Conference
10–13 December 2000
Wyndham Palace Resort & Spa, Orlando, FL

Paul A. Fishwick (GC)
Keebom Kang (PC)
Jeffrey A. Joines (PCE)
Russell R. Barton (PCE)

710

The 2001 Winter Simulation Conference
9–12 December 2001
Crystal Gateway Marriott, Arlington, VA

Matt Rohrer(GC)
Deb Medeiros (PC)
Brett A. Peters (PCE)
Jeffrey Smith (PCE)

496

The 2002 Winter Simulation Conference
8–11 December 2002
Manchester Grand Hyatt San Diego, San
Diego, CA

Jane L. Snowdon (GC)
John M. Charnes (PC)
Enver Yücesan (PCE)
Chun-Hung Chen (PCE)

550

The 2003 Winter Simulation Conference
7–10 December 2003
The Fairmont New Orleans, New
Orleans, LA

David Ferrin (GC)
Douglas J. Morrice (PC)
Paul J. Sanchez (PCE)
Stephen Chick (PCE)

566

The 2004 Winter Simulation Conference
5–8 December 2004
Washington Hilton and Towers
Washington, D.C.

Jeff Smith (GC)
Brett Peters (PC)
Ricki G. Ingalls (PCE)
Manuel D. Rossetti (PCE)

687

The 2005 Winter Simulation Conference
4–7 December 2005
Hilton in the Walt Disney World Resort,
Orlando, FL

Frank “Brad” Armstrong (GC)
Jeffrey A. Joines (PC)
Natalie Steiger (PCE)
Michael E. Kuhl (PCE)

700

The 2006 Winter Simulation Conference
3–6 December 2006
Portola Plaza Hotel, Monterey, CA

David Nicol (GC)
Richard Fujimoto (PC)
Barry Lawson (PCE)
Jason Liu (PCE)
Felipe Perrone (PCE)
Fred Wieland (PCE)

658

The 2007 Winter Simulation Conference
9–12 December 2007
J.W. Marriott Hotel, Washington, D.C.

Jeff Tew (GC)
Russell Barton (PC)
John Fowler (APC)
Shane Henderson (PCE)
Bahar Biller (PCE)
Ming-hua Hsieh (PCE)
John Shortle (PCE)

736

The 2008 Winter Simulation Conference
7–10 December 2008
Hotel Intercontinental Miami, Miami, FL

Tom Jefferson (GC)
John Fowler (PC)
Ricki Ingalls (APC)
Scott Mason (PCE)
Ray Hill (PCE)
Lars Moench (PCE)
Oliver Rose (PCE)

654

The 2009 Winter Simulation Conference
13–16 December 2009
Hilton Austin Hotel, Austin, TX

Ann Dunkin(GC)
Ricki Ingalls (PC)
Enver Yücesan (APC)
Manuel Rossetti(PCE)
Ray Hill(PCE)
Björn Johansson (APE)

598

(continued)
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Table 1.1 (continued)

Conference, date, and location Leadership Attendance

The 2010 Winter Simulation Conference
5–8 December 2010
Marriott Waterfront Hotel, Baltimore, MD

Joseph Hugan (GC)
Enver Yücesan (PC)
Michael Fu (APC)
Björn Johansson (PCE)
Sanjay Jain (PCE)
Jairo Montoya-Torres (PCE)

702

The 2011 Winter Simulation Conference
11–14 December 2011
Grand Arizona Resort Phoenix, AZ

Preston White(GC)
Michael Fu (PC)
Sanjay Jain (PCE)
Roy Creasey (PCE)
Jan Himmelspach (PCE)

709

The 2012 Winter Simulation Conference
9–12 December 2012
Intercontinental Hotel Berlin, Germany

Oliver Rose (GC)
Adelinde Uhrmacher (PC)
Markus Rabe (Local Chair)
Christoph Laroque (PCE)
Raghu Pasupathy (PCE)
Jan Himmelspach (PCE)

701

The 2013 Winter Simulation Conference
8–11 December 2013
J.W. Marriott Hotel, Washington, D. C.

Ray Hill (GC)
Michael Kuhl (PC)
Raghu Pasupathy (PCE)
Seong-He Kim (PCE)
Andreas Tolk (PCE)

742

The 2014 Winter Simulation Conference
7–10 December 2014
Savannah Intl. Trade & Convention Ctr

Stephen J. Buckley (GC)
John A. Miller (PC)
Andreas Tolk (PCE)
Levent Yilmaz (PCE)
Saikou Y. Diallo (PCE)
Ilya O. Ryzhov (PCE)

655

The 2015 Winter Simulation Conference
6–9 December 2015
Hyatt Regency Huntington Beach Resort and Spa,
Huntington Beach, CA

Charles M. Macal (GC)
Manuel D. Rossetti (PC)
Levent Yilmaz (PCE)
Il-Chul Moon (PCE)
Wai Kin (Victor) Chan (PCE)
Theresa Roeder (PCE)

657

The 2016 Winter Simulation Conference
11–14 December 2016
Crystal Gateway Marriott Hotel, Arlington, VA

Todd Huschka (GC)
Stephen Chick (PC)
Theresa Roeder (PCE)
Peter Frazier (PCE)
Robert Szechtman (PCE)
Enlu Zhou (PCE)

628

The 50th Anniversary Winter Simulation Conference
December 3–6
Red Rock Resort, Las Vegas, Nevada

Ernest H. Page (GC)
Gabriel Wainer (PC)
Victor Chan (PCE)
Andrea D’Ambrogio (PCE)
Gregory Zacharewicz (PCE)
Navonil Mustafee (PCE)
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Fig. 1.1 WSC attendance over the years

Table 1.2 Submitted and
accepted full papers (1994–
2016)

Year Submitted Accepted Rate (%)

WSC ’94 209 100 48
WSC ’95 183 122 67
WSC ’96 187 128 68
WSC ’97 191 121 63
WSC ’98 216 164 76
WSC ’99 206 139 67
WSC ’00 227 158 70
WSC ’01 155 111 72
WSC ’02 185 166 90
WSC ’03 189 128 68
WSC ’04 171 144 84
WSC ’05 316 209 66
WSC ’06 252 177 70
WSC ’07 244 152 62
WSC ’08 304 249 82
WSC ’09 256 137 54
WSC ’10 281 184 65
WSC ’11 270 203 75
WSC ’12 384 189 49
WSC ’14 320 205 64
WSC ’15 296 202 68
WSC ’16 254 174 69
Overall 5,296 3,562 67
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WSC is established today as a leading academic event with strong industrial
support and interest, and draws participants from all parts of the world. 2012 was
the first time that the WSC was held outside of the United States, when it was
hosted in Berlin, Germany. The success of this experiment encouraged the Board of
Directors to plan for future conferences outside of the United States again, in order
to reach and serve the members of the international M&S community better. The
next event outside the United States is planned for 2018, when the WSC will be
held in Gothenburg, Sweden.

1.3 Structure of Current WSC

WSC is held each year during the first or second week of December. The program
runs from Sunday to Wednesday. The principle components of the programs are
“tracks” which are organized by topical area and consist of some 90-min sessions.
Established tracks with respective interest span over the full 3 days of the con-
ference, filling all nine sessions (three on Monday, four on Tuesday, and two on
Wednesday), while new ideas and special interest tracks can be limited to two
sessions. The tracks provide the program chair with the structure and flexibility to
address topics of all research domains. The following is a description of a selection
of typical tracks featured at the current WSC.

• Two Tutorial Tracks are offered at the WSC, an introductory and advanced
tutorial track. The Introductory tutorials track is oriented toward professionals in
M&S interested in broadening or refreshing their knowledge of the field.
Tutorials cover all areas including mathematical and statistical foundations,
methods, application areas, and software tools. Advanced tutorials cover special
topics or deepening the understanding beyond the introductory level. Typical
advanced topics are domain specific applications, such as defense, healthcare,
security, or transportation, but also topics considering the details of operational
validation, dealing with uncertainty, or implementation details for simulation
paradigm software solutions.

• The Analysis Methodology track is intended to cover a variety of empirical,
computational, mathematical, and statistical techniques in the context of their
application to simulations. Papers covering the construction and calibration of
simulation inputs that either improve upon standard approaches or introduce
new methods are encouraged. Similarly, papers covering the analysis of simu-
lation output that aims to meaningfully interpret the information produced by
simulations and allows modelers to make useful inferences regarding the sim-
ulated system are also included. Finally, the papers that deal with the efficiency,
accuracy, and appropriateness of a simulation as a representative model of some
actual system are also covered by the Analysis Methodology track. The focus of
this track is to explore methods for obtaining better inputs, estimates or infer-
ences using practical or novel approaches.
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• The Modeling Methodology track is interested in methodological advances
with respect to the theory and practice of modeling and simulation. These may
include approaches to formal model development, data capture, model building,
verification, validation, experimentation, and optimization. New modeling and
simulation formalisms and extensions to current formalisms are welcome. Of
special interest are formalisms that are able to integrate models described in
different paradigms. Contributions to the advancement of the technology,
standards, and the software used to support modeling are also welcome as are
contributions featuring guiding or unifying frameworks, the development and
application of formal methods, and lessons learned.

• The Simulation Optimization track focuses on algorithms that can be coupled
with computer simulations to locate specific input parameter values for the
simulation that maximize or minimize a simulation performance measure of
interest. This track is interested in papers on both theoretical aspects of algo-
rithm development and applied aspects of simulation optimization pertaining to
computational performance and algorithm evaluation. New real-world applica-
tions of simulation optimization are also of interest with more desired areas
including manufacturing, healthcare, military and homeland security, critical
infrastructure systems, cybersecurity, network applications, communications,
financial engineering, and energy systems.

• The Agent-Based Simulation (ABS) track is a relatively new track that is
interested in theoretical, methodological, and applied research that involves
synergistic interaction between simulation and agent technologies. Contribu-
tions to the ABS track are expected to use agent-based models of complex
adaptive systems and self-organizing emergent phenomena with applications to
fields such as biomedical sciences, business, engineering, environment, indi-
vidual, group, organizational behavior, social systems, and intelligent trans-
portation systems.

• Hybrid Simulation methods enable stakeholders to analyze and evaluate
strategies for effective management of complex systems. It is therefore not
surprising that an increasing number of studies have used techniques such as
discrete-event simulation, Monte Carlo simulation, system dynamics, Markov
chains, and agent-based simulation to make better and more informed decisions.
However, such techniques have frequently been applied in isolation. The
complexity of systems and their multi-faceted relationships may mean that the
combined application of simulation methods will enable synergies across
techniques and will provide greater insights into problem solving. The track
focuses on combining techniques (e.g., discrete and continuous) and research
demonstrating the need for hybrid simulation.

• The Social and Behavioral Simulation track features recent, principled work in
the domain of computational social science using simulation methods. Com-
puter simulation is increasingly being adopted as a technique for achieving
results in the social sciences. Formalized models enable a generative approach to
science that can identify what kinds of micro-level interactions are sufficient to
produce the known macro-level patterns observed in real societies. Simulation
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also allows social science researchers to explore out-of-equilibrium system
behavior that is difficult to achieve with traditional analytical approaches.

• The Healthcare Applications track addresses an important area in which
simulation can provide critical decision support for operational and strategic
planning and decision-making that individual providers (doctors/nurses, clinics,
urgent care centers, hospitals) face, as well as for policy issues that must be
addressed by administering systems (e.g., hospitals, insurance companies, and
governments). Traditionally, this track has been broad in focus, incorporating
Discrete Event Simulation, System Dynamics, Agent-Based Simulation, and/or
Monte Carlo simulations, with a variety of applications. A common thread is the
use of simulation tools to provide insight into the decisions for improved
healthcare outcomes. New modeling tools that address challenges with the
conceptualization or implementation of healthcare systems, and general
healthcare simulations are welcome.

• The Manufacturing Applications track is interested in research using simu-
lation in industrial applications found in the automotive, aircraft and ship-
building industries, among others. Simulation is a well-established model-based
methodology for analyzing dynamical inter-dependencies in manufacturing
systems. Manufacturing applications relate to the model-based analysis of (1) all
production and logistics processes within a company or along a supply chain,
and (2) all phases of a system life cycle, such as system acquisition, system
design and planning, implementation, start of operation, ramp-up, as well as the
operation itself. A contribution must describe the aims of investigation, the
investigated system, the simulation model, the experimental plan, the simulation
findings and any implementation results. Additionally, specific solutions for
challenges such as system complexity, data collection and preparation, or ver-
ification and validation may be included.

• The Logistics, Supply Chain Management, and Transportation track is well
established. The nature of highly dynamic and complex networks of supply,
intralogistics, and distribution leads to decreasing transparency and increasing
risk. Therefore, managers who are responsible for supply chain management and
logistics require effective tools to provide credible analysis in this dynamic
environment. In order to facilitate the discussion of the best applications of
simulation in this area, this track includes papers in logistics simulation, supply
chain simulation, and simulation for planning, analyzing, and improving
logistics from the intralogistics view to global supply chains.

• Modeling and Analysis of Semiconductor Manufacturing (MASM) provides
a forum for the exchange of ideas and industrial innovations between
researchers and practitioners from around the world involved in modeling and
analysis of complex high-tech manufacturing systems. The focus is the use of
the entire suite of operations research and statistical tools and techniques,
including but not limited to discrete-event simulation, aimed at improving
semiconductor manufacturing operations.

• The Military, Homeland Security, and Emergency Response Applications
track features papers that describe the application of simulation methods to
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problems in the military, homeland security, and emergency response. Appli-
cations may be in any area related to military such as battlefield simulation,
military logistics/transport, military manpower planning, unmanned systems,
etc. Homeland and emergency response applications are sought in the protection
of critical infrastructure, transportation security, bio-defense, and the phases of
the emergency response lifecycle, i.e., preparation/training, response, recovery,
and mitigation. Simulation applications that illustrate the relationships between
the military and homeland security and emergency response are especially
welcome.

• The Simulation Education track includes papers and panels from professionals
in all disciplines including but not limited to engineering, sciences, arts,
humanities, and social sciences to share experiments, lessons learned, projects,
methods, tools, and case studies on how to train and educate students, scientists,
and scholars at all levels and of all kinds to adopt and incorporate simulation in
their work.

• WSC does not only provide an exhibition area, it also features a Vendor track
that provides an opportunity for companies that market modeling and simulation
technology and services to present their innovations and successful applications.
The track is open only to companies that have paid for exhibit space at the
conference. For each reserved booth, vendors get a 45-min time slot in the track.
Vendors can choose to present a paper on conducting research with their
products. These papers are subject to the standard WSC submission timeline and
review process and appear in the archival proceedings. This track is comple-
mented by vendor workshops that are conducted on Sundays.

The number and topic of tracks fluctuate from year to year, and the selection of
topics featured in this chapter is neither complete nor exclusive.

In addition to these tracks, WSC features a PhD Colloquium that allows grad-
uating doctoral students to present their work in a condensed form to their peers as
well as experts in their chosen domain. A poster session allows the presentation of
work in progress and offers a timely venue to present and discuss new modeling and
simulation research through a forum encouraging graphical presentation, demon-
stration, and active engagement among WSC participants.

A specialty of the WSC since 2004 are the presentations of Titans of Simulation.
These titan talks feature internationally recognized experts who provided widely
disseminated technical contributions of highest impact. The following table shows
the titans of simulations who presented at the WSC (Table 1.3).

Over the last decades, the WSC has become the premier international forum for
disseminating recent advances in the field of system simulation, with the principal
focus being discrete-event simulation and combined discrete-continuous simulation.
In addition to a technical program of unsurpassed scope and high quality, WSC
provides the central meeting place for simulation researchers, practitioners, and
vendors working in all disciplines and in industrial, governmental, military, service,
and academic sectors.

1 A Brief Introduction to the Winter Simulation Conference 13



As pointed out by Nance (2013), the WSC is the result of a remarkable col-
laborative effort that has been led entirely by volunteers for over four decades and
that is based on a unique, longstanding cooperative arrangement among eight major
professional organizations.

1.4 Contributions of the Chapters

When the editors invited chapter authors for this book, they had three objectives: to
put the spotlight on a group of WSC veterans and titans who helped establishing the
conference and ensured the high-quality standard of contributions; to feature a
group of promising young contributors, as our “rising stars,” who already made
themselves a name within the WSC community, and who hopefully are going to
continue to fuel the spirit of WSC in the future; and to showcase the many con-
tributions that the WSC community has made to the broader modeling and simu-
lation community as a complement to the History Track to be held at the 50th
Winter Simulation Conference and to be archived in the WSC 2017 Proceedings.

Simulation is a powerful M&S approach as it enables the incorporation of
arbitrary levels of complexity for depicting, analyzing, and optimizing the dynamic
behavior of systems. Constructing valid and efficient models, however, is not a
trivial task. In Chap. 2, Schruben addresses this challenge and emphasizes that the
process of simulation modeling can be as valuable as the resulting computer model
itself. Xu, in Chap. 3, discusses model calibration, the iterative process of com-
paring the outputs of a simulation model with the observed quantities in the real

Table 1.3 Titans of simulation presentations

Year Titans of simulation

2004 Phil Kiviat and Devadas Pillai
2005 Jack P. C. Kleijnen and C. Denis Pegden
2006 James O. Henriksen
2007 Instead of titan talks, a series of landmark papers was presented by David Goldsman,

James O. Henriksen, Pierre L’Ecuyer, Barry L. Nelson, David H. Withers, and Nilay
Tanik Argon

2008 Bruce Schmeiser and Mike Pidd
2009 Paul Fishwick and Thomas J. Schriber
2010 Philip Heidelberger and Paul Kleindorfer
2011 Lee W. Schruben and James R. Wilson
2012 Gianfranco Balbo
2013 Richard E. Nance and Barry L. Nelson
2014 John A. Swanson and Richard M. Fujimoto
2015 Averill M. Law and Pierre L’Ecuyer
2016 Edward H. Kaplan and Susan M. Sanchez
2017 Robert G. Sargent and Bernard P. Zeigler
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system, and making changes to model input parameters accordingly to achieve an
acceptable level of agreement between the simulation model and the real system. In
Chap. 4, Szabo and Birdsey highlight the inherent challenges in validating emer-
gent behaviors in large-scale complex systems with nonlinear interactions, as an
invalid behavior can be indistinguishable from an emergent behavior that has never
been seen before. They propose a two-step process of identification and comparison
to alleviate this problem. Nelson and Song, in Chap. 5, discuss input model risk, the
impact of not knowing the true, correct distributions of the basic stochastic pro-
cesses that drive a computer simulation. The uncertainty in the input models that
propagates to the estimates of the output performance measures must be properly
quantified and adequately managed.

Valid models have to be implemented or instantiated in an efficient manner to
harvest the full benefit of a simulation study. Pegden, in Chap. 6, traces the evo-
lution of simulation languages, making this powerful approach accessible to a vast
number of users in an equally vast number of fields. In Chap. 7, Jefferson and
Fujimoto discuss the time warp algorithm to significantly increase execution speed.

The effectiveness of a simulation study can be enhanced further through rigorous
experimental design. In Chap. 8, Kleijnen reviews the design and analysis of
simulation experiments under various goals, including validation, prediction, sen-
sitivity analysis, optimization (possibly robust), and risk or uncertainty analysis
through metamodels. Sanchez and Sanchez further illustrate how data can be
“farmed” to support decision-making in Chap. 9.

Simulation is often used as a tool as well as an objective of operations research
methods. In Chap. 10, Ryzhov and Chen provide a comprehensive overview of
Bayesian belief models to support simulation-based decision-making. In Chap. 11,
Zhou and Wu highlight how input model uncertainty impacts simulation opti-
mization and propose approaches to quantify and control the impact of input model
risk on optimal decision-making. In Chap. 12, Hunter and Nelson discuss the
deployment of valid ranking and selection algorithms in distributed cloud com-
puting environments.

Modeling and simulation have always been applied in systems that are mission
critical where alternatives must be carefully evaluated to avoid costly mistakes. In
Chap. 13, Hill and Tolk review the history of military applications while Fowler
and Mönch, in Chap. 14, discuss the applications of simulation in semiconductor
manufacturing. An emerging application in social and behavioral modeling through
agent-based simulation is discussed by Macal and Kaligotla in Chap. 15.

Over its 50-year history, the Winter Simulation Conference has made significant
contributions to the broader M&S community. In Chap. 16, Mustafee and Fishwick
process 8499 records over a 36-year horizon (from 1981 to 2016) to provide a big
data perspective on the indisputable impact of the Conference.
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Chapter 2
Model Is a Verb

Lee Schruben

Abstract This chapter is an update of a 2011 Winter Simulation Conference Titans
speech with the same title. That talk fortunately was not recorded and never
appeared in print. However, it provoked numerous discussions ranging from
good-natured ridicule to thoughtful debate. The proposition of that talk and this
chapter is that the process of simulation modeling can be as valuable as the
resulting computer model itself. A focus on modeling, the verb, has practical
consequences on the way we conduct and what we expect from simulation projects.
This affects how we teach, practice, and conduct research on simulation.

2.1 Introduction

The word, model, can be a noun, two types of verbs, or even an adjective. As a
noun: a model is one system used to study another. Models are how we structure
our thinking and communicate our thoughts to others in every aspect of life (lan-
guage is our model for human experience). In simulation, a model is a computer
program created to study how we believe a system is or should be.

The verb, model, in simulation is transitive (meaning it has an object) usually
called the real-world system. Since the system being studied might not yet exist, it
is referred to here as the object system. Simulation is a particularly explicit form of
modeling since, ultimately, we must communicate with each other through a
computer. Learning to simulate is a valuable general thinking and communication
skill.

When I ask colleagues about their recent simulation projects, they invariably tell
me about a computer program. This usually involves showing me an animation or
plots of some experiments run with their code, or even their code itself. My
question was intended to be about why and how they modeled some system, and
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what they learned. In particular how they structured their concept of the system
before attempting to explain it to a computer. Simulation models are fascinating but
can be intellectually fatal distractions from a deeper understanding of the modeling
process.

People with a limited exposure to discrete event simulation might think of it as
simply another type of computer programming. By viewing simulation as a highly
disciplined, structured method of thinking broadens this perception about simula-
tion. Communicating different system designs, operations, objectives, and per-
spectives become the focus of simulation rather than creating and running computer
codes.

Background for this article is the philosophy in The Art of Simulation by Tocher
(1967) and aphorisms by two famous statisticians:

“All models are wrong, but some are useful.”

- G. E. P. Box: (Box 1979)

and

“The best time to design an experiment is after you’ve done it.”

-Sir R. A. Fisher: as quoted in (Box 1993)

These two quotes will be updated for computer simulation.

2.2 The Steps in a Simulation Study

The textbook requisite Steps in a Simulation Study change substantially when
describing the creation of a simulation model (noun), versus describing the activity
of modeling (verb). Two flowcharts on the steps in conducting a simulation study
from Banks et al. (2010) and Law (2014) are given in Figs. 2.1 and 2.2.

Both figures partition a simulation study into a sequence of three non-recurring
main steps:

1. Collecting data and coding a model;
2. Experimenting; and
3. Implementing the study results.

The model (noun) is at the center of both studies in Figs. 2.1 and 2.2. The
implication is that once the model is “finished”, it is not revisited.

Simulation modeling (the verb) as depicted in Fig. 2.3 is a continuous interac-
tion of learning and communication. Figure 2.3 evolved from decades of simulation
consulting projects in a wide range of areas including agriculture and food pro-
duction, animal and human healthcare, computer architecture and communications,
epidemic control, construction, pharmaceuticals, banking, recreation, entertainment,
evolutionary genetics (and unintentionally, religion), and hi-tech and low-tech
production.
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Fig. 2.1 Model (the noun) according to Banks et al. (2010)
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The process shown in Fig. 2.3 has remained relatively stable for years.
Figures 2.1 and 2.2 present dramatically different views of simulation. The key

difference is that the modeling process in Fig. 2.2 is iterative, comprised of two
main repeated loops: learning about the object system and communicating using a
simulation model. The model is a means to an end, but by no means an end.

In Fig. 2.3, a simulation project looks like it “Starts” but is never “Finished” (a
lucrative business model for simulation consulting!). Actually, the project finishes
whenever the test diamond nexus of the learning and communicating loops fails—

Fig. 2.2 Model (the noun)
according to Law (2014)
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the “false” branch from the test is not shown. The simulation project ends when
there is not enough time and money to meet the adjusted expectations.1

The upper learning cycle in Fig. 2.3 includes anticipating behavior, formulating
questions, characterizing the answers, identifying prejudices, and designing
experiments. Formulating questions requires recognizing a well-posed question. For
example, the simple question commonly answered by queueing and inventory
theory: “what if demand doubles?” is too vague for a real system.2 Demand dou-
bling might happen if there are twice as many customers; the same number of
customers each ordering twice as much; or in an infinite variety of other ways—all

Fig. 2.3 Model (the verb) within modeling processes

1An aside from the WSC talk: The fundamental elements in life are time, money, and energy.
Keeping these in balance is critical to happiness. If energy and time in youth are spent wisely, there
might be enough money for later in life. There is usually an exchange rate from time to money
(a salary). Money can sometimes be used to buy time; more precisely, someone else’s time to save
some of your own. There is never enough time so recognizing when you have enough money (for
the time being) is critical. Energy comes in two complementary flavors; physical and emotional.
Care for both or your time has no value.
2To the dismay of my colleagues in queueing theory, I have not found anyone who cared about
average performance or stable queues. Most people are interested in extreme performance during
periods of instability (like rush hours).
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having different impacts on performance and profit. Each of these “demands” also
might double half the time and halve the other half.

Formulating questions and characterizing answers iterate hand in hand in
practice. The step of presenting a mock-up of possible “answers” (charts, tables,
numbers, further questions) usually results in refining the questions. This can help
avoid miscommunication in presenting the analysis when looping back to adjust
expectations.

Identify prejudices early in a simulation project is important to success when the
stakeholders disagree on key issues. Which is usually the case. If the stakeholders
agreed on everything, they probably would not have commissioned a simulation
study to provide an “objective” analysis. Knowing early in a study who is advo-
cating what is immensely helpful in adjusting their expectations.

Contrary to the advice in Fig. 2.1, starting to design experiments before coding a
simulation ensures a model that can run them. (Integrating models with experiments
is discussed in Sect. 2.5.)

The lower communications cycle in Fig. 2.3, where a simulation model is
developed, is similar to Fig. 2.1 with two notable exceptions. Like all software, a
simulation’s validity should never be certified or guaranteed. The best that can be
achieved is the transient state of code with no known errors. Also, note that sim-
ulation input data is not necessarily collected. (More about data in the next section.)

2.3 Data

In Fig. 2.3, data is collected in the rare cases it might be necessary, and then only
after a sensitivity analysis to see what data might actually matter. Lack of data is a
common excuse for the failure of a simulation project. Skepticism about data’s
value in simulation is warranted. A simulation study is expensive and probably not
undertaken unless a major change is being considered. Furthermore, the change is
expected to have a significant impact on the system or its surroundings.

Object system data is available only if the system is operational. Most opera-
tional systems that are important enough to merit a simulation study have engineers
whose jobs are to improve the system. Typically, they know the system’s bottle-
necks and may have already fixed these before the simulation discovers them. The
object system is likely changing while its simulation model is being developed. The
basic assumption that system data is stationary is always suspect.

Furthermore, even if the object system’s data does not change during the study,
it cannot be assumed that it will not change once the simulation study’s results are
implemented. If it assumed that a system or its surroundings will not respond when
it is changed, why bother changing it?3 The basic fallacy is assuming an open

3There is currently a research emphasis on simulation input uncertainty. Tools are needed to assess
if the reactions to a change would make it a bad idea.
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system is closed. Of course, some of the object system data might be unaffected by
the change, but the system is likely to insensitive to such data.

In (Schruben 1991) five “Dastardlay D’s of Data” were identified—a mnemonic
in homage to the movie, Dodgeball—and constrain the length of this section. This
list has been expanded to 16 problems with simulation input data. Data is:

1. Dated: Data is often pronounced “daytah” because it is dated. Live system data
(as distinct from laboratory data) is probably outdated before it was recorded.

2. Distorted: Common examples are material move times that exclude (un)loading
times; demand data excluding potential backorders.

3. Dependent: People like short lines better than long ones.
4. Dynamic: Friday nights in an Emergency Room are not like Tuesday mornings.
5. Discrete: Search: “discretization bias”
6. Discouraging: Studies find that flying is safer than driving and driving is safer

than flying. Don’t go anywhere if you can’t walk!
7. Distracting: Search: “Prosecutor’s Fallacy” and “Simpson’s Paradox”
8. Damaged: Data might be collected (when?), recorded, (how?), aggregated,

transcribed, and translated: a lot of possibilities for error.
9. Deleted: Used for cross-validation, audited, trimmed, censored, etc.

10. Doctored: Well-intentioned people attempt to clean it up.
11. Deluged: Too little information in too many numbers.
12. Dogmatic: My alternative facts are different from yours (see Fox News).
13. Dangerous: Racial or religious profiling, NSA call data, DNA data banks,

epidemiology, personality testing, self-driving cars.
14. Disclosed: Voluntarily, by a self-selected population.
15. Distorted: Ratios, different scales, bounded by performance targets,
16. Deceptive: Any of the above D’s might be intentional.

2.4 Modeling

There are many simulation modeling methodologies that provide system structure.
These include Petri nets, event relationship graphs, process-interaction (transient
flow) diagrams, activity cycles, etc. If the simulation modeler only knows one
method (usually some commercial software), they cannot recognize when it might
not be appropriate. If they know two methods, they can only see differences (there
is no point of reference for “close”). Only when they know three methodologies can
they see similarities. One must know about three different things to see similarities.4

This is not only true about simulation modeling methodology but about life in
general (politics, religion, cultures, parenting, etc.).

4The author teaches at least three different modeling paradigms in his courses loosely following
(Choi and Kang 2013).
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Modeling done in relative isolation from the object system (by, say, an outside
consulting team) is loaded with pitfalls. A good way to reduce miscommunication
is by using an interactive protocol (search for “Schruben–Turing Test” in (Kleijnen
1995) or (Robinson 2014).) Here simulation data and object system data are
recorded in formats familiar to system subject matter experts (SME’s). The outputs
are shuffled and the SMEs are asked to identify which is real and which is simu-
lated. If this is done early in a study, the SMEs can easily detect the simulated data.
This is the point. Two miracles happen: 1. SMEs who were not previously inter-
ested in the simulation study are suddenly involved (they are in their element and
having fun!) 2. The modelers learn how the SMEs can tell the real from the
simulated data. If the difference is thought to be relevant, the model is enhanced.
Another round is played and the increasingly interested SMEs have more and more
difficulty identifying the real data from the simulated data. A simulation that
incorporates SME’s suggestions eventually becomes the SME’s model! The model
is then a bi-directional communication channel.5

For simulation (the verb) to be useful, it is not necessary that everyone agree the
model is valid. If any two people have exactly the same “right” model, they cannot
learn anything from each other (again true of life in general). Their models must be
different (“wrong”) to be of any value to each other. When simulation modeling is
viewed as learning and communicating as in Fig. 2.2, Box’s aphorism can be
extended: “All models are wrong, but some are useful, because they are wrong.”

2.5 Experimenting

Experimenting with simulations is fundamentally different from other types of
experiments. Simulation models have the powerful advantages of full observability
and control. Anything can be observed and changed while a simulation is running.
Neither observability nor control has yet to be exploited in commercial simulation
languages. Indeed, simulation experimentation has been hampered by the view that
models and experiments belong in different frames. Simulation languages have
made spectacular advances in animation, but at the expense of experimental flex-
ibility and analytical power.

Simulation textbooks typically describe building models, running experiments,
analyzing outputs, and implementing results as distinct activities in a simulation
project as in Fig. 2.1. However, simulation models can be tightly integrated with
simulation experiments for more efficient analysis (Schruben 2010) For example, an
array of simulation models running concurrently have demonstrated orders of
magnitude greater analytical efficiency for a range of simulation optimization

5There are statistical measures to assess when SMEs are guessing such as the entropy in a bi-lateral
communication channel (Schruben 1980). These tests are less important than the positive inter-
action that develops between SMEs and modelers during the protocol.
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algorithms. These include randomized search, directional search, pattern search,
and agent-based particle swarm optimization (Schruben 2013). In a simulation
experiment, anything can be observed and changed at any time while the models are
running (even changing time scales). A simulation model is not a “black box” at
least to its creator, and treating it like one is a huge handicap. Fisher’s quote can be
updated to include simulation experiments as “The best time to design an experi-
ment is while you’re running it.”

Acknowledgements The author feels compelled to separate fact from opinion in a paper like this:
it is all opinion. The view of simulation as a continuous learning and communication process has
been influenced by all of the author’s students, consulting clients, and the many colleagues he has
had the pleasure of knowing for over 40 years.
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Chapter 3
Model Calibration

Jie Xu

Abstract Simulation model calibration refers to the iterative process of comparing

the outputs of a simulation model with the observed quantities in the real system,

and making changes to model input parameters accordingly to achieve an acceptable

level of agreement between the simulation model and the real system. While cali-

bration in a broader context may involve structural changes to the simulation model,

this chapter focuses on the calibration of simulation model parameters that cannot be

accurately estimated or specified for various reasons. When the simulation is time-

consuming, has significant noise, and/or has a large number of parameters to cali-

brate, automatic and efficient calibration methods are critical to the success of any

simulation-based analysis and optimization. This chapter discusses two main cate-

gories of general calibration methods: (1) direct calibration methods that search for

the optimal calibration parameter that minimizes the difference between real system

observations and simulation model outputs; and (2) Bayesian calibration methods

that combine real system observations with prior knowledge to obtain a posterior

distribution on the calibration parameters.

3.1 Introduction

Computer simulation models provide predictions of the outcome/behavior of com-

plex systems/processes that are intractable to other forms of analysis. Because of

the complexity of the systems/processes being modeled, simulation models often

have a large number of input parameters. Generally speaking, there are two cate-

gories of input parameters: variable input parameters and calibration input parame-
ters (Kennedy and O’Hagan 2001). Variable input parameters are assumed to be

known, possibly with parametric uncertainty, e.g., when they are estimated from

data. They may be varied during the calibration process, and describe alternative

controls/designs for which the simulation model is used to predict the performance
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of the system. Calibration input parameters are assumed to be unknown, but remain

fixed for all the alternative controls/designs for which the model is calibrated to simu-

late and predict. Most calibration input parameters are typically physical parameters

that define the environment/situation within which the model simulates. There may

also be tuning parameters that only exist in the simulation model and are used to

control the behavior of the model. The output of the simulation model is a function

of both variable and calibration input parameters.

The prediction accuracy of the simulation model depends on proper setting of

the values of the calibration input parameters. Model calibration is the process to

determine the values of the calibration input parameters such that the output of the

computer simulation model provides the best fit to observed data from the real sys-

tem. In the literature, there are two main classes of methods for model calibration.

The first class of methods aim to minimize the difference between model outputs

and the observations of real systems/processes. Typically, key system metrics are

identified and an objective function is defined to measure the difference between the

model output and the observed quantities. The calibration parameters are then itera-

tively adjusted manually or automatically by an algorithm to minimize the objective

function until the stopping criteria are met. Such an approach has been widely used

in both literature and industrial practice. We refer to this class of methods as direct
calibration because it generally works directly with simulation model output and

often uses direct search methods to adjust the calibration parameters, treating the

simulation model as a black-box function. The second class of methods is Bayesian
calibration. Bayesian calibration methods make use of models to describe how cal-

ibration parameters affect model output. The model can be a general one such as

a Gaussian progress (Kennedy and O’Hagan 2001), or a problem-specific model

such as the stochastic user equilibrium (SUE) model in a dynamic traffic assignment

(DTA) simulator in Flötteröd et al. (2011).

The direct and Bayesian calibration methods each have their own merits and lim-

itations. Direct calibration methods are intuitive, do not assume any knowledge on

the model and/or calibration parameters, and are reasonably easy to understand and

use. As a result, direct calibration methods have been widely used in practice across

a large range of disciplines, albeit frequently in somewhat ad hoc ways and some-

times with manual adjustments of the calibration parameters. The recent advances in

efficient simulation optimization algorithms and the access to low-cost massive com-

puting power make direct calibration even more attractive. These algorithms provide

an automatic and efficient way to calibrate a model, especially when there are a large

number of parameters to calibrate and simulations are time-consuming and/or noisy.

The popularity of direct calibration methods is also evident from the sizable num-

ber of proceedings papers in the past 10 years of the Winter Simulation Conference

(WSC). Manual and automatic direct calibration methods were applied to calibrate

agent-based (Johnson et al. 2009; Latek et al. 2013; Shi and Brooks 2007), systems

dynamics (Aral et al. 2014), discrete-event simulation models (Henclewood et al.

2012; Vock et al. 2014), and general probability models used in Monte Carlo simu-

lations (Matus et al. 2016).
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Direct calibration is a “plug-in” approach. Once the calibration input parame-

ters have been determined, they remain fixed and is taken as the “true value” in the

ensuing simulation experiments and analyses. The uncertainty in the calibrated para-

meters and its impact on model predictions would then be left unaddressed. While

central limit theorems can be established if convergent simulation optimization algo-

rithms are used in calibration, these asymptotic properties are of very limited practi-

cal value. Sensitivity analysis is helpful, but does not provide a complete description

of the uncertainty (Shi and Brooks 2007; Yuan et al. 2013). Another difficult issue

is how to incorporate prior knowledge on calibration parameters. Prior knowledge

might be used in the form of the initial values in the calibration process. However,

this is a rather rigid way to use prior knowledge as it does not convey the confidence

in the prior knowledge and the calibration process is basically free to move away

from the initial value.

Bayesian calibration methods have merits and limitations that are complementary

to direct calibration in many ways. Through the postulation of a prior distribution

on calibration parameters, it facilitates the inclusion of domain knowledge into the

calibration process, reflecting the confidence in the domain knowledge and updating

it with evidence from data. The posterior distribution fully describes the uncertainty

in the calibrated parameters and can then be used to calculate various metrics to

quantify the uncertainty in the model predictions.

However, Bayesian calibration methods also come with their own limitations.

Bayesian calibration relies on the use of a model to describe the relationship between

calibration parameters and the model output. Unless one knows the precise structure

of the model as in the case of the demand calibration of the DTA simulator in Flöt-

teröd et al. (2011), the calibration process is subject to the additional model error.

The model error may lead to significant biases in the estimate of calibration para-

meters and consequently large prediction errors. Second, the majority of Bayesian

calibration methods make use of the Gaussian process as the model to relate calibra-

tion parameters to the model output. It is well-known that while Gaussian process

is a very flexible framework, it does not scale up to the dimension of the calibra-

tion input parameter vector. Further, while homogeneous observation errors can be

addressed under the Gaussian process framework, many stochastic simulation mod-

els have outputs with considerably different variances for different variable input

parameter values. In addition, as shown in Han et al. (2009), Bayesian calibration

may lead to large prediction errors without proper adjustments when applied to tun-

ing parameters. Finally, from a practical point of view, Bayesian calibration methods

require a considerable level of technical knowledge on Bayesian inference beyond the

reach of many simulation modelers and analysts. In recent years, Bayesian calibra-

tion methods have made their ways to WSC proceedings (Frazier et al. 2009; Yuan

and Ng 2013a). However, its widespread use by modelers remains to be seen.

The rest of the chapter is organized as follows. We first summarize the main nota-

tions and the models to describe the calibration process in Sect. 3.2. In Sect. 3.3,

we present two cases of direct calibration using simulation optimization. Section 3.4

summarizes Bayesian calibration methods. A summary and a brief discussion on

future research directions are given in Sect. 3.5.
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3.2 Overview

We use 𝐱 = (x1,… , xd1 )
T

to denote the vector of variable input parameters of dimen-

sion d1, and 𝜽 = (𝜃1,… , 𝜃d2 )
T

to denote the vector of calibration input parameters

of dimension d2. For stochastic simulations, we use 𝜉 to represent the randomness

inherent in the simulation. Formally, we describe the mapping of the variable and

calibration input parameters to the expected model output as follows:

y(𝐱,𝜽) = 𝔼 [𝜂(𝐱,𝜽; 𝜉)] , (3.1)

where the expectation is taken with respect to the probability measure for 𝜉. In gen-

eral, we would not be able to directly observe y. Instead, we assume that we can run

independent and identically distributed (IID) simulation replications and the estimate

of the jth replication satisfies

yj(𝐱,𝜽) = y(𝐱,𝜽) + 𝜀j(𝐱,𝜽), (3.2)

where the noise 𝜀j(𝐱,𝜽) is IID N(0, 𝜎2(𝐱,𝜽)). We can then use the sample average ȳ
to estimate y. We assume that the simulation model output y is scalar for simplicity

throughout this chapter. When the output is a vector, for direct calibration, we can

either take a multi-objective optimization approach, or use the weighted sum of the

different elements in the output vector as the scalar output of the model to calibrate

against. For Bayesian calibration under the Gaussian process framework proposed

in Kennedy and O’Hagan (2001), the vector output can be handled similarly in the

calibration process as in the scalar output case.

Model calibration is an iterative process. At the beginning of an iteration, we

assume that we have the following information:

∙ The m observations of the real system response 𝐳 = {z1,… , zm}T for m variable

inputs D1 = {𝐱r1,… , 𝐱rm}.

∙ The sample averages and sample variances of the simulation model outputs �̄� =
{ȳ1,… , ȳn}T , 𝐒2 = {S21,… , S2n}

T
for n given variable and calibration inputs D2 =

{(𝐱c1,𝜽1),… , (𝐱cn,𝜽n)}.

Let 𝜁 (𝐱) be the true response of the real system given input 𝐱. For stochastic

systems/processes, the response is also stochastic and we interpret 𝜁 (⋅) as a statistic

of the stochastic response, e.g., mean, median, or quantile. Equation (3.3) describes

the relationship between the true response of the real system and the observation

zi = 𝜁 (𝐱ri ) + ei, i = 1,… ,m. (3.3)

In the above equation, ei represents either the observation error or the inherent ran-

domness in the response when the system is stochastic. It is possible to obtain mul-

tiple observations for the same variable input 𝐱i, i = 1,… ,m. Following most of
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the literature, we assume that there is only one observation for each 𝐱i, i = 1,… ,m
unless explicitly indicated otherwise.

The true response of the real system and the simulation model output is mod-

eled as

𝜁 (𝐱) = 𝜌y(𝐱,𝜽∗) + 𝛿(𝐱). (3.4)

Here 𝜽
∗

is the unknown true calibration input parameters and 𝜌 is the scaling coef-

ficient for the simulation model. The term 𝛿(𝐱) represents the bias of the simulation

model, which is also referred to as model error or model inadequacy. Equation (3.4)

provides just one way of modeling the relationship between the simulation model

output and the true system response. This model was made popular by the work of

Kennedy and O’Hagan (2001) and has been adopted in many subsequent Bayesian

calibration studies.

It is important to point out that in model calibration, the “true” calibration input

parameters 𝜽
∗

is the 𝜽 that best fits the observations of the real system 𝐳. For cali-

bration input parameters that are physical quantities existing in the real system (see

Sect. 3.4.2 for a discussion on the differences between physical parameters and tun-

ing parameters in model calibration), 𝜽 may not be the true values of these physical

parameters.

An important difference between direct and Bayesian calibration is how “best-

fitting” is measured. In direct calibration, we directly measure the difference between

observations of the real system 𝐳 and the model outputs on the same set of m variable

inputs 𝐱r1,… , 𝐱rm. We thus drop the superscript to simplify the notation in the rest

of the chapter when we discuss direct calibration. We define an objective function

L(𝜽; 𝐳, 𝐲(𝜽)) to measure the discrepancy between 𝐳 and 𝐲(𝜽) for a given 𝜽. While

we do not make the dependence of 𝐲 on the variable inputs 𝐱1,… , 𝐱m explicit, it is

understood that the outputs are with respect to these variable inputs. Direct model

calibration is formulated as the following optimization problem:

min
𝜽∈𝜣

L(𝜽; 𝐳, 𝐲(𝜽)). (3.5)

There are several choices of the functional form of L(⋅). We will review two calibra-

tion studies using two common choices in Sect. 3.3. The first example reviewed in

Sect. 3.3.1 takes the form of sum of squared errors (SSE) (Yuan et al. 2013)

L(𝜽; 𝐳, 𝐲(𝜽)) =
m∑

i=1

(
zi − yi(𝜽)

)2
. (3.6)

In Sect. 3.3.2, the model calibration problem uses the absolute difference between 𝐳
and 𝐲(𝜽)

L(𝜽; 𝐳, 𝐲(𝜽)) =
m∑

i=1

||zi − yi(𝜽)|| . (3.7)
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For stochastic simulations, we have to estimate 𝐲(𝜽) and L(𝜽; 𝐳, 𝐲(𝜽)) by �̄�. In this

case, problem (3.5) becomes a simulation optimization, or optimization via simula-

tion, problem. For real-world applications, the simulation model is often too com-

plex to yield any structural information. When simulation runs are time-consuming

and/or noise is significant, solving (3.5) is challenging and requires efficient simula-

tion optimization algorithms that also converge to optimal solutions in the presence

of simulation noise. In Sect. 3.3, we review two model calibration studies that used

different simulation optimization algorithms to solve problem (3.5). For stochastic

systems/processes, zi may be a vector of multiple observations for 𝐱i. Model calibra-

tion then may involve comparing the probability distribution of the system response

with the simulation model output distribution using statistical tests (Henderson et al.

2009) or statistical disparity measures (Vidyashankar and Xu 2015).

Compared to the intuitive formulation such as (3.6) and (3.7), Bayesian calibra-

tion is a much more complicated process. Bayesian calibration generally comprises

the following steps

1. Specify a model describing the relationship between 𝐳, 𝜁 (⋅), 𝜂(⋅, ⋅), and 𝐲. For

instance, Kennedy and O’Hagan proposed to use (3.3) and (3.4), with an addi-

tional condition that 𝜂(⋅, ⋅) and 𝛿(⋅) are independent.

2. Postulate statistical surrogate models about 𝜁 (⋅), 𝜂(⋅, ⋅), e.g., Gaussian processes,

and specify the prior distributions of hyper-parameters.

3. Run simulations to obtain the data for the initial calibration iteration.

4. Estimate the hyper-parameters of the surrogate models and calculate the posterior

distribution for 𝜽.

5. If the stopping criteria are not met, determine the new experiment design point(s)

to run simulations, and go back to Step 3.

In Sect. 3.4, we review the details in the above steps under the Gaussian process

framework for Bayesian calibration proposed in Kennedy and O’Hagan (2001),

which was extended to address homogeneous simulation noise in Yuan and Ng

(2015).

3.3 Direct Calibration

Direct calibration is a simulation optimization problem as formulated in (3.5). Tra-

ditionally, simulation modelers and analysts attempted to solve (3.5) in rather ad

hoc ways. It is a common practice to compare a small set of manually chosen cal-

ibration input parameters (Johnson et al. 2009; Henclewood et al. 2012; Aral et al.

2014), which are often defined on coarse grids spanning user-specified ranges of 𝜽.

Applications of meta-heuristics designed for deterministic black-box optimization

problems, e.g., evolutionary strategies (Latek et al. 2013), genetic algorithms (Vock

et al. 2014), Nelder–Mead simplex algorithm (Shi and Brooks 2007), were also fre-

quently used to solve (3.5). The use of these meta-heuristics helped (partially) auto-

mate the model calibration process and allows the modeler/analyst to examine many
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more values of 𝜽 and obtain better calibration outcome. However, the applications

of these meta-heuristics are fundamentally flawed as they do not fully account for

the stochastic nature of the problem, and thus may often converge to false “opti-

mal” calibration parameters. Readers can look for more information on the risks of

applying deterministic optimization algorithms to solve stochastic simulation opti-

mization problems in Xu et al. (2010, 2015), Hong et al. (2015), Fu (2015b). In

this section, we review two studies that use simulation optimization algorithms to

perform direct calibration in an automatic, efficient, and correct way. In addition to

using intuitive objective functions like the ones described in (3.6) and (3.7), it is

also straightforward to use other metrics that help compare the difference between

the distributions of observed real system’s responses and simulation model outputs

(Henclewood et al. 2012; Vidyashankar and Xu 2015).

3.3.1 Direct Calibration Using Stochastic Approximation

When 𝜽 is continuous and the objective function L(𝜽) is differentiable in 𝜽, e.g., if

we use SSE as in (3.6) and the model output y is differentiable in 𝜽, well-known

simulation optimization algorithms such as stochastic approximation (SA) (Kushner

and Yin 2003) can be applied. Let 𝐠(𝜽) = 𝜕L(𝜽)∕𝜕𝜽 be the gradient. If we know 𝐠(⋅),
we can solve problem (3.5) using Newton’s method. However, in model calibration,

most of the time we do not know 𝐠(⋅) and instead need to estimate it. When simula-

tions are stochastic, the estimate of 𝐠(𝜽) is also stochastic and known as the stochastic

gradient (Fu 2015a). Denote an estimate of the stochastic gradient as ĝ(𝜽). Then SA

searches for the optimal calibration input parameters through the following iterative

equation

̂𝜽k+1 = ̂𝜽k − ak�̂�k, (3.8)

where k is the iteration counter and the deterministic gain sequence {ak} is chosen

to satisfy
∑∞

k=1 ak = ∞ and
∑∞

k=1 a
2
k < ∞. In order for SA to converge, ĝ(𝜽) should

either be an unbiased estimator of 𝐠(𝜽), or the bias goes to zero as k → ∞. For more

details on SA, readers can refer to Fu (2015a) and Kushner and Yin (2003). Except

for problems where direct stochastic gradient estimates can be derived using meth-

ods such as infinitesimal perturbation analysis (IPA) (Fu 2015a), finite difference

(FD) or simultaneous perturbation (SP) gradient estimators are often used in SA. The

algorithms are consequently referred to as FDSA and SPSA. More information on

stochastic gradient estimation can be found in Fu (2015a) and the references therein.

The convergence conditions of SA applied to direct calibration were discussed in

Yuan et al. (2013).

SA only converges to first order stationary points asymptotically. In model cal-

ibration, the objective function L(𝜽) may contain multiple local optima and when

simulation runs are expensive, only a finite number of SA iterations would be exe-

cuted. Therefore, in practice, multi-start is often recommended. Statistical ranking
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and selection procedures (Xu et al. 2010) can then be used to select the best calibra-

tion parameter values found as the final result.

It is well-known that under some technical conditions, ̂𝜽k − 𝜽
∗

converges asymp-

totically to a normal random variable in distribution. Yuan et al. (2013) made use

of the asymptotic distribution of ̂𝜽k − 𝜽
∗

to quantify the uncertainty in the estimate

of 𝜽 found by using FDSA and SPSA. Delta method can then be applied to quantify

the uncertainty in the prediction made by the simulation model using the estimated

calibration input.

Both FDSA and SPSA were used in Yuan et al. (2013) to calibrate a stochastic

biological model simulating the mtDNA deletion accumulation in substantia nigra

neurons and the death of neurons. The model can be used for studies on Parkinson’s

disease and was described in detail in Henderson et al. (2009). There are three para-

meters to be calibrated in the experiment: the mutation rate c1, the degradation rate

c3, and the lethal threshold 𝜏. Yuan et al. (2013) held 𝜏 = 0.962 and applied FDSA

and SPSA to calibrate 𝜃1 ≐ log(c1) and 𝜃2 ≐ log(c3). The variable input parameter

in this example is the age of the patients, with xi = 19, 32, 42, 51, 56, 75, 81, 89. The

observed deletion accumulation zi for each age xi from the real process were collected

using real-time polymerase chain reaction (RT-PCR) measurements. Ten simulation

replications were run for each variable and calibration input and the sample averages

were then taken as the simulation output ȳi to compare with zi.
FDSA/SPSA were started from four initial points. The choices of the initial points

were based on the previous study in Henderson et al. (2009) that gave the 95% con-

fidence intervals as [−13.93,−6.87] for 𝜃1, and [−4.53,−3.07] for 𝜃2. The combina-

tions of the upper and lower limits of these two confidence intervals were chosen as

the four initial points to start FDSA/SPSA. Ten runs of FDSA/SPSA were conducted

from each initial point, with each run lasting 100 iterations. The objective function

is SSE as given in (3.6). The mean of the ten runs from each initial point was taken

as the parameter calibrated by FDSA/SPSA. In the experiment, FDSA/SPSA con-

verged to similar results. Yuan et al. further validated the simulation model output

using the calibrated parameters c1 and c3 to make predictions on the holdout samples

of age 20, 44, 72, 77, and 91. The 95% confidence intervals that take into account

both the uncertainty in the estimates of c1 and c3 and the noise in the stochastic sim-

ulations cover the observed measurements, and thus helped establish the validity of

the calibration method and the calibrated simulation model.

3.3.2 Direct Calibration of a Drug Resistance Simulation
Model in a Parasitology Study Using Discrete
Optimization via Simulation

Frequent anthelmintic treatment has effectively controlled the pathogenic effects

of strongyles living in the intestines of horses. However, drug resistance has been

observed globally among the class of small strongyles (subfamily Cyathostominae).
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The parasitology community has recommended alternative therapies that aim to

reduce the intensity of anthelmintic treatment in an attempt to slow down the devel-

opment of drug resistance. However, the reduction in anthelmintic treatment fre-

quency and intensity has been found associated with the re-emergence of a highly

pathogenic parasite S. Vulgaris, also known as the blood worm. There is a need to

model the development of drug resistance in equine parasites and the re-emergence

of S. Vulgaris to assist in the design of alternative sustainable anthelmintic regimens.

Xu et al. presented a stochastic simulation model in Xu et al. (2014), which makes

use of a population genetics model and an epidemiological model to simulate the

interactions among hosts, parasites, and therapy regimens. The conceptual diagram

of the simulation is given in Fig. 3.1. The model was intended to be used to predict

the development of drug resistance and re-emergence of S. Vulgaris under selec-

tive therapy, which is one of the most popular alternative anthelmintic therapy regi-

mens. Instead of treating horses every 6 months, selective therapy stipulates that only

horses with serious infections as determined by a specified fecal egg count (FEC)

threshold should be treated.

Following common practice in the literature (Leathwick and Hosking 2009;

Leathwick 2013; Xu et al. 2014) considered a simplified population genetics model

with a single drug resistance gene R with two alleles. There are then three differ-

ent genotypes: SS, SR, and RR. Here S represents the drug susceptible gene. It is

assumed that worms of the RR genotype are fully drug resistant and worms of the

SR genotype are partially drug resistant. The simulation model then keeps track of

Fig. 3.1 Conceptual diagram of the simulation of the parasite-host-drug interaction (Xu et al.

2014)
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the development of drug resistance via simulating the proportion of R genes as a

function of time under drug selection pressure.

Let F0
RR,F

0
SR,F

0
SS be the fitness of these three genotypes during the evolution

process when there is no anthelmintic treatment and thus drug selection pressure

is zero. Let F1
RR,F

1
SR,F

1
SS be the fitness of these three genotypes under drug selec-

tion pressure. A common belief is the fitness of the resistant genotypes are lower

than the susceptible genotypes, which is known as the biological cost of resis-

tance (Leathwick 2013; Mackinnon 2005). Therefore, it is reasonable to assume that

0 < F0
RR ≤ F0

SR < F0
SS = 1 under natural evolution, with F0

SS = 1 being the bench-

mark fitness. For evolution with drug selection pressure, the fitness values were

assumed to satisfy 0 < F1
SS ≤ F1

SR < F1
RR ≤ 1.

The simulation model has 36 input parameters, including the five fitness values of

different genotypes described previously, and one variable input parameter that deter-

mines the FEC threshold that selective therapy uses to determine if a horse should

receive anthelmintic treatment every 6 months. Xu et al. (2014) identified that these

fitness values play a very important role in the development of drug resistance and

thus should be properly set in simulation experiments. Unfortunately, there is no bio-

logical data set that can be used to estimate these fitness values. Furthermore, exper-

iments to measure such fitness values would be both time and resources consuming,

and estimates would also be highly noisy. Therefore, these fitness values were cali-

brated via direct calibration. Other the 30 input parameters were determined using a

combination of reported values used in the literature, estimation by data from a 2008

Danish horse farm study (Nielsen et al. 2013), or expert opinions.

The consensus in the equine parasitology field is it took about tR = 30 years to

observed reduced drug efficacy on cyathostomins with a non-selective therapy reg-

imen with horses treated every 2 months (Molento et al. 2012). In the calibration

process, the objective is to calibrate 𝜽 ≐ {F0
RR,F

0
SR,F

1
RR,F

1
SR,F

1
SS} such that it took

180 treatments over a span of 30 years to observe the drug efficacy dropping below

95% for the first time according to the general equine parasitology context (Molento

et al. 2012). In the model calibration process, each simulation ran for 40 simulated

years with 240 treatments and the first drug resistance treatment was reported as an

estimate of the simulation model output y(𝜽). If resistance is not observed within

the 40 years simulated, the simulation model simply returns a large number. The

calibration problem thus follows the formulation as described in (3.7)

min
𝜽∈𝜣

L(𝜽) = ||tR − y(𝜽)|| . (3.9)

Notice here we only have one observation of the real system tR = 30 years.

The range 𝜣 was chosen based on previous drug resistance studies in the liter-

ature (Leathwick 2013) and satisfy 0.85 < F0
RR < F0

SR < F0
SS = 1, 0 < F1

SS ≤ 0.03,

F1
SS < F1

SR ≤ 0.15, and 0.85 < F1
RR ≤ 1. Without using an optimization-based direct

calibration method, Leathwick (2013) only conducted “what-if” simulations with

nine different combinations of fitness parameter values. In contrast, Xu et al. (2014)

used a discrete optimization via simulation solver ISC (Xu et al. 2010, 2013; Hong



3 Model Calibration 37

et al. 2010) to solve problem (3.9). While the fitness values are continuous, in reality,

parasitologists would discretize the parameters. This is because the precision of any

biological experiment to measure these parameters would be subject to substantial

uncertainties and errors, making the precision to be a few digits at best. As a result,

treating 𝜽 as discrete-valued parameters is closer to reality.

The simulation budget was set to 2000 replications. ISC has the option to perform

a final “clean-up” procedure to control 𝛿, the error in the simulation estimate of the

objective function value in (3.9). Xu et al. (2014) set 𝛿 = 1, i.e., one would be able to

distinguish with a probability of 0.95 the true parameter 𝜽
∗

from another parameter

𝜽 if the difference in the drug resistance appearance time |y(𝜽) − y(𝜽∗)| ≥ 1. The

best 𝜽 found by ISC was ̂𝜽 = {F0
SR = 0.989,F0

RR = 0.857,F1
SS = 0.027,F1

0.045,F
1
RR =

0.926}. The 95% t-confidence interval on L(̂𝜽) is [8.66, 13.3]. While ISC was not

able to find a 𝜽 that reduces L(⋅) to 0, it allowed one to systematically search through

a very large parameter space 𝜣 with a very reasonable computation budget. The

calibration outcome was thus deemed as of reasonably high quality.

3.4 Bayesian Calibration

Bayesian calibration uses a model to describe the relationship between the true sys-

tem response 𝜁 (𝐱) and simulation model output y(𝐱,𝜽). The use of a model facilitates

statistical inference and uncertainty quantification of 𝜽. However, these merits come

with limitations and challenges. The use of the model to relate 𝜁 (𝐱) and y(𝐱,𝜽) intro-

duces additional modeling error. Estimation of the model parameters can be quite

difficult and creates additional uncertainty. As shown in Sect. 3.4.2, if not properly

handled, Bayesian calibration may perform quite poorly for tuning parameters. Han-

dling heterogeneous simulation noise also remains a challenge. In Sect. 3.4.1, we first

present the widely used Bayesian calibration framework using Gaussian process as

the model between 𝜁 (𝐱) and y(𝐱,𝜽). We then review a Bayesian calibration approach

for simultaneous calibration of physical and tuning parameters in Sect. 3.4.2.

3.4.1 A Gaussian Process-Based Bayesian Calibration
Framework

In Kennedy and O’Hagan (2001), Kennedy and O’Hagan presented a Bayesian cal-

ibration framework using Gaussian process, which has been adopted in many later

studies. The model takes the form of (3.4), and assumes that 𝜌 is a constant. The

prior information on y(⋅, ⋅) and 𝛿(⋅) is described by Gaussian processes:

y(⋅, ⋅) ∼ N
[
m1(⋅, ⋅), 𝜎2

1𝐑1{(⋅, ⋅), (⋅, ⋅)}
]
, 𝛿(⋅) ∼ N

[
m2(⋅), 𝜎2

2𝐑2(⋅, ⋅)
]
. (3.10)
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The mean functions are assumed to have a linear form:

m1(𝐱,𝜽) = 𝐡1(𝐱,𝜽)T𝜷1, m2(𝐱) = 𝐡2(𝐱)T𝜷2, (3.11)

where 𝐡1(⋅, ⋅) and 𝐡2(⋅) are vectors of p1 and p2 known functions respectively. The

unknown coefficients 𝜷1 and 𝜷2 are of dimension p1 and p2 and we denote the com-

bined vector as 𝜷 = (𝜷T
1 , 𝜷

T
2 )

T
. The correlation functions 𝐑1 and 𝐑2 are often postu-

lated to be the Gaussian correlation function of the form

𝐑1{(𝐱i,𝜽i), (𝐱j,𝜽j)} = exp
[
−Σd1

l=1𝜔1x,l(xi,l − xj,l)2 − Σd2
l=1𝜔1

𝜃

,l(𝜃i,l − 𝜃j,l)2
]
, (3.12)

and

𝐑2(𝐱i, 𝐱j) = exp
[
−Σd1

l=1𝜔2,l(xi,l − xj,l)2
]
. (3.13)

We write 𝝎1 = {𝜔1x ,1,… , 𝜔1x ,d1 , 𝜔1
𝜃

,1,⋯ , 𝜔1
𝜃

,d2}
T
, 𝝎2 = {𝜔2,1,… , 𝜔2,d1}

T
to

denote all the unknown parameters in the correlation functions. Let 𝝎 = {𝝎T
1 ,𝝎

T
2 }

T
.

It is further assumed in Kennedy and O’Hagan (2001), Yuan and Ng (2015) that the

stochastic simulation noise 𝜀j(𝐱,𝜽) in Eq. (3.2) is IID N(0, 𝜎2
𝜀

), and the observation

noise for the real system response ei in Eq. (3.3) is IIDN(0, 𝜎2
e ). Further, y(⋅, ⋅), 𝛿(⋅), 𝜀,

and e are assumed to be mutually independent. Write 𝝈
2 = {𝜎2

1 , 𝜎
2
2 , 𝜎

2
𝜀

, 𝜎

2
e}. Then the

parameters to be estimated include 𝜷,𝝎,𝝈.

Kennedy and O’Hagan (2001) proposed a hierarchical model to represent the

prior information on 𝜷,𝝎1,𝝎2, 𝜎
2
1 , 𝜎

2
2 , 𝜎

2
𝜀

, 𝜎

2
e . Based on the mutual independence

assumptions, the prior distribution can then be written as

p(𝜽,𝜷,𝝎,𝝈) = p(𝜽)p(𝜷1, 𝜎
2
1)p(𝜷2, 𝜎

2
2)p(𝝎1)p(𝝎2)p(𝜎2

𝜀

)p(𝜎2
e ). (3.14)

3.4.1.1 Deriving the Posterior Distribution of 𝜽

Now given the observations of real system’s responses 𝐳 over variable inputs D1 and

the simulation model outputs �̄� over variable and calibration inputs D2, the first step

is to calculate the posterior distribution given data 𝐝 = {𝐳, �̄�}

p(𝜽, 𝜷,𝝎,𝝈2|𝐝) ∝ p(𝜽, 𝜷,𝝎,𝝈)𝜙(𝐝|𝜽;𝜷,𝝎,𝝈), (3.15)

where 𝜙(⋅; ⋅) is the density function of a multi-variate normal distribution whose

mean and covariance functions can be represented in terms of D1,D2,𝐝,𝜷,𝝎,𝝈2
.

The parameters 𝜷 can be integrated out from (3.15). While the posterior distribu-

tion of 𝜽 above provides the basis to quantify the uncertainty in calibration, it is chal-

lenging to conduct a full Bayesian analysis to obtain the posterior. Instead, two-stage

procedures have been proposed to estimate the posterior in Kennedy and O’Hagan

(2001), Yuan and Ng (2013b, 2015). Take the procedure in Yuan and Ng (2013b)

as an example. The first step uses the simulation outputs �̄� to estimate 𝝎1, 𝜎
2
1 , 𝜎

2
𝜀

.
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As pointed out in Kennedy and O’Hagan (2001), while 𝐳 also contains some infor-

mation that could be used to estimate 𝝎1, 𝜎
2
1 , 𝜎

2
𝜀

, the number of points in D1 is often

much smaller than the number of points in D2, and 𝐳 also depends on other para-

meters. Therefore, this simplification does not lose much information. In the second

stage, 𝝎1, 𝜎
2
1 , 𝜎

2
𝜀

are fixed and the full data 𝐝 is used to estimate 𝝎2, 𝜎
2
2 , 𝜎

2
e , using

the Expectation-Maximization (EM) algorithm with 𝜽 treated as latent parameters

(Yuan and Ng 2013b). With the estimated �̂�,𝝈
2
, the conditional posterior distribu-

tion p(𝜽|�̂�,𝝈2
,𝐝) can be used to quantify the uncertainty in prediction by integrating

𝜽 over p(𝜽|�̂�,𝝈2
,𝐝).

3.4.1.2 Initial Experiment Design

The data set 𝐳 and D1 are typically considered as given in model calibration and there

is not much of a choice. For the simulation model output data set �̄�, we generally can

choose the set of variable and calibration inputs D2 to run simulations. An intuitive

consideration is the variable inputs in D2 should include, or at least close to the

variable inputs in D1.

While the computer experiment literature has studied experimental design exten-

sively (Santne et al. 2013), experimental design for Bayesian calibration faces new

challenges because of the existence of calibration input parameters. Kennedy and

O’Hagan took a heuristic approach (Kennedy and O’Hagan 2001). There are two

general principles in choosing D2. First, the design points should cover the range

of variable inputs not only in the calibration process but also the range for predic-

tions in the future. Second, the experiment design should cover the plausible range

containing the true value 𝜽
∗
.

In Kennedy and O’Hagan (2001), the initial experiment design was chosen to

be the maxmin Latin hypercube design for the variable and calibration inputs. Such

a heuristic design provides good coverage of the design space and also has some

computational advantages. In Yuan and Ng (2015), a single Latin hypercube design

was applied to both variable and calibration inputs, with an additional requirement of

at least 10 design points per dimension according to a common recommendation in

the Gaussian process literature (Loeppky et al. 2009). The Gaussian process model

for y(⋅, ⋅) should also be validated and refined if necessary (Loeppky et al. 2009).

3.4.1.3 A General Sequential Bayesian Calibration Approach

Unlike traditional experimental design for computer experiment that focuses on

obtaining good coverage of the design space for interpolation, Bayesian calibration

needs to identify the optimal calibration input value 𝜽
∗
. As a result, it would benefit

from a sequential experimental design that adds points with an objective to improve

calibration accuracy. Yuan and Ng (2013b, 2015), Yuan et al. (2013) studied this

problem and proposed two criteria to guide the sequential Bayesian process. Notice
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that the sequential Bayesian calibration approach is similar to direct calibration as

new values of 𝜽 are added and evaluated. The difference is how the new point is

determined.

∙ Entropy Criterion. The entropy of 𝜽 before adding a new design point is H(𝜽) =
− ∫ p(𝜽) ln(p(𝜽))d𝜽, where p(𝜽) is the prior density function of 𝜽. Notice that the

more uncertainty there is in the calibration estimate of 𝜽, the larger the value of

the entropy is. After conducting experiments on new design points D, the condi-

tional entropy of 𝜽 is then H(𝜽|D) = − ∫ p(𝜽|D) ln(p(𝜽|D))d𝜽, where p(𝜽|D) is

the posterior density function of 𝜽 after the experiment. Then the entropy criterion

aims to maximize the entropy gain 𝔼[H(𝜽) − H(𝜽|D)], and equivalently to choose

the new design point D that minimize 𝔼[H(𝜽|D)] since H(𝜽) is independent of the

new design point D. For stochastic simulations, it is also possible to allocate the

simulation budget to existing design points. Doing so will reduce the noise in the

simulation estimate and help improve the accuracy in the parameter estimation,

thus also improving the gain in entropy.

∙ Expected Integrated Mean Square Prediction Error Criterion (EIMSPE). Since

the ultimate objective of model calibration is to improve prediction accuracy, it

is quite intuitive to find a new design point D that would minimize EIMSPE. In

comparison, the entropy criterion simply focuses on reducing the uncertainty in

the estimate of 𝜽
∗

and does not explicitly consider the prediction uncertainty.

Yuan and Ng (2015) found out that neither the entropy criterion nor the EIMSPE

criterion dominates the other. When the uncertainty in the estimate of 𝜽
∗

is very

large, the entropy criterion tends to achieve better predictive performance. Other-

wise, it would be better to use the EIMSPE criterion to improve predictive perfor-

mance as it explicitly considers the prediction error. Based on these observations,

it was then proposed to combine both criterion in the sequential Bayesian calibra-

tion process. To summarize, the idea is to use the entropy criterion in the beginning

phase to quickly improve the quality of the calibration input parameter estimates.

Once the uncertainty in the estimate is sufficiently small, EIMSPE can be used to

further improve predictive performance.

3.4.1.4 Calibrating a Parkinson Disease Simulation

In Yuan and Ng (2015), Yuan and Ng applied the sequential Bayesian calibration

approach using the combined entropy and EIMSPE sequential experimental design

to calibrate a stochastic biological model of mtDNA population dynamics. The

model can be used for assessing interventions designed to treat Parkinson’s disease or

predicting changes in the occurrences of Parkinson’s disease in populations (Hender-

son et al. 2009). Notice this model was also used in Yuan et al. (2013) to demonstrate

direct calibration using stochastic approximation as reviewed in Sect. 3.3.1. We only

describe the difference in this section and please refer to Sect. 3.3.1 for details.

The initial experiment design includes 140 input sets generated using the Latin

hypercube design for the calibration parameters using the normal priors, and the
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variable input x ∈ (1, 110), which is the age of the patient. For each input set, 10

replications were taken to estimate the simulation model output at each input set.

With data from the initial experiments, the Gaussian process model was built and

validated as a surrogate for the simulation model.

In the sequential experiment stage, 10 follow-up input sets were selected for simu-

lations. The combined criterion successfully reduced the uncertainty in the estimates

of the calibration input parameters to the level of the entropy criterion, as measured

by the variances of the posterior distribution. At the same time, the combined crite-

rion has the benefit of the EIMSPE criterion in terms of reduced prediction uncer-

tainty.

3.4.2 Simultaneous Bayesian Calibration of Physical and
Tunable Parameters

Depending on the nature of the calibration input parameters 𝜽, they can be further

categorized into physical parameters 𝜽p and tunning parameters 𝜽t (Han et al. 2009).

Physical parameters have meanings in the real system, such as the fitness values of

different genotypes under drug selection pressure in the biological model simulating

the development of drug resistance in parasites described in Sect. 3.3.2.

In contrast, tuning parameters only exist in the computer simulation model and

have no meanings in the real system. They are used to control the behavior of the

simulation model and tune model output. For example, a vector of parameters rep-

resenting bonuses and penalties used to encourage specific behaviors of the approx-

imate dynamic programming model developed to make dispatching decisions for a

large trucking company (Frazier et al. 2009). Tuning these parameters allows the

analyst to match the model output with a series of historical performance metrics.

Direct calibration methods do not need to differentiate between tuning parame-

ters and physical parameters. However, Bayesian calibration methods may not per-

form well when applied to both tuning and physical parameters. In Han et al. (2009),

Bayesian calibration was applied to calibrate a tuning parameter and a physical para-

meter in a biomechanics simulation model for knee implants (Rawlinson et al. 2006).

The tuning parameter controls load discretization and the physical parameter spec-

ifies the initial position. Using a near-uniform distribution as the priors for these

two parameters, the posteriors were then calculated after running the simulations on

100 equally spaced values of each parameter. However, the posterior of load dis-

cretization is bimodal and the posterior of the initial position has a large variance.

Therefore, both parameters were poorly calibrated.

In Han et al. (2009), a simultaneous Bayesian calibration of physical and tun-

able parameters was proposed to address the limitation of Bayesian calibration when

applied to tuning parameters. The main idea is unlike physical parameters that can

be reasonably described by a prior distribution and a posterior distribution updated

using experiment data, tuning parameters do not really have any “uncertainty”.
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Their existence is for the sole purpose of minimizing the difference between the

simulation model and the real system’s response, as measured in forms described

in (3.6) and (3.7). In other words, a direct calibration approach should be applied

to determine 𝜽t while Bayesian calibration can still be applied to 𝜽p such that one

can still benefit from Bayesian calibration’s capabilities to quantify the uncertainty

in model predictions.

The procedure in Han et al. (2009) works with Gaussian processes with constant

mean functions. Following the notations in equation (3.11), this means 𝜷1 = 𝛽1,0 and

𝜷2 = 𝛽2,0, where 𝛽1,0 and 𝛽2,0 are two unknown parameters. The procedure has three

steps:

Step 1 Generate a grid embedded within the plausible ranges of 𝜽t and estimate

the difference between observations of the real system and simulation outputs.

For each 𝜽t on the grid, do the following:

1. Determine the values of 𝛽1,0 and 𝛽2,0 using a non-Bayesian argument that

interprets 𝛽2,0 as the minimized difference between observations and sim-

ulation outputs over the feasible ranges of 𝜽p. This is done by using Latin

hypercube design to select a set of 𝜽p values, and then compute the difference

between observations and simulation outputs for these 𝜽p values, and set 𝛽2,0
to the smallest among them. Then 𝛽1,0 is simply the difference between the

mean of the observations of the real system and 𝛽2,0.

2. Generate Monte Carlo samples from the posterior of 𝜽p,𝝎,𝝈
2
.

3. For a set of variable inputs, compute the estimated discrepancy between

real observations and simulation outputs using the Monte Carlo samples of

𝜽p,𝝎,𝝈
2
.

Step 2 Estimate the optimal tuning parameter values ̂𝜽
∗
t by selecting the 𝜽t that

achieves the smallest discrepancy between observations of the real system and

simulation outputs according to the estimates in Step 1.

Step 3 Holding ̂𝜽
∗
t fixed, perform Bayesian calibration on 𝜽p and obtain the pos-

terior distribution.

When applied to the same biomechanics simulation model for implant knee,

the variance posterior distribution of the physical parameter (initial position) was

much lower than calibrating both the load discretization and initial position using

the Bayesian calibration method. This represents a significant increase in calibration

accuracy.

3.5 Summary

In this chapter, we review two main classes of methods for model calibration. Direct

calibration has been the traditional approach towards model calibration. It is intu-

itive and easy to grasp by simulation modelers and analysts, and applies equally well
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to both physical and tuning parameters. Traditionally, direct calibration was lim-

ited to manually selecting a small set of calibration inputs to compare due to a lack

of computational power and methods to systematically perform calibration. In the

past decades, productive research activities on simulation optimization have created

efficient simulation optimization algorithms (Fu 2015b; Hong et al. 2015; Xu et al.

2016a) that largely alleviate this hurdle. These algorithms help make direct calibra-

tion more appealing, even when 𝜽 is high-dimensional and may include a mix of

continuous, integer, and categorical variables. It is equally important to point out

that rigorous simulation optimization algorithms such as ISC properly handles the

heterogeneous noise in stochastic simulations. However, direct calibration falls short

of fully representing the uncertainty in the calibrated parameters and subsequently

the uncertainty in model predictions.

Bayesian calibration offers a complementary set of merits and limitations. It pro-

vides a rigorous framework to integrate data with prior knowledge on calibration

parameters, and fully accounts for the uncertainty in calibration parameter estimates

and predictions. However, Bayesian calibration methods often require a consider-

able level of technical sophistication to be applied successfully. The use of Gaussian

process also means Bayesian calibration in its current form is more appropriate for

low-dimensional (e.g., 10) continuous calibration parameters, except when there is

specific structural information to exploit as is the case of the stochastic user equi-

librium model in a dynamic traffic assignment simulator in Flötteröd et al. (2011).

While current Bayesian calibration methods model observational error and simu-

lation noise, they are assumed to be homogeneous. However, it is well-known that

stochastic simulations, especially discrete-event simulation models for queuing sys-

tems, often have variances that can be very different across the range of variable

inputs of interest.

To conclude this chapter, we briefly discuss several directions of research that

may produce new general and efficient model calibration methods in the future.

Efficient simulation optimization algorithms for direct calibration Direct calibra-

tion depends critically on the performance of the simulation optimization algo-

rithm. While simulation optimization researchers have made big strides in the

past decades with algorithms such as nested partition (Shi and Olafsson 2009),

ISC (Xu et al. 2010), and R-SPLINE (Wang et al. 2013), there is still a great

need for further computational efficiency improvement when simulation models

are time-consuming to run. One promising strategy is to design simulation opti-

mization algorithms that allocate limited simulation budget in an optimal way to

minimize the impact of stochastic noise on the search. Preliminary results on ran-

dom search (Zhu et al. 2016), cross entropy (He et al. 2010; Zhang et al. 2016),

particle swarm optimization (Taghiyeh et al. 2016; Zhang et al. 2017), and nested

partition (Chen et al. 2014) have shown the potential of such approaches. Another

direction of work is to use statistical meta-models as a surrogate of the simulation

model (Barton 2009; Xu 2012; Salemi et al. 2014). Then in the direct calibra-

tion process, simulation optimization algorithms can use predictions made by the
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surrogate models to guide the search process, limiting the number of expensive

simulations that need to be run during calibration.

Extending Bayesian calibration for stochastic model calibration One major limi-

tation of Bayesian calibration is the assumption of homogeneous simulation noise.

Recent works on stochastic kriging (Ankenman et al. 2010; Chen et al. 2012,

2013) extends Gaussian process to handle stochastic problems with heteroge-

neous variances, and may potentially extend the applicability of Bayesian calibra-

tion to more general stochastic simulation models. The stochastic kriging frame-

work may also be extended in a similar way as in Han et al. (2009) to calibrate

both physical and tuning parameters.

Multi-fidelity model calibration Both direct and Bayesian calibration methods

may involve a large number of simulation model runs. For large-scale problems,

a high-fidelity simulation model may be very time-consuming to run and thus the

calibration process may face a prohibitive computation burden. Recent develop-

ments in multi-fidelity simulation optimization show that when low-fidelity mod-

els are available, it is possible to extract useful information from these approxi-

mate but computationally cheap models to achieve a significant increase in com-

putational efficiency (Xu et al. 2014, 2016a, b). Therefore, multi-fidelity sim-

ulation optimization provides a promising path for direct calibration of time-

consuming simulation models. The Bayesian calibration framework may also be

extended to make use of information from low-fidelity models (Absi and Mahade-

van 2016).
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Chapter 4
Validating Emergent Behavior in Complex
Systems

Claudia Szabo and Lachlan Birdsey

Abstract Undesired or unexpected properties are frequent, as large-scale complex

systems with nonlinear interactions are being designed and implemented to answer

real-life scenarios. Identifying these behaviors as they happen as well as determin-

ing whether these behaviors are beneficial for the system is crucial to highlight

potential faults or undesired side effects early in the development of a system, thus

promising significant cost reductions. Beyond the inherent challenges in identifying

these behaviors, the problem of validating the observed emergent behavior remains

challenging, as this behavior is, by definition, not expected or envisaged by sys-

tem designers. This chapter presents an overview of existing work for the auto-

mated detection of emergent behavior and discusses some potential solutions to the

challenge of validating emergent behavior. Building on the idea of comparing an

identified emergent behavior with previously seen behaviors, we propose a two-step

process for validating emergent behavior. Our initial experiments using a Flock of

Birds model show the promise of this approach but also highlight future avenues of

research.

4.1 Introduction

Unexpected behavior that cannot be reduced to the behavior of the individual system

components is common in complex systems, leading to in-depth analysis once the

behaviors are observed (Davis 2005; Johnson 2006; Mogul 2006). As systems grow

in the number and complexity of components, as well as the type of interactions and

coupling between components, these emergent behaviors are becoming critical to

analyze (Johnson 2006; Mogul 2006; Bedau 1997; Holland 1999). In other cases, a

reverse process is undertaken, where a specific system of systems is designed and

implemented with the specific aim of it exhibiting an emergent behavior. In recent

years, advances in complexity theory and modeling and simulation has led to the
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analysis of a plethora of emergent properties examples, from flocks of birds, ant

colonies, to the appearance of life and of traffic jams. In software systems, connec-

tion patterns have been observed in data extracted from social networks (Chi 2009)

and trends often emerge in big data analytics (Fayyad and Uthurusamy 2002). More

malign examples of emergent behavior include power supply variation in smart grids

due to provider competition (Chan et al. 2010), the Ethernet capture effect in com-

puter networks (Ramakrishnan and Yang 1994), and load balancer failures in a multi-

tiered distributed system (Mogul 2006). As emergent properties may have undesired

and unpredictable consequences (Mogul 2006; Ramakrishnan and Yang 1994; Floyd

and Jacobson 1993), systems that exhibit such behaviors become less credible and

difficult to manage.

Emergent properties have been studied since the 1970s (Bedau 1997; Holland

1999; Cilliers 1998; Gardner 1970; Seth 2008), and a number of methods for their

identification, classification, and analysis exist (Seth 2008; Chen et al. 2007; Kubik

2003; Szabo and Teo 2012a; Brown and Goodrich 2014). Existing methods are usu-

ally employed on simplified examples such as the Flock of Birds model, where only

three flight rules are implemented, as opposed to the myriad rules that affect flock-

ing in real life. Approaches to identifying emergent behaviors can be categorized as

either attempting to identify emergence as it happens, without prior knowledge, or

as using a definition of an emergent property and trying to identify its root causes.

In the first type of approaches (Kubik 2003; Szabo and Teo 2012a), formal methods

or meta-models calculated from composed model states are used. A key challenge

remains how to identify variables or attributes that describe the system components,

or the micro-level, and the system as a whole, or the macro-level, and the relation-

ships and dependencies between these two levels. Once these are defined, emergence

can be specified as the set difference between macro-level and the micro-level, how-

ever these levels are extremely difficult to capture and computationally expensive

to calculate. This does not happen when using a definition of a known or observed

emergent property with the aim of identifying its cause, in terms of the states of sys-

tem components and their interaction (Seth 2008; Chen et al. 2007). A key issue in

these works is that a prior observation of an emergent property is required, and that

emergent properties need to be defined in such a way that the macro-level can be

reduced or traced back to the micro-level.

In addition to these challenges, most approaches (Seth 2008; Chen et al. 2007;

Kubik 2003; Brown and Goodrich 2014) are demonstrated using simple models such

as Flock of Birds or Predator–Prey, which have limiting assumptions and constraints

when applied to more complex systems. For example, most approaches do not con-

sider mobile agents (Kubik 2003), assume unfeasible a priori specifications and defi-

nitions of emergent properties (Szabo and Teo 2012a), or do not scale beyond models

with a small number of agents (Teo et al. 2013). In the multi-agent systems com-

munity, approaches focus more on the engineering of systems to exhibit beneficial

emergent behavior and less on its identification (Bernon et al. 2003; Jacyno et al.

2009; Salazar et al. 2011). However, approaches that engineer emergent behavior do

not ensure that no other side effects occur as a consequence.
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To the best of our knowledge, no works focus on the validation of emergent behav-

ior, that is, on determining whether the observed emergent behavior is beneficial or

harmful for the system, with some theoretical advancements (Szabo and Teo 2012b)

existing in component-based simulations but without practical applications in real-

life scenarios. The challenges of validating a previously identified emergent behavior

surpass those of identifying the emergent behavior itself, as it is almost impossible,

using traditional validation methods, to distinguish between invalid system outputs

and the outputs generated by the emergent behavior itself. This challenge is even fur-

ther exacerbated when considering bias (Tolk 2017), and what better place for bias

to appear than when faced with results that seem impossible, such as those generated

by emergent behavior.

In this chapter, we focus on the validation of emergent behavior as a two-step

process. The first step focuses on identifying that the system exhibits emergent

behavior and, if possible, on identifying the interactions between subcomponents

that have caused the emergent behavior to appear. The second step focuses on iden-

tifying whether the emergent behavior is beneficial or desirable by comparing the

identified behavior with behaviors that have been previously validated. We discuss

several existing works that could be adapted to solve each step, outlining their limi-

tations and highlighting several directions for future work.

4.2 Identifying Emergent Behavior

Complex systems are ubiquitous and encompass systems from every discipline, from

biology (Odell 1998) to computer science (Odell 1998; Johnson 2006), an a tremen-

dous body of work has been dedicated to better understand the various unexpected or

undesired behaviors produced by these systems (Johnson 2006; Mogul 2006; Odell

1998; Fromm 2006). Holland (1999) and Bedau (1997) have pioneered the field by

defining key terms such asweak and strong emergence as well as defining these terms

using different degrees (Holland 2007). In this article, we consider weak emergence

as being the macro-level behavior that is a result of micro-level component interac-

tions, and strong emergence as the macro-level feedback or causation on the micro-
level.

Bedau (1997) defines an emergent property as “a property of assemblage that

could not be predicted by examining the components individually.” The flocking of

birds is a well-known example of emergent behavior in nature. Independent birds

aggregate around an invisible center and fly at the same speed for flock creation.

The birds come together to create something that would be entirely indiscernible by

studying only one or two birds. Two well-known examples of systems that exhibit

emergent behavior caused by interaction are the Fock of Birds model (Reynolds

1987), and the cellular automata Game of Life model (Gardner 1970). The former

achieves its emergent properties through each bird flocking around a perceived flock

center, while in the latter model the emergent properties are achieved by the patterns

that are formed by the cells transitions between states. Studies that propose various
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processes of detecting and identifying emergent behavior tend to use either one or

both of these systems to prove the validity of their proposed approach (Chan et al.

2010; Seth 2008; Szabo and Teo 2013; Chan 2011a).

It is a challenging task to build the exact specification and implementation of

a complex system, due to its inherent size, complexity, and nonlinear interactions

between components. To address this, agent-based systems, and in particular multi-

agent systems, are a useful formalism to model complex systems. The components

present in a complex system can be modeled as agents that perform their respec-

tive actions and interactions. The agent-based models are then used in simulations

to assist with research and analysis (Johnson 2006); in addition, multi-agent systems

can be engineered to exhibit emergent properties (Fromm 2006; Savarimuthu et al.

2007). Several formalisms have been proposed to obtain or engineer emergent behav-

ior, such as the DEVS extension proposed by Mittal (2013), Birdsey et al. (2016),

but they have yet to be employed in practice. By creating models where emergence

is an easily attainable product derived from agents interactions, users are relieved

from having to model every aspect of the complex system under study. Multi-agent

systems which have been designed to exhibit emergence are usually engineered to

focus on self-organization and cooperation between agents. These systems generally

rely on a system expert to identify the emergent behavior (Jacyno et al. 2009; Salazar

et al. 2011; Savarimuthu et al. 2007). For example, human societies and the myriad

ways that emergent properties can arise are generally modeled using this approach

in order to study aspects such as norm emergence (Jacyno et al. 2009; Savarimuthu

et al. 2007). However, even for systems that have been engineered to exhibit emer-

gence it is imperative to ensure that no side effects occur and that other undesired

properties to not appear and this remains a fundamental challenge.

Chan et al. (2010) highlights that agent-based simulation is the most suitable

method for modeling systems containing unexpected or emergent behaviors, because

it emphasizes that the actions and interactions between agents are the main causes

for emergent behaviors. Several works support the use of agent-based modeling for

studying emergent behaviors (Salazar et al. 2011; Fromm 2006; Anh 2012; Seru-

gendo et al. 2006). In addition to the Flock of Birds and Game of Life models, Chan

et al. (2010) show that other complex systems such as social networks and electricity

markets, implemented within an agent-based simulation, can exhibit emergent prop-

erties, which can then be identified. The methods in Chan et al. (2010) for detecting

emergence rely upon the presence of a system expert, who can identify the emergent

behavior.

There is a plethora of methods for the detection of emergence, and existing work

can be categorized as either postmortem or live analysis (Szabo and Teo 2012a).

Postmortem analysis methods are applied after the system under study has finished

executing, and use data that was recorded during the execution (Szabo and Teo 2013,

2012a). In contrast, live analysis methods are used while the system under study

is executing (Szabo and Teo 2012a; Chan 2011a). Most existing works focus on

postmortem analysis methods (Szabo and Teo 2013; Chen et al. 2009; Tang and

Mao 2014). In addition to postmortem and live analysis, methods can be classi-

fied into three main types (Teo et al. 2013): grammar-based (Szabo and Teo 2013;
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Kubik 2003), event-based (Chen et al. 2007), or variable-based (Seth 2008; Szabo

and Teo 2013; Tang and Mao 2014).

Grammar-based methods attempt to identify emergence in agent-based systems

by using two grammars, LWHOLE and LPARTS. Kubik (2003) defines that LWHOLE
describes the properties of the system as a whole and LPARTS describes the prop-

erties obtained from the reunion of the parts, and in turn produces emergence as the

difference between the two solutions. LWHOLE and LPARTS can be easily calculated

as the sets of words that are constructed from the output of agent behavior descrip-

tions. This method does not require a prior observation of the system in order to

identify possible emergent properties or behaviors, which therefore makes it suit-

able for large-scale models where such observations are notoriously difficult (Teo

et al. 2013). However, grammars require a formation of words and the process of

formalizing grammar tokens from the system information becomes impractical as

the system grows in complexity, resulting in computational issues, especially (Teo

et al. 2013; Kubik 2003). Work attempting to alleviate these issues identifies micro-

level properties and model interaction, and performs reconstructability analysis on

this data (Szabo and Teo 2013) in a postmortem context.

Event-based methods define behavior as a series of both simple and complex

events that changed the system state, as defined by Chen et al. (2007). Complex

events are defined as compositions of simple, atomic events where a simple event is

a change in state of specific variables over some nonnegative duration of time. These

state changes are defined by a set of rules or constraints. A constraint could be a

temporal, spatial, or component or variable constraints. First, a temporal constraint

defines the temporal relationship between two events. Second, a spatial constraint

defines the space within which an event should occur relative to another. Finally,

component or variable constraints define the relationship between variables or com-

ponents of the two events. Each emergent property is defined manually by a system

expert as a complex event. It is the particular sequence of both complex and simple

events in a system that lead to emergence occurring in the system. However, this

method relies heavily on the system experts and their specific definitions of emer-

gent behaviors. Furthermore, it can suffer from both agent and state space explosion

making it unsuitable for large systems.

In variable-based methods, a specific variable or metric is chosen to describe

emergence. Changes in the values of this variable signify the presence of emergent

properties (Seth 2008). The key idea is that emergence most likely occurs as the

system self-organizes and exhibits some kind of patterns or structures, thus resulting

in lower entropy. (Mnif 2006) introduce emergence as the difference between the

entropy at the beginning and at the end of the system run. A system is said to exhibit

emergence if the entropy difference is positive, i.e., the entropy value decreases in the

end. Despite its simplicity, Shannon entropy only considers a single system attribute

with discrete values.

The center of mass of a bird flock could be used as an example of emergence

in bird flocking behavior, as shown in Seth (2008). Seth’s approach uses Granger

causality to establish the relationships between a macro-variable and micro-variables

and proposes the metric of G-emergence, a near-live analysis method. This has the
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advantage of providing a process for emergence identification that is relatively easy

to implement. However, the approach requires system expert knowledge as obser-

vations must be defined for each system. Szabo and Teo (2013) proposed the use

of reconstructability analysis to determine which components interacted to cause a

particular emergent property (defined through a set of variables). They identified

the interactions that cause birds to flock (Reynolds 1987), the cells that cause the

glider pattern in Conway’s Game of Life (Gardner 1970), and the causes of traffic

jams. However, their method is heavily dependent on the choice of the variable set

that represents the micro- and macro-levels and requires the intervention of a system

expert.

Variable-basedmethods from other fields, such as information theory and machine

learning, have been adapted with the goal of emergence detection. Information the-

ory approaches for detecting emergence have also been proposed by using such tech-

niques as Shannon Entropy (Gershenson and Fernandez 2012; Prokopenko et al.

2009; Tang and Mao 2014) and variety (Holland 2007; Yaneer 2004). These have

advantages over other variable-based methods in that they can process large amounts

of data efficiently. Tang and Mao (2014) propose measures of relative entropy that

depend on the main emergent property of a system under study. However, these meth-

ods require the input of a system expert because they rely on the emergent property

of a system being classified along with a specific function to be defined for that par-

ticular property. Machine learning classification techniques have also been proposed

as a way of detecting emergence. A variant of Bayesian classification (Brown and

Goodrich 2014) has been used to successfully detect swarming and flocking behav-

ior in biological systems such as the Flock of Birds model (Reynolds 1987). This

approach involves identifying key features of an agent, such as how many neighbors

an agent has, and uses this information to determine the likelihood that a random

set of agents is exhibiting emergence. Other methods from machine learning have

been utilized, such as conditional random fields, and hidden Markov models in Vail

et al. (2007), but with the goal of activity recognition in domain specific contexts.

Vail et al. used conditional random fields and hidden Markov models somewhat suc-

cessfully to determine if agents were performing a particular distinct action based on

their relational position to other agents. A substantial number of methods for detect-

ing emergence, both in a live or postmortem capacity exist, however the problem of

determining whether the emergent behavior is beneficial remains unsolved.

4.3 Validating Emergent Behavior

The validation of emergent behavior in a complex system is very challenging due to

the inherent “unexpected” nature of emergent behavior: in this case, traditional meth-

ods of validation will fall short, as there are no means whereby anomalous results,

impossible to be seen in the real system modeled, can be distinguished between the

results caused by the manifestations of the emergent behavior or property. To address

this, we propose to divide the validation step into two main steps. In the first step,
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focused on identifying emergent behavior, techniques such as the ones discussed

above could be used to identify that the system exhibits an emergent property. In

addition, techniques such as reconstructability analysis (Szabo and Teo 2013) could

be used to obtain further information about the causes of the identified emergent

behavior, in terms of the system components involved in the interaction and the

micro-property that caused the macro-emergent property to appear. Once the emer-

gent property has been identified, the second step conducts a behavior comparison
to determine if this current behavior is similar to some behaviors seen before. This

method relies on the assumption that at the time of analysis, it will be understood by

the system expert whether previously exhibited emergent behaviors are beneficial.

We discuss these in the following.

4.3.1 Identifying Emergent Behavior

The identification of emergent behavior can be performed using any of the meth-

ods described above. In order for the behavior comparison to be effective, detailed

information about the system must be recorded. This includes:

1. system states—all system states and their evolution over time must be recorded

2. interactions—both direct and indirect (see Chan 2011b) interactions must be

recorded, including entity states before and after the interaction

3. emergent behavior causes—depending on the methods used in the behavior com-

parison, the causes of emergent behaviors, in terms of micro-properties, would

have to be recorded. This would be the case if Bayesian classification were to be

employed for comparison.

4.3.2 Behavior Comparison

The comparison between the model to be validated and a reference model has been

proposed before for the validation of component-based simulations (Petty and Weisel

2003a, b; Szabo et al. 2009), where similar challenges are encountered. In these

works, a formal representation of the model is compared with a reference model

using graph-based techniques, however a significant challenge remains in specify-

ing a reference model for comparison.

We build on this idea and the hypothesis that the evolution of component interac-

tions over time is one of the causes of emergent behavior. We propose to capture the

interaction between components over a time interval using an interaction graph for-

malism, and to compare between the interaction graphs of the current system under

study, and a system that has been shown to exhibit emergent behavior, and for which

emergent behavior has been previously validated.
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4.3.2.1 Interaction Graph Formalism

We define an interaction graph to capture the interactions between the model entities

over a given time interval Ts
, where s is the size of the interval in time units and

remains the same for a simulation run. The term interactions can capture all types of

interactions, namely, information poll, communication, and indirect, as outlined by

Chan (2011b). will capture all types of interactions as defined above. An interaction

graph is a directed graph where each vertex represents a model entity, e ∈ M, and

each arc represents a interaction between two entities, ei → ej, and carries a weight

wij. This is formally defined as:

IGTs(M) =< VTs ,ETs > (4.1)

VTs = {ei|ai ∈ M, i = 1,… , n} (4.2)

ETs = {(ei, ej,wij)|ei, ej ∈ VTs ,wij ∈ Z+} (4.3)

The weight wij of the arc ei → ej is incremented every time an interaction between

ei and ej takes place. Currently, this calculation increments the weight of the arc, but

this can be refined to assign different weights to various interaction types, if, for

example, more importance was assigned to indirect interaction as a cause of emer-

gence (Szabo and Teo 2013).

4.3.2.2 Comparing Interaction Graphs

We discuss in the following several methods that could be used for comparing

between two interaction graphs.

Comparison using Hausdorff Distance The Hausdorff distance (HD) is a metric

that is used to determine the similarity between two graphs with respect to shape

(Huttenlocher et al. 1993). For two interaction graphs IG(A) and IG(B), the Hausdorff

distance is defined as:

HD(A,B) = max{h(A,B), h(B,A)} (4.4)

where

h(A,B) = max
a∈A

{min
b∈B

{d(a, b)}} (4.5)

and d is the distance between vertices a and b, with a ∈ A and b ∈ B, respectively.

For points in a two-dimensional Euclidian space, the distance d could be calculated

as the Euclidian distance between points a(xa, ya) and b(xb, yb) as
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d(a, b) =
√
(xa − xb)2 + (ya − yb)2, where (xa, ya) and (xb, yb) are the Cartesian coor-

dinates of points a and b, respectively. However, any distance can be used.

As an example, in a bird flocking model, the coordinates could be those of the

birds. Intuitively, the Hausdorff distance between interaction graphs A and B mea-

sures how close A and B are to each other, where “close” means that every vertex

in A is close to some vertex in B, using some distance function such as the two-

dimensional Euclidian distance. When other distances are used, domain ontologies

can be employed to further refine the meaning of similarity.

The Hausdorff distance focuses on the position of the agents and only considers

agents that are interacting, i.e., are included in the interaction graph. This implies

that this metric will not give useful results in cases where agents are stationary or

agent interactions are sparse. In cases where the entities are stationary, their posi-

tions across all interaction graphs are unchanging, which would lead to results with

constant values. If entity interactions are sparse, the interaction graphs would con-

tain wildly different information at each interval as few agents would be captured.

This could be remedied by careful selection of the snapshot interval size. Moreover,

as the coordinate information is recorded at the end of the snapshot interval and the

metric does not consider interaction beyond the presence of the nodes in the IG,

the distance function ignores cases in which the emergent behavior happens in the

middle of the interval. This further makes the metric dependent on the size of the

snapshot interval. For example, if a flock formed at the start of a snapshot interval

but was broken midway through the snapshot interval, the entity positions at the end

of the snapshot would likely not represent a flock.

Comparison using Statistical Complexity Statistical complexity (SC) is a metric

that determines the amount of information entropy, or complexity, in a particular

graph. As the entropy of a system decreases, it can be shown that collective behavior

increases (Tang and Mao 2014). As emergence can be construed as being a collec-

tive behavior, it makes sense to consider measures of entropy to capture emergence.

The simplest way to determine statistical complexity is by using Shannon entropy

(Gershenson and Fernandez 2012; Prokopenko et al. 2009), which is defined as:

SCSE = −
n∑

i=0
p(ai)log10p(ai) (4.6)

where p(ai) is the probability mass function with respect to agent ai, and n is the

total number of agents. While generic probabilistic mass functions can be defined to

cover all systems, more accurate results may be obtained by specifying it for each

particular system. For example, for the Flock of Birds model the probability mass

function, p(ai), could be defined as:

p(ai) =

N∑

j=0
{wjk|j ∨ k = i}

(n2 − n) × s × typesOfInteractions
(4.7)
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where wjk ∈ E, s is the snapshot size, n is the total number of agents in the snapshot,

N is the total number of interactions that occurred in the snapshot, and

typesOfInteractions is the number of interaction rules for the system. This particular

p(ai) calculation represents the proportion of total interactions across the snapshot

interval in which agent ai is involved.

Since statistical complexity operates on a single interaction graph, a threshold or

series of thresholds must be defined so as to allow for comparison between a candi-

date interaction graph and a reference interaction graph. A simple way of achieving

this is by taking the difference of the result for the candidate interaction graph (IG)

and the reference interaction graph (IGe).

D(IG, IGe) = SCSE(IGe) − SCSE(IG) (4.8)

By taking the difference, the change in information entropy between the candidate

and reference interaction graphs becomes evident. If we were to use the individual

SCSE(IG) result, it may not highlight an emergent behavior, as some systems do not

show emergent behavior when this result tends to zero (Tang and Mao 2014).

G-Emergence G-Emergence is a metric that can provide a strong indication of the

occurrence of emergent behavior. G-Emergence is defined in Seth (2008) as:

geM∣m = gaM∣m

(
1
N

N∑

i=1
gcmi→M

)

(4.9)

A macro-variable M is G-emergent from a set of micro-variables m if and only if

M is G-autonomous with respect to m, and M is G-caused by m. The larger geM∣m is,

the greater the presence of emergent behavior. This implies that G-emergence will

tend to 0 if M is directly caused by m or if M is entirely independent. The definitions

for G-autonomy and G-causality are also defined in Seth (2008).

G-Emergence allows for detection of emergence in a sequence of snapshots as

opposed to a singular snapshot. While this would result in slightly delayed detection,

if the snapshot interval is small enough the delay would be negligible.

Comparison using Bayesian Classification Bayesian classification (BC) is a met-

ric that determines if a collective behavior is occurring, and has been shown to be

moderately effective in identifying swarming in models such as Flock of Birds and

schools of fish. Bayesian classification is defined by Brown and Goodrich (2014) as:

b̂collective = ∗argmaxbP(b)
∏

i∈S
P(di|type)P(wi|type) (4.10)

where b is a set of collective behaviors, S is the set of randomly selected agents, and

P(d|type) and P(w|type) are the likelihoods of the chosen features. The set of col-

lective behaviors is equivalent to a set of emergent behaviors that are exhibited by

the model, such as flocking or cell structure patterns. This set of collective behaviors
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must be defined by a system expert. As with any classification method, given suffi-

cient training data, BC can be used to distinguish between various types of the same

emergent behavior, e.g., birds behaving collectively by flocking closely together or

by following each other in a torodial structure (Brown and Goodrich 2014).

One of the main distinctions from the previously discussed approaches is that

Bayesian classification requires several factors to be established prior comparison.

First, a set of collective behaviors needs to be identified. In the case of the flocking

of birds, the only collective behavior is flocking. This can be easily done if the first

validation step provides comprehensive information about the identified emergent

behaviors, perhaps allowing some form of grouping. Second, at least one key fea-
ture of an entity also needs to be predetermined. For example, Brown and Goodrich

(2014) use the angular velocity of an agent and the number of neighbors for detecting

emergence in a swarming model. In Bayesian classification, the likelihoods of these

key features are assumed to be conditionally independent, so it is not unreasonable

to assert that any number of key features could be determined and used. This leads

to a slight redefinition of Bayesian classification:

b̂collective = ∗argmaxbP(b)
∏

i∈S
P(F

𝛼i|type)P(F𝛽i|type)... (4.11)

where the variables are the same as Eq. 4.10 except that F
𝛼
i and F

𝛽
i are key features

with respect to agent i.
The challenge in calculating Bayesian classification lies in defining the key fea-

tures of a system and determining their likelihood prior to execution. Brown and

Goodrich (2014) propose that the likelihoods of each feature be determined through

a training phase.

Comparison using Similar Neighbors By adapting a popular clustering algorithm,

k-means clustering, to focus on the characteristics of agents, we may reveal informa-

tion that is associated with a particular type of emergent behavior. Similar Neighbors

is defined as:

SN(Tk) =
i=0∑

i<N

j=0∑

j<N
{ei|i ≠ j, d(ei, ej) < 𝛿, c(ei, ej)} (4.12)

where N is the total number of entities, d(ei, ej) is the distance between ei and ej, 𝛿
is a distance threshold, and c(ei, ej) is a boolean characteristic comparison function

that checks whether ei and ej possess the same characteristics.

4.3.3 Initial Experiments

We analyze the suitability of using interaction graphs and Hausdorff Distances to

compare between two emergent properties in the Flock of Birds model. The Flock of
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(a) Flock of Birds: IG(B20) with minimum
HD: 109.77

(b) Flock of Birds: Reference Graph:
IGe(B20)

Fig. 4.1 Comparison between IG(B20) and IGe(B20)

Birds model (Reynolds 1987) captures the motion of bird flocking and is a seminal

example in the study of emergence. At the macro-level, a group of birds tends to

form a flock, as shown in Fig. 4.1b. Flocks have aerodynamic advantages, obstacle

avoidance capabilities and predator protection, regardless of the initial positions of

the birds. At the micro- level, each bird obeys three simple rules (Reynolds 1987):

1. separation—steer to avoid crowding neighbors

2. alignment—steer toward average heading of neighbors

3. cohesion—steer toward average position of neighbors

We model this as a multi-agent system in which each bird is an agent that has the

three movement rules defined above. Other bird attributes include initial position

and initial velocities. In our experiments, the initial bird positions can be either fixed

or assigned randomly at start up. Bird velocities are assigned randomly. The model

parameters can also influence emergent behavior analysis. As such, we collect and

analyze interaction graphs of Flock of Birds models with sizes of 20 and 50 birds,

with fixed and randomly assigned position values, and randomly assigned velocity

values.

Table 4.1 presents the values of HD for a model of 20 birds, IG(B20), and Fig. 4.1a

is the companion interaction graph with the best result. The experiment compares

interaction graphs at different time steps with IGe(B20), shown in Fig. 4.1b, which,

for this experiment, is taken to be the interaction graph of a model with 20 birds

that have the same starting positions. For both models, the initial velocities are ran-

domly assigned. It is important to note here that a validation run in which IGe(B20)
represents exactly the same model, i.e., the velocities have the same values, leads

Table 4.1 HD(IG(B20), IGe(B20)): 20 birds, s = 5
Time interval Min Median Mean 𝜎

T100 109.77 161.62 165.62 31.34

T500 110.49 173.93 203.15 84.86

T1000 154.44 273.62 381.78 211.88
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Table 4.2 HD(IG(B50), IGe(B50)): 50 birds, s = 5
Time interval Min Median Mean 𝜎

T100 143.13 171.79 15.32 188.51

T500 101.33 139.84 58.60 249.96

T1000 86.84 215.83 88.08 346.39

(a) Flock of Birds: IG(B50) with minimum
HD: 86.84

(b) Flock of Birds: Reference Graph:
IGe(B50)

Fig. 4.2 Comparison between IG(B50) and IGe(B50)

to distance values of zero. The large variance shown in this particular experiment,

and across many of the experiments, is caused by the initialization of bird velocities

always being random. As the Flock of Birds experiments take place in an unbounded

environment, it is highly likely that a small number of birds may be situated a large

distance away from the flock therefore influencing the distance calculations.

Table 4.2 presents the result for a comparison where both the reference and can-

didate graphs contain 50 birds. Figure 4.2 presents both the candidate interaction

graph with best result and the reference graph. Visual comparison between candi-

date graph with the best result and the reference clearly shows that emergence is

present in multiple subsets of agents.

As it can be seen, we successfully detected emergence across several model con-

figurations using a reference graph that contained only twenty birds. Despite the

different model configurations ostensibly very similar semantically, they are very

distinct from an automated emergence identification perspective with respect to num-

bers of birds, number of types and their position and velocity values.

We also found that graphs that were obtained at different time intervals could be

compared successfully. In extreme cases, we theorize that the interval gap would

be a problem but use of certain metrics may lessen this issue as well as how much

information is present in the comparison and reference graphs. We also found that

comparisons where the reference graph and candidate graph represented different

numbers of agents did not influence the results significantly. In addition, we were
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able to detect emergence with a reference graph of just twenty birds in a system that

contained two types of birds and fifty birds overall.

These experiments show that this approach is promising, however several limi-

tations exist. First, Hausdorff distance can only detect emergence that is a result of

the agents’ positions in space. Second, it only considers the positions recorded at the

end of the time interval. Lastly, the Flocks of Birds model, while well studied in the

literature, is still a simple, theoretical model. More detailed, realistic scenarios need

to be considered, and all presented methods need to be studied in depth to further

advance this work.

4.4 Conclusion

In this chapter, we highlight the inherent challenges in validating emergent behaviors,

as an invalid behavior can be indistinguishable between an emergent behavior that

has never been seen before. We propose a two-step process of identification and

comparison to alleviate this. Our approach relies on an architecture that first identi-

fies that an emergent, unexpected behavior has occurred in the system and retrieves

and stores all information about this behavior. In the second step, the identified

emergent behavior is compared with previously observed emergent behaviors using

aninteraction graph formalism and several metrics, both existing and novel. This step

builds upon a hypothesis that the evolution of component interaction is one of the

causes of emergence. Our initial experiments show that this approach is promising,

but more extensive experiments with various models under different conditions need

to be performed.
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Chapter 5
Input Model Risk

Eunhye Song and Barry L. Nelson

Abstract Input model risk, which is also called “input uncertainty,” refers to the

effect of not knowing the true, correct distributions of the basic stochastic processes

that drive a computer simulation. Examples of input models include interarrival-time

and service-time distributions in queueing models; bed occupancy and patient char-

acteristic distributions in healthcare models; distributions for the values of underly-

ing securities and assets in financial models; and time-to-failure and time-to-repair

distributions in reliability models. When the input distributions are obtained by fit-

ting to observed real-world data, then it is possible to quantify the input model risk,

or to choose input models that hedge against this risk. In this chapter, we define input

model risk and describe various proposals for addressing it that had their origins at

the Winter Simulation Conference.

5.1 Introduction

The Winter Simulation Conference (WSC) has had a long and distinguished history

of research in simulation model validation. Model validation is “the substantiation

that a computerized model within its domain of applicability possesses a satisfactory

range of accuracy consistent with the intended application” (Sargent et al. 2016).

However, even a carefully validated model is an imperfect representation of real-

ity, so decisions based on simulation models are always subject to some level of

model risk, which we define loosely as the potential error that arises due to lack of

fidelity of the simulation model. When simulation model risk can be quantified, then

it is possible to reflect that risk in simulation-based decisions. Although a complete
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characterization of simulation model risk from all sources is not yet in sight, quantifi-

cation of input model risk has been pioneered by WSC researchers since the 1990s.

In this chapter, which is based on Song et al. (2014), we review the research contri-

butions to input model risk that have occurred at WSC, and speculate about potential

future advances.

Recall that the “stochastic” in stochastic simulation is a consequence of the input

models that drive the simulation output. In the simplest case, the input models are

fully specified univariate probability distributions from which the simulation gener-

ates independent and identically distributed (i.i.d.) random variates. More generally,

the input models are stochastic processes described probabilistically (e.g., their joint

distribution), rather than logically (customers are served in the order they arrive).

The fidelity with which the input models capture the uncertainty in the system of

interest directly affects the fidelity of the conclusions that can be drawn from the

simulation experiment.

Input models may be specified a priori from process physics, culled from the

experience of informed participants, or tailored to conform to real-world data. In

this chapter we focus on input models that are “fit” to representative samples of real-

world data. These input models are incomplete representations of reality because

the data sample is necessarily finite, and this is the source of input model risk. Our

interest is in quantifying or protecting against the uncertainty in the input models

that propagates to the output performance measure estimates.

The chapter is organized as follows: After some background and notation in the

next section, we review the process of input modeling in Sect. 5.3. Approaches

for quantifying the variance induced by uncertain input models are presented in

Sect. 5.4, followed by a brief overview of methods for hedging against input model

risk in Sect. 5.5. The impact of input model risk on simulation optimization over a

finite number of alternatives is described in Sect. 5.6 before offering conclusions.

We almost exclusively cite papers presented at WSC as the key concepts and ideas

typically first appeared there. For surveys on this topic that were presented at WSC,

see Barton (2012), Henderson (2003), Lam (2016) and Song et al. (2014). See also

Chap. 15 that addresses the impact of input uncertainty on simulation optimization

with a focus on problems for which the decision variables are continuous-valued.

5.2 Background and Notation

Let 𝐅 denote the collection of input models in the simulation (we will be more spe-

cific about this collection later). We represent the simulation output on replication j
as

Yj(𝐅) = 𝜂(𝐅) + 𝜀j(𝐅)

where 𝜂(𝐅) = E[Yj(𝐅)] is the expected value of the simulation output random vari-

able when we use input distributions 𝐅, and 𝜀j(𝐅) is a mean 0 random variable repre-

senting the stochastic noise that is a consequence of the input models. Since the out-

http://dx.doi.org/10.1007/978-3-319-64182-9_15
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put could be an average, an indicator variable, a sample variance, a sample quantile

or any number of other quantities, this is a very general representation that empha-

sizes the dependence of the system performance measure 𝜂(𝐅) and the simulation

output Yj(𝐅) on the chosen input models 𝐅.

To be concrete, in a queueing simulation we might have input models

𝐅 = {F1,F2}, where F1 is a nonstationary Poisson arrival process, and F2 is a

service-time distribution of unknown family. The output Y(𝐅) is the average cus-

tomer delay from 8 AM to 9 PM, and 𝜂(𝐅) its expected (mean) value, the quantity we

are interested in estimating. To execute a simulation experiment, we need a specific

choice or choices for 𝐅, and the natural approach when we have real-world input data

is to use a fitted distribution �̂�, which is a stand-in for the unknown true real-world

distribution denoted by 𝐅c
(the “c” indicates “correct”). Therefore, the simulation

results we generate are

Yj(�̂�) = 𝜂(�̂�) + 𝜀j(�̂�).

Given the choice �̂�, there is a vast literature on simulation design and analysis that

provides guidance on how many replications we need, and what estimator to use,

to estimate 𝜂(�̂�). Clearly this analysis is conditional on �̂�, and therefore it ignores a

potentially large source of model risk due to �̂� ≠ 𝐅c
.

The most basic form of the input model risk problem is to quantify how much
uncertainty in the simulation-based estimator of 𝜂(𝐅c) is caused by using �̂� as
an estimator of 𝐅c

. Notice that the goal is to estimate properties of the real-world

system—denoted 𝜂(𝐅c) here—rather than properties of the simulation model, 𝜂(�̂�).
Much of simulation output analysis has been tailored to the latter objective, not the

former. Alternative input-model-risk formulations try to choose �̂� to protect against

downside consequences of decisions rather than to closely match the real-world data,

and to optimize system performance when all of the alternatives are subject to input

model risk (see also Chap. 15).

To set the stage, we start with a high-level discussion of input modeling itself.

5.3 Input Modeling

For ease of exposition, suppose (temporarily) that the system of interest has only

one source of randomness represented by a univariate input distribution Fc
. Gen-

erally Fc
is unknown; however, we can observe a realization (real-world data)

𝐱m = {x1, x2,… , xm} of the i.i.d. input process X1,X2,… ,Xm ∼ Fc
. We use capi-

tal letters such as X to denote a random variable, and lowercase letters such as x for a

realization. The estimated distribution F̂ depends on any prior information we have

about Fc
and the observed data 𝐱m. Choosing F̂ is called input modeling.

The goal of the simulation experiment is to precisely estimate the true system

performance measure, which is 𝜂(Fc) in our set up. Therefore, estimating Fc
precisely

http://dx.doi.org/10.1007/978-3-319-64182-9_15
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is a sufficient, but not a necessary condition; to achieve our goal we need 𝜂(F̂) to be

close to 𝜂(Fc), not F̂ = Fc
. In some specialized situations, we know what specific

properties of F̂ need to be close to the corresponding properties of Fc
for 𝜂(F̂) to be

close to 𝜂(Fc)—the steady-state mean delay in an M/G/1 queue depends only on the

mean and variance of the service-time distribution, for instance—but this is certainly

not possible in general because 𝜂(⋅) is implicit in the simulation logic and therefore

unknown. As a consequence, the focus of input modeling is typically on the fidelity

of F̂ with respect to Fc
. The two main philosophies of input modeling are classical

and Bayesian, and while certainly different, they share some common features when

it comes to input model risk.

The classical approach is to assume that there exists a true distribution Fc
, and

the goal is to infer Fc
from the real-world data using methods that have good perfor-

mance when averaged over the possible samples X1,X2,… ,Xm. For instance, if Fc

is believed to have a known distribution family but unknown parameters 𝜃
c
—that is,

Fc(x) = F(x ∣ 𝜃c) with F known—then the parameters may be estimated using max-

imum likelihood estimators (MLEs), least squares, generalized method of moments,

or other methods. Typically, these estimators are asymptotically consistent for 𝜃
c

as

m → ∞. Prior information such as the physical basis of the input process may influ-

ence the choice of distribution family. There is commercial input modeling software

that fits the parameters of a large collection of distribution families and also pro-

vides ways to assess the fit, including goodness-of-fit tests and likelihood-based rank-

ings. Errors in fitting are characterized by the sampling distribution of the parame-

ter estimator 𝜃; since this distribution is often hard to derive, approximations based

on large-sample asymptotics or bootstrapping are often used. If there is not enough

evidence that Fc
has a certain parametric family, then an empirical cumulative dis-

tribution function (ecdf) can be employed, which converges to Fc
asymptotically.

Cheng (1994) presents a tutorial on input modeling with an eye toward quantifying

input model risk.

Bayesians are less interested in discovering the true distribution Fc
and more

interested in the likelihood of possible choices given the data. Bayesian inference

starts by capturing any knowledge available about Fc
in the form of a prior probabil-

ity distribution; this distribution may be on the family of distributions, the parameters

of a specific family of distributions, or both. For instance, we might believe that Fc
is

one of the families in the set {F1,F2,… ,Fk}with prior probabilities 𝜋1, 𝜋2,… , 𝜋k.

More often, we assume that the family of Fc
is known and provide a prior 𝜋

𝛩
(𝜃) on

the value of its parameter vector 𝛩, which is treated as a random vector.

After collecting the real-world data 𝐱m, the prior distribution 𝜋
𝛩
(𝜃) is updated to

a posterior distribution p
𝛩
(𝜃 ∣ 𝐱m) according to Bayes’ rule

p
𝛩
(𝜃 ∣ 𝐱m) ∝ L (𝐱m ∣ 𝜃)𝜋

𝛩
(𝜃),

where L (𝐱m ∣ 𝜃) is the likelihood function of 𝐱m given 𝛩 = 𝜃. Notice that the pos-

terior distribution is conditional on the particular realization 𝐱m that was obtained.

The posterior distribution p
𝛩
(𝜃 ∣ 𝐱m) plays the role for Bayesians that the sampling
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distribution of 𝜃 plays in the classical approach by quantifying the uncertainty about

𝜃
c
. Under some regularity conditions, the posterior distribution of 𝛩 converges to a

degenerate distribution at 𝜃
c

independent of the choice of the prior distribution as the

sample size m → ∞; this is the Bayesian concept of consistency. See Chick (1997,

1999) for Bayesian input modeling to facilitate evaluation of input model risk.

Returning to the main purpose of the simulation study—to make decisions based

on an estimate of 𝜂(Fc)—both classical and Bayesian input modelers face a similar

problem: actually executing a simulation experiment requires a specific choice of

distribution and distribution parameters. When only the parameters are unknown,

we often use the single “best” choice, such as the MLE in the classical paradigm

or the maximum a posteriori (MAP) estimator for Bayesians, but a single choice

assumes away the very real uncertainty about the input model. However, since 𝜂(⋅)
is unknown, characterizing uncertainty about the input model (via a sampling or

posterior distribution) is not enough since the goal is to measure the uncertainty in

estimating 𝜂(Fc). Therefore, to quantify input model risk, some way to propagate the

uncertainty about F̂ to the estimate of 𝜂(Fc) is required.

An alternative to fitting an input model F̂ that appears to best represent the real-

world data from Fc
and then to propagate the error, is to search for an input model

F̃ that is plausible given the real-world data from Fc
but leads to worst-case system

performance among all plausible input models. This approach hedges against model

risk rather than trying to quantify it, and directly emphasizes the output performance

measure rather than the input model. The definition of “plausible” and the search

within the plausible set are the challenges for this approach.

5.4 Quantification of Input Model Risk

We start with the goal of measuring the input model risk, when we fit �̂� to estimate

Fc
and use it in the simulation.

5.4.1 A Measure of Input Model Risk

One difficulty in describing input uncertainty is that there are many types of input

models that may arise in a computer simulation. These include univariate inputs such

as customer service times; time series inputs such as the weekly demands for milk;

multivariate inputs such as the age, income, gender, and occupation of a customer;

and time-dependent inputs such as the arrival times of calls to a call center. For expo-

sition, we assume that the input models for the simulation consist of L independent,

univariate distributions 𝐅 = {F1,F2,…FL} each of whose role is to model an i.i.d.

input process. For instance, in a stationary queueing system with server failures we

might have𝐅 = {F1,F2,F3,F4}, the distributions of interarrival times, service times,
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time until server failure, and server repair time, respectively. Let Y(𝐅) be a random

variable that represents the generic output of the simulation—such as the average

customer delay in the queueing system with failures—when the input distributions

are 𝐅.

We work with the premise that there are unknown, but “correct,” real-world distri-

butions 𝐅c = {Fc
1,F

c
2,… ,Fc

L}. From the 𝓁th distribution, we are able to observe m𝓁
i.i.d. real-world observations X𝓁1,X𝓁2,… ,X𝓁m𝓁

from which to “fit” Fc
𝓁 , giving the

collection of fitted input models �̂� = {F̂1, F̂2,… , F̂L}. We then run the simulation

and obtain outputs Y1(�̂�),Y2(�̂�),… ,Yn(�̂�) across n i.i.d. replications. The goal of the
simulation experiment is to estimate 𝜂(𝐅c) = E[Y(𝐅c)]. Again for ease of exposition,

we assume that 𝜂(𝐅c) is estimated by the sample mean across n replications

Ȳ(�̂�) = 1
n

n∑

j=1
Yj(�̂�) = 𝜂(�̂�) + 1

n

n∑

j=1
𝜀j(�̂�).

The variance of the point estimator is

Var[Ȳ(�̂�)] = Var[E(Ȳ(�̂�) ∣ �̂�)] + E[Var(Ȳ(�̂�) ∣ �̂�)]

= Var[𝜂(�̂�)] + 1
n
E[Var(𝜀1(�̂�) ∣ �̂�)], (5.1)

where the outer variance and expectation on the right-hand side are with respect to

the sampling distribution of �̂� (classical) or the posterior distribution of �̂� (Bayesian).

Notice that the second term in (5.1) accounts for the inherent variability in the sim-

ulation given a choice of input distributions, and it can be driven to 0 by increasing

the number of simulation replications n. The size of the first term, however, depends

on a complex interaction between the real-world sample sizes 𝐦 = {m1,m2,… ,mL}
and the structure of 𝜂(⋅).

One definition of input model risk is 𝜎2
I = Var[𝜂(�̂�)], the variance in the system

mean due to having estimated 𝐅c
. Although this definition is straightforward, esti-

mating 𝜎
2
I is not as it requires (a) the distribution of �̂� and (b) the functional form of

𝜂(⋅), neither of which is known in general. This illustrates why assessing input model

risk is difficult and motivates the methods that have been suggested at WSC and are

reviewed below.

Conceptually, if we had B independent real-world samples of input data of size 𝐦,

yielding B independent fitted input distributions �̂�1, �̂�2,… , �̂�B, and we knew the true

mean response functional 𝜂(⋅), then we could estimate 𝜎
2
I via the unbiased estimator

𝜎
2
I = 1

B − 1

B∑

b=1
(𝜂(�̂�b) − �̄�)2,where �̄� = 1

B

B∑

b=1
𝜂(�̂�b).

However, if we actually had multiple real-world data sets then we would certainly

pool them to obtain a better estimator of 𝐅c
; thus, no matter how much data we have
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it is best to treat it as one sample. In addition, 𝜂(⋅) is unknown or we would not be

simulating.

It is worth mentioning that one other aspect of input uncertainty that is rarely

noted, even in the input uncertainty literature, is bias. Specifically,

E[𝜂(�̂�) − 𝜂(𝐅c)] ≠ 0

in general. This is the case even when E[�̂�] = 𝐅c
pointwise because 𝜂(⋅) is typically

a nonlinear transformation. We might hope that 𝜂(�̂�) → 𝜂(𝐅c) in some sense as the

real-world sample sizes m𝓁 → ∞, 𝓁 = 1, 2,… ,L, but this is the most we can hope.

Thus, the ideal measure of input model risk is MSE[𝜂(�̂�)], which combines both

variance and bias, but the published work focuses on variance.

5.4.2 Variability of ̂𝐅

In the classical setting, the variability of �̂� as an estimator of 𝐅c
is quantified by

its sampling distribution; that is, we try to infer the distribution of possible �̂�’s that

could be realized from the single sample of data that we actually have. There have

been two primary approaches in the literature: large-sample asymptotic distributions

as in Cheng (1994), and bootstrapping as in Ankenman and Nelson (2012), Barton

and Schruben (1993, 2001), Cheng (2001), and Song and Nelson (2013).

To simplify the exposition, suppose again that there is only L = 1 input distribu-

tion, and we believe Fc(x) = F(x ∣ 𝜽c) is a parametric distribution with known fam-

ily (e.g., Poisson), but unknown parameter vector 𝜽
c
. The family might be “known”

because of process physics (e.g., an arrival process consisting of the superposition of

many customers making independent but infrequent decisions about when to arrive

tends to be Poisson), or from fitting a large number of possible parametric families

and ranking their goodness of fit. For the parametric case, there is a well-developed

theory for parameter estimators 𝜃 = 𝜃(X1,X2,… ,Xm) such as MLE. The sampling

distributions for these estimators are known, at least asymptotically as m → ∞. For

instance, MLEs are often asymptotically normally distributed. Thus, for parametric

distributions, input model uncertainty becomes input parameter uncertainty which

is quantified by the sampling distribution of �̂�. Cheng (1994) (and follow-on papers)

provides an expression for 𝜎
2
I by applying a first-order Taylor series approximation

of 𝜂(𝜃) to obtain

𝜎
2
I = Var[𝜂(𝜃)] ≈ ∇𝜂(𝜃c)⊤Var[𝜃]∇𝜂(𝜃c) (5.2)

where Var[𝜃] is the variance–covariance matrix of 𝜃 and ∇𝜂(𝜃c) is the gradient of

𝜂(⋅) evaluated at 𝜃
c
. The approximation (5.2) shows that input uncertainty depends

both on how well the input model has been estimated, and how sensitive the system

response is to the input model. The sampling distribution (or an approximation to it)
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can provide an estimator ofVar[𝜃], but that still leaves the question of how to estimate

∇𝜂(𝜃c).
In bootstrapping, we assume that the fitted distribution F̂ is a good stand-in for Fc

.

An empirical cumulative distribution function (ecdf) is often used as the fitted distri-

bution, although this is not required. Then instead of gathering B distinct real-world

samples of input data, we simulate B bootstrap samples from the fitted distribution:

X⋆(b)
1 ,X⋆(b)

2 ,… ,X⋆(b)
m

i.i.d.∼ F̂ for b = 1, 2,… ,B.

Each bootstrap sample yields a fitted input distribution F̂⋆(b)
. Therefore, an estimator

of 𝜎
2
I is

𝜎
2⋆
I = 1

B − 1

B∑

b=1
(𝜂(F̂⋆(b)) − �̄�

⋆)2

where �̄�
⋆ =

∑B
b=1 𝜂(F̂

⋆(b))∕B. The validity of the bootstrap can be established as

m → ∞. However, this estimator requires a stand-in for 𝜂(⋅).
Bayesian input modeling typically emphasizes the choice of parameters for a para-

metric distribution, although as noted earlier it is possible to extend the definition of

“parameter” to include the distribution family as well. The posterior distribution of

the parameters p
𝜣

(𝜽 ∣ 𝐱m) plays the role of the sampling distribution of �̂� in the clas-

sical approach. However, in a Bayesian treatment there is no need for an asymptotic

approximation because the posterior is valid for any quantity of real-world data. In

fact, the posterior explicitly accounts for the quantity of data that is available: the

more data there is, the more concentrated the posterior distribution will be.

From a Bayesian perspective, the corresponding overall measure of input uncer-

tainty is 𝜎
2
I = Var[𝜂(𝛩)] where the variance is with respect to 𝛩 ∼ p

𝛩
(𝜃 ∣ 𝐱m). One

difficulty in computing this quantity arises when the posterior distribution is not sim-

ple and can only be evaluated approximately via simulation methods, such as Markov

chain Monte Carlo. And, of course, 𝜂(⋅) is not known. Biller and Gunes (2010) pro-

vide a Bayesian approach that allows for multivariate input models.

5.4.3 Propagating Input Model Uncertainty

The second reason that 𝜎
2
I is not realizable is that 𝜂(⋅) is unknown, and it is this

mapping that propagates the input model uncertainty to the simulation performance

measure uncertainty. Whether classical or Bayesian, there is really no choice but to

estimate 𝜂(⋅) using simulation, and we can only estimate 𝜂(𝐅) given specific choices

of 𝐅. The key questions are, what should we estimate, and how should we expend

the simulation effort to do it?

Direct simulation chooses a collection of distributions 𝐅1,𝐅2,… ,𝐅B, runs sim-

ulations at each choice, and estimates 𝜂(𝐅i) by the average of the simulation

results Ȳ(𝐅i). The distributions 𝐅1,𝐅2,… ,𝐅B are usually randomly chosen from the
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sampling distribution of 𝜃 (classical) or the posterior distribution of 𝜣 (Bayesian)

so as to represent the input model uncertainty. Barton and Schruben (1993) was the

first WSC paper to suggest this.

1. For b = 1 to B

a. If classical:

i. Generate 𝜃
⋆

b from the sampling distribution of 𝜃 (e.g., using the asymp-

totic distribution or bootstrapping).

ii. Using 𝜃
⋆

b , run n replications to obtain the sample mean Ȳb(𝜃⋆b ).
b. Else if Bayesian:

i. Generate 𝛩b ∼ p
𝛩
(𝜃 ∣ 𝐳m)

1i. Using 𝛩b, run n replications to obtain the sample mean Ȳb(𝛩b).

Next b

2. Use the data Ȳb(𝜃⋆b ) or Ȳb(𝛩b) for b = 1, 2,… ,B to estimate measures of input

model risk.

Notice that in either case input uncertainty is confounded with stochastic simula-

tion noise so they may need to be separated, which is the challenge. Yi et al. (2015)

refine the direct method above by using a sequentially designed experiment rather

than equal simulation replications on all bootstrap samples.

Metamodeling chooses distributions 𝐅1,𝐅2,… ,𝐅d to cover a relevant design

space, and then uses the simulation results to fit a metamodel 𝜂(⋅) to stand in for 𝜂(⋅).
Barton et al. (2010) take a classical approach to input modeling and use Gaussian

processes to build a metamodel at a chosen set of parameters, while Song and Nel-

son (2013) employ a linear regression on the mean and variance of each input dis-

tribution.

Given the metamodel, 𝜎
2
I or a number of other measures can be estimated inex-

pensively. The metamodel-assisted approach, both classical and Bayesian, has been

extended to multivariate input distributions by Xie et al. (2014, 2015) and to nonsta-

tionary Poisson arrival processes by Morgan et al. (2016).

Gradients of 𝜂(𝜽) are needed if we use parametric input models and approximate

Var[𝜂(�̂�)] using a Taylor series expansion of 𝜂(�̂�) around 𝜽

c
as in (5.2). Since 𝜂(𝜽)

is unknown, its gradients are also unknown. There are several methods to estimate

∇𝜂(𝜃c). The expansion in (5.2) facilitates propagating uncertainty about 𝜽 (as rep-

resented by the sampling distribution of �̂� or the posterior distribution of 𝜣) to the

performance measure 𝜂(�̂�). Clearly this is another form of metamodeling.

5.4.4 Confidence and Credible Intervals

Interval estimates are also valuable. The typical simulation confidence interval (CI)

guarantees (1 − 𝛼)100% coverage of 𝜂(�̂�). Instead, an interval [CL,CU] that guaran-

tees
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Pr{𝜂(𝐅c) ∈ [CL,CU]} ≈ 1 − 𝛼

accounts for input model uncertainty, simulation error and bias. The corresponding

Bayesian credible interval (CrI) would assert

Pr{𝜂(𝜣) ∈ [QL,QU] ∣ 𝐱𝐦} = 1 − 𝛼.

This interval contains 1 − 𝛼 of the probability content of the induced posterior dis-

tribution on 𝜂(𝜣) when 𝜣 ∼ p
𝜣

(𝜃 ∣ 𝐱𝐦).
Many papers have proposed generating CIs or CrIs from direct simulation, as

described above, using empirical quantiles of Ȳb(𝜃⋆b ) or Ȳb(𝛩b), respectively, for

b = 1, 2,… ,B. See Yi et al. (2015) for a direct bootstrapping approach, and Lam

and Qian (2016) for a CI based on empirical likelihood.

A different sort of interval estimate is provided by Batarseh and Wang (2008):

they use interval arithmetic to propagate likely intervals for each input distribution

parameter individually to an interval on the output performance measure.

So far we have only considered the measures of input uncertainty as a function of

�̂�, the collection of all input models used in the simulation. We next consider assess-

ing which input models among �̂�make the greatest contributions to input model risk,

and from which would we most benefit from collecting more real-world data.

5.4.5 Measures of Contribution and Sample-Size Sensitivity

Contribution measures try to decompose 𝜎
2
I in a meaningful way. The ultimate goal is

to identify from which distributions it would be most beneficial to reduce uncertainty

further, or even to specify how to spend a budget for additional data collection.

Clearly, the contribution of 𝓁th input model F̂𝓁 depends on the real-world sam-

ple size m𝓁; as m𝓁 becomes infinitely large, F̂𝓁 converges to Fc
𝓁 (classical) or to a

degenerate posterior distribution (Bayesian). Therefore, small m𝓁 causes bigger con-

tribution. However, the contribution also depends on how sensitive 𝜂(⋅) is to F𝓁 . To

make the point clear, suppose that F1 is in fact a dummy distribution so that the func-

tional 𝜂(⋅) does not depend on F1. Then, no matter how small m1 is, the contribution

of F̂1 should be 0. On the other hand, if 𝜂(⋅) is very sensitive to F1, the uncertainty

in F̂1 is amplified as it is propagated to the uncertainty in 𝜂(�̂�).
Song and Nelson (2013) and Song et al. (2014) defined the contribution of F̂𝓁 to

input uncertainty as

𝖵𝓁(m𝓁) ≡ Var
[
E[Y(Fc

1,F
c
2,… ,Fc

𝓁−1, F̂𝓁 ,Fc
𝓁+1,… ,Fc

L) ∣ F̂𝓁]
]
. (5.3)

In words, 𝖵𝓁(m𝓁) is the variability in the simulation’s expected value when all of the

true input distributions except Fc
𝓁 are known and Fc

𝓁 is estimated by F̂𝓁 . Notice that
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𝖵𝓁 is a function of the sample size m𝓁; the larger m𝓁 is, the smaller 𝖵𝓁(m𝓁) becomes

as F̂𝓁 approaches Fc
𝓁 .

Unfortunately,
∑L

𝓁=1 𝖵𝓁(m𝓁) ≠ 𝜎
2
I in general. Song and Nelson (2013) and Song

et al. (2014) suggest looking instead at the relative contribution of the 𝓁th input

model,

𝖵𝓁(m𝓁)
∑L

i=1 𝖵i(mi)
.

A reasonable heuristic to reduce 𝜎
2
I is to obtain more data for the distributions

with the largest relative contribution. See Biller and Gunes (2010) and Morgan et

al. (2016) for decompositions in multivariate-input-model settings.

Song and Nelson (2013, 2014) also propose a measure that does not decompose

𝜎
2
I , but instead quantifies the impact of additional data for each input distribution: the

sample-size sensitivity of Var[Ȳ(�̂�)] with respect to 𝓁th input model. If we approx-

imate m𝓁 as real valued then this is

𝜕Var[Ȳ(�̂�)]
𝜕m′

𝓁

|||||m′
𝓁=m𝓁

. (5.4)

The sample-size sensitivity quantifies how much the estimator variance would be

reduced by observing one more real-world sample from the 𝓁th input distribution

given we already have m𝓁 observations. The input distributions with the largest (most

negative) sensitivities are targets for more real-world data. Unfortunately, sample-

size sensitivities are only local gradients, and therefore are not ideal for optimally

allocating a substantial amount of additional effort. Freimer and Schruben (2002)

attempt to go further.

If the budget for real-world data is effectively unlimited, then it makes sense to

collect enough data so that Var[Ȳ(�̂�)] ≈ E[Var(Ȳ(�̂�) ∣ �̂�)]; i.e., no input model risk.

Freimer and Schruben (2002) achieve this objective by sequentially adding real-

world data until the effect of input model uncertainty is statistically negligible rel-

ative to simulation output variability. To formalize this, they use a random-effects

metamodel where the “random effects” are due to distribution parameter estimates

obtained from bootstrapping the available data. In the case of L = 2 parameters, their

model for the simulation output on replication h is

Yijh = 𝜂 + Ai + Cj + ACij + 𝜀ijh, for i, j = 1, 2,… ,B, h = 1, 2,… , n (5.5)

where Ai, Cj and ACij are the random effects of bootstrapped parameters 𝜃
⋆

1i, 𝜃
⋆

2j and

their interaction, respectively, B is the number of bootstrap samples, and 𝜀ijh is the

stochastic variability of the simulation. They stop collecting real-world input data

when the hypothesis that these three variance effects are 0 is no longer rejected.
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5.5 Hedging Against Input Model Risk

Suppose that large values of 𝜂(𝐅) are problematic, for instance if 𝜂(𝐅) is the mean

delay in queue or portfolio value at risk. Then one might prefer to run the simulation

with input model �̃�, where

�̃� = argmax𝐅∈𝖥 𝜂(𝐅) (5.6)

and 𝖥 is referred to as the uncertainty or ambiguity set that contains distributions

plausible for 𝐅c
given the observed real-world data 𝐱m. This is an appealing approach

because it protects against the downside risks that matter to the user. When 𝖥 is

designed to include plausible candidates for 𝐅c
with 1 − 𝛼 probability, then we can

form a confidence or credible interval for 𝜂(𝐅c) by

(
min
𝐅∈𝖥

𝜂(𝐅),max
𝐅∈𝖥

𝜂(𝐅)
)
.

There have been a number of very recent WSC papers on this approach, including

Ghosh and Lam (2015), Hu and Hong (2015), Lam and Ghosh (2013), Vidyashankar

and Xu (2015) and Zhu and Zhou (2015). The challenges are defining the plausible

set 𝖥 in a way that is both practically meaningful, and that facilitates solving the

optimization problem (5.6).

5.6 Simulation Optimization Under Input Model Risk

Thus far we have discussed quantifying input model risk of a single simulated sys-

tem, but simulation is often used to select a system (or solution) with the best perfor-

mance, e.g., cost-minimizing staff allocation in a service center, delay-minimizing

bed assignment at a hospital, and profit-maximizing portfolio of assets. Needless to

say, uncertain inputs models pose a risk of selecting a suboptimal real-world system

because the performance of each feasible solution under the true distribution 𝐅c
is

unknown.

Selecting the best performing system under input model risk requires quantify-

ing the joint impact of input model risk on the simulation outputs of the systems we

compare. Although the methods discussed in Sect. 5.4 can still be applied to mea-

sure the variability of �̂� and propagate it to the simulation outputs of all systems, the

optimization problem is more subtle. In this chapter, we limit our discussion to opti-

mization problems with a finite number of discrete solutions, deferring discussion

on continuous simulation optimization to Chap. 15.

To set up the discussion, suppose the goal of a simulation optimization is to find

a solution that has the largest mean performance of a common output among k solu-

tions. In other words, the objective is to find

http://dx.doi.org/10.1007/978-3-319-64182-9_15
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ic = arg max
1≤i≤k

𝜂i(𝐅c
i ),

where 𝐅c
i represents the true input distributions for the ith solution (slightly abusing

notation). Note that the true input distribution, 𝐅c
i , (and its estimator �̂�i) may differ

for each feasible solution i. Simulation optimization procedures typically try to select

argmax1≤i≤k 𝜂i(�̂�i), ignoring input model risk when 𝐅c
i is modeled by �̂�i.

Recently, there have been several papers published at WSC that tackle accounting

for input model risk in simulation optimization, applying one of two different philo-

sophical approaches to answer the question, “What does it means to be ‘optimal’

when there is input model risk?”

The first approach is to obtain the best statistical inference one can on the true

optimal solution ic given the finite amount of real-world input data. Corlu and

Biller (2013) propose a subset selection procedure that finds a set of solutions whose

output means are within 𝛿 > 0 from ic’s. Using Bayesian posteriors on the input

models, they propagate uncertainty in the parameters 𝛩 to the k systems’ simulation

outputs using the delta method (Taylor series expansion).

Song et al. (2015) suggest an indifference-zone (IZ) ranking and selection pro-

cedure given IZ parameter 𝛿 > 0 that guarantees a 1 − 𝛼 average probability of cor-

rectly selecting ic over the sampling distribution of �̂�i, where a mixed effects model

is used to capture the joint and independent impact of �̂�i and simulation error to the

simulation output. Under the assumption 𝐅c
i = 𝐅c

for all i, a version of their mixed

effects model simplifies to the following representation of the output of the jth sim-

ulation replication of the ith system:

Yij(�̂�) = 𝜂i(𝐅c) + 𝛾i + 𝛽(�̂�) + (𝜂𝛽)i(�̂�) + 𝜀ij(�̂�), (5.7)

where 𝛾i = E[Yij(�̂�)] − 𝜂i(𝐅c), 𝛽(�̂�) ∼ (0, 𝜎2
𝛽
), (𝜂𝛽)i(�̂�) ∼ N(0, (k − 1)∕k𝜎2

𝜂𝛽
), and

𝜀ij(�̂�) ∼ N(0, 𝜎2
i ). In words, 𝜂i(𝐅c) + 𝛾i represents the fixed effect of the ith system

and 𝛽(�̂�) represents the random effect of �̂�. Their interaction effect is captured by

(𝜂𝛽)i(�̂�) with an additional assumption that
∑k

i=1(𝜂𝛽)i(�̂�) = 0, i.e., the interaction

effects can be interpreted as fixed effects conditional on �̂�. Ignoring the finite sam-

ple biases, under Model (5.7)

Ȳi(�̂�) − Ȳi′ (�̂�) = 𝜂i(𝐅c) − 𝜂i′ (𝐅c) + (𝜂𝛽)i(�̂�) − (𝜂𝛽)i′ (�̂�) + �̄�i(�̂�) − �̄�i′ (�̂�)

for i ≠ ic. Notice that the random effect, 𝛽(�̂�), cancels out as it only depends on

�̂�, and therefore the input model risk is completely captured by the interaction

effect terms, (𝜂𝛽)i(�̂�) − (𝜂𝛽)i′ (�̂�). Hence, the larger Var[(𝜂𝛽)i(�̂�) − (𝜂𝛽)i′ (�̂�)] is, the

more difficult it is to compare 𝜂i(𝐅c) and 𝜂i′ (𝐅c). Consistent with this observation,

Song et al. (2015) show that the average probability of correct selection defined as

E
[
Pr{Ȳic (�̂�) ≥ Ȳi(�̂�),∀i ≠ ic|�̂�}

]
of a single-stage ranking and selection procedure

is a decreasing function of the interaction effect’s variance, 𝜎
2
𝜂𝛽

.
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Both Corlu and Biller (2013) and Song et al. (2015) note that 𝛿 in their procedures

has a nonzero lower bound when there is input model risk below which it is not possi-

ble to statistically separate ic from the rest of the systems if their mean performances

are too similar. Hence, input model risk may dominate the mean differences. This

lower bound is an increasing function of 1 − 𝛼, which implies that we may either

guarantee ic with high probability assuming 𝛿 is large or provide a poor probability

guarantee with small 𝛿 when input model risk is substantial.

In a newer subset selection procedure, Corlu and Biller (2015) drop 𝛿 and instead

provide a set including ī = argmax1≤i≤k E[𝜂i(𝛩i)|𝐱𝐦i
], where the expectation is with

respect to the posterior distribution of input distribution parameters 𝛩
i

given the

real-world input data 𝐱𝐦i
of the ith solution using direct simulation. Note that ī ≠ ic

in general given finite observations 𝐱𝐦i
.

The second approach finds a solution that best hedges input model risk, i.e.,

i = argmax1≤i≤k min�̂�∈𝖥i
𝜂i(�̂�i), which is closely related to distributionally robust

optimization (DRO) (see Chap. 15 and Sect. 5.5).

Fan et al. (2013) focus on the case where 𝐅c
i = 𝐅c

for all i and create a two-layer

ranking and selection procedure whose uncertainty set 𝖥 is a discrete set of choices

for �̂� induced from data. In the first layer, this procedure selects the worst-case dis-

tribution for each solution i within 𝖥, while in the second layer it compares the k
solution-worst-case-distribution pairs to find i. Gao et al. (2016) propose a robust

optimal computing budget allocation scheme for the same problem that maximizes

a lower bound on the probability of correctly selecting i. Both procedures may suffer

from choosing a very conservative i that performs much worse than ic under 𝐅c
. To

mitigate such conservatism, the uncertainty set 𝖥 needs to be designed carefully.

5.7 Applications of Input Model Risk Quantification

Several papers have been presented at WSC that apply tools for quantifying, or

optimizing in the presence of, input model risk for a specific application domain:

water allocation (Love and Bayraksan 2013); assemble-to-order production systems

(Akcay and Biller 2014); and contract-manufacturer selection in the pharmaceuti-

cal industry (Akcay and Martagan 2016). In addition, Song et al. (2014) report on

an implementation of the methods for input uncertainty quantification, contribution

and sample-size sensitivity from Song and Nelson (2013) in the simulation software

Simio (http://www.simio.com).

5.8 Conclusions and Future Directions

In this chapter, we described input model risk and investigated different ways to

measure it or protect against it. In the history of WSC, various methods have been

developed to measure input model risk for both traditional and Bayesian input mod-

http://dx.doi.org/10.1007/978-3-319-64182-9_15
http://www.simio.com
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els. Alternatively, several papers propose to choose an input model that hedges the

risk given the observations recognizing the resemblance between input model risk

quantification and the DRO problem. There have been recent advances in simulation

optimization under input model risk that either try to make the best inference on the

true optimal solution under 𝐅c
given observations, or find the system that best hedges

input model risk given a set of plausible input models.

Simulation-assisted decision-making under input model risk is a ubiquitous and

practical problem in many applications. Thus, advancing the frontier of this research

area has a significant potential impact on real-world problems. In the remainder of

this section, we discuss some of the open research questions.

First, there are popular input models, such as nonparametric or time series, for

which it is difficult to measure input model risk with the existing methods. For

instance, it is difficult to propagate uncertainty in the inputs generated from the

Markov Chain Monte Carlo (MCMC) method using the Taylor series approxima-

tion as we do not have a closed-form expression for the parameters of the limiting

distribution fitted using the data. We may still use the direct simulation approach,

however, it may require large simulation effort to obtain multiple batches of inputs

via MCMC.

Allocating additional real-world data collection effort to decrease input model

risk when there are several input processes is an important problem in simulation

optimization. In Sect. 5.4.5, we discussed methods to reduce input model risk of a

single simulated system. When there are several systems to compare, the allocation

problem becomes more complex as we need to measure the impact of additional data

collection from each source on the optimality guarantee.

In general, simulation optimization under input model risk suffers conservatism

that cannot be overcome by simply increasing simulation effort, which is the biggest

difference from the case with known 𝐅c
. As discussed in Sect. 5.6, such conservatism

may manifest as a low probability guarantee on the optimal solution, low quality of

optimality (due to a large IZ parameter 𝛿), or selecting a system that hedges input

model risk well but performs poorly under the true distribution 𝐅c
.

Song and Nelson (2017) claim that modeling how differently two solutions’ sim-

ulation outputs are affected by the common �̂� helps reduce the conservatism. They

propose the input–output uncertainty comparisons (IOU-C) procedure, which pro-

vides a set of solutions whose mean performances are close to 𝜂ic (𝐅c). A key compo-

nent to design the IOU-C procedure is the common-input-data (CID) effect modeled

by the delta method:

𝜂i(�̂�) − 𝜂i′ (�̂�) ≈ 𝜂i(𝜽c) − 𝜂i′ (𝜽c) +
(
∇𝜂i(�̂�) − ∇𝜂i′ (�̂�)

)⊤

(�̂� − 𝜽

c).

Note that ∇𝜂i(�̂�) − ∇𝜂i′ (�̂�) measures how differently system i and i′ are affected by

uncertainty in �̂�. Therefore, when ∇𝜂i(�̂�) ≈ ∇𝜂i′ (�̂�), the impact of input model risk

on the comparison of 𝜂i(𝜽c) and 𝜂i′ (𝜽c) is reduced. This is analogous to how posi-

tive correlation of simulation errors induced by common random numbers sharpens
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the comparison between two simulation outputs. Sharpening the comparisons under
input model risk has an equivalent impact on the optimization procedure as collect-
ing additional real-world data.

In most discussions of input model risk in the literature, and certainly in this

chapter, the scope of “input model” is restricted to the distribution of a basic sto-

chastic process that drives a computer simulation. However, model risk from imper-

fect input models is only a small part of the overall model risk. Even when the input

distributions of the simulation model are completely known, if the simulation logic

incorrectly represents the events in the real-world system then decisions based on the

simulation model may be faulty. Such model risk can be diminished by careful vali-

dation of the simulation model, however, we cannot be free from it. Therefore, quan-

tifying logical model risk is important to understand the usefulness of the simulation

model, yet it is much more difficult to carry out than quantifying input model risk.

Can this problem be addressed by changing the way we build a simulation model?
For instance, we may view the “simulation logic” itself as a statistical model that

can be estimated from data. With an increasing abundance of data this is becoming

possible.

For instance, suppose we have video footage of an emergency room (ER) that

records the movements of the patients, staff, and equipment in the ER. The traditional

simulation modeling approach is to first build a logical model that describes the

events in the ER and then model the stochatic processes that trigger event transitions

from the data. However, recent advances in machine learning enable us to “estimate”

the events themselves as well as the related stochastic processes. As a result, we may

be able to quantify the risk due to errors in the simulation logic (which is really just

a statistical model in this case) in a similar way as we quantify input model risk.

Acknowledgements Portions of this chapter were previously published in Song et al. (2014),

and the chapter is based upon work supported by the National Science Foundation under Grant

No. CMMI-0900354.
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Chapter 6
The Evolution of Simulation Languages

C. Dennis Pegden

Abstract Since the introduction of the GSP simulation framework by Tocher
(Proceedings of the second international conference on operations research, pp 50–
68, 1960), simulation tools have continued to broaden in both scope and power.
This chapter will review the key concepts and developments in simulation lan-
guages over the last half century.

6.1 Introduction

A simulation language executes a model of a system to dynamically act out the
behavior of the real system over time. This is done by changing the value of state
variables over simulated time. Simulation languages are generally categorized into
two broad families: discrete and continuous. Discrete tools model systems is where
the state of the system changes by discrete amounts at specific event times. Con-
tinuous tools model systems is where the state of the system changes continuously
over time. The focus of this chapter is on simulation languages for modeling
discrete systems. However, we will also discuss the role of continuous modeling for
approximating large-scale discrete systems.

Simulation languages are multifaceted and involve features related to model
definition, execution, animation, experimentation/analysis, as well as features
related to applications in emulation and scheduling. In this review, we will discuss
the evolution of simulation tools across this spectrum. We will begin by discussing
progress with model definition based on the changing use or modeling world views
over time.
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6.2 Discrete Modeling World Views

A discrete simulation is a set of state variables and a mechanism for changing those
variables at event times. A simulation modeling worldview provides the practitioner
with a framework for defining a system in sufficient detail that it can be executed to
simulate the behavior of the system. Unlike simple static descriptive tools such as
Visio, IDEF, UML, etc., a simulation modeling worldview must precisely define the
dynamic state transitions that occur over time. The worldview must provide a
definitive set of rules for advancing time and changing the discrete state of the model.

Over the 50-year history of simulation, there have been three primary world
views in wide use: event, process, and objects. These were all developed by the
pioneers of simulation during the 1960s (Tocher 1960; Gordon 1961; Markowitz
et al. 1962; Kiviat 1963; Dahl and Nygaard 1967). Although these world views
have been significantly refined over the past 50-year period, the basic ideas for
these three primary world views have not changed.

The evolution of modeling tools has focused on achieving a balance between
ease of use and flexibility. The event world view provides the greatest flexibility,
but is more difficult to use. The process view is easier to user, but at the price of
decreased modeling flexibility. The object view is the easiest and most natural of
all, but at a price of even less flexibility. The history of simulation language
development has been focused on making the process and object views more
flexible, while retaining their advantage with ease of use.

6.2.1 Event Orientation

In this modeling paradigm, the system is viewed as a series of instantaneous events
that change the state of the system over time. The modeler defines the events in the
system and models the state changes that take place when those events occur. An
important concept is that simulated time cannot advance within an event. Modeling
an activity that transpires over time requires separate events to define the start and
end of the activity. This approach to modeling is very flexible and efficient, but is
also a relatively abstract representation of the system. Thus, many people find
modeling using an event orientation to be difficult.

We will illustrate the event worldview using a model of a service facility with a
fixed capacity that defines the number of service operations that can be processed in
parallel. When using the event worldview, we begin by asking the following
questions:

1. How is the state of the system defined?
2. What events occur that can change the state of the system?
3. What is the logic within each event that defines the state transitions?
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In our system example, the state of the system can be defined by the number of
busy servers, and the number of customers waiting to start service. This simple state
description assumes that we do not distinguish between individual servers or cus-
tomers (if we did, a more elaborate state description and transition logic would be
required). The events that can change this state are a new customer arrival and a
customer departure at the end of servicing. The state transition logic for each of
these events is summarized above (Fig. 6.1).

Note that each arrival schedules the next arrival in the sequence. We then check
to see if we have available capacity for this arrival and if so, we bump the number
busy and schedule the departure event. Otherwise we bump the number waiting. In
the departure event, we check if we have customers waiting and if so we decrement
the number waiting and keep the number busy unchanged and schedule the
departure event for the next customer. Otherwise we reduce the number of busy
servers.

A modeler would typically define the logic for the state transitions for each event
using a simulation programming language such as Simscript (Markowitz et al.
1962), or a general-purpose language such as FORTRAN, Java or C++ augmented
with a library such as GASP (Kiviat 1963) to assist with common simulation
functions such as sampling from distributions or scheduling events. Simulated time
advances from event to event until the end of the simulation is reached (based on
simulated time, number customers processed, etc.). Note that event-based tools
provide none of the model logic, but simply a computationally efficient framework
for defining that logic using a programming language.

The event world view was widely used during the first 20 years of simulation.
These tools were favored by many because they were very flexible and could be
used to efficiently model a wide range of complex systems. Note that during this
period, efficiency was more important because computers had less memory and
were significantly slower. However, event-based models were often difficult to
understand and debug and required programming skills that limited their general
use. Once the process modeling tools became as flexible and as computationally

Fig. 6.1 Arrival and departure
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efficient as the event tools, users quickly migrated to the process worldview because
it was easier to learn and use. This shift was further accelerated when process tools
(beginning with SIMAN) were made available on the new IBM personal computer.
Although the event worldview is no longer used as the primary modeling approach
in real applications, it remains important to understand. Many process and
object-based simulation tools are internally implemented using this basic modeling
approach, regardless of the worldview that they present to the user.

6.2.2 Process Orientation

In the 80s, the process orientation began displacing the event orientation as the
dominant approach to discrete simulation modeling, and it held this dominant
position for the next 20 years. In the process view, we describe the movement of
passive entities through the system as a process described by a flowchart. The
process flow is a series of process steps (e.g., seize, delay, release) that model the
state changes that take place in the system. Note that each process step is an action
that is typically named using a verb. Unlike a simple event that occurs at an instant
in time, a process step may span time and execute as a sequence of events.

The internal logic for the early process-oriented tools was implemented based on
activity scanning concepts introduced in the simulation tool GSP (Tocher 1960).
The modeling view of GSP focused on activities and the conditions that start and
end an activity. Although this modeling orientation was not widely used, the
activity view shared much in common with the process orientation by focusing on
activities that transpire over time. This tool incorporated a three-phase time advance
mechanism involving bound and unbound activities, which was then adopted by the
early process-oriented languages.

The process orientation dates to the early 1960s with the introduction by IBM of
GPSS (Gordon 1961). This process-oriented simulation tool provided a more nat-
ural way to describe the system as compared to the event approach. The growth of
GPSS was also fueled by the classic book Simulation Using GPSS (Schriber 1974).
Despite its advantage in terms of ease of use, many practical issues with the original
GPSS limited its use compared with the event approach. It did not become the
dominant approach to modeling until improved versions of GPSS (e.g., GPSS/H
Henriksen and Crane 1983) along with new process languages such as SLAM
(Pegden and Pritsker 1979) and SIMAN (Pegden 1982) that addressed these
practical limitations became widely used in the 80s.

The two key issues that the early process languages suffered were an integer
clock and activity scanning logic, which resulted in slow execution times. The
initial process languages would advance time by 1 time unit, do a scan of which
process steps could start or stop, and then repeat the cycle. This activity scanning
approach was slow for large models, and the integer clock also created many tied
event times, where the order of execution would impact model logic. Some of the
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early process languages were also interpretative languages, which further impacted
their execution speed.

When modeling a system using the process worldview, we begin by asking two
questions:

1. What are the entities (customers, work items, etc.) that move through the
system?

2. What process steps are executed as each entity moves from step to step in the
process?

One of the important advantages of the process orientation is that the process
model is defined graphically in the form of a flowchart. Hence, the user does not
have to be a programmer to be able to create a model of the system. The process
flowchart for our simple server example is shown below (Fig. 6.2):

The service operation is modeled by a resource that has a capacity that can be
seized and released by entities as they flow through the process. Entities repre-
senting customers arrive to the system, wait to seize the Server, delay by the
processing time, release the Server, and then record the time they spend in the
system. Learning to model with a process language involves learning the various
process steps that are available, and then how to combine these steps together in the
form of a flowchart to represent complex systems. Modern process languages have
a wide range of process steps (>50) for manipulating fixed and moveable resources,
transporters, conveyors, etc.

There are two basic types of time advances that may occur in a processing
step. The first is a planned delay (e.g., wait for 2 min) that is represented by the
delay step. The second is a conditional delay (e.g., wait until a resource becomes
available, or wait until a tank is full of liquid). A conditional delay is illustrated by
the seize step that waits (if necessary) until the server becomes available.

Comparing the process model to the event approach, we see that the model logic
is much simpler to define and understand, and requires no programming skills.
Hence once the initial implementation problems were addressed, the process
approach quickly replaced the event approach as the dominant modeling world
view.

Modern process languages use a next event time advance mechanism and
real-time clock that make them computationally competitive with a pure event
oriented modeling approach. The original activity scanning logic is replaced with
internal event logic that efficiently implements conditional state changes. If activity
scanning is provided, it is isolated in a specific process step (e.g., the SCAN step in
SIMAN, which waits for an arbitrary condition to become true) that isolates and
limits the computational burden of this approach to modeling.

Fig. 6.2 Process flowchart
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Another conceptual advance that occurred with process modeling was the
introduction of hierarchical modeling tools which supported the idea of domain
specific process libraries. The basic concept is to allow a user to define their own
process step by combining existing process steps. The template feature in the
widely used Arena modeling system is a good example of this capability.

6.2.3 Object Orientation

Although the process orientation greatly simplified the model building experience,
an object orientation provides an alternative modeling paradigm that is more natural
and in many cases easier to use. In an object-based approach to modeling, we create
our model by placing objects into our model that represent the physical components
of the system—e.g., a server, worker, forklift truck, conveyor, etc. These objects
may be customized by specifying property values such as service time, travel speed,
etc. For example, we model a factory by placing and describing through properties
the workers, machines, conveyors, robots, and other objects that make up our
factory. These physical components interact to produce a simulation of our system.

Note that where process steps are described by verbs (seize, delay, release),
objects are described by nouns (machine, robot, worker). With the process orien-
tation, the modeler describes the actions that take place in the system as entities
move through processes. In the object orientation, the modeler simply describes the
physical components in the system, and the behaviors and actions for these objects
are already built into the objects. Hence, a worker object has predefined behaviors
that allow it to interact with machines and other workers in the model.

The object model for our simple service system is shown below, where the
system is modeled using a source, server, and sink object. Entities represented by
dark gray triangles enter the model at the source, wait in the buffer to be processed
by the server, and then depart the system at the sink (Fig. 6.3).

Building this model is both natural and straightforward—the user simply places
these objects into their model and specifies any associated properties such as the
arrival rate, buffer size, and server processing time. The underlying event logic is
prebuilt into these objects.

It is difficult to envision a more natural way to build a model than by using a
collection of prebuilt modeling components that mimic the components in the real

Fig. 6.3 A simple service system
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system. The challenge with this approach is that if we want to model anything in the
real world, we need an extensive library of objects to be able to capture the massive
diversity of real objects that you may encounter. For example, it is not adequate to
have a single object called robot as there are many different types of robots in the
real world. The pursuit by simulation language developers of creating a practical
simulation tool based on the object approach illustrates the challenge of having both
flexibility and ease of use in the same simulation modeling tool.

Although the flexibility provided by the process orientation makes it still a
widely used approach to simulation modeling, a growing number of successful
simulation products have been introduced in the last 20 years based on the object
orientation. Just as the second 20 years produced a shift from the event orientation
to the process orientation, the past 20 years has seen a shift from the process
orientation to the object orientation. The newer object-oriented tools have a rich set
of object libraries that are focused in specific application areas such as manufac-
turing, supply chain, and health care. Some of these tools also allow users to create
and customize their own object libraries for specific application areas.

The basic idea of being able to create custom objects as a formal concept was
introduced by Ole-Johan Dahl and Kristen Nygaard of the Norwegian Computing
Center in Oslo in the 1960s in Simula and Simula 67. Simula introduced the notion
of classes of behavior (e.g., server, worker, robot), and instances thereof (objects,
e.g., Fred and Drill), as part of an explicit modeling paradigm. A modeler can create
an object class such as car, and then place multiple instances of that class into their
model, and customize the behavior of each instance by setting property values.
They also introduced the notion of subclassing objects. This powerful concept
allows a user to create a new object class from an existing object class by inheriting,
overriding, and extending the object class behavior. For example, a new object class
named truck might be created from the object class named car by redefining some
behaviors, and adding some new behaviors. The ability to create a new object class
by starting with an existing object class that has some desired behaviors greatly
simplifies the development of object libraries.

The ideas introduced by Simula provide the foundation for the recent advances
made by simulation language designers to make the object-oriented approach to
modeling both easy to use and flexible. Although these ideas were introduced as
simulation modeling concepts, they have completely changed the design and
implementation of programming tools in general. The ideas from Simula directly
influenced many later programming languages, including Smalltalk, LISP, C++,
Java, and C#. The object-oriented ideas introduced by Simula are not only the most
significant development in simulation software, but perhaps the greatest advance in
computer science in the last 50 years.

The key concepts introduced by Simula and now part of modern programming
languages include the following:

• Classes: The abstract characteristic of a thing (object), including its character-
istics (properties and states) and behaviors (things it can do).
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• Instances: The actual object created from the class. The object holds its state
and the state transition behavior is defined by the class.

• Interface: The objects interact in terms of passing values and messaging.
• Subclassing: Specialized versions of a class, which inherit attributes and

behaviors from their parent class, which can then be modified and extended.

There are some differences of opinion as to what it means to be an
object-oriented simulation tool. Some tools (e.g., Witness, Simul8) provide an
object library as the basis of modeling, but do not support the object-oriented
concepts for creating new object classes based on inheritance and subclassing.
Other tools (e.g., AnyLogic, FlexSim, and Simio) fully support the object-oriented
framework for creating new object classes.

Much of the innovative work in simulation language design is occurring in
object-oriented simulation tools. These tools are getting more flexible while
retaining their advantage in terms of ease of use, and therefore displacing the
process-oriented tools. They also have a key advantage in terms of animation. In the
case of the event and process orientations, the addition of animation is a two-step
process, where the user first builds the logical model, and then creates the animation
as a separate step, and then ties these two components together. In the object
orientation, the predefined objects not only come with their associated properties,
states, and behaviors, but also their associated 3D animations. This allows the user
to rapidly build both the model logic and animation in a single step.

6.3 System Dynamics

System dynamics is a modeling approach developed at MIT during the late 50s by
Jay Forrester. Although it is a continuous modeling approach, it is often used to
approximate large-scale discrete systems. The basic idea is to model complex
systems as a collection of stocks, flows, and feedback loops. A stock is represented
as a tank that fills and empties and measures the level of a state variable such as the
number customers that have purchased a product, or the number of people that have
been exposed to a disease. A flow is represented as a valve that controls the rate of
change of a stock (Fig. 6.4).

Fig. 6.4 A simple system dynamics model
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Forrester published the first, and still classic, book in the field titled Industrial
Dynamics (1961). One of the best-known system dynamics models is a model of
the growth of world population, which was popularized in the bestselling 1972
book Limits to Growth. This model forecast the exponential growth of population
and capital, with finite resources, leading to economic collapse under a wide variety
of scenarios. The original model had five levels that measured world population,
industrialization, pollution, food production, and resource depletion.

Although any continuous simulation tool can be used to simulate system
dynamics models, a number of specific modeling tools have been developed,
including Dynamo, PowerSim, and AnyLogic. Although system dynamics models
are expressed as continuous systems, most of the applications involve modeling
large-scale discrete systems with many entities. An alternative to System Dynamics
for large-scale discrete systems is agent modeling, which we will discuss next.

6.4 Agent Modeling

The term agent-based modeling (ABM) has been widely used in the recent years.
The basic concept of agent-based modeling is that a system is modeled by placing
agents in the system and letting the system evolve from the interaction of those
agents. Each agent is an autonomous entity which interacts with other entities in the
system. The focus is on modeling agent behavior as opposed to system behavior. In
a traditional process orientation, entities follow a sequence of process steps, which
are defined from the top-down system perspective. In contrast, agent-based mod-
eling defines the local behavior rules (often simple) of each entity from a bottom-up
perspective. The system behavior is produced as the cumulative result of the agents
interacting with each other. Example applications include crowds moving through
an area, customers responding to new product introductions, or troops in combat
(Fig. 6.5).

Although the state transition framework for the agents can be modeled using any
world view, agent-based modeling is often implemented using an object-oriented
simulation tool. Hence this is not a new discrete event world view, but rather a

Fig. 6.5 Agents and
interactions
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group of applications that are often modeled with the object world view. Classes are
used to define agent states and behaviors and instances (often large numbers) are
placed in the model. The agents (objects) interact and the system state evolves over
time. Some of the application areas in agent-based modeling present some unique
challenges, particularly when large numbers of agents are involved (e.g., modeling
the evacuation of fans from a stadium).

For simple applications of agent-based modeling, the full object-oriented
framework with inheritance and subclassing is sometimes more powerful than is
needed and a simple state diagram may be adequate for defining the class behavior
for each agent. The concept of a state diagram was introduced by Shannon and
Weaver in their (1949) book The Mathematical Theory of Communication. A state
diagram defines a finite set of states that the agent can be in, along with the
transition conditions that cause a transition between a pair of states. Each diagram
typically defines behavior for an object of a given class, and the state transitions for
the object instances of that class. Although there are several different variations for
state diagrams in use, they all define states as nodes, and arcs for transitioning
between states. For example, the following state diagram defines transitions
between the states well, sick, and dead (Fig. 6.6).

Because of the increased capacity of computers to manage large numbers of
agents, some models that were previously done as discrete approximations using a
system dynamics approach are now better done using an agent-based modeling
approach. This allows greater flexibility in the logic at the expense of a longer
execution time.

One of the early agent-based models was the Game of Life developed by John
Conway in the 1970s. The Game of Life is a two-dimensional model involving
cellular growth that evolves using a fixed time step, where each cell has two states,
alive, and dead. The state of a cell depends on the state of the neighbors of the
previous time step. Conways’s game demonstrated the basic concept of the emer-
gence of complexity from simple rules.

Interest in agent-based modeling continued to grow and diversify in the 1990s
with the appearance of various agent-based tools, particularly Swarm, NetLogo,
Recursive Porous Agent Simulation Toolkit (Repast), and AnyLogic.

Fig. 6.6 State change
example
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6.5 Multi-paradigm Modeling

Most simulation modeling tools support multiple modeling paradigms. By pro-
viding alternative paradigms in the same tool, the user can select the modeling
approach that best fits the problem at hand. GASP IV (Pritsker 1974) introduced the
idea of combining discrete and continuous frameworks in the same model. Simu-
lation Language for Alternative Modeling (SLAM) was one of the first widely used
tools to promote the idea of mixing alternative modeling approaches (processes and
events and continuous) in the same model. In the case of SLAM, the
process/continuous modeling was used for basic modeling, and the events were
used as the “backdoor” to provide added flexibility.

The modern object-oriented simulation tools also employ a multi-paradigm
approach. These tools combine the ease and rapid modeling provided by objects
with the flexibility added by incorporating user specified events and/or processes.
For example, an object representing a server might have selected points in the
object logic where the user can insert their own event logic or process logic. Event
logic is typically incorporated into objects using either a programming language
such as Java or C++, or a special scripting language that can be used in place of
code. However, in either case event logic has one major restriction: simulated time
cannot advance within the event. This severely restricts the type of logic that can be
inserted into an object instance. For example, it is not possible to wait for a worker
to become available within an event since this would require time to advance. Simio
introduced a much more powerful approach which allows users to combine objects
with processes. Since processes can span time they provide the user with consid-
erable more power to extend the behavior of their objects. Hence, processes can be
embedded within an object to wait for a specified time or specified condition (e.g.,
Fred is available). This approach combines the full power and flexibility of pro-
cesses with the ease and rapid modeling capability of objects.

AnyLogic has combined agent-based modeling, system dynamics, and discrete
event modeling into a single tool. A single AnyLogic model can combine all three
modeling approaches to represent the system behavior.

6.6 Animation

For the first 30 years of simulation, the output was in the form of static reports.
Beginning in the 80s, animation was introduced as a better way to understand the
underlying behavior of the model. Animation has had a huge impact on model
verification/validation and on communicating the results of a simulation model to
the various stakeholders.

One of the early simulation animation systems was product called SEE WHY
developed in the late 80s, which used rudimentary character-based animation. The
Witness simulation software was developed from SEE WHY. The Cinema
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animation system was a 2D vector-based animation system developed in the same
time frame and was a real-time animation system for SIMAN models. The Cinema
animation system and SIMAN modeling system were then integrated together into a
single platform to create the widely used Arena product. Another early 2D ani-
mation system was Proof, developed by Jim Henriksen of Wolverine Software
(1983).

In the 90s, 3D animation capabilities began to emerge. Some of the early sys-
tems included AutoMod (focused on material handling systems), Taylor ED (a
precursor to FlexSim), and Simple++ (a precursor to PlantSim). Although 3D
provides a clear animation improvement over the first generation 2D capabilities,
these initial systems had more limited use due to the added complexity of working
with a 3D model.

The combination of the object-oriented framework, an immersive 3D modeling
environment, and improved 3D drawing features has proven to a very powerful
combination for brining 3D animation into the mainstream of simulation modeling.
Most modern simulation tools now provide 3D as a standard capability.

The next wave of animation for simulation is development of full virtual reality
(VR) environments for displaying simulation animations. This allows a viewer to be
immersed into the model, and walk through the system in a VR environment that
mimics the real system. Several simulation systems (e.g., Simio, FlexSim, Emu-
late3D) already support VR environments for animation.

6.7 Model Verification/Validation

An important part of any simulation project is verification and validation of the
simulation model logic. This process has been greatly improved over the years as
animation features have continued to evolve. It is now much easier to have all the
stakeholders involved with a simulation project, and play a role in verifying and
validating the model operation.

When unexpected behavior is observed in the model, the next challenge is to find
the problem in the model logic. The tools available for isolating logical problems in
the model have continued to improve with each new generation of simulation
products.

One important feature in the latest generation simulation products is filtered
logic trace. Since the beginning of simulation tools, trace of model logic has always
been a primary tool for tracking down issues with model logic. However, the
problem with trace is that it is so verbose that it is sometimes difficult to find the
appropriate information in the mass of trace output—particularly with the larger
models that are often built today. Selective filtering of the trace output to a specific
resource, entity, process, etc., makes it much easier to drill into the trace data and
find the relevant information.

Another key feature that has been added to the latest generation simulation
products is the ability to graphically add breakpoints and watches on state variables
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for objects in the model. This makes it easy to interrupt the simulation at a specific
point, and then query the values of the key state variables in the model.

The combination of enhanced animation, filtered trace, and graphical editing of
breakpoints and watches has greatly improved the ability to track down and fix
logical issues in the model.

6.8 Experimentation and Analysis

Although much attention has been given to the improvement of modeling features,
much of the value of simulation comes from the effective use of the model for
experimentation and analysis. This is a critical part of any simulation project that is
often neglected.

During the first 40 years of simulation, experimentation received very little
attention in simulation software design. As a result, experimentation was largely a
manual effort that took a lot of time and effort. Although the academic world
produced improved procedures for experimentation, these procedures were not
incorporated into simulation software. Use of these procedures required statistical
skills as well as significant time and effort. Since experimentation and analysis is
done at the end of the project, time pressure often forced cuts in this area of the
project. Hence, there was a gap between what could be done in theory, and what
was done in practice.

During the last 20 years, there has been a greater focus from simulation software
developers to incorporate analysis features into their products. As a result, it is now
much easier to define and run experiments and do a proper analysis of the results.
This makes it easier to make better decisions from the simulation modeling project.
Modern simulation tools now contain automated procedures for selecting the best of
a set of candidate system, or selecting a subset containing the best. They also
contain specialized modules (e.g., OptQuest) for doing an optimal search of the
decision space for the model.

Much of simulation analysis during the past 60 years has focused on using the
model for estimating the mean value of key performance indicators (e.g.,
throughput, utilization, etc.). Confidence intervals on the mean are used to indicate
the potential magnitude of the sampling error in the estimates based on the number
of replications of the model. This sampling error can be made arbitrarily small by
increasing the number of replications of the model. Although the confidence
intervals provide a measure of sampling error, they provide no indication of the risk
associated with the system due to the underlying variability in the system. Note that
unlike sampling error, the underlying risk (variability) in the system is not reduced
by more replications of the model. The risk is an underlying characteristic of the
system that we would like to measure.

Although the expected value of a key performance indicator is important, in
many applications knowing the variability and risk associated with that indicator is
equally important. For example, knowing that the average daily throughput is 862
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might not be as relevant as knowing that with 90% confidence the actual throughput
on any given day is at least 820. Note that a confidence interval does not answer this
important question. In the past simulation, tools provided no automated way to
capture this risk information from the experimentation. However, with the recent
introduction of MORE plots (Nelson 2008), this information is now readily
available in some of the new simulation tools.

6.9 Simulation Execution

Simulations can be computationally intensive and place large demands on both
computer memory and processor speed. As computer power has expanded, the
constraints imposed by computer limitations have dramatically reduced. It is now
possible to run large 3D animated simulation models on an inexpensive notebook
computer. It is also now possible to run large-scale agent models that in the past
could have only been done using a system dynamics approach.

Improvements in simulation execution are not only due to better hardware, but
also advances in simulation software design. The latest event calendar designs are
computationally scalable to support many scheduled events without a noticeable
slowdown in execution speed. Most modern simulation software products now
support 64-bit addressing, which means very large models can be executed. Some
simulation products also make use of multiple cores and networked computers to
simultaneously run multiple replications of a model. The combination of better
computers and better software design allows larger models and larger associated
experiments to be executed in significantly less time than before.

One significant recent development in simulation execution supports for running
replications in the public cloud to allow for quick execution of massive simulation
experiments involving 1000s of replications. This makes it possible to quickly scale
up the necessary processor power for only the time required to complete the
experiment. The cloud also makes it convenient for sharing models and model
results across all the stake holders.

6.10 Simulation Applications

In the past, simulation was largely applied to facility design to reduce the risk of
capital investments in new or existing facilities. While system design remains an
important application area, simulation is rapidly expanding to additional application
areas, including system commissioning and system operation.

As a design tool simulation is used to model and predict the behavior of either a
new facility, or proposed changes to an existing facility, before making the capital
investment in the real system. For example, by building a model of the factory we
can simulate production to test out ideas and see the impact of critical design
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decisions such as the adding new equipment or people, or changing the way we
manufacture a specific product.

As a system commissioning tool simulation is used as a surrogate for the real
system to test manufacturing execution system (MES) software and to provide
operator training before the real system is in place. In this application, we run the
model in real-time (or scaled real-time) emulation mode and use it as a direct
substitute for the real system. This makes it possible to have both the MES software
tested and the people trained and ready for startup once the equipment is in place.
This can dramatically reduce the time and cost required to commission a new cell,
line, or factory. Without the aid of simulation, new plant commissioning remains a
costly and time-consuming process, largely due to the long lead times to bring the
system to full operation. These long lead times occur at the point of maximum
investment and zero return. Emulate3D is an example of a simulation tool designed
specifically for this application area.

As a system operation tool simulation is used on an operational basis to schedule
the actual operations within the system. For example, in a manufacturing applica-
tion, we run the model to simulate the production of a specific set of jobs that we
plan to produce in our facility during our next production cycle, and in so doing
generate a production schedule for the plant. Unlike ERP/APS generated schedules,
the simulation-generated schedule provides us with a detailed production plan that
fully accounts for the complexities and constraints of the factory floor. In fact, we
can watch a facility animation of our schedule being generated that shows us in
detail how the work on the factory floor will flow through the facility over time. In
addition, we can replicate the schedule generation process in stochastic model to
generate risk measures for the resulting schedule. Simio is an example of a simu-
lation tool designed specifically for this application area.

6.11 Summary

Since the early 1960s, simulation languages have continuously evolved and
improved. Although the foundational modeling ideas were developed in the first
decade, it took a half century to refine those ideas and create modern simulation
tools that are both flexible and easy to use.

The latest developments in simulation language design have focused on lever-
aging the ease of use of the object-oriented approach while adding flexibility
through improved library design and incorporating events and processes.
Multi-paradigm modeling approaches blend the advantages of different modeling
world views. These object-based languages also leverage the advances in 3D
animation.

The advances in simulation software have also been paralleled by improved
experimentation capabilities as well as significant advances in computational and
animation hardware. Large animated 3D simulation models can now be run on
inexpensive laptops and tablets, and large-scale experiments can be executed using
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cloud computing. Finally, the role of simulation for improving business perfor-
mance is expanding from system design to include system commissioning and
system operation.
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Chapter 7
A Brief History of Time Warp

David Jefferson and Richard Fujimoto

Abstract This chapter is about the history of the Time Warp algorithm and opti-
mistic approaches to parallel discrete event simulation. It concentrates on the early
history from our personal perspective as active developers of the ideas over several
decades.

7.1 Introduction

Time Warp is the name of an algorithm for doing discrete event simulation in
parallel. It is an optimistic simulation mechanism, one that takes risks by per-
forming speculative computation which, if subsequently determined to be correct,
saves time, but if incorrect, must be rolled back. Time Warp can be used in any
computation that uses a global temporal coordinate system for synchronization, but
discrete event simulation using simulation time, is by far the most important
example.

Because of its complete embrace of distributed rollback as the fundamental
synchronization primitive instead of more conventional primitives such as locks,
semaphores, or other process blocking constructs, Time Warp was considered a
radical innovation when it first appeared. It is even today, after 35 years, virtually
unique in that respect, but it has proved to be an elegant and powerful parallel
algorithm, able to achieve excellent parallel performance at a scale of almost 2
million cores with 8 million threads and 250 million LPs so far (Barnes et al. 2013).

This chapter is a brief history of the development of Time Warp, largely con-
centrating on the 1980s and 1990s. It is necessarily incomplete, and is entirely from
our personal perspectives. But this volume on the 50th Anniversary of WSC seems
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to be the perfect place in which to recall this early history. The first part of the
chapter is by David Jefferson, and the second part by Richard Fujimoto. We hope
that other authors will contribute their recollections as well.

7.2 The Early History of Time Warp: David Jefferson’s
Perspective

This first section provides the perspective of David Jefferson, describing the early
years of Time Warp at RAND, JPL, and within the Jade projects.

7.3 Origin of Time Warp at RAND

The development of Time Warp began with a project at the RAND Corp. in Santa
Monica in 1981. The Air Force was funding research to improve military simula-
tions in two ways: first, to allow models to be specified in a quasi-natural language
so that nonprogrammer generals might build their own models or scenarios, and
second, to speed up simulations through parallelism. I was a young assistant pro-
fessor at the University of Southern California with a background in parallel
computation, which at that time was relatively rare, so they recruited me to work as
a consultant on the project. I thought the first objective of natural language model
building was unlikely to succeed, but I might be able to contribute toward the
second of parallelizing discrete event simulations.

I had never read any literature on parallel discrete event simulation (PDES), of
which there was not much, and I did not immediately do a literature search. I just
started working on the problem from first principles. I was familiar with the
sequential discrete event simulation algorithm based on a priority queue, and I
thought that creating a parallel version of the algorithm would probably be
straightforward. That, of course, turned out to be exceptionally optimistic because
now, 35 years later, there are still basic issues, like load balancing or the rela-
tionship of PDES to the continuous simulation techniques used for numerical
solution of ordinary and partial differential equations, that we are still trying to
understand about PDES.

On my first consulting day at RAND, I recognized the core problem as syn-
chronizing the interaction among many concurrently executing processes (called
“logical processes”, or LPs) sending timestamped event messages to one another.
Every LP receives a stream of timestamped event messages sent by other LPs. The
incoming messages at an LP do not generally arrive in increasing timestamp order,
and in the general case there is no limit on how far out of order they are.
Nonetheless, each LP must process event messages strictly in increasing timestamp
order. If and only if all LPs do that (and have the same tie-breaking rule as well), the
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resulting simulation is equivalent to that of the sequential algorithm, as required.
This was similar (with some minor differences) to the way Chandy and Misra
(1979, 1981), and independently Bryant (1977), had already framed the problem,
though I did not know it yet. The most important conceptual difference was that
they assumed event messages were transmitted within a static graph of
order-preserving message channels between LPs, whereas I assumed any LP could
send an event message to any other at any time, and without requiring order
preservation.

I quickly realized some key facts about the synchronization problem in parallel
discrete event simulations. Except in special cases, one cannot achieve any sig-
nificant parallelism by trying to keep all the LPs of a simulation tightly synchro-
nized in simulation time, or requiring that events in different LPs be executed in
increasing simulation time order. Any such attempt to constrain the simulation
would over-synchronize it and effectively sequentialize execution, no matter how
many processors were used. Instead, a parallel simulator must allow some LPs to
run ahead in simulation time while others lag behind, with no a priori bound on the
time difference. Also, which LPs are ahead or behind must be able to change
dynamically as the simulation progresses. There cannot be a single, globally shared
standard for simulation time as there is in the sequential algorithm and in parallel
time-stepped simulation algorithms. Instead, each LP would need its own simula-
tion clock, and in any hypothetical instantaneous snapshot two such clocks would
rarely, if ever, agree. These observations applied even in the context of shared
memory parallelism, though we were interested in distributed algorithms.

I do not recall the exact moment of realization, but at some point it occurred to
me to think in terms of asynchronous parallel rollback as a possible synchro-
nization primitive instead of the classical primitives based on process blocking and
resumption. In the late 1960s, rollback had been used in limited ways in sequential
(but not parallel) debuggers (Balzer 1969). And rollback limited to the scope of a
single transaction (transaction abortion) had recently been studied in the context of
optimistic parallel database synchronization (Kung and Robinson 1981). Other
work I was at least dimly aware of that may have had some influence on me
included studies of parallel backtracking algorithms in such applications as parallel
tree search, alpha–beta pruning in game trees, and branch-and bound optimization.

But while rollback was conceptually straightforward in the context of sequential
computation or transaction abortion, how could it possibly work at all in the general
case of an asynchronous parallel computation communicating by timestamped
messages, let alone work efficiently? I did not know, but I felt forced in that
direction because I had been able to construct simple artificial models with just two
or three LPs where it seemed impossible to achieve enough parallelism without
rollback. But in implementing rollback, how do you undo the fact that the process
being rolled back may have sent out event messages that should be recalled, and the
receivers of those messages may by now have sent secondary event messages that
also should also be recalled? There would be a potentially large, dynamically- and
asynchronously expanding tree of event messages that must all be recalled because
of the original rollback, and that tree is growing, potentially exponentially, even
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while the rollback is in progress! And in fact many parallel and uncoordinated
rollbacks could be going on simultaneously in various parts of the simulation that
would potentially interact and interfere with one another in unpredictable, nonde-
terministic ways. How was it possible to accomplish a clean rollback in the context
of such a chaotic mess?

These considerations were all something of a disturbing surprise, and it con-
cerned me enough that I checked with the project leader at RAND, Phil Klahr, to be
sure that he was OK with me exploring what seemed like radical approaches to the
problem of parallelizing discrete event simulation. To his great credit Klahr said
that he did not care how I proposed to parallelize a simulation as long as the
algorithm achieved speedup and got the correct results, i.e., the same results as
would be produced by sequential execution. That freed me to think as far outside
the box as I wanted.

7.4 Collaboration with Henry Sowizral

At this point, Klahr also made another crucial decision. He teamed me with a
RAND researcher, Henry Sowizral. This turned out to be an extraordinarily fruitful
partnership. After filling Henry in on my thinking, he immediately saw where it was
going and we worked closely together thereafter. Over the next 9 weeks during my
Friday consulting visits to RAND the two of us jointly developed most of the core
ideas of what came to be known as Time Warp. Our research “method” was to walk
outside along the Santa Monica Pier, the beach, and the palisades above, enjoying
the sun and the sights, and brainstorming continuously for hours about PDES.

That collaboration, though lasting less than 2 years, was one of the most pro-
ductive in my life. Henry and I were complementary and coequal. We adopted
speculative execution with general distributed rollback as our computational para-
digm, and then systematically rethought virtually every other issue in distributed
computation with rollback in mind. This was, and still is, a radical departure from
other paradigms of parallel computation. It allows the computation to execute
speculatively down completely incorrect computational paths that were never
intended or envisioned by the programmer. Eventually the incorrectness is detected
by a causality violation signaled by the arrival of an event message with a timestamp
in the simulation past of the receiving LP. That causes a cascade of actions in which
all LPs in the distributed simulation that have been directly or indirectly affected by
the original erroneous speculative event may be rolled back to times in their past
when their dependencies on the original error began. Execution then proceeds for-
ward in all of them again down a (more nearly) correct path, in a manner that might
be described as many parallel backtracking “searches” for the correct forward paths.

The fact that this approach could be made to work at all was astonishing to us. It
seemed totally counterintuitive that you could profit by (a) doing some distributed
computation speculatively, which might be utterly wrong, while also paying sub-
stantial additional overhead to allow for possible rollback, and then (b) also
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sometimes paying the cost of distributed rollback to undo the speculative compu-
tation when required, before (c) finally redoing the correct computation. But we
became confident, without real proof yet, that the resulting parallel computation
could be faster than an algorithm in which you carefully refrained from doing
anything speculative at all, at least sometimes.

But we were still faced with a lot of difficulties. How could a rollback mecha-
nism be implemented so that the speculative execution converged stably and
deterministically on the correct execution? How could we guarantee that the sim-
ulation made forward progress instead of thrashing forever in rollback activity? If it
was theoretically possible at all, how could it not be overwhelmed by state-saving
or synchronization overhead? How could we reclaim memory and avoid filling it
with data needed to support rollback? And how could this possibly scale well in a
distributed-memory platform?

Henry and I kept struggling with these problems. We conceived of a mechanism
whereby incorrect event messages could be “unsent” by sending special “cancel-
lation” messages that tell the receiver to throw away the cancelled event message
and to undo whatever further computation they may have done based on it. That
was promising, because it would induce a tree of such cancellation messages and
rollbacks in other LPs as necessary. But would this growing tree of cancellations
ever converge? What if, after an LP sent a cancellation message, it had to roll back
again to a time before it sent the cancellation? It seemed that we would then have to
send out a second-order cancellation message to cancel the previous cancellation
message, and third-order cancellations might be required to cancel erroneous
second-order cancellations. Would not that mean we would need an infinite hier-
archy of higher order cancellation types?

At this point an idea occurred to us that I consider the most beautiful one in the
core of Time Warp. Cancelling a cancellation message could be made indistin-
guishable from resending the original event message, and in that case a third-order
cancellation message was indistinguishable from a first-order cancellation. There
was an even–odd parity at play, and we formalized it in terms of a message–
anti-message duality. A regular event message would be considered “positive” and
a cancellation message would be considered “negative”, and they were symmetri-
cal. Either one could cause a rollback, and whenever two messages that are identical
except for sign were enqueued in the same message queue they would “annihilate”
and just disappear. The notion of anti-messages and annihilation made asyn-
chronous distributed rollback work cleanly, and it did so even in all the complex
cases. It worked even though the timing was nondeterministic and messages were
asynchronous and arbitrarily delayed, and even when messages were not delivered
in FIFO order, and even when there were cycles in the communication graph, and
when multiple, asynchronously interacting and mutually interfering rollbacks were
simultaneously in progress, and when anti-messages were delivered before the
messages they were supposed to cancel, and it even worked when all anti-messages
were delivered systematically more slowly than positive messages! Furthermore,
the anti-message mechanism scaled easily to an arbitrarily high degree of paral-
lelism. It seemed miraculous that such a simple, elegant mechanism as timestamped
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anti-messages could also be so powerful, scalable, and robust. (It still seems that
way to me.) Henry and I repeatedly discovered that every issue created by the
introduction of distributed rollback seemed to have an elegant, efficient, but often
surprising solution, unlike anything we had seen in our computer science experi-
ence. That gave us confidence that we were on a very significant research path.

For such a brand-new and different kind of algorithm the correctness and per-
formance properties of asynchronous distributed rollback really should be formally
proved. I had substantial background in program verification, so I went through a
private exercise of trying to prove both weak and strong correctness. I believe I
could have done it but it would have required developing of great deal of new
formal machinery which would have been a distraction from my main goals at the
time. Still, the exercise of trying convinced me privately that there were no flaws for
a simulation with a finite number of LPs. I do not think that even today anyone has
published a formal proof of correctness of the full Time Warp algorithm (e.g.,
including the cancelback protocol), but Bagrodia et al. (1991) may have come
closest. Of course many analytical and empirical papers have been published on the
performance properties of Time Warp.

In those first few weeks, Henry and I considered many variations on Time
Warp. The state restoration parts of the rollback mechanisms we considered were
all based on saving snapshots of the state of an LP, but we considered several
possibilities, including incremental and variable frequency state-saving. We also
considered various message cancellation schemes and distinguished two of them,
lazy and aggressive cancellation. We defined GVT (global virtual time), and
articulated how it resolved commitment issues such as I/O, error handling, and
termination detection, and at the same time allowed us to recycle memory using a
technique we dubbed fossil collection, intentionally echoing the term garbage
collection. We considered how an LP going down an incorrect execution path might
commit a runtime error or get into an infinite loop, and yet even those problems
could be cleanly handled by properly implemented rollback. We dealt with the
semantics of handling ties in virtual time, i.e., two events at the same LP at the same
simulation time, and invented the superposition concept in which the entire set of
tying event messages are processed together in a single event execution. We spent
an inordinate amount of time worrying about the problem of repeatability with the
use of pseudorandom number generators (PRNGs) in the context of asynchronous
rollback. For a long time, I had something of a blind spot and failed to realize the
obvious, that when you just treat the PRNG seed and state as part of the model state
that could be rolled back, rather than as part of the simulator state, then there is no
problem at all.

For the most part, it is not possible to separate Henry’s and my contributions to
the early ideas in Time Warp. However, I specifically remember that Henry came
up with the name “Time Warp”. At first I did not like it at all because it sounded
like science fiction to me and I thought such a significant algorithm deserved a more
dignified and serious name. Eventually I caved, however, because other people
liked it and because I had nothing better to offer. It turned out to be a wonderful
choice because once people heard the details of the algorithm the catchy name
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really helped them remember it. I contributed the term “antimessages” myself.
People instantly got the allusion to particles and antiparticles in physics, and that
also helped sell the unorthodox idea to the research community.

Henry and I did the first proof-of-concept implementation of Time Warp on a
network of four Xerox Dolphin workstations used at RAND. We wrote in InterLisp
because we could get something working interactively very quickly. Henry was at
the keyboard with me looking over his shoulder kibitzing at every line. After we got
the Time Warp code barely turning over we needed a benchmark simulation model
to demonstrate that it worked. We chose to write a parallel event-driven version of
the cellular automaton known as the Game of Life because it was easy, it could
scale it to any size, it had plenty of parallelism available, and it could be trivially
load balanced. By giving each LP responsibility for larger or smaller “chunks” of
the two-dimensional region we could control the event granularity and the
communication-to-computation ratio. That model also forced us to deal with event
message ties because each cell in the Game of Life is updated only when it gets
simultaneous (in simulation time) inputs from its eight neighbors. And finally, The
Game of Life was simple and deterministic and easy validate, so we would know
instantly if there was a problem.

The first few times we ran it we got no speedup at all compared to sequential
execution, and in fact we measured a severe slowdown. To fix this we had to do our
measurements after hours when we were not competing for cycles and network
bandwidth with other users of the Dolphins. We had to turn off background
computations and system services, such as various daemons, demand paging and
lisp garbage collection. We also had to turn off our own debugging and trace
instrumentation, which otherwise did file I/O for each event. Only then, when all
those heavy performance drags and sources of performance noise were eliminated
were we able to see the parallelism and measure any speedup. As I recall, we
achieved almost a 2.5x speedup on our four-node network under optimal condi-
tions, though no records of those initial runs survive.

Eventually the collaboration between Henry and myself ended as we began
moving in different directions. Henry had not yet finished his PhD dissertation and
had to get back to it, and thus wanted to hold off for some months before he could
resume work on Time Warp, whereas I had a tenure clock running and students to
engage, and wanted to take the research to the next level immediately. Also,
inexplicably, RAND did not support our desire to apply for additional research
funding to allow us to bring more people to the project. Fortunately for me, as a
USC professor, I was not subject to RAND management, and could get my own
funding. Before the collaboration ended Henry and I wrote the first paper on Time
Warp in the form of a RAND Tech Report (Jefferson and Sowizral 1982). The title,
“Fast Concurrent Simulation Using the Time Warp Method, Part I: Local Control”,
hints at a forthcoming Part II, describing global control (GVT, etc.), but we never
got around to writing it.
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7.5 Conservative Versus Optimistic Synchronization

After Henry and I had developed the core Time Warp methods and while we were
still working together I finally began to study the published literature on PDES,
mostly that by Mani Chandy and Jay Misra. They approached the synchronization
of discrete event simulation by what I viewed as more conventional means, using
algorithms based on process block-and-resume primitives rather than rollback.
They introduced the now classic Null Message algorithm (Chandy and Misra 1979),
a similar version of which had been independently invented earlier by Bryant
(1977). Later they introduced another another algorithm based on a repeated cycle
of running to global deadlock and breaking the deadlock (Chandy and Misra 1981).

With the Null Message algorithm (also known as CMB after the inventors) the
authors were targeting simulations of queueing systems, dataflow architectures,
computer networks, and other systems that are characterized by a static set of
components and a static graph of interactions among them. When I finally studied
their algorithm my reaction at the time was not favorable. The algorithm required
not just a static graph topology, but one using strictly FIFO communication
channels among the LPs (called “lines” in their paper), with the event messages sent
down each channel required to be in increasing timestamp order. It allowed neither
dynamic creation of new LPs nor of new channels between LPs. These seemed to
me to be strong restrictions on the class of discrete models that the algorithm could
be applied to. Henry and I had military combat simulations in mind, and it never
occurred to us to assume a static graph of interactions. We needed a method that
could simulate models that were much more dynamically malleable, permitting any
LP to send an unexpected event message to any other. One could do that within the
CMB paradigm only by assuming a complete graph of channels among the set of n
LPs, and that would entail O(n2) channels, and in some cases O(n2) messages
(mostly null) per unit of simulation time, which was clearly unscalable. We also
wanted to allow dynamic creation and destruction of LPs at runtime, a capability
that was incompatible with a static graph of LPs.

The CMB restriction that in each channel event messages must be transmitted in
increasing timestamp order had other, less obvious consequences. An LP A with
four successive events at times 10, 20, 30, and 40 might want to send one message
per event to another LP B with timestamps 90, 80, 70, and 60 respectively, so that
the event messages must be processed at the receiver in the reverse of the order in
which they were sent. Chandy and Misra’s version was based on Hoare’s Com-
municating Sequential Processes and could only handle an inverted sequence of n
messages from A to B if B were divided into n separate LPs and there were at n
separate channels from A to each of them, with each message sent along a different
channel. Since the number of channels had to be static, there was always a static
limit on how long a sequence of inverted order messages could be sent from A to B.
As a practical matter it is rare for an LP to want to send a long inverted sequence of
event messages, but there is no theoretical reason to adopt any static restriction, and
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no such restriction is needed by either by the sequential discrete event algorithm or
by Time Warp.

Finally, I was also concerned that the Null Message algorithm required addi-
tional logic in the model code to decide when to send null messages and what
timestamp to send on them. Null messages were required to assure good perfor-
mance and to avoid deadlocks. This extra logic sometimes required fairly deep
understanding of the mechanics of parallel simulation on the part of the model
programmer, understanding that may not have been within his or her expertise. In
some cases even though deadlock was avoided, it was sometimes only barely
avoided, possibly requiring a large number of null messages to make a small
amount of simulation progress. In current terminology, we would say that such
models have very poor lookahead, and it is inherently difficult for them to achieve
good performance with any kind of conservative synchronization, including CMB.
Such additional logic is not required in either the sequential algorithm or in Time
Warp.

These strong limitations led to my low opinion of the Null Message algorithm at
the time. It seemed to me at best a special-purpose simulation algorithm, not a
general discrete event simulator. In fairness, it was always presented as a network
simulation algorithm, but many, if not most, readers thought that it applied much
more broadly. For all its good qualities, I was then acutely aware at the time of the
Null Message algorithm’s limitations.

I hasten to add here that despite those limitations the Null Message algorithm has
stood the test of time. There are many important “network” models that fit perfectly
within its restrictions, and for them, it is often ideal. Even nonnetwork models can
often be profitably shoehorned into network form so that it applies. In the inter-
vening years I have implemented it, applied it in real applications, and taught it
several times myself, and I have grown to appreciate it much more.

But in the early 1980s, with the Null Message algorithm’s limitations paramount
in my mind, I developed something of a competitive attitude. I foresaw great
difficulty in getting an exotic rollback-based algorithm like Time Warp to be taken
seriously when there seemed to be much simpler, more approachable and more
understandable algorithms based on conventional synchronization.

Around this time I took a tour of universities, lecturing about Time Warp, and I
visited U. T. Austin where I met Chandy and Misra for the first time. The meeting
was a little awkward as I recall. In giving my usual lecture on Time Warp I would
have compared it to their published algorithms, and probably argued to the audience
that Time Warp was a superior approach. That may not have been the most politic
thing to do at their own university. For the first time upon meeting them I realized
that they were both quite distinguished and senior to me and thus deserved some
deference. I think they may have been mildly irritated at my presentation, though
they were totally professional about it. As I recall, it was in that first conversation
with them that the terms “optimistic” and “conservative” were adopted to apply to
speculative, rollback-based methods versus unspeculative, process-blocking meth-
ods. I had been using the term “optimistic” to describe Time Warp-like methods, by
analogy with optimistic transaction synchronization, and the natural contrasting
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term I had been using was “pessimistic” to describe nonspeculative methods.
Chandy and Misra, understandably, did not like their algorithms characterized as
“pessimistic”, and proposed, if I recall correctly, that we perhaps refer to the two
approaches as “liberal” and “conservative”. I was not happy with the overtones
those two terms evoked. However that conversation went, and it is very fuzzy to me
now, by the end we agreed that each of us would choose our own term to describe
the methods we had developed. I chose “optimistic”, and they chose “conserva-
tive”. That is how that asymmetric pair of terms came to be adopted.

For maybe two decades or longer a rivalry of sorts continued between propo-
nents of optimistic and conservative methods. Each camp had its advocates, who
pointed out the strengths of their methods and the weaknesses of the others. These
positions were often inherited by the next generation or two of graduate students as
well. I recall one of the more dramatic moments in the competition was an occasion
when a prominent professor boomed to a conference audience that “Conservative
methods are doomed! Doomed!”. Another moment in the opposite direction was
publication by Nicol and Liu of a significant paper entitled “The Dark Side of Risk
(What your mother never told you about Time Warp)” (Nicol and Liu 1997). We all
laugh about the controversy now, but for a long while the positions were pas-
sionately held on both sides. I was partly responsible for this rivalry, but I was
certainly not alone. In my defense, I felt that I had a very uphill battle to make the
case that a radically different, even bizarre, algorithm such as Time Warp, should
even be considered for PDES or any other application. Most researchers initially
assumed that conservative PDES synchronization, which was invented earlier and
was easier to understand and implement, was the natural and reasonable approach.
I thus thought it was necessary not only to demonstrate the advantages of optimistic
methods, but also to articulate what I thought of as the inherent limitations of
conservative methods.

The rivalry slowly faded. Thankfully it never became personal. Echoes of it still
crop up indirectly on panels and over drinks at conferences, especially among old
timers of my generation. But today there is widespread recognition and under-
standing of the merits and limitations of both conservative and optimistic syn-
chronization methods. My own position has now matured as well. I now believe
that when and where there is good lookahead information that is easily computed,
conservative methods will generally dominate optimistic methods. When there is
not, optimistic methods will dominate. In complex models where some parts have
good lookahead and others do not, a hybrid synchronization system is called for.

7.6 The Virtual Time Paper

In 1983, I wrote a new paper, “Virtual Time” (Jefferson 1985), based on Time
Warp. My collaboration with Henry had ended, and for a lot of reasons it was not
going to be possible for us to write a jointly authored paper. Thus, he was not a
coauthor, though arguably he should have been. Henry, as a RAND employee, was
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bound by their slow and ponderous rules for submitting anything for publication,
whereas with a tenure clock running I could not afford the year-long submission
delays he would be subject to. Instead, to justify my sole authorship, I included as
much new material of my own as possible beyond what we had already published.
The new paper framed the Time Warp algorithm as a general purpose synchro-
nization protocol, useful for an array of applications beyond just simulation, such as
database concurrency control (Jefferson and Witkowski 1984; Jefferson and Motro
1986). I still believe that it has potentially widespread value in parallel applications
with complex synchronization, fault recovery, and load balancing requirements.
The paper also presented an extended analogy between rollback-based synchro-
nization and demand paging implementations of virtual memory, in which a roll-
back (“time fault”) is considered analogous to a page fault (“space fault”). This
analogy is what inspired the title, “Virtual Time”. That paper became very well
known, winning the Most Original Paper award at an international conference in
1983, and becoming over the years one of the most frequently cited papers in
computer science, and the catalyst for much further research on optimistic
synchronization.

7.7 Research with My Students at the University
of Southern California

After my collaboration with Henry ended, there was still a huge amount of research
to do to flesh out the mechanisms and provide useful theoretical underpinnings for
Time Warp. Fortunately, I had funding and graduate students at the University of
Southern California that enabled us to make further progress.

Critical path lower bound on time performance: One question we addressed was
just how much parallelism is available in a parallel discrete event simulation, and
how much of that parallelism Time Warp can capture. With my student Orna Berry,
now a distinguished scientist and entrepreneur in Israel, we used a critical path
approach to define the amount of parallelism available in a simulation model or,
equivalently, to define a lower bound on the time it takes to execute a simulation in
parallel. We were able to prove that no conservative algorithm could execute in less
time than the length of its critical path. Time Warp was also bound by the same
critical path length if it used aggressive cancellation but, in an extremely unex-
pected result, Berry proved in her dissertation that Time Warp with lazy cancel-
lation could sometimes actually execute faster than the critical path lower bound
(Berry and Jefferson 1985; Jefferson and Reiher 1991). Even now, after 30 years,
this result is not widely appreciated, and its consequences are still relatively
unexplored.

Flow control: Another issue we had not considered in the original Time Warp
research was message flow control. (I was not even aware of flow control as a
generic distributed systems issue until I started teaching operating system courses at
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USC.) In the original work at RAND there was no mechanism to prevent
fast-sending producer LPs from filling up the memory of slow-processing consumer
LPs with queued-up event messages, fatally choking the simulation. Classical
“windowing” flow control algorithms do not apply in Time Warp (or any other
general PDES simulator) because there are no message “channels” and message
streams from multiple senders are merged at the receiver, because unexpected
messages from new senders can arrive any time without warning, and because the
order in which messages must be processed at the receiver (timestamp order) is not
generally the same as the order in which they are sent, nor the order in which they
arrive. Eventually, Darren West at Jade Simulations in Calgary, and I, working
partially independently, came up with a very elegant solution, one based on the idea
that a receiving LP whose incoming message queue was excessively long could
send high-timestamped messages back to their sending LPs to make room for
incoming messages with lower timestamps, in a protocol we called cancelback.
When the sending LP receives a sentback message, it rolls back to before it sent the
message, and executes forward again and resends the message later (Jefferson
1990).

The idea of sending a message backward from receiver to sender is another
highly unorthodox feature of Time Warp that cannot work in most parallel com-
putation paradigms because they lack the ability to roll back. Sending messages
backward is a communication idea that is nicely symmetric to the computational
idea of rollback, and meshes perfectly with it. That observation and others led to
greater emphasis on elegance and symmetry in future presentations of the Time
Warp algorithm.

Unfortunately, even though Time Warp has been implemented many times in the
last 30 years, most implementations leave out the cancelback protocol. This leaves
them open to unpredictable and unrepeatable runtime failures due to memory
exhaustion in an LP. That kind of nondeterministic failure behavior is essentially a
Heisenbug, and when it occurs people can waste a huge amount of time trying to
figure out what the problem is or work around it. Fortunately, experience so far
shows this does not happen very often, probably because the models we are
interested in tend to be approximately well balanced, or because some kind of
active throttling of optimism is used. But I expect that as the complexity of models
increases, especially with federated and multiscale models, this memory manage-
ment hazard will also increase in urgency. We should consider the cancelback
protocol as a fundamental part of any Time Warp implementation.

Global memory management and memory bounds: The consideration of flow
control led to a larger concern of more global memory management, and the
question of the minimal memory requirements for a Time Warp simulation. It was
obvious that to get good performance a Time Warp simulation would normally
require at least several times more memory than an equivalent sequential simulation
because it had to store both a sequence of snapshots of each LP’s state and
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previously processed event messages and anti-messages for every message the LP
sent, and it had to retain them at least as far back as GVT. There was a danger that
the memory requirements would grow without bound, and the simulation would be
unstable for that reason. We needed a theory for how to manage Time Warp
memory, and as part of that we wanted to know the minimal amount of memory
required for a Time Warp simulation to complete (though more memory was
always better).

My student, Anat Gafni, proved in her dissertation that Time Warp, using both
the cancelback and fossil collection protocols together, could be guaranteed to
complete a simulation if given no more than about twice the memory that a
sequential execution of the same simulation would require (Gafni 1985). We later
improved that result by a factor of two, so that in theory Time Warp could complete
in about the same amount of memory as a sequential execution when running on a
shared memory (or virtual shared memory) platform (Jefferson 1990). Of course,
the runtime performance would be terrible when Time Warp is constrained to run
with memory near the minimum, but the result made the point that Time Warp
could be space optimal. Surprisingly, I was also able to prove that asynchronous
conservative methods were far from space optimal in general. I constructed artificial
models that, with unfortunate timing, could require many times the memory of the
sequential execution, although that was not typical.

Symmetry: The success of the cancelback protocol, in which message sendback
was a direct analog to computational rollback, and the success of the analogy
between virtual time and virtual memory, led me to adopt symmetry as an explicit
goal in the Time Warp algorithm. Symmetry helped me present the algorithm more
compactly and convincingly, and it led me to search for other places in the algo-
rithm that had near symmetries and to correct them to make them perfect. Over the
years I came to recognize a lot of symmetries, including message–anti-message
symmetry, state–message symmetry, forward–backward time symmetry, forward–
backward message transmission symmetry (cancelback), virtual memory–virtual
time symmetry, and others. In the end, the bedrock reason I personally remained
inspired by optimistic simulation was fundamentally aesthetic. I did not see similar
symmetries in conservative methods, so I did not find them so compelling.

These results from the 1980s gave us confidence that optimistic methods,
unorthodox as they were, should be taken seriously, both practically and theoreti-
cally, and that conservative methods had some genuine limitations. But the real
tests would have to come with a serious parallel implementation of Time Warp and
performance studies using both benchmark models and realistic models. We needed
to demonstrate that Time Warp, with its heavy overheads and its poorly understood
dynamical behavior, could nonetheless achieve real speedup from parallelism on
real applications, and could be competitive with conservative algorithms in at least
some useful application areas.
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7.8 The Time Warp Operating System at Jet Propulsion
Laboratory

On a visit to Caltech I had the opportunity to give a series of two talks. Since it is
hard to get people to come to a second talk after a week’s interregnum I tried a
dramatic trick to attract them back. I described the PDES synchronization problem
in the first lecture and convinced the audience that the problem, as I framed it, was
essentially impossible to solve. I left a cliffhanger, promising to resolve it a week
later in the second talk. When that day came, I had a full room and presented Time
Warp, cleanly solving all the apparent problems. It was the introduction of rollback,
which I had not mentioned in the first talk, that made the problem as I had framed it
soluble. Those two lectures turned out to be especially important subsequently
because the audience was full of physics-oriented people from the Jet Propulsion
Laboratory (JPL) and Caltech who appreciated the analogies between Time Warp
and physics (symmetries, anti-messages, etc.). Soon afterward when we started a
multiyear Time Warp development effort at the Jet Propulsion Laboratory, some of
the core members of that team, especially Brian Beckman, had been present in that
audience, and others who were there became supportive of the project.

By 1984 I had moved to UCLA and begun the relationship with JPL that lasted
for 7 years. A coincidence of three circumstances made this possible. First the
Army, a sponsor at JPL, was interested in speeding up combat models and looked to
parallel discrete event simulation as a key enabler. Second, researchers at Caltech
and JPL were designing and building a parallel computer with a new architecture,
the Caltech hypercube, and were looking for projects that would make constructive
use of it and demonstrate its value. And finally, because my collaboration at RAND
had ended, I was available and eager to work on the project and was invited to
lead it.

The Caltech Hypercube was a 32-node distributed-memory cluster with Intel
80286/87 processors connected by 128 KB/s communication channels in a 5-D
hypercube topology. Each node had 256 KB of RAM. It was an ideal machine on
which to build the first serious implementation of Time Warp. At that time 32 nodes
constituted a very large parallel computer. It was much larger, and more tightly
coupled, than the four-node network Henry and I had used—large enough that we
would be able to demonstrate significant parallelism and do useful scaling studies.
The fact that the Hypercube did not have shared memory was in my view an
advantage. I did not want to be tempted to use shared memory as a performance
crutch in any way, since any such dependence would leave doubt about the scal-
ability of Time Warp on platforms larger than the practical limit of shared memory.

The Caltech Hypercube had no operating system per se that we could use. This
was before the first release of Linux, and long before it became almost a de facto
standard OS for cluster machines. The only system software it had was what today
we would call a two-sided, synchronous, order-preserving message system, like a
primitive MPI that was intended to support what we would today call the Single
Program Multiple Data (SPMD) parallel programming model. But we could not use
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that because Time Warp needed a one-sided, asynchronous, interrupting message
system, and we did not need order preservation. Thus, we had to build our own
messaging layer, and that layer rested essentially on the “bare metal” of the hy-
percube. Even this I did not view as a handicap because it fit with my view that
Time Warp should be thought of not just as a simulator, but as a special-purpose
operating system. The project was therefore named TWOS—the Time Warp
Operating System (Jefferson et al. 1985, 1987; Wieland et al. 1989).

I think of Time Warp more as an operating system than as an application because
a full implementation requires the same software components as an operating
system for a parallel machine, but with alternative, virtual time- and rollback-
friendly algorithms in place of the classical ones.

• Time Warp needs a process scheduler with a lowest virtual-time-first discipline
rather than any variation on round-robin.

• Its primary synchronization is based on asynchronous interrupting messages and
general distributed rollback, not on locks, semaphores or process blocking.

• It needs timestamp-order priority queues with anti-message annihilation, rather
than FIFO message queues.

• Its message flow control and global storage management need to be based on
fossil collection and cancelback rather than garbage collection and windowing.

• It needs daemons for distribution of GVT (global virtual time), using what today
would be called asynchronous all-to-all reduction.

• It needs special normal and abnormal termination detection and error handling,
based on GVT.

• It needs special I/O commitment, also keyed to GVT. (It would be nice to also
have a file system that supports rollback, but no one has ever built one.)

• It needs custom instrumentation to measure quantities such as events executed,
events rolled back, message annihilations, message cancelbacks, and various
other performance metrics unique to Time Warp that have no analog in con-
ventional operating systems.

Later in its development, Time Warp also needed special mechanisms for
rollback-friendly LP creation and destruction, dynamic LP migration to support
load balancing (Reiher and Jefferson 1990), and advanced dynamic message routing
to deliver messages to migrating target processes (Ravi and Jefferson 1988).

Despite these considerations, today everyone implements Time Warp as a run-
time system on top of an OS, rather than as an OS itself. But however practical that
decision is, we should be aware that there are performance costs to it. It entails two
levels of scheduling, two levels each of synchronization, message queuing, memory
management, error handling, and termination detection, as well as reliance on a
level of polling for incoming messages.

The TWOS project at JPL was fairly large, with a full-time development staff of
anywhere from 8 to 12 at any one time over the 7 years. Two people wrote the core
Time Warp algorithms, initially Brian Beckman and later Peter Reiher, both of
whom did brilliant work. The project would never have succeeded without them.

7 A Brief History of Time Warp 111



Phil Hontalas had the highly technical task of writing the low-level asynchronous
messaging system complete with routing and interrupt handling, etc., and then
porting it twice to subsequent parallel machines. Mike DiLoreto was a master
debugger and performance specialist jack-of-all trades. John Wedell built a high
performance sequential simulator that was semantically identical to the TWOS
simulator and used for performance comparisons. He kept improving its perfor-
mance, which challenged the team working on TWOS since its performance was
evaluated relative to the performance of Wedell’s sequential engine. Fred Wieland
built the main parallel benchmark simulations and wargame models for the Army.
Steve Bellenot did R&D on GVT algorithms. Van Warren was our graphics spe-
cialist. Others, including Leo Blume, Joe Ruffles, Kathy Sturdevant, Larry Hawley,
Abe Feinberg, Pierre Laroche, John Spagnuolo, Todd Litwin and two fine interns,
Maria Ebling and Matthew Presley, contributed benchmarks, instrumentation,
documentation, ran performance studies, etc. Jack Tupman and Herb Younger were
our managers interfacing with the Army sponsors, JPL upper management and the
proprietors of the Hypercube, and husbanding the finances.

After the first few years, JPL built a new, much more powerful hypercube: the
JPL Mark III. It had 64 nodes arranged in a 6-D hypercube, and was based on the
Motorola 68020/68881 processor/coprocessor pair with a comparatively whopping
4 MB of RAM per node! Still later our project purchased a BBN Butterfly GP1000,
a shared memory machine with 112 nodes, also with 68020/68881 processors and
4 MB per node. We ported TWOS to each of these machines in succession, which
allowed us to run still larger models, achieve higher degrees of parallelism, and
demonstrate the portability and scalability of Time Warp.

The following graphs, which are re-scans of the original plastic transparencies I
used in 1988 in various presentations, illustrate the performance of TWOS about
midway through the 7-year project. Figure 7.1 shows a strong scaling study of a
military ground combat model called STB88 that the Army commissioned us to
build as a benchmark. It had 380 LPs and was run for 326,997 events. The graph
shows speedup of the combat model as a function of the number of nodes used on
the Mark III Hypercube. The speedup is relative to the performance of our fast
sequential simulator, not to Time Warp executing on one node. That is important
because if we had chosen the performance of our algorithm on one node as a basis
for comparison, which parallel computation researchers often did in those days, it
would have yielded much higher but quite artificial speedup values, since a
one-node Time Warp execution would pay high and unnecessary overheads for
support of rollback and would consequently run much slower than our sequential
simulator. The curve in Fig. 7.1 shows approximately linear scaling, from a
speedup of about 2.5 on 4 nodes to about 16.5 on 32 nodes. The data in the
documentation box shows that the sequential simulation took 1.4 h, while the time
on 32 nodes under Time Warp was 5.3 min. The initials of Fred P. Wieland in the
last line of the box show that he performed the runs. The sponsor was very happy,
and so were we—we put this graph on a T-shirt!

The next two figures show a performance study a few months later of TWOS
running essentially the same combat model as in Fig. 7.1, but this time done on the
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BBN Butterfly by Fred Wieland and Phil Hontalas. Figure 7.2 is another plot of
speedup as a function of the number of nodes applied. In this case, we reached a
speedup factor of over 35x using 100 nodes and with an approximately linear
speedup almost to full scale. We did some runs two or three times, and you can see
up to 10% variation in performance even with the exact same configuration

Fig. 7.1 Strong scaling study of TWOS relative to sequential execution of an Army combat
model (STB88) running on the JPL Mark III Hypercube in July, 1988

Fig. 7.2 Strong scaling study of TWOS relative to sequential execution of an Army combat
model STB88 running on the BBN Butterfly in October 1988
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measured twice. The variation shown between runs on different numbers of nodes is
larger, and is primarily because the combat model was irregular in structure and the
load was not always as well balanced at one scale as it was at another.

Figure 7.3 shows a plot of the number of rollbacks measured in the exact same
runs plotted in Fig. 7.2. (It may not appear that way because in both graphs there
are cases where multiple measurements at the same scale were so close that points
coincide.) Figure 7.3 illustrates the fact that in Time Warp the number of rollbacks
generally increases as a model is spread over more and more processors. In fact
when running over 100 nodes, there were over 400,000 rollbacks when the total
number of committed events was 419,797. Although a huge percentage of the
events were rolled back and executed more than once, the speedup as shown in
Fig. 7.2 continues to increase, at least up to the scale reached in this study.

This result is characteristic of Time Warp and very surprising to people new to it.
How can it be that the speedup continues to increase even though the number of
rollbacks does also? It is because the great majority of those rollbacks are for events
that are way off the critical path of the computation, and thus they do not slow down
the global progress of the simulation. While there is such a thing as excessive
optimism and too many rollbacks, this graph makes it clear that in tuning a Time
Warp simulation one must not just naïvely make it a goal to reduce the number of
rollbacks.

Fig. 7.3 Rollbacks as a function of number of nodes, using the same runs as in Fig. 7.2
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7.9 Jade Simulations

During roughly the same years as the JPL project, Brian Unger at the University of
Calgary started a company, Jade Simulations, that had the goal of commercializing
Time Warp. I was a Board member and advisor. Jade built a completely new
distributed implementation of Time Warp that ran well on both networks and
clusters. Unfortunately Jade never successfully found a market, partly I think
because the relentless acceleration of sequential computation due to Moore’s Law
allowed people who needed higher performance simulations to just wait a couple of
years, and partly because Jade was a Canadian company that was not permitted to
compete for U.S. military simulation business. But I also think that Jade was just
ahead of its time, when parallel computers were still very expensive. It would take
several more years before any market matured sufficiently to make commercial-
ization viable.

7.10 Subsequent Years

The most significant new PDES idea in many years came in 1999 when Richard
Fujimoto and his students, Kalyan Perumalla and Chris Carothers, introduced the
idea of reversible computation (Carothers et al. 1999). This was a dramatically
different and more efficient approach to implementing rollback, and leads some
tantalizing programming theory and programming language ideas as well. At the
time I had left the field of PDES, and only learned about it several years later when I
reconnected. But then I was deeply impressed. Eventually, when I found myself in
position to work on it again at Lawrence Livermore National Laboratory, Markus
Schordan, at my instigation, built a compiler that can take literally any program
written in C++ and create reverse code for it (Schordan et al. 2015; Schordan
2016). We hope this development may make reversible computation the standard
way of accomplishing rollback and remove most of the last remaining software
engineering barriers to the widespread adoption of optimistic synchronization.

Time Warp has been implemented many times in the years since the RAND,
JPL, and Jade projects. Richard Fujimoto, as he describes in the next section of this
chapter, created Georgia Tech Time Warp (GTW), originally as a platform through
which to study major improvements that could be made to Time Warp in a shared
memory environment. He was the first person to do fair comparison studies
between conservative and optimistic methods on the same problem and to verify
that in many cases (but not all) the optimistic methods could indeed outperform
conservative methods. Later his students developed their own implementations of
Time Warp, derived to some extent from their experience with GTW. Kalyan
Perumalla, now at Oak Ridge National Laboratory, developed the μsik simulator,
which he still uses for advanced studies of PDES (Perumalla 2005). And Chris
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Carothers, now at RPI, developed the ROSS simulator, which is open source and
available to all researchers who wish to work with it (Carothers et al. 2002).

In at least one respect ROSS is now the state of the art in Time Warp imple-
mentations. It holds the world record to date (2017) for the largest scale and fastest
discrete event simulations ever executed. In 2013 my colleagues Peter Barnes,
Chris Carothers and Justin LaPre and I ran a series of benchmark runs on the
Sequoia supercomputer at Lawrence Livermore National Laboratory, which at that
time was the second fastest computer in the world. On the standard PHold
benchmark with 251 million LPs we achieved a sustained 5.04 billion events per
second using almost 2 million cores and almost 8 million hardware threads (Barnes
et al. 2013). Those runs proved that the Time Warp algorithm can scale to gigantic
degrees of parallelism.

In the 35 years since Henry Sowizral and I built the first primitive four-node
implementation, Time Warp has achieved over a million-fold increase in demon-
strated parallelism. While I anticipate a temporary pause in this peak performance
increase as the architectures of supercomputers are changing in the current era in
ways that do not benefit Time Warp or PDES, the future is nonetheless long and it
is very hard to imagine what the next 35 years might bring.

7.11 My Adventures in Time Warp: Perspectives
by Richard Fujimoto

The second section of this chapter provides the perspectives of Richard Fujimoto.

7.12 Beginnings

I first became interested in parallel discrete event simulation (PDES) when I was a
doctoral student at the University of California in Berkeley (1978–1983). As an
undergraduate student at the University of Illinois I became interested in computer
architecture, and embarked on a doctoral dissertation at Berkeley looking at high
speed switches to interconnect microprocessors, which at that time were just
becoming powerful enough to be interesting, to create parallel computers. In order
to evaluate our ideas about switches we needed parallel applications to generate
realistic message traffic. It immediately became clear to me then that the discrete
event simulator I had developed to evaluate our switches would be a perfect
benchmark program. This of course led to consideration of the synchronization
problem, and ideas akin to those developed by Chandy, Misra, and Bryant (pub-
lished a few years earlier, but unknown to me) came to mind, but my main interest
was in hardware design, so I did not embark on any serious studies of the problem
while I was a graduate student.
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It was not until years later that I renewed my interest in this area. I then came
across Chandy and Misra’s and other’s papers concerning conservative synchro-
nization, and Jefferson’s work on Time Warp. At the time, the initial algorithms
were in the published literature, but no one knew which approach was better, and
under what circumstances one approach might dominate the other. My attention
focused on doing a serious comparison of these algorithms. This work launched a
career-long exploration of parallel and distributed simulation techniques.

7.13 Conservative Versus Optimistic Performance

Foremost in my thinking was the need to have a very efficient sequential simulation
to determine the speedup obtained using parallel computing. This led to an
exploration of the literature in event list implementations for sequential simulations.
A paper by Doug Jones comparing different priority queues for discrete event
simulations caught my attention (Jones 1986). This comparison, and others that had
appeared at the time, were all based on something called the HOLD model, which
seemed to be the standard benchmark for evaluating sequential event list perfor-
mance. I developed a parallel version of the HOLD model, first described in
(Fujimoto 1988), which later become known as PHOLD (Parallel HOLD). I used
PHOLD in my initial comparisons of the Chandy/Misra/Bryant null message and
deadlock detection and recover algorithms, and later Time Warp (Fujimoto 1990).
PHOLD continues to be used to this day to evaluate parallel simulation
performance.

There were a couple of central conclusions that came from these comparisons
that drove much of my work that followed. First, these results showed conclusively
that both Time Warp and the conservative algorithms could achieve excellent
speedup relative to efficient sequential implementations using state-of-the-art event
list data structures. Prior to that time much of the work had reported speedups of
conservative methods, but often compared the parallel implementation against a
sequential execution of the parallel algorithm, or did not use a particularly efficient
sequential implementation. For example, I recall some results reported super-linear
speedup. But on closer examination, this work compared performance against a
sequential simulator using a linear list implementation of the event list, an approach
that becomes very inefficient for large numbers of pending events, leading to
inflated parallel performance. There was a dearth of empirical results reporting
Time Warp performance at the time, though measurements of the Time Warp
Operating System (TWOS) for realistic applications would soon appear.

A second conclusion from this (and other) work was that conservative algo-
rithms relied on exploiting knowledge of the simulation application in order to
extract good “lookahead” information, essential to obtaining efficient parallel
execution. Briefly, lookahead is a guarantee made by the simulator that any new
events it schedules are at least a certain amount of simulation time into the future.
The greater the lookahead, the better. Intimate knowledge of the application is
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required in order to make such a guarantee. This suggested significant drawbacks
with conservative synchronization algorithms. It meant that the application itself
had to possess good lookahead properties; not all applications possessed such
properties. For example, if two entities in the simulation could interact in a small
amount of time, e.g., two radios in a simulation of a wireless network could
instantaneously communicate, large lookahead may be difficult or impossible to
obtain. Further, even if one could build the simulation to have good lookahead, if
the simulation model had to be later modified, such modification might destroy
these lookahead properties, defeating the parallelization approach. For example, in
a queueing network simulation, if one added high priority jobs that preempted
service from lower priority jobs, it greatly reduces the lookahead, and could lead to
a dramatic reduction in performance, even if there were only a few high priority
jobs in the system. As a result, conservative simulation applications were prone to
becoming brittle in that if details of the simulation model changed, the original
parallelization approach might not yield acceptable performance, or it might not
even run at all.

It was quite apparent to me early on that two facts seemed inescapable. The first
was that Time Warp stood the best chance of realizing a general purpose parallel
discrete event simulation engine over which a variety of applications could be
developed. This, of course, seemed to be the most viable path for the technology to
see real-world use and have widespread impact because it would enable exploita-
tion of the technology in a wide variety of application domains without intimate
knowledge of parallel processing or the synchronization mechanism. In much the
same way the developers of sequential simulation models did not need to be
concerned with the priority queue data structure that was used. Expecting domain
experts, who would be the ones who developed the simulation models, to be experts
in parallel computation and PDES seemed a stretch. The reliance of conservative
methods on intimate knowledge of the application called for domain experts to have
much more expertise in PDES than I thought realistic.

A second observation was that there were significant challenges that needed to
be addressed for Time Warp to yield acceptable performance. Two hurdles seemed
obvious. The first problem was one that everyone immediately understands as soon
as they learn about Time Warp, namely that the computation could spend most of
its time rolling back events and recovering from errors rather than completing
computations for the simulation model. This problem appeared to be solvable,
however, and approaches to addressing this problem began to appear soon after
Time Warp had been invented. A second problem that seemed somewhat more
difficult was the need for state-saving in order to allow the computation to be rolled
back. This could consume much time and memory. Both of these problems were
important and interesting, but the state-saving problem was the one that captured
my attention first. With my background and interest in computer architecture, I
envisioned this was something that could be addressed with hardware.
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7.14 The Rollback Chip, Virtual Time Machine,
and Reverse Execution

As an undergraduate I had been enamored with clever techniques to manipulate
memory addresses in digital circuits to implement cache and virtual memory sys-
tems. It seemed natural to use such techniques to implement state-saving in hard-
ware for Time Warp. One only needed to intercept memory writes, and modify the
memory address to preserve the original contents of the memory location. Some
additional work was needed to implement memory reads, in order to ensure the
correct version of memory was accessed. This was straightforward to accomplish in
hardware by keeping track of which blocks of memory had been written. These
ideas led to a kind of memory management circuit that we called the rollback chip
(Fujimoto et al. 1992). Separately, I was approached by two electrical engineers
who were keen to develop prototype hardware, and were able to get some funding
for the same, resulting in an initial proof-of-concept prototype implementation of
the system (Buzzell et al. 1990).

The next logical step beyond the rollback chip work was to extend hardware
support beyond state-saving, to other aspects of Time Warp. Here, the conceptual
model I found useful was the data dependence, or task graph, where nodes represent
event computations, and links represent dependencies between events. Specifically,
each event within a logical process (LP) depends on (or more precisely, could
depend on) the preceding event in the LP with the next smaller time stamp. And if
one event schedules a second, then there is obviously a dependence of the sched-
uled event on the one that scheduled it. Data dependence graphs had been around
for some time and were widely used to study parallel computations. One of David
Jefferson’s students, Orna Berry, used this model to determine properties of the
computation such as average parallelism and minimum possible execution time
(Berry and Jefferson 1985). Task graphs also greatly influenced my work in
developing Time Warp software, described later. I realized that a hardware repre-
sentation of the task graph, stored in the shared memory of a multiprocessor system,
could be used as the basis for a general parallel computer based on Time Warp.

I called the resulting parallel computer the Virtual Time Machine (VTM) (Fuji-
moto 1989a, b), giving a nod to Jefferson’s original Time Warp paper entitled
Virtual Time (Jefferson 1985). Admittedly, I also liked the sci-fi-ish nature of the
name. A distinction between the VTM design and Time Warp is that it did away
with logical processes, and used a shared memory rather than a message-based
computation model. At the core of VTM was the space-time memory system, a
memory system addressed by a time value in addition to a conventional memory
address.

We envisioned the VTM to be a general purpose parallel computer using roll-
back as its core synchronization primitive that could be used broadly for parallel
computation, not just simulations. After all, one could, in principle, take any
sequential computation, divide its execution up into blocks of instructions, assign
each block a time stamp reflecting its sequential order of execution, and the result
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would be a discrete event simulation computation where each block represented an
event. We envisioned the VTM could be used to automatically parallelize
sequential computations, something compiler writers at the time had been strug-
gling with for years.

This vision proved to be a bridge-too-far, however. We focused on the use of the
VTM to automatically parallelize sequential discrete event simulations as a first step
toward this bigger, broader objective. This was examined by Jya-Jang Tsai for his
doctoral research, who had completed some of the early simulation studies of the
rollback chip. But even in this friendlier domain, it was difficult to reduce the
computation overheads to an acceptable level, and only a modest amount of success
was achieved. The computer architecture world at the time was moving toward
reduced-instruction-set-computers (RISC) so the trend was toward simpler rather
than more complex, and the VTM approach did not fit well into this movement. At
a deeper level, sequential programs not written for parallel execution often do not
exhibit sufficient parallelism for an approach such as this to succeed; the code needs
to be structured for parallel execution earlier on in the software development cycle.
So, we did not continue to pursue the VTM hardware architecture, though the VTM
ideas influenced much of our later work in distributed simulation.

For example, a software-based distributed simulation approach derived from the
Virtual Time Machine and Time Warp was a technique we termed “ad hoc dis-
tributed simulations” (Fujimoto et al. 2007). The context for this work was in the
use of distributed simulation online to manage operational systems. Here we
repurposed the space-time memory used in the VTM to hold a projected future state
of the system. Simulations computed forward, ahead of wall clock time to predict
future system states, which were stored in the space-time memory. If measurements
of the actual system deviated from predictions by more than a specified threshold, a
Time Warp style rollback mechanism was used to automatically correct the pre-
dictions. Although the approach is applicable to a variety of systems, our work
largely focused on evaluating this approach for traffic management applications,
and more broadly, systems modeled as queueing networks (Huang et al. 2012).

Getting back to Time Warp, since the VTM hardware approach was never able
to get much traction, we focused more on software-based ideas. In particular, the
next chapter in our work in addressing Time Warp’s state-saving problem was to
move away with state-saving entirely, and instead employ a reverse execution
method to undo incorrect computations. Chris Carothers and Kalyan Perumalla
pursued much of this work, with Kalyan pursuing it for his doctoral research
(Carothers et al. 1999). Both continued to work on reverse computation after
completing their work at Georgia Tech. Actually, reverse computation did not
entirely eliminate state-saving because some computations are inherently irre-
versible; state-saving was used as a fallback approach in situations where the
inverse computation could not be created. Nevertheless, reverse computation can
significantly reduce the memory footprint of Time Warp programs and greatly
reduce the time required for state-saving. Much of our work in reverse computation
focused on proving its viability for various simulation applications. In addition to
standard benchmarks such as communication networks, some of this effort focused
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on applying the technique to scientific computing applications such as modeling the
earth’s magnetosphere in collaboration with Homa Karimabadi and his group at
Scibernet, a start-up company in California, and a graduate student named Yarong
Tang (Tang et al. 2006).

Developing the code to invert a computation is not straightforward, and prone to
error. To address this problem Kalyan Perumalla developed a reverse execution
compiler to automatically instrument the forward execution and generate the
reverse code for his PhD dissertation. This work was subsequently continued in
collaboration with David Jefferson and others at Lawrence Livermore National
Laboratory (LLNL) and Georgia Tech to create the backstroke compiler (Vulov
et al. 2011; Schordan et al. 2015, 2016).

7.15 Simulation Ensembles

We never reached the point of creating a hardware realization of the Virtual Time
Machine. But as mentioned earlier, the computation model it used formed the basis
of other work. One line of research focused on accelerating the completion of
multiple simulation runs, called ensemble simulations. Virtually all simulation
studies require many runs. Often these runs are similar, and have many computa-
tions in common. Our focus was on performing these common computations only
once, and sharing their results. As will be seen, some ideas from Time Warp can be
used to achieve this goal.

We used task graphs not unlike those used in VTM extensively in this work.
Specifically, Steve Ferenci developed something we called updateable simulations
(Ferenci et al. 2002). The basic idea is to record the task graph for a computation.
Then, to complete subsequent runs of simulations similar to the recorded one, use a
VTM/Time Warp style rollback mechanism to “update” the simulation execution in
accordance with differences in the new run.

A related idea, developed earlier by Maria Hybinette for her doctoral research,
was to use an incremental cloning mechanism to compute a set of similar simulation
runs (Hybinette and Fujimoto 2001). This work used the traditional PDES logical
process model and Time Warp, although her work did not require the use of Time
Warp. Motivated by the use of Time Warp to assess alternate possible futures for air
traffic control simulations, the idea was to identify points in the future when
decisions would need to be made, and then to replicate or clone the parallel sim-
ulation to concurrently explore these alternate futures. The central idea in Maria’s
work was to use an incremental LP replication method where LPs were replicated
as needed as the computations of the different runs diverged. This enabled us to
share the results that were common among the different replications.
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7.16 Georgia Tech Time Warp

Let me “roll back” now to 1988 and come back to our software implementation of
Time Warp. I recognized early on that there were several important challenges in
realizing an efficient implementation. My early work focused on developing tech-
niques to create a fast Time Warp system using a variety of methods developed by
our research group. These techniques were incorporated into a software system we
called Georgia Tech Time Warp (GTW).

My initial work focused on developing an efficient implementation of Time
Warp on shared memory multiprocessors. Motivated by the task graph model, my
first implementation focused on, in effect, storing the task graph in the shared
memory of the multiprocessor system. In particular, when one event scheduled
another, we simply stored a pointer from the scheduling event to the event being
scheduled. This greatly simplified the Time Warp implementation because it
eliminated the need for separate anti-messages, with the pointer effectively
implementing an anti-message. It also eliminated the need to create a copy of each
scheduled message, and avoided the need to search for the matching positive
message when an anti-message was received. I called this technique direct can-
cellation (Fujimoto 1989b). Direct cancellation allowed one to rapidly track down
and correct errors resulting from out of order executions. I believed this was
important because while one used anti-messages to correct these computations, the
wrong computations themselves were spreading, so it was important to track down
the errors as quickly as possible to minimize the damage they caused. The resulting
shared memory data structure used to implement Time Warp motivated the
space-time memory used subsequently in the Virtual Time Machine work described
earlier.

We developed several other innovations to create an efficient shared memory
Time Warp system, described in (Das et al. 1994; Fujimoto 2000a, b). For example,
working with PhD student Maria Hybinette, we developed an efficient shared
memory algorithm for computing Global Virtual Time (GVT) (Fujimoto and
Hybinette 1997). GVT is needed in Time Warp to determine a lower bound on the
time stamp of future rollbacks, enabling reclamation of memory (fossil collection)
and committing irrevocable operations such as I/O. We also developed an efficient,
“lazy” approach to implement fossil collection that we called on-the-fly fossil
collection. It avoided the need to search through lists to identify chunks of memory
that needed to be reclaimed.

Sequential discrete event simulations often use a mechanism to “unschedule”
previously scheduled events. This is necessary to model activities such as pre-
emption where some “normal” activity is interrupted by some other event, e.g., in a
queueing network, servicing a job might be preempted by the arrival of a higher
priority job. We realized that anti-messages, which needed to be implemented in
Time Warp for synchronization purposes, could be used to implement this
unscheduling of events. The difference now is that the generation of anti-messages
was triggered by the application program itself, not the underlying simulation
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engine. A small wrinkle was that these application-invoked event cancellations
could themselves be rolled back, but this was easily accomplished by sending a
copy of the original event. The simplicity of the mechanism derived from the
simplicity and symmetry of the original Time Warp algorithm. Working with my
PhD student Samir Das we developed the algorithms and an implementation, and
evaluated its performance. Later, we found that Greg Lomow working with Brian
Unger at the University of Calgary independently developed a similar mechanism,
but had not published the work because they were working on commercializing the
effort in the context of a company called Jade Simulations that Brian was devel-
oping. We agreed to jointly publish the work (Lomow et al. 1991).

As we developed new innovations we incorporated them into the GTW Time
Warp software (Das et al. 1994). Based on my initial implementation that focused
on the direct cancellation mechanism, Samir Das did much of the work in furthering
the development of the system. Various developments were incorporated into GTW
in the years ahead, including extension to message passing and distributed com-
puting architectures. GTW formed the basis for most of our experimental work in
Time Warp such as the reverse execution work described earlier.

GTW was used for a variety of applications, but perhaps the most memorable
was its use to create fast air traffic control simulations. In the summer of 1989, I had
the pleasure of spending a 3-month period working with David Jefferson and his
research group at the Jet Propulsion Laboratory. They were working on the Time
Warp Operating System (TWOS) project. During this period, I met Fred Wieland
who was one of the TWOS developers, focusing on implementing a combat sim-
ulation model. After TWOS, Fred went on to work on simulation applications in the
aviation industry with the MITRE Corporation. Fred is a likable guy, and we had
good discussions on Time Warp, parallel discrete event simulation, and aviation
over many years that followed. Anyway, Fred was interested in creating a fast
parallel simulator to model the U.S. aviation system, and learned about GTW. He
embarked on developing an air traffic simulation called the Detailed Policy
Assessment Tool (DPAT) on our Time Warp system (Mitre Corp. 1997). DPAT
was deployed for air traffic analyses, making it at the time one of the few real-world
deployments of Time Warp for real-world applications (Wieland 2001). The
DPAT/GTW system subsequently formed a basis for Maria Hybinette’s work in
parallel simulation cloning, discussed earlier.

7.17 Analytic Models, Memory, and Load Management

In 1990, I began work with Ian Akyildiz, a colleague at Georgia Tech, on a project
funded by the Ballistic Missile Defense Organization (BMDO), later renamed the
Missile Defense Agency (MDA). BMDO was working on developing the tech-
nologies for the Strategic Defense Initiative more commonly known as the “Star
Wars” program that aimed, among other things, to create the ability to intercept
incoming ballistic missiles. Simulation was a key part of the program. The program
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manager, Lou Lome, was particularly interested in developing PDES technology,
and funded some of our work. This project was the first in a string of BMDO
projects that funded our work on Time Warp. Our program was part of BMDO’s
basic research program aimed to develop the underlying technologies to create fast
parallel and distributed simulations. Our basic research program ran another
10 years; I was later told we were the only group still funded by this program when
BMDO decided to end its basic research program.

Ian had background in developing mathematical performance models. This led
to a collaboration focusing on developing analytic models of Time Warp. With PhD
student Anurag Gupta we developed a model to predict the performance of
homogeneous Time Warp systems where all LPs behave similarly, as would be the
case in, for example, many queueing network simulations (Gupta et al. 1991).
Development of a model for something as complex as Time Warp required some
approximations to be made to make the mathematics tractable, so we validated that
the model gave accurate predictions by comparing results produced by the model
with measurements of GTW.

We later expanded this collaboration to include Dick Serfozo, another expert in
stochastic models and a Georgia Tech professor in the School of Industrial and
Systems Engineering. Our interest here was in understanding Time Warp perfor-
mance when one limited the amount of memory allocated to the parallel simulation.
At the time, there was much interest in developing techniques to execute Time
Warp in situations with limited memory. David Jefferson had recently published his
work on the cancelback algorithm that enabled Time Warp to execute, albeit
slowly, within a constant factor of the amount of memory needed for a sequential
execution. We wanted to examine how Time Warp performance would change as
additional memory was provided. One of Dick’s PhD students, Liang Chen, did the
heavy lifting in developing an analytic model for Time Warp with limited memory
(Akyildiz et al. 1993). We found that Time Warp performance increases rapidly as
more memory is added, then hits a knee where diminishing returns set in, and
subsequent additional memory provide modest or no benefit. In fact, if too much
memory is provided, performance can actually decline as Time Warp becomes
overly optimistic, and rolls back more computation than desired. Like our earlier
work, we validated the models by comparing performance predictions made by the
model with experimental results of the cancelback algorithm which Samir Das
added to GTW.

While the analytic modeling work provided a window into Time Warp perfor-
mance, it really only analyzed Time Warp performance rather than improving it.
Our subsequent efforts focused on putting this work to good use to design efficient
Time Warp systems. Specifically, this work highlighted the fact that memory could
be used as a way to “throttle” the computation to avoid overly optimistic execution
(Das and Fujimoto 1997a). We realized that by monitoring the execution of the
Time Warp program and limiting the amount of memory that was provided we
could adaptively control the execution of Time Warp to maximize its performance.
Specifically, the goal was to keep Time Warp operating near the knee of the
performance–memory curve so that Time Warp reaped the performance benefits of
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additional memory, but did not utilize additional memory as that provided only
marginal benefit. It also prevented the computation from moving into overly
optimistic modes of execution, something that could occur by giving it too much
memory. Samir Das designed, implemented, and validated this approach by
showing that his algorithm could dynamically control the amount of memory
provided to move the execution to the knee of the performance–memory curve (Das
and Fujimoto 1997b). While other researchers had proposed other mechanisms to
prevent overly optimistic execution, Samir’s work was distinguished by having
analytic modeling work as a basis for understanding the throttling mechanism.
Further, this work provided a way to automatically adapt the execution to contin-
ually optimize performance throughout the parallel execution.

Our interest in monitoring the Time Warp execution and development of
adaptive mechanisms to optimize its behavior led to an exploration of load bal-
ancing techniques. Here, we were particularly interested in the “background”
execution of Time Warp on a distributed computing platform that was shared with
other computations. We realized that execution of Time Warp on shared platforms
presented a challenging test case because LPs that had to compete with many other
computations to get CPU cycles would advance in simulation time slowly com-
pared to LPs that had fewer other competitors for CPU cycles. This would cause the
latter to race ahead, leading to much rollback and an inefficient execution. PhD
student Chris Carothers developed a dynamic load distribution algorithm for GTW
that would control the Time Warp execution in such circumstances. He imple-
mented the algorithm and showed that it would yield efficient execution of Time
Warp programs in the presence of other computations (Carothers and Fujimoto
2000).

Independent of our research, the concept of executing codes on shared remote
servers became increasingly popular in industry, and is now referred to as cloud
computing. We continued to have interest in this area. Our initial work was
motivated by a somewhat different paradigm, that used in the Search for
Extra-Terrestrial Intelligence (SETI) project that farmed out computations to remote
servers, e.g., otherwise idle workstations. Alfred Park developed a novel execution
approach based on farming out computations and later collecting their results (Park
and Fujimoto 2007, 2012). While much of his early work focused on conservatively
synchronized codes, he also examined the execution of Time Warp in grid com-
puting environments (Park and Fujimoto 2008). Other subsequent work looked at
the implementation of Time Warp in cloud computing environments (Malik et al.
2010).

7.18 The High-Level Architecture

In the U.S., the Department of Defense (DoD) was one of the principle organiza-
tions interested in developing modeling and simulation technologies. Beginning in
the 1980’s with a highly successful Defense Advanced Research Projects Agency
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(DARPA) project called SIMNET (Miller and Thorpe 1995), the hot topic in DoD
concerned how to reuse existing simulation models and get them to interoperate
using distributed computing platforms. By the 1980s simulators to train pilots and
equipment operators had become common, and were increasing in realism and
sophistication with advances in computer graphics. Around that time local area
networks were being invented, raising the possibility of interconnecting these
simulators to create a kind of virtual battlefield with many simulated platforms to
train military personnel. This was the forerunner to multiplayer video games that
are common today. The SIMNET project demonstrated that this was a feasible
concept. Throughout the 1990s there was a great emphasis, and investment, in
creating interoperable distributed simulations. For example, the Distributed Inter-
active Simulations (DIS) (IEEE Std 1278.2-1995 1995) standards were developed
to facilitate interoperability. While SIMNET and DIS focused on training simula-
tions, the desire for interoperability spread to simulation models used for analysis,
the area where Time Warp focused. An effort focusing on integrating wargame
simulations called the Aggregate Level Simulation Protocol (ALSP) had begun
with this objective (Wilson and Weatherly 1994).

In the mid-1990s an ambitious effort began to, in effect, combine the lessons
learned in DIS and ALSP to create a common modeling and simulation architecture
spanning the entire DoD. This effort, called the High-Level Architecture (HLA) was
being led by Judith Dahmann of the Defense Modeling and Simulation Organiza-
tion (DMSO). Just as HLA was getting underway, I received a phone call from
Richard Weatherly of the MITRE Corporation. Richard had led the ALSP effort,
and now was tasked with developing prototype implementations of the new HLA
standard that was being developed. I had not met Weatherly before, but he had read
some of my papers on parallel discrete event simulation, and asked if I was
interested in getting involved in the HLA effort. I immediately accepted and became
the technical lead of a working group tasked with defining the time management
services of the standard that were largely concerned with synchronization issues in
distributed simulations.

How does HLA relate to Time Warp? HLA was about getting separately
developed simulations to work together in distributed computing environments. As
such, a central objective of the time management services was to get simulations
utilizing different mechanisms for time advancement to mesh together and inter-
operate. This meant getting time stepped and event-driven simulations to be able to
synchronize and coordinate their time advances. With parallel discrete event sim-
ulation technologies becoming mature and finding some use in the DoD, e.g.,
through the ballistic missile defense program mentioned earlier, we extended this
object to include parallel simulators, including both ones synchronized using
conservative synchronization algorithms as well as optimistic ones such as Time
Warp. Developing an approach to integrate all of these mechanisms together, while
still ensuring that a reasonably efficient implementation could be realized was a
significant challenge. Our task was to define the application program interface
(API) that would be used by these different simulations, both parallel and
sequential.
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The main observation that enabled us to define an API for integrating these
simulations was to realize that there was actually much commonality between
conservative and optimistic approaches. This had been realized earlier, as described
in work such as Chandy and Sherman’s space-time simulation approach (Chandy
and Sherman 1989). For example, the key quantity that conservative simulation
algorithms needed to compute was a lower bound on the timestamp (LBTS) of
messages that might be later received by an LP, because once this had been
computed, the LP would know that all events with time stamp less than its LBTS
value could be safely processed without fear of later receiving an event with smaller
timestamp. LBTS is a close cousin of Global Virtual Time (GVT) used in Time
Warp to determine a lower bound on the timestamp of any future rollback; rollbacks
are also caused by receiving a message or anti-message in an LP’s simulated past.
Thus, if the time management services provided a means of computing LBTS and
returning this information to each LP, or federate in HLA terminology, such a
service would support both conservative and optimistic simulations.

A second observation was that Time Warp could be viewed as a conservative
execution, but with the ability to optimistically process messages with time stamp
larger than the LBTS value. Our approach in the HLA was to start with a con-
servatively synchronized distributed simulation, and add the mechanisms needed to
allow optimistic processing. At the heart of the HLA’s conservative synchroniza-
tion approach were two mechanisms: one that guaranteed that messages would be
delivered to a federate in timestamp order, and a second that enabled a federate to
advance its simulation time in a way that guaranteed it would not receive any
messages in its simulated past. To support Time Warp, a service was needed to also
deliver optimistic messages to each federate, i.e., messages where it was possible a
smaller timestamp message might later be received. This led to the Flush Queue
Request service that when invoked, delivered all incoming messages to the federate
invoking the service, regardless of its timestamp relative to LBTS or other events
that had been previously delivered. Once these optimistic events were delivered to
the federate, it was free to process them optimistically, risking the need for rollback.
Should rollback be later required, this (specifically state-saving) was something the
federate would have to implement on its own, so the API did not have to deal with
this concern. Finally, the other part that was needed was a way to implement Time
Warp anti-messages. Here, we leveraged our prior work in application-defined
event cancellation (Lomow et al. 1991), discussed earlier. We realized that event
retraction, i.e., an application unscheduling a previously scheduled event was a
desirable application feature, independent of the underlying synchronization
approach, be it optimistic or conservative. This led to the creation of the Retract
Message service that could be used by conservative federates to unschedule events,
as well as optimistic federates to implement Time Warp anti-messages. The services
were defined so that the retraction of previously scheduled messages was trans-
parent to conservative federates receiving the retracted message in that the original
message would not be delivered to the federate until it could be guaranteed that it
would not be later retracted. Of course, this guarantee could not be preserved for
optimistic federates that were using the Flush Queue service. In this case, if the
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message being retracted had already been delivered to the federate, the retraction
request was simply treated by the receiving federate as an anti-message, and pro-
cessed according to Time Warp event processing rules. In this way, the HLA time
management services could support both conservative and optimistic simulations
executing within the same federated distributed simulation. In the end, all this came
together relatively smoothly. I worked out many of the technical details on planes
between Atlanta and DC, a place free from phone calls, emails (this was well before
inflight wifi), and visitors and students coming to my door.

Technical issues aside, a perhaps bigger challenge in the HLA effort was to build
consensus among the various stakeholders who had their own ideas of how things
should be done. Many folks in the DoD M&S community were not familiar with
PDES technologies, and had never heard of CMB or Time Warp. Fortunately, I had
some help here. A piece of Jade Simulations, a company founded by Brian Unger at
the University of Calgary, was bought by Science Applications International Cor-
poration (SAIC), a major defense contractor with a large stake in defense M&S in
general, and HLA in particular. Two of Brian’s former students, Darrin West and
Larry Mellon, were leading much of the HLA effort in SAIC, and were very well
versed in PDES. Together with a small team representing various constituencies we
managed to get consensus on the specifications.

The High-Level Architecture was approved as the standard architecture for all
M&S in the U.S. Department of Defense in 1996, and was subsequently stan-
dardized by IEEE (IEEE Std 1516.2-2000 2000) and later updated (IEEE Std
1516.1-2010 2010). Although the HLA “mandate” that originally required all M&S
programs in the U.S. Department of Defense to become compliant with HLA was
later rescinded, I was pleased to see HLA come up over the years in many different
application areas other than defense. In retrospect, I have the highest regard for
many of the individuals involved in the HLA effort. Richard Weatherly and his
team at MITRE proved to be very capable developers. I never envied their task of
developing an implementation of the standard while the standard itself was being
changed! Richard was open to new ideas, and willing to incorporate changes that
seemed well motivated. There were substantial differences and plenty of heated
arguments during the HLA development. Many of these conflicts came to Judith
Dahmann. I also did not envy her task. I found Judy to be both personable as well as
being a strong and capable leader. She deserves enormous credit in seeing the HLA
effort through to completion. I will also remember Judith as having a subtle sense of
humor. The HLA effort had periodic meetings of the Architecture Management
Group (AMG) at the DMSO headquarters in Alexandria Virginia, that included
perhaps a hundred or so key stakeholders across the DoD M&S community. At one
meeting, just before Christmas, Judith delivered a present to each attendee—a
screw, with, for good measure, an attached bolt. Her only comment at the meeting
was that the interpretation was left entirely up to each of us!
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7.19 Pivoting to Federated Simulations

Subsequent to the adoption and standardization of the HLA by IEEE, my research
program made a deliberate shift toward the federated simulation approach used in
HLA. One of the challenges back then in the PDES community that persists even
today concerned creation of PDES codes. Despite substantial efforts, application
development still requires a certain amount of sophistication in parallel computing
in addition to model expertise. The HLA demonstrated a pathway to take sequential
simulation code that had never been developed for parallel or distributed execution,
and transform it into a form suitable for parallel execution. Even in the pre-HLA
days I saw that developers in the DoD were creating distributed simulations by, in
effect, federating a code with itself to create a distributed version. This was in fact
easier than federating different simulations because many interoperability issues
associated with interconnecting different codes such as use of different model
abstractions and representations disappeared. Thus, this seemed to be a practical
approach to easily creating parallel discrete event simulations.

In order to get self-federation to work, one needed high performance runtime
infrastructure software to implement synchronization (time management) and
communication services. While my work in the previous decade focused on the
Georgia Tech Time Warp software that served as a platform for our research in
PDES, I decided to make a deliberate shift, to focus on HLA-like federated sim-
ulations. I spent the 1997–98 academic year on leave from Georgia Tech at the
Defense Evaluation Research Agency in Malvern, England, with the intent of
developing a new software base to support future research in federated simulation
systems. The target platform used in this work was a set of workstations inter-
connected by a fast, Myrinet switch. Using communications software called
fast-messages developed at the University of Illinois, in a few weeks I developed
the first version of the RTI-Kit software and demonstrated it using a simplified
version of the HLA API to implement communications and time management
services (Fujimoto and Hoare 1998). In my initial work, I conducted a number of
benchmarking experiments that demonstrated that RTI-Kit could achieve high
performance, and was thus suitable for implementing parallel discrete event
simulations.

Over the years that followed, RTI-Kit evolved into the Federated Distributed
Simulations Kit (FDK) that became a central software base used by our research
group over the next decade. We demonstrated that one could take existing
sequential simulation codes and create high performance parallel versions suitable
for execution on supercomputers. Not all simulations were suitable for paral-
lelization using this approach. For example, we found that some simulations
making extensive use of global data structures that were accessed throughout the
entire code could not be easily parallelized. However, well-structured codes could
be parallelized.

Our most successful illustration of this approach was to create a high perfor-
mance, parallel version of the NS2 communication network simulator (Fall 1999).
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The original NS2 was developed with no consideration of parallel implementation.
In an effort by PhD student George Riley whom I co-supervised with networking
research Mostafa Ammar, we created a parallel version dubbed PDNS
(parallel/distributed NS) (Riley et al. 2004). Through a DARPA-funded project
focused on large scale network simulation we demonstrated the largest available
discrete event network simulations of the day, executing on more than a thousand
processors of a supercomputer at the Pittsburgh Supercomputing Center (Fujimoto
et al. 2003).

Much of our work in federated parallel simulations focused on conservative
synchronization techniques, because existing sequential codes were not coded to
include rollback, and adding rollback mechanisms was not straightforward. How-
ever, the federated approach is applicable to Time Warp simulations, or codes that
were designed to include rollback. We demonstrated the use of HLA time man-
agement services to create Time Warp simulations with a prototype that a student
named Steve Ferenci developed (Ferenci et al. 2000).

7.20 In Conclusion: The Future

More than 35 years since Time Warp was invented research continues both in its
application and the technology itself. The goal of a general purpose parallel discrete
event simulation engine that application developers can readily use without
knowledge of parallel processing techniques continues to be elusive and the tech-
nology has not fulfilled its potential to see widespread adoption in industry.
However, modern research in Time Warp systems is being driven more by the
changing world and new technology developments rather than classical PDES
problems defined decades ago.

One direction for research in Time Warp is driven from below: new computing
platforms on which Time Warp simulations execute. Cloud computing, massively
parallel supercomputers, graphical processing units (GPUs), and mobile computing
platforms all present new challenges for running Time Warp simulations. For
example, cloud computing platforms raise challenges due to the shared nature of the
platform, and substantial communication delays, as noted earlier. Massively parallel
machines raise questions concerning scalability, especially for real-world applica-
tions that are often highly irregular and contain inherent bottlenecks. GPUs, and
more broadly heterogeneous computing platforms utilize SIMD, data parallel
modes of execution that are very different from the platforms on which Time Warp
was originally invented. Mobile computing platforms where data-driven simula-
tions are used to monitor and manage operational systems again present new
unexplored challenges for Time Warp. These challenges are discussed in greater
detail in Fujimoto (2016).

Another research challenge faced by data centers, supercomputers, and mobile
computing platforms concerns the amount of power consumed by the simulation.
For mobile computing platforms energy consumption affects battery life, so it is an
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area of great concern. In supercomputers, power consumption has become a major
issue, limiting the performance of supercomputing nodes, and incurring substantial
costs in operating data centers. Little is known concerning the power and energy
consumption properties of Time Warp, and distributed simulations in general. This
represents another important line of inquiry for future research in Time Warp.

More than three decades after its creation, Time Warp continues to be an active
area of study and investigation in the parallel and distributed simulation commu-
nity. While much progress has been made, the world has changed, raising new
research challenges and opportunities that did not exist when it was invented. While
much has been learned concerning Time Warp and its application, it will likely
remain at the center of much parallel and distributed simulation research into the
foreseeable future.
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Chapter 8
Design and Analysis of Simulation
Experiments: Tutorial

Jack P.C. Kleijnen

Abstract This tutorial reviews the design and analysis of simulation experiments.

These experiments may have various goals: validation, prediction, sensitivity analy-

sis, optimization (possibly robust), and risk or uncertainty analysis. These goals may

be realized through metamodels. Two types of metamodels are the focus of this tuto-

rial: (i) low-order polynomial regression, and (ii) Kriging (or Gaussian processes).

The type of metamodel guides the design of the experiment; this design fixes the

input combinations of the simulation model. However, before a regression or Krig-

ing metamodel is applied, the many inputs of the underlying realistic simulation

model should be screened; the tutorial focuses on sequential bifurcation. Optimiza-

tion of the simulated system may use either a sequence of low-order polynomials—

known as response surface methodology—or Kriging models fitted through sequen-

tial designs. Finally, “robust” optimization should account for uncertainty in simula-

tion inputs. The tutorial includes references to earlier Winter Simulation Conference

papers.

8.1 Introduction

Wagner (1975)’s famous textbook on operations research/management science
(OR/MS) resorted to simulation “when all else fails” (p. 903) as the “method of

last resort” (p. 907); nowadays, however, simulation is treated as a serious scientific

method. Unfortunately, practitioners often treat their experiments with simulation

models (or “simulators” or “computer codes”) very unprofessionally. Nevertheless,

the simulation community is making progress; see the Winter Simulation Conference
(WSC) panel on the need for reproducible experiments in Uhrmacher et al. (2016),

and also see the WSC paper on a survey of methodological aspects of simulation in

Timm and Lorig (2015).
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In this tutorial we focus on the statistical design and analysis of simulation exper-
iments (DASE). We further focus on random (or stochastic) simulation, because

the WSCs focus on this type of simulation; nevertheless, we shall occasionally dis-

cuss deterministic simulation. By definition, random simulation gives random output

(response); examples are discrete-event dynamic systems, agent-based simulation,

and stochastic differential equations (see Govindan 2016). Mathematically, these

simulators give random outputs because they use pseudorandom numbers (PRNs)

as an input.

We assume that a specific simulation model is given, albeit that this model may

be changed before results of the DASE are implemented. To support the managers’

decisions, the simulation analysts try different values for the inputs and the parame-

ters of this simulation model. We claim that such numerical (computer) experiments

may have one or more of the following goals: (i) verification and validation (V & V)

of the simulation model; (ii) prediction of the response of the simulated system; (iii)

sensitivity analysis (SA)—either global or local—of the simulation model; (iv) opti-

mization of the simulated real system (SimOpt); (v) risk analysis (RA) of the simu-

lated real system. We now discuss these goals (more details including references are

given in Kleijnen (2015, p. 9); in this tutorial we introduce goal ii).

Sub (i): V & V may use many methods; see Sargent et al. (2016). We focus on the

use of metamodels for V & V: do the estimated effects of the metamodel have signs

that agree with prior expert-knowledge about the corresponding real system; two

case studies are detailed in Kleijnen (1995) and Van Ham et al. (1992). In calibra-
tion we estimate the combination of simulation parameters that gives the simulation

output that is closest to the observed real-world output, so calibration uses optimiza-

tion; see Liu et al. (2017).

Sub (ii): Prediction is necessary if experimentation with the real system is too

expensive, dangerous, etc. Obviously, we can use metamodels to predict the out-

put for an input combination that has not yet been simulated. Such prediction may

be necessary if simulation takes too long; an example is real-time, online decision-

making.

Sub (iii): SA may be performed through “experimentation” with the simulation

model; i.e., simulate different “values” or “levels” for the model’s parameters, input

values, and starting values of the inputs (we use the terminology in Zeigler et al.

(2000); i.e., we must infer the value of a parameter, whereas we can directly observe

the value of an input). For example, in a queueing simulation we may start with

an “empty” (no waiting customers) simulated system, exponential interarrival times

with a fixed arrival rate, and a fixed number of servers. In DASE we speak of factors,

which have fixed values during one “run” of the simulation experiment.

When we experiment, we use a metamodel; i.e., an explicit and relatively simple

approximation of the input/output (I/O) function implicitly defined by the underlying

simulation model. We treat the simulation model as a black box; i.e., we observe only

the I/O of the simulation model. Actually, simulation analysts may not realize that

they are using a metamodel. For example, if we change only one factor at a time,

then we assume that the factors do not interact. When we consider only two levels

for each of our (say) k factors, then a 2k
design implies that we assume a metamodel
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with interactions among these k factors—but without “pure” higher order effects

such as purely quadratic or cubic effects. In this tutorial we shall discuss metamodels

in much detail.

Sub (iv) and (v): We may apply RA for (a) a single combination of the simulation

inputs, (b) a given set of combinations, (c) the best combination estimated through

SimOpt. Alternative (b) is described in Kleijnen (2015, p. 221) using a first-order

polynomial metamodel to estimate which combinations of uncertain inputs form

the frontier that separates acceptable and unacceptable outputs. Alternative (c) is

detailed in Kleijnen (2015, p. 275). However, we may also try to estimate the opti-

mum while accounting for uncertainty in the parameters of the simulation; we call

this approach robust optimization (RO). We distinguish two RO approaches; namely,

the Taguchi approach and the mathematical programming (MP) approach. Taguchi

has been popular in mechanical engineering, since several decades. In MP, RO is

a recent important topic. We expect that both approaches will inspire OR/MS. For

example, Taguchi inspired Dellino et al. (2009) and Dellino et al. (2010). An exam-

ple of recent RO in MP is Bertsimas and Mišić (2017). A recent example of RO

combining Taguchi and MP is Yanikoğlu et al. (2016). Approaches related to RO

are also discussed in Song and Nelson (2017) and Zhou (2017).

The goals of metamodels immediately follow from the five goals of the under-

lying simulation models. Because Kleijnen (2015, p.9) does not discuss goal 2, we

point out that a simulation may be computationally slow or expensive: i.e., it may take

much computer time to obtain the response for a given combination of the simulation

inputs. An example is the deterministic simulator of a car-crash model at Ford that

required 36–160 h of computer time; see Simpson et al. (2004). Another example

is the discrete-event simulation of a rare event with dramatic consequences (e.g., a

nuclear accident); without adequate importance sampling the simulation needs very

many replications. Obviously, a metamodel can quickly predict the output for a new

input combination of the expensive simulation model. A case study including Krig-

ing and neural-network metamodels within a decision support system for real-time

failure assessment of a power-grid network (so this study is RA) is detailed in Rosen

et al. (2015).

There are important differences between “traditional” design of experiments
(DOE) and DASE. Kleijnen (2015, p. 12) mentions that DOE was developed for

real-world (nonsimulated) experiments in agriculture, engineering, psychology, etc.

In these experiments it is impractical to investigate “many” factors; i.e., ten fac-

tors seems a maximum. Moreover, it is hard to investigate factors with more than

“a few” levels; five levels per factor seems the limit. In simulation, however, these

restrictions do not apply; i.e., simulation models may have thousands of factors—

each with many values. Consequently, a multitude of factor combinations may be

simulated. Moreover, simulation is well-suited to “sequential” designs instead of

“one shot” designs, because simulation experiments run on computers that typically

produce output sequentially (apart from parallel computers; see Gramacy 2015),

whereas agricultural experiments run during a single growing season. Altogether,

many simulation analysts need a change of mindset.
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Mathematically, we consider w = f
sim

(𝐳, 𝐫) where w denotes the simulation out-

put (e.g., average waiting time), f
sim

the I/O function of the simulation model, 𝐳 the

vector with the values of the k simulation inputs, and 𝐫 the vector with PRNs used by

the random simulation model; in deterministic simulation 𝐫 vanishes. Usually, 𝐳 is

standardized (scaled) such that the resulting input 𝐝 has elements either −1 ≤ dj ≤ 1
or 0 ≤ dj ≤ 1 with j = 1,… , k.

Note: An input of a queuing simulation may be the traffic rate—not the arrival

rate 1∕𝜇a and the service rate 1∕𝜇s where 𝜇 denotes the mean (expected value)—so

z1 = 𝜇s∕𝜇a. Another input may be the priority rule (queueing discipline), which is a

qualitative input with at least two levels; e.g., first-in-first-out and smallest-service-

time-first. A qualitative input with more than two values needs special care; see Klei-

jnen (2015, pp. 69–71).

The function w = f
sim

(𝐳, 𝐫) may be approximated by y = f
meta

(𝐱) + e where y is

the metamodel output, which may deviate from w so the approximation error e may

have 𝜇e ≠ 0. If 𝜇e = 0, then we call f
meta

adequate (or valid). There are many types of

metamodels; see Kleijnen (2015, p. 10). We, however, focus on two types: low-order
polynomials, which are linear regression models, and Kriging or Gaussian process

(GP) models.

Note: Mitchell and Morris (1992) introduced Kriging into the WSC community.

Later on, Van Beers and Kleijnen (2004) surveyed Kriging for simulation. Biles et al.

(2007) used Kriging in constrained simulation optimization. Kleijnen et al. (2012)

introduced convex and monotonic bootstrapped Kriging.

We base this tutorial on Kleijnen (2017), which is a recent review based on Klei-

jnen (2015). We update that review; e.g., we add Binois et al. (2016) in Sect. 8.5.

Furthermore, we emphasize publications in the WSC proceedings. Kleijnen (2015)

includes hundreds of additional references, and many website addresses for software.

We organize this chapter as follows. Section 8.2 summarizes classic linear regres-

sion and DOE. Section 8.3 presents solutions for DASE if the classic statistical

assumptions are violated in practice. Section 8.4 summarizes sequential bifurcation
(SB) for the screening of a multitude of factors. Section 8.5 summarizes Kriging and

its designs. Section 8.6 summarizes SimOpt using either low-order polynomials or

Kriging, including RO.

8.2 Basic Linear Regression and Designs

Because we assume that the readers are familiar with the basics of linear regression,

we limit our discussion of this regression to definitions of our mathematical sym-

bols and terminology. We define the linear regression (meta)model 𝐲 = 𝐗N𝜷 + 𝐞
where 𝐲 denotes the N-dimensional vector with the dependent (explained) vari-

able (also see Sect. 8.1), N denotes the number of observations on the simula-

tion response with N =
∑n

i=1mi, n the number of simulated input combinations, mi
the number of replications for combination i (obviously, deterministic simulation

implies mi = 1 so N = n), 𝐗N is the N × q matrix of independent (explanatory)
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regression variables—obviously, 𝐗N has mi identical rows, whereas 𝐗n denotes

the corresponding n × q matrix without any identical rows determined by the n × k
design matrix 𝐃 and the type of regression model (e.g., second-order polynomial),

𝜷 denotes the q-dimensional vector with regression parameters (coefficients), and 𝐞
denotes the N-dimensional vector with the residuals E(𝐲) − E(𝐰) where 𝐰 denotes

the N-dimensional vector with independent simulation outputs; this independence

requires that random simulation does not use common random numbers (CRN). We

define the q-dimensional row vector 𝐱i = (xi;1,… , xi;q). Obviously, n denotes the

number of different combinations of the k simulation inputs. We focus on a spe-

cial type of linear regression; namely, a second-order polynomial with k simulation

inputs, which has an intercept 𝛽0, k first-order effects 𝛽j (j = 1,… , k), k(k − 1)∕2
two-factor interactions (cross-products) 𝛽j;j′ (j′ > j), and k purely quadratic effects

𝛽j;j. These interactions mean that the effect of an input depends on the values of one

or more other inputs. A purely quadratic effect means that the marginal effect of the

input is not constant, but diminishes or increases. This second-order polynomial is

nonlinear in 𝐱, and linear in 𝛽. We assume that interactions among three or more

inputs are unimportant, because such interactions are hard to interpret and in prac-

tice are indeed often unimportant. Of course, we should check this assumption; i.e.,

we should “validate” the estimated metamodel (see the next section).

The ordinary least squares (OLS) estimator of 𝜷 is ̂
𝛽 = (𝐗′

N𝐗N)−1𝐗′
N𝐰, assum-

ing the inverse of 𝐗′
N𝐗N exists; e.g., ̂

𝛽 exists if 𝐗N is orthogonal. If mi is a pos-

itive integer constant (say) m, then we may replace 𝐰 by 𝐰 with the n elements

wi =
∑m

r=1 wi;r∕m and replace 𝐗N by 𝐗n. Moreover, ̂
𝛽 is the maximum likelihood

estimator (MLE) if 𝐞 is white noise, which means that 𝐞 is normally, independently,
and identically distributed (NIID) with zero mean and constant variance 𝜎

2
e ; i.e.,

𝐞 ∼ NN(𝟎N , 𝜎
2
e 𝐈N×N) where NN stands for N-variate (see subscript) normally (sym-

bol: N) distributed, 𝟎N for the N-variate vector with zeroes, and 𝐈N×N for the N × N
identity matrix. If the metamodel is valid, then 𝜎

2
e = 𝜎

2
w. White noise implies that ̂

𝛽

has the q × q covariance matrix 𝚺
̂
𝛽

= (𝐗′
N𝐗N)−1𝜎2

w. Because 𝜎
2
w is unknown, we esti-

mate 𝜎

2
w = 𝜎

2
e through the mean squared residuals (MSR) (�̂� − 𝐰)′(�̂� − 𝐰)∕(N − q)

with predictor �̂� = 𝐗N
̂
𝛽

′
and degrees of freedom (DOF) N − q > 0; this inequality

is satisfied, even if n = q but mi > 1 for at least one value of i. This MSR gives the

estimator ̂𝚺
̂
𝛽

. This ̂𝚺
̂
𝛽

has a main diagonal with the elements s2(̂𝛽g) (g = 1,… , q),

which give the square roots s(̂𝛽g). Confidence intervals (CIs) and tests for the indi-

vidual ̂𝛽g follow from the Student t-statistic with N − q DOF: tN−q = (̂𝛽g − 𝛽g)∕s(̂𝛽g).
Finally, �̂� = 𝐗N

̂
𝛽

′
implies s2(̂y|𝐱i) = 𝐱′î𝚺 ̂

𝛽

𝐱i. This s2(̂y|𝐱i) is minimal at the center of

the experimental area. So, if the goal of the metamodel is to predict the simulation

output at a specific “new” point, then we should simulate N “old” points close to that

new point (a similar guideline applies for Kriging; see Gramacy 2015).

We saw that 𝚺
̂
𝛽

= (𝐗′
N𝐗N)−1𝜎2

w, so we may select 𝐗N such that we “optimize”

𝚺
̂
𝛽

. Obviously, 𝐗N is determined by 𝐗n, mi, and the type of regression model (e.g.,

𝐗N may include x2j ). DOE does not say much about the selection of mi; typically,

DOE assumes mi = 1. If mi = m ≥ 1, then an orthogonal 𝐗n implies an orthogonal
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𝐗N (we may specify 𝐗N as 𝐗n “stapled” or “stacked” m times). We shall further

discuss mi in Sect. 8.3.3. In the next subsections we shall discuss the following spe-

cial types of second-order polynomial regression model: (i) 𝛽j;j′ = 0 with j ≤ j′; (ii)

𝛽j;j = 0; we discuss (a) ̂
𝛽j unbiased by 𝛽j;j′ with j < j′, and (b) ̂

𝛽j and ̂
𝛽j;j′ unbiased.

These types of polynomials require designs of different resolution (abbreviated to

R). Obviously, 𝐗n is determined by 𝐃. To select a specific 𝐃 with 𝐳 constrained over

a given experimental area, we try to minimize Var(̂𝛽g) (g = 1,… , q); other criteria

are discussed in Kleijnen (2015, pp. 66–67). We can prove that this minimization

requires an orthogonal 𝐗N , which gives 𝚺
̂
𝛽

= (N𝐈)−1𝜎2
w = 𝐈𝜎2

w∕N. This 𝚺
̂
𝛽

implies

that the ̂
𝛽j are statistically independent. Moreover, these ̂

𝛽j have the same variance

(𝜎
2
w∕N). So we can rank the explanatory variables in order of importance, using

either ̂
𝛽g or tN−q with 𝛽g = 0 (so tN−q = ̂

𝛽g∕s(̂𝛽g)); obviously, we do not hypothesize

that the intercept 𝛽0 is zero. Usually, DOE assumes that zi;j is standardized such that

−1 ≤ di;j ≤ 1.

8.2.1 R-III Designs for First-Order Polynomials

If a first-order polynomial is an adequate metamodel (so 𝛽j;j′ = 0 with j ≤ j′), then

changing one factor at a time gives unbiased ̂
𝛽j (j = 1,… , k). However, these ̂

𝛽j do

not have minimum variances; a R-III design does minimize these variances because

this design gives an orthogonal 𝐗N , as we shall see in this subsection. Furthermore,

we can prove that Var(̂𝛽j) is minimal if we simulate only two levels per factor, as

far apart as the experimental area allows (in either a one-factor-at-a-time or a R-III

design); see Kleijnen (2015, pp. 44–49).

Note: If all ̂
𝛽g are independent, then the full regression model with q effects and

the reduced model with nonsignificant effects eliminated have identical values for

those estimated effects that occur in both models. If not all ̂𝛽g are independent, then

so-called backwards elimination of nonsignificant effects changes the values of the

remaining estimates.

R-III designs are also known as Plackett-Burman (PB) designs. A subclass are

fractional factorial two-level designs, denoted by 2k−p
III with integer p such that

0 ≤ p < k and 2k−p ≥ 1 + k: we first discuss 2k−p
III designs. Any 2k−p

design is bal-
anced; i.e., each input is simulated n∕2 times at its lower value Lj and at its higher

value Hj. Furthermore, a 2k−p
design gives an orthogonal 𝐗n. A R-III design may

be saturated: N = q (with N =
∑n

i=1mi, n = 2k−p
, and q = 1 + k). A saturated design

implies that the MSR is undefined (because N − q = 0). To solve this problem, we

may obtain replications for one or more combinations of the R-III design; e.g., the

combination at the center of the experiment where dj = 0 if dj is quantitative and dj is

randomly selected as −1 or 1 if dj is qualitative with two levels. A simple algorithm

for constructing 2k−p
III designs is given in Kleijnen (2015, pp. 53–54).



8 Design and Analysis of Simulation Experiments: Tutorial 141

Obviously, 2k−p
III designs have n equal to a power of 2. However, there are also

PB designs with n a multiple of 4; e.g., 8 ≤ k ≤ 11 implies n = 12 (whereas 212−8III
implies n = 16). If 8 ≤ k < 11, then we do not use n − (k + 1) columns of 𝐃. Actu-

ally, there are PB designs for 12 ≤ n ≤ 96; for 12 ≤ n ≤ 36 these designs are tabu-

lated in Montgomery (2009, p. 326) and Myers et al. (2009, pp. 165). A PB design

is balanced and gives an orthogonal 𝐗n.

8.2.2 R-IV Designs for First-Order Polynomials

A R-IV design gives ̂
𝛽j unbiased by 𝛽j;j′ with j < j′ (so q = 1 + k + k(k − 1)2). Such

a design uses the foldover theorem; i.e., augmenting a R-III design 𝐃 with its mirror
design −𝐃 gives a R-IV design (we shall also apply the foldover trick in Sect. 8.4 on

screening). A R-IV design does not enable unbiased estimators of the k(k − 1)2 indi-
vidual two-factor interactions. For example, a 27−4III design has nIII = 8 so nIV = 16;

furthermore, q = 29 so nIV < q and we cannot compute the OLS estimators of the

29 individual regression parameters.

8.2.3 R-V Designs for Two-Factor Interactions

A R-V design enables unbiased ̂
𝛽j and ̂

𝛽j;j′ with j < j′. Obviously, we have

q = 1 + k + k(k − 1)∕2. The DOE literature gives tables for generating 2k−p
V designs.

Unfortunately, these designs are not saturated at all; e.g., the 28−2V design implies

n = 64 ≫ q = 37. We point out that Rechtschaffner designs do include saturated R-

V designs; see Kleijnen (2015, pp. 62–63). We shall use R-V designs in the next

subsection.

8.2.4 CCDs for Second-Degree Polynomials

A CCD or central composite design enables unbiased ̂
𝛽j and ̂

𝛽j;j′with j ≤ j′. A CCD

consists of three subdesigns: (i) a R-V design; (ii) the central combination 𝟎′k; (iii) the

2k axial combinations—which form a star design—with dj = c and dj′ = 0 where

j′ ≠ j, and dj = −c and dj′ = 0. Obviously, c ≠ 1 implies five values per input,

whereas c = 1 implies three values per input. The usual choice of c is not 1. The

“optimal” choice of c assumes white noise, which does not hold in practice so we do

not detail this choice. Finally, if c ≤ 1, then −1 ≤ di;j ≤ 1; else −c ≤ di;j ≤ c.

A CCD gives a non-orthogonal 𝐗n; e.g., any two columns corresponding with

𝛽0, 𝛽j;j, and 𝛽j′;j′ are not orthogonal. A CCD is rather inefficient (i.e., n ≫ q); yet,

CCDs are popular in DOE, especially in response surface methodology (RSM)
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(see Sect. 8.6.1). For further discussion of CCDs and other types of designs for

second-degree polynomials we refer to Kleijnen (2015, pp. 64–66), and Myers et

al. (2009, pp. 296–317). A more efficient modified CCD is derived in Kleijnen and

Shi (2017).

8.3 Classic Assumptions Versus Simulation Practice

The classic assumptions stipulate a single type of output (univariate output) and

white noise. In simulation practice, however, the simulation model often has a mul-
tivariate output and no white noise—as we discuss now.

8.3.1 Multivariate Simulation Output

We assume that for r-variate (r ≥ 1) simulation output we use r univariate linear

regression metamodels 𝐲(l)=𝐗(l)
N 𝛽

(l)+ 𝐞(l) with l = 1,… r where 𝐲(l) corresponds with

output type l; 𝐗(l)
N is the N × ql matrix for metamodel l; 𝛽(l) is the vector with the ql

regression parameters for metamodel l; and 𝐞(l) is the N-dimensional vector with the

residuals of metamodel l. More restrictively we assume that all r metamodels are

polynomials of the same order (e.g., second-order), so 𝐗(l) = 𝐗 and ql = q. Obvi-

ously, 𝐞(l) has variances that may vary with l (e.g., the variances differ for simulated

inventory costs and service percentages), and e(l)i and e(l
′)

i are not independent (they

are different transformations of the same PRNs). Nevertheless, 𝐗(l) = 𝐗 implies that

the best linear unbiased estimator (BLUE) of 𝛽
(l)

is the OLS estimator computed

per output: ̂𝛽
(l) = (𝐗′𝐗)−1𝐗′𝐰(l)

. Furthermore, CIs and tests for the elements in ̂
𝛽

(l)

use the classic formulas in the preceding section. We are not aware of any general
designs for multivariate output. For further discussion of multivariate output we refer

to Kleijnen (2015, pp. 85–88).

8.3.2 Nonnormal Simulation Output

The normality assumption often holds asymptotically; i.e., if the simulation run

is long, then the sample average of the autocorrelated observations is nearly nor-

mal. Estimated quantiles, however, may be very nonnormal, especially in case of an

“extreme” (e.g., 99%) quantile. The t-statistic (used in the CIs) is quite insensitive

to nonnormality. Whether the actual simulation run is long enough to make the nor-

mality assumption hold, is always hard to know. Therefore it seems good practice

to test whether the simulation output has a Gaussian probability density function
(PDF). We may then use various residual plots and goodness-of-fit statistics; e.g.,
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the chi-square statistic. We must then assume that the tested outputs are IID. We

may therefore obtain “many” (say, 100) replications for a specific input combination

(e.g., the base scenario). However, if the simulation is expensive, then these plots

are too rough and these tests have no power.

Actually, the white-noise assumption concerns e, not w. Given mi ≥ 1 replica-

tions (i = 1,… , n), we obtain wi =
∑mi

r=1wi;r∕mi and the corresponding ̂ei = ŷi − wi.

For simplicity of presentation, we assume that mi is a constant m. If wi;r has a con-

stant variance 𝜎

2
w, then wi also has a constant variance; namely, 𝜎

2
w = 𝜎

2
w∕m. Unfor-

tunately, even if wi has a constant variance 𝜎

2
w and is independent of wi′ with i ≠ i′

(no CRN), then 𝚺
̂𝐞 = [𝐈 − 𝐗(𝐗′𝐗)−1𝐗′]𝜎2

w so
̂𝐞 does not have IID components; so,

the interpretation of the popular plot with estimated residuals is not straightforward.

We may apply normalizing transformations; e.g., log(w) may be more normally

distributed than w. Unfortunately, the metamodel now explains the behavior of the

transformed output—not the original output; also see Kleijnen (2015, p. 93).

A statistical method that does not assume normality is distribution-free bootstrap-
ping or nonparametric bootstrapping. This bootstrapping may be used to examine

(i) nonnormal distributions, or (ii) nonstandard statistics (e.g., R2
). We denote the

original observations by w, and the bootstrapped observations by w∗
. We assume

that these w are IID; indeed, wi;1,… ,wi;mi
are IID because the mi replications use

nonoverlapping PRN streams. We resample—with replacement—these mi observa-

tions such that the original sample size mi remains unchanged. We apply this resam-

pling to each combination i. The resulting w∗
i;1,… ,w∗

i;mi
give the average w∗

i , which

give the n-dimensional vector𝐰∗
. For simplicity’s sake, we now assume mi = m > 1,

so the bootstrapped OLS estimator of 𝛽 is ̂
𝛽

∗ = (𝐗′𝐗)−1𝐗′𝐰∗
. To reduce sampling

error, we select a bootstrap sample size (say) B, and repeat this resampling B times;

e.g., B is 100 or 1,000. This B gives ̂
𝛽

∗
b with b = 1,… ,B. For simplicity’s sake, we

focus on 𝛽q (last element of 𝛽). To compute a two-sided (1 − 𝛼) CI, the percentile
method computes the 𝛼∕2 quantile (or percentile) of the empirical density function
(EDF) of ̂

𝛽

∗
q obtained through sorting the B observations on ̂

𝛽

∗
q;b. This sorting gives

the order statistics, denoted by the subscript (·) where—for notational simplicity—

we assume that B𝛼∕2 is integer so the estimated 𝛼∕2 quantile is ̂
𝛽

∗
q;(B𝛼∕2). Analogously

we obtain ̂
𝛽

∗
q;(B[1−𝛼∕2]). These two quantiles give a two-sided asymmetric (1 − 𝛼) CI:

̂
𝛽

∗
q;(B𝛼∕2) < 𝛽q <

̂
𝛽

∗
q;(B[1−𝛼∕2]). We shall mention more bootstrap examples, in later sec-

tions.

8.3.3 Heterogeneous Variances of Simulation Outputs

In practice, Var(wi) changes as 𝐱i changes (i = 1,… , n). In some applications, how-

ever, we may hope that this variance heterogeneity is negligible. Unfortunately,

Var(wi) is unknown so we must estimate it. The classic unbiased estimator is
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s2(wi) =
∑mi

r=1(wi;r − wi)2∕(mi − 1). This s2(wi) itself has a high variance. To com-

pare the n estimators s2(wi), we can apply many tests; see Kleijnen (2015, p. 101).

If we either assume or find variance heterogeneity, then we may still use OLS.

Actually, ̂
𝛽 is still unbiased, but 𝚺

̂
𝛽

becomes (𝐗′
n𝐗n)−1𝐗′

n𝚺𝐰𝐗n(𝐗′
n𝐗n)−1 where for

simplicity’s sake we assume mi = m so 𝚺𝐰 is the n × n diagonal matrix with the

main-diagonal elements Var(wi)∕m.

The DOE literature ignores designs for heterogeneous output variances. We pro-

pose classic designs with mi such that we obtain approximately constant s2(wi)∕mi
(i = 1,… , n). Initially we take a pilot sample of size m0 ≥ 2 for each combination,

which gives (say) s2i (m0). Next we select a number of additional replications m̂i − m0
with

m̂i = m0 × nint

[
s2i (m0)

minis2i (m0)

]

(8.1)

where nint[x] denotes the integer closest to x. Combining the m̂i replications of the

two stages gives wi and s2(wi). This wi gives ̂
𝛽, while s2(wi) gives the diagonal matrix

̂𝚺𝐰 with main-diagonal elements s2i (m̂i)∕m̂i. This ̂𝚺𝐰 gives ̂𝚺
̂
𝛽

,which—together with

tm0−1—gives a CI for ̂
𝛽j.

Actually, (8.1) gives the relative number of replications m̂i∕m̂i′ . To select absolute

numbers, we recommend the rule in Law (2015, p. 505) with number of replications

m̂ and a relative estimation error ree:

m̂ = min

⎡
⎢
⎢
⎢
⎣

r ≥ m ∶
tr−1;1−𝛼∕2

√
s2i (m)∕r

|w(m)|
≤

ree

1 + ree

⎤
⎥
⎥
⎥
⎦

. (8.2)

8.3.4 Common Random Numbers

CRN are often applied; actually, CRN are the default in software for discrete-event

simulation. Given mi = m, we can arrange the simulation output wi;r with i = 1,… , n
and r = 1,… ,m into a matrix 𝐖 = (𝐰1,… ,𝐰m) with 𝐰r = (w1;r,… ,wn;r)′. Obvi-

ously, CRN create correlation between wi;r and wi′;r. Moreover, different replications

use nonoverlapping PRN streams so wi;r and wi;r′ with r ≠ r′—or the n-diagonal

vectors 𝐰r and 𝐰r′—are independent. CRN are used to reduce Var(̂𝛽g) and Var(̂y);
unfortunately, CRN increase the variance of the estimated intercept. For details on

the effective usage of CRN we refer to Law (2015, pp. 592–604).

To compute ̂
𝛽, we do not use 𝐖; i.e., we use the vector 𝐰 with N =

∑n
i=1mi ele-

ments. To compute ̂𝚺
̂
𝛽

in case of CRN, we use the non-diagonal matrix ̂𝚺𝐰. Unfor-

tunately, this ̂𝚺𝐰 is singular if m ≤ n; if m > n, then we may compute CIs for ̂𝛽j from

tm−1. An alternative method requires only m > 1, and computes ̂
𝛽r = (𝐗′

n𝐗n)−1𝐗′
n𝐰r
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(r = 1,… ,m). We again focus on a single element of this ̂
𝛽r; namely, element g

(g = 1,… , q). Obviously, ̂
𝛽g;r and ̂

𝛽g;r′ with r ≠ r′ and r′ = 1,… ,m are IID with

variance Var(̂𝛽g). The m replications give ̂
𝛽g =

∑m
r=1

̂
𝛽g;r∕m and s2(̂𝛽g) =

∑m
r=1(̂𝛽g;r −

̂
𝛽g)2∕[m(m − 1)]; together they give tm−1 = (̂𝛽g − 𝛽g)∕s(̂𝛽g).

Unfortunately, we cannot apply this alternative when estimating a quantile instead

of a mean. We then recommend distribution-free bootstrapping; see Kleijnen (2015,

p. 99, 110). Furthermore, mi is not a constant if we select mi such that wi has the

same—absolute or relative—width of the CI around wi; see again (8.2). We must

then adjust the analysis; see Kleijnen (2015, p. 112).

8.3.5 Validation of Metamodels

We discuss various validation methods (which we may also use to compare first-order

against second-order polynomials, or linear regression against Kriging metamodels).

One method uses R2 =
∑n

i=1(̂yi − w)2∕
∑n

i=1(wi − w)2 = 1 −
∑n

i=1(̂yi − wi)2∕
∑n

i=1

(wi − w)2 where w =
∑n

i=1wi∕n and mi ≥ 1. If n = q (saturated design), then R2 = 1—

even if E(̂ei) ≠ 0. If n > q and q increases, then R2
increases—whatever the size of

|
|E(̂ei)|| is; because of possible overfitting, we may therefore use the adjusted R2

:

R2
adj

= 1 − (1 − R2)(n − 1)∕(n − q). Unfortunately, we do not know critical values
for R2

or R2
adj

. We might either use subjective lower thresholds, or estimate the dis-

tributions of these two statistics through distribution-free bootstrapping; see Kleijnen

(2015, p. 114).

Actually, we prefer cross-validation over R2
or R2

adj
. We again suppose that

mi = m ≥ 1 so we may replace 𝐰 by 𝐰 in OLS. Now we delete I/O combination

i to obtain (𝐗−i,𝐰−i) where we suppress the subscript n of 𝐗. Next we compute

̂
𝛽−i = (𝐗′

−i𝐗−i)−1𝐗′
−i𝐰−i (i = 1,… , n). This gives ŷ−i = 𝐱′i ̂𝛽−i. We may “eyeball”

the scatterplot with (wi, ŷ−i), and decide whether the metamodel is valid. Alterna-

tively, we may compute the Studentized prediction error

t(i)m−1 =
wi − ŷ−i

√
s2(wi) + s2(̂y−i)

(8.3)

where s2(wi) = s2(wi)∕m and s2(̂y−i) = 𝐱′î𝚺̂
𝛽−i
𝐱i with ̂𝚺

̂
𝛽−i

= s2(wi)(𝐗′
−i𝐗−i)−1. We

reject the metamodel if maxi|t
(i)
m−1| > tm−1;1−[𝛼∕(2n)] where we use the Bonferroni

inequality so we replace 𝛼∕2 by 𝛼∕(2n); i.e., we control the experimentwise or fam-
ilywise type-I error rate 𝛼. Note that regression software uses a shortcut to avoid the

n recomputations in cross-validation.
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Cross-validation affects not only ŷ−i, but also ̂
𝛽−i (see above). We may be inter-

ested not only in the predictive performance of the metamodel, but also in its

explanatory performance; i.e., do the n estimates ̂
𝛽−i remain stable?

Related to cross-validation are diagnostic statistics; e.g., the prediction sum of
squares (PRESS): [

∑n
i=1(̂y−i − wi)2∕n]

1∕2
. We may apply bootstrapping to estimate

the distribution of the various validation statistics; see Kleijnen (2015, p. 120).

If the validation suggests am unacceptable fitting error e, then we may con-

sider various transformations. For example, we may replace y and xj by log(y) and

log(xj) (j = 1,… , k) so that the first-order polynomial approximates relative changes

through k elasticity coefficients. If we assume that f
sim

is monotonic, then we may

replace w and xj by their ranks: rank regression. In the preceding subsections, we also

considered transformations that make w better satisfy the assumptions of normality

and variance homogeneity; unfortunately, different objectifies of a transformation

may conflict with each other.

In Sect. 8.2 we discussed designs for low-order polynomials. If such a design does

not give a valid metamodel, then we do not recommend routinely adding higher

order terms: these terms are hard to interpret. However, if the goal is better predic-

tion, then we may add higher order terms; e.g., a 2k
design enables the estimation

of the interactions among three or more inputs. However, adding more terms may

lead to overfitting; see our comment on R2
adj

. A detailed example of fitting a polyno-

mial in simulation optimization is presented in Barton (1997, Fig. 4). Adding more

explanatory variables is called stepwise regression, whereas eliminating nonsignif-

icant variables is called backwards elimination, which we briefly discussed in the

Note in Sect. 8.2.1.

8.4 Factor Screening: Sequential Bifurcation

Factor screening—or briefly screening—searches for the really important inputs (or

factors) among the many inputs that can be varied in a (simulation) experiment.

It is realistic to assume sparsity, which means that only a few inputs among these

many inputs are really important; the Pareto principle or 20–80 rule states that only a

few inputs—say, 20%—are really important. Two examples of screening 281 and 92

inputs respectively show only 15 and 11 inputs to be really important; see Kleijnen

(2015, p. 136). In practice, we should apply screening before we apply the designs

and analyses of the preceding two sections; however, to explain screening methods,

we need those two sections.

Four types of screening designs that use different mathematical assumptions, are

summarized in Kleijnen (2015, pp. 137–139). We, however, focus on SB, because

SB is very efficient and effective if its assumptions are satisfied. SB is sequential;

i.e., SB selects the next input combination after analyzing the preceding I/O data.

SB is customized; i.e., SB accounts for the specific simulation model. (Frazier et al.

2012 considers SB from a Bayesian dynamic programming perspective.)



8 Design and Analysis of Simulation Experiments: Tutorial 147

8.4.1 Deterministic Simulation and First-Order Polynomials

To explain the basic idea of SB, we assume a deterministic simulation and a first-

order polynomial metamodel. Moreover, we replace the standardized xj by the origi-

nal simulation input zj (j = 1,… , k), and 𝛽j by (say) 𝛾j. Furthermore, we assume that

the sign of 𝛾j is known; some reflection shows that we can then define the low and

high bounds Lj and Hj of zj such that 𝛾j ≥ 0. Consequently we can rank the inputs

such that the most important input has the largest 𝛾j. We call input j important if

𝛾j > c
𝛾

where c
𝛾

≥ 0 is a threshold specified by the users.

In step 1 of SB we aggregate the k inputs into a single group, and check whether

that group is important. We therefore obtain the simulation outputs w(𝐳 = 𝐋) with

L = (L1,… ,Lk)′; we also obtain w(𝐳 = 𝐇) with 𝐇 = (H1,… ,Hk)′. If 𝛾j = 0 held

for all j, then our assumptions would imply w(𝐳 = 𝐋) = w(𝐳 = 𝐇). In practice, how-

ever, 𝛾j > 0 for one or more j, so w(𝐳 = 𝐋) < w(𝐳 = 𝐇). (If 0 ≤ 𝛾j < c
𝛾

for all j, then

w(𝐳 = 𝐇) − w(𝐳 = 𝐋) > c
𝛾

may happen; this “false importance” will be discovered

in the following steps, as we shall see.)

In step 2 we split the group with k inputs into two subgroups: bifurcation. Let k1
and k2 denote the size of subgroup 1 and 2 respectively (obviously, k1 + k2 = k).

Let w[k1] (subscript within []) denote w when z1 = H1,… , zk1 = Hk1 and zk1+1 =
L1,… , zk = Lk. In this step we obtain w[k1], and compare this w[k1] with w[0] =

w(𝐳 = 𝐋) of step 1: if (but not “if and only if”) w[k1] − w[0] < c
𝛾

, then none of the

individual inputs within subgroup 1 is important and we eliminate this subgroup

from further experimentation. We also compare w[k1] with w[k] = w(𝐳 = 𝐇) of step

1; wk − wk1 > c
𝛾

if at least one input is important and this input is a member of sub-

group 2.

In the following steps we continue splitting important subgroups into (smaller)

subgroups, and eliminate unimportant subgroups. In some steps we may find that

both subgroups are important; we then experiment with two important subgroups in
parallel. Finally we identify and estimate all individual inputs that are not in elimi-

nated (unimportant) subgroups.

Obviously, 𝛾j ≥ 0 ensures that first-order effects do not cancel each other within

a group. In practice the users often do know the signs of 𝛾j; e.g., if some inputs are

service speeds, then higher speeds decrease the mean waiting time. If in practice

it is hard to specify the signs of a few specific inputs, then we should treat these

inputs individually through one of the classic designs discussed in Sect. 8.2 (e.g., a

R-IV design); this is safer than applying SB and assuming a negligible probability

of cancelation within a subgroup.

The efficiency of SB—measured by the number of simulated input combinations—

improves if we can label the individual inputs such that they are placed in increasing
order of importance; this labeling implies that the important inputs are clustered
within the same subgroup. The efficiency further improves when we place (e.g.) all

service inputs in the same subgroup. Anyhow, subgroups of equal size are not neces-

sarily optimal. Academic and practical examples of SB are given in Kleijnen (2015,

pp. 136–172).
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8.4.2 Random Simulation and Second-Order Polynomials

Now we assume a second-order polynomial metamodel. Moreover, we assume that if

input j has 𝛾j = 0, then all its second-order effects 𝛾j;j (j ≤ j′) are also zero: so-called

heredity assumption. SB then gives �̂�j unbiased by 𝛾j;j′—provided we simulate the

mirror inputs of the original inputs in the sequential design; see again the foldover
principle in Sect. 8.2.2. So let w[−j] denote the mirror output with z1 = L1,… , zj = Lj
and zj+1 = Hj+1,… , zk = Hk. We standardize z such that x is either −1 or 1 with first-

order effect 𝛽 (Sect. 8.4.1 uses z instead of x). Kleijnen (2015, p. 149) shows that an

unbiased estimator of 𝛽j′−j =
∑j

h=j′ 𝛽h (the endash in j′ − j denotes “through”) is

̂
𝛽j′−j =

(w[j] − w[−j]) − (w[j′−1] − w[−(j′−1)])
4

. (8.4)

First we assume a fixed number of replications, m. Let w[j;r] with r = 1,… ,m denote

observation r on w[j]. Using (8.4), we then obtain ̂
𝛽(j′−j);r, which gives the classic

estimators of the mean and the variance of ̂𝛽(j′−j). These estimated mean and variance

give tm−1. SB uses this tm−1 in a one-sided test, because 𝛾j > 0 so 𝛽j > 0.

Next we assume a random m. Whereas the preceding t-test assumes a favorite

null hypothesis and a fixed m, the sequential probability ratio test (SPRT) in Wan

et al. (2010) considers two comparable hypotheses and a random m in each step. This

SPRT controls the type-I error probability through the whole procedure and holds

the type-II error probability at each step. The users must select thresholds c
𝛾U

and

c
𝛾I

such that 𝛽j ≤ c
𝛾U

is unimportant and 𝛽j ≥ c
𝛾I

is important; when c
𝛾U

< 𝛽j < c
𝛾I

,

the power is “reasonable”. Statistical details of this SPRT and a Monte Carlo exper-

iment are given in Kleijnen (2015, p. 154–159). (The robustness of several SPRTs is

investigated in Kleijnen and Shi 2017.)

In practice, simulation models have multiple response types; see again Sect. 8.3.1.

We can extend SB to multiresponse SB (MSB). Details including extensive Monte

Carlo experiments, a case study concerning a logistic system in China, and the val-

idation of the MSB assumptions are given in Kleijnen (2015, pp. 159–172) and Shi

and Kleijnen (2017).

8.5 Kriging Metamodels and Their Designs

Kriging metamodels are fitted to simulation I/O data obtained for global experimen-

tal areas, which are larger than the local areas in low-order polynomial metamodels.

Because we assume that many readers are not familiar with the basics of Kriging, we

detail various types of Kriging. We use the same symbols as above, unless Kriging

traditionally uses different symbols.



8 Design and Analysis of Simulation Experiments: Tutorial 149

8.5.1 Ordinary Kriging in Deterministic Simulation

Ordinary Kriging (OK) is popular and successful in practical deterministic sim-

ulation. OK assumes y(𝐱) = 𝜇 + M(𝐱) where 𝜇 is the constant mean E[y(𝐱)] and

M(𝐱) is a zero-mean Gaussian stationary process, which has covariances that depend

only on the distance between the input combinations 𝐱 and 𝐱′. We call M(𝐱) the

extrinsic noise (to be distinguished from “intrinsic” noise in stochastic simulation;

see Sect. 8.5.3). Let 𝐗 denote the n × k matrix with the n “old” combinations 𝐱i
(i = 1,… , n), where the original simulation inputs 𝐳i are standardized to obtain 𝐱i
(unlike DOE, Kriging does not use the symbol 𝐃 for the design matrix). The best
linear unbiased predictor (BLUP) for the new combination 𝐱0 is ŷ(𝐱0) =

∑n
i=1𝜆iwi =

𝝀′𝐰. This unbiased ŷ(𝐱0) implies that if 𝐱0 = 𝐱i, then ŷ(𝐱0) is an exact interpolator:

ŷ(𝐱i) = w(𝐱i). The “best” ŷ(𝐱0) minimizes the mean squared error (MSE), which

equals Var[̂y(𝐱0)]; see (8.7) below. Altogether, the optimal 𝝀 is

𝜆

′
o=[𝜎M(𝐱0)+𝟏n

1 − 𝟏′n𝚺
−1
M 𝜎(𝐱0)

𝟏′n𝚺
−1
M 𝟏n

]′𝚺−1
M (8.5)

where 𝟏n denotes the n-dimensional vector with ones, 𝚺M = (𝜎i;i′ ) = (Cov(yi, yi′ ))
(i, i′ = 1,… , n) denotes the n × n matrix with the covariances between the meta-

model’s old outputs yi, and 𝜎M(𝐱0)=(𝜎0;i) = (Cov(y0, yi)) denotes the n-dimensional

vector with the covariances between the metamodel’s new output y0 and yi. The com-

ponents of 𝜆o decrease with the distance between 𝐱0 and 𝐱i (so 𝜆 is not a constant

vector, whereas 𝛽 in linear regression is). Substitution of 𝜆o into ŷ(𝐱0) = 𝝀′𝐰 gives

ŷ(𝐱0) = 𝜇 + 𝜎M(𝐱0)′𝚺−1
M (𝐰−𝜇𝟏n). (8.6)

Obviously, ŷ(𝐱0) varies with 𝜎M(𝐱0), whereas 𝜇, 𝚺M , and 𝐰 remain fixed.

Note: The gradient ∇(̂y) follows from (8.6); see Lophaven et al. (2002, Eq. 2.18).

Sometimes we can also compute ̂∇(w) and estimate a better OK model; see Kleijnen

(2015, pp. 183–184) and Ulaganathan et al. (2014).

Instead of the symbol Var(yi) = 𝜎i;i = 𝜎

2
i = 𝜎

2
we use the classic Kriging symbol

𝜏

2
in

Var[̂y(𝐱0)] = 𝜏

2 − 𝜎M(𝐱0)′𝚺−1
M 𝜎M(𝐱0) +

[1 − 𝟏′n𝚺
−1
M 𝜎M(𝐱0)]2

𝟏′n𝚺
−1
M 𝟏n

. (8.7)

This equation implies Var[̂y(𝐱0)] = 0 if 𝐱0 = 𝐱i. Experimental results suggest that

Var[̂y(𝐱0)] has local maxima at 𝐱0 approximately halfway between old input combi-

nations (also see Sect. 8.6.2). Kriging gives bad extrapolations compared with inter-

polations (linear regression also gives minimal Var[̂y(𝐱0)] when 𝐱0 = 𝟎).

Sometimes it is convenient to switch from covariances to correlations; the corre-

lation matrix 𝐑 = (𝜌i;i′ ) equals 𝜏
−2𝚺M and 𝜌(𝐱0) equals 𝜏

−2
𝜎M(𝐱0). There are several

types of correlation functions; see Kleijnen (2015, pp.185–186). Most popular is the

Gaussian correlation function:
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𝜌(𝐡) =
k∏

j=1
exp

(
−𝜃jh2j

)
= exp

(

−
k∑

j=1
𝜃jh2j

)

(8.8)

with distance vector 𝐡 = (hj) where hj =
|
|
|
xg;j − xg′;j

|
|
|

and g, g′ = 0, 1,… , n.

Obviously, we need to estimate the Kriging (hyper)parameters 𝜓 = (𝜇, 𝜏2, 𝜃′)′
with 𝜃 = (𝜃j). The most popular criterion is maximum likelihood (ML) (but OLS and

cross-validation are also used). The computation of the ML estimator (MLE) �̂� is

challenging, so different �̂� may result from different software packages or from ini-

tializing the same package with different starting values; see Erickson et al. (2016).

Plugging �̂� into (8.6) gives ŷ(𝐱0, �̂�). Obviously, ŷ(𝐱0, �̂�) is a nonlinear predictor.

Furthermore, we plug �̂� into (8.7) to obtain s2[̂y(𝐱0, �̂�)]. To obtain a symmetric

(1 − 𝛼) CI for w(𝐱0), we use z
𝛼∕2 (standard symbol for the 𝛼∕2 quantile of N(0, 1))

and get ŷ(𝐱0, �̂�)± z
𝛼∕2s[̂y(𝐱0, �̂�)]. There is much software for Kriging; see the many

publications and websites in Kleijnen (2015, p. 190).

8.5.2 Designs for Deterministic Simulation

There is an abundant literature on various design types for Kriging in deterministic

simulation; e.g., orthogonal array, uniform, maximum entropy, minimax, maximin,

integrated mean squared prediction error, and “optimal” designs; see Kleijnen (2015,

p. 198). However, the most popular space filling design uses Latin hypercube sam-
pling (LHS). LHS assumes that the metamodel is more complicated than a low-order

polynomial, but it does not assume a specific type of metamodel. LHS divides the

range of each input into n mutually exclusive and exhaustive intervals of equal proba-

bility, and samples each input without replacement. Whereas DOE makes n increase

with k (e.g., n = 2k−p
), LHS does not impose such a relationship. Nevertheless, if n

is “small” and k is “large”, then LHS covers the input space so sparsely that the fit-

ted Kriging model may be inadequate. A well-known rule-of-thumb for LHS in SA

through Kriging is n = 10k. LHS may be further refined, leading to maximin LHS,

nearly orthogonal LHS, etc.; see Kleijnen (2015, p. 202).

Instead of LHS with its fixed sample or one-shot design, we may use a sequential
design that is customized for the given simulation model; i.e., we learn about f

sim
as

we collect I/O data (also see Sect. 8.4 on SB). In this subsection we discuss SA, and

in Sect. 8.6.2 we shall discuss SimOpt. Using an initial (relatively small) LHS design,

we obtain simulation I/O data and fit a Kriging model. Then we consider—but not

yet simulate—𝐗cand which denotes a larger design matrix with candidate combina-

tions selected through LHS, and we find the candidate with the highest s2{ŷ(𝐱, �̂�)}
with 𝐱 ∈ 𝐗cand. Next we use the selected candidate point as the input to be simulated,

which gives additional I/O data. Then we refit the Kriging model to the augmented

I/O data; we may reestimate 𝜓 . We stop if either the Kriging metamodel satisfies

the goal of SA or the computer budget is exhausted. Experiments show that this



8 Design and Analysis of Simulation Experiments: Tutorial 151

sequential design selects relatively few combinations in subareas with an approxi-

mately linear f
sim

. Details are given in Kleijnen (2015, pp. 203–206).

8.5.3 Kriging in Random Simulation

Ankenman et al. (2010) develops stochastic Kriging (SK), adding the intrinsic noise
term 𝜀r(𝐱i) for replication r (r = 1,… ,mi) at combination 𝐱i (i = 1,… , n). After

averaging over the mi replications, SK uses the formulas for OK but replaces 𝐰 by 𝐰
and M(𝐱i) by M(𝐱i) + 𝜀(𝐱i) where 𝜀(𝐱i) ∈ N(0,Var[𝜀r(𝐱i)]∕mi) and 𝜀(𝐱i) is indepen-

dent of M(𝐱). If we do not use CRN, then𝚺
𝜀

is diagonal (if we used CRN and selected

mi = m, then 𝚺
𝜀

would equal 𝚺
𝜀

∕m; however, we assume no CRN in this subsec-

tion). To estimate Var[𝜀(𝐱i)], SK may use either s2(wi) or another Kriging model for

Var[𝜀(𝐱i)]—besides the Kriging model for the mean E[yr(𝐱i)]; see Kleijnen (2015,

p. 208). We use 𝜓+𝜀 to denote 𝜓 augmented with Var[𝜀r(𝐱i)] (extra parameters of

random simulation). Note that SK for a quantile instead of an average is discussed

in Chen and Kim (2013).

Binois et al. (2016) gives an alternative—called hetGP—for SK. This alternative

assumes mi ≥ 1, whereas SK assumes mi ≫ 1. SK maximizes a likelihood for 𝜓 , but

not the full likelihood; i.e., SK does not give the MLEs of the intrinsic variances, but

uses the moments s2(wi). So, �̂�+𝜀 in SK is biased. The alternative uses the full likeli-

hood for 𝜓+𝜀; i.e., whereas SK fits the Kriging models for the mean and the intrinsic

variances independently, hetGP couples these models through a joint likelihood for

𝜓+𝜀 that is optimized in one shot. This alternative requires computational time of the

same order as SK does.

8.5.4 Monotonic Kriging

In practice we sometimes know that f
sim

is monotonic; also see Sect. 8.4 on screen-

ing. The Kriging predictor ŷ, however, may be wiggling if the sample size is small.

To make ŷ monotonic, we may apply distribution-free bootstrapping with accep-
tance/rejection. This method rejects the Kriging model fitted in bootstrap sample b
(b = 1,… ,B) if this metamodel gives wiggling predictions. We think that the result-

ing SA is better understood and accepted by the users. Monotonic Kriging may give

a smaller MSE and a CI with higher coverage and acceptable length. For details we

refer to Kleijnen et al. (2012) and Kleijnen (2015, pp. 212–216).

We may apply this method to preserve other I/O characteristics; e.g., waiting times

and variances have only positive values. Furthermore, we may apply this method to

other types of metamodels; e.g., regression models.
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8.5.5 Global Sensitivity Analysis

So far we focused on ŷ, but now we measure how sensitive ŷ and w are to the indi-

vidual inputs xj (j = 1,… , k) and their interactions. We assume that x = (xj) has a

prespecified distribution, as in LHS; see Sect. 8.5.2. We apply functional analysis of
variance (FANOVA), using variance-based indexes (originally proposed by Sobol).

FANOVA decomposes 𝜎
2
w into fractions that refer to sets of inputs; e.g., FANOVA

may estimate that 70% of 𝜎
2
w is caused by x1, 20% by x2, and 10% by the interaction

between x1 and x2. In general, 𝜎
2
w equals the following sum of 2k−1

components:

𝜎

2
w =

k∑

j=1
𝜎

2
j +

k∑

j<j′
𝜎

2
j;j′ +⋯ + 𝜎

2
1;…;k (8.9)

with the main-effect variance 𝜎
2
j = Var[E(w|xj)], the two-factor interaction variance

𝜎

2
j;j′ = Var[E(w|xj, xj′ )] − Var[E(w|xj)] − Var[E(w|xj′ )], etc. This 𝜎

2
j gives the first-

order sensitivity index or the main-effect index 𝜁j = 𝜎

2
j ∕𝜎

2
w, which quantifies the

effect of varying xj alone—averaged over the variations in all the other k − 1 inputs—

where the denominator 𝜎
2
w standardizes 𝜁j to provide a fractional contribution. Alto-

gether the sum of the 2k−1
indexes is 1. In practice, we assume that only the 𝜁j—and

possibly the 𝜁j;j′—are important, and that they sum up to a fraction “close enough”

to 1. To estimate these measures, we may use LHS and replace the simulation model

by a Kriging metamodel; see Kleijnen (2015, p. 218).

8.5.6 Risk Analysis or Uncertainty Analysis

In RA (or UA) we typically estimate the failure probability P(w > c
f
) with a given

threshold value c
f
; see the many applications in nuclear engineering, finance, water

management, etc. This P(w > c
f
) may be very small—so w > c

f
is called a rare

event—but this event may have disastrous consequences. Spreadsheets are popu-

lar software for such RA. The uncertainty about the exact values of the simulation

inputs 𝐳 is called subjective or epistemic, whereas the “intrinsic” uncertainty in ran-

dom simulation is called objective or aleatory.

SA and RA address different questions: “Which are the most important inputs in

the simulation model?” and “What is the probability of a given event happening?”

respectively. So, SA may identify those inputs for which the distribution in RA needs

further refinement.

Methodologically, we use a Monte Carlo method to sample input combination

𝐳 from its given distribution. Next we use this 𝐳 as input into the given simulation

model. We run the simulation model to transform 𝐳 into w: so-called propagation of
uncertainty. We repeat these steps “many” times to obtain the EDF of w. Finally, we
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use this EDF to estimate P(w > c
f
). This method is also known as nested simulation;

see Kleijnen (2015, p. 284).

In expensive simulation, we replace the simulation model by its metamodel. The

true P(w > c
f
)may be better estimated through inexpensive sampling of many values

from the metamodel, which is estimated from relatively few I/O values obtained from

the expensive simulation model.

Instead of P(w > c
f
) we may estimate the excursion set, which is the set of input

combinations that give outputs that exceed a given threshold. Obviously, the volume

of the excursion set is closely related to P(w > c
f
). Details on RA though Kriging

and regression metamodels are given in Kleijnen (2015, p. 221) and Song and Nelson

(2017).

8.6 Simulation Optimization

The importance of optimization is demonstrated by the many WSC publications on

this topic. The simplest optimization problem has no constraints for the inputs or the

outputs, has no uncertain inputs, and concerns the expected value of a single output,

E(w). This E(w) may represent the probability of a binary variable. However, E(w)
excludes quantiles and the mode of the output distribution. Furthermore, the simplest

optimization problem assumes continuous inputs, excluding MRP and MCP (also

see Sect. 8.1).

There are many optimization methods; also see Ryzhov and Chen (2017).

We, however, focus on RSM (using linear regression) and Kriging. Jalali and Van

Nieuwenhuyse 2015 claims that metamodel-based optimization is “relatively com-

mon” and that RSM is the most popular metamodel-based method, while Kriging

is popular in theoretical publications. We add that in expensive simulation it is

impractical to apply optimization methods such as the popular OptQuest. A single

simulation run may be computationally inexpensive, but there may be extremely

many input combinations. Furthermore, most simulation models have many inputs,

which leads to the curse of dimensionality, so we should apply screening before opti-

mization. Moreover, a single run is expensive if we want an accurate estimate of the

steady-state performance of a queueing system with a high traffic rate. Finally, if

we wish to estimate a small E(w) = p (e.g., p = 10−7), then we need extremely long

simulation runs (unless we successfully apply importance sampling).

8.6.1 Response Surface Methodology

RSM uses a sequence of local experiments, and has gained a good track record;

see Kleijnen (2015, p. 244), Law (2015, pp. 656–679), and Myers et al. (2009). We

assume that before RSM is applied, we have identified the important inputs and their

experimental area (RSM and screening may be combined; see Kleijnen 2015, p. 245).
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Methodologically, RSM tries to minimize E(w|𝐳). We start RSM in a given point;

e.g., the combination currently used in practice. In the neighborhood of this point we

fit a first-order polynomial, assuming white noise; however, RSM allows Var(w) to

change in a next step. Unfortunately, there are no general guidelines for determining

the appropriate size of the local area in each step. To fit a first-order polynomial, we

use a R-III design (see Sect. 8.2.1). To quantify the adequacy of this estimated poly-

nomial, we may compute R2
or cross-validation statistics; see Sect. 8.3.5. In the fol-

lowing steps, we use the gradient implied by this first-order polynomial: ∇(̂y) = �̂�−0
where −0 means that the intercept �̂�0 is removed from the (k + 1)-dimensional vector

with the estimated regression parameters �̂� . This ∇(̂y) implies the steepest descent
direction. We take a step in that direction, trying intuitively selected values for

the step size. After a number of such steps, w will increase (instead of decrease)

because the local first-order polynomial becomes inadequate. When such deteriora-

tion occurs, we simulate the n > k combinations of the R-III design—but now cen-

tered around the best combination found so far. We reestimate the polynomial and in

the resulting new steepest descent direction we again take several steps. Obviously,

a plane (implied by a first-order polynomial) cannot adequately represent a hill top
when searching to maximize w or— equivalently—minimize w. So, in the neighbor-

hood of the latest estimated optimum we now fit a second-order polynomial, using a

CCD (see Sect. 8.2.4). Next we use the derivatives of this polynomial to estimate the

optimum; we may apply canonical analysis to examine the shape of the estimated

optimal subregion: does this subregion give a unique minimum, a saddle point, or

a ridge with stationary points? If time permits, then we may try to escape from a

possible local optimum and restart the search from a different initial local area.

While applying RSM, we should not eliminate inputs with nonsignificant effects

in a local first-order polynomial: these inputs may become significant in a next local

area. The selection of the number of replications in RSM for random simulation is a

moot issue; see Sect. 8.3.3 and the SPRT for SB in Sect. 8.4.2.

After discussing classic RSM, we summarize three extensions. (i) A scale-
independent steepest-descent direction that accounts for 𝚺

�̂�

is discussed in Kleij-

nen (2015, pp. 252–253). (ii) In practice, simulation models have multiple responses

types (see again Sects. 8.3.1 and 8.4.2). For such situations the RSM literature offers

several approaches, but we focus on generalized RSM (GRSM), which solves the

following constrained nonlinear random optimization problem:

min𝐳E(w(1)|𝐳)
E(w(l′)|𝐳) ≥ cl′ (l′ = 2,… , r) (8.10)

Lj ≤ zj ≤ Hj with j = 1,… , k.

GRSM combines RSM and interior point methods from MP, avoiding creeping along

the boundary of the feasible area that is determined by the constraints on the ran-

dom outputs and the deterministic inputs. So, GRSM moves faster to the optimum,

and is scale independent. For details we refer to Kleijnen (2015, pp. 253–258). (iii)

Because the GRSM heuristic may miss the true optimum, we can test the first-order
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necessary optimality or Karush–Kuhn–Tucker (KKT) conditions. To test these con-

ditions, we may use parametric bootstrapping that samples w∗
from the assumed dis-

tribution; namely, a multivariate normal) with parameters estimated from the original

w. Details are given in Kleijnen (2015, pp. 259–266).

8.6.2 Kriging for Optimization

Kriging is used by efficient global optimization (EGO), which is a popular sequen-
tial method that balances local and global search; i.e., EGO balances exploitation
and exploration. We present only the basic EGO variant for deterministic simula-

tion; also see the classic EGO reference, Jones et al. (1998). There are many more

variants for deterministic and random simulations, constrained optimization, multi-

objective optimization including Pareto frontiers, the “excursion set” or “admissible

set”, robust optimization, estimation of a quantile, and Bayesian approaches; see

Kleijnen (2015, pp. 267–269).

In this basic variant we find the best simulated “old” output: f
min

= mini w(𝐱i)
(i = 1,… , n). To select a new combination 𝐱0, we consider ŷ(𝐱0) and s2[̂y(𝐱)] (we

suppress �̂�); e.g., if two new points 𝐱0 and 𝐱′0 have ŷ(𝐱0) = ŷ(𝐱′0) and s2[̂y(𝐱0)] >
s2[̂y(𝐱′0)], then we explore 𝐱0 because 𝐱0 has a higher probability of improvement

(lower w). We know that s2[̂y(𝐱0)] increases as 𝐱0 lies farther away from 𝐱i; see

(8.7). Actually, we estimate the maximum of the expected improvement (EI), which

is reached if either ŷ(𝐱0) is much smaller than f
min

or s2[̂y(𝐱0)] is relatively large so

ŷ(𝐱0) is relatively uncertain.

More precisely, we start with a pilot sample—typically selected through LHS—

which results in (𝐗,𝐰), Next we find f
min

= min1≤i≤nw(𝐱i). We also fit a Kriging

metamodel ŷ(𝐱). Together, this gives EI(𝐱) = E
[
max (f

min
− ŷ(𝐱), 0)

]
. Jones et al.

(1998) derives the EI estimator

̂EI(𝐱) =
(
f
min

− ŷ(𝐱)
)
Φ
(

f
min

− ŷ(𝐱)
s[̂y(𝐱0)]

)

+ s[̂y(𝐱0)]𝜙
(

f
min

− ŷ(𝐱)
s[̂y(𝐱0)]

)

(8.11)

where Φ and 𝜙 denote the cumulative distribution function (CDF) and the PDF of

N(0, 1). Using (8.11), we find the estimate of 𝐱 that maximizes ̂EI(𝐱) (say) �̂�
opt

Actu-

ally, to find �̂�
opt

, we may use either a global optimizer or a set of candidate points

selected through LHS. Next we use this �̂�opt to obtain w(�̂�opt). Then we fit a new

Kriging model to the augmented I/O data. We update n, and return to (8.11)—until

we satisfy a stopping criterion; e.g., ̂EI(�̂�opt) is “close” to 0. Note that EGO is com-

bined with bootstrapping in Kleijnen and Mehdad (2013).

Now we consider the constrained optimization problem in (8.10), augmented with

constraints for 𝐳 (e.g., budget constraints) and the constraint that z must belong to the

set of nonnegative integers𝐍. To solve this problem, we might apply an EGO variant,

as mentioned above. Alternatively, we may apply Kriging and integer mathematical



156 J.P.C. Kleijnen

programming (KIMP), which combines (i) sequentialized designs to specify the next

combination, like EGO does; (ii) Kriging to analyze the resulting I/O data, and obtain

explicit functions for E(w(l)|z) (l = 1,… , r), like EGO does; (iii) integer nonlinear
programming (INLP) to estimate the optimal solution from these explicit Kriging

models, unlike EGO. Experiments with KIMP and OptQuest suggest that KIMP

requires fewer simulated combinations and gives better estimated optima.

8.6.3 Robust Optimization

The estimated optimum (see the preceding two subsections) may turn out to be infe-

rior because it ignores uncertainties in the noncontrollable environmental variables;

i.e., these uncertainties create a risk (also see RA in Sect. 8.5.6). Taguchians empha-

size that in practice some inputs of a manufactured product (e.g., a car) are under

complete control of the engineers (the car’s design), whereas other inputs are not (the

driver). Taguchians therefore distinguish between (i) controllable (decision) vari-

ables, and (ii) noncontrollable (environmental, noise) factors. Let the first k
C

of the

k simulated inputs be controllable, and the next k
NC

inputs be noncontrollable. Let

𝐳
C

and 𝐳
NC

denote the vector with the k
C

controllable and the k
NC

noncontrollable

inputs.

Methodologically, Taguchians assume a single output (say) w, focusing on its

mean E(w) and its variance, which is caused by 𝐳
NC

so 𝜎

2(w|𝐳
C
) > 0. These two

outputs are combined into a scalar loss function such as the signal-to-noise or mean-
to-variance ratio E(w)∕𝜎2(w|𝐳

C
); see Myers et al. (2009, pp. 486–488). We, however,

prefer to use E(w) and 𝜎(w|𝐳
C
) (obviously, 𝜎(w|𝐳

C
) has the same scale as E(w) has)

separately so we can use constrained optimization; i.e., given an upper threshold

c
𝜎

for 𝜎(w|𝐳
C
), we try to solve min𝐳

C

E(w|𝐳
C
) such that 𝜎(w|𝐳

C
) ≤ c

𝜎

. Constrained

optimization is also discussed in Myers et al. (2009, p. 492).

The Taguchian worldview is successful in production engineering, but statisti-

cians criticize the statistical techniques. Moreover—compared with real-life

experiments—simulation experiments have more inputs, more input values, and

more input combinations; see again Sect. 8.1. Myers et al. (2009, pp. 502–506) com-

bines the Taguchian worldview with the statisticians’ RSM. Whereas Myers et al.

(2009) assumes that 𝐳
NC

has 𝚺
NC

= 𝜎

2(w|𝐳
C
)I, we assume a general 𝚺

NC
. Whereas

Myers et al. (2009) superimposes contour plots for E(w|𝐳
C
) and 𝜎

2(w|𝐳
C
) to estimate

the optimal 𝐳
C

, we use MP. This MP, however, requires specification of the thresh-

old c
𝜎

. In practice, managers may find it hard to select a specific value for c
𝜎

, so we

may try different c
𝜎

values and estimate the corresponding Pareto-optimal efficiency

frontier. To estimate the variability of this frontier that results from the estimators

of E(w|𝐳
C
) and 𝜎(w|𝐳

C
), we may use bootstrapping. Instead of RSM we may apply

Kriging. Details are given in Kleijnen (2015, pp. 273–284).

Finally, we summarize RO in MP; see again Bertsimas and Mišić (2017). If

MP ignores the uncertainty in the coefficients of the MP model, then the result-

ing so-called nominal solution may easily violate the constraints in the given model.
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RO may give a slightly worse value for the goal variable, but RO increases the proba-

bility of satisfying the constraints; i.e., a robust solution is “immune” to variations of

the variables within the so-called uncertainty set U. Yanikoğlu et al. (2016) derives a

specific U for 𝐩 where 𝐩 denotes the unknown PDF of 𝐳
NC

that is compatible with the

given historical data on 𝐳
NC

. RO in MP develops a computationally tractable robust
counterpart of the original problem. Compared with the output of the nominal solu-

tion, RO may give better worst-case and average outputs.

Acknowledgements I thank the editors for inviting me to contribute a chapter to this book, com-

memorating the 50th anniversary of the Winter Simulation Conferences.

References

Ankenman B, Nelson B, Staum J (2010) Stochastic Kriging for Simulation Metamodeling. Oper

Res 58(2):371–382

Barton RR (1997) Design of experiments for fitting subsystem metamodels. In: Proceedings of the

1997 winter simulation conference, pp 303–310

Bertsimas D, Mišić VV (2017) Robust product line design. Oper Res 65(1):19–37

Biles BE, van Beers WCM, Kleijnen JPC, van Nieuwenhuyse I (2007) Kriging metamodels in

constrained simulation optimization: an exploratory study. In: Proceedings of the 2007 winter

simulation conference, pp 355–362

Binois M, Gramacy RB, Ludkovskiz M (2016) Practical heteroskedastic Gaussian process modeling

for large simulation experiments. ArXiv, 17 Nov 2016

Chen X Kim K-K (2013) Building metamodels for quantile-based measures using sectioning.

In: Proceedings of the 2013 winter simulation conference, pp 521–532

Dellino G, Kleijnen JPC, Meloni C (2009) Robust simulation-optimization using metamodels.

In: Proceedings 2009 winter simulation conference, pp 540–550

Dellino G, Kleijnen JPC, Meloni C (2010) Parametric and distribution-free bootstrapping in robust

simulation optimization. In: Proceedings 2010 winter simulation conference, pp 1283–1294

Erickson CB, Sanchez SM, Ankenman BE (2016) Comparison of Gaussian process modeling soft-

ware. In: WSC 2016 proceedings, pp 3692–3693

Frazier PI, Jedynak B, Chen L (2012) Sequential screening: a Bayesian dynamic programming

analysis. In: Proceedings 2012 winter simulation conference, Berlin, pp 555–566

Govindan E (2016) Yosida approximations of stochastic differential equations in infinite dimensions

and applications. Springer

Gramacy RB (2015) laGP: large-scale spatial modeling via local approximate Gaussian processes

in R. J Stat Softw (available as a vignette in the laGP package)

Jalali H, Van Nieuwenhuyse I (2015) Simulation optimization in inventory replenishment: a clas-

sification. IIE Trans 47(11):1217–1235

Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box

functions. J Glob Optim 13:455–492

Kleijnen JPC (1995) Case study: statistical validation of simulation models. Eur J Oper Res

87(1):21–34

Kleijnen JPC (2015) Design and analysis of simulation experiments, 2nd edn. Springer

Kleijnen JPC (2017) Regression and kriging metamodels with their experimental designs in simu-

lation: a review. Eur J Oper Res 256:1–16

Kleijnen JPC, Mehdad E (2013) Conditional simulation for efficient global optimization. In: Pro-

ceedings 2013 winter simulation conference, pp 969–979



158 J.P.C. Kleijnen

Kleijnen JPC, Mehdad E, van Beers WCM (2012) Convex and monotonic bootstrapped kriging. In:

Proceedings of the 2012 winter simulation conference, pp 543–554

Kleijnen JPC, Shi W (2017) Sequential probability ratio tests: conservative and robust. In: CentER

discussion paper, vol 2017-001. CentER, Center for economic research, Tilburg

Law AM (2015) Simulation modeling and analysis, 5th edn. McGraw-Hill, Boston

Liu Z, Rexachs D, Epelde F, Luque E (2017) A simulation and optimization based method for

calibrating agent-based emergency department models under data scarcity. Comput Ind Eng

103:300–309

Lophaven SN, Nielsen HB, Sondergaard J (2002) DACE: a matlab kriging toolbox, version 2.0.

IMM Technical University of Denmark, Kongens Lyngby

Mitchell TJ, Morris MD (1992) The spatial correlation function approach to response surface esti-

mation. In: Proceedings of the 2012 winter simulation conference, pp 565–571

Montgomery DC (2009) Design and analysis of experiments, 7th edn. Wiley, Hoboken, NJ

Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology: process

and product optimization using designed experiments, 3rd edn. Wiley, New York

Rosen SL, Slater D, Beeker E, Guharay S, Jacyna G (2015) Critical infrastructure network analysis

enabled by simulation metamodeling. In: Proceedings of the 2015 winter simulation conference,

pp 2436–2447

Ryzhov IO, Chen Y (2017) Bayesian belief models in simulation-based optimization. In: Advances

in modeling and simulation: seminal research from 50 years of winter simulation conferences,

pp 181–217

Sargent RG, Goldsman DM, Yaacoub T (2016) A tutorial on the operational validation of simulation

models. In: Proceedings of the 2016 winter simulation conference, pp 163–177

Shi W, Kleijnen JPC (2017) Testing the assumptions of sequential bifurcation in factor screening,

vol 2017-06. Discussion paper, Center for economic research, Tilburg

Simpson TW, Booker AJ, Ghosh D, Giunta AA, Koch PN, Yang R-J (2004) Approximation meth-

ods in multidisciplinary analysis and optimization: a panel discussion. Struct Multidiscip Optim

27(5):302–313

Song E, Nelson BL (2017) Input model risk: where we stand and where we are going. In: Tolk A,

Fowler J, Shao G, Yücesan E (eds) Advances in modeling and simulation: seminal research from

50 years of winter simulation conferences, pp 63–80

Timm IJ, Lorig F (2015) A survey on methodological aspects of computer simulation as research

technique. In: Proceedings of the 2015 winter simulation conference, pp 2704–2715

Uhrmacher A, Brailsford S, Liu J, Rabe M, Tolk A (2016) Panel—reproducible research in discrete

event simulation—a must or rather a maybe? In: Proceedings of the 2016 winter simulation

conference, pp 1301–1315

Ulaganathan S, Couckuyt I, Dhaene T, Laermans E (2014) On the use of gradients in kriging sur-

rogate models. In: Proceedings of the 2014 winter simulation conference, pp 2692–2701

Van Beers WCM, Kleijnen JPC (2004) Kriging interpolation in simulation: a survey. In: Proceed-

ings of the 2004 winter simulation conference, pp 113–121

Van Ham G, Rotmans J, Kleijnen JPC (1992) Techniques for sensitivity analysis of simulation

models: a case study of the CO2 greenhouse effect. Simulation 58(6):410–417

Wagner H (1975) Principles of operations research; with applications to managerial decisions, 2nd

edn. Prentice-Hall Inc, Englewood Cliffs, New Jersey

Wan H, Ankenman BE, Nelson BL (2010) Improving the efficiency and efficacy of controlled

sequential bifurcation for simulation factor screening. INFORMS J Comput 22(3):482–492

Yanikoğlu I, den Hertog D, Kleijnen JPC (2016) Robust dual-response optimization. IIE Trans Ind

Eng Res Dev 48(3):298–312

Zeigler BP, Praehofer H, Kim TG (2000) Theory of modeling and simulation, 2nd edn. Academic,

San Diego

Zhou E, Wu D (2017) Simulation optimization under input uncertainty. In: Tolk A, Fowler J, Shao

G, Yücesan E (eds) Advances in modeling and simulation: seminal research from 50 years of

winter simulation conferences, pp 219–247



Chapter 9
Better Big Data via Data Farming
Experiments

Susan M. Sanchez and Paul J. Sánchez

Abstract The term ‘big data’ has become intertwined with ‘data mining’ in the

minds of many people. Modern computing can generate massive amounts of data

via simulation studies, but a key drawback to the data mining paradigm is that it

relies on observational data and thus limits the types of insights that can be gained.

We can do much better with ‘data farming,’ a metaphor that captures the notion of

purposeful data generation from simulation models. Prospective designs of exper-

iments can establish causal relationships, in contrast to data mining that can only

find correlations. The use of large-scale designed experiments lets us grow simula-

tion output efficiently and effectively, and is a game changer in terms of the power

and flexibility it offers analysts and decision makers. When combined with modern

simulation tools and cluster computing, it allows studies to focus on much broader

questions and obtain much richer insights. In this chapter, we discuss the implications

data farming has on model building, verification and validation, input modeling and

data requirements, multi-criteria decision-making and tradeoff analysis, and a few

ethical aspects of the decision process.

9.1 Background and Motivation

Over the past 50+ years, simulation has experienced rapid and continual growth. This

growth has been fueled in part by the exponential increase in computing capabilities

and availability (Moore 1965), but also by the manifold contributions of researchers

and practitioners who have created better tools and techniques in diverse areas such

as input modeling, random variate generation, output analysis, model paradigms and

their associated implementations, model verification and validation, optimization,

and ranking & selection, to name a few.
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These developments have provided new opportunities for simulation-based sys-

tems exploration. In its early years, simulation was often referred to as a “method

of last resort” (Wagner 1969) because of its complexity, cost, and limitations. Given

the current state of the art, it can now be argued quite strongly that simulation should

often be considered a method of first resort (Lucas et al. 2015). The resulting shift in

views and attitudes about how simulation can be used to support decision-making is

reflected by an evolution in the types of questions we seek to address with our sim-

ulation models, from ‘what is?’ to ‘what if?,’ and more recently to ‘what matters?,

how?, and why?’

‘What is?’ questions can be answered when we view simulation as a way of gath-

ering descriptive statistics about a single configuration of a system. Monte Carlo

simulation falls into this category. For instance, if we are trying to determine the

distribution of the output of an electronic circuit with randomly distributed compo-

nent characteristics, or evaluate an intractable multidimensional integral for physics

modeling, Monte Carlo simulation works quite well.

It is a short step from asking ‘what is?’ to asking ‘what if?’ For example, those

who build models of a factory floor might be interested in finding out whether

throughput would improve if a new piece of equipment or more workers are added.

Similarly, those building models of emergency rooms might be interested in how

much of a reduction in patient waiting time can be obtained if additional beds, lab

testing personnel, or doctors are added to the system. Such manufacturing and health-

care applications have been mainstays at the Winter Simulation Conference (WSC)

for decades. The software has changed, and the models themselves may have become

more complicated, but these basic types of questions remain compelling.

‘What is?’ and ‘what if’ questions are answered primarily using descriptive sta-

tistics, but simulation can be even more powerful as we move to inferential statistics.

By varying inputs in carefully chosen ways and exploring or building metamodels

of the input/output relationships, we can answer ‘what matters? how? and why?’

within the context of our simulation model. We will discuss this theme further in

Sects. 9.2.4 and 9.2.6.

9.2 A ‘Think Big’ Mindset

In a very real sense, the field of simulation has always been on the forefront of ‘think-

ing big.’ Simulation has extended the scope and magnitude of studies in all branches

of science and engineering, since it can be used to model systems which are beyond

the reach of other techniques due to issues of size or complexity. It can be used to

model systems where time or safety issues prevent us from collecting real-world data.

We advocate extending the ‘think big’ philosophy to the analysis process itself.

Most people have heard of data mining, and would tend to interpret a discus-

sion about ‘thinking big’ in those terms. We prefer to frame the problem in terms of

‘data farming,’ which is a technique for prospectively generating or growing data by

purposefully running simulation experiments at carefully selected combinations of
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input settings (design points). This is a significant contrast with data mining, which

attempts to retroactively find correlations within large data sets. We find that using

real-world mining versus farming is a useful metaphor for understanding the differ-

ence between the two techniques (Sanchez 2010, 2015).

WSC’s first introduction to the term ‘data farming’ was in 1999 (Horne 1999).

The usage quickly evolved to include designed experiments, and so did the metaphor.

Since 2000, the term has been used in over 40 WSC papers, describing a variety of

applications (Lucas et al. 2007; Kang and McDonald 2011; Feldkamp et al. 2015),

new design or analysis methodologies (Vieira et al. 2011; Hernandez et al. 2012;

MacCalman et al. 2016), and tutorials or panel discussions (Sanchez and Wan 2015;

Robinson et al. 2015). Other papers describe new approaches for dealing with large-

scale experiments, even if they do not explicitly mention data farming (e.g., Méndez-

Vázquez et al. (2013)).

Beginning in 2015, ‘Data Farming 101’ became a regular half-day pre-conference

tutorial, and one of the Titan talks at WSC ‘16 was ‘A data farmer’s almanac’

(Sanchez 2016). Data farming has made inroads into the way the Department of

Defense and its allies use simulation. At the Naval Postgraduate School’s SEED

Center for Data Farming, promoting simulation experiments and efficient designs,

over 180 students (active duty military or civilian defense analysts) have received

graduate degrees applying data farming methods to a variety of problems in defense

and homeland security (SEED Center for Data Farming 2015). Data farming ‘Tech-

nical Activities’ have been set up under the NATO umbrella for many years (Kallfass

and Schlaak 2012; Seichter and Horne 2014; Huber and Kallfass 2015). The NATO

MSG-088 team received the 2014 Scientific Achievement Award from NATO Sci-

ence & Technology Organization (Horne et al. 2014).

Topics in big data have been sprinkled throughout WSC papers for several years.

The 2013 Keynote Address (Bonabeau 2013) and ‘Modeling and Simulation Grand

Challenges’ panel discussion (Taylor et al. 2013) both bring up big data, paving the

way for a mini-track on ‘Big Data and Decision Making’ during 2014 and 2015.

Interest in the interface between big data and simulation continues to increase, as

evidenced in part by the 2017 I-Sim Research Workshop: Towards an Ecosystem of

Simulation Models and Data.

By the end of this section, we intend to convince you that data farming provides a

real revolution in the quality and quantity of insights that you can gain from your sim-

ulation models. Our bottom line is that ‘thinking big’ about your simulation models

should mean thinking about large-scale experiments. Along the way, we will describe

how big questions, big data inputs, and big data outputs tie into a cohesive whole.

9.2.1 Big Questions

Why is simulation such a powerful and important tool? Common benefits include

cost, safety, flexibility, the ability to achieve greater realism in modeling assump-

tions, and the ability to model planned or prospective systems, but the primary goal
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in all cases is to expand our knowledge of some system. We want to learn things—

in other words, to answer questions—that can be addressed more easily, quickly, or

safely in the virtual world than in the real world, or more realistically than by using

assumption-laden analytical models.

There are big opportunities if we strive to answer big, complex questions. From

the outset, this means we seek multiple insights from our simulation study, not just

the answer to a single tightly focused question. In observational studies, this is the

difference between (say) looking over data from people in two hospitals to see which

hospital has a longer average patient stay, versus looking over data from people

across the nation. In the latter case we might uncover variables that correlate not

just with patient stays, but also with prevalence of various diseases, demographic

information, patient histories, physician characteristics, and more. Delving into the

data might yield a number of interesting insights that had not been previously con-

sidered. With so much information at your fingertips, it would seem very strange to

restrict yourself to looking at only one aspect. Yet, this is what happens if we simulate

a complex system and focus on a single response! We are ignoring the richness of all

the other potentially interesting results, which might be explored either as end-of-run

aggregates or as internal interactions or behaviors. Multiple performance measures

may conflict with each other, which highlights the need to study them jointly, and

the importance of trade-off analysis.

It can also be useful to consider a multi-model approach. Sometimes, it might be

that two (or more) modeling platforms have different strengths and weaknesses in

their representations of the system being modeled. For example, we might choose

to model humanitarian assistance operations using both a process model that easily

represents logistical operations, and an agent-based model that more easily models

human behavior. Alternatively, we have seen analysts use several models operat-

ing at different fidelities, such as two-dimensional and three-dimensional models, in

energy, wind tunnel simulations, or physics scenarios. If multiple models yield simi-

lar insights despite their differences, it provides stronger evidence that those insights

are real and not artifacts of a particular simulation modeling paradigm (Page 2016,

https://www.coursera.org/learn/model-thinking).

9.2.2 Big Data as Model Inputs

There is no universally accepted definition for the term ‘big data,’ although it is often

characterized by ‘the 3 V’s’: volume, variety, and velocity (Laney 2001). Volume is

the amount of data. Variety refers to the diverse characteristics and encoding of the

data, and can be particularly challenging to deal with when pooling ill-structured

data from multiple sources. Velocity refers to the speed at which new data arrives.

With simulation experiments, big data can come into play in a variety of ways for

model inputs.

A typical simulation model may have hundreds or thousands of embedded para-

meters and assumptions. Think of a simulation as a gray box that maps inputs to

https://www.coursera.org/learn/model-thinking
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outputs. We call this a gray box because it exhibits both black box and white box

characteristics. Despite the complete visibility of the model implementation, it is

sufficiently complex that the I/O mapping is not self-evident. Nonetheless, subject-

matter experts may have partial knowledge about some aspects of the system. If we

conceptualize each of the continuous inputs as a knob that can be turned, and each

of the discrete or categorical inputs as a set of radio buttons that can be toggled, we

very quickly find ourselves in a big data setting.

Sometimes it is clear that the input data requirements are large. For example,

the U.S. Navy uses the Synthetic Theater Operations Research Model (STORM)

simulation for campaign analysis (McDonald et al. 2014; Morgan et al. 2017).

All told, STORM models typically require upwards of 40 MB of data spread over nearly

150 input files. These files contain many types of data in a variety of formats with a myriad

of details about individuals, groups, and classes of entities, and decision rules that capture

CONOPs and tactics. Acquiring, vetting, and verifying the data is a challenging task involv-

ing numerous organizations spread throughout the Department of Defense” (Morgan et al.

2017).

The input data in a scenario like this exhibit both volume and variety.

Velocity applies to simulation models that pull inputs directly from data sources

in (near) real time. These simulations can fall into the realm of control systems,

where the purpose of the simulation may be to provide guidance on how to respond

to changes in the underlying system in (near) real time. Traffic simulations are one

example (Henclewood et al. 2011; Suzumura and Kanezashi 2014), and this style

of modeling may become more prevalent as time goes on and the availability of

real-time data from sources such as GPS systems and self-driving cars continues to

increase. Military or cybersecurity applications, air traffic control, fire service emer-

gency cover, real-time control of machines and production processes, and health care

are other situations of where this type of input may be available (see, e.g., Cheng

2007; Tan et al. 2012; Vahdatikhaki et al. 2013; Linares et al. 2016 for examples).

This type of input can be further complicated by the reliability and integrity, or lack

thereof, of data found in databases. Our experience is that databases are often reposi-

tories of what was recorded rather than what was true. Anybody who has worked with

real-world data knows that it is often messy, incomplete, or erroneous. Simulation

models based on raw input streams need automated ways of coping with potentially

flawed data.

In other cases, even apparently simple models may have a large number of embed-

ded parameters. For example, in an agent-based model we can vary the numbers

of entities in different classes of agents. Agents may also have different starting

locations, different propensities for moving, staying close, sharing, or interacting

with other agents, and different ways of interacting with their environment. These

change in time- and state-dependent manners, easily yielding hundreds or thousands

of inputs that could be explored. Although these inputs can be viewed as distinct fac-

tors, it is sometimes productive to view them as a set of randomly generated effects

from a parameterized distribution. For example, rather than specifying individual

values for each agent’s speed, consider generating the speeds for a set of agents from

a distribution that requires only a few parameters.
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Dealing with these big data sets can be challenging, and requires a modeling

decision. We can fit parametric distributions to existing data, which may be a way

of getting tail behavior not already present in the existing data. Alternatively, we

can use empirical distributions by bootstrapping the existing data. Neither of these

approaches was computationally practical for even moderately sized data sets in the

early days of simulation, but both are viable options 50 years later.

All too often, people think about inputs as descriptive of a ‘ground truth’ that

must be accurately estimated. This may be appropriate for computer models in sci-

ence and engineering, such as models that might help predict the properties of new

materials. However, as Heraclitus said approximately 2,500 years ago: “change is

the only constant." Even if we have perfect knowledge of the parameterized distri-

bution of customers’ arrivals and service times are for a call center this day, week,

or month, it will be different in the future. Assessing the sensitivity of the results

over a range of ‘reasonable’ inputs may be more informative and useful than trying

to improve our current estimates.

In cases where data are unavailable or suspect, or might change in the future,

we can vary the inputs and seek to identify robust regions where the decisions are

invariant despite uncertainties in the inputs. This approach applies equally whether

the uncertainties are associated with individual inputs, parameters of input distri-

butions, or the input distributions themselves. Chapter 5 in this volume describes

techniques for characterizing or hedging against input risk (Song and Nelson 2017),

but explicit input variation provides yet another alternative.

9.2.3 Big Data as Model Outputs

Not surprisingly, simulation output can quickly become big data. At a bare minimum,

our model should produce summary information such as interval estimates for the

primary responses of interest. Much better is to provide distributional results such

as quantiles of the output distributions, or proportions of time that a performance

measure exceeds certain thresholds or remains within certain bounds. If the output

is comprised of raw outcomes, choices of response metrics can be deferred to the

analysis stage, although this can be expensive in both storage and time requirements.

The volume of output data is further increased with a ‘big question’ outlook, because

there are inevitably numerous responses of interest. For example, the STORM cam-

paign analysis model can take hours to complete and generates tens or hundreds of

Gigabytes (GB) of output data in a mixture of dozens of output files and a database

for a single replication (Morgan et al. 2017). An interesting feature of this study is

that no single output measure, by itself, shows the quality of the policies under con-

sideration. Instead, even for the small training scenario, there are over 20 ‘what it

takes to win’ metrics of interest that often conflict with one another.

A ‘big output’ approach can increase data volume to the point that the time

required for printing detailed output files can be a bottleneck for completing a sim-

ulation study. Fortunately, we simulators have some helpful tricks up our collective

http://dx.doi.org/10.1007/978-3-319-64182-9_5
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sleeves. Some simulations run in a small fraction of the time if detailed I/O, such as

state-space logging, is turned off—having a toggle for this is useful. Alternatively, if

storage space is limited it may be beneficial to print a pre-selected subset of the out-

puts or to ‘pipe’ some outputs through, e.g., a Kalman filter, to reduce the volume for

preliminary analysis. Cluster computing, which needs to move data back and forth

over a network, can reap significant speedups using these techniques. As long as you

retain the random number seeds used to generate the runs, you have the capability

to go back and regenerate the corresponding full output if needed. The use of Sto-

chastic Information Packets (SIPs), a “concept of data structures for storing arrays

of simulated realizations,” may also be useful (Thibault 2014; Savage and Thibault

2015). Hardware choices have an impact: current solid-state drives (SSDs) have I/O

speeds an order of magnitude faster than current hard disk drives (HDDs), but HDDs

offer a higher density of storage at lower cost. Some might posit that data volume

will become less of an issue in the future, as storage continues to become cheaper,

I/O continues to become faster, and data scientists continue developing computa-

tionally efficient tools for combing through large data sets. We think otherwise—the

history of computing shows that as hardware and software capabilities increase, we

always stretch them to their limits. This is consistent with the idea that “. . . big data

can be viewed as any data set that pushes against the limits of currently available

technology” (Sanchez 2015).

9.2.4 Better Big Data via Large-Scale Experiments

Our premise is that while all simulation studies can be viewed as experiments, many

simulation studies are not well-designed experiments. Our goal in this section is to

delineate what makes a suitable design for large-scale simulation experiments. The

opportunities inherent in data farming are even greater when we take this ‘big’ view.

Design of experiments (DOE) has been a regular topic at WSC, from the first

tutorial in 1968 (Frank 1968) to recent tutorials (Law 2014; Sanchez and Wan 2015).

It also appears in recent simulation textbooks (Law 2014; Kleijnen 2015) that pro-

vide comprehensive lists of of the numerous journal articles in this area. Several

topics related to DOE for simulation experiments appear in Chap. 8 in this volume

(Kleijnen 2017). However, with a data farming approach our goals and recommenda-

tions differ, as discussed in Sect. 9.2.6 and explained in more detail in

(Sanchez et al. 2014; Sanchez and Wan 2015). Since 2015, we have also offered ‘Data

Farming 101’ as a pre-conference activity to provide a detailed, hands-on introduc-

tion to the principles and practice of large-scale simulation experiments.

The basic principles of DOE are randomization, replication, and control. In real-

world experiments, randomization guards against hidden sources of bias, replication

is a brute-force means of increasing the discriminating power of statistical state-

ments (e.g., tighter confidence intervals, or smaller p-values for hypothesis tests),

and control can further improve the amount of information available from a limited

set of data. For simulation experiments, the analyst has fewer restrictions and more

http://dx.doi.org/10.1007/978-3-319-64182-9_8
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opportunities, so these concepts are used somewhat differently. Given our control

over random number seeds and streams, “the results from a simulation experiment

are perfectly repeatable, and randomization is not needed to guard against hidden or

uncontrollable sources of bias,” replication is used to obtain “multiple experimental

units (runs or batches) to get a sense of the magnitude of the variability” associated

with the responses, and control can be exerted by specifying a design for the exper-

iment and, in some cases, leveraging common random numbers (Sanchez 2015).

With designed experiments we can establish cause-and-effect relationships, in

contrast to observational studies where conclusions are limited to statements about

correlation. This is the major benefit of designed experiments. A well-designed

experiment will also allow us to estimate effects without confounding. For complex

models of complex systems, these effects may go beyond main effects or simple

polynomial terms, and thus require using designs with more than a few levels per

factor.

The ability to gain insight about a multitude of cause-and-effect relationships

underpins our premise that simulation big data is ‘better’ than observational big data.

Consider this passage from a recent WSC tutorial:

Why are so many either extolling or lamenting big data’s focus on correlation rather than

causation? I suggest it is because their view of big data is observational. This is not the case

for those using simulation. Using the data farming metaphor, we grow the data for analysis,

rather than mine existing data. However, just as a different mindset is needed for dealing

with big observational data, so a different mindset is needed for generating and dealing with

big simulation data (Sanchez 2015).

The paper then goes into a more detailed discussion of simulation-generated big data.

Even when the number of factors is small, good designs are needed to avoid con-

founding factor effects (i.e., being unable to separately estimate or identify them).

Also, poorly chosen designs may prevent you from identifying main effects in the

presence of interactions. When the number of factors is large, the need for good

designs is paramount: a brute-force approach to evaluating all possible factor com-

binations is impossible, no matter how much computing power is available, or how

few potential factor levels you choose to explore. A brute-force design that studies

all combinations of 100 factors, each at only two levels, for a simulation that runs

in a single second would take many times the current age of the universe using the

world’s most powerful computer. In contrast, studying that same system with mod-

ern designs would permit exploration of a simulation that takes 20 min to run at

hundreds of levels for each of the 100 factors, and run to completion in less than a

week on a standard laptop, or as little as 20 min on a moderately sized computing

cluster.

Another pitfall to avoid is an unwarranted focus on designs that seek to reduce

the number of design points by limiting both the number of factors and the num-

ber of levels per factor. Multi-core machines and computing clusters are now readily

available, which can speed up the experiment completion time in a linear manner.

However, because run completion times times can vary widely for different design

points or replications, restricting their number may not lead to proportional reduc-

tions in the total time. Last but not least, given the amount of time already invested
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in creating a model, there is no reason to place arbitrary limits on the time allotted

for running an experiment. Instead, by running large-scale experiments, you can let

your model work for you.

Suffice it to say that data farming experiments benefit from much larger designs

than classical DOE. The following designs, which are freely available from the Naval

Postgraduate School’s SEED Center for Data Farming (SEED Center for Data Farm-

ing 2015), are our current ‘go-to’ recommendations.

∙ Nearly orthogonal-and-balanced (NOB) designs (Vieira Jr et al. 2013). An Excel

spreadsheet for NOB designs (NOB_Mixed_512DP.xls) allows you to build a cus-

tomized design with 512 design points that can explore up to 20 factors apiece for

each of 𝓁 = 2,… , 11 levels per factor and up to 100 continuous-valued factors

simultaneously. The resulting space-filling designs facilitate trade-off analysis.

∙ Very large resolution V fractional factorial (RFFF or rf_cubed) and central com-

posite designs (CCDs) (Sanchez and Sanchez 2005). These are able to simul-

taneously estimate all main effects and two-way interactions without confound-

ing for up to 120 factors. The CCDs efficiently extend the rf_cubed designs to

permit orthogonal estimation of full second-order metamodels. Design genera-

tors for these are available at (SEED Center for Data Farming 2015) as portable

cross-platform Ruby (https://www.ruby-lang.org/) scripts, and the method has

also been implemented in the R package FrF2Large (https://rdrr.io/cran/FrF2/

man/FrF2Large.html). The rf_cubed designs can be used for screening on both

main-effects and two-way interactions, as well as for exploring binary factors.

Designs can also be combined in interesting and useful ways. For instance, if you

keep factor ranges the same (or symmetric about a central baseline design point),

you can concatenate two or more orthogonal designs and maintain orthogonality—an

example would be adding an RFFF design to a NOB design to provide more sampling

near the corners of the input factor space. If we classify and separate the factors into

decision factors (controllable in the real world) and noise factors (uncontrollable in

the real world), we can either construct a crossed design from separate designs for the

two factor classes, or construct a single combined design. The choice may depend not

only on the data requirements, but on the types of statistical and graphical methods

that will be used to convey results to the decision makers. Yet another choice is to

rotate or shuffle the mapping of raw space-filling design columns to factors to further

increase their space-filling properties.

All of the large-scale designs described above can be used for both screening and

metamodeling purposes, as we discuss in Sect. 9.2.6. We recommend a ‘big view’ of

screening based on our experience that quadratic and two-way interactions are often

among the most impactful effects. Space-filling designs such as the NOB provide

even more analysis flexibility when exploring complicated response surfaces.

It is more important to use any good design than to use a particular design.

While the NOB designs (and other designs based on Latin hypercube (LH) designs)

we commonly use were developed with an explicit interest in reducing the max-

imum pairwise correlation among main effect estimates, other designs are avail-

able in various software packages, including the DOE menu in statistical software

https://www.ruby-lang.org/
https://rdrr.io/cran/FrF2/man/FrF2Large.html
https://rdrr.io/cran/FrF2/man/FrF2Large.html
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JMP (https://www.jmp.com/), several R packages for creating maximin or space-

filling LH designs (http://CRAN.R-project.org/), and custom design software (http://

www.statease.com/dx10.html). Sequential approaches are also available, including

sequential bifurcation (Kleijnen and Bettonvil 1997) and its extensions (Kleijnen

2017), also (Wan et al. 2006; Shen et al. 2009), as well as batch sequential methods

(Duan et al. 2017; Loeppky et al. 2010). Several simulation packages now include

an excursion or scenario window where the user can create or import a list of factor

combinations (design points) to investigate.

Ultimately, we recommend using a well-chosen design that is big enough to han-

dle the scope of your simulation study, and gives sufficient flexibility for a broad

variety of analysis options. Keep in mind that what seems big today may seem run-

of-the-mill tomorrow. Big is a moving target, and has been throughout the history of

computing.

9.2.5 Bigger can be Easier: The Nuts and Bolts
of Data Farming

No matter how elegant and beautiful a concept may seem, it is only useful if it can

actually be implemented. Implementing large-scale designs requires some ground-

work, but the benefits far exceed the effort involved. The overall approach we use

was inspired by the architecture of UNIX operating systems, where complex tasks

can be accomplished via composition of a sequence of simple atomic tools. Once

the design has been selected and constructed, our goal is to automate, to the fullest

possible extent, the process of performing model runs and collating the results into

a format suitable for analysis with your favorite statistics package.

The biggest impediment to automation is usually the model itself. Ideally, your

model should meet the following three requirements.

1. Factor settings should be controlled via external input mechanisms such as

command-line arguments or input files (flat files, XML, or database).

2. The model should be able to run without a graphical user interface, i.e., it should

not open windows or alerts of any type.

3. The model should be capable of running in a ‘batch mode,’ i.e., without human

intervention of any sort.

While data farming can be and has been done with models that do not meet these

requirements, it then becomes a manual process which is tedious, time consuming,

error prone, and does not scale well to more than a few dozen runs of the model.

Whether your model conforms to those requirements or not, data farming involves

the following steps.

1. Identify all input requirements for your model—the structure, order, and format

of all factors, parameters, and run-control options.

https://www.jmp.com/
http://CRAN.R-project.org/
http://www.statease.com/dx10.html
http://www.statease.com/dx10.html
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2. Choose a suitable design, a ‘base configuration’ for your system, and appropriate

ranges of variation for your factors.

3. For each design point in your design:

a. modify the base design factor values to the settings of the current design

point;

b. execute the model with the current settings;

c. (optional) post-process the output to extract suitable output measures, if

needed;

d. collate the design point specification with the output measures and append

to prior run results.

4. Repeat step (3) for the desired number of replications.

5. Analyze output with your favorite statistical tool(s).

If your model is compliant with the requirements previously described, some simple

programming or scripting can automate this process. Automation of all the tasks in

step (3) is usually accomplished with script programming or wrapper functions of

some sort. Scripting languages such as Ruby (https://www.ruby-lang.org/) or Python

(https://www.python.org) are excellent choices for this—both offer extremely pow-

erful string manipulation capabilities and the ability to dynamically construct and

execute external commands to perform run control. Over the years, the SEED Center

has created several Ruby scripts that, while not universally applicable, can handle a

broad variety of data manipulation and run control tasks in an operating-system inde-

pendent fashion. These are freely available at https://bitbucket.org/paul_j_sanchez/

datafarmingrubyscripts.git.

Note that we advocate iterating through all design points before proceeding to

replication. This is because the desirable mathematical properties of a design require

data be sampled at all of the design points. If the runs of your model get interrupted

for any reason, such as a power outage or because variations in actual execution

time result in fewer runs than you had originally intended, this strategy will greatly

improve your chances of being able to maximize the information yield from the

existing output.

If you are working on a multi-core machine, or have access to cluster computing,

the process can be sped up significantly by using suitable cluster control software.

You will need to invest some time to learn how run control is handled, but with

modern cluster infrastructure the speedup is nearly linear in the number of cores

available. We have had excellent results using HTCondor (HTCondor 2016), which

is an open source software framework freely available from the Computer Science

department at the University of Wisconsin.

It is often the case that analysis yields interesting insights that warrant further

exploration. Steps 2–5 can be repeated as often as desired to generate additional

data if appropriate.

https://www.ruby-lang.org/
https://www.python.org
https://bitbucket.org/paul_j_sanchez/datafarmingrubyscripts.git
https://bitbucket.org/paul_j_sanchez/datafarmingrubyscripts.git
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9.2.6 From Better Big Data to Better Insights

So, once we have this rich set of data, what do we do with it? Three potential goals

for simulation studies identified in Sanchez et al. (2012) are:

1. Developing a basic understanding,

2. Finding robust decisions or policies, and

3. Comparing different alternatives.

In keeping with the ‘think big’ mindset, the first goal is quite broad. It can

involve nonparametric techniques, such as partition trees, to screen a large number

of potential factors and determine which ones have the largest impact on a particular

response. It can involve metamodeling approaches that succinctly summarize how

individual responses behave based on a relatively small number of factor terms. We

remark that, in the data farming world, statistical significance does not mean practical

importance—and this should be considered when you construct a metamodel. For

example, it is possible to throw out terms that have very small p-values (e.g., 0.001),

with little noticeable effect on R2
, if their associated t-values are orders of magnitude

less than those of the dominant metamodel terms. This ability to move away from

using a p-value cutoff as a strict sufficient condition for metamodel inclusion means

that data farmers are less apt to mistakenly identify the types of spurious results that

have been reported in other contexts (Vigen 2014, 2015; Carroll 2017). Other clas-

sic assumptions, such as normality and constant variance, may not hold. Fortunately,

many techniques are robust to departures from these assumptions, particularly when

large amounts of data are available.

Note that many of the commonly used metamodeling techniques, including step-

wise regression, logistic and multinomial logistic regression, partition trees, and

kriging (Gaussian process metamodeling) are possible only because of the ready

availability of computing power. Other analysis alternatives, such as bootstrapping,

cross-validation, maximum likelihood estimation, random forests, and neural net-

works, benefit from computing power as well.

We highly recommend the use of visual representations for your data. Even the

results of a set of replications for a single design point can yield a variety of inter-

esting insights. A diverse set of graphs appears in Morgan et al. (2017), who pro-

vide multi-color dashboards that display, for each replication, whether or not each of

many user-defined success metrics are met. They also consider correlation plots of

key metrics; present a variety of heatmaps that show conditions, events, and resource

levels across time and replications; use cluster analysis to identify ‘good’ and ‘bad’

clusters; and construct trees that show how often different events fire that allow for

more in-depth explorations of why the clusters differ.

Broad understandings of the response behavior are possible for visualizations

involving data from all design points. Partition trees can quickly alert a nontechnical

audience to good, intermediate, and bad sets of outcomes, particularly if a green-

yellow-red coding is used; color or shape can also characterize an extra dimension

in two- or three-dimensional scatter plots or surface plots (Sanchez 2017). Plots of
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response variability against response means or medians can help the analyst iden-

tify robust configurations (Marlow et al. 2015). Small multiples or trellis plots can

do an excellent job of revealing, at a glance, differences across replications, time,

or response measures (Sanchez et al. 2012; Feldkamp et al. 2015). WSC papers

with graphical representations of the results from large-scale experiments include

(Sanchez and Lucas 2002; Sanchez 2015). Dynamic or interactive high-dimensional

data visualizations may be particularly powerful for conveying complex relation-

ships.

There is still an art in creating compelling graphical displays (Tufte 1986). Com-

mon diagnostic graphs, such as scatter plots, may not be informative for raw results

when you have thousands or hundreds of thousands of realizations, so some graph-

ical displays are best constructed using summary information (means, quantiles, or

ranges) from the design points. The special structure of model-driven big data can

help guide the analysis.

The second goal—finding robust decisions or policies—involves identifying

robust solutions. We are strong advocates of robustness. Robust design is a system

optimization and improvement process, originally developed for manufactured prod-

uct design by Taguchi (1987), that explicitly captures both the mean and variability

of a response in a loss function. It has been credited as a trigger for the “explosive

use of design for product quality improvement in monitoring in industrial processes”

(Hedayat et al. 1999). The first WSC paper discussing how to extend the Taguchi phi-

losophy to simulation experiments appeared in 1991 (Ramberg et al. 1991), and since

that time there have been dozens of application and methodology papers that refer-

ence the philosophy. A robust design approach separates factors into two groups: the

decision factors that are controllable in the real world, and the noise factors that are

not. By explicitly varying both sets of factors, a robust design approach allows the

analyst to find solutions (combinations of decision factors) that work well across a

variety of noise factor variation. The use of a loss function provides a measure of

robustness that facilitates continuous improvement.

The third goal—comparing different alternatives—involves experiments on

qualitatively-different systems, and is handled by ranking & selection (R&S)

approaches. R&S has been a very fruitful area for simulation research and appli-

cation over the last several decades. Many researchers in this field also embrace a

‘big data’ view (Nelson et al. 2001; Kim and Nelson 2006; Luo and Hong 2011;

Vieira Jr 2014), and the development of procedures for very large numbers of alter-

natives is ongoing. Recent and ongoing work takes advantage of the computational

power offered by cluster computing: see Hunter and Nelson (2017) for an extensive

discussion and bibliography.

The final arbiter of whether a large-scale simulation experiment is successful

is whether it facilitates good decision-making. The WSC archives and simulation

journal articles are full of examples, where simulation made a tangible difference—

whether that involved saving lives, saving time, saving money, saving the environ-

ment, or other important decisions. Large-scale experiments can greatly increase the

nature and quantity of insights you obtain from your simulation model.
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In summary, when we move from real-world observational big data to simulation-

generated inferential big data, we can move beyond the ‘3 V’s’ to the ‘3 F’s’ of

data farming: features, factors, and flexibility. Our ‘big question’ view means that

we recognize that the response surfaces may have many interesting features. Our

‘big input data’ view acknowledges that there are a large number of factors that are

worth exploring. As stated in Sanchez (2015), our ‘big output data’ view means that

we need designs capable of providing the flexibility to “to answer many questions

from our experiments, even if we don’t know a priori all the questions that might

be asked,” and consequently, our designs should facilitate “a broad variety of meta-

modeling, data mining, and graphical analysis tools” for analysis purposes, as well

as flexibilities in how we store and retrieve output data.

9.3 Ramifications for Decision Making

Our objective . . . is to change mindsets in support of those who are actually concerned about

actually solving actual problems.

—from “Changing the Paradigm: Simulation, Now a Method of First Resort” (Lucas et al.

2015)

In writing the ‘First Resort’ paper from which this quote comes, we and our co-

authors spent many delightful hours arguing over specific words. This quote may

sound jarring, but we wrote it that way on purpose. Replace or remove any ‘actual’

and you change our intended meaning. A ‘big question’ view means we are inter-

ested in actual problems, not just stylized problems. Simulation, by its nature, is a

way of avoiding Type III errors (Mitroff and Featheringham 1974)—i.e., working

on the wrong problems—because simulation values computational tractability over

analytical tractability, and does not require unwarranted assumptions. Large-scale

simulation experiments can provide useful, robust, actionable recommendations to

decision makers.

9.3.1 Ethics in Simulation

You must do something to make the world more beautiful.— Barbara Cooney (Cooney 1982)

All decision-making involves risk. There are many ways in which the decision

process can go wrong. In simulation, some of these are technical issues, such as

invalid or unjustified assumptions, inadequate or insufficient models, bugs in the

implementation, application of incorrect or inappropriate analytic techniques, or

conflating correlation with causation, to name a few. There is also an ethical com-

ponent that must be considered. Selected professional codes of ethics, and their

applicability and importance to simulators, appear in Tolk (2017). Coding or mod-

eling errors can be honest mistakes, but if they are covered up the result is faulty



9 Better Big Data via Data Farming Experiments 173

analysis that potentially leads to faulty conclusions. It is also unethical to intention-

ally manipulate the model or model inputs to attain some preconceived conclusion.

Unfortunately, if someone is trying to do this, most simulation models are suffi-

ciently complex that they provide many degrees of freedom for ‘tuning’ parameters

in a single-scenario study.

These problems, whether intentional or inadvertent, are mitigated or even elimi-

nated by large-scale experiments. It becomes harder for people to ‘game’ the system

by turning knobs to get the output they want when parameter settings which are unre-

alistic, but yield targeted results for a single scenario, will usually result in implausi-

ble behaviors when observed across a broad variety of scenarios. Large-scale exper-

imentation also helps identify bugs in a model that would otherwise go unnoticed,

and may highlight inappropriate assumptions. We used to refer to this as ‘acciden-

tal’ verification and validation but now call it ‘structured’ instead. It has proven to be

such an invaluable tool for identifying bugs in both model implementations and the

modeling platforms themselves, that we now view the massive sensitivity analysis

afforded by large-scale designed experiments as an integral part of the model devel-

opment process. In the long run, we have found it is worthwhile to test early and test

often.

Finally, we return to the idea of big questions. Earlier we discuss these in terms

of the number and complexity of the responses. Even more important may be the

questions themselves—ethics comes into play when we decide what problems to

tackle. As Fig. 9.1 illustrates, ‘thinking big’ gives us opportunities for envisioning

what could be and what should be, as we look at the many complex problems the

world faces (Sanchez 2016). How can we have an impact on the big problems like

climate change, global migration, defense and national security, poverty, and more?

Simulation has a lot to offer in the dialog about these complex problems.

Fig. 9.1 A hierarchy of

questions that we can ask of

simulation models as we

move to using large-scale

designed experiments, along

with a partial list of

challenging application

areas. Source Adapted from

Sanchez (2016)

What is? 
What if? 

What matters? 
How? Why? 

What could be? 

What should be? 

How might we get there?

Climate change
Public health
Innovation
Global migration
Humanitarian assistance
New materials
New physics
Defense & national security
Public policy
Economic systems
Supply chain / logistics
Methodological development
Methodological testing 
Robust solutions
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9.3.2 Leveling the Playing Field

Having large-scale experiments can help adjudicate differences in approaches that

might be due to different assumptions on the part of modelers, analysts, and stake-

holders. Large designed experiments can accommodate such differences as parame-

terizations, allowing the impact of differing assumptions to be explicitly explored. It

may turn out that changes to the assumptions are damped by the system and have no

tangible effects, which is useful knowledge for all parties involved. Alternatively, if

different assumptions lead to meaningfully different results, this helps the modeling

process by highlighting the importance of the assumptions. At a minimum, it should

spur a worthwhile discussion about how the model development should proceed, and

it might identify productive avenues for data collection to clarify the structure of the

system.

9.4 Looking Forward

We finish as we started, by mentioning a few trends and opportunities in simulation

applications, analysis methodology, and modeling methodology that we feel are ripe

for further contributions by the simulation community.

On the application side, future simulation clients will continue to be faced with

complex problems. Addressing these with a ‘big thinking’ simulation mindset helps

us avoid Type III errors, and embrace computational tractability. Growing better

big data via large-scale simulation experiments can lead to dramatically richer and

more interesting insights. The expanding communities in data science and analytics,

as well as the increased integration of computerized and computer-based decisions

(such as self-driving cars or automated health diagnostics) also means the number of

decision makers comfortable with simulation and simulation-driven decision mak-

ing should only increase (Elmegreen et al. 2014). As the data science community

develops new tools for characterizing, analyzing, and visualization large data sets,

the simulation community can leverage these new approaches.

There is an abundance of opportunity in research on simulation methodology. If

we view simulation studies as ongoing processes, and not end states, it is clear that

methods that utilize unused computing cycles can be very beneficial. Some work has

already been done on multi-objective simulation procedures, and open-ended adap-

tive sequential designs, but there is room for much more—particularly as researchers

develop procedures that take advantage of parallel computing. Exploration and opti-

mization techniques for adaptively updating metamodels would be of tremendous

benefit for tackling big problems.

The ideas of continuous adaptation and improvement also have potential for pro-

ducing major changes in how some simulation models and modeling platforms are

used. Our models (or confederations of models) could draw on real-world data in real

time, and use this information to evolve. Technologies such as listener event graph
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objects (Buss and Sánchez 2002) demonstrate that it is possible to bridge between

disparate models and data sources.

We believe that robust decision-making is an area that merits more research. A

new R&S goal that explicitly seeks a “probably approximately correct selection” (Ma

and Henderson 2017) aligns nicely with the robust design philosophy, and we think

this is a fruitful area of exploration. We urge our simulation optimization colleagues

to consider robustness as a potential optimization goal.

Smarter computational agents may also come into play on the analysis side. As we

generate larger and larger model-driven data sets, we should consider a future where

intelligent agents can search through the output to identify important factors and

interesting features, learning as they go. A key question here is defining ‘interesting’

in a broader, richer way than simply ‘maximum’ or ‘minimum.’ The emerging areas

of artificial intelligence and machine learning hint at great potential in this area.

We have shared some of our views about several opportunities for the simulation

community. Fifty years ago there were no personal computers, no smart phones,

and no email, internet, or social media. There were only a handful of simulation

languages in their infancy. Could any of the first WSC attendees have envisioned

our modern world? Probably not in their wildest dreams. Nevertheless, they laid the

groundwork for our thriving community.

WSC is a very special conference. One reason it has been so influential is that it

brings together academia, industry, and government. It fosters dialog and collabora-

tion among people interested in modeling methodology, modeling languages, analy-

sis methodology, and a wide variety of simulation applications. Conference contrib-

utors have a history of pushing the envelope of what is possible, and of nurturing

young professionals. Our hope and expectation for the next 50 years is that the WSC

community will remain vibrant, innovative, and supportive.
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Chapter 10
Bayesian Belief Models
in Simulation-Based Decision-Making

Ilya O. Ryzhov and Ye Chen

Abstract We present an overview of Bayesian statistical models and their use in

simulation-based optimization. Bayesian schemes are valuable for their ability to

model our beliefs about an uncertain environment (for example, the unknown output

distribution of a complex simulation), as well as the evolution of these beliefs over

time as information is acquired through simulation. With this ability, we can make

adaptive decisions that improve over time and anticipate the effect of new informa-

tion before it is observed. We discuss two broad classes of such adaptive algorithms,

show how they interface with the underlying Bayesian statistical models, and sum-

marize the comparative advantages of each algorithmic approach. We also discuss

how approximate Bayesian models can be designed to retain the advantages of adap-

tive learning in problems where the observations are censored or incomplete.

10.1 Introduction

Simulation-based optimization (Fu 2015) is the problem of optimizing a complex

system under the condition that the performance of that system can only be observed

by running simulation experiments. This type of optimization differs from clas-

sic mathematical programming in that the objective function cannot be expressed

in closed form. Rather, we first choose a solution (a set of values for the decision

variables), then acquire information (possibly with stochastic noise) about the per-

formance of that solution. Information may be extremely noisy, or expensive to col-

lect (for example, testing a single solution inside the simulator may require a large

amount of machine time), and the set of feasible solutions may be very large or even
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uncountably infinite. Even if the number of possible solutions is relatively small, our

simulation budget may be even smaller; in some cases, instead of running a simula-

tor, we might even collect information from field experiments that incur economic

costs. Some examples of applications include the following:

∙ Clinical trials. Clinical trials often involve a large number of potential alternatives

(e.g., medical treatments) and a high cost of collecting information, which may be

measured in dollars or time delay (Chick et al. 2015).

∙ Revenue management. Qu et al. (2013) considered the problem of pricing high-

volume business-to-business contracts. The demand curve that governs buyer

response to different prices is unknown and must be inferred based on buyer reac-

tions to past prices.

∙ Service operations. Arlotto et al. (2010) studied a hiring and retention problem

in which the employer must balance the cost of hiring a new worker (and the

possibility that the new worker may not perform well) against the past performance

of current employees.

∙ Marketing. Firms use experiments to identify optimal advertising strategies for

different segments of the customer population; different strategies may have

segment-specific effects (Han et al. 2013).

∙ Manufacturing. Simulation is widely used to compare candidate configurations

for a production system, or the utilization of employees resulting from different

assignments (April et al. 2006).

In all of these problems, not all of the feasible solutions are equally important.

If we are given a very limited number of opportunities to collect information, we

may prefer to spend them on a small number of “promising” decisions rather than

attempting to learn about everything at once. This gives rise to the fundamental

exploration/exploitation tradeoff: we have to choose between learning more about

a decision that already appears to be good (exploitation), or we may risk spending

part or all of the budget on a decision that we know nothing about (exploration). In

the former case, we may fail to discover a decision that was much better than we

believed; in the latter case, we might simply confirm that the uncertain decisions

are not competitive after all. To make this tradeoff in a principled manner, we first

require statistical models to represent our knowledge of the system and capture how

this knowledge changes over time in response to new information; we then require

an optimization framework in which these models of uncertainty may be used to

quantify the value of learning about various decisions.

The simulation community has been the home of much of the seminal research

in this area. Over the years, the WSC proceedings have featured many surveys and

tutorials on simulation optimization: see Kim and Nelson (2007), Hong and Nelson

(2009), Chau et al. (2014), or Jian and Henderson (2015) for examples. See also Fu

et al. (2000) or Fu et al. (2014) for examples of panel discussions of the field that

have taken place at the WSC. The goal of this chapter, however, is not to summarize

all of this work, but rather to highlight one particular statistical approach—namely,

the use of adaptive Bayesian models—that has consistently shown its usefulness

in simulation optimization. This more specialized area has also been the subject of
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multiple WSC surveys and tutorials in the past (Chick 2000, 2004, 2006a), but there

have also been some significant theoretical and methodological breakthroughs in

very recent years.

The main distinguishing feature of Bayesian models is that they directly quantify

and integrate our uncertainty about our estimates of various problem parameters (for

example, the means of the output distributions of our simulations). Every parameter

is treated as a random variable, and the distribution of this random variable is a

distribution of belief. In other words, the model allows that our estimates (based on

past data) may be inaccurate and provides an explicit value for the likelihood that

any other quantity (potentially one that is very different from our estimate) may be

the “correct” one. Thus, the Bayesian model consists not only of an estimate but also

of an entire distribution, although in many standard models this distribution may be

compactly represented by a small number of parameters. This distribution allows

us to make detailed probabilistic forecasts about unknown values: for example, we

may calculate the probability that the “true” unknown value is significantly higher

(or lower) than our estimate, or we may calculate expected costs (incurred, e.g., by

conducting an experiment) over the distribution of belief.

Essentially, the dimensions of the exploration/exploitation tradeoff are directly

built into the Bayesian model. Exploitation is handled by a point estimate of the

value of a decision, such as a sample mean; in many cases this estimate is calculated

in exactly the same way as in classical statistics. Exploration, however, is handled by

the Bayesian concept of uncertainty, which now gives us a precise way to compare

two decisions based on their respective likelihood of being substantially better than

the one currently believed to be the best. For these reasons, researchers have devel-

oped an entire class of optimization algorithms that leverage the features unique to

Bayesian models to guide the acquisition of information. There are three important

dimensions for the study of these algorithms: theoretical, computational, and empir-

ical.

In this chapter, we primarily focus on computational and theoretical aspects. Our

first goal is to demonstrate the computational flexibility of the Bayesian approach.

One of the most attractive aspects of Bayesian modeling (as well as Bayesian opti-

mization) is its ability to generalize to various classes of statistical and decision

problems. Section 10.2 presents an overview of three standard Bayesian models. The

first of these is a simple textbook model for learning the unknown mean of a nor-

mal distribution based on noisy observations. Overall, this model is not too different

from classical frequentist statistics. The second model, however, uses the Bayesian

notion of “correlated beliefs” to learn about a vector of unknown values from scalar
observations of individual components. Correlated beliefs have enormous practical

potential, as they enable us to learn about large decision spaces from very small num-

bers of observations, and this particular form of correlation appears to be a purely

Bayesian concept, with no natural analog in frequentist statistics. Finally, the third

model shows how Bayesian concepts may be integrated into linear regression (the

setting of many practical applications) with no substantial addition in computational

or storage cost.
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Section 10.3 gives examples of decision problems where these and other Bayesian

models may be applied. While Sect. 10.2 focuses purely on statistical estimation,

Sect. 10.3 places estimation in the context of economic problems where the goal

is to identify an optimal decision from a feasible set. For illustrative purposes, we

mainly focus on discrete simulation optimization (Hong et al. 2015), particularly on

the widely studied ranking and selection problem (Chen et al. 2015), but we give

an example of a regression-based optimization problem with a more sophisticated

optimization aspect. Then, Sect. 10.4 introduces the concept of Bayesian optimiza-
tion, which combines the uncertainty in the statistical model with the structure of the

optimization problem to produce promising decisions for exploration. We cover two

popular Bayesian methodologies, Thompson sampling (Russo and Van Roy 2014)

and value of information (Chick 2006b), both of which can be generalized to many

classes of decision models beyond ranking and selection. The guiding principles of

each methodology are presented in the context of the examples in Sects. 10.2–10.3.

Our second goal in this chapter is to highlight several recent breakthroughs in

Bayesian simulation optimization. Section 10.4.3 describes very recent advances in

the theoretical analysis of Bayesian optimization for ranking and selection. Much of

this material has appeared within the past 1–2 years and offers many new research

directions. Section 10.5 describes approximate Bayesian inference, a methodology

for statistical learning in problems where information is incomplete or censored;

this methodology has exhibited great practical potential in recent years, and a full

theoretical understanding is only now being developed.

This chapter is not an exhaustive survey; our goal is rather to present several fun-

damental concepts, hint at how these concepts generalize beyond their most basic

forms, and showcase some more advanced topics. For example, in our discussion

of decision models in Sect. 10.3, we sketch out several additional extensions with

references, which may hopefully be a useful starting point for interested readers.

Here, it may be useful to briefly discuss what is not covered in this chapter. Due to

space considerations, we have chosen not to delve into the vast literature on Bayesian

global optimization beyond a few references (Jones et al. 1998; Staum 2009). We are

also not able to go into Bayesian input uncertainty (Xie et al. 2014), an interesting

emerging area in the simulation literature. We do not extensively discuss simulation

optimization outside the Bayesian context, leaving out the considerable literature on

indifference-zone selection (Kim and Nelson 2001; Hong and Nelson 2005), optimal

computing budget allocation (Chen et al. 2000; Chen and Lee 2010), or other recent

frequentist methods (Fan et al. 2016); thus, we also do not conduct detailed com-

parisons between Bayesian and non-Bayesian methods, preferring instead to focus

on an exposition of those characteristics of Bayesian methods that (in our opinion)

make them valuable for simulation-based decision-making. Finally, the problems we

have chosen to present resemble the types of problems most frequently encountered

in the simulation community; thus, for example, we do not go into the literature on

multi-armed bandits (Gittins et al. 2011) or design of experiments (Zhang and Qian

2013), whether those problems are Bayesian or not, although these areas have often

considered very similar challenges.
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10.2 Bayesian Learning

In this section, we summarize three Bayesian learning models and contrast them

with classical frequentist statistics. There is no optimization in this section; decision

problems are considered in Sect. 10.3. However, the majority of existing research in

Bayesian simulation optimization relies on one of these standard statistical models.

Derivations can be found in DeGroot (1970), Powell and Ryzhov (2012) or other

standard references.

10.2.1 Learning the Mean of a Normal Distribution

Suppose that we are able to collect noisy samples W1
,W2

, ... drawn independently

from the sampling distribution N
(
𝜇, 𝜆

2)
. For simplicity, suppose 𝜆 is known; the

only problem is to estimate the unknown mean 𝜇. In traditional (frequentist) statis-

tics, one would typically use the sample mean

𝜃

n = 1
n

n∑

m=1
Wm

, (10.1)

which in this setting has the distribution N
(
𝜇,

𝜆

2

n

)
and is known to have various

desirable optimality properties (Bickel and Doksum 2015).

In Bayesian statistics, any unknown quantity (in this case, 𝜇) is treated as a ran-

dom variable. The distribution of 𝜇 has a different interpretation from the sampling

distribution: it represents our prior knowledge about 𝜇. For example, suppose that

we impose the prior distribution 𝜇 ∼ N
(
𝜃, 𝜎

2)
, where 𝜃, 𝜎 are constants that we

choose. In doing so, we are saying that (1) we believe that 𝜇 is equal to 𝜃; (2) we

allow the possibility that 𝜇 is different (perhaps very different) from 𝜃, but we believe

that values closer to 𝜃 are more likely.

If we have no knowledge whatsoever about 𝜇, we may pick an arbitrary value for

𝜃 while setting 𝜎 = ∞. However, in a practical application, it is more likely that we

can at least give a rough range of values where 𝜇 is likely to fall. To help us choose

the parameters of the prior distribution, we could use the standard interpretation that

the interval 𝜃 ± 2𝜎 contains 𝜇 with 95% confidence.

With these Bayesian assumptions, the sampling distribution now requires a new

interpretation: the statement W ∼ N
(
𝜇, 𝜆

2)
is conditional, i.e., given 𝜇, the sample

is conditionally normal with mean 𝜇 and variance 𝜆
2
. The Bayesian model thus gives

us two probability densities:

P (W ∈ dw |𝜇 = x) = 1
√
2𝜋𝜆2

e−
(w−x)2

2𝜆2 dw, (10.2)
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P (𝜇 ∈ dx) = 1
√
2𝜋𝜎2

e−
(x−𝜃)2

2𝜎2 dx. (10.3)

We can now apply Bayes’ rule to write

P (𝜇 ∈ dx |W = w) ∝ P (𝜇 ∈ dx) ⋅ P (W ∈ dw |𝜇 = x) . (10.4)

Using (10.2)–(10.3) and a lot of tedious algebra, we can derive an explicit expression

for the right-hand side of (10.4) in terms of x. This expression characterizes the

posterior distribution of 𝜇 given the event that W = w. Since the distribution of 𝜇 is

an object of belief, (10.4) represents how our beliefs about 𝜇 have evolved as a result

of a single observation.

In fact, for the model presented here, (10.4) turns out to be a normal density with

parameters

𝜃

′ = 𝜎

−2
𝜃 + 𝜆

−2w
𝜎
−2 + 𝜆

−2 , (10.5)

𝜎

′ =
(
𝜎

−2 + 𝜆

−2)− 1
2
. (10.6)

It is easy to see that (10.5) is a weighted average of the prior estimate 𝜃 and the

new observation w, with more weight placed on the observation when 𝜆 is small

relative to 𝜎, i.e., our confidence in our prior estimate is weak compared to the level

of noise in the sampling distribution. Our uncertainty about 𝜇, represented by 𝜎

′
,

will decrease relative to the prior uncertainty 𝜎; again, the reduction in uncertainty

is greater if 𝜆 is smaller (that is, if the samples are more accurate).

The fact that (10.4) is a normal density is particularly useful for sequential learn-

ing. Since the posterior distribution is normal, we can now treat it as the prior and

collect a second observation. The new posterior distribution will still be normal;

we will just need to apply (10.5)–(10.6) a second time. In general, when we start

with the prior distribution 𝜇 ∼ N
(
𝜃

0
,

(
𝜎

0)2
)

, the posterior distribution of 𝜇, given

W1
, ...,Wn

for any n, is normal with parameters 𝜃
n
, 𝜎

n
, which are updated recursively

as

𝜃

n =
(
𝜎

n−1)−2
𝜃

n−1 + 𝜆

−2Wn

(
𝜎
n−1
)−2 + 𝜆

−2
, (10.7)

𝜎

n =
((

𝜎

n−1)−2 + 𝜆

−2
)− 1

2
. (10.8)

As a result, we never have to store the density of 𝜇 in memory; since it is always nor-

mal, we only need to store two parameters, which are trivial to update. This property,

when the posterior belongs to the same distributional family as the prior, is called

conjugacy. The overwhelming majority of research in Bayesian simulation optimiza-

tion relies on simple conjugate models, usually involving normal distributions.
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In the special case where 𝜎
0 = ∞ (recall that this models the case where we have

absolutely no prior knowledge about 𝜇), (10.7) reduces to (10.1), and 𝜎

n = 𝜆√
n

is

the usual frequentist variance of the sample mean. This fact is useful for intuitive

understanding of the Bayesian model: it shows that our estimation of the unknown

value proceeds in the same way that it always would. However, we now turn to a

different setting where Bayesian beliefs offer more power with regard to estimation.

10.2.2 Learning with Correlated Beliefs

Suppose now that 𝜇 is an M-vector, i.e., we have M unknown values to learn rather

than just one. In this case, we might impose a multivariate normal prior distribu-

tion NM (𝜃, 𝛴). The prior mean 𝜃 is now an M-vector as well; furthermore, we now

have to specify an M ×M matrix 𝛴. The diagonal entries of 𝛴, as before, repre-

sent our uncertainty about the individual unknown values 𝜇x, x ∈ {1, ...,M}. The

off-diagonal entries represent “correlated beliefs.” Essentially, we believe that there

is some relationship between the unknown values; as a result, anything that we can

learn about 𝜇x also provides information about other values 𝜇y for y ≠ x.

We first give the technical details of the learning process and then discuss inter-

pretation. Suppose that we observe Wx ∼ N
(
𝜇x, 𝜆

2)
, where 𝜆 is known as before.

Note that Wx is a scalar observation: it only provides a sample of 𝜇x by itself. How-

ever, after applying Bayes’ rule, one will find that the posterior distribution of 𝜇

given Wx is still multivariate normal with parameters

𝜃

′ = 𝜃 +
Wx − 𝜃x

𝜆
2 + 𝛴xx

𝛴ex, (10.9)

𝛴

′ = 𝛴 −
𝛴exe⊤x 𝛴
𝜆
2 + 𝛴xx

, (10.10)

where ex denotes a vector of zeroes with only the xth component equal to 1. The

vector 𝛴ex is simply the xth column of 𝛴, containing the prior variance of 𝜇x and

also all the prior covariances between 𝜇x and other unknown values. If some or all

of these covariances are nonzero, (10.9) will update multiple components of 𝜃, even

though we have observed only one. More specifically, suppose that Wx > 𝜃x; in this

case, we should increase our beliefs about 𝜇x (as in the previous model), but we

should also increase our beliefs about 𝜇y for any y that is positively correlated with x.

Conversely, we should decrease 𝜃y if y is negatively correlated with x.

Unlike the model in Sect. 10.2.1, in which the posterior mean was more or less

identical to the usual sample mean, the model here offers a new and different way of

learning. There is no analog of this model in classical frequentist statistics, because

there are no correlations in the sampling distribution: we collect independent, scalar

observations of individual components of 𝜇. Correlations in this model are purely

an object of belief: 𝛴xy > 0 implies that we believe 𝜇x and 𝜇y to be “similar” in some
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way, while 𝛴xy < 0 means that we believe these values to be “different.” Depending

on the covariance relationship, learning about 𝜇x will implicitly provide different

types of information about 𝜇y.

Consider the following example. A delivery service wishes to determine its fleet

size (total number of trucks) for the coming year. Managers believe that this number

should be somewhere between 50 and 100 trucks. Given a fleet size x ∈ {50, ..., 100},

let 𝜇x be the average daily profit (revenue minus maintenance cost) earned by the

fleet. For any fixed x, we can set up a set of vehicle routing problems (VRPs) with

randomly generated demands. These problems can be solved to near-optimality and

the reported profits can be averaged to obtain a single observation Wx. The noise

level 𝜆 depends on the stochasticity of the demand distribution; potentially, there

could be a great deal of variation between individual instances of the VRP. We may

not have the time to exhaustively simulate sufficiently many observations to learn

each 𝜇x with a high degree of accuracy.

However, correlated beliefs may help. The profits 𝜇50 and 𝜇51, for 50 and 51 trucks

respectively, are likely to be similar, or at least, it seems reasonable to suppose that

there is more similarity between them than between 𝜇50 and 𝜇100. Thus, we can

impose the “distance-based” covariance structure

𝛴xy = K exp−𝛼(x−y)
2
,

where K and 𝛼 are user-specified parameters. According to this choice of prior dis-

tribution, two fleet sizes are more likely to have “similar” profits if the fleet sizes

themselves are similar. Thus, collecting one observationW50 should provide the most

information about 𝜇50, a bit less about 𝜇51, 𝜇52 etc., and very little about 𝜇100. This

greatly increases the power of each individual observation: now, we may learn quite a

bit about a particular 𝜇x without ever actually having observed component x directly.

There is a price to pay for this added power: we now have to store and update an

M ×M covariance matrix. This can be difficult: on one hand, correlated beliefs are

the most valuable when the problem size is large relative to the number of observa-

tions, and yet the cost of storing and updating 𝛴 grows quadratically in the problem

size. Recent work (Salemi et al. 2014) has investigated Gaussian Markov models that

can reduce this cost by enforcing a certain sparsity structure in 𝛴.

10.2.3 Learning in Linear Regression

The correlated Bayesian model from Sect. 10.2.2 also ties into a Bayesian version of

linear regression. Suppose now that, rather than observing an individual component

of 𝜇, we collect a sample of the form

W = 𝜇

⊤

𝜙 + 𝜀,
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where 𝜙 ∈ RM
is some fixed M-vector, and 𝜀 ∼ N

(
0, 𝜆2

)
is an independent resid-

ual error. Supposing that 𝜇 ∼ N (𝜃, 𝛴) as before, the posterior distribution of 𝜇

given W is again multivariate normal with parameters

𝜃

′ = 𝜃 + W − 𝜃

⊤

𝜙

𝜆
2 + 𝜙

⊤

𝛴𝜙

𝛴𝜙, (10.11)

𝛴

′ = 𝛴 − 𝛴𝜙𝜙

⊤

𝛴

𝜆
2 + 𝜙

⊤

𝛴𝜙

. (10.12)

Equations (10.11)–(10.12) are identical to (10.9)–(10.10) with ex replaced by the

vector 𝜙. The regression model obviates the need for an in-depth characterization

of the prior covariance structure; even if 𝛴 is diagonal, (10.11)–(10.12) will quickly

populate the off-diagonal entries with empirical covariances as long as𝜙 has multiple

nonzero entries.

In Bayesian simulation optimization, the regression model often helps with dimen-

sion reduction. For example, suppose that 𝜙 ∈ {0, 1}M is a binary vector (represent-

ing the presence or absence of certain characteristics). Then, 𝜇
⊤

𝜙 may have a dif-

ferent value for each possible 𝜙. The problem could thus have 2M distinct unknown

values to be learned; attempting to model each value individually (as was done in

Sect. 10.2.2) would quickly become computationally burdensome since we would

then have to store a matrix of size 2M × 2M . However, the assumption of linear struc-

ture allows us to get by with an M ×M covariance matrix.

By now, the reader may be concerned about the recurring assumption that the

variance 𝜆

2
of the sampling distribution is known. In practice, this quantity may be

more difficult to estimate than the mean, and it is quite unlikely that we would know

it exactly. In fact, it is possible to extend all of the models in this section to handle

unknown variance, but due to space considerations, we only describe this extension

for the regression model, as it is the most flexible and powerful of the three models

we have discussed. In this extension (first studied in detail by Han et al. 2013, 2016),

both𝜇 and 𝜆
2

are unknown, and the Bayesian model imposes a joint prior distribution

on the pair
(
𝜇, 𝜆

−2)
.

This joint distribution is characterized as follows. First, the marginal distribution

of 𝜆
−2

is assumed to be Gamma (a, b); then, the conditional distribution of 𝜇 given 𝜆

is assumed to be multivariate normal with mean vector 𝜃 and covariance matrix 𝜆

2
𝛴.

It can be shown that, under this model, the marginal distribution of 𝜇 is a multivari-

ate Student’s t-distribution (Kotz and Nadarajah 2004), in line with the well-known

approach from classical statistics of using the t-distribution to model normal samples

with unknown variance. Given an observation W, the posterior joint distribution of(
𝜇, 𝜆

−2)
has the same structure (known as “multivariate normal-gamma”) with the

updated parameters

𝜃

′ = 𝜃 + W − 𝜃

⊤

𝜙

1 + 𝜙
⊤

𝛴𝜙

𝛴𝜙, (10.13)
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𝛴

′ = 𝛴 − 𝛴𝜙𝜙

⊤

𝛴

1 + 𝜙
⊤

𝛴𝜙

, (10.14)

a′ = a + 1
2
, (10.15)

b′ = b +
(
W − 𝜃

⊤

𝜙

)2

2
(
1 + 𝜙

⊤

𝛴𝜙

) . (10.16)

Modeling the unknown residual variance is thus fairly straightforward, requiring only

two additional scalar parameters. Equations (10.13)–(10.14) are identical to the well-

known recursive least squares update (Powell 2011), reaffirming our intuition that the

Bayesian model estimates the regression coefficients in largely the same way as the

classical model.

There are other potentially useful Bayesian models with the conjugacy property.

For example, DeGroot (1970) surveys a number of models in which the sampling

distribution is non-normal; however, these models generally are not able to handle

correlated beliefs as conveniently as normal models. It is also possible to extend

the models in Sects. 10.2.2–10.2.3 to learn continuous functions rather than finite-

dimensional vectors. Thus, we may let 𝜇 be such a function, and suppose that we

can observe scalar values 𝜇 (x) for fixed x, either with or without stochastic noise.

The Bayesian framework of Gaussian process regression (Rasmussen and Williams

2006), known by the name “stochastic kriging” in the simulation literature (Huang

et al. 2006; Kleijnen 2009; Ankenman et al. 2010), can then be used to learn 𝜇 based

on sequential scalar observations.

10.3 Decision Models

We now illustrate how learning may be integrated with optimization in the context of

two decision models from the simulation literature. As is common in this literature,

we consider “offline learning” problems, meaning that a simulation model is used

to collect information for a period of time, and subsequently a single optimization

problem is solved using all the information that has been acquired. The solution

returned by this problem is then selected for “implementation” in some application

outside the simulator.

Our intention here is to illustrate the main issues and tradeoffs that arise in

simulation-based optimization, and so we do not present an exhaustive survey of

decision models. To name some examples that are not covered: the simulation

community (Fu et al. 2008; Staum 2009; Kim and Zhang 2010; Scott et al. 2010;

Zhang et al. 2011) has put a great deal of effort into global optimization problems,

also known as “derivative-free” or “black-box optimization” (Conn et al. 2009),

in which the solution space is continuous. The computer science community typi-

cally focuses on “online learning,” where statistical learning and optimization occur
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simultaneously; the multi-armed bandit problem (Gittins et al. 2011) is perhaps the

best-known example of an online problem. However, many of the issues discussed

in this section also apply in these other settings.

10.3.1 Ranking and Selection

The ranking and selection (R&S) problem is quite simple to describe. Let 𝜇x be an

unknown performance value for each x ∈ {1, ...,M}. The goal is to discover

x∗ = argmax
x

𝜇x.

The typical interpretation is that the index x denotes competing alternatives; for

example, these may be differently calibrated simulation models, or simulation mod-

els of different processes, e.g., different assignments of agents to call centers. The

expected performance 𝜇x of alternative x cannot be expressed in closed form, but

may be estimated from simulation runs whose output is a sample of the form

Wx ∼ N
(
𝜇x, 𝜆

2
x
)
. We may use one of the models in Sects. 10.2.1–10.2.2 to update

our beliefs about the various alternatives as new information comes in.

If we had the ability to run very large numbers of simulations for each x, this

problem would not be very challenging: as we saw, the posterior mean of 𝜇x behaves

like the sample mean, so the law of large numbers applies, meaning that eventually

argmaxx 𝜃nx will be identical to x∗. Suppose, however, that we do not have this abil-

ity, for example, because a single simulation run may take a week of machine time.

Instead, we are limited to a small number N of simulation runs. Furthermore, only

one alternative may be simulated at a time; thus, assigning a simulation run to alter-

native x means that we have given up the chance to learn something about y ≠ x.

This is the main tradeoff of the R&S problem: how many runs should be assigned to

each x in order to identify x∗ as efficiently (in some sense to be defined) as possible?

First, let us formalize the learning process using the setting of Sect. 10.2.1 as an

example. For each x, we begin with the prior distribution 𝜇x ∼ N
(
𝜃

0
x ,
(
𝜎

0
x
)2)

. We

assume that 𝜇x and 𝜇y are independent for any x ≠ y; furthermore, we assume that

all simulation runs produce independent output. From this it follows that simulating

x will never provide any information about y ≠ x. Simulations will be conducted

one by one; denote by {xn}N−1n=0 the sequence of alternatives to which these runs are

assigned. Then, (10.7)–(10.8) become

𝜃

n
x =

⎧
⎪
⎨
⎪
⎩

(𝜎n−1
x )−2𝜃n−1x +𝜆−2x Wn

x

(𝜎n−1
x )−2+𝜆−2x

if xn−1 = x

𝜃

n−1
x if xn−1 ≠ x,

(10.17)
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and

(
𝜎

n
x
)−2 =

{(
𝜎

n−1
x
)−2 + 𝜆

−2
x if xn−1 = x

(
𝜎

n−1
x
)−2

if xn−1 ≠ x.
(10.18)

This is quite intuitive: if the next run is not assigned to y, we should not update our

beliefs about 𝜇y. Due to conjugacy, our beliefs after n simulations are completely

characterized by the pair Kn = (𝜃n, 𝜎n) of posterior means and variances. We may

refer to Kn
as the state of knowledge available to us at time n.

The main reason to learn in this sequential manner is because, in this way, we can

use the outcomes of past simulations to guide the allocation of future ones. Thus,

we assume that each xn is chosen adaptively based on the state of knowledge Kn
.

More formally, we write xn = X𝜋 (𝜃n, 𝜎n) where X𝜋

is an allocation rule mapping a

knowledge state (𝜃n, 𝜎n) to an alternative xn ∈ {1, ...,M}; the superscript 𝜋 is used to

distinguish between different allocation rules. Now, instead of choosing the sequence

{xn}, our task is to choose an allocation rule 𝜋. An example of a somewhat trivial

allocation rule is the greedy policy

XG (𝜃n, 𝜎n) = argmax
x

𝜃

n
x ,

which simply ignores the posterior variances and assigns the next simulation to the

alternative that seems to be the best based solely on the current posterior means.

Note that even this simple rule is adaptive: we do not know exactly which alternative

will be chosen at time n until 𝜃
n

actually becomes known. However, this rule will

most likely be unsatisfactory since it over-relies on the posterior means, and does

not account for our uncertainty (potential for error) about these estimates. One might

then consider a simple modification, such as

XIE (𝜃n, 𝜎n) = argmax
x

𝜃

n
x + 𝜅 ⋅ 𝜎n

x .

This rule, known as “interval estimation” (Kaelbling 1993), places more value on

alternatives with high posterior uncertainty, because these are the alternatives that

are more likely to be much better than we think. Of course, this rule does not really

alleviate the difficulty of trading off between the estimated means 𝜃
n
x and the uncer-

tainty; it is still up to us to choose the weight 𝜅 in the IE calculation.

In general, how do we know which rule to choose? The performance of an alloca-

tion rule depends on how well it helps us to discover x∗. However, the same rule may

perform quite differently in two independent sets of simulation runs, due to the sto-

chastic noise in the samples
{
Wn+1

xn
}N−1
n=0 . We may be sampling the “right” alternatives

and getting “unlucky” samples that mislead us as to their real values. Furthermore,

since the allocation rule itself is adaptive, unlucky values of (𝜃n, 𝜎n) may actually

misdirect the rule toward assigning more samples to poor alternatives. Finally, in the

Bayesian setting, the optimal alternative x∗ is itself a random variable. We require a
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formal objective function that addresses these various issues; the standard choice in

the literature is

sup
𝜋

P𝜋

(
argmax

x
𝜃

N
x = x∗

)
, (10.19)

known as the “probability of correct selection” or PCS. Equation (10.19) seems sim-

ple, but there are subtleties that merit a detailed interpretation:

1. The event
{
argmaxx 𝜃Nx = x∗

}
occurs randomly, because both the sequence {xn}

of simulated alternatives and the final posterior mean vector 𝜃
N

depend on the ran-

dom simulation output, and also because x∗ is a random variable (in the Bayesian

model);

2. The allocation decisions xn made by the rule 𝜋 influence the distribution of 𝜃
N

,

but have no other impact on our evaluation of the policy. Thus, there is nothing

wrong with sampling extremely poor alternatives if, by doing this, the event that

argmaxx 𝜃Nx = x∗ becomes more likely;

3. The theoretically optimal policy is the one with the highest PCS. It is not possible

to guarantee that we will always find x∗, and even the optimal policy may fail to

do so. However, a better policy is more likely to find x∗ on average.

A second possible objective, which often appears in the literature on Bayesian meth-

ods, is given by

inf
𝜋

E𝜋

(
max

x
𝜇x − 𝜇argmaxx 𝜃Nx

)
. (10.20)

The idea behind this objective (known as the “expected opportunity cost” or EOC)

is that, even if we do not identify the best alternative, we may be satisfied with a

suboptimal one whose value is close to the best. Such suboptimal alternatives should

be valued more highly than others whose values are poor. However, recent work by

Gao et al. (2017) has shown a form of asymptotic equivalence between (10.19) and

(10.20), suggesting that the choice between the two may be largely cosmetic, at least

from the point of view of theoretical analysis.

With this, the model is now complete, and we are free to focus on the problem

of choosing an efficient allocation rule 𝜋. This problem is the main focus of the

vast literature on R&S, and we will examine two prominent Bayesian approaches in

Sect. 10.4.

10.3.2 Learning in a Linear Model

We briefly touch on one generalization of R&S that may be particularly useful in

practical applications. The goal is once more to discover an optimal decision x∗, but

this quantity is now redefined as

x∗ = argmax
x∈X

𝜇

⊤x. (10.21)
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Again, 𝜇 is an M-vector of unknown values, to be learned using Bayesian statistics.

The set X may be a polyhedron, in which case (10.21) is simply the optimal solution

to a linear program with unknown objective coefficients (Ryzhov and Powell 2012).

Alternately, X may be a large discrete set; for example, it may be the feasible region

of an integer program (Han et al. 2016).

In both cases, the linear objective function is used to simplify the learning

process and reduce computational and storage costs. For example, suppose that

X = {0, 1}M . Then, the set X of possible “alternatives” can be very large, but the

size of the statistical model is quite small; recall from Sect. 10.2.3 that we only need

to store and update an M-vector and an M ×M matrix in order to completely char-

acterize our beliefs at any given moment. Because our distribution of belief about

𝜇 is multivariate normal, this automatically induces a normal belief about the value

of any feasible alternative. That is, if 𝜇 ∼ NM (𝜃, 𝛴), then for any fixed x ∈ X , the

value 𝜇

⊤x ∼ N
(
𝜃

⊤x, x⊤𝛴x
)
.

From here, we proceed similarly to Sect. 10.3.1. Suppose that each allocation

decision xn is a vector in X , and our observation takes the form

Wn+1
xn = 𝜇

⊤xn + 𝜀

n+1
,

as in Sect. 10.2.3. We can then apply (10.11)–(10.12), or the unknown-variance ver-

sion of this model in (10.13)–(10.16), to update our beliefs about 𝜇 after each obser-

vation; for example, in the known-variance case, we would store the state of knowl-

edgeKn = (𝜃n, 𝛴n) and use (10.11)–(10.12) to update the posterior parameters recur-

sively. The allocation rule 𝜋 will choose xn based on the most recent posterior para-

meters. To evaluate 𝜋, we may use a version of the EOC objective given by

inf
𝜋

E𝜋

(
𝜇

⊤

(
x∗ − argmax

x∈X

(
𝜃

N)⊤ x
))

.

As before, the goal of the learning process is to help us find a better solution to the

linear optimization problem, and the main methodological challenge is to design a

rule that can do this more efficiently.

We have chosen to single out the setting of learning in a linear model because,

on one hand, it has received less attention in the simulation literature than tradi-

tional R&S, and on the other hand, it appears to possess great practical potential.

Essentially this model allows us to integrate learning with regression-based opti-
mization. Linear regression is perhaps the most widely used statistical technique in

business analytics and other application domains, used to estimate the relationship

between a set of response variables W1
,W2

, ... and accompanying vectors x0, x1, ...
of explanatory features. These features, however, may actually be controllable by the

decision-maker, as in the following examples:

1. Pricing (Qu et al. 2013). The response variable represents the sales for a product;

the features are derived from the price, which can be adjusted by the seller.
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2. Clinical trials (Negoescu et al. 2011). A clinician tests large numbers of molec-

ular configurations for a new cancer treatment. The regression features describe

the configuration.

3. Nonprofit management (Han et al. 2016). The performance of a direct-mail

fundraising campaign depends on the design attributes of the mailings, which

are chosen individually for each campaign.

Thus, the decision-maker uses the regression model to predict the performance of

various decisions, and then optimizes the model to obtain a single “recommended”

decision. If learning is not involved, this will simply be the greedy decision

XG = argmax
x∈X

(
𝜃

N)⊤ x,

where 𝜃

N
is the vector of regression coefficients estimated from N data points. This

decision will subsequently be put into practice (for example, a seller adjusts the price

displayed on the firm’s website) and its performance is observed. This observation,

together with the attributes of the decision, constitutes a new data point that feeds

back into the regression model, potentially leading to a different recommended deci-

sion the next time around. The modeling framework described in this section allows

learning to be directly integrated into the decision-making process: instead of the

greedy decision, one is now free to choose a different strategy that accounts for the

uncertainty and potential for improvement in the regression coefficients.

10.3.3 Modeling Extensions

To illustrate that the issues discussed in this section are not exclusively confined to

the examples we have covered, we briefly survey some recent extensions of the R&S

framework. In all of these cases, the learning process remains largely unchanged

(relying on the models in Sect. 10.2), but the optimization side of the problem is con-

siderably more challenging. Many of these extensions have not received a Bayesian

treatment as yet, but they offer potential future directions for research in this area,

and also illustrate the diversity of problems in the learning space.

∙ Constrained R&S. Strictly speaking, the model in Sect. 10.3.2 is one instance of

R&S with constraints. More generally, however, the constraints may be nonlinear

or even unknown (Gramacy and Lee 2011), requiring us to expend additional sim-

ulation runs in order to find out whether a particular decision is even feasible. In

fact, feasibility determination may be the focus of the problem: instead of maxi-

mizing an objective function, we may simply wish to correctly identify the feasible

region (Szechtman and Yücesan 2008, 2016; Batur and Kim 2010). In the simu-

lation community, Andradóttir and Kim (2010), Xu et al. (2010), and Pasupathy

et al. (2014) have all approached constrained R&S.
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∙ Comparison with a standard. In this problem, alternatives are additionally com-

pared against a fixed value (the “standard”); if no alternative is found to outperform

the standard, then the standard is implemented instead. See Nelson and Goldsman

(2001), Kim (2005), or Chen (2006) for examples of methodological approaches

to this problem. In some cases, the goal may simply be to find the set of alterna-

tives that outperform the standard, without ranking them (Singham and Szechtman

2016).

∙ Subset selection. This is a version of R&S in which the goal is to find alternatives

with the S highest values, rather than just the best. Chen et al. (2008), Wang et al.

(2011), and Zhang et al. (2016) have variously approached this problem.

∙ Multiobjective optimization. As one may expect, this is a version of R&S in which

a single alternative may have multiple “values.” The goal now becomes to find the

Pareto frontier with respect to these objectives. Some approaches to this problem

from past WSC proceedings include Lee et al. (2004), Ryu et al. (2009), Feldman

et al. (2015), and Hunter and Feldman (2015).

∙ Quantile R&S. One may also wish to optimize a quantile of the sampling distrib-

ution, rather than the mean. See, e.g., Bekki et al. (2007) or Shin et al. (2016) in

the WSC proceedings.

10.4 Bayesian Decision Procedures

We now turn to the problem of designing efficient rules for allocating simulations,

primarily in the context of the R&S problem that was described in Sect. 10.3.1. In

keeping with the theme of this chapter, we specifically focus on Bayesian approaches

to this problem. Thus, we do not survey the vast literature on indifference-zone selec-

tion (Kim and Nelson 2001; Hong and Nelson 2005) or other non-Bayesian tech-

niques (Fan et al. 2016), nor do we attempt to compare Bayesian and non-Bayesian

approaches (however, extensive numerical comparisons may be found in Branke

et al. 2007).

Instead, we present two Bayesian methodologies with the potential for general-
ity, that is, the guiding principle of each methodology should be flexible enough to

produce computationally efficient implementations in a wide variety of simulation-

based optimization problems beyond just R&S. We show that, for the two method-

ologies shown here, this is at least true for the linear model from Sect. 10.3.2. We

also explain how the distinguishing characteristics of the Bayesian model are utilized

to create these methods, and discuss the state of the art in their theoretical analysis.

10.4.1 Thompson Sampling

Thompson sampling (also often called “posterior sampling”) is an algorithmic

approach that dates back to Thompson (1933), but has recently attracted a great deal
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of renewed attention (Chapelle and Li 2011; Agrawal and Goyal 2012; Russo and

Van Roy 2014). The main appeal of this algorithm is due to its computational effi-

ciency and ease of implementation (for example, Berry 2004 mentions its usefulness

in clinical trials), and also because its simplicity lends itself well to theoretical analy-

sis (Russo and Van Roy 2016).

Returning to the R&S problem (Sect. 10.3.1), recall that the greedy ruleXG (Kn) =
argmaxx 𝜃nx is perhaps the simplest possible way to allocate the next simulation. This

simplicity is exploited by Thompson sampling. First, for every x, we draw a single

sample ̂
𝜃

n
x ∼ N

(
𝜃

n
x ,
(
𝜎

n
x
)2)

from the current posterior distribution of 𝜇x. The next

allocation decision is then made via the rule

xn = argmax
x

̂
𝜃

n
x .

In other words, Thompson sampling is almost identical to the greedy policy, the

only difference being that we greedily maximize over a set of samples drawn from

the respective posterior distributions, instead of maximizing over only the posterior

means. However, this difference has a profound impact on performance. Essentially,

by sampling from the posterior, we automatically force the greedy rule to conduct

some experimentation. The likelihood that we will allocate the next sample to alter-

native x directly depends on the uncertainty 𝜎

n
x ; if 𝜃

n
x is small, but 𝜎

n
x is large, there

is still a chance that x will have the largest value in the random sample. At the same

time, since 𝜃

n
x → 𝜇x and 𝜎

n
x → 0 by the law of large numbers (as we sample x more

often), eventually the randomly generated values will be close to the true values, and

the rule will favor those alternatives that are truly better.

Thompson sampling is extremely practical because it is very easy to generalize.

Thus, in the linear model considered in Sect. 10.3.2, we need only draw a sample

̂
𝜃

n ∼ N (𝜃n, 𝛴n) from the current (multivariate) posterior distribution, and solve

xn = argmax
x∈X

(
̂
𝜃

n)⊤ x. (10.22)

Since the random sample is drawn first, before xn is calculated, (10.22) is simply

a deterministic LP (or IP). The computational complexity of solving (10.22) is the

same as for the greedy rule, which would essentially solve the same problem with

the posterior mean vector 𝜃
n
.

In many problems, it is often quite straightforward to implement a greedy rule,

meaning that Thompson sampling can also be applied. For example, Defourny et al.

(2015) considered a regression-based optimization problem where the greedy rule

solves the second-order cone program (SOCP)

xn = argmax
x∈X

(𝜃n)⊤ x −
√
x⊤Cx

for some matrix C. Additional exploration can be induced by simply drawing a sam-

ple ̂
𝜃

n
from the posterior distribution of 𝜇 and plugging this into the SOCP instead
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of the mean vector 𝜃

n
. Computationally, this is much simpler than attempting to

probabilistically analyze the solution to the SOCP (for instance, to compute expec-

tations, as will be discussed in Sect. 10.4.2). This simplicity makes the Thompson

rule an attractive choice for benchmarking in more complex problems where more

specialized rules may be used.

In the context of simulation-based optimization, Thompson sampling does have a

potential drawback, in that in some cases it may not induce enough exploration. Since

𝜃

n
x → 𝜇x and 𝜎

n
x → 0, eventually the Thompson sample will be drawn from a poste-

rior distribution that is strongly concentrated around the true value. This may lead

the rule to over-sample x∗ and under-sample suboptimal alternatives. While this may

seem like a benefit, it means that our ability to distinguish suboptimal alternatives

from the optimal one (as quantified by PCS) will be impaired. To solve this difficulty,

Russo (2017) proposed the following simple modification for R&S: we first draw a

sample ̂
𝜃

n
from the posterior distribution of 𝜇 as before, but we only make the deci-

sion xn = argmaxx ̂𝜃nx with some prespecified probability 𝛽. The rest of the time, we

continue drawing samples ̃
𝜃

n
from the posterior until argmaxx ̃𝜃nx ≠ argmaxx ̂𝜃nx . We

then make the decision xn = argmaxx ̃𝜃nx . This rule (called “top-two Thompson sam-

pling”) can be shown to possess more desirable asymptotic behavior in simulation

optimization problems than does ordinary Thompson sampling.

To bring the discussion back to the theme of this chapter, we should note that

Bayesian logic is built into Thompson sampling, i.e., this form of exploration would

not be possible if we had not used a Bayesian model. Due to the structure of this

model, although we never know the exact value of 𝜇, we are always able to precisely

describe the distribution of the unknown values. Since the Thompson sample is also

generated from this distribution, one can think of argmaxx ̂𝜃nx as an unbiased sam-

ple of x∗ = argmaxx 𝜇; in other words, the conditional probability (given Kn
) that

x = argmaxx ̂𝜃nx is the same as the conditional probability that x = x∗. Although this

probability is quite difficult to calculate, sampling from the corresponding distribu-

tion is almost trivial. In this way, Thompson sampling explores seemingly subopti-

mal x based on the precise likelihood (under the Bayesian assumptions) that x may

in fact be the best choice.

10.4.2 Value of Information

Like Thompson sampling, value of information procedures (VIPs) uses the Bayesian

model to make probabilistic forecasts of the unknown values 𝜇x and calculate various

measures of the potential for any given alternative x to be the best. VIP-like proce-

dures date back at least to Kushner (1964), with Jones et al. (1998) being perhaps

the best-known algorithmic work on the topic. Also like Thompson sampling, VIPs

have shown the ability to generalize to many complex decision problems beyond just

R&S, although they tend to require specialized derivations for each problem setting.
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10.4.2.1 Expected Improvement

The expected improvement (EI) method of Jones et al. (1998), one of the first and

most enduring VIPs, can be stated as follows. Consider R&S with independent nor-

mal beliefs, i.e., 𝜇x ∼ N
(
𝜃

n
x ,
(
𝜎

n
x
)2)

conditionally given Kn
and (10.17)–(10.18)

are used to update the posterior parameters. Then, the (n + 1)st simulation is allo-

cated to the alternative

xn = argmax
x

vEI,nx , (10.23)

where

vEI,nx = E

(
max

{
𝜇x − max

y
𝜃

n
y , 0
}
|Kn
)
. (10.24)

Equation (10.24) represents the potential for alternative x to improve upon our cur-

rent beliefs about the best value.

First, (10.24) depends on 𝜇x. In frequentist statistics, this quantity is unknown

and we would not be able to use it in computations. In the Bayesian model, it is still

unknown, but we now know its conditional distribution given Kn
. Furthermore, if

Kn
is given, the quantity maxy 𝜃ny is known to us. Thus, computationally, (10.24) is

an instance of the equation

h (a, b) = E (max {a + bZ, 0})

for arbitrary a ∈ R, b > 0 and Z ∼ N (0, 1). This expectation is relatively simple

and, in fact, can be computed in closed form, which will be given shortly. With regard

to the intuition behind (10.24), essentiallymaxy 𝜃ny is our point estimate of the highest

value (if we had to stop learning right now, this is what we would report as the value

of the best alternative); we then consider the possibility that, for a particular x, the

true value 𝜇x may turn out to be better than this estimate (i.e., “improve” over it) and

then calculate the expected value of this improvement (if 𝜇x turns out to be worse,

that does not count as improvement). Because 𝜇x has a different distribution for each

x, (10.24) will yield a different number for each x. We then assign the next simulation

to the alternative that is believed to have the most potential.

The closed-form solution of (10.24) is given by

vEI,nx = 𝜎

n
x f
⎛
⎜
⎜
⎝
−
|||𝜃

n
x − maxy 𝜃ny

|||
𝜎
n
x

⎞
⎟
⎟
⎠
, (10.25)

where f (z) = z𝛷 (z) + 𝜙 (z) and 𝜙,𝛷 are the pdf and cdf of the standard normal

distribution. The function f is highly nonlinear and nonconvex in the posterior para-

meters, but is quite easy to code, given the availability of very efficient approxima-

tions for the standard normal cdf in standard software packages. Overall, the com-

putational formula (10.24) represents an explicit mathematical tradeoff between the
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estimated value of x, represented by 𝜃

n
x , and our uncertainty about this value, rep-

resented by 𝜎

n
x . In fact, vEI,nx is increasing in 𝜎

n
x (thus, all else being equal, more

uncertainty is more valuable) and decreasing in
|||𝜃

n
x − maxy 𝜃ny

||| (thus, if x is believed

to be the best or close to it, it is also valued more highly). Furthermore, it is always

the case that vEI,nx > 0 unless 𝜎

n
x = 0, indicating that there is always some nonzero

potential for improvement as long as uncertainty remains.

One is not required to accept (10.24) as the only definition of “expected improve-

ment.” In fact, the literature has developed many other definitions, some of which

may work better in various settings. One popular alternate rule is the “knowledge

gradient” or KG method (extensively surveyed in Powell and Ryzhov 2012), which

replaces vEI,nx by

vKG,nx = E

(
max

{
𝜃

n+1
x − max

y≠x
𝜃

n
y , 0
}
|Kn

, xn = x
)

(10.26)

= E

(
max

y
𝜃

n+1
y − max

y
𝜃

n
y |K

n
, xn = x

)
.

Equation (10.26) is nearly identical to (10.24), with two differences. First, instead of

attempting to predict the true value 𝜇x, we only look ahead to the results of the next

simulation, i.e., 𝜇x is replaced by 𝜃

n+1
x . Since we are conditioning on Kn

, we know

𝜃

n
x but not 𝜃

n+1
x ; however, one can derive the conditional distribution of 𝜃

n+1
x given

Kn
(known as the “predictive distribution” in Bayesian statistics). Recalling (10.17)–

(10.18), we note that, since only one set of beliefs is updated after each simulation,

we need to condition on xn = x in addition to Kn
in (10.26); essentially, we are calcu-

lating the expected improvement that can be obtained if we have already committed

to simulating x but have not yet observed the outcome Wn+1
x of the simulation. The

second major difference between EI and KG is that, in (10.26), alternative x is being

compared to maxy≠x 𝜃ny , an estimate of the “best of the rest” among all alternatives

that are not x. As will be clear in Sect. 10.4.3, this minor difference actually has

substantial implications for theoretical performance.

Just like the EI method, KG admits the closed-form solution

vEI,nx = �̃�

n
x f
⎛
⎜
⎜
⎝
−
|||𝜃

n
x − maxy≠x 𝜃ny

|||
�̃�
n
x

⎞
⎟
⎟
⎠
, (10.27)

where (
�̃�

n
x
)2 =

(
𝜎

n
x
)2 −

(
𝜎

n+1
x
)2

represents the (deterministic) uncertainty reduction achieved by performing one

additional simulation of alternative x. In terms of computational cost, (10.25) and

(10.27) are virtually identical. In terms of motivation, it may be argued that (10.26)

reflects the value of information more accurately since we assign simulations one at

a time (in other words, the next decision will be made based on a new set of para-

meters).
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A third variation is known as “complete expected improvement” or CEI, devel-

oped very recently by Salemi et al. (2014) in the WSC proceedings. In this version,

vEI,nx is replaced by

vCEI,nx = E
(
max

{
𝜇x − 𝜇xn∗

, 0
}
|Kn
)
, (10.28)

where xn∗ = argmaxx 𝜃nx is the alternative currently believed to be the best. The moti-

vation for this modification is that (10.25) simply uses the point estimate maxy 𝜃ny to

represent the best value, but doing so ignores the uncertainty inherent in that esti-

mate. On the other hand, (10.28) considers this uncertainty, and only uses a point

estimate of x∗ rather than for the best value. Computationally, (10.28) yields the

solution

vCEI,nx =
√
(
𝜎
n
x
)2 +

(
𝜎

n
xn∗

)
f

⎛
⎜
⎜
⎜
⎜
⎝

−
|||𝜃

n
x − maxy 𝜃ny

|||√
(
𝜎
n
x
)2 +

(
𝜎

n
xn∗

)

⎞
⎟
⎟
⎟
⎟
⎠

, (10.29)

for x ≠ x∗. Essentially, the only difference from (10.25) is that we combine the uncer-

tainty from both x and xn∗ into the calculation. However, (10.29) is only valid if x ≠ xn∗;

otherwise, (10.28) evaluates to zero, requiring us to introduce some additional logic

to determine whether we should sample xn∗.

There are still other variants, such as probability of improvement (Kushner 1964),

generalized EI (Sasena et al. 2002), weighted EI (Sóbester et al. 2005) and the sim-

ilarly named “weighted improvement” (Ji and Kim 2013), multipoints EI (Gins-

bourger et al. 2010), etc. At some point, the sheer number of EI-type methods makes

it difficult to decide between them and delve into the seemingly minor (but not nec-

essarily minor in actual fact) distinctions between different types of EI formulas. We

shed some light on this issue in Sect. 10.4.3 below, but first we discuss one of the

advantages of the EI logic, namely its ability to generalize beyond basic R&S.

10.4.2.2 Learning with Correlated Beliefs

We continue to explore the R&S problem, but now we will relax the assumption of

independent beliefs. Instead, we will use the model from Sect. 10.2.2. Recall that, in

this model, our beliefs are represented by Kn = (𝜃n, 𝛴n), which are updated recur-

sively via the equations

𝜃

n = 𝜃

n−1 +
Wn

xn−1 − 𝜃

n−1
xn−1

𝜆
2 + 𝛴

n−1
xn−1,xn−1

𝛴

n−1exn−1 , (10.30)

𝛴

n = 𝛴

n−1 −
𝛴

n−1exn−1e⊤xn−1𝛴
n−1

𝜆
2 + 𝛴

n−1
xn−1,xn−1

. (10.31)
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As we saw before, we still simulate one alternative at a time, but now the correlation

structure allows us to learn about multiple alternatives (possibly all of them) from

one simulation.

For our discussion here, we will focus on the KG rule specifically. Recall from

(10.26) that this rule makes a forecast of the impact of the next simulation on the

posterior mean. In this case, however, a single simulation of x may change every
component of 𝜃

n
, i.e., if Kn

but not Kn+1
is given, 𝜃

n+1
is a random vector. Fortu-

nately, the distribution of this random vector can be simplified; Frazier et al. (2009)

showed that the conditional distribution of 𝜃
n+1

, given Kn
and given xn = x, can be

written as

𝜃

n+1 ∼ 𝜃

n +
𝛴

nex√
𝜆
2 + 𝛴

n
xx

⋅ Z, (10.32)

where Z ∼ N (0, 1). Without getting into the technical details, we note one intu-

itive fact about (10.32): although every component of 𝜃
n+1

may be different from

𝜃

n
, the randomness driving this change is due to a single scalar random variable Z.

This reflects the structure of the updating Eq. (10.30), where only a scalar random

observation is made at each time stage.

Applying (10.32) to the KG rule, we find that the value of information 𝜈

KG,n
x is

essentially an instance of the equation

h (𝜃, s) = E

(
max

y
𝜃y + sy ⋅ Z

)
(10.33)

with the particular vectors

𝜃 = 𝜃

n
, s =

𝛴

n
x⋅√

𝜆
2 + 𝛴

n
xx

plugged in. Equation (10.33) is the expected value of a convex, piecewise linear

function of Z ∼ N (0, 1). The calculation of the expected value hinges on our abil-

ity to determine the breakpoints of the piecewise linear function; since the maxi-

mum in (10.33) is over finitely many y, it follows that there exist values cy such that

maxy 𝜃y + syZ is linear on the interval Z ∈
(
cy−1, cy

)
. This is illustrated in Fig. 10.1,

which shows maxy 𝜃y + syz, as a function of z, in an instance with four different y.

If we know the breakpoints cy, it is straightforward to calculate the expected value

of the linear function on each interval, leading to the solution

h (𝜃, s) =
∑

y

(
sy+1 − sy

)
f
(
− |||cy

|||

)
, (10.34)

where the slopes sy and breakpoints cy have been sorted in increasing order (as in

Fig. 10.1). The function f (z) = z𝛷 (z) + 𝜙 (z) is the same as in (10.27). The main
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Fig. 10.1 Illustration of the piecewise linear function in the KG computation

computational challenge is then to find the breakpoints; this is a purely deterministic

problem and can be solved using a numerical algorithm in Frazier et al. (2009).

There are two points to take away from this section. First, the value of information

logic (represented by the KG method) is able to generalize to the setting of correlated

beliefs. As a result, not only are we able to learn more quickly about the alternatives

(because correlations are in our statistical model), but we can also consider these

relationships between alternatives when determining what to sample next. Second,

there is a cost that we have to pay for this ability: in order to extend the KG logic,

we first have to go through a specialized algorithmic derivation, and then we have

to perform additional computations (to find the breakpoints) in order to implement

the procedure. These two points reoccur frequently in the literature on VIPs: the idea

of expected improvement is flexible enough to admit a practical algorithm in a wide

variety of problems, but this generally requires more work on the front- and back-end

to derive and implement the algorithm. Some examples of such extensions include

the following:

∙ Unknown variance. Chick and Inoue (2001) and Chick et al. (2010) develop EI-

like criteria for problems where the sampling variance is unknown, and our uncer-

tainty about it is modeled using a gamma distribution (as was briefly discussed in

Sect. 10.2.3).

∙ Linear regression. Negoescu et al. (2011) and Han et al. (2016) considered VIPs

in the setting of regression-based optimization.

∙ Network problems. Ryzhov and Powell (2011) proposed a VIP for learning in

the context of network optimization (learning the length of the shortest path on

a graph).

∙ Global optimization. Benassi et al. (2011) discussed how unknown variance may

be handled in simulation-based optimization over a continuous space.
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Overall, while Thompson sampling is generally much easier to implement, experi-

mental work in the above papers suggests that various types of VIPs may perform

quite well, particularly when the simulation budget is small. Furthermore, since the

Thompson sample has to be randomly generated, the performance of VIPs may be

subject to less random variability. Both approaches have their respective merits, both

theoretical and practical.

10.4.3 Theoretical Analysis

In this section, we present a brief summary of recent breakthroughs in the theoretical

study of Bayesian decision procedures. This material is of interest for two reasons.

First, the sheer variety of algorithms, even within a single class (Thompson sam-

pling or VIPs), makes it difficult to understand how they can be compared, or which

one should actually be used; there is, of course, a large body of empirical work on

this subject, but all of it is quite problem-dependent and does not suggest any clear

conclusion. Theoretical guarantees help to shed light on this issue. Second, the in-

depth theoretical study of these methods is very new, and the results presented here

all appeared within the past 1–2 years. Thus, this is a rich and growing area with

many opportunities for further work.

For this discussion, we confine ourselves (once again) to the R&S problem with

independent normal beliefs, in which (10.17)–(10.18) are used for learning, and

(10.19) is used to evaluate different allocation rules. In a seminal paper in the WSC

proceedings, Glynn and Juneja (2004) developed a framework for characterizing the

theoretically optimal allocation, which makes (10.19) converge to 1 at the fastest

possible rate as the simulation budget N → ∞. It turns out that the convergence rate

of PCS depends on the asymptotic proportions of the budget assigned to the various

alternatives. To formalize this idea, let

Nn
x =

n−1∑

m=0
1{xn=x}

be the number of samples assigned to x up to time n (by convention, N0
x = 0). Sup-

pose that the allocation rule 𝜋 is chosen in such a way that the limit

px = lim
n→∞

Nn
x

n

exists with probability 1 and is nonzero, for every x. It then follows that the limit

𝛤

p = − lim
n→∞

1
n
P𝜋

(
argmax

x
𝜃

n
x ≠ x∗

)
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also exists, implying that the probability of incorrect selection converges to zero at

an exponential rate with exponent 𝛤
𝜋

. One can then characterize the particular lim-

iting allocation p ∈ RM
, satisfying

∑
x px = 1, px > 0, which maximizes 𝛤

p
, thereby

achieving the best possible rate of convergence. Under normality assumptions, this

allocation satisfies the equations

(
px∗
𝜆x∗

)2

=
∑

x≠x∗

(
px
𝜆x

)2

, (10.35)

(
𝜇x − 𝜇x∗

)2

𝜆
2
x

px
+ 𝜆

2
x∗

px∗

=
(
𝜇y − 𝜇x∗

)2

𝜆
2
y

py
+ 𝜆

2
x∗

px∗

, x, y ≠ x∗. (10.36)

It is worth noting that, if the solution happens to satisfy px∗ ≫ maxx≠x∗ px, Eq. (10.36)

is closely approximated by

px
py

=
𝜆

2
x
(
𝜇y − 𝜇x∗

)2

𝜆
2
y
(
𝜇x − 𝜇x∗

)2 , (10.37)

the ratio used to derive the well-known optimal computing budget allocation (OCBA)

rule of Chen and Lee (2010).

The analysis in Glynn and Juneja (2004) is non-Bayesian, but this is not a major

issue, as we could simply require the limiting proportion to satisfy (10.35)–(10.36)

with probability 1, i.e., the optimality conditions must hold for every possible real-

ization of the true values. One could also study a Bayesian criterion, such as (10.25),

in a non-Bayesian setting; in that case one would simply look at the behavior of the

computational formula and apply a frequentist asymptotic analysis.

We now return to the EI rule xn = argmaxx vEI,nx , where vEI,nx is given by (10.25).

Although this rule has existed since at least Jones et al. (1998), it was not until Ryzhov

(2015, 2016) that a detailed convergence rate analysis became available. The basic

idea of the analysis is as follows. First, it is straightforward to show that vEI,nx → 0,

for all x, as n → ∞. However, since the rule always assigns the next simulation to

the alternative with the largest EI criterion, this suggests that vEI,nx should decline to

zero at the same rate for all x (if one criterion seems to be declining too quickly, we

will stop sampling that alternative for some time). Therefore, the arguments inside

the function f in (10.25) should behave similarly, that is,

|||𝜃
n
x − maxz 𝜃nz

|||
𝜎
n
x

≈
|||𝜃

n
y − maxz 𝜃nz

|||
𝜎
n
y

(10.38)

for x, y ≠ x∗ and n large. Recalling that 𝜃
n → 𝜇 by the law of large numbers, and also

that 𝜎
n
x ≈ 𝜆x√

Nn
x
, (10.38) leads to the limiting result
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lim
n→∞

Nn
x

Nn
y
=

𝜆

2
x
(
𝜇y − 𝜇x∗

)2

𝜆
2
y
(
𝜇x − 𝜇x∗

)2

for x, y ≠ x∗. In words, the EI rule asymptotically achieves the OCBA ratios from

(10.37).

The same type of “matching” argument can be applied (in a more rigorous fash-

ion) to derive rate results for other variants of EI. Ryzhov (2016) presents such results

for the KG criterion from (10.27), but neither this rule nor classic EI turn out to be

optimal in the sense of (10.35)–(10.36). In that regard, the CEI criterion of (10.29),

due to Salemi et al. (2014), is especially interesting. Applying the matching argument

to CEI, we find that

|||𝜃
n
x − 𝜃

n
xn∗
|||√

(
𝜎
n
x
)2 +

(
𝜎

n
xn∗

)2
≈

|||𝜃
n
y − 𝜃

n
xn∗
|||√

(
𝜎
n
x
)2 +

(
𝜎

n
xn∗

)2
. (10.39)

Recalling again that 𝜎
n
x ≈ 𝜆x√

Nn
x
, we find that (10.39) looks remarkably similar to

(10.36). In fact, we should be able to guarantee (10.36) asymptotically, provided

that we can somehow ensure that px∗ exists and is nonzero. To that end, Chen and

Ryzhov (2017) proposes a slight modification of the CEI criterion, called “modified

CEI” or mCEI. The modified procedure is shown in Fig. 10.2; it is easy to see that

it is almost identical to CEI, but introduces additional logic to determine whether

we should simulate alternative xn∗, in a way that mimics the structure of condition

(10.35). With this modification, Chen and Ryzhov (2017) shows that the procedure

attains both (10.35) and (10.36) asymptotically.

In parallel, the Thompson sampling literature has developed in a similar way.

Russo (2017) has also looked at Thompson sampling in the context of the rate-

optimality framework of Glynn and Juneja (2004). The “top-two” version of Thomp-

son sampling, which we discussed in Sect. 10.4.1, is likewise able to achieve (10.36)

asymptotically, but encounters the same difficulty as CEI in satisfying condition

Fig. 10.2 Modified CEI (mCEI) algorithm for R&S (Chen and Ryzhov 2017)
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(a) Empirical probability of incorrect selection. (b) Empirical allocations after 5000 simula-
tions.

Fig. 10.3 Illustrative comparison of Bayesian decision procedures

(10.35), which governs the proportion of the budget allocated to the optimal alterna-

tive x∗. Essentially, the procedure resolves this difficulty by requiring the decision-

maker to guess this proportion, in the form of a tunable parameter 𝛽. If 𝛽 is chosen

correctly (i.e., if 𝛽 = px∗), the top-two rule will then achieve (10.36).

Figure 10.3 presents an illustrative example for a simple instance of R&S with just

five alternatives (of which the first one is the best). Figure 10.3a shows the declin-

ing behavior of the probability of incorrect selection under the various Bayesian

methods discussed in this chapter (“TTPS” is one of the top-two rules presented in

Russo 2017), while Fig. 10.3b shows the empirical proportions of the budget that are

assigned to the five alternatives after 5000 simulations, and compares these to the

optimal proportions obtained by solving (10.35)–(10.36) by brute force for the given

problem settings. All results are averaged over 500 macro-replications. We see that

mCEI exhibits the best performance in terms of PCS, and furthermore, that the allo-

cation produced by the mCEI rule is very close to optimal. The TTPS rule was run

with 𝛽 = 0.5; since this is not the correct proportion to assign to the first alternative,

the rule experiences some difficulties.

This example is certainly not comprehensive, but it suggests that the theoretical

differences between these rules do have an impact in terms of practical performance.

Furthermore, the tuning issue (in the case of TTPS) is also important for practical

performance. At the same time, it is reassuring that at least one Bayesian method

is able to achieve theoretically optimal performance without the need for tuning.

Results like this help to build a stronger mathematical foundation for the develop-

ment and application of Bayesian decision support methods in simulation optimiza-

tion.

10.5 Approximate Bayesian Inference

We briefly discuss approximate Bayesian inference, a very recent development in the

literature. Recall that all of the Bayesian learning models presented in Sect. 10.2 pos-

sessed the property of conjugacy, which is essential for sequential learning because
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it allows us to store and update our beliefs in an efficient way. Unfortunately, there

are many problems of interest in which none of the existing conjugate models is

suitable. Such problems arise whenever our ability to learn is censored or otherwise

incomplete in some way. Section 10.5.1 presents one example of such a problem and

discusses recent efforts to solve problems of this type. Section 10.5.2 discusses other

applications culled from the literature.

10.5.1 Moment-Matching for Binary Censored Observations

Consider the following simple example. A doctor prescribes a dosage b of a drug to a

patient. On average, the maximum dose that can be prescribed without unacceptable

risk of side effects is denoted by 𝜇. However, any given patient may have a higher

or lower tolerance than this number. We assume that the patient’s individual toler-

ance is represented by an independent random sample W ∼ N
(
𝜇, 𝜆

2)
; for ease of

presentation, we assume 𝜆 is known.

The doctor does not know 𝜇, and imposes the prior distribution 𝜇 ∼ N
(
𝜃, 𝜎

2)
,

where the prior parameters may be chosen based on past experience or published

clinical studies. Now, if the doctor could observe W directly, we could simply apply

(10.5)–(10.6) to update our beliefs. Unfortunately, the doctor cannot see W. Instead,

the only observable information is the quantity

B = 1{W<b},

which indicates whether or not the patient experienced side effects as a result of

the prescribed dose b. The random variable B has a Bernoulli distribution, and the

success probability depends on b. If we attempt to derive the posterior distribution

of 𝜇 given B, using Bayes’ rule, we will arrive at a complicated mixture density that

does not resemble any standard family of distributions. It is thus not clear how we can

update our beliefs, without attempting to somehow store the entire posterior density.

By itself, this may not be a big problem: statisticians routinely deal with non-

conjugacy through the use of Markov chain Monte Carlo (MCMC) techniques (see

Chick 1997 or Robert 2011 in the WSC proceedings), which have been the subject of

extensive theoretical study (Asmussen and Glynn 2011). However, these techniques

will become very cumbersome if we consider a sequential version of this problem,

in which the doctor observes a sequence B1
,B2

, ..., where

Bn = 1{Wn
<bn−1},

Wn
is the individual tolerance of the nth patient, and bn−1 is the dose prescribed

to that patient by the doctor. Ideally, we would like these prescription decisions to

be adaptive. For example, supposing that the doctor wishes to limit the risk of side

effects to a small probability 𝛼, the optimal dose might be
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b∗ = 𝜇 + 𝜆𝛷

−1 (1 − 𝛼) . (10.41)

If we could maintain a posterior distribution of belief about 𝜇, we might consider

(for example) applying Thompson sampling to (10.41) and calculating doses that

way. However, in order to do this, we require a tractable posterior distribution for 𝜇.

Attempting to derive this distribution in closed form will produce increasingly cum-

bersome mixture models, while applying MCMC will incur extremely high com-

putational cost since we would have to implement a sequence of time-consuming

MCMC algorithms.

Since we cannot update the beliefs exactly, we choose to update them approxi-
mately using the method of “moment-matching” (Opper 1998; Minka 2001). Assum-

ing that𝜇 ∼ N
(
𝜃, 𝜎

2)
and thatB is given with some fixed b, let �̃� ∼ N

(
𝜃

′
,

(
𝜎

′)2
)

,

where 𝜃

′
, 𝜎

′
are chosen to satisfy the equations

∫R

xP (�̃� ∈ dx) =
∫R

xP (𝜇 ∈ dx |B) , (10.42)

∫R

x2P (�̃� ∈ dx) =
∫R

x2P (𝜇 ∈ dx |B) . (10.43)

In words, we create a completely artificial normal distribution, but choose the para-

meters of that normal distribution in such a way as to make its first and second

moments equal those of the exact posterior density of 𝜇 given a single observation B.

Assuming that these equations can be solved, we then simply discard the exact poste-

rior, and move to the next stage of sampling under the assumption that our posterior

beliefs about 𝜇 are exactly represented by the distribution N
(
𝜃

′
,

(
𝜎

′)2
)

.

First, we demonstrate that the approach is computationally tractable. It can be

shown (Chen and Ryzhov 2016) that (10.42)–(10.43) are solved by the update

𝜃

′ =𝜃 − 𝜎

2

(

B 1
√
𝜆
2 + 𝜎

2

𝜙 (q)
𝛷 (q)

− (1 − B) 1
√
𝜆
2 + 𝜎

2

𝜙 (q)
1 −𝛷 (q)

)

, (10.44)

(
𝜎

′)2 =𝜎2
(
1 − B 𝜎

2

𝜆
2 + 𝜎

2
q𝜙 (q)𝛷 (q) + 𝜙

2 (q)
𝛷

2 (q)

− (1 − B) 𝜎

2

𝜆
2 + 𝜎

2
𝜙

2 (q) − q𝜙 (q) (1 −𝛷 (q))
(1 −𝛷 (q))2

)
, (10.45)

where

q = b − 𝜃

√
𝜆
2 + 𝜎

2
.

Equations (10.44)–(10.45) require some algebra to derive, but they are trivial to code.

We now have a learning model that can be implemented sequentially; we simply

assume at every time stage that our distribution of belief is normal, and update the
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parameters recursively as given above. This instantly gives back to us the ability to

design and implement adaptive procedures for choosing b, whether based on Thomp-

son sampling, value of information, or other approaches.

The main question of interest is whether such procedures have any hope of doing

well. A very basic, but nonetheless difficult, question is whether 𝜃

n → 𝜇, where

{𝜃n}∞n=0 is the sequence of estimators produced by recursively applying (10.44)–

(10.45) based on the thresholds b0, b1, ... and corresponding censored observations

B1
,B2

, .... Note that this property, i.e., the statistical consistency of the Bayesian esti-

mator, is something that we took completely for granted in Sect. 10.2 due to the con-

jugacy property. In other words, this is a new challenge that arises when we move

beyond conjugate models.

Intuitively, one might expect that the Bayesian estimator will not converge. Note

that it is subject to two distinct sources of error. First, the binary observation B is

already much less informative than the full observation W, and it is not immediately

clear whether the censored observations are sufficient for learning the true value.

Second, our approximation is developed with respect to a normal prior; however, if

n is large, our current posterior distribution is already inaccurate, and so even the

“exact” density P (𝜇 ∈ dx |B) in (10.42)–(10.43) will in fact also have errors. Sur-

prisingly, a simple numerical experiment with randomly generated threshold values

{bn}∞n=0 shows that 𝜃
n → 𝜇, as can be seen in Fig. 10.4.

Chen and Ryzhov (2016) provides the mathematical groundwork for this obser-

vation. By leveraging an analogy between (10.44) and (10.45) and the well-known

field of gradient-based simulation optimization (Kim 2006), one can show that, under

minor assumptions, 𝜃
n

will converge under any bounded sequence {bn}. This surpris-

ing result shows that, far from being an ad-hoc approximation, approximate Bayesian

inference is a powerful statistical methodology with strong practical potential in

sequential learning problems where information is censored or incomplete. In fact,

the practical literature on approximate Bayesian inference is quite a bit ahead of the

theory on this topic, as will become clear in the next section.

Fig. 10.4 Empirical

convergence of the

approximate Bayesian

estimator to 𝜇 in an instance

of the censored binary

problem
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10.5.2 Applications and Extensions

Approximate Bayesian inference is attracting increased attention mainly because of

its computational power. Below, we briefly describe three additional applications

where it has proven itself as an effective learning technique.

∙ E-sports. Possibly the best-known application of approximate Bayesian

inference is the TrueSkill™ system developed and implemented (Herbrich et al.

2006; Dangauthier et al. 2007) by Microsoft’s Xbox Live gaming service. In this

application, large numbers of players simultaneously sign on to the service and

request to play a competitive game. The system then has a short time in which

to find a suitable opponent for each player. “Suitable” in this case means that the

two opponents should be as evenly matched as possible, as players are likely to

get discouraged and quit the game if they feel that they have no chance of win-

ning. The system adopts an approximate Bayesian model in which each player x is

assumed to have a “skill” value 𝜇x, a unitless and stylized quantity, and a normal

prior is imposed upon 𝜇 by the system. Every time this player plays a game, the

system assumes that a “performance” value W ∼ N
(
𝜇x, 𝜆

2)
, centered around the

skill level, has been generated (modeling the fact that players sometimes perform

better or worse than their average). However, this value also cannot be observed;

instead, the game only allows win/loss outcomes. If player x wins against player

y, this is interpreted by the system as the event that Wx > Wy. Thus, we are in the

approximate Bayesian setting, and must use this binary setting to infer the values

of 𝜇x and 𝜇y. The computational power of approximate Bayesian inference in this

application was proved in practice; however, it was not until Chen and Ryzhov

(2016) that the statistical consistency of the Bayesian procedure was established.

∙ Market design. When a financial market experiences a shock, traders may be

unwilling to buy and sell assets because the value of these assets has become

highly uncertain. In such cases, a market-maker may be used to encourage traders

to trade. The market-maker sets bid and ask prices (and adjusts these prices over

time) and traders react by buying (if their valuations are above the ask price), sell-

ing (if their valuations are below the bid price) or doing nothing (otherwise). The

market-maker is never able to observe traders’ valuations directly, but must infer

them from the three types of signals. Das and Magdon-Ismail (2008) proposed

an approximate Bayesian learning model, while Chakraborty et al. (2013) imple-

mented it in a case study at Rensselaer Polytechnic University in which students

traded mock assets whose value was related to their instructors’ course evalua-

tions.

∙ R&S with unknown correlation structures. Return to the R&S problem

(Sect. 10.3.1) with correlated beliefs (Sect. 10.2.2). Although correlated beliefs

can be powerful, a natural question to ask is how the practitioner might go about

choosing the prior covariance matrix 𝛴. If there is no intuitive choice of correla-

tion structure (such as the distance-based structure discussed previously), it is easy

to argue that misspecified correlations may actually make it more difficult to esti-

mate the unknown values (for example, if we believe two values to be similar, but
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they are actually very different, the Bayesian update will completely misinterpret

new information). Qu et al. (2012, 2015) and Zhang and Song (2015) consid-

ered a version of R&S in which the correlation structure was itself treated as ran-

dom (using the Wishart matrix distribution). Unfortunately, there is no conjugate

Bayesian model that can allow one to learn unknown correlation structures from

scalar observations, as there is for the known-covariance case. On the other hand,

approximate Bayesian inference can be leveraged to develop learning mechanisms

that are computationally efficient and perform well empirically.

10.6 Closing Remarks

In closing this chapter, we would like to highlight a few common themes running

through our discussion of Bayesian methods, which may be useful to consider for

practitioners seeking to implement these methods or for researchers seeking to study

them.

1. Ease of updating. Bayesian models are useful, not only because they model our

uncertainty about the problem, but also because they model the evolution of

uncertainty over time. Ideally, we would like to approach the problem in a sequen-

tial manner, so that each decision is always made using the most recent informa-

tion. To do this, we require a model that is easy to store and update. Fortunately,

conjugate models allow us to do this in a wide range of applications; when these

models are not suitable, approximate Bayesian inference offers a principled learn-

ing approach.

2. Computational generalizability. The Bayesian methods that we have surveyed

are based on general concepts, such as posterior sampling and expected value

of information, that can lead to efficient algorithms in a wide variety of settings

beyond just ranking and selection. For any of these settings, we may have to derive

a specialized procedure based on the concept; however, the concept itself is very

general and not beholden to any particular type of problem structure.

3. Connections with frequentist approaches. Interestingly, in some cases Bayesian

methods turn out to exhibit parallels with other simulation optimization method-

ologies. Thus, as we have seen in Sect. 10.4.3, value of information procedures

can be related to the optimal computing budget allocation class of methods, as

well as to the theoretical optimality analysis of Glynn and Juneja (2004). It may

be that, in adopting a Bayesian method, one is not necessarily “giving up” the

chance to use a different approach; rather, the Bayesian method may simply be a

different way of reaching the same result.

4. Correlated beliefs. At the same time, the Bayesian idea of “correlated beliefs”

does seem to provide something that may not be easy to find in frequentist

models—the ability to learn about large decision spaces from very small numbers

of measurements. This ability is primarily useful when the measurement budget

is very small, and one never has the opportunity to reach the asymptotic regime

studied in the theory. However, there are modeling pitfalls having to do with the

correct specification of the correlation structure.
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Chapter 11
Simulation Optimization Under Input
Model Uncertainty

Enlu Zhou and Di Wu

Abstract Stochastic simulation is driven by the input model, which is a collection

of distributions that model the randomness in the system. Since the input model is

often estimated from data of past observations, simulation is subject to the so-called

input model uncertainty due to the finiteness of the data. As a result, optimizing the

corresponding simulation model may lead to solutions that perform poorly under

the true model. In the past, simulation optimization has been mostly studied under

the assumption that the input model is accurate, thus only accounting for stochastic

uncertainty in the system but ignoring input model uncertainty. In this chapter, we

aim to answer two questions: (1) how to quantify the impact of input model uncer-

tainty on the simulation optimization problem; (2) how to “optimize” a simulation

model when taking into account input model uncertainty. To address the first ques-

tion, we provide asymptotic results and confidence intervals on the optimality gap

and performance of solutions. For the second question, we review a recently pro-

posed framework of Bayesian risk optimization that captures trade-off between the

expected performance and the variability of the actual performance. Many research

questions still remain for simulation optimization under input model uncertainty, and

will be discussed briefly at the end of this chapter.

11.1 Introduction

Complex systems arising in various areas such as supply chain, manufacturing, and

service networks often require simulation and optimization techniques to evaluate

the system performance and facilitate decision making. Such systems are character-

ized by complexity, nonlinearity, and stochasticity in system dynamics, and often

resort to computer simulation for performance analysis and optimization. One cru-

cial factor in successful simulation modeling is the so-called input model—a col-

lection of probability distributions that model the system stochastic uncertainty. For
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example, in a supply chain system, the random customer demands and order lead

times need to be modeled by a collection of distributions, which are often estimated

from observed data of past sales and order arrival times. Since there is only a finite

amount of data available to the modeler, the input model is always subject to uncer-

tainty, which is referred to as input model uncertainty or simply as input uncertainty.

As a result, a typical stochastic simulation faces two types of uncertainties: the sto-
chastic uncertainty of the system, and the input uncertainty of the system model.

The performance estimation error due to stochastic uncertainty can be “simulated

away”, i.e., we can decrease the error by increasing the number of replications that

we run the simulation model. In distinctive contrast, the input uncertainty is often

uncontrollable, due to the limited amount of input data available and the difficulty

in acquiring additional data.

Simulation optimization has been mostly studied under the assumption that the

input model is accurate, and thus only accounts for stochastic uncertainty and ignores

input uncertainty. One potential consequence of this approach is that if we optimize a

model built on a small number of input data, the obtained optimal solution may have a

poor performance under the true model. To see the risk of ignoring input uncertainty,

let us consider an illustrative example of the newsvendor problem below.

11.1.1 Illustrative Example: Risk of Input Uncertainty

Consider the newsvendor problem with lost sales, where the goal is to choose an

order amount to maximize the expected profit under stochastic demand. Suppose

the order amount is denoted as x, demand is exponentially distributed with rate 𝜃
c =

1∕20, and the unit price and unit cost are p = 2 and c = 1, respectively. The expected

profit is given by

H(x, 𝜃c)∶= p𝐄[min(x, 𝜉)] − cx =
p
𝜃c

(
1 − e−𝜃cx) − cx

Note that since the closed-form expression of the expectation is known in this exam-

ple, we will use this form directly for evaluation of the objective value instead of

running simulation. We draw 1,000 sets of independent and identically distributed

(i.i.d.) demand data, each dataset of size 20. Then, for each dataset we use maxi-

mum likelihood to get a point estimate �̂� of 𝜃
c
, and we plug the estimate into the

model to solve the empirical optimization problem maxx H(x, �̂�). The histograms of

optimal solutions and their corresponding true performances (under 𝜃
c
) are shown

in Fig. 11.1 below. Although the average optimal solution is close to the true opti-

mal solution 13.86, the extreme values could reach 5 and 25. Similarly, the extreme

performance of solutions can be lower than 3, compared with the true optimal per-

formance 6.14. In this example, a decision maker may suffer a great loss if s/he

blindly assumes that the estimated input distribution is accurate. This simple exam-

ple demonstrates the importance of taking into account input uncertainty when doing

simulation optimization.
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Fig. 11.1 Risk of input uncertainty in the newsvendor problem

11.2 Problem Setting and Fundamental Questions

In simulation optimization, one often wants to optimize the expected performance

of a simulation model. Mathematically put, the following problem is of interest.

min
x∈X

𝐄
𝜉∼Fc[h(x, 𝜉)], (11.1)

where x is a decision variable that takes value in X ⊂ ℝd
, 𝜉 is a random vector (r.v.)

that takes value in ℝm
, and h ∶ ℝd ×ℝm → ℝ is a deterministic function capturing

the system dynamics. Note that the form h is not known explicitly but instead is

evaluated through simulation (hence the name “simulation optimization”). Here 𝜉

represents the stochastic uncertainty in the system, and its true distribution is denoted

by Fc
.

In practice Fc
is not known and often estimated from data. Suppose we have

a given dataset consisting of n i.i.d. data samples from Fc
, denoted by 𝜓

n ∶=
(𝜉1,… , 𝜉n). Using the dataset 𝜓

n
, an input model F̂ is estimated and then used

to drive the simulation. Without consideration of the estimation error in the input

model, the typical simulation optimization setting solves the following empirical
optimization problem:

min
x∈X

𝐄
𝜉∼F̂[h(x, 𝜉)]. (11.2)

A solution to problem (11.2) may perform poorly for the true problem (11.1), as

shown in the illustrative example above. This raises at least two fundamental ques-

tions:

∙ how to quantify the uncertainty in the performance of solutions to (11.2);

∙ how to take into account input uncertainty when doing simulation optimization.

We aim to answer these questions for a simplified setting, where the distribution of

𝜉 has a parametric form. More specifically, we suppose Fc
lives in a parametric family

of distributions {F(⋅; 𝜃), 𝜃 ∈ Θ}, with the true but unknown parameter value 𝜃
c
. For
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technicality reasons, we assume 𝜃
c

is in the interior of Θ. The input uncertainty in

this setting is the random error in the estimation of 𝜃
c

due to finiteness of data. For

ease of presentation below, we define the function

H(x, 𝜃) ∶= 𝐄[h(x, 𝜉)], 𝜉 ∼ F(⋅; 𝜃), (11.3)

where ∫ |h(x, 𝜉)|dF < ∞ for all x ∈ X , 𝜃 ∈ Θ so that H is well-defined. Prob-

lem (11.1) can then be rewritten as minx∈X H(x, 𝜃c).

11.3 Relevant Literature

There has been an extensive study on how to quantify the impact of input uncertainty

on simulation output (without optimization) in the presence of stochastic uncertainty.

The methods proposed so far in the literature can be roughly grouped into three major

categories. First is the frequentist methods that allow nonparametric input distribu-

tions and use direct or bootstrap resampling techniques to assess input uncertainty,

such as Barton and Schruben (1993, 2001) and Cheng and Holloand (1997). Sec-

ond is the Bayesian model averaging methods that assume a parametric model and

use the posterior distribution of unknown parameters as the sampling distribution

during the simulation process, such as Chick (2001) and Zouaoui and Wilson (2003,

2004). Third is the delta method: Cheng and Holloand (1997) uses the delta method

to decompose the variance of simulation output into two parts respectively corre-

sponding to stochastic uncertainty and input uncertainty; a robust sensitivity analysis

approach developed by Lam (2016) can be viewed as the delta method with respect

to a distributional perturbation. Recent advances in stochastic kriging Ankenman

et al. (2010) also gives rise to the application of meta-model assisted methods to

quantify input uncertainty, such as Barton et al. (2013) and Xie et al. (2014a, b).

In addition, Song and Nelson (2015) proposes a method for quickly assessing the

relative contribution of each input distribution to the overall effect of input uncer-

tainty; Zhu and Zhou (2015) develops an approach to quantify the risk associated

with input uncertainty in simulation output analysis. For a more comprehensive and

detailed overview of input uncertainty quantification, please refer to Chap. 5 in this

book Song and Nelson (2016).

Simulation optimization under input uncertainty, on the other hand, has not been

studied as extensively. A few recent works in the simulation optimization literature

have started to look at the case of a finite solution space, i.e., the ranking and selec-

tion (R&S) problem. Song et al. (2015) considers the situation where solutions have

independent but different input distributions, and develops a procedure for selecting

a subset of solutions whose performances are within a user-specified distance from

the true optimal performance. Corlu and Biller (2013) considers a case of shared

input distributions across solutions and explores the impact of input uncertainty on

the indifference-zone (IZ) method; they show that a direct application of IZ selection

may provide invalid correct-selection guarantee. Fan et al. (2013) presents a robust
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IZ formulation that selects the best design with respect to the worst-case choices

among a finite collection of possible input models. Song and Nelson (2016) develops

an input–output uncertainty comparisons procedure that finds a set of likely optimal

solutions with given probability guarantee. Gao et al. (2017) develops a robust opti-

mal computing budget allocation (OCBA) procedure to find the best solution under

the worst-case input distribution scenario. Despite these pioneering works on R&S

with consideration of input uncertainty, the case of continuous solution spaces has

rarely been studied for simulation optimization under input uncertainty.

Since the formulation of simulation optimization bears great similarity to sto-

chastic optimization, perhaps the most related study in the literature of stochastic

optimization is distributionally robust optimization (DRO). The idea of DRO is to

optimize the worst case over a family of possible input distributions, where the crux

is to construct a tractable ambiguity set with some probabilistic guarantees. An abun-

dant literature is available on this topic, including but not limited to Bertsimas et al.

(2011), Delage and Ye (2010), Bertsimas et al. (2013), Wiesemann et al. (2014),

Esfahani and Kuhn (2015), Bayraksan and Love (2015), Ben-Tal et al. (2013), Jiang

and Guan (2015), Popescu (2007), Zymler et al. (2013). One issue with DRO, as

observed in Wang et al. (2016), is that if the ambiguity set is constructed in an inap-

propriate way, a solution optimizing the worst-case scenario may be so conservative

that it performs poorly under scenarios that are much more likely in reality. Fur-

thermore, unlike the setting in the DRO literature where the tractability (such as

convexity) of the objective function is often a reasonable assumption, the objec-

tive function in simulation optimization can only be evaluated through simulation

and often lacks such structural properties. Therefore, simulation optimization under

input uncertainty needs a new formulation with more flexibility and requires differ-

ent solution approaches.

11.4 Quantifying Uncertainty of Empirical Optimization

In this section, we aim to answer the first question raised in Sect. 11.2, i.e., how to

quantify the impact of input uncertainty on the solution of the empirical optimiza-

tion problem. Recall that we are considering a special case where Fc
belongs to a

parametric family. Since the true parameter 𝜃
c

is unknown, the maximum likelihood

estimator (MLE), denoted by �̂�n, can be used to estimate 𝜃
c

based on the input data

𝜓
n
. We write �̂�n as �̂� when there is no ambiguity. An empirical optimization problem

given as follows is then solved as a surrogate of (11.1):

min
x∈X

H(x, �̂�). (11.4)

Unless we are very lucky, even the exact solution to (11.4) is only a suboptimal

solution to (11.1). It is then of interest to study the true performance of the suboptimal
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solution, i.e., how well it performs when it is plugged back into the true objective in

(11.1), as well as the optimality gap, i.e., how far its performance deviates from the

optimal performance.

One way to achieve the above goal is by the bootstrap resampling method: we

bootstrap from 𝜓
n

to get multiple �̂�’s; for each �̂�, we estimate the performance and

optimality gap, from which empirical confidence intervals (CI), mean square error,

etc., can be computed. Despite broad applicability of the bootstrap approach the com-

putational cost of solving the optimization problem repeatedly may be prohibitively

high. To avoid such high computational cost, we would like to exploit the prob-

lem structure using the delta method. It is assumed throughout this section that the

asymptotic normality of MLE (see e.g., Lemann and Casella 1998) holds, i.e.,

√
n(�̂� − 𝜃

c) ⇒ N (0, [I(𝜃c)]−1) as n → ∞, (11.5)

where “⇒” denotes convergence in distribution and I(𝜃c) is the Fisher information

that a sample from F(⋅; 𝜃c) carries about 𝜃
c
. We will show that if the problem pos-

sesses certain structure, then it takes almost no additional computational cost to

characterize the optimality gap and to construct CIs for the true performance of solu-

tions.

11.4.1 Asymptotic Distribution of the Optimality Gap

An important aspect of studying the asymptotics of the optimality gap is to under-

stand the behavior of the solutions to the empirical optimization problem (11.4).

Although it is clear that the solutions must depend on the estimate �̂�, we point out

some technical difficulties associated with characterizing such dependence. Let us

define

x
opt
(�̂�) ∶= argmin

x
H(x, �̂�) (11.6)

as the set of optimal solutions corresponding to a specific parameter �̂�. In general,

x
opt
(⋅) could be an ill-behaved set-valued function, which makes it challenging to ana-

lyze such quantities as H(x
opt
(�̂�), 𝜃c). We plan to avoid the technicalities by restrict-

ing to a case where x
opt
(⋅) is a single-valued differentiable function. This is made

possible by the following lemma.

Lemma 11.1 (Implicit Function Theorem) If f ∶ ℝn ×ℝm → ℝn is continuously
differentiable on a neighborhood of (x̄, �̄�), where f (x̄, �̄�) = 0 and 𝜕xf (x̄, �̄�) is non-
singular, then there exists an open set U containing �̄�, an open set V containing x̄,
and a unique continuously differentiable function x ∶ U → V such that f (x(𝜃), 𝜃) = 0
for all 𝜃 ∈ U.

Lemma 11.1 provides the regularity conditions for the existence of a differentiable

solution function of �̂� on some neighborhood of 𝜃
c
. To see how this can facilitate
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our analysis, note that the sensitivity of an optimal solution’s true performance with

respect to (w.r.t.) the estimate �̂� can be decomposed into two parts: (i) the sensitivity

of the objective function w.r.t. the decision variable; (ii) the sensitivity of the optimal

solution w.r.t. the parameter. With the differentiability of the optimal solution, the

latter is easily captured by the gradient. This motivates us to make the following

assumption.

Assumption 11.1 There exists a solution xc ∈ x
opt
(𝜃c) and an open neighborhood of

(xc
, 𝜃

c) on which 𝜕xH exists and is continuously differentiable. Moreover, 𝜕
2
x H(xc

, 𝜃
c)

is nonsingular.

Assumption 11.1 is interpreted as follows. The fact that 𝜕xH is differentiable at

(xc
, 𝜃

c) indicates that H(⋅, 𝜃c) is differentiable at xc
. Since xc

falls into an open neigh-

borhood in X , the first-order necessary optimality condition implies 𝜕xH(xc
, 𝜃

c) =
0; the second-order necessary optimality condition and the nonsingularity assump-

tion implies 𝜕
2
x H(xc

, 𝜃
c) ≻ 0. Now lemma 11.1 ensures that there exists an open set

U containing 𝜃
c
, an open set V containing xc

, and some continuously differentiable

function x∗ ∶ U → V satisfying 𝜕xH(x∗(𝜃), 𝜃) = 0 for all 𝜃 ∈ U and x∗(𝜃c) = xc
.

There might be multiple solutions satisfying assumption 11.1, but theoretically we

will focus on one particular solution, which is uniquely determined by the function

x∗. The weak consistency of �̂� guarantees that for n large enough, �̂� will fall into U
with a large probability. Therefore, when we let n → ∞, it suffices to consider the

case where �̂� ∈ U. Let

g(𝜃) ∶= H(x∗(𝜃), 𝜃c) (11.7)

be the true performance of x∗(𝜃). The optimality gap is then given by g(𝜃) − g(𝜃c).
It should be noted that even for an infinitesimal Δ𝜃, x∗(𝜃c + Δ𝜃) may not be a global

optimum of H(x, 𝜃c + Δ𝜃). However, it remains a local optimum due to the conti-

nuity of 𝜕
2
x H. The following theorem will be useful in establishing the asymptotic

distribution of the optimality gap.

Lemma 11.2 (Delta Theorem) If a function G ∶ ℝm → ℝ is differentiable at a point
𝜇 ∈ ℝm, and {Xn} is a sequence of random variables with

√
n(Xn − 𝜇) ⇒ Z as n →

∞, where Z is some random variable, then
√

n
(
G(Xn) − G(𝜇)

)
⇒ ∇G(𝜇)⊺Z, as n → ∞.

The delta theorem (see e.g., Casella and Berger 2002) essentially provides an

approach for studying the limiting distribution of a function through Taylor series

expansion. Therefore, differentiability is a necessary condition for using this method.

Now we are ready to state the asymptotic result of the optimality gap.

Proposition 11.1 Suppose Assumption 1 holds. Then
√

n
(
g(�̂�) − g(𝜃c)

)
→ 0 in probability as n → ∞;
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furthermore, if g is twice differentiable at 𝜃c, then

n
(
g(�̂�) − g(𝜃c)

)
⇒

1
2

Z⊺∇2g(𝜃c)Z as n → ∞, where Z ∼ N(0, [I(𝜃c)]−1).
(11.8)

Proof Note that g is a composition of x∗(⋅) and H(⋅, 𝜃c). Assumption 11.1 implies

that H(⋅, 𝜃c) is differentiable at x∗(𝜃c), and lemma 11.1 implies that x∗(⋅) is differen-

tiable at 𝜃
c
, so by chain rule g is differentiable at 𝜃

c
. Furthermore,

∇g(𝜃c) = 𝜕xH(x∗(𝜃c), 𝜃c)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=0

⋅∇x∗(𝜃c) = 0

by the first-order necessary condition. Thus, the first result follows immediately from

Lemma 11.2. If g is twice differentiable at 𝜃
c
, we would have the second-order expan-

sion

g(�̂�) − g(𝜃c) = 1
2
(�̂� − 𝜃

c)⊺∇2g(𝜃c)(�̂� − 𝜃
c) + e(�̂�)‖�̂� − 𝜃

c‖2, (11.9)

where e ∶ Θ → ℝ satisfies e(𝜃) → 0 if 𝜃 → 𝜃
c
. Multiply both sides of (11.9) by n to

get

n
(
g(�̂�) − g(𝜃c)

)
= 1

2

(√
n(�̂� − 𝜃

c)
)⊺

∇2g(𝜃c)
(√

n(�̂� − 𝜃
c)
)
+ e(�̂�)‖

√
n(�̂� − 𝜃

c)‖2.

By continuous mapping theorem ‖
√

n(�̂� − 𝜃
c)‖2 ⇒ ‖Z‖2 as n → ∞. Also, �̂� → 𝜃

c

in probability implies that e(�̂�) → 0 in probability and so does the remainder. We

conclude that

n
(
g(�̂�) − g(𝜃c)

)
⇒

1
2

Z⊺∇2g(𝜃c)Z as n → ∞.

By definition, g(�̂�) = H(x∗(�̂�), 𝜃c) ≥ H(x∗(𝜃c), 𝜃c) = g(𝜃c) for all �̂� ∈ Θ. If g is

twice differentiable at 𝜃
c
, the second-order necessary condition indicates ∇2g(𝜃c) ⪰

0, so (11.8) implies that n(g(�̂�) − g(𝜃c)) converges in distribution to a nonnegative

random variable, which is consistent with that the optimality gap should be nonneg-

ative. As a special case, if Θ ⊂ ℝ (11.8) can be rewritten as

2nI(𝜃c)
(
g(�̂�) − g(𝜃c)

)
⇒ g′′(𝜃c)𝜒2(1) as n → ∞.

Recall that x∗(𝜃) is defined as a solution to minx H(x, 𝜃) when 𝜃 ∈ U. By Proposi-

tion 11.1, �̂� gets closer to 𝜃
c
, and the gap between g(�̂�), the true performance of an

approximate solution x∗(�̂�), and g(𝜃c), the true optimal performance, converges to 0

at a rate faster than 1∕
√

n in probability. In fact, the rate is Op(1∕n) by (11.8). Ideally,

if g(�̂�) is available, we can construct the following asymptotically valid 100(1 − 𝛼)%
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CI for g(𝜃c).

lim
n→∞

ℙ
(

g(�̂�) −
𝛾1− 𝛼

2

2n
≤ g(𝜃c) ≤ g(�̂�) −

𝛾 𝛼

2

2n

)
= 1 − 𝛼, (11.10)

where 𝛾
𝛽

is the 𝛽th quantile of Z⊺∇2g(𝜃c)Z, i.e.

𝛾
𝛽
∶= inf

{
y ∣ 𝐏

(
Z⊺∇2g(𝜃c)Z ≤ y

)
≥ 𝛽

}
. (11.11)

The CI in (11.10) is particularly appealing for its shrinking rate 1∕n. Nevertheless,

we do not recommend using this CI for g(𝜃c) or g(�̂�) − g(𝜃c). The reason is that

g(�̂�) = H(x∗(�̂�), 𝜃c) contains the unknown parameter 𝜃
c
, so in practice we have to use

H(x∗(�̂�), �̂�) as an approximation. Unfortunately, our empirical experience in numer-

ical experiments shows that such approximation usually introduces a bias that domi-

nates the width of the CI, resulting in a poor coverage probability. Furthermore, even

if g is twice differentiable, it is difficult to estimate ∇2g(𝜃c) through simulation. We

will explain how to construct confidence intervals in more details in Sect. 11.4.

11.4.2 Asymptotic Distribution of the Performance
of Solutions

The next goal is to study the true performance of a given deterministic solution x̂,

a random solution x∗(�̂�), and the optimal solution x∗(𝜃c) (or simply written as x∗).

Their relationship will also help us construct CIs for g(�̂�) and g(𝜃c).

Assumption 11.2 H(x, ⋅) is differentiable at 𝜃
c

for all x ∈ X .

Assumption 11.2 is not too strong in practice, since a parametric family often

has a density that is differentiable w.r.t its parameters. Suppose f is the density of

F, then H(x, 𝜃) = ∫ h(x, 𝜉)f (𝜉; 𝜃)d𝜉. As long as h and f are well behaved so that we

can interchange differentiation and integration, differentiability of H w.r.t. 𝜃 can be

guaranteed. The following result follows directly from Lemma 11.2.

Proposition 11.2 Suppose Assumptions 11.1 and 11.2 hold. Then for a fixed x̂ ∈
X ,

√
n
(
H(x̂, �̂�) − H(x̂, 𝜃c)

)
⇒ 𝜕

𝜃
H(x̂, 𝜃c)⊺Z, Z ∼ N(0, [I(𝜃c)]−1), (11.12)

as n → ∞.

From (11.12) we have the following asymptotically valid 100(1 − 𝛼)% CI for

H(x̂, 𝜃c).

lim
n→∞

ℙ

(

H(x̂, �̂�) − z1− 𝛼

2

𝜎1√
n
≤ H(x̂, 𝜃c) ≤ H(x̂, �̂�) + z1− 𝛼

2

𝜎1√
n

)

= 1 − 𝛼, (11.13)
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where

𝜎1 ∶=
√

𝜕
𝜃
H(x̂, 𝜃c)⊺[I(𝜃c)]−1𝜕

𝜃
H(x̂, 𝜃c), (11.14)

and z1−𝛼∕2 is the (1 − 𝛼∕2)th quantile of the standard normal distribution.

With appropriate regularity conditions, it is also possible to study g(�̂�), the true

performance of a random approximate solution x∗(�̂�), where the randomness is

induced by �̂�. Let

ĝ(𝜃) ∶= H(x∗(𝜃), �̂�) (11.15)

be the estimated performance of x∗(𝜃). Using this bridging function ĝ, the asymptotic

distribution of g(�̂�) is characterized by the following proposition.

Proposition 11.3 Suppose Assumptions 11.1 and 11.2 hold, and 𝜕
𝜃
H(⋅, 𝜃c) is con-

tinuous at x∗(𝜃c). Then
√

n
(
ĝ(�̂�) − g(�̂�)

)
⇒ 𝜕

𝜃
H(x∗(𝜃c), 𝜃c)⊺Z, Z ∼ N(0, [I(𝜃c)]−1), (11.16)

as n → ∞.

Proof Expand H(x∗(�̂�), ⋅) around 𝜃
c

and multiply both sides by
√

n to get

√
n
(
ĝ(�̂�) − g(�̂�)

)
=
√

n
(
H(x∗(�̂�), �̂�) − H(x∗(�̂�), 𝜃c)

)

= 𝜕
𝜃
H(x∗(�̂�), 𝜃c)⊺[

√
n(�̂� − 𝜃

c)] +
√

n ⋅ o(‖�̂� − 𝜃
c‖)

Since x∗(⋅) is a continuous function and 𝜕
𝜃
H(⋅, 𝜃c) is continuous at x∗(𝜃c), the

continuous mapping theorem implies that x∗(�̂�) → x∗(𝜃c) in probability and thus

𝜕
𝜃
H(x∗(�̂�), 𝜃c) → 𝜕

𝜃
H(x∗(𝜃c), 𝜃c) in probability. Similar to the proof of Proposition

11.1, the final result follows from that the remainder scaled by
√

n converges to 0 in

probability. ⊓⊔

As a result, we have the following asymptotic 100(1 − 𝛼)% CI for g(�̂�).

lim
n→∞

𝐏
(

ĝ(�̂�) − z1− 𝛼

2

𝜎2√
n
≤ g(�̂�) ≤ ĝ(�̂�) + z1− 𝛼

2

𝜎2√
n

)

= 1 − 𝛼, (11.17)

where

𝜎2 ∶=
√

𝜕
𝜃
H(x∗(𝜃c), 𝜃c)⊺[I(𝜃c)]−1𝜕

𝜃
H(x∗(𝜃c), 𝜃c). (11.18)

Lastly, the asymptotic distribution of a random solution’s estimated performance

ĝ(�̂�), is given by the next proposition.

Proposition 11.4 Suppose Assumption 11.1 holds and H is differentiable at
(x∗(𝜃c), 𝜃c). Then

√
n
(
ĝ(�̂�) − g(𝜃c)

)
⇒ 𝜕

𝜃
H(x∗(𝜃c), 𝜃c)⊺Z, Z ∼ N(0, [I(𝜃c)]−1). (11.19)
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Proof Note that ĝ(�̂�) − g(𝜃c) = H(x∗(�̂�), �̂�) − H(x∗(𝜃c), 𝜃c), where the two terms in

the difference can be viewed as the function H(x∗(𝜃), 𝜃) ∶ 𝜃 ↦ H evaluated at �̂� and

𝜃
c
, respectively. By chain rule and the first-order necessary condition,

∇
𝜃
H(x∗(𝜃c), 𝜃c) = 𝜕xH(x∗(𝜃c), 𝜃c)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=0

∇x∗(𝜃c) + 𝜕
𝜃
H(x∗(𝜃c), 𝜃c) = 𝜕

𝜃
H(x∗(𝜃c), 𝜃c). (11.20)

The rest follows from Lemma 11.2. ⊓⊔

Proposition 11.4 is a special case of a result in stochastic programming based

on Hadamard directional differentiability (see Theorem 3.2 in Shapiro 1991). We

remind the reader that

g(⋅) ∶= H(x∗(⋅), 𝜃c), ĝ(⋅) ∶= H(x∗(⋅), �̂�),

i.e., g(⋅) is the true performance of x∗(⋅), ĝ(⋅) is its estimated performance, and in par-

ticular g(𝜃c) is the true optimal value. Now, we summarize from Propositions 11.2–

11.4, the triangular relation between ĝ(�̂�), g(�̂�) and g(𝜃c) as follows:

1.
√

n
(
g(�̂�) − g(𝜃c)

)
⇒ 0

2.
√

n
(
ĝ(�̂�) − g(�̂�)

)
⇒ 𝜕

𝜃
H(x∗(𝜃c), 𝜃c)⊺Z

3.
√

n
(
ĝ(�̂�) − g(𝜃c)

)
⇒ 𝜕

𝜃
H(x∗(𝜃c), 𝜃c)⊺Z

It can be seen that (ĝ(�̂�) − g(�̂�)) and (ĝ(�̂�) − g(𝜃c)) have the same asymptotic dis-

tribution because (g(�̂�) − g(𝜃c)) goes to 0 faster than the other two differences. This

means the asymptotic CIs for g(�̂�) and g(𝜃c) will be the same, i.e., we cannot distin-

guish g(�̂�) and g(𝜃c) statistically when we only consider first-order Taylor expansion.

In theory, we can expand H to higher orders to distinguish g(�̂�) and g(𝜃c). However,

not only would this require higher order differentiability on H, it is also hard to accu-

rately estimate the higher order derivatives using simulation. Furthermore, the CIs

for g(�̂�) and g(𝜃c) should account for the fact that g(�̂�) is an upper bound of g(𝜃c),
which further complicates the issue. For these reasons, we acknowledge the restric-

tion of the delta method and will not attempt to account for the optimality gap, i.e.,

we will use the same CIs for g(�̂�) and g(𝜃c) in the numerical experiment.

Another restriction of the delta method is that it only relies on the local perfor-

mance of a function, thus it can only characterize those performance measures that

do not require global properties of the function. For example, the asymptotic distri-

bution of (ĝ(�̂�) − g(�̂�)) depends only on the structure of g on a small neighborhood

of 𝜃
c
. If we use the delta method to study the mean or the variance of (ĝ(�̂�) − g(�̂�)),

without appropriate global assumptions on g (such as boundedness) and on �̂� (such

as uniform integrability), the remainder term in Taylor expansion may not converge

in L2
as n → ∞.
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11.4.3 Multiple Sources of Stochastic Uncertainty

In all previous sections, the stochastic uncertainty in the simulation model is sum-

marized by a random vector 𝜉, where the input data for estimating 𝜉’s distribution are

essentially i.i.d. copies of 𝜉. In more general settings, 𝜉 consists of several subvectors,

where each one of them represents an independent source of stochastic uncertainty.

For example, a queueing model may have 𝜉 = (𝜉1, 𝜉2), where 𝜉
1

is the customer

arrival time and 𝜉
2

is the service time. More generally, in this section we consider

𝜉 = (𝜉1, 𝜉2,… , 𝜉
l), where the cumulative distribution function (c.d.f.) of each 𝜉

i
is

given by Fi(⋅; 𝜃c
i ).

Assumption 11.3 The random vectors 𝜉
1
, 𝜉

2
,… , 𝜉

l
are independent, and their

datasets are also independent across different 𝜉
i
’s.

Assumption 11.3 implies that the input models are mutually independent across dif-

ferent sources of stochastic uncertainty. Now, the distribution of 𝜉 is given by

F(𝜉; 𝜃c) ∶=
l∏

i=1
Fi(𝜉i; 𝜃c

i ), (11.21)

where 𝜃
c ∶= (𝜃c

1,… , 𝜃
c
l )

⊺
. In principle, we can still view 𝜉 as a single source of sto-

chastic uncertainty with distribution F(⋅; 𝜃c). However, the delta method cannot be

applied directly, because for any two sources of stochastic uncertainty, the sizes of

their datasets can be different. Let �̂�ini
denote the MLE for 𝜃

c
i when the data of 𝜉

i
is

of size ni, and let n =
∑l

i=1 ni be the total size of the input data. Then, the MLE for 𝜃
c

is given by �̂�n ∶= (�̂�1ni
, �̂�2ni

,… , �̂�lnl
)⊺. The classical delta method does not account

for multiple ni’s, so in order to establish asymptotic distributions for H(x̂, 𝜃c), g(�̂�)
and g(𝜃c), we need to assume that ni’s go to infinity in some pattern.

Assumption 11.4 ni = win,
∑l

i=1 wi = 1, and wi > 0 for all i.

With Assumption 11.4, we have ni → ∞ for all i as n → ∞, ensuring the asymptotic

normality for each �̂�ini
. Of course, in practice it is very unlikely for ni to increase in

such a special pattern. But we can view the real data as a snapshot of the data col-

lection process, where each ni grows proportionally to n and the ratio is determined

by ni∕n. Under Assumption 11.4, we have

√
n(�̂�n − 𝜃

c) =
√

n

⎛
⎜
⎜
⎜
⎜
⎝

�̂�1n1 − 𝜃
c
1

�̂�2n2 − 𝜃
c
2

⋮
�̂�lnl

− 𝜃
c
l

⎞
⎟
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

1
√

w1

√
n1
(
�̂�1n1 − 𝜃

c
1
)

⋮
1
√

wl

√
nl
(
�̂�lnl

− 𝜃
c
l

)

⎞
⎟
⎟
⎟
⎠

, (11.22)

where each component converges in distribution to N(0, [Ii(𝜃c
i )]

−1∕wi) as n → ∞.

By the independence of �̂�ini
’s, we can show (using characteristic function) that
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√
n
(
�̂�n − 𝜃

c) ⇒ Z̃, where Z̃ ∼ N(0, [Ĩ(𝜃c)]−1) and

Ĩ(𝜃c) ∶=
⎛
⎜
⎜
⎝

w1I1(𝜃c
1)

⋱
wlIl(𝜃c

l )

⎞
⎟
⎟
⎠

(11.23)

is a block diagonal matrix. Since the asymptotic normality of �̂�n is maintained,

Propositions 11.1–11.4 and the CIs remain valid as long as we substitute Z and I
with Z̃ and Ĩ, respectively.

To gain a little more insight, we explicitly compute the CI for H(x̂, 𝜃c) as an exam-

ple. In particular, the variance of the asymptotic distribution is now given by

�̃�
2 ∶= 𝜕

𝜃
H(x̂, 𝜃c)⊺[Ĩ(𝜃c)]−1𝜕

𝜃
H(x̂, 𝜃c), (11.24)

which, by partitioning 𝜕
𝜃
H(x̂, 𝜃c) as (𝜕

𝜃1
H(x̂, 𝜃c),… , 𝜕

𝜃l
H(x̂, 𝜃c))⊺, is equal to

l∑

i=1

1
wi

𝜕
𝜃i

H(x̂, 𝜃c)⊺[Ii(𝜃c
i )]

−1
𝜕
𝜃i

H(x̂, 𝜃c). (11.25)

Let

�̃�
2
i ∶= 𝜕

𝜃i
H(x̂, 𝜃c)⊺[Ii(𝜃c

i )]
−1
𝜕
𝜃i

H(x̂, 𝜃c), (11.26)

and define a function

Hi(𝜃i) ∶= H(x̂, 𝜃) ∣
𝜃=(𝜃c

1,…,𝜃i,…,𝜃
c
l )
, (11.27)

i.e., Hi is just H evaluated at (x̂, 𝜃) where each component of 𝜃 coincides with 𝜃
c

except for the ith component. Then �̃�
2
i is exactly the variance of the asymptotic dis-

tribution of
√

n
(
Hi(𝜃i) − Hi(𝜃c

i )
)
, and it depends on two terms: (i) the Fisher infor-

mation Ii(𝜃c
i ) that captures the uncertainty of the MLE; (ii) the partial derivative

𝜕
𝜃i

H(x̂, 𝜃c) that captures the sensitivity of the optimization problem to the estima-

tion error of 𝜃
c
. Now the normalized asymptotic standard deviation is

�̃�
√

n
=

√√√√
l∑

i=1

1
win

�̃�
2
i =

√√√√
l∑

i=1

1
ni
�̃�
2
i (11.28)

since ni = win. Thus, in a very loose sense, the normalized asymptotic variance

�̃�
2∕n =

∑l
i=1 �̃�

2
i ∕ni, where each �̃�

2
i ∕ni can be viewed as the individual contribution

of the ith input model to the total input uncertainty in simulation optimization. Note

that for a fixed �̃�i the smaller ni is, the larger the variance �̃�
2
i ∕ni becomes and hence a

greater impact on �̃�
2∕n. This agrees with our intuition that the total input uncertainty

often can be attributed to those input models that are estimated from small datasets.
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11.4.4 Constructing Confidence Intervals

In the derivation of the theoretical CIs, we do not consider the effect of stochastic

uncertainty. This may not be an issue if we can run a large number of replications

to average out the stochastic noise. However, if the simulation is expensive and we

only have a limited computational budget, the stochastic uncertainty will dominate

the input uncertainty, and ignoring the stochastic uncertainty will lead to a poor

coverage probability for the CIs. Therefore, it is sometimes necessary to account for

the stochastic uncertainty when constructing CIs.

For simplicity, we will illustrate the idea through the single source case, but it can

be easily extended to the multiple source case. First of all, the CIs given by (11.13)

and (11.17) both involve quantities that must be estimated. The CI for H(x̂, 𝜃c) is

(

H(x̂, �̂�) − z1− 𝛼

2

𝜎1√
n
, H(x̂, �̂�) + z1− 𝛼

2

𝜎1√
n

)

, (11.29)

where

𝜎1 =
√

𝜕
𝜃
H(x̂, 𝜃c)⊺[I(𝜃c)]−1𝜕

𝜃
H(x̂, 𝜃c). (11.30)

Since we do not know 𝜃
c
, we can only approximate 𝜕

𝜃
H(x̂, 𝜃c) with 𝜕

𝜃
H(x̂, �̂�), and

approximate I(𝜃c) with I(�̂�). Similarly, the CI for g(�̂�) and g(𝜃c) is

(

ĝ(�̂�) − z1− 𝛼

2

𝜎2√
n
, ĝ(�̂�) + z1− 𝛼

2

𝜎2√
n

)

, (11.31)

where

𝜎2 =
√

𝜕
𝜃
H(x∗(𝜃c), 𝜃c)⊺[I(𝜃c)]−1𝜕

𝜃
H(x∗(𝜃c), 𝜃c). (11.32)

In practice we will approximate ĝ(�̂�) with H(x̂, �̂�), 𝜕
𝜃
H(x∗(𝜃c), 𝜃c) with 𝜕

𝜃
H(x̂, �̂�),

and I(𝜃c) with I(�̂�). When �̂� is close enough to 𝜃
c

such that �̂� ∈ U, if the problem has

a unique global optimum, then x∗(�̂�) is exactly x̂. Otherwise, there is no theoretical

guarantee on the quality of such an approximation, and we do not recommend using

this CI when the size of input data is too small (e.g., less than 20).

Notice that after approximation the CIs for H(x̂, 𝜃c) and g(𝜃c) both reduce to the

same empirical CI. This inability to distinguish different CIs is due to the difficulty

in estimating 𝜃
c

and x∗(𝜃c). So in implementation the following CI is the only CI we

can compute. (

H(x̂, �̂�) − z1− 𝛼

2

�̂�
√

n
, H(x̂, �̂�) + z1− 𝛼

2

�̂�
√

n

)

, (11.33)

where
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�̂� =
√

𝜕
𝜃
H(x̂, �̂�)⊺[I(�̂�)]−1𝜕

𝜃
H(x̂, �̂�) (11.34)

To compute the CI (11.33), we can compute the Fisher information I(�̂�) analytically

since we know the explicit form of F. Also, H(x̂, �̂�) can be estimated by the sample

mean

Ĥ(x̂, �̂�) = 1
N

N∑

i=1
h(x, 𝜉i), (11.35)

where 𝜉i’s are i.i.d. samples drawn from F(⋅; �̂�). However, Ĥ(x̂, �̂�) is subject to sto-

chastic uncertainty since N is finite, which leads to an error possibly dominating the

CI’s half-width, and the coverage probability will be way below the target value.

To account for this error, one way is to construct a CI for H(x̂, �̂�) and then com-

bine it with the original CI (11.33). The central limit theorem provides the following

asymptotic 100(1 − 𝛼)% CI for H(x̂, �̂�).

lim
N→∞

𝐏
(

Ĥ(x̂, �̂�) − z1− 𝛼

2

𝜎h√
N

≤ H(x̂, �̂�) ≤ Ĥ(x̂, �̂�) + z1− 𝛼

2

𝜎h√
N

)

= 1 − 𝛼,

where

𝜎h ∶= Var (h(x, 𝜉)) , 𝜉 ∼ F(⋅; �̂�)

and 𝜎h can be estimated via the sample variance. By Boole’s inequality we have the

following merged CI.

(

Ĥ(x̂, �̂�) − z1− 𝛼

4

𝜎h√
N

− z1− 𝛼

4

�̂�
√

n
, Ĥ(x̂, �̂�) + z1− 𝛼

4

𝜎h√
N

+ z1− 𝛼

4

�̂�
√

n

)

(11.36)

Since (11.36) is the combination of two CIs, it is likely to result in over coverage.

Now, we are left to compute 𝜕
𝜃
H(x̂, �̂�). By definition,

𝜕
𝜃
H(x̂, �̂�) = 𝜕

𝜕𝜃 ∫
h(x̂, 𝜉)F

�̂�
(d𝜉),

where F
𝜃

is short for F(⋅; 𝜃). In a general case where F may not have a density, we

can use finite difference to estimate this partial derivative. When F has a density that

is differentiable w.r.t. its parameters, we can use the likelihood ratio (LR) method to

estimate 𝜕
𝜃
H(x̂, �̂�), i.e.,
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1
N

N∑

i=1
h(x, 𝜉i)

𝜕
𝜃
f (𝜉i; 𝜃)

f (𝜉i; 𝜃)
, 𝜉i ∼i.i.d. f (⋅; 𝜃) (11.37)

is an unbiased and strongly consistent estimator for 𝜕
𝜃
H(x, 𝜃). We refer the reader

to Rubinstein and Shapiro (1993) for extensive discussions about the conditions of

applying LR and the associated performance guarantees. Compared with the finite

difference method computing (11.37) requires no extra simulation. Indeed, the com-

putation of CI involves estimating H(x̂, �̂�) using multiple replications, so we always

have a stream of i.i.d. observations of h available. The only thing we need to compute

is the likelihood ratio, which takes very little computational cost. Consequently, by

taking advantage of the problem structure the likelihood ratio approach accomplishes

the same goal more efficiently.

11.4.5 Numerical Illustration: Comparison of Confidence
Intervals

To demonstrate the performance of the proposed CIs, we revisit the newsvendor

problem mentioned in Sect. 11.1.1. Recall that the cost function is

h(x, 𝜉) = cx − pmin(x, 𝜉),

where c is the unit cost, p is the unit price, and 𝜉 is the demand. Following the

same settings as in Sect. 11.1.1, we set p = 2, c = 1 and assume 𝜉 is exponentially

distributed with rate 20. For a given 𝜃, the closed forms of the objective function and

the optimal solution are given as follows.

H(x, 𝜃) = cx −
p
𝜃
(1 − e−𝜃x), x∗(𝜃) = 1

𝜃
ln
(p

c

)
.

To compare the CIs we proposed, we use 10,000 replications to estimate their cover-

age probabilities and average CI widths. Figure. 11.2 summarizes the performance

of the following CIs.

1. Opt CI: the CI for g(𝜃c) (i.e., H(x∗(𝜃c), 𝜃c)) given by (11.33);

2. Approx CI: the CI for g(�̂�) (i.e., H(x∗(�̂�), 𝜃c)) given by (11.33);

3. Opt-e CI: implementing the opt CI using a small replication number N = 100,

where ‘e’ stands for error;

4. Approx-e CI: implementing the approx CI using a small replication number N;

5. Opt-m CI: the CI for g(𝜃c) given by (11.36), where ‘m’ stands for merge;

6. Approx-m CI: the CI for g(�̂�) given by (11.36);
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Fig. 11.2 Performance of CIs

First of all, observe that the Opt CI attains the target probability, but the Approx

CI is a little below the target. This is because we use the same CI for g(𝜃c) and

g(�̂�) while there is a difference between them. Second, the coverage probabilities of

the Opt-e CI and the Approx-e CI decreases as n increases, because with only 100
replications the simulation incurs a large stochastic uncertainty that dominates the

input uncertainty. Finally, the Opt-m CI and the Approx-m CI take into account the

stochastic uncertainty and are able to avoid under coverage, though at the cost of

larger widths and over coverage since we are merging two CIs via Boole’s inequality

in (11.36).

11.5 Simulation Optimization Under Input Uncertainty

In this section we attempt to address the second question raised in Sect. 11.2, i.e., how

to “optimize” the simulation system when taking into account input uncertainty. As

illustrated in the newvendor example, the optimal solution under the estimated input

model may perform poorly for the actual system. Robust optimization tries to hedge

against the extreme possible scenarios by optimizing the worst-case performance. In

our setting, the distributionally robust optimization (DRO) approach optimizes the

system under the worst-case input model scenario, i.e.,

min
x∈X

max
𝜃∈Θ̃

H(x, 𝜃),

where Θ̃ is an ambiguity set that includes possible input parameter values with cer-

tain probabilistic guarantee. The ideal choice of the ambiguity set should be the min-

imal set that achieves the target probabilistic guarantee, the ambiguity set should

also be tractable given the objective function and the constraint set are tractable.

Constructing such an ideal ambiguity set can be challenging or even impossible, and
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there have been various ways to construct different ambiguity sets (see Sect. 11.3 and

references therein). Despite the fact that DRO is a very popular approach, Hedging

against the worst case might be conceptually too conservative, especially when the

extreme case happens rarely in reality. Although the conservativeness can be alle-

viated by setting a smaller probabilistic guarantee for the ambiguity set, the robust

optimization approach still looks at the worst case within the ambiguity set and over-

looks the likelihood information we have about the possible scenarios. To accommo-

date more risk attitudes and take advantage of the likelihood information about the

input uncertainty, a new framework of Bayesian risk optimization has been recently

proposed by Zhou and Xie (2015) and Wu et al. (2016). In the following we will a

give a detailed overview of the Bayesian risk optimization approach.

11.5.1 Bayesian Risk Optimization

Recall that we are given 𝜓
n = (𝜉1,… , 𝜉n), which are n i.i.d. data from F(⋅; 𝜃c). To

estimate 𝜃
c
, we take a Bayesian viewpoint and assume that 𝜃

c
is a realization of a

belief r.v. 𝜃, whose distribution follows a chosen prior 𝜋0(⋅). The Bayesian posterior

distribution 𝜋n(⋅) is given by

𝜋n(𝜃) ∶= p(𝜃|𝜓n) ∝ 𝜋0(𝜃)p(𝜓n|𝜃),

where p(𝜓n|𝜃) is the likelihood of data 𝜓
n
, and the notation ∝ denotes equivalence

up to a normalization constant. The Bernstein–von Mises theorem (also known as

the Bayesian central limit theorem, see Gelman et al. 2014) ensures that under some

regularity conditions (notably that 𝜃
c

is an interior point of Θ), as the data size

n → ∞, the posterior distribution approaches normality with mean 𝜃
c

and variance

{nI(𝜃c)}−1, where I(𝜃c) is the Fisher information at 𝜃
c
. It implies the posterior dis-

tribution will become more and more concentrated on the true parameter value 𝜃
c

as data size n increases. It is consistent with our intuition that the input uncertainty

should decrease as we have more input data, and in the extreme case when we have

an infinite amount of input data we should recover the true input distribution.

The posterior distribution 𝜋n(⋅) characterizes the probabilistic structure over the

parameter space Θ based on available data and the chosen prior. Let 𝜃n denote a r.v.

that follows the posterior distribution 𝜋n. The Bayesian risk formulation for simula-

tion optimization is as follows:

min
x∈X

𝜌
{

H(x, 𝜃n)
}
, (11.38)

where 𝜌 is a risk measure that maps the random variable H(x, 𝜃n) (induced by the

r.v. 𝜃n) to an extended real number, and thus measures the risk of H(x, 𝜃n) due to

the uncertainty in 𝜃n. Generally speaking, a risk measure satisfies the following two

conditions Hans and Schied (2002): (i) monotonicity: for two r.v.s X and Y , X ≤ Y
almost surely (a.s.) implies 𝜌(X) ≤ 𝜌(Y); (ii) translation invariance: for a r.v. X and
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a constant a ∈ ℝ, 𝜌(X + a) = 𝜌(X) + a. Numerous choices of risk measures can be

applied to (11.38), and here we consider the following formulations.

(i) Mean/Mean-variance with weight parameter c ≥ 0: minx∈X 𝐄
[
H(x, 𝜃n)

]
+

cVar
[
H(x, 𝜃n)

]
.

(ii) VaR (Value-at-Risk) with risk level 𝛼 ∈ (0, 1): minx∈X VaR
𝛼

[
H(x, 𝜃n)

]
.

(iii) CVaR (Conditional-Value-at-Risk) with risk level 𝛼 ∈ (0, 1): minx∈X CVaR
𝛼[

H(x, 𝜃n)
]
.

In particular, VaR and CVaR are two commonly used risk measures in financial

industry for controlling large losses. For a r.v. X, VaR
𝛼
(X) is defined as the 𝛼-quantile

of X, i.e., VaR
𝛼
(X) ∶= inf{t ∶ ℙ(X ≤ t) ≥ 𝛼}, and CVaR is defined as the average

large loss, i.e., CVaR
𝛼
(X) ∶= 1

1−𝛼
∫ 1
𝛼

VaRr(X)dr. Whenℙ(X = VaR
𝛼
(X)) = 0, CVaR

can also be written as a conditional expectation CVaR
𝛼
(X) ∶= 𝐄[X ∣ X ≥ VaR

𝛼
(X)].

To avoid unnecessary technicalities, we assume that CVaR can be written in the form

of conditional expectation. CVaR is a coherent risk measure Artzner et al. (1999) and

enjoys some nice properties such as convexity. Though not coherent, mean-variance

and VaR are also commonly-used risk measures. When the weight parameter c = 0,

the mean-variance formulation reduces to the risk-neutral mean formulation.

We point out the connection between the proposed framework (11.38) and some

existing formulations. The mean formulation parallels the Bayesian model averaging

approach taken by Zouaoui and Wilson (2003) and Chick (2001) for performance

evaluation, which averages out both input uncertainty caused by 𝜃 and stochastic

uncertainty caused by 𝜉. The VaR formulation, when 𝛼 set to be 100% and the pos-

terior distribution is assumed to have a bounded support Θ̃, reduces to DRO with

the ambiguity set Θ̃, i.e., minx∈X VaR100%H(x, 𝜃n) = minx∈X max
𝜃∈Θ̃ H(x, 𝜃). From

this viewpoint, DRO can be viewed as a special case of the Bayesian risk framework

by taking the risk measure 𝜌 as the worst-case measure. When 𝜌 is a coherent risk

measure such as CVaR, the proposed formulation can also be recast as a DRO with

an appropriately constructed ambiguity set. However, compared with constructing

ambiguity sets in DRO, adjusting the risk level 𝛼 of a chosen risk measure is prob-

ably a more intuitive and flexible way to accommodate the decision maker’s risk

preference.

11.5.1.1 Consistency of Objective Function and Optimal Solutions

To see the validity of the Bayesian risk optimization framework (11.38), we need to

answer two questions: (i) does the objective function 𝜌[H(x, 𝜃n)] converge (in certain

probabilistic sense) to the true objective function H(x, 𝜃c) as n → ∞? (ii) does the set

of minimizers converge (in certain probabilistic sense) to the minimizers of H(x, 𝜃c)
as n → ∞? Affirmative answers to these questions will give us assurance that the

Bayesian risk formulations approach the true problem when the size of input data

increases, and show that ideally when the input data size is infinity we will solve

exactly the true problem. Zhou and Xie (2015) showed pointwise convergence of
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𝜌[H(x, 𝜃n)] to the true objective function H(x, 𝜃c) in probability (F(⋅; 𝜃c)) as n → ∞.

Wu et al. (2016) strengthened the result and showed the convergence is in the almost

sure sense under slightly stronger regularity conditions, i.e., pointwise strong consis-

tency of 𝜌[H(x, 𝜃n)] with the true objective function H(x, 𝜃c). This result guarantees

the convergence for any given set of input data. Wu et al. (2016) further showed

that the optimal solution(s) of (11.38) converge to the true optimal solutions. More

specifically, let Sn be the set of optimal solutions of a risk formulation (11.38) when

we have n i.i.d. input data, and let S be the set of optimal solutions to (11.1). If Sn and

S are not singletons, the convergence of solutions will be in the mode of set conver-

gence, which is defined in terms of the following “distance” between Sn and S: for two

sets A and B in X , define the deviation of A from B as 𝔻(A,B) = supx∈A dist(x,B),
where dist(x,B) ∶= inf y∈B ‖x − y‖. Then, (Wu et al., 2016) has the following con-

vergence result under certain regularity conditions: 𝔻(Sn, S) → 0 a.s. (F(⋅; 𝜃c)) for

almost all 𝜃
c ∈ Θ possibly except for a subset of measure 0 relative to 𝜋0.

11.5.1.2 Asymptotic Normality and Insight of Bayesian Risk
Optimization

Another theoretical result established in Wu et al. (2016) is the asymptotic normality

of all the Bayesian risk optimization formulations under consideration. Specifically,

for a risk measure 𝜌 among the choices considered and a fixed x in X , we want

to know if the scaled difference in objective functions
√

n{𝜌[H(x, 𝜃n)] − H(x, 𝜃c)}
converges in distribution to some r.v. depending on x. Moreover, we want to find

out whether
√

n{𝜌[H(x, 𝜃n)] − H(x, 𝜃c)} converges weakly to a random function of

x. These results, similar to the classical central limit theorem, give the asymptotic

convergence rate and can be used to construct confidence intervals on the true per-

formance of a given solution and in particular the optimal solution.

Roughly speaking, if H is a well-behaved function, the asymptotic normality of

risk formulations is inherited from the asymptotic normality of the posterior distri-

bution. Specifically, we have the following asymptotic normality results for the risk

formulations under consideration (for technical details, we refer the reader to Wu

et al. 2016):

(i) Mean / Mean-Variance:
√

n
{
𝐄[H(x, 𝜃n)] + cVar[H(x, 𝜃n)] − H(x, 𝜃c)

}
⇒

N
(
0, 𝜎2

x
)
.

(ii) VaR:
√

n
{

VaR
𝛼
[H(x, 𝜃n)] − H(x, 𝜃c)

}
⇒ N (𝜎xΦ−1(𝛼), 𝜎2

x ).
(iii) CVaR:

√
n
{

CVaR
𝛼
[H(x, 𝜃n)] − H(x, 𝜃c)

}
⇒ N

(
𝜎x

1−𝛼
𝜙(Φ−1(𝛼)), 𝜎2

x

)
.

In (i)–(iii), N stands for a normal distribution, 𝜙 and Φ are the probability density

function (p.d.f.) and c.d.f. of a standard normal distribution, and

𝜎
2
x ∶= ∇

𝜃
H(x, 𝜃c)⊺[I(𝜃c)]−1∇

𝜃
H(x, 𝜃c),
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where ∇
𝜃
H(x, 𝜃c) is the sensitivity of H at 𝜃

c
, and I(𝜃c) is the Fisher information

matrix that characterizes the information that 𝜉 carries about 𝜃
c
. An immediate con-

sequence of (i)–(iii) is that we can construct confidence intervals (CIs) for the true

performance of solutions. More importantly, it reveals an important insight of the

proposed framework: the Bayesian risk formulations essentially capture the trade-
off between the expected performance and the variability of the actual performance.
We give more details below.

Take the VaR formulation as an example. The asymptotic normality result above

of the VaR formulation can be rewritten as

VaR
𝛼
[H(x, 𝜃n)] = H(x, 𝜃c) +

∇
𝜃
H(x, 𝜃c)⊺Z
√

n
+ Φ−1(𝛼)

𝜎x√
n
+ op

(
1
√

n

)

, (11.39)

where Z is a standard normal r.v., op(1∕
√

n) stands for a term whose product with
√

n
converges to 0 in probability (F(⋅; 𝜃c)) uniformly in x. The left-hand side of (11.39)

is the risk formulation we are minimizing, and the right-hand-side can be viewed

as the sum of the true objective H(x, 𝜃c) and some error terms. Compared with the

mean formulation, which has

𝐄[H(x, 𝜃n)] = H(x, 𝜃c) +
∇

𝜃
H(x, 𝜃c)⊺Z
√

n
+ op

(
1
√

n

)

,

we see that (11.39) has an extra deterministic bias term Φ−1(𝛼)𝜎x∕
√

n that vanishes

as n → ∞. So the VaR formulation is approximately equivalent to a weighted sum of

the posterior mean𝐄[H(x, 𝜃n)] and the bias term 𝜎x∕
√

n, where the weight of the bias

is Φ−1(𝛼). Even though the bias diminishes as n → ∞, it has an undeniable impact

on the VaR formulation when n is small. In particular, if n is not too large (e.g., 20)

and 𝛼 is large (e.g., 95%), it is possible for the bias term to dominate 𝐄[H(x, 𝜃n)] and

we are close to solving minx∈X 𝜎x∕
√

n.

Similar decomposition for the CVaR and mean-variance formulations can be

derived in the same way. In summary, we have the following decompositions of the

Bayesian risk formulations.

(i) Mean / Mean-Variance: 𝐄[H(x, 𝜃n)] + cVar[H(x, 𝜃n)] = 𝐄[H(x, 𝜃n)] + c 𝜎
2
x

n

+ op

(
1
n

)
.

(ii) VaR: VaR
𝛼
[H(x, 𝜃n)] = 𝐄[H(x, 𝜃n)] + Φ−1(𝛼) 𝜎x√

n
+ op

(
1√
n

)
.

(iii) CVaR: CVaR
𝛼
{H(x, 𝜃n)} = 𝐄[H(x, 𝜃n)] +

𝜙(Φ−1(𝛼))
1−𝛼

𝜎x√
n
+ op

(
1√
n

)
.

Therefore, the mean-variance, VaR, and CVaR formulations are approximately
equivalent to a weighted sum of the mean formulation and the half-width of the true
performance’s CI 𝜎x∕

√
n (or (𝜎x∕

√
n)2), i.e.,
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𝜌{H(x, 𝜃n)} ≈ 𝐄[H(x, 𝜃n)] + w
𝜎x√

n
(or 𝐄[H(x, 𝜃n)] + w

𝜎
2
x

n
),

where w, the weight of 𝜎x∕
√

n, is controlled by 𝛼 in the VaR and CVaR formu-

lations, and the weight of (𝜎x∕
√

n)2 is controlled by the constant c in the mean-

variance formulation. Interestingly, similar insight has also been observed for DRO

by Gotoh et al. (2015), which shows that a large class of robust empirical opti-

mization problems are essentially equivalent to a mean-variance formulation; More

remotely related, Lam (2016) showed the robust sensitivity of an expectation with

respect to the unknown distribution can be also decomposed as the mean plus a term

depending on the standard deviation.

11.5.1.3 Illustrative Example: Insight of Bayesian Risk Optimization

Again, we use the newsvendor problem as an illustrative example. Under the same

settings as in Sect. 11.4.5, the limiting standard deviation 𝜎x can be computed as

𝜎x =
p
𝜃c
|||1 − (1 + 𝜃

cx)e−𝜃x||| .

which has a unique minimizer 0 onX = ℝ+
. This means that there is no input uncer-

tainty when x = 0. Indeed, the expected loss is always 0 if we do not order anything,

regardless of the demand distribution. Our goal is to examine how x∗n respond to the

changes of 𝛼 and c when n is fixed at 20. We draw 1,000 i.i.d. datasets to estimate

the distribution of x∗n, and the risk formulations are solved using sample average

approximation (SAA) Kleywegt et al. (2001). The histograms of x∗n for the cases of

mean-variance, VaR, and CVaR are displayed in Fig. 11.3.

Compared with the left plot of Figure 11.1, we can see that the optimal solutions

x∗n of the risk formulations all shift towards 0, i.e., the minimizer of 𝜎x. Moreover, as

𝛼 and c increase, the more the average value of x∗n shifts towards 0. This aligns with

our insights that the mean-variance, VaR and CVaR formulations put more weight on

𝜎x∕
√

n when 𝛼 and c are larger. However, the magnitude of shift is not very signif-

icant. The reason is that 𝜎x∕
√

n is dominated by 𝐄[H(x, 𝜃n)], and we have to make

the weight very large to see x∗n approaching 0. Nevertheless, the VaR and CVaR

formulations have a limited ability of increasing the weight of 𝜎x∕
√

n due to the

light-tailedness of normal distribution. This turns out to be desirable in this example,

because a solution close to 0 is too conservative: the main purpose of selling news-

papers is to make profit rather than control loss. Therefore, if the goal is to achieve

a balance between expected performance and the risk of actual performance, then

more effort should be devoted to exploring the structure of the objective function

and choosing an appropriate risk formulation as well as the associated parameters.
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Fig. 11.3 Optimal solution x∗n to Bayesian risk formulations with different 𝛼’s or c’s

11.6 Empirical Optimization Versus Bayesian Risk
Optimization

The previous two sections respectively studied the empirical optimization approach

and the Bayesian risk optimization approach to simulation optimization under input

uncertainty, and we will compare them in this section. These two approaches deal

with input uncertainty quite differently: the empirical optimization approach replaces

the unknown input model with an estimated one, while the Bayesian risk optimiza-

tion approach seeks to characterize and control the risk associated with input uncer-

tainty using Bayesian posterior distributions. Although they both solve approximate

versions of the underlying true problem and enjoy certain asymptotic performance

guarantees, it is of more practical interest to compare and understand their behav-

ior in the finite-sample case. More specifically, we would like to see how solutions

acquired from solving these formulations perform when plugged back into the true

objective function. To do so, we use two numerical examples to demonstrate the

strengths and the limitations of each formulation. The first example is an M/M/1

queue control problem from Zhou and Xie (2015), and the other is the newsven-

dor problem we have been using in the previous sections. In the first example, we

are asked to minimize the cost for an M/M/1 queue. The arrival rate is 𝜃
c
, and the

decision variable is the service rate x. The objective function is

H(x, 𝜃c) = min
{ 1

x − 𝜃c + cx,M
}
1{x>𝜃c} + M1{x≤𝜃c}, x > 0,

where c is the unit cost of service rate, M is a large positive number and 1{⋅}
denotes an indicator function. Note that 1∕(x − 𝜃

c) is the steady-state average cus-

tomer waiting time and M is an upper bound on the total cost. One can check that
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x∗(𝜃c) = 𝜃
c + 1∕

√
c is the unique minimizer. We set 𝜃

c = 10, c = 1 and M = 500,

so the true optimal solution is 11 and the optimal true objective value is 12. Every

formulation is applied to this problem over 100 replications, where each replication

uses an independent input dataset of size 20. The variance’s weight is 0.01 in the

mean-variance formulation. We plot the histograms of the solutions and their corre-

sponding true performance in Fig. 11.4a, b, the widths of true performance’s CIs in

(c), and the objective graphs (based on a random dataset) in Fig. 11.4d. A number of

observations are made as follows.

(i) The empirical optimization yields solutions that are closest to the true optimal

solution 11, whereas all the risk formulations have solutions roughly centered

around 20.

(ii) However, the true objective values of empirical optimal solutions either take

small values (≤ 30) or go off to 500, in contrast to the risk formulations which

mostly concentrate between 10 to 30. Also, all four risk formulations have

much narrower CIs than empirical optimization. Indeed, since ∇H(x, 𝜃c) =
(x − 𝜃

c)−2, the farther a solution is to the right of 11, the smaller ∇H will be.

This leads to a smaller CI width.

(iii) It can be seen from Fig. 11.4d that the true objective function is steep on the

left of 11 and rather flat on the other side. Thus, the error in estimating 𝜃
c

may

land an empirical optimal solution on the steep part and result in a big cost.

The objective graphs of the risk formulations, though similar in shape to the

true objective, attain their minima on the flat side of the true objective, lending

robustness to their solutions against input uncertainty.

A main message from the M/M/1 example is that if the true objective function

has special structures (e.g., different slopes around the optimal solution), and if the

risk formulations “reshape” the objective in such a way that the resulting solutions

concentrate on a relatively flat area, then one can expect more robustness compared

with the empirical optimization approach. Due to the dependence on the problem

structure, robustness in such sense is not guaranteed in practice. To see this, we apply

the formulations to the newsvendor problem under the same settings as in previous

sections. Based on 500 independent replications, the histograms of the solutions,

their true objective values and the CI widths of the solutions’ true performance are

plotted in Fig. 11.5. We may see that

(i) Compared with the empirical and the mean formulation, the mean-variance,

VaR, and CVaR formulations tend to produce solutions closer to 0, resulting

in overall larger and more widely spread expected losses. As is explained in

Sect. 11.5.1.3, this is because those three formulations aim to find a solution

in between the optimal solution and the solution whose objective value is least

sensitive to input uncertainty, where the latter, in this case, is 0 and is far from

the optimum.

(ii) More insights about the performance of risk formulations can be developed

from the objective graphs shown in Fig. 11.5c. It can be seen that the true objec-

tive is roughly symmetric around the optimum, and there is no drastic change of

slopes. Without structural advantage, risk formulations fail to exhibit the same

type of robustness as in the M/M/1 queue example.
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(a) Solutions (b) Objective values

(c) CI widths
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(d) Objective graphs

Fig. 11.4 M/M/1 queue problem

(iii) Nevertheless, if we compute the CIs for the solutions’ true performance, it

is obvious that empirical optimization has a much wider CI than the mean-

variance, VaR, and CVaR formulations, which can be seen for both examples

(Fig. 11.4c and Fig. 11.5c). This is not surprising since the CI width is propor-

tional to |𝜕
𝜃
H(x, 𝜃c)|, and the further a solution is from 0, the larger this value

becomes and the wider its CI gets.

We must therefore note that the Bayesian risk formulations, statistically speaking,

do not necessarily produce solutions with near-optimal true performance. Rather,

they account for the uncertainty about a solution’s true performance, and use the CI

width as a measure of such uncertainty. In particular, the Bayesian risk optimization

approach tries to avoid such a scenario where a solution has temptingly good per-

formance under the estimated input model, but has a wide CI and later turns out to

perform badly under the true input model. In other words, by possibly giving up some
good true performance, we gain more confidence about the actual performance of
a solution. This is the robustness that the Bayesian risk optimiation approach can

provide us.
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(a) Solutions (b) Objective values
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(d) Objective graphs

Fig. 11.5 Newsvendor problem

11.7 Future Directions

This chapter studies how the input uncertainty affects the solution performance in

simulation optimization, and reviews a Bayesian risk optimization approach that cap-

tures the trade-off between the expected performance and the variability of the actual

performance. Our discussion suggests that even when there is input uncertainty, it is

possible to quantify and take into account its impact during optimization. However,

we have only touched the surface of this research topic, while many other related

problems still remain open. We briefly discuss some of them in the following.

1. Nonparametric input model. This chapter focuses only on the case of paramet-

ric input models. It is possible to extend the results in this chapter to the non-

parametric case, where the input distribution F lives in a general space. To use

the Bayesian risk optimization approach for nonparametric input models, one

might consider using the Dirichlet process as the nonparametric Bayesian model

(Ferguson 1973) in order to have a tractable posterior distribution over a general

support.
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2. Efficient algorithms for solving Bayesian risk formulations. Although the

Bayesian risk optimization approach in principle improves the robustness of a

solution, efficiently solving the Bayesian risk formulations remains a numerical

challenge. If the problem has differentiability or convexity, one possible approach

is to use stochastic approximation (a.k.a. stochastic gradient descent), but VaR

and CVaR formulations typically set the risk level 𝛼 close to 1, which requires

a large sample size to get a good estimate of the gradient. It is then of interest

to explore the structure of the formulations to see if they can be converted into

more tractable forms. If gradient information is not available, other methods such

as model-based algorithms (see, e.g., Hu et al. (2012); Zhu et al. (2016)) may be

more promising choices.

3. Learning input model during optimization. Input data are usually deemed

expensive and it is often assumed that one can only work with the data s/he is

given. In reality, however, there are many scenarios where additional input data

can be collected, albeit at the expense of time or money. For example, a sales

manager can collect more sales data to learn the demand’s distribution better.

Therefore, a decision maker needs to balance the input uncertainty and the sto-

chastic uncertainty. On the one hand, “purchasing” more data may improve the

input model, but there will be less budget to run simulation; on the other hand, too

little input data results in a very inaccurate simulation model, and the error cannot

be simulated away. This trade-off between learning and optimization may lead

to interesting and practical algorithms for simulation optimization under input

uncertainty. Some preliminary work has been done under a fixed budget setting

see, e.g., Wu and Zhou (2017).
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Chapter 12
Parallel Ranking and Selection

Susan R. Hunter and Barry L. Nelson

Abstract The Winter Simulation Conference serves as the initial publication venue

for many advances in ranking and selection (R&S), including the recently developed

R&S procedures that exploit high-performance parallel computing. We formulate

a new stylized model for representing parallel R&S procedures, and we provide an

overview of existing R&S procedures under the stylized model. We also discuss why

designing R&S procedures for a parallel computing platform is nontrivial and spec-

ulate on the future of parallel R&S procedures. In this chapter, “parallel computing”

means multiple processors that can execute distinct simulations independently, rather

than vector or array processors designed to speed up vector-matrix calculations.

12.1 Introduction

The term Ranking and Selection (R&S) broadly refers to solution methods developed

to solve the R&S problem. The R&S problem is a stochastic optimization problem

in which the decision-maker wishes to choose the “best” among a finite set of design

points, or “systems,” when the performance of each system can only be observed

with error. The R&S problem can be considered a special case of the more general

simulation optimization (SO) problem, which is a (usually) nonlinear optimization

problem whose objectives and constraints, if present, can only be observed with error

as output from a stochastic simulation (see, e.g., Pasupathy and Ghosh 2013; Fu

2015 for overviews). Among SO problems, the R&S problem is unique in the sense

that it engenders interesting research questions only in the stochastic context: The

deterministic black-box analog of the R&S problem is complete enumeration. In

contrast, when the system performance measures are defined implicitly through a
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black-box stochastic simulation model, the decision-maker can only observe each

system’s performance by constructing an estimator whose precision depends on the

simulation budget expended. In this context, interesting methodological questions

arise. For example, two key questions are (a) how does one guarantee that at the end

of simulating, the estimated best system is truly the best system with high probability

and (b) how does one allocate a finite simulation budget across systems to efficiently

identify the best system? For more than 60 years, researchers have sought answers to

these questions, resulting in a large body of R&S literature. For overviews and entry

points into this literature, see Bechhofer et al. (1995), Gupta and Panchapakesan

(2002) for origins, and Goldsman and Nelson (1998), Kim and Nelson (2006b), and

Branke et al. (2007) for the stochastic simulation perspective.

R&S was originally developed by the statistics community during the 1950s,

1960s, and 1970s (Bechhofer 1954; Paulson 1964; Fabian 1964; Dudewicz and Dalal

1957; Rinott 1978), but following its appearance at the Winter Simulation Confer-

ence (WSC), the nexus of research shifted from the statistics community to the sto-

chastic simulation community sometime in the 1980s and 1990s. There were two

key reasons for this shift: (a) optimizing a function embedded in a stochastic simu-

lation was a natural goal for simulation practitioners, and early SO researchers bor-

rowed existing methods from the statistics community and (b) efficiency in R&S

often comes from sequential sampling and comparison of systems, and the barrier

to sequential algorithms was far lower in computer experiments than in the indus-

trial and biostatistics applications for which R&S was invented. Further, while the

statistics community was often concerned with having procedures for different (non-

normal) populations, the emphasis in the simulation community was on designing

procedures for larger and larger numbers of alternatives, with normality being plau-

sible due to averaging, e.g., via batch means (Schmeiser 1982).

During this shift, WSC becames a key venue joining the statistics and simula-

tion communities. To the best of our knowledge, R&S first appeared at WSC in a

1976 session entitled, “Statistical Basis for Selection Among Alternatives,” which

contained the work of Turnquist and Sussman (1976) and Dudewicz (1976). R&S

became an increasingly popular topic after Goldsman published a survey paper in

the 1983 WSC Proceedings (Goldsman 1983). Since then, WSC has served as the

initial publication venue for many key advances in the R&S literature, with the area

still active at WSC 2016 (e.g., Dong and Zhu 2016).

The significant advances in computing power over the last 40 years, and partic-

ularly the recent proliferation of parallel computing platforms, is one reason why

R&S is still an active research topic at WSC today.
1

Originally developed with ser-

ial computing platforms in mind, R&S procedures are now being redesigned for

deployment as parallel procedures—a surprisingly nontrivial endeavor. Serial R&S

procedures of the 1990s and early 2000s measure efficiency as the total number of

1
In this paper “parallel computing platform” means multiple processors that can independently

execute simulation experiments and communicate with each other via message passing or shared

memory. We use the term “processors” to refer to cores or threads that can complete computing

tasks, so the total number of processors is cores × (threads/core).
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simulation observations required on a single processor, ensure efficiency by being

fully sequential, and tend to work well when the number of systems is small. On

a parallel platform, appropriate efficiency measures include processor utilization,

wall-clock time, and monetary cost to rent processors. Fully sequential procedures

may require bottleneck-inducing synchronization. Further, while today’s computing

power ensures we can solve small problems fast, it should also enable us to solve

much bigger problems. Thus, parallel computing platforms require procedures that

minimize new measures of efficiency, guard against the bottlenecks that can arise

in a parallel setting and can handle a large number of systems. A handful of such

parallel R&S procedures exist; all have made their debut at WSC.

Since R&S was originally designed to select among a small number of categorial

or unordered alternatives, one may wonder, when do large R&S problems arise?

First, large problems with categorical choices arise naturally in some applications,

such as drug discovery and plant breeding. The respective goals in these applications

are to find the best drug molecule among many potential drug molecules (Negoescu

et al. 2011), and to find the best plant breeding pairs to produce a progeny population

with desirable properties (Hunter and McClosky 2016). Second, problems with a

very large but finite number of alternatives on an ordered space would seem to be

most naturally solved by using algorithms that can exploit the spatial structure, such

as R-SPLINE (Wang et al. 2013) or COMPASS (Hong and Nelson 2006; Xu et al.

2010). However, because of its simplicity and ability to provide a statistical guarantee

that the selected system is truly the global best, R&S is often a go-to method for

practitioners. For example, R&S can be applied to large problems that are created by

considering all feasible combinations of a set of decision variables. Xu et al. (2010)

describe a SO problem with 5006 feasible solutions obtained by considering all 500
possible values of 6 order-up-to levels in a supply chain problem. A characteristic of

such problems is that many (most) of the feasible solutions are substantially inferior

to the better ones, and R&S procedures can exploit this tendency. Even when a search

algorithm such as R-SPLINE or COMPASS is employed first, R&S can be used to

provide a statistical guarantee as to which of the visited solutions is the best (Boesel

et al. 2003).

In this chapter, we discuss the current state of the art in R&S for large prob-

lems solved on parallel computing platforms. We assume the reader is familiar with

serial R&S procedures, at a broad level. In rethinking R&S procedures for paral-

lel implementation, we provide a new stylized model for representing parallel R&S

methods (Sect. 12.2), discuss mathematical and computational formulations of exist-

ing serial R&S procedures under the stylized model (Sects. 12.3 and 12.4, respec-

tively), discuss design principles for efficiency and validity of parallel R&S proce-

dures (Sect. 12.5), discuss existing parallel R&S procedures (Sect. 12.6), and specu-

late on the future of parallel R&S procedures (Sects. 12.7 and 12.8).
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12.1.1 Problem Setting and Notational Conventions

R&S addresses the following SO problem: Let the true expected performances of

the k competing systems be denoted

𝜇1 ≤ 𝜇2 ≤ ⋯ ≤ 𝜇k−1 ≤ 𝜇k,

where a larger mean is better, and let S = {1, 2,… , k} denote the set of indices of all

systems. We refer to system k, or any system tied with system k, as the best. Often,

the best system is assumed to be unique, in which case 𝜇k−1 < 𝜇k. Recall that we

are unable to observe the true expected performances directly. Then suppose we are

given a simulation oracle that can provide us with random variables Yi1,Yi2,… ,Yin,

where Yir is a random variable representing the performance of system i on the rth

simulation replication, r = 1, 2,… , n, i ∈ S. For all systems i ∈ S, we estimate the

value of 𝜇i with a consistent estimator such as the sample mean Ȳi(n) ∶=
∑n

r=1 Yir∕n.

An R&S procedure is an algorithm that attempts to return the best system using

only the estimators of the expected system performances. In this chapter, the esti-

mators of the expected system performances after obtaining ni ≥ 1 simulation repli-

cations from each system i ∈ S are {Ȳi(ni)∶ i ∈ S}. We assume an R&S procedure

returns the system with the largest estimated mean as the estimated best system, so

that K̂ ∶= argmaxi∈{1,2,…,k}{Ȳi(ni)∶ i ∈ S} is the estimated best system. (See, e.g.,

Peng et al. 2016, for an example, in which a system other than the one with the largest

estimated mean is returned.) Since we may only assess each system with a finite com-

putational budget, there is always a positive probability that an R&S procedure will

return some system other than the best. Thus, R&S procedures are usually created

to satisfy some form of mathematical or statistical objectives, which we discuss in

Sect. 12.3.

12.1.2 Scope

We classify as R&S any procedures that include three key ingredients: (a) they are

applied to a finite number of systems whose expected performance can only be

observed with error as simulation output, (b) the procedure will simulate all of the

systems and construct consistent estimators of their expected performance, and (c)

the decision-maker wishes to select the best by comparing these systems to each

other. While we consider only the single-objective problem formulation, we note that

stochastically constrained and multiobjective versions of the R&S problem exist. For

example, see Andradottir and Kim (2010), Pasupathy et al. (2014) for the stochas-

tically constrained case and Lee et al. (2010), Feldman et al. (2015), Feldman and

Hunter (2016), Hunter et al. (2017) for the multiobjective case.

R&S is closely related to some versions of best-arm identification in stochas-

tic multi-armed bandit (MAB) problems; see Bubeck and Cesa-Bianchi (2012)
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and Jamieson and Nowak (2014). However, there are differences: MAB is often con-

cerned with online decision-making so as to accumulate the most reward, while R&S

is always an offline optimization problem. Perhaps more critically, the key assess-

ment of an MAB algorithm is its “big-O” computational complexity (convergence

rate) when selecting the best, while R&S is concerned with finite-time performance,

even when asymptotic methods are used in the analysis. As a result, MAB algo-

rithms tend to be simple, have few distribution-specific assumptions, and their com-

putational complexity is determined up to some unknown constants; as compared

to R&S that tries to exploit specific distributions to gain efficiency and to assure

validity even when unknown constants must be estimated. We focus exclusively on

R&S.

12.2 A Stylized Computational Model for R&S

Throughout this chapter, we use a stylized computational model to facilitate our dis-

cussion of both serial and parallel R&S procedures. In this section, we define and

discuss the stylized model.

We formulate a stylized computational model for parallel R&S procedures by

breaking all simulation and calculation tasks that must be completed during an R&S

procedure into jobs. All R&S procedures contain two primary tasks for processors

to complete: (a) performing simulation replications, and (b) calculations completed

after simulation replication output is obtained, such as comparing the performances

of systems to each other to select the estimated best. Thus we define job j as the

ordered list comprised of obtaining simulation replications and performing calcula-

tions,

Jj ∶= {(Qj, 𝛥j,Uj), (Pj,Cj)},

where

∙ Qj ⊆ S a set containing the indices of systems to be simulated;

∙ 𝛥j = {𝛥ij} specifies how many samples to take from each system i ∈ Qj;

∙ Uj is the assigned block of random numbers with which to perform the simulation

replications;

∙ Pj is a list of jobs whose termination must precede the calculation Cj, if any, and

∙ Cj is a list of non-simulation calculations or operations to perform.

We allow (Qj, 𝛥j,Uj) or (Pj,Cj) to be null, so that a job can consist of just simula-

tions or just calculations. Since Jj is ordered, we assume that the simulation replica-

tions in (Qj, 𝛥j,Uj) are completed before the calculation Cj begins. In the presence

of only one processor, the list of jobs is usually created and performed dynamically

by a single processor. In the presence of multiple processors, the list of jobs must

be coordinated to preserve precedence requirements. For example, some simulation

replications must be obtained from each system before their performances can be

compared to each other.
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When the number of processors p ≥ 2, we broadly assume that parallel algorithms

operate in what is known as a master–worker framework. In this framework, one

master processor coordinates the activities of one or more worker processors. The

workers execute jobs determined by the master, and report results back to the mas-

ter. Communication may occur through shared memory or via message passing. A

master–worker framework can also be implemented in multiple tiers, in which each

worker acts as a master to, and coordinates the tasks of, one or more sub-workers.

For simplicity and ease of exposition, we assume only one such tier for now.

Remark 12.1 We acknowledge the existence of various parallel computing archi-

tectures and frameworks for parallel algorithm design (see, e.g., Barlas and Kauf-

man 2015). We take a higher level approach that enables us to focus on broad R&S

procedure design concepts, instead of the details related to the underlying parallel

computing architecture.

When a master sends a job to a worker, we assume that all data required to do

the job is also transferred, or is otherwise accessible by shared memory. Likewise,

when a worker completes a task, we assume relevant data is transferred back to the

master. Ensuring efficient data transfer is an important part of designing parallel

algorithms; however for exposition, we suppress data transfer information in our

framework. Thus while a worker’s job may entail performing simulation replications

and calculating statistics such as a sample mean, we do not explicitly denote whether

the worker transfers just the sample mean back to the master, or the sample mean and

all data used to compute the sample mean.

In the master–worker framework, we assume the (possibly dynamic) list of jobs

J ∶= {Jj ∶ 1 ≤ j ≤ M},

is created and maintained by the master processor, where job 1 ≤ M ≤ ∞ is some

(possibly random) terminal job; M = ∞ denotes the list of jobs for a non-terminating

algorithm. When a worker processor completes a job or becomes idle, it communi-

cates any results back to the master processor and requests a new job. Henceforth,

let 0 < Tj < ∞ be the wall-clock time that job Jj finishes, so that

Te(J) = max
j=1,2,…,M

Tj

is the (possibly random) ending time of the procedure.

Remark 12.2 We assume the master creates jobs that can be sent to the workers for

execution. Some jobs, particularly jobs containing only calculations, may be exe-

cuted by the master. Since only the master creates jobs, we do not consider the cre-

ation of jobs to be a job.

In modern computing environments, R&S procedures may be completed by pur-

chasing processing power from a service. Since cores may often be purchased in

increments such as 4, 8, 16, 48, or 64, with the price per hour varying by the type
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of processing power provided, we formulate the general cost to purchase p proces-

sors for s time units as a function c(p, s). For a total budget b, we require c(p, s) ≤ b.

Define the function t(p, b) as the maximum amount of time we purchase on p proces-

sors, so that

t(p, b) ∶= max{s∶ c(p, s) ≤ b}.

12.3 Mathematical Formulations of Existing R&S
Procedures

Recall that because we cannot simulate every system infinitely often, upon termina-

tion, R&S procedures have some positive probability of selecting a system other than

the true best. However, most R&S procedures are designed to control this error prob-

ability. In this section, we formulate the common goals of existing R&S procedures

using the stylized model in Sect. 12.2.

First, we note that most R&S procedures are in some way concerned with the

optimality gap between the true best system and the estimated best system, 𝜇k − 𝜇K̂ .

We say that a correct selection (CS) event occurs if this optimality gap is zero, and

𝜇k = 𝜇K̂ . An ideal R&S procedure would always deliver a CS for any computational
budget n ≥ k. Since this ideal is impossible in the presence of noise, compromises

are made, and the chosen compromise affects the nature of the procedure. R&S pro-

cedures may be classified by a number of different approaches and compromises,

although these boundaries are not always sharp (see also Pasupathy and Ghosh 2013;

Dong and Zhu 2016):

Fixed-precision versus fixed-budget guarantee Fixed-precision procedures exe-

cute until some form of guarantee holds, usually on the optimality gap between

the selected and true best systems. Fixed-budget procedures attempt to allocate a

fixed computational budget in a way that minimizes a loss function that penalizes

an incorrect selection event.

Finite-sample versus asymptotic validity Finite-sample procedures provide

some provable guarantee within a finite sample size, such as achieved probabil-

ity of correct selection (PCS). Asymptotic validity procedures achieve guarantees

only in some meaningful limit.

Frequentist versus Bayesian guarantee Frequentist probabilistic guarantees are

averaged over (conceptually) repeated applications of the procedure. Bayesian

probabilistic guarantees are conditioned on the data and averaged over the sources

of parameter uncertainty.

In the next two sections, we discuss some of the standard compromises and

approaches for creating R&S procedures. Later, we argue that the relevant com-

promises may be affected by the decision to implement the procedure in a parallel

computing environment. In our discussion, we group procedures by whether they are

fixed-precision or fixed-budget procedures, which often, but not always, determines

the computational formulation of the R&S procedure, as we discuss in Sect. 12.4.
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12.3.1 Mathematical Formulation of Fixed-Precision
Guarantees

Ideally, fixed-precision R&S procedures are guaranteed to deliver the optimal solu-

tion with a pre-specified frequentist probability, which we denote by 1 − 𝛼 for

1 − 𝛼 ∈ (1∕k, 1). This guarantee is called the probability of correct selection (PCS)

guarantee, and is expressed as

ℙ{𝜇K̂ = 𝜇k} ≥ 1 − 𝛼.

If there are multiple optima, or several solutions with close performance, delivering

this guarantee can be computationally infeasible. As a result, making one of the

following additional compromises is typical.

∙ One can assume that the best is unique, and accept the possibility of substantial

computation before termination, as in Fan et al. (2016).

∙ One can allow for a practically significant difference 𝛿 > 0, also called an

indifference-zone (IZ) parameter, and instead require

ℙ{K̂ = k ∣ 𝜇k − 𝜇k−1 ≥ 𝛿} ≥ 1 − 𝛼.

The IZ compromise has been widely adopted.

∙ One can be satisfied with returning a good solution with optimality gap no larger

than a user-specified 𝛿:

ℙ{𝜇k − 𝜇K̂ ≤ 𝛿} ≥ 1 − 𝛼.

Some of the procedures that deliver a guaranteed PCS also deliver a guaranteed

probability of good selection (PGS), but this is not always the case.

∙ One can be satisfied with

ℙ{K̂ ∈ [k, k − 1, k − 2,… , k − m + 1]} ≥ 1 − 𝛼.

That is, one can be satisfied with selecting a top-m solution based on rank order,

irrespective of the actual optimality gap. This is the compromise behind ordinal

optimization (see, e.g., Chen and Lee 2010).

∙ One can be satisfied with a subset Ŝ ⊆ S such that

ℙ{k ∈ Ŝ} ≥ 1 − 𝛼.

Subset procedures are closely related to multiple comparison procedures that pro-

vide simultaneous confidence intervals on some set of differences, and in particu-

lar to multiple comparisons with the best (MCB, Hsu 1984). Subset guarantees can

often be delivered with weak assumptions, but the conclusion may also be weak if

the subset is large. Subset procedures may be used within other R&S procedures
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for screening or removing systems from the consideration that are estimated as

inferior.

While all R&S procedures strive to be efficient, fixed-precision procedures require

statistical guarantees to hold. Thus we formulate the objective of fixed-precision

procedures by placing a hard constraint on the guarantee, but we wish to purchase

processors p and create a job schedule J such that we minimize the expected (scaled)

completion time of the procedure plus the (scaled) monetary cost of the R&S proce-

dure. Under the stylized model in Sect. 12.2, we formulate this problem as

minimizep,J 𝔼[𝛽tTe(J) + 𝛽cc(p,Te(J))] s.t. ℙ{G} ≥ 1 − 𝛼,

where 𝛽t ≥ 0 and 𝛽c ≥ 0 are scaling coefficients, and the event G denotes a “good

event” upon termination of the procedure, in whatever form. For example, G =
(K̂ = k ∣ 𝜇k − 𝜇k−1 ≥ 𝛿) for an IZ compromise, and G = (k ∈ Ŝ) for a subset selec-

tion compromise. Usually, 𝛽t ∈ {0, 1} and 𝛽c = 1 − 𝛽t, so that only expected wall-

clock time or only expected cost is minimized, depending on the cost structure of the

parallel computing environment. To ensure the probabilistic guarantee constraint is

satisfied, we require purchasing as many processor hours as the procedure requires

to terminate at time Te(J); thus, the monetary budget for purchasing processor hours

should be b = ∞.

12.3.2 Mathematical Formulation of Fixed-Budget
Guarantees

In contrast with fixed-precision procedures, in which the simulation budget is deter-

mined in part by the required precision, the goal of most fixed-budget procedures

is to identify the best system efficiently under a fixed simulation budget. Thus most

fixed-budget procedures provide an “efficiency guarantee,” which we formulate as

minimizep,J 𝔼[L(Gc
, J)] s.t. t(p, b) ≤ t∗,

where the function L is some type of loss function that depends on an undesirable

event (which, loosely speaking, we denote as Gc
) upon termination of the procedure,

and t∗ is a fixed limit on processor hours we purchase. This formulation implies that

we wish to choose the processors and the job configuration to minimize the expected

loss associated with an incorrect decision, subject to a hard budgetary constraint on

the amount of processor hours. The budgetary constraint on the amount of processor

hours differs from the traditional constraint on the total number of simulation repli-

cations; this formulation provides a more accurate way to measure cost in a parallel

computing setting. Note that equivalently, we could formulate the constraint in terms

of monetary cost instead of time.
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Several prominent fixed-budget guarantee methods include those provided by

OCBA (Optimal Computing Budget Allocation) (Chen et al. 2000), the Bayesian

Expected Value of Information (EVI) (Chick et al. 2010) and Knowledge Gradient

(KG) (Frazier et al. 2008) methods, and the frequentist SCORE (Sampling Criteria

for Optimization using Rate Estimators) framework (Pasupathy et al. 2014), which

generalizes the work of Glynn and Juneja (2004) and has a close relationship with

OCBA and EVI (Ryzhov 2016).

12.3.3 Guarantees Require Standard Assumptions

Whether assuring a desired PCS or minimizing an expected loss, there is an underly-

ing output distribution with respect to which the PCS or expected loss is evaluated.

This underlying distribution may be derived from a strong assumption about the

simulation output data, or hold asymptotically under weaker conditions. Establish-

ing that these probability guarantees hold in small samples usually requires strong

distribution assumptions. Asymptotic analysis (e.g., as 𝛿 → 0) can establish attain-

ment in a large-sample sense. In either case, the actual distribution depends on both

(a) the simulation model itself and (b) the sequence of jobs executed. Dependence on

(b) is typically not a concern when there is only a single processor, but as discussed

in Sect. 12.5, it is critical when jobs are executed in parallel.

To ensure the guarantees from the previous two sections hold, we define the stan-

dard output assumptions as follows. Recall that Yir is a random variable represent-

ing the performance of the ith system on the rth simulation replication, for each

r = 1, 2,… and all i ∈ S.

Definition 12.1 The standard output assumptions comprise the following:

1. (Within) for all systems i ∈ S, the random variables Yir, r = 1, 2,… are i.i.d. nor-

mally distributed with finite variance, and

2. (Between) for all pairs of systems i, i′ ∈ S, the random variables Yir and Yi′r′ are

independent for all r = 1, 2,… and all r′ = 1, 2,….

The validity of a serial R&S procedure can usually be established under the stan-

dard output assumptions. However, these assumptions may be overly stringent. We

now provide several common relaxations to the standard output assumptions.

Within Relaxations for all systems i ∈ S, the random variables Yir, r = 1, 2,…,

(a) are i.i.d. with finite variance; (b) are stationary with finite variance; or

(c) appropriately standardized, satisfy a Functional Central Limit Theorem.

Between Relaxations for all pairs of systems i, i′ ∈ S, the random variables Yir
and Yi′r are positively correlated for all r = 1, 2,… ,where the positive correlation

is induced by the use of common random numbers (CRN).

CRN is a rule for assigning a set of jobs {Jj, j ∈ B(b)} a “common” block of

random numbers Uj = U(b)
for all j ∈ B(b)

, so that the blocks b = 1, 2,… exhaust
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all jobs that require simulation replications in J. The use of CRN across systems

to induce a positive correlation and thereby reduce the variance of the difference

Ȳi(n) − Ȳi′ (n) has long been a staple of R&S methods to improve statistical effi-

ciency; see for instance Nelson (2013). Because CRN can, in fact, increase variance

if simulation outputs are not appropriately paired with equal numbers of observations

across systems, the use of CRN imposes an additional coordination problem when

there are multiple processors. As a result, CRN has not yet been central to parallel

R&S procedures. Therefore, we assume independent blocks of random numbers for

each job from here on unless specifically indicated. For simplicity in our stylized

model, whenever the blocks of random numbers are independent, we drop the the

specification of Uj and instead write

Jj ∶= {(Qj, 𝛥j), (Pj,Cj)}.

12.4 Computational Formulations of Existing Serial R&S
Procedures

Once we have a mathematical formulation of the goals of the R&S procedure, we

require a computational formulation of the procedure that can be implemented on

one or more processors. To naïvely implement existing serial R&S procedures in

a parallel computing setting, we require an assignment of jobs to processors such

that the standard assumptions from the original serial procedure, in whatever form

they exist, are still satisfied. The simplest way to accomplish this goal is to paral-

lelize only the parts of the procedure that can be completed in an embarrassingly

parallel fashion, and complete all other tasks in the original sequence. As is com-

mon in the parallel computing literature, we use the term embarrassingly parallel to

refer to jobs that are trivially implemented in parallel and require no coordination or

synchronization.

Before we provide naïve parallel computational formulations of existing serial

fixed-precision and fixed-budget R&S procedures, we define the concepts of cou-
pled operations and stages, which are concepts that assist with ordering jobs. First,

recall that Cj is a list of calculations that are performed as part of a job j. Typical

calculations that arise in R&S procedures include

∙ determining the sample mean and sample variance of the ith system, Ȳi(n) and

S2
i (n) ∶= (n − 1)−1

∑n
r=1(Yir − Ȳi(n))2, respectively,

∙ performing a pairwise comparison Ȳi − Ȳi′ for two systems i and i′,
∙ determining the paired sample variance

S2
i,i′ (n) ∶= (n − 1)−1

∑n
r=1(Yir − Yi′r − (Ȳi(n) − Ȳi′ (n)))2,

∙ updating a sample allocation rule ℜ in a fixed-budget procedure like OCBA, and

∙ updating a posterior distribution in a Bayesian R&S procedure.
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Since operations like pairwise comparisons and calculating paired sample variances

require the simulation output of two or more systems, we refer to these operations as

coupled.

Definition 12.2 We define the following:

∙ A coupled operation or coupling is an operation or calculation in which the sim-

ulation output of two or more systems is required.

∙ A fully coupled operation or full coupling is an operation or calculation that

requires the simulation output of all systems still in contention at that point in

the procedure.

Thus coupled operations occur when the estimated system performances must be

compared to each other, as in a pairwise comparison, or when some key quantity

must be calculated that requires the compilation of simulation output from multiple

systems. For example, calculating the estimated best system K̂ = argmaxi∈S{Ȳi(ni)}
is a fully coupled operation. Coupling is distinct from the concept of synchronization
in parallel algorithms, since coupling is across systems, and synchronization is usu-

ally across processors. However, when there is a cost to switch from simulating one

system to another, it may make sense to assign processors to simulate particular sys-

tems, in which case a coupled operation may require synchronization of simulation

output across processors.

Since R&S procedures consist of simulations and comparisons, they are usually

implemented in what are called stages. While the definition of the term “stage” has

not always been consistent in the R&S literature, in the context of our stylized model,

we define a stage as follows:

Definition 12.3 A stage is a portion of an R&S procedure that begins with the first

simulation output obtained after initialization or after the last fully coupled opera-

tion, and ends when the next fully coupled operation terminates.

While the individual calculations required in the full coupling may be split into jobs

that are carried out by multiple processors, when the final calculation of the full cou-

pling is complete, then the stage is over. When variances are unknown, the minimum

number of stages is two (Dudewicz and Dalal 1957); the variances are estimated in

the first stage. Thus, the first stage almost always consists of obtaining n0 ≥ 2 obser-

vations from each system, and ends with a fully coupled calculation of key informa-

tion for implementing the next stage.

In the computational formulations that follow, our goal is to demonstrate the cou-

pling structure of naïve parallelization of each type of serial procedure. Thus, we

provide only a straightforward formulation of jobs Jj. We acknowledge that many

such formulations exist; some are more efficient than others.
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12.4.1 Computational Formulation of Fixed-Precision
Procedures

To create a computational formulation for fixed-precision procedures, we begin

by formulating existing serial procedures using the stylized model described in

Sect. 12.2. We provide a basic formulation of two prominent versions of fixed-

precision procedures that have different coupling structures: two-stage procedures,

which have exactly two stages with two full couplings, and fully sequential proce-

dures, which have many stages and frequent full couplings.

The first stage of a two-stage procedure usually begins with obtaining n0 ≥ 2
simulation replications from each system, and ends with fully coupled operations

that use rules to screen systems and to calculate second-stage sample sizes such

that desired statistical guarantees hold. The screening and sampling rules, which we

denote as rules ℜ, are often functions of the user-specified parameters 𝛼 and 𝛿, and

the variances of the system performances. The simulation replications in each of

the two stages can be farmed out to worker processors in an embarrassingly paral-

lel fashion, while the master completes all coupled operations. The full coupling at

the end of each stage requires a full synchronization across all processors. A naïve

two-stage fixed-precision procedure with an optional subset selection step is pro-

vided in Algorithm 1. Prominent two-stage procedures include Rinott (1978) and

NSGS (Nelson et al. 2001). Ni et al. (2014) provide a parallel version of NSGS that

is slightly different from Algorithm 1, called NSGSp.

Algorithm 1 Naïve Two-Stage Fixed-Precision Procedure (Less Coupling)

1: procedure TWOSTAGE(𝛼, 𝛿, n0,ℜ1,ℜ2) ⊳ Inputs: problem parameters 𝛼 ∈ (1∕k, 1) and

𝛿 ∈ (0,∞), first-stage sample size n0 ≥ 2, (optional) rule ℜ1 for subset selection, and rule ℜ2
for second-stage sample size determination.

2: Initialize: Set Q= S. Master creates jobs Ji = {(i, n0), (∅, {Ȳi(n0), S2
i (n0)})} for all i ∈ Q.

3: Stage 1: (Simulate: Embarrassingly Parallel) Workers complete jobs {Ji ∶ i ∈ Q}.

4: (Subset Selection: Fully Coupled) Master eliminates inferior systems from Q using ℜ1. If

|Q| = 1, return the system in Q as the estimated best, K̂. Otherwise, continue.

5: (Calculation: Fully Coupled) Master determines second-stage sample sizes Ni,2 using ℜ2.

6: For each i ∈ Q, Master creates Ji,2 = {(i,max{0,Ni,2 − n0}), (∅, Ȳi(Ni,2))}.

7: Stage 2: (Simulate: Embarrassingly Parallel) Workers complete jobs {Ji ∶ i ∈ Q}.

8: (Compare: Fully Coupled) Master returns K̂ = argmaxi∈Q{Ȳi(Ni,2)}.

9: end procedure ⊳ Algorithm inspired by Pasupathy and Ghosh (2013, p. 127).

While two-stage procedures can be completed using mostly embarrassingly

parallel computation with little synchronization, they are less efficient than fully

sequential procedures in terms of the expected total number of simulation repli-

cations required. Fully sequential procedures gain sampling efficiency by frequent

comparisons and screening. Arguably, fully sequential procedures have the maxi-

mum number of stages and hence a “maximal” coupling structure. In each Stage 2+,

one simulation replication is obtained from each system still in contention, sample
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means and paired variances are updated, and inferior systems are screened out. Since

the number of simulation replications per system is equal across surviving systems

in each stage of the procedure, that is, ni = ni′ for all i, i′ ∈ Q, some fully sequential

procedures such as KN can be implemented with CRN, further enhancing efficiency.

However, screening is an inherently coupled operation—especially when screening

requires all pairwise comparisons between systems. Thus when adapting R&S pro-

cedures to a parallel computing platform, there exists a tension between sampling

efficiency gained by frequent screening, and the potential inefficiency of attempt-

ing to perform frequent coupled screening operations across many processors. A

generic, naïvely parallelized fully sequential procedure is provided in Algorithm 2.

Prominent fully sequential procedures include KN (Kim and Nelson 2001).

Algorithm 2 Naïve Fully Sequential Fixed-Precision Procedure (More Coupling)

1: procedure FULLY SEQUENTIAL(𝛼, 𝛿, n0,ℜs) ⊳ Inputs: problem parameters

𝛼 ∈ (1∕k, 1) and 𝛿 ∈ (0,∞), first-stage sample size n0 ≥ 2, a screening rule ℜs.

2: Initialize: Set the total samples per system n = n0 and the systems in contention Q= S.

Master creates jobs Ji = {(i, n0), (∅, {Ȳi(n0)})} for all i ∈ Q.

3: Stage 1+: (Simulate: Embarrassingly Parallel) Workers complete jobs {Ji ∶ i ∈ Q}.

4: (Calculation: Coupled) Master computes S2
i,i′ (n) for all i, i′ ∈ Q, i ≠ i′.

5: (Screen: Fully Coupled) Master uses ruleℜs on (Ȳi(n), S2
i,i′ (n)), i, i

′ ∈ Q to eliminate inferior

systems from Q. If |Q| = 1, return the system in Q as the estimated best, K̂. Otherwise, set

n = n + 1. Master creates new jobs Ji,n = {(i, 1), (∅, Ȳi(n))} for each i ∈ Q.

6: Go to the next stage, Step 3.

7: end procedure ⊳ Algorithm inspired by Pasupathy and Ghosh (2013, p. 129).

12.4.2 Computational Formulation of Fixed-Budget
Procedures

Fixed-budget procedures often take a similar computational structure, outlined in

Algorithm 3. As in the fixed-precision procedures, the first stage begins by obtain-

ing n0 ≥ 2 simulation replications from each system, and ends with a (usually) fully

coupled operation that determines how to allocate the 𝛥 simulation replications in

the next stage, using a sampling rule ℜ. This process of obtaining 𝛥 simulation repli-

cations per stage and updating the sampling rule is repeated until the total simula-

tion time has been exhausted. Since the frequency of the coupling and the number of

stages is determined by the parameter 𝛥, these procedures tend to have a flexible cou-

pling frequency. We note that some procedures are designed for myopic sampling,

such that 𝛥 = 1, while other procedures are more flexible in the choice of 𝛥.



12 Parallel Ranking and Selection 263

Algorithm 3 Fixed-Budget Procedure (Flexible Coupling Frequency)

1: procedure EFFICIENCY(n0, 𝛥, t∗,ℜ) ⊳ Inputs: initial simulation budget n0 ≥ 2, stagewise

simulation budget 𝛥, limit on total effort t∗ > 0, and rule ℜ for stagewise allocation.

2: Initialize: Set stage𝓁 = 1, sample sizes ni,𝓁 = n0 for all i ∈ S, total effort t0 = 0, and Master

creates jobs Ji = {(i, n0), (∅, {Ȳi(n0), S2
i (n0)})} for all i ∈ S.

3: while t𝓁−1 ≤ t∗ do
4: Stage 𝓁: (Simulate: Embarrassingly Parallel) Workers complete jobs {Ji}.

5: (Calculation: Fully Coupled) Master applies rule ℜ to statistical history to find

next stage sample allocation {ni,𝓁+1∶
∑

i∈S ni,𝓁+1 = 𝛥}. Master creates jobs Ji =
{(i, ni,𝓁+1), (Ȳi(ni,𝓁+1), S2

i (ni,𝓁+1))} for all i ∈ {i′∶ i′ ∈ S, ni′ ,𝓁+1 ≥ 1}.

6: Master updates total effort expended so far t𝓁 .

7: Master sets 𝓁 = 𝓁 + 1.

8: end while
9: return K̂ = argmaxi∈S{Ȳi(

∑
ni,𝓁)}.

10: end procedure ⊳ Algorithm inspired by Pasupathy and Ghosh (2013, p. 132).

12.5 Parallelization: Efficiency and Validity

Having presented fairly straightforward parallel computational frameworks for exist-

ing serial R&S procedures that should preserve the standard assumptions from the

original serial procedure, one may wonder, why not simply use these procedures?

While such procedures surely can be implemented, they are unlikely to scale well

to larger problem instances and to achieve the levels of speedup and efficiency we

would like to see from a parallel R&S algorithm. The concepts of speedup and effi-

ciency (or scalability) are defined in Barlas and Kaufman (2015) as follows. Sup-

pose we are handed a parallel algorithm that requires tp wall-clock time to be run

on p identical processors in parallel, and ts wall-clock time to be run on only one

of the processors. Then the speedup is defined as the ratio of the sequential time to

the parallel time, 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 ∶= ts∕tp. Given p ≥ 1 processors, the efficiency is defined

as the scaled speedup, efficiency ∶= s∕p = ts∕(ptp). Thus speedup gives a measure

of how beneficial it is to execute the algorithm in parallel, while efficiency mea-

sures the utilization of the available processors. An Efficiency of 1 corresponds to

linear speedup, in which case the speedup is equal to the number of processors, p.

Embarrassingly parallel jobs that are appropriately load-balanced across cores tend

to achieve almost linear speedup.

Since embarrassingly parallel implementations achieve almost linear speedup,

it seems that two-stage procedures would perform the best in parallel. However,

recall that two-stage procedures require more simulation replications, on average,

than those that have more frequent coupled operations like screening. Thus it may

benefit the procedure to introduce more frequent coupled operations. However, we

have two potential forms of idleness that arise: (a) the master may be idle waiting for

every simulation replication to complete before it performs any coupled operations—

especially if simulation replication completion times are random—and (b) if screen-

ing and fully coupled operations take significant computational effort on the master,

many worker processors must wait for the master to create new jobs.
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Then, we may wish to design a procedure that does not require the processors to

wait for each other. Unfortunately, the standard assumptions are most easily assured
by one-job-at-a-time execution. Estimators can become biased if we do not wait

for all parallelized simulation replications to complete; such bias was investigated

by Heidelberger (1988) and Glynn and Heidelberger (1990, 1991). Further, serious

violations of the standard assumptions can occur if jobs are executed in parallel but

output data are used as available and without enforcing conformance with single-

processor execution. These include the following, as described in Luo et al. (2015),

Ni et al. (2013, 2017).

Random sample size The number of observations from system i when the nth

overall observation is obtained may be random if job execution time is variable.

Not i.i.d. The observations ni from system i may not be i.i.d. if the order in which

jobs complete is not the order in which the jobs were dispatched, and there is a

dependence between returned value and execution time.

Dependence across systems A difficult-to-characterize dependence across sys-

tems’ outputs can be induced if elimination of system i by system i′ frees proces-

sors that affect the number of observations obtained from other systems.

These issues suggest that we must employ output coordination strategies that ensure

all calculations (Pj,Cj) across jobs j are executed as they would be if there were only a

single processor. However, this still leads to a potential degradation of efficiency and

speedup from the two forms of idleness: master waiting for simulation replications,

and workers waiting for the master’s calculations.

Based on this analysis, efficient parallel R&S requires procedures with one or

more of the following characteristics: (a) they implement careful load balancing to

retain the standard assumptions without significant idling and overwhelming com-

munication; or (b) they are valid under weaker assumptions than the standard ones;

or (c) the procedure uses a combination of the strategies above. We discuss existing

parallel R&S procedures of both types in the next section.

12.6 Existing Parallel Ranking and Selection Procedures

Existing parallel R&S procedures overcome some of the shortcomings of the naïve

parallelization of existing serial R&S procedures. We now discuss the state of the art

in both fixed-precision and fixed-budget parallel ranking and selection procedures.

12.6.1 Parallel Fixed-Precision Procedures

We describe four parallel fixed-precision procedures and formulate each procedure

in terms of the types of jobs created and deployed to the workers. First, Luo and Hong

(2011), Luo et al. (2015) extend the KN procedure (Kim and Nelson 2006a, 2001),
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which provides a PCS guarantee, to the parallel setting in two distinct ways: a conser-

vative vector-filling procedure (VFP) that strictly enforces the standard assumptions,

and an aggressive asymptotic parallel selection (APS) procedure that is valid under

weaker assumptions. Both algorithms resemble Algorithm 2 in that they use elimi-

nation at every stage; their key difference is in how they define the completion of a

stage. Then, we discuss a simple divide-and-conquer approach by Chen (2005) for

when the number of processors is small. Finally, a substantial extension of the divide-

and-conquer approach is provided by the good selection procedure (GSP) of Ni et al.

(2017), which provides a PGS guarantee.

Of these procedures, we highlight two procedures for their strategies related

enhancing efficiency and maintaining validity. First, APS never allows the master to

idle waiting for simulation replications, but maintains its validity under conditions

weaker than the standard ones. Second, GSP maintains validity under the standard

assumptions, but performs careful load balancing to maintain efficiency.

12.6.1.1 VFP: Vector-Filling Procedure

In VFP, the master creates/executes three types of jobs:

1. Initialization jobs:

J0 =
[
{(1, n0), (∅)}, {(2, n0), (∅)}… , {(k, n0), (∅)}, {(∅), (P0,C0)}

]

where the set P0 includes the k preceding simulation jobs, and the calculations

C0 include computing the variance of all pairwise differences, making pairwise

comparisons of the sample means of all k systems, and possibly eliminating some

systems.

2. Round-robin simulation jobs: Conceptually, there is an infinite set of sets of sim-

ulation jobs

J𝓁 =
[
{(1, 1), (∅)}, {(2, 1), (∅)}… , {(k, 1), (∅)}

]
,𝓁 = 1, 2,…

that obtain one additional replication from each system. However, if at stage 𝓁′

system i′ is eliminated, then all {(i′, 1), (∅)} jobs are eliminated from the unexe-

cuted simulation job set. Upon completion of a simulation job, a worker pulls the

next simulation job in the sequence to execute.

3. Elimination jobs: Stage 𝓁 is defined by an elimination job {(∅), (P𝓁 ,C𝓁)}, where

P𝓁 contains all simulation jobs J𝓁 , and C𝓁 performs pairwise comparisons of all

systems that have not been eliminated at an earlier stage. The elimination jobs

are executed by the master.

The VFP terminates when there is only one system that has not been eliminated. The

term “vector filling” is appropriate because the VFP enforces the standard assump-

tions by associating each simulation output with its job set J𝓁 , and only performing a

full coupling for stage 𝓁 when all jobs in J𝓁 have completed. For this reason, outputs
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from later job sets, say J𝓁+1, that complete before jobs in J𝓁 must be held in a vector

for later elimination calculations.

12.6.1.2 APS: Asymptotic Parallel Selection

The APS procedure is superficially similar to the VFP, but a small change makes its

computational profile quite different.

1. Initialization jobs:

J0 =
[
{(1, n0), (∅)}, {(2, n0), (∅)}… , {(k, n0), (∅)}, {(∅), (P0,C0)}

]

where the set P0 includes the k preceding simulation jobs, and the calculations

C0 include computing the marginal variance of all k systems, making pairwise

comparisons of the sample means of all k systems, and possibly eliminating some

systems. (These initialization jobs are the same as those in VFP.)

2. Round-robin simulation jobs: Conceptually, there is an infinite set of sets of sim-

ulation jobs

J𝓁 =
[
{(1, 1), (∅)}, {(2, 1), (∅)}… , {(k, 1), (∅)}, {(phantom, 0), (∅)}

]
,𝓁 = 1, 2,…

that obtain one additional replication from each real system, and no replications

from a “phantom” system. Again, if at stage 𝓁′
real system i′ is eliminated, then

all {(i′, 1), (∅)} jobs are elminated from the unexecuted simulation job set. Upon

completion of a simulation job, a worker pulls the next simulation job in the

sequence to execute, which could be a phantom.

3. Elimination jobs: Stage 𝓁 is defined by an elimination job {(∅), (P𝓁 ,C𝓁)}, where

P𝓁 is the 𝓁th phantom job. The calculation C𝓁 updates marginal variances and

performs pairwise comparisons of all systems that have not been eliminated at an

earlier stage using all available simulation output data. The elimination jobs are

executed by the master.

The APS procedure defines a stage as the completion of a phantom job, but other-

wise makes no attempt to process simulation jobs in any order. Thus, it is aggressive

in that the master never idles waiting for a particular real simulation job to com-

plete, but it is subject to all of the violations of standard assumptions described in

Sect. 12.5. The validity of APS is asymptotic, as 𝛿 → 0, with the key insight being

that since there are p < ∞ processors the simulation jobs may only be out of order

by an asymptotically negligible p jobs.
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12.6.1.3 Simple Divide-and-Conquer

An early paper by Chen (2005) describes a simple approach that is sensible when

the number of processors p is small; GSP below can be considered a substantial

extension of this idea. There are two types of jobs:

1. Group R&S jobs: The k systems are divided as evenly as possible into p nonover-

lapping groups of systems, say G1,G2,…Gp, and p jobs are formed

Jj = {(Gj, 𝛥j), (Gj,Cj)}, j = 1, 2,… , p

where each job j is a complete R&S procedure that returns a group-best selected

system îj along with its accumulated output data.

2. Final R&S job: Let Q = {̂i1, î2,… , îp}, the group bests. Then the final job is

Jp+1 = {(Q, 𝛥p+1), (Q,Cp+1)}, j = 1, 2,… , p

which performs a R&S procedure on the group-best systems Q starting with their

previously accumulated data and Cp+1 computes the sample means and selects

the best.

Chen (2005) suggests some specific R&S procedures for each type of job, but the

framework is flexible. The simplicity of this strategy is appealing, but it will lose

effectiveness when k ≫ p so that the group R&S jobs themselves are challenging.

12.6.1.4 GSP: Good Selection Procedure

The GSP procedure of Ni et al. (2017) (also see Ni et al. 2013, 2014, 2015) pro-

vides a PGS guarantee, instead of the usual PCS guarantee, under the standard output

assumptions. GSP exhibits good speedup and efficiency using careful load-balancing

and reduced computation. Several key strategies of GSP include: (a) distributing

screening tasks to the workers in a divide-and-conquer fashion to avoid overwhelm-

ing the master with screening calculations; (b) using only a reduced number of pair-

wise comparisons instead of completing all pairwise comparisons; and (c) carefully

constructing load-balanced jobs of large-enough size to prevent overwhelming the

master with communication. As a result, when implemented in a high-performance

computing (HPC) environment in C with MPI, the master is idle most of the time.

However in its idleness, the master usually is ready to communicate and can ensure

the workers are not idle most of the time.

GSP has three stages and one “phase,” which is a sequential portion of the algo-

rithm containing multiple stages. GSP’s stages and phases are: an optional load-

balancing stage; an initialization stage with screening; a sequential phase that con-

tains multiple stages and is somewhat similar in structure to Algorithm 2 after ini-

tialization; and a Rinott stage, similar in structure to Algorithm 2. The sequential
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phase is intended to harness the efficiency of sequential screening to create a subset

of contender systems likely to contain the best. In the Rinott stage, the appropri-

ate sample sizes for the remaining systems are calculated, and the simulations for

remaining competitive systems are completed in an embarrassingly parallel fashion.

In this section, we assume we have p worker processors, where the zeroth proces-

sor is the master. In each stage or phase, the master creates the following types of

jobs:

1. Optional load-balancing jobs: The master randomly permutes the systems in S

and assigns an approximately equal number of systems to groups G1
0,… ,G

p
0, for

each processor. Then the master creates jobs

J0 = {(Gw
0 , n

∗
0), (∅, {T̄i ∶ i ∈ Gw

0 })}
p
w=1,

where T̄i is the average simulation completion time across all replications n∗0 from

simulating system i. After calculating statistics T̄i, the simulation output is thrown

away, due to potential dependence between the output random variable Yir and the

simulation replication completion time Tir.

2. Initialization jobs: Using information from the optional load-balancing step if

available, the master partitions the systems in S into load-balanced simulation

groups G1
1,… ,G

p
1 for each processor. Then the master creates jobs

J1 = {(Gw
1 , n0), (∅, {(Ȳi(n0), S2

i (n0),C1) ∶ i ∈ Gw
1 })}

p
w=1,

where C1 is a screening calculation that only reports the surviving systems and

their sufficient statistics to the master. The master updates the surviving sys-

tems Q.

3. Sequential phase jobs: The master divides the systems into approximately load-

balanced screening groups G1
2,… ,G

p
2 using rule ℜGSP

1 , so that each processor

always screens the same set of systems. The master also uses rule ℜGSP

2 to deter-

mine an appropriate “batch size” bi of simulation replications to obtain from each

system i ∈ Q in each simulation job, so that the master is not overwhelmed with

communication. The sequential phase ends when a pre-determined maximum

number of batches has been simulated, or when |Q| = 1.

a. Simulation jobs: The master creates and maintains an ordered list of batched

simulation jobs for each system i ∈ Q. Whenever a worker becomes idle and

the master indicates that some systems in its screening group are not ready

for screening, the worker requests the next simulation job in the list, for any

system i ∈ Q. For each system still in contention i ∈ Q, the 𝜈th simulation

job is

Ji,𝜈 = {(i, bi), (∅, Ȳ(bi))}, 𝜈 = 1, 2,… .

b. Within-group and best-across-processor screening jobs: Whenever a proces-

sor becomes idle and the 𝜈th simulation batch has completed for all systems
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in its screening group, the processor pulls the “screening job” for its group

from the master,

Jw
𝜈
= {∅, ({Ji,𝜈 ∶ i ∈ Gw

2 },C
w
𝜈
)},

where Cw
𝜈

is an all pairwise screening job within the group Gw
2 , as well as

among the best systems who have completed batch 𝜈 from the other screen-

ing groups. The processor then reports the indices of eliminated systems to

the master, who updates the set of systems still in contention, Q. Note that

the 𝜈th screening must occur before the (𝜈 + 1)th screening, and so on. Per

Definition 12.3, each within-group screening that uses the best systems from

screening groups on all the other processors constitutes the end of a stage.

4. Rinott stage jobs: If |Q| > 1, the master uses a rule ℜ to determine the Rinott

stage sample sizes Ni,4 for all remaining systems i ∈ Q. Let Ni be the total num-

ber of simulation replications observed from each system i ∈ Q so far before the

Rinott stage, and define N+
i,4 ∶= max{0,Ni,4 − Ni} as the number of additional

simulation replications required from system i. The master then arranges the

required additional simulation replications for each system into load-balanced

“batched” jobs; for ease of exposition, we omit the batching notation in this stage.

Then for all i ∈ Q such that N+
i,4 > 0, the master creates the jobs

J4,i = {(i,N+
i,4), (∅, Ȳi(Ni,4))}.

After all simulation replications terminate, the master updates the sample means

with the latest data and returns the estimated best system K̂.

12.6.2 Parallel Fixed-Budget Procedures

Luo et al. (2000) is the first reported effort to parallelize an R&S procedure, specifi-

cally OCBA in the fixed-budget setting. Their base algorithm resembles Algorithm 3,

and they assume a master–worker environment with a small number of workers

(p ≤ 3 in their experiments).

The master creates/executes three types of jobs:

1. Initialization jobs:

[
{(1, n0), (∅)}, {(2, n0), (∅)}… , {(k, n0), (∅)}, {(∅), (P0,C0)}

]

where the set P0 includes the k preceding simulation jobs, and the calculations

C0 include computing the marginal sample means and variance of the k systems.

2. Simulation jobs: In the 𝓁th stage, p jobs {(ij, 𝛥), (∅)} for j = 1, 2… , p are created,

where ij ∈ {1, 2,… , k} denote p distinct systems, each allocated the same number

of replications, 𝛥. These jobs are executed by the p workers in parallel.
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3. OCBA jobs: {(∅), (P𝓁 ,C𝓁)}, where P𝓁 contains all of the simulation jobs from

the 𝓁th simulation stage, and C𝓁 performs the OCBA optimization to find the p
systems for whom an allocation of 𝛥 additional replications would most rapidly

increase an approximate posterior PCS expression. Simulation jobs are then cre-

ated for these p systems.

By having the OCBA job hold for the return of all of the ongoing simulation jobs, this

algorithm enforces the single-processor assumptions behind OCBA at each stage. As

noted by the authors, there is a loss of statistical efficiency by simulating the top-p
OCBA systems at each stage, rather than simulating the single best then reevaluating,

but there is a gain in computational efficiency. The algorithm terminates when a fixed

number-of-replications budget is expended. A related paper by Yoo et al. (2009) also

applies OCBA in a parallel search setting where not all systems are expected to be

simulated.

12.6.3 Available Implementations of Parallel R&S
Procedures

To the best of our knowledge, only one commercial simulation product, Simio (http://

www.simio.com), has implemented R&S procedures that exploit parallel comput-

ing. Simio has implemented two fixed-precision procedures: KN (Kim and Nelson

2001, 2006a) which uses multiple processors on a local PC, and GSP (Ni et al.

2017) which is specifically designed to use high-performance or cloud computing.

KN gains efficiency by obtaining replications in parallel; in every other sense it is

the single-processor algorithm and it implements full synchronization at every stage.

There are also public code repositories that contain parallel versions of R&S pro-

cedures. In this paragraph, the citations provide links to code repositories that are

publicly available at the time of writing. GSP has been implemented in MapReduce

(Ni 2015a), MPI (Ni 2015b), and Spark (Ni 2015c). Code for a parallel version of

OCBA is available (Li 2017). As a repository for the simulation optimization com-

munity, http://www.simopt.org (Henderson 2016), also contains test problems for a

variety of problem types, as well as an algorithms library with publicly available

code.

12.7 A Future Research Agenda

Effective and efficient parallel R&S procedures of the future seem likely to be

obtained by a careful coordination of a number of ideas. Here is a part of the roadmap

as we see it.

Assignment of jobs to processors is clearly a type of stochastic parallel-machine

scheduling problem as addressed by the operations research literature (see for

http://www.simio.com
http://www.simio.com
http://www.simopt.org
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instance Pinedo 2015). The objective in such problems is often to minimize

makespan, which is analogous to our objective in the fixed-precision formulation,

and sequencing constraints are similar to our dependence of certain computations on

the completion of particular jobs, (Pj,Cj). A key difference is that the jobs that need

scheduling in parallel R&S may evolve based on the simulation outputs obtained

from earlier jobs, rather than being all available in advance or arriving according

to some exogeneous stochastic process. Nevertheless, this is a deep literature whose

lessons should not be ignored.

Strategies that avoid full coupling seem critical as the number of all pairwise

comparisons grows as O(k2). Thus, as k increases it becomes computationally pru-

dent to simulate more outputs than strictly needed for, say, correct selection to avoid

coupling. This can be done from at least two directions:

1. Distributed screening: Couplings of k′ ≪ k systems to screen out inferior sys-

tems and pass competitors to full couplings, thereby reducing the comparisons to

O((k′)2).
2. Distributed killers: Obtaining high-precision estimates of an apparently good

solution and distributing it to all or groups of systems to screen out inferior ones;

this type of screening is O(k).

The fixed-budget formulation, when expressed as a limit on the number of simulation

replications, has always been somewhat artificial. A fixed monetary or time budget

for parallel computation, on the other hand, is both concrete and relevant. To us, the

joint choice of a number of processors p and jobs to execute J to minimize expected

loss with respect to a monetary budget looks very challenging indeed. We suspect

that a strategy that chooses p based on a priori problem characteristics, and then

treats it as fixed when optimizing over J, will be the most productive avenue.

Finally, parallel R&S for very large numbers of systems should cause us to revisit

the standard R&S objectives as described in Sects. 12.3.1–12.3.2. For very large k
a PGS guarantee seems more relevant and easier to obtain than a PCS guarantee,

as it seems likely there are many close competitors. More critically, any objective

that returns a single system K̂ without additional inference about the others seems

questionable. Consider an alternative objective:

Suppose, based on previous experience with similar problems, a known standard

for “good” performance of 𝜇
⋆

can be established. Finding, with high probability, the

subset of systems with 𝜇i ≥ 𝜇
⋆

is a fully uncoupled problem that is embarrassingly

parallel. A related approach by Singham and Szechtman (2016) defines inclusion of

inferior systems in the subset as a “false discovery” and sets as the objective bounding

the false discovery rate. In terms of both conservatism of the inference and growth

of computation, these ideas scale better than the traditional objectives.



272 S.R. Hunter and B.L. Nelson

12.8 WSC 2017

At the time of writing, we are aware of at least one paper on parallel R&S under

review for WSC 2017. Thus parallel R&S continues to be an active research area at

WSC.
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Chapter 13
A History of Military Computer Simulation

Raymond R. Hill and Andreas Tolk

Abstract The history of military simulation dates back to the earliest ages of con-

flict. Throughout the history, military personnel has employed cognitive devices to

comprehend and plan for conflict. This chapter provides a history of military sim-

ulation, starting with a review of the board-based war games, progressing through

the computerization of those war games and completing with a discussion of the

modern world of military simulation encompassing desktop-based analytical simu-

lations, video games, and distributed training and analytical environments. It pro-

vides a background for the contributions of the military track that has been a pillar

of the Winter Simulation Conference for many years.

13.1 Introduction

The military is a big consumer of models and simulation. In the United States (US)

Department of Defense (DoD) alone, there are over 3300 simulations registered as

in use. This number is quite reasonably a lower bound given not all simulations are

registered. Arming, training, and preparing the DoD to accomplish its myriad tasks

is incredibly complex. The DoD, as with the military organizations of all nations,

comprises multiple components, each of which might feature multiple commands

with thousands of personnel across hundreds of career fields, operating and support-

ing thousands of systems to accomplish their broad range of missions. One of those

missions, armed conflict, is arguably the most complex of human endeavors. Since

the history of conflict between groups, clans, tribes, on up to nations parallels the

history of mankind, it is not surprising that the use of simulation as a decision aid to

help understand and prepare for conflict has a similarly long history.
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The immediate reaction to the above statement was likely something along the

lines of “that is not possible, computers are too new of a device.” This of course is

true, but when presenting a history of military computer simulation one must really

start with the use of thought-based or group-discussion models by the military, and

that type of use does not require the computer, it merely requires the use of experi-

enced, thinking individuals.

Within this chapter, we want to give our own interpretation of an overview of

the developments that led to computer simulation first, as many ideas developed in

the early phases still dominate our conceptual view of simulation to this day, such

as figures with well-defined capabilities following a set of common rules on a com-

mon game board. We then look into some of the main developments in a computer

simulation that influenced work presented and discussed in the military track before

giving a short history of the military track itself.

This chapter has been written from the viewpoint of professionals who organized,

conducted, and participated in the military track of the Winter Simulation Confer-

ence over several years. We are well aware of many historical overviews of military

simulation, many of them written to commemorate anniversaries or special recogni-

tions, such as Bergin (2000), Davis (2010), Thorpe (2010), or Shiflett (2013). Several

chapters in textbooks are giving historical perspectives too, such as Little (2006),

Banks (2009), and Loper and Turnitsa (2012). These are only examples of addi-

tional approaches to capture the history of military simulation, and many additional

worthwhile publications are published not covered in this enumeration. All these

works, like ours, are necessarily incomplete. We, however, seek to provide a more

comprehensive chronology of military simulation and provide an overview of the

contributions of the Winter Simulation Conference and its Military Track, to this

history.

Our history of military computer simulation starts with a brief look at the begin-

nings of the war games and war planning efforts that qualify as thought-based simu-

lation modeling and analysis. From that, we will progress into the early use of train-

ing devices for simulation and the early use of the computer for the computational

implementation of training and war games. At that point, we will then move into the

modern era of military simulation; the era explicitly involving the computer and all

its inherent power and flexibility.

13.2 War Games Preparing the Way for Simulation

Humans are incredible problem solvers. We consider problems facing us and con-

sider how various courses of action might solve the problem. With experience, we

typically get more efficient, and effective, at the problem-solving process. Fortu-

nately, or unfortunately depending upon your point of view, combat experience is

not easily gained meaning other mechanisms are required to build up military expe-

rience necessary for military success.
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This motivation to find another mechanism to hone military skills led to the

early development of “war games.” As far back as 3000 B.C., the game of Wei Hai

employed colored stones to represent opposing forces. Personnel would position and

move the stones to represent the deployment and employment of forces. The simu-

lated conflict would be resolved, or “adjudicated” based on expert judgment. The

game could be used to practice and hone strategic planning skills or to plan upcom-

ing engagements. The game of chess similarly evolved out of military war games and

references are found as early as 500 B.C. in India. The game was used by leaders,

and their subordinates, again to hone their strategic planning skills (Smith 2010).

These board games evolved over time, growing in size and complexity, to meet

changing needs. The games eventually evolved into table top versions more aligned

with group deliberations on plans or actions. Early Vikings and Celtics are credited

with explicitly considering various scenarios using these table top games (e.g., imag-

ine a map laid out on a table with various pieces placed to represent forces (Smith

2010)). These games were likely largely adjudicated based on the experience of those

arrayed around the playing table. Such an approach would likely have led to deci-

sions biased by the beliefs of those involved, particularly those more senior in the

group.

In the mid-1600s, these board games had evolved to include more independent

adjudication of game moves, with the rules of these decisions based often on actual

combat experience. Kriegsspiel, appearing around 1811, is arguably viewed as the

first real war game simulation as dice were employed to introduce randomness into

the outcomes of the moves implemented during the game (Loper and Turnitsa 2012).

The left side of Fig. 13.1 depicts a modern version of a game while on the right is a

drawing of the German staff employing the game in their planning efforts.

Over time, game complexity increased. New Kriegsspiel in 1798 involved 3,600

squares on the playing board and 60 pages of rules governing the conduct of the

game. By the early 1800s, the Prussians had replaced the board game with map-like

charts, moving pieces, realistic movements, and randomness in the outcomes (via

a dice roll). This hard-to-learn game came to be known as Rigid Kriegsspiel and

was replaced in the late 1800s by the easier to learn, faster to play, essentially rule

Fig. 13.1 On the left, a depiction of a Kriegsspiel board game. On right, depiction of German staff

engaged in Kriegsspiel (PreparedX 2017)
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free version which came to be known as Free Kriegsspiel. This Free version stepped

back in complexity to rely more on player experience and judgment to adjudicate

the moves made by the players. Despite the detail involved and use of actual combat

data to define the rules, the Rigid form was simply too complex to learn and too slow

to play. The Free form moved quicker and became the favored approach finding suc-

cess through WWII (Shrader 2006). In America, war games arose in the late 1800s

having similar detailed rule structures as found in the European games. While used

in military schools, the operational impact of these games was minimal due to the

excessive time required to perform the requisite mathematical calculations (Loper

and Turnitsa 2012). Furthermore, General W.T. Sherman, as the Commanding Gen-

eral of the US Army, still under the impression of the brutal encounters of the Civil

War that required many more human factors than could be captured in wargaming,

has been said to discourage the use of this approach by stating: Men are not wooden

blocks!

Throughout history, war gaming played a significant role in military training and

planning. Many of the successful military campaigns were thoroughly war gamed

(Shrader 2006). It is unclear whether the unsuccessful campaigns were not war

gamed; losers in military actions rarely get their history told. Improving the accuracy

of these war games was possible and was actually achieved, but humans can only cal-

culate so fast. Thus, as noted above with the American experience, the detailed war

games were found too cumbersome for regular use. What was needed was a way to

free the modeler from the tedious calculations required by the rigid games allowing

them to experience the flow of the Free games with the accuracy of the Rigid games.

13.3 Military Computer Simulation

Modern computer simulation ties back to the military needs of WWII. It was the

intense calculations associated with military system engineering and analysis that

really raised interest in mechanical computing calculators. Areas such as ballistics

and crypto-analysis, which had required many hours of manual calculations, could

be done in seconds when using the automated device. For instance, calculating a

60 s missile trajectory required 20 h of manual calculations, but just about 30 s on

the mechanical calculator (Shrader 2006). The Electronic Numerical Integrator and

Calculator (ENIAC) appeared in 1946 and is often viewed as the first modern com-

puter.

As related by Metropolis (1987), the combination of statistical sampling and this

new advanced calculating machine led to what we now routinely call Monte Carlo

simulation. In those formative years, this computerized statistical sampling method

was used to calculate the complex equations arising in the US Nuclear Program.

Not surprisingly, Monte Carlo simulation was initially a classified method. Clearly,

computer calculations changed the nature of computing and with its engineering and

development. Motivated by early success, computing technology continued to meet

the increasing demand.
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The business world took notice of the computer and its capabilities as well. This

naturally prompted more rapid growth in the technology. By the 1950s and 1960s,

computer use, albeit of the very large, time-sharing type, were quite commonplace.

In the military, optimization and simulation were among the most popular of the

analytical uses of the computer (Shrader 2006).

Computing technology enabled the return of the more rigid war games by reduc-

ing the time required for the necessary calculations. Detailed war games became

feasible (and practical) providing the growing cadre of operational researchers with

a means of iteratively hypothesizing, learning, and improving their understanding of

military weapon systems and their employment. The US Army experience is a great

example, the Army Operations Research Office (ORO) in particular.

13.3.1 The Computer Mainstreams the War Game

In the early 1950s, the Army ORO became an early adopter of the computer-

facilitated war game. These computerized games were largely used as a research

tool, not really for the development of strategy or doctrine. The various divisions

within the ORO focused on issues associated with nuclear attack and response, tac-

tical battle capabilities, intelligence management, logistics planning, and continen-

tal air defense (Shrader 2006). One of the premier models, Carmonette, examined

company-level ground operations involving infantry, tank operations, and mortar

operations. Despite the early limitations of computing systems, Carmonette could

represent up to about 200 entities in the simulated battles (Shrader 2006).

Computer support for wargaming initially involved running the calculations

required to determine move outcomes based on the input from the players. The

games provided insight to develop models to answer questions regarding resources

and operations. Some of the early computer games really were intended to provide

just enough insight to facilitate defining a more comprehensive wargaming approach.

These early computer games were digital representations of the board games; how-

ever, it did not take a long time for the modelers to realize they could build more

mathematically rigorous representations of the scenario. Soon games focused on the

effects of weapons, systems, tactics, and logistics, among other aspects. Thus, the use

of the computer quickly evolved from helping the top-level nature of the wargame

(infer details from the high-level game response) to an environment in which the

model output could provide insight on all levels (Shrader 2006).

A problem with wargames is repeatability and replication. It is hard for human

participants to fully repeat their actions, especially when those participants believe

another approach may work better. It is also tough to do the same task many times,

even if there are allowances for freedom of action. Computers, however, are quite

adept at repeatability and replication. The full automation of wargames thus arose as

a natural consequence of the needs for military analysis and thereby created the area

of analytical (now more often called constructive) simulation that arguably domi-

nates the military use of simulation.
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13.3.2 Rise of the Analytical Simulations

As military modeling and simulation matured, coupled with the subsequent advances

in computing machinery, military simulation quickly grew associated with quantita-

tive representations of combat in computer programs. The “art” of military modeling,

actually military science in general, is the integration of modeling and simulation

output with operational context to generate meaningful insights useful for decision

making. In the growing technology of computer-based military simulation, this art

closely aligned with the continual challenge of trading off simulation detail with the

uncertainties associated with those details.

Changes in simulation modeling details, as the simulation models moved further

away from just automating wargames, involved adding fidelity in the systems repre-

sentations, adding greater diversity in the systems simulated within some scenario,

and expanding the time frame considered in the simulation scenario. It turns out

there is a very close relationship among the number of entities modeled and the cor-

responding level of detail and time period considered. This correspondence leads

to initial characterizations of these emerging simulations as few-on-few, many-on-

many and force-on-force (Battilega and Grange 1984).

Carmonette developed in the 1950s focused on small unit ground combat. Fac-

tors modeled included weapons aiming, target acquisition, the firing of the weapon

and an assessment of target strike and destruction (Battilega and Grange 1984). An

example analysis involving Carmonette would be tank duels or interactions between

two ground force platoons.

In the mid-1970s, models of air, combat seemed to have really come into use. TAC

AVENGER modeled a two aircraft air duel. The aircraft performance was modeled

using fairly detailed engineering data. Aircraft engaged each other using a gun and/or

missile systems. The corresponding projectiles from each system were modeled at

engineering level detail. Aircraft within the simulation chose maneuvers, determined

weapons to employ, and the firing actions to take. End-game outcomes assessed the

projectile impact and kill probabilities against the specific target.

During the early 1900s, systems of differential equations were developed to

describe force-on-force combat, as summarized among others in Taylor (1983).

These abstract concepts were well suited to combat simulation use in force-on-force

situations since engineering level detailed data was not necessary for their use. By

the mid-1970s, force-on-force, or campaign-level models, used these systems of

Lanchester equations to model large-scale combat. BALFRAM was an early example

of such a model. It integrated land, sea, and air forces to examine aspects of com-

bat analysis such as force planning, systems utilization, and of course operational

effectiveness.

These early models collectively helped examine myriad scenarios to help answer

a wide variety of questions. Naturally, the nature of any question–answer dialog is

the generation of yet more questions. Couple this growth in the number, type, and

depth of analysis needed to answer the questions with the rapid growth in computing

capabilities, and it is quite logical to find that the military simulation models quickly
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expanded in size, scope and complexity. Model expansion involved greater modeling

details, larger-sized forces and greater time periods modeled. In addition, the models

improved in terms of data required and its fidelity, graphical displays of the combat

scenario modeled, and the output data generated and subsequently processed into

information used to inform decision making.

Over time, these models came to be classified into four broad categories: engi-

neering models, engagement models, mission models, and campaign models. These

categories differentiated models by the level of detail in the modeling of simula-

tion entities, the number and diversity of the forces considered, and the time frame

captured in the simulation.

Engineering simulation models featured the greatest level of detail and consider

systems over a very short time frame. Examples include a torpedo or missile fly-

out. The engineering models will often capture environmental aspects as well as the

physics involved in the system operation. These models might even involve human

input in configurations known as human-in-the-loop simulation. Typical model out-

puts are aggregated for use in other models.

Engagement simulation models are concerned with short duration events, such

as an air-to-air duel, a tank duel or the firefighter between two ground force squads.

These encounters typical last minutes to hours. Engineering detail, often aggregated

from engineering model output, are used to accurately capture the physics as well as

the operational aspects of the scenario. They are usually applied on the tactical level.

Mission simulation models are concerned with events that last hours and involve

potentially many diverse systems. These models have less engineering detail than

in the previously described models as they are typically more concerned with the

operational aspects of the interactions among these disparate systems (Hill et al.

2001). Exceptions, of course, exist such as the engineering level detail that might

be required in a mission model used to assess the impact of radar-based protection

systems; such simulations would need to model the radar signal at a fairly high level

of fidelity. As a rule, these models cope with the operational level.

Campaign simulation models cover the longest period of time, encompass the

largest number of assets, in multiple mediums and multiple service components. A

campaign model will usually model Army assets at the Corps level, Naval forces,

and full Air Force wings. The focus is on the battles that comprise a war against

some adversary and thus the time frame in these simulations will generally be on

the order of weeks to months. These models focus on the strategic level, including

questions of logistics and long-term sustainability of military operations.

A common model of these military simulation categories arose in the mid-1990s

and is often referred to as the DoD Simulation Pyramid or the Hierarchy of Mod-

els (Hill et al. 2001). Figure 13.2 is one such instance of the hierarchy. Each of the

four levels depicts a category of military simulation (as labeled to the right of the

pyramid). As we move up the pyramid, the models are increasingly aggregated in

terms of model detail; model fidelity increases as we move down the pyramid. The

shape of the pyramid also captures the general use of the simulations within each

category. The wider, lower levels cover a much broader range of issues than do the

narrow levels, whose models have a more focused purpose. Entries within each level
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Fig. 13.2 The well-know model pyramid adopted and extensively used within the US DoD sim-

ulation world. The pyramid depicts the four general categories of models, how the categories vary

in terms of modeling resolution and aggregation, and provides modern examples of models within

each category

are representative models associated with that level/category. In general, results from

lower levels are aggregated and used as inputs to models on higher levels.

This construct of families of models required human intervention to move data

(and scenarios) among the models. A natural challenge to the technologists thus

arose, why not let the simulations interconnect, or “talk to each other” to remove the

time and labor intensive process of modeling data among the models. The answer

to this simple question required complex software and communications engineering

but yielded a result that now drives the predominant form of military simulation.

13.3.3 Military Simulation Goes Distributed

While computer simulation for war gaming was often considered a topic for special

defense conferences, and many papers dealing with analytical simulation targeted

the military operations research community, the rise of distributed simulation was

in the focus of the simulation community. Military training was and is a challenging

environment that draws lots of research interest and was also the main topic featured

in WSC. With the maturing of computer technology, distributed simulation trans-

formed the way the armed forces conducted planning, training, testing, and many

of its other functions and tasks. In parallel to the growing importance of computers

for command and control tasks, the development of training systems utilized, mod-

ernized, and sometimes even revolutionized the use of computer simulation. Thus,
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distributed simulation augmented the traditional methods of war gaming, although

war gaming still has its place in many modern applications of military problem

domains, such as in cybersecurity (Turnitsa 2016).

13.3.3.1 SIMNET and Distributed Interactive Simulation

The modern story of distributed simulation starts in 1983 with the Simulator Net-

working (SIMNET) program. It was initiated by the Defense Advanced Research

Projects Agency (DARPA) as one of the first attempts to exploit the developments in

communications technology for simulation. First-hand accounts are given by Miller

and Thorpe (1995) and Cosby (1995). The idea was to network a group of simulators

together and exchange information that would allow the teams using these simula-

tors to collaborate like they would do in their operational systems. This was surely

a DARPA project, as the best the US Air Force could manage at the time were two

simulators, and the SIMNET first target was using 20 simulators (Hapgood 1997).

SIMNET objectives were to bring armor, mechanized infantry, helicopters, artillery,

communications, and logistics components together into a common, situated, vir-

tual battlefield. Simulator crews were supposed to observe each other, communicate

via radio channels, and observe each other effects. Per Loper and Turnitsa (2012),

SIMNET was based on six design principles:

∙ Object/Event Architecture—the world is modeled as a collection of objects which

interact using events.

∙ Common Environment—the world shares a common understanding of terrain and

other cultural features.

∙ Autonomous Simulation Nodes—simulations send events to other simulations and

receivers determine if that information is relevant.

∙ Transmission of Ground Truth Information—each simulation is responsible for

local perception and modeling the effects of events on its objects.

∙ Transmission of State Change Information—simulations transmit only changes in

the behavior of the object(s) they represent.

∙ Dead Reckoning Algorithms—simulations extrapolate the current position of

moving objects based on its last reported position.

The demonstration used commercially available computer networks to intercon-

nect simulators and represent the virtual world graphically. The companies Delta

Graphics, Inc., Perceptronics, Inc., and Bolt, Beranek and Newman (BBN), Inc.,

were contracted with the development of graphics, network, and vehicle simulators.

Three years after the project start, a platoon-level system had been developed, and

after 3 more years, approximately 250 simulators were used by the US Army for

their team training in Fort Benning, GA, Fort Rucker, AL, Fort Knox, KY, Fort

Leavenworth, KS, and in Grafenwöhr, Germany. These technical and application suc-

cess stories spawned growing interest with industry, and soon after the demonstra-

tions, the IEEE 1278 Standard on Distributed Interactive Simulation (DIS) emerged

(Calvin et al. 1993). The idea was to keep the standard easy to understand, easy
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to implement, and open for future developments. It was developed over a series of

Workshops, mainly organized by the Institute for Simulation and Training (IST) of

the University of Central Florida in Orlando. In 1993, the first version of this stan-

dard was agreed upon. The participation of the US Army Simulation Training and

Instrumentation Command in Orlando, FL, ensured the applicability of these stan-

dardized solutions for the military customer. The design principles of DIS remained

the same as those of SIMNET. As the focus had been on proving the principle and

feasibility in applicable form for SIMNET, with DIS it shifted to the production of

good guidelines and the definition and standardization of protocol data units (PDU):

a standardized information exchange specification with fully agreed upon syntax and

semantics.

DIS rapidly became a worldwide standard that was adapted for countless simula-

tion systems and continues to support military training. Many of the new methods

include migration support by providing DIS interfaces or gateways to facilitate the

integration of simulation systems supporting the DIS principles. Additional details

are provided in U.S. Congress, Office of Technology Assessment (OTA) (1995).

13.3.3.2 The Aggregate Level Simulation Protocol

While DIS focused on the networking of simulators, DARPA also recognized the

need to support computer assisted exercises (CAX). As described by Cayirci and

Marincic (2009), a CAX is an exercise using computer models designed to place the

command and control element of a headquarters in a realistic, stressful combat-like

environment to stimulate decision making, command and control staff interaction

and coordination. While the focus of simulator training lies on training of individu-

als and small teams operating the weapon system simulated, the whole headquarter

with its different cells and command and control systems builds the training group.

Supporting a CAX, therefore, required another approach to interconnect the oper-

ational environment used by these Headquarters personnel. Thus, they defined the

infrastructure that supports the military user with all information necessary to opti-

mize the decision process with a focus on Command and Control Information Tech-

nology.

To support this new application domain, DARPA initiated the Aggregate Level

Simulation Protocol (ALSP) extending distributed simulation to the force-level train-

ing community. In contrast to the tactical level supported by DIS, different aggrega-

tion levels of unit representations are possible, the exercises were distributed over a

larger geographic domain potentially worldwide, and causality played a more impor-

tant role. Because of the evaluation of these new requirements, the ALSP recognized

that various time management schemes and more complex simulated object attribute

management requirements were needed. The resulting design principles were the fol-

lowing (Weatherly et al. 1991):
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∙ Simulations need to be able to cooperate over a common network to form confed-

erations.

∙ Simulations must be able to publish objects of common interest and subscribe to

objects they are interested in. Objects controlled by other simulation systems are

ghosted.

∙ Within a confederation, temporal causality must be maintained.

∙ Simulations should be able to join and exit a confederation without major impact

on the balance of the other participating simulations.

∙ The system should be network-based with no central controllers or arbitrators.

∙ Interactions among participating components do not require knowledge of confed-

eration participants and should support an object-oriented view of interactions.

To implement these principles, ALSP focused on developing a special commu-

nication infrastructure, the ALSP Infrastructure Software (AIS), allowing for an

extended set of services as well as a new format for the information exchange ele-

ments, the Interface Control Document (ICD), provided the capability to communi-

cate the higher variety of information to be exchanged between the headquarters and

the supporting combat simulation systems. The AIS comprised two software module

categories with different tasks.

∙ The ALSP Common Module (ACM) was the interface to the simulation systems.

It provided the interface to exchange messages in form of human readable text

between the ACM and the simulation systems. These messages are defined in the

ICD. This provided a high flexibility regarding what type of information could

be exchanged, but also required a higher degree of coordination when the ICD

content was agreed upon in the preparation phase for an exercise.

∙ ALSP Broadcast Emulator (ABE) provided the infrastructure services to orches-

trate the execution of the distributed exercise. These software modules did not

interface with the simulation systems, but they connected the ACM. ABE provided

a set of services to support confederation, data, time, and event management.

The resulting ALSP specification was successfully implemented and supported

over several years. The Joint Training Confederation (JTC) was the largest applica-

tion of ALSP. The JTC has been used since 1992 to train military officers all over the

world, including the United States, Germany, Korea, and Japan. In 1997, twelve sim-

ulation systems from varied armed services participated in a JTC worldwide exercise

(Prochnow et al. 1997). Although ALSP was never standardized by an official stan-

dardization body, it proved new concepts and their feasibility shaping the current

parallel and distributed simulation community. The reason for not going for stan-

dardization was the emergence of another new idea: the development of a common

simulation interoperability standard that could merge both worlds of DIS and ALSP,

the Standard for Modeling and Simulation (M&S) High Level Architecture (HLA).
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13.3.3.3 The High-Level Architecture

The successful DIS and ALSP experiments did lead to the realization by the US

Congress that distributed simulation technology could yield great benefits to the

Department of Defense (DoD). The National Defense Authorization Act of 1991

called for a joint office to “establish a coordinated DoD-wide approach to simu-
lations and training devices for both acquisition and training..., to establish inter-
operability standards and protocols, and to develop a long-term plan to guide the
development of simulators and training devices.” The Defense Modeling and Simu-

lation Office (DMSO) was soon established to foster joint interoperability and model

reuse among the armed service M&S efforts. The development of common simula-

tion interoperability and related standards was a high priority objective. After review

of alternative solutions, an Architecture Management Group (AMG) was established

in 1995 to develop the High-Level Architecture (HLA), with significant political and

financial support. This program was very ambitious. The DoD Joint Requirements

Oversight Council (JROC) originally even planned to stop funding for simulation

efforts that would not support the new standard after a certain adjustment time, and

even exclude non-compliant solutions completely from the use in the DoD. This idea

proved to be infeasible over time and was not enforced, but it shows the seriousness

of the efforts.

In parallel to these national efforts, DMSO was also active within NATO. DMSO

actively pushed for the development of a NATO M&S Master Plan (MSMP) that

would ensure international support of the new vision of a common family of stan-

dards that would enhance the multi-national training capabilities. The Conference

of National Armament Directors (CNAD) chartered a Steering Group on NATO

Simulation Policy and Applications in 1996 and developed the MSMP, which was

endorsed by the Military Committee and the CNAD, approved by all NATO nations,

and issued in December 1998 by the North Atlantic Council. The MSMP also iden-

tified HLA as the common standard.

The design principles of HLA are described by Kuhl et al. (1999). They are real-

ized in all implementations.

∙ Simulation systems communicate via the common Runtime Infrastructure (RTI)

via standardized interfaces. Simulation systems are called federates and build

together with the RTI the federation.

∙ The information exchange elements are defined using the standardized Object

Model Template (OMT) which defines persistent elements (objects with attributes)

and transient elements (interactions with parameters). Ten basic rules define the

principles for this information exchange.

∙ The RTI provides services for the management of the federation, time, and the

information exchange between the simulation systems and ensures consistency

within the federation:

– Federation management: Creating, joining, and managing federations, saving

and restoring federations, and synchronizing federates.
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– Declaration management: Defining publication and subscription of information

exchange elements types for the federate.

– Object management: Defining the use of instantiated objects and interactions

information exchange element objects for the federate.

– Ownership management: Defining ownership of objects, including how to trans-

fer it.

– Time management: Defining the time paradigms and their synchronization.

– Data distribution management: Defining constraints allowing for the optimiza-

tion of data traffic between federates.

The development and standardization of HLA happened in various phases. Sup-

ported by the US DoD, the first phase resulted in the definition of the HLA 1.3 NG.

To foster a high adoption rate, the necessary software packages developed for the

prototypical implementation were distributed for free to interested members of the

simulation industry.

With the acceptance by NATO, the international community pushed for an inter-

national standard, comparable to the IEEE 1278 DIS standard, which at the time

was the standard of choice for NATO simulation groups. Because of this interna-

tional effort, HLA was submitted to IEEE for standardization, and this resulted in

the IEEE 1516–2000 HLA standard family. Within the standardization process, the

HLA 1.3 NG solutions were generalized and elevated to the current technologies,

i.e., the number and possible values of calibration parameters were generally cap-

tured as extensible enumerations, and the definition of structures was transformed

from Backus-Naur-Form to XML.

The review of the HLA standard family 10 years later resulted in additional adap-

tations of new technical solutions, such as semantic web technologies and increased

modularization of HLA components. The updated IEEE 1516–2010 HLA is the cur-

rent version.

Beside the technical specifications of the guiding rules, the interface between RTI

and federates, and the structure of the information exchange in form of the OMT,

the standard family comprised also guidelines for the federation development and

execution processes (FEDEP) as well as how to conduct verification and validation

for federations.

13.3.3.4 The Test and Training Enabling Architecture and Mixed
Approaches

In parallel to the HLA, another effort to provide increased benefits led to the devel-

opment of the Test and Training Enabling Architecture (TENA). In contrast to the

HLA, TENA purposefully focuses on support of test ranges for military applications

(Powell and Noseworthy 2012). TENA allows for the definition of an object-oriented

Logical Range Object Model that avoids, similar to the standardization of PDUs

within DIS, ambiguities. The TENA philosophy is based on the understanding that

interoperability requires not only a common architecture, but also the ability to
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meaningfully communicate, which requires a common language and a common

communication mechanism. Furthermore, a common context in form of a common

understanding of the environment, a common understanding of time, and a set of

common technical processes is needed. The TENA infrastructure provides integrated

solutions, plus it provides places to store reusable components in form of TENA

repository. This systemic support for interoperable solutions comes with a price:

TENA is difficult to extend beyond the focus of test and training on ranges. While

HLA had the objective to be broadly applicable for all simulation paradigms and all

application domains, TENA was designed to optimize the support of its application

domain.

The recent years of distributed simulation development are characterized by

the insight that one common standard that fits all purposes is unlikely to be ever

accomplished. This resulted in the increased implemented and utilization of mixed

approached that allow for the use of various simulation interoperability standards

within the same architecture. The resulting multi-domain architectures connect the

various solutions using mainly proxies or gateways. To support these endeavors,

the HLA specific FEDEP has been generalized to support such mixed approaches,

resulting in the IEEE 1730–2010 Recommended Practice for Distributed Simulation

Engineering and Execution Process (DSEEP). DSEEP has been extended to support

Multi-Architecture Overlays that support more than one simulation interoperability

standards.

Distributed simulation is now accepted as a training support that is expected and

taken for granted by members of the armed forces. Pilots train and practice on simula-

tors before they enter the aircraft for many hours. The latest US fighter F-35 does not

even have a trainer version with an extra seat for the instructor any more. Instead, the

new pilot learns everything in the simulator, including flight formations with others

within a distributed training environment. Within NATO, the use of CAX to train and

practice international units is standard practice. Bruzzone and Massel (2017) present

a view of the military history of distributed simulation from the NATO perspective.

13.4 The Military Track of the Winter Simulation
Conference

Over the last few decades, there have been just a few outlets for publicizing mili-

tary simulation activities and results. Arguably the leading conference on simulation

has been the Winter Simulation Conference. Initiated in 1967, the WSC has gained

the respect of simulation professionals worldwide, especially with its focus on high

quality papers and presentations. There are other quality conferences with a defense

focus: Western Decision Sciences Institute, the Annual Conference of the Institute

of Industrial and Systems Engineers, the Summer Computer Simulation Conference

(SCSC), and the Interservice/Industry Training, Simulation and Education Confer-

ence (I/ITSEC), recognized as the world’s largest modeling, simulation, and training
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conference. The symposiums of the Military Operations Research Society (MORS)

also contribute to simulation-related research. However, our focus here is on the

WSC.

The very first WSC in 1967 featured a military keynote while the general chair

was with the Air Force. Various military papers appeared in those early years. An

interesting paper on a pure military topic was presented at the WSC75 in the Simula-

tion for Government track on the topic of “A Security Force-Adversary Engagement

Simulation” by H.A. Bennett from the Sandia Laboratories (Bennett 1975).

At the WSC77, the session on Military systems was introduced, involving two

papers. Alfonso A. Diaz from the US Training and Doctrine Command presented

“A Cost and Operational Effectiveness Analysis of the Army Utility Tactical Trans-

port Aircraft System,” (Diaz 1977) and the paper on “The Generation and Use of

Parameterized Terrain in Land Combat Simulation” was presented by Sam H. Parry

from the Naval Postgraduate School (Parry 1977).

Although some papers with military references were presented thereafter, it was

not before 1983 that a permanent Military Application session was introduced to

provide a permanent home for such application studies. These sessions attracted

between two and five papers per year, with peaks in 1988 (12 papers) and 1991 (9

papers). It was not until 1993 that the Military Application topic attracted enough

papers that a track with several sessions could be established in the WSC program.

This increase was likely connected with the congressional recognition and follow-

ing support of modeling and simulation, as described in the distributed simulation

subsection.

In 1995, the Military Track introduced its own keynote session with a clear focus

on defense related issues. There were a significant number of technical HLA-related

papers during the years of 1995 and 2000, but they never dominated the track. How-

ever, motivated by the new technical perspective, more technical papers were submit-

ted that not only focused on the application domain, but evaluated new technologies

or methods regarding their applicability.

Since 1998, the Military Application track was conducted as one of the main

tracks in the WSC, with full day sessions for all days of the conference. Since 2007,

the numbers started to drop some and sessions were combined together with the

Homeland Security track, which was established in 2004. Although many interest-

ing papers continued to be presented, the number of accepted papers dropped to 10 in

2014, so that the program committee decided to merge the Military Application and

the Homeland Security tracks into the new track on Military, Homeland Security &

Emergency Response, covering all aspects of defense and security application in a

common track, again with full day sessions for all days of the conference. Figure 13.3

provides a summary of the activity in the military track over the years. These num-

bers do not include papers with military application topics that were featured in other

tracks.

Since its instantiation, the Military Application track has conducted keynotes,

panel discussions, and paper sessions highlighting the requirements, benefits, and

technology challenges and solutions. New concepts such as distributed simula-

tion, multi-resolution and multi-domain modeling, high resolution visualization,
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Fig. 13.3 A compilation of the papers falling under the Military Track for the Winter Simulation

Conference. The number of papers is provided for each bar. Note that for many years, the Military

Track has featured a keynote speaker, meaning no or at most one paper is associated with a full

session

applicability of web-based applications, cloud-based, and many more were presented

and discussed in the international context. Tutorials were also supported.

Early military papers in the WSC were parametric, or deterministic in nature.

Early efforts by Bennett (1975) and Link and Shapiro (1979) examined small force

engagements based on difference equations or detailed scripts. Mekaru and Bar-

clay (1984) modeled deep space intercepts while Graves and Clark (1983) mod-

eled the budget planning process. However, early languages like Q-GERT, SLAM,

and Simscript allowed military modelers to take advantage of computer simulation

capabilities. Parry (1978) used Simscript to examine battalion-level engagements,

Mortenson (1981) used Q-GERT to model aircraft repair centers (called depots),

and Armstrong et al. (1983) used SLAM to study mobility aircraft scheduling. Clark

et al. (1984) seem to provide the first WSC military paper using experimental design

to examine model results, in their case focused on logistics policy analysis. This work

preceded the tutorial nature of the Roberts and Morrissey (1986) work that explained

using design of experiments to examine a targeting algorithm.

As simulation capabilities evolved so did the application of these capabilities in

papers featured in the military track. By 1987, training simulation discussions really

started appearing; Childs and Lubaczewski (1987) discuss such a system for battalion

and brigade commanders. By 1988, the military simulation track seemed to take

hold with its first truly sizable track, and this growth resulted in a military track

with focused sessions by 1992. Those sessions in 1992 interestingly enough were

focused on airlift, wargaming, and decision support based on simulation modeling;

topics that are still examined today.

Combat support-focused topics began appearing about this same time. Schuppe

(1989) examined pilot workload, which continues to be a major research issue.

Human factors modeled associated with various aspects of the military mission

garnered 1–2 sessions per track in the early 2000s. The influence of DIS and

ALSP appeared in the military track by 1994 with a focus paper on the topic in

1999 (Nance 1999). Unmanned vehicle research and agent-based modeling appli-

cations are hot topics in 2017; these emerged in the military applications track by

the early 2000s. The military track even seems to have the distinct honor of having
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a Winter Simulation session in the Winter Simulation Conference (it was a session

focused on seasonal issues in military operations).

Over the years, the Military Track has featured numerous important defense lead-

ers as keynote speakers, held five important panel discussions, one involving the

senior operational research analyst from each of the services, and provided numerous

papers covering a plethora of important topics to military planning and operations.

The current Track on Military, Homeland Security & Emergency Response contin-

ues to be a pillar of the annual WSC program and a track that influences military

decision making with its scientific contributions.

13.5 Examples for Current Challenges

Given the long history of military simulation and the broad range of specific topics

that fall into the realm of military simulation, any history of military simulation is

necessarily incomplete. In this history, we have tried to touch on many of the influ-

ences in a military simulation that have led to current state of military computer

simulation. Fortunately for those involved in military simulation, now is an exciting

time. There are a wide variety of challenges and opportunities in the military simu-

lation. Our intent here in this last section is to highlight some of these opportunities

and challenges.

13.5.1 Live, Virtual and Constructive Simulation

The tremendous advances in distributed simulation have evolved into an environ-

ment in which live assets can communicate with training systems involving humans

in the loop (virtual assets) and with purely analytical models (constructive mod-

els). The resulting LVC environment provides access to the range and number of

military systems not available on the physical test ranges. Thus, LVC holds tremen-

dous promise for the system demonstration and training challenges in the future.

The LVC also holds promise for the test and evaluation world. In such applications,

new systems can be embedded in the complex, interconnected military environment

envisioned for the future while communicating and interacting with the systems of

today, all within some common environment to ascertain the new system appropri-

ateness in a system-of-systems context. The latter application requires new ways of

thinking about the humans in distributed simulations, but does provide an opportu-

nity to fundamentally change the way the military tests and considers new weapon

systems and the various support systems (see discussion in Hodson and Hill (2013)).

This research must address how to fully integrate games into the LVC. Games and

their physical engines can provide valuable functionality to federations, as shown

by Valerde and Sun (2017). Games also have been proven useful for rapidly gen-

erating sufficiently realistic behavior of entities without requiring a huge amount
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of personnel to do so. Games are providing valuable means to support generat-

ing realistic visual representation, e.g., of avatars in simulated teleconferences, or

realistic video streams of simulated drones that fly through synthetic environments.

Finally, the use of augmented reality opens new training possibilities by mixing sim-

ulated reality with real environments. Current research focuses more on convergence

instead of simple integration.

13.5.2 Web-Based and Cloud-Based Simulation

The military track featured several papers on the efficient use of web-based and

cloud-based technology, such as Cayirci (2013). With the progress of general compu-

tational methods supporting distributed and high performance computing, the adap-

tion of such technologies in support of military and defense simulation is gaining

increased interest. M&S as a service is often seen as the possible technology solu-

tion enabling the convergence of solutions, although conceptual challenges remain,

as shown in Taylor et al. (2015).

This does not only address the use of such emerging technologies within simula-

tion systems and to support their distribution and execution, but also tools that allow

better governance of such complex endeavors: how to manage the development and

execution of such simulation systems? How do these new developments affect ideas

of common services to be shared with partners, definition of reusable simulation

components in repositories, etc.

13.5.3 Computational Social Sciences

The human element has always been a key determinant of military success or failure.

Throughout the history of military simulation, we have included human behavior in

our analyses. The revolutionary changes brought about by the computer in the 1940s

and the 1950s did much to improve our mathematical representation of combat, but

our representations of the human in that combat scenario has been slow to catch up.

The use of agent-based simulations has brought about tremendous advancements in

the social sciences and some of these advances will surely find their way into combat

modeling. There has already been steps in this direction particularly with the work

in the Naval Postgraduate School SEED Center—promoting simulation experiments

and efficient designs—and prior to that, the work under Project Albert. Currently, the

use of generative simulation, as envisioned in Epstein (1999) and today increasingly

supported by Agent Zero model implementations Epstein (2006). The usefulness for

defense related analysis, but also potentially for training and education, is a topic of

current research.
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13.5.4 Unmanned Assets

Unmanned assets, particularly unmanned aerial vehicle (UAV) assets hold great

promise for future combat operations. Unfortunately, it is unclear which parts of

that promise are achievable and which parts are hype. The use of advanced simula-

tions can go a long way to discerning the achievable and not so achievable aspects of

the autonomy challenge facing the military in the future. One of the pressing issues

in this context is the need to command and control mixed units, made up of human

soldiers as well as robots, including the necessary human-robot interfaces needed to

enable efficient combat operations. These concepts also must be represented in train-

ing systems, so that officers learn how to utilize such mixed units efficiently. Several

aspects of these challenges are currently evaluated by the Modeling and Simulation

for Autonomous Systems (MESAS) workshops organized by the NATO Center of

Excellence, see among others Blais (2016).

13.5.5 Other Emergent Challenges

The topics listed in this section are neither complete nor exclusive. Many additional

challenges have been and are identified, and their number grows steadily. Among

these are the following ones.

∙ The community is still looking for good solutions for multi-level security protocols

that allow data sharing in an exercise with all participants on various levels of trust.

This includes multi-domain challenges as well.

∙ Urban operations in Megacities will become a challenge, as more and more people

are moving into big cities, mostly on the coast. While traditional military opera-

tions in the age of the Cold War avoided urban areas, in the future the combat in

such environments will become a likely option. Burns et al. (2015) address the

fragility of the Global Positioning System in such an urban scenario.

∙ Many scenarios already include massive cyberattack activities, but only as an

event, not as a simulated operational activity. Cyber warfare needs to be modeled

by itself as well as an integrated activity of combat operations. This includes, but

is not limited to, the cyber-attacks against command and control systems. Unfor-

tunately, there is still the question of just how to model cyber.

Many more topics can be added to this list of emergent challenges. Over the years,

the military application domain has proven to be one of the most challenging fields

to be supported by M&S. The problems are complex and require solutions that draw

from research from many related domains in the technical as well as the operational

realm. New technologies and methods continuously contribute to innovative solu-

tions that are worth to be presented and discussed with international peers, in partic-

ular as the focus of military operations is no longer limited to the traditional combat

sphere.
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13.6 Concluding Remarks

The focus of this chapter was to provide a framework of main events and topics,

not the presentation of main research results. However, many methods and tools

resulting from the research such as they are presented and discussed in the military

track are presented in more detail in textbooks and research reports. Examples for

such textbooks are Bracken et al. (1995), Cayirci and Marincic (2009), Deitz et al.

(2009), Washburn and Kress (2009), Strickland (2011), and Tolk (2012). The inter-

ested reader is referred to this literature for further studies.

This chapter is titled “A History” for a specific reason; it is by no means neither

a complete nor a comprehensive history. It is “A” history because its content and

presentation is influenced heavily by the biases and experiences of the authors. It

is fully expected that anyone reading the history presented will react with a “Why

wasn’t N” included, and the reaction is fully justified. For instance we did not cover

the tremendous infusion of funding into modeling and simulation through organiza-

tions like the Defense Modeling and Simulation Office or the hundreds of millions

of dollars spent on the Joint Simulation System (JSIMS) (Bennington 1995) or the

Joint Warfare System (JWARS) (Stone and McIntyre 2001). We also chose to not

discuss the incredible wide range of engineering models used in weapon systems

design, in weapon system survivability studies, or in weapon systems lethality stud-

ies, to name just three areas. We also left off important areas like gaming technology

to military use or simulation support to large-scale exercises; these could constitute

entire theses on their own. Our intent was to layout a cogent flow of how military

planning and analysis has evolved into the computer-reliant complex that exists today

and entertain a little along the way.

To this end, our chronological coverage is more complete than found in some of

the other histories and we provide insight into the evolution of the Winter Simulation

Conference, Military Track, and the contributions made in that forum to the field of

military simulation.
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Chapter 14
Modeling and Analysis of Semiconductor
Manufacturing

John W. Fowler and Lars Mönch

Abstract This chapter provides a brief history of semiconductor manufacturing
papers in the Winter Simulation Conference (WSC) along with some other key
events that led to the development of a community of academicians and semi-
conductor manufacturing practitioners focused on modeling and analysis of semi-
conductor manufacturing. Among these influential events were the first Modeling
and Analysis of Semiconductor Manufacturing (MASM) conferences. The MASM
conference became a conference within the WSC in 2008. We examine this by
considering one decade at a time starting with the 1980s.

14.1 Introduction

The demand for and uses of semiconductor devices is constantly expanding. We
continue to have new and improved consumer electronics which are powered by
semiconductor devices. Increasingly, a larger and larger percentage of the content
of transportation and communication systems depends on semiconductor devices.
The Internet of Things revolution has been made possible by the vast array of
semiconductor devices.

A semiconductor device is a highly miniaturized, integrated electronic circuit
consisting of thousands of components. The fabrication of semiconductor devices
(or Integrated Circuits—IC’s) is surely among the most complex manufacturing
processes in existence (cf. Mönch et al. 2013). This complexity is caused by many
factors including multiple products, routes with several hundred process steps,
batch processing, and a large number of machines. A batch is a set of lots that are
processed at the same time on a single machine.
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In the early days of the semiconductor industry, all that was necessary for a
semiconductor company to make money was to design a good product. However,
over the last three decades, increased competition has required semiconductor
companies to also be able to manufacture their products in a more efficient and
cost-effective manner.

Semiconductor companies have increasingly turned to data-intensive modeling
and analysis tools and techniques because of their potential to significantly improve
manufacturing performance, and hence the bottom line. The semiconductor man-
ufacturing modeling and analysis community has been working over the last
30 years to modify general purpose manufacturing modeling tools and techniques
to handle the intricacies and complexities of semiconductor manufacturing.

This chapter provides a brief history of semiconductor manufacturing papers in
the Winter Simulation Conference (WSC) along with some other key events that led
to the development of a community of academicians and semiconductor manu-
facturing practitioners focused on modeling and analysis of semiconductor manu-
facturing. Among these influential events were the first Modeling and Analysis of
Semiconductor Manufacturing (MASM) conferences. The MASM conference
became a conference within the WSC in 2008. We examine this by considering one
decade at a time starting with the 1980s.

14.2 The 1980s

By the mid-1980s, the semiconductor industry was highly competitive with
numerous players that had to begin to compete on dimensions other than just
product design. Cost and ability to deliver product were becoming increasingly
important. In response to these pressures, a few companies begin to use discrete
event simulation to help manage their wafer fabrication facilities. Dayhoff and
Atherton (1984) was one of the earliest papers to discuss the use of discrete event
simulation to analyze semiconductor manufacturing operations. A couple of years
later, Dayhoff and Atherton (1986) described the use of simulation to estimate the
impact of various dispatching schemes on the inventory, cycle time, and throughput
of a wafer fab.

In 1987, the SEMATECH consortium was formed as a jointly funded partner-
ship between the Defense Advanced Research Projects Agency (DARPA) and 14
United States (US) semiconductor manufacturing companies in response to a
growing share of the semiconductor market being captured by Japanese companies.
DARPA wanted to ensure the domestic capability to produce IC’s would persist. As
part of the startup, SEMATECH established several Centers of Excellence. Two of
these included a modest amount of funds to study semiconductor manufacturing
operations: one at The University of California Berkeley (UC Berkeley) (led by
Roger Glassey and Robert Leachman) and the other at Texas A&M University (led
by Don Phillips, Guy Curry, and Bryan Deuermeyer). This funding was recognition
by the companies that they needed to improve operations to remain competitive and
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sent a signal to academic researchers that obtaining funding to do research in this
area was possible.

Apparently, the first WSC semiconductor manufacturing paper was by Peter
Waller of Intel (cf. Waller 1986). This paper describes the process of building a
discrete event simulation model of a manufacturing facility and gives an example
using the process for a wafer fab. In 1988, there were two WSC semiconductor
manufacturing papers. Prasad and Rangaswami (1988), two Intel employees, ana-
lyze different automated guided vehicle (AGV) systems using simulation. Pitts
(1988) describes the use of simulation to improve operations at a research and
experimentation wafer fabrication.

The year 1989 saw a doubling of the number of semiconductor manufacturing
papers at WSC. The four papers included a 3-paper session entitled “Scheduling for
Semiconductor Manufacturing Lines”. This session included a paper from UC
Berkeley (Glassey and Petrakian 1989), a paper from AT&T Bell Labs (Johri
1989), and a paper from IBM (Miller 1989). In addition, there was a paper (Hood
et al. 1989) by an IBM T.J. Watson Research Center researcher (Sarah Hood) and
two consultants from Systems Modeling Corporation (Amy Amamoto and Antonie
Vandenberge) that described the development of a detailed generic simulation
model of a wafer fab. We note that most of the documented efforts in the 1980s
were done by the companies rather than by academics.

14.3 The 1990’s

There were two papers in the 1990 WSC proceedings. The first, Atherton et al.
(1990), discusses the first wafer fabrication facility simulator (ACHILLES) and a
cluster tool simulator (THOR). The ACHILLES software contains the logic laid out
in a US Patent. The second 1990 paper (Hood and Welch 1990) discusses how to
employ experimental design techniques to study wafer fab operations via a simu-
lation model. Baum and O’Donnell (1991) was the only WSC semiconductor paper
in 1991. It discussed the modeling of labor and the impact of machine down times
in wafer fabrication at National Cash Register NCR.

In 1991, SEMATECH formed an Operational Modeling group that was led by
Mohammad Ibrahim, an assignee from Advanced Micro Devices (AMD.) This
group played an instrumental role in increasing the use of simulation (and other
operations research techniques) in the semiconductor industry. Over the next
5 years, members of the group included Neal Pierce (Harris Semiconductor), Jerry
Weckman (former Texas Instruments employee), John Fowler (former AMD
intern), John Konopka and Shekar Krishnaswamy (IBM), and Ricki Ingalls (former
Compaq employee). Tom Jefferson, who was the 2008 WSC General Chair and a
long-time Intel employee, and Scott Mason (Clemson Professor and long-time
MASM contributor) were interns with the group. Lee Schruben (UC Berkeley) and
Pres White (University of Virginia) each spent a year in the group as a visiting
professor. The Operational Modeling group had three main activities: (1) providing
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training to member company personnel just starting to employ operations research
tools and techniques, (2) developing operations research tools for the companies,
and (3) supporting internal SEMATECH projects with modeling.

Among the training activities were a half day short course for managers taught
by Averill Law and two separate 2.5-day short courses taught by David Kelton and
Lee Schruben for simulation analysts. Tool development included (1) managing a
project with Systems Modeling Corporation to develop the Wafer Fabrication
Template (one of the first Arena templates); (2) internal development of a supply
chain optimization model called the Manufacturing Enterprise Model; and (3) the
internal development of the Semiconductor Workbench for Integrated Modeling
(SWIM), which was built to manage the flow of data used by individual models and
the flow of data between models.

One of the major projects undertaken by the SEMATECH Operational Modeling
group was the Measurement and Improvement of Manufacturing Capacity
(MIMAC) project. This project was done in conjunction with the Joint European
Submicron Silicon Initiative (JESSI) consortium. In the project, a 2-day workshop
on the relationship of cycle time and capacity was developed and delivered in
London, Munich, Nantes, Boston, Austin, and Phoenix. As a part of the project, the
researchers developed a standard format for an operational model of a wafer fab.
Professor Robert Leachman (UC Berkeley) was contracted to develop datasets of
six wafer fabs that he had visited in the Sloan Study for Competitive Semiconductor
Manufacturing that he was co-leading at the time. These data sets were made
available to researchers (and software developers) so that ideas they had for
improved wafer fab models could be tested with real data. The datasets have been
used extensively by the research community ever since. While the datasets are now
more than 20 years old and do not fully reflect today’s wafer fabs, they are still the
best source of data representing wafer fabrication operations. The data sets are now
hosted by Professor Lars Mönch at the University of Hagen along with more
recently developed datasets of backend operations and supply chain operations. The
data sets can downloaded at http://p2schedgen.fernuni-hagen.de/index.php?id=242.

In 1992, Reha Uzsoy, Chung-Yee Lee, and Louis Martin-Vega (cf. Uzsoy et al.
1992) published part 1 of a two-part series of papers that reviewed models
developed for production planning and scheduling in the semiconductor industry.
This paper raised the awareness of the complexity and challenges faced by semi-
conductor manufacturers. According to Google Scholar on April 29, 2017 it has
been cited more than 650 times and is still frequently cited.

Returning to WSC papers, there were six WSC papers with one from SEMA-
TECH and the rest from semiconductor companies (including one from Japan).
There were three, four, and one papers in 1993, 1994, and 1995, respectively. All
but two of these were from semiconductor companies; one was from a software
vendor (LeBaron and Pool (1994) and one from academia (Schömig and Mittler
1995). Two of the papers dealt with automated material handling (Nadoli and
Rangaswami 1993 and Pierce and Stafford 1994) and two with cluster tools (Mauer
and Schelasin 1993 and LeBaron and Pool 1994). It should be noted that during this
time the Advanced Semiconductor Manufacturing Conference (ASMC) and the

304 J.W. Fowler and L. Mönch

http://p2schedgen.fernuni-hagen.de/index.php%3fid%3d242


Semicon West conference began to publish papers devoted to semiconductor
manufacturing operations.

Another data set that has been used extensively by the research community was
introduced by Dr. Karl Kempf and a colleague from Intel Corp (cf. Spier and
Kempf 1995). The data set is called the Mini-Fab model and it consists of only six
steps and five machines in three workstations. Despite its limited size, it contains
most of the key operations elements of a wafer fab: multiple products, batch and
serial steps, significant setups, reentrant flow, operators, and downtime. This data
set and variants of it have been used to test out numerous planning and scheduling
methodologies over the last 20 years.

The 1996 WSC had two firsts regarding semiconductor manufacturing. The first
of these is that Dr. Karl Kempf gave the keynote speech that was titled “Simulating
Semiconductor Manufacturing Systems: Success, Failures, and Deep Questions”.
The second is that this was the first WSC with two full sessions devoted to
semiconductor manufacturing. Five of the six papers were from industry.

The year 1997 saw the first of three consecutive 3-year research programs
launched. The program was co-funded by the National Science Foundation
(NSF) and the Semiconductor Research Corporation (SRC) at a level of $1.2 M per
year, for 3 years (total of $3.6 M) and was called “Operational Methods in
Semiconductor Manufacturing”. There were three research teams funded: (1) Cor-
nell University—principal investigator (PI) Lee Schruben; (2) University of
Maryland—PI Michael Fu; (3) A collaborative project between Arizona State
University (ASU) (PI-John Fowler), Massachusetts Institute of Technology
(PI-Stan Gershwin), and the University of Illinois (PI-P.R. Kumar). The topics
covered are shown in Fig. 14.1. There were numerous Master’s and PhD. Students
funded in this program. Most of the students either went to work for a semicon-
ductor company or became a professor and continued to research operations issues
in semiconductor manufacturing. The funding of this program led directly and
indirectly to more academic research in this area and ultimately to more semi-
conductor manufacturing papers at WSC.

While there was only a single semiconductor paper at WSC 1997 (cf. Jain and
Chan), there was (effectively) a three-session mini-track in 1998 and a panel dis-
cussion on “OperationalModeling and Simulation in SemiconductorManufacturing”

Fig. 14.1 Topics covered by
NSF operational methods in
Semiconductor
Manufacturing program
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(cf. Fowler et al. 1998). Four of the nine papers were authored by academic teams and
one other was a joint industry-academia paper. In 1999, there was formally a
four-session semiconductor manufacturingmini-track with five papers by companies,
four from academic institutions, and three joint industry-academia papers.

To wrap up the decade, a precursor to the Modeling and Analysis of Semi-
conductor Manufacturing (MASM) conference was held as part of the Society of
Computer Simulation’s Western Multi-Conference. The conference was called the
“International Conference on Semiconductor Manufacturing Operational Modeling
and Simulation (SMOMS’99)”. As implied by the name, the focus was not just on
simulation, but all operations research tools and techniques. The chairs of the
conference were John Fowler (ASU), Jeffery Cochran (ASU), and Courtland Hilton
(Intel). The keynote presentation was by Ditmar Kranzer (Siemens AG—now
Infineon Technologies) and the topic was “The Need for Operational Modeling and
Simulation in Semiconductor Manufacturing”. There were about 100 attendees
from around the globe with an approximately equal mix of industry and academic
folks. There were 36 papers with the following breakdown of topics:

• Performance Evaluation—11
• Cluster Tools and Equipment Availability—3
• Scheduling—5
• Material Handling—4
• Yield and Process Modeling—3
• Batching and Assembly, Packaging and Test Modeling—2
• Cost Modeling—3
• Capacity Modeling—5.

14.4 The 2000s

The momentum generated at the end of 1990s continued in terms of funded research
and academic participation into the 2000s. The first International Conference on
Modeling and Analysis of Semiconductor Manufacturing (MASM 2000) was held
on May 10–12 in Tempe, Arizona. The conference chairs were John Fowler
(ASU) Jeffery Cochran (ASU), Steven Brown (Infineon Technologies), and
Ching-En Lee (National Chiao Tung University, Taiwan). Professor Robert
Leachman (UC Berkeley) was the keynote speaker; however, due to fog in the Bay
area, his talk was delivered by John Plummer from National Semiconductor. There
were over 200 attendees from around the globe with an approximately equal mix of
industry and academic participants. There were 59 papers with the following
breakdown of topics, number of papers, and track chairs:

• Equipment Productivity—15—Robert Leachman (UC Berkeley), Tae-Eog Lee
(Korea Advanced Institute of Science and Technology (KAIST)), Hans Wim-
berger (Infineon)
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• Operational Modeling and Simulation—23—Javier Bonal (Lucent-Madrid),
Devadas Pillai (Intel)

• Statistical Methods—13—Elart von Colani (University of Würzburg), Paul
Tobias (SEMATECH), T. Tada (Mitsubishi)

• Supply Chain Management—8—Sanjay Jain (Gintic), Dan Shunk (ASU).

The 2000 WSC had a (then) record number of 15 papers with nine of them by a
university team and four industry-academia papers. Note that this was the first WSC
that had more academic than industry talks. There was a full session (three papers)
on equipment modeling and another one on material handling. This trend continued
at WSC 2001 where there were 12 papers with eight from academia and three that
were industry-academia papers.

Also in 2001, there was a second SMOMS conference with John Fowler (ASU),
Jeffery Cochran (ASU), Javier Bonal (Agere Systems), and Tae-Eog Lee (KAIST)
as the conference chairs. There were two plenary presentations: one by Sarah Hood
and Stuart Bermon of IBM and one by David Anderson and Walt Trybula of
SEMATECH. There were 26 papers with the following breakdown:

• Simulation Methodology—4
• Planning and Scheduling—4
• Scheduling and Dispatching—4
• Performance Evaluation—4
• Supply Chain Management—3
• Equipment Level Modeling—2
• Backend and Electronics Modeling—3

A second major research funding program was started in 2001. The Factory
Operations Research Center (FORCe) was jointly funded by the Semiconductor
Research Corporation and International SEMATECH (it had recently become an
international consortium with no government funds) at $800 K per year for 3 years.
International SEMATECH worked with Brooks Automation to develop a generic
300 mm wafer fab model for use by the research teams. There were five projects
funded in this program. Note that two of the projects involved universities outside
the US. The subject of each project along with the universities and PI’s are given
below:

• New approaches to simulation of wafer fabrication—Arizona State University
(Jerry Mackulak), UC Berkeley (Lee Schruben)

• Preventive maintenance scheduling in semiconductor manufacturing fabs—
University of Maryland (Michael Fu, Steve Marcus), University of Cincinnati
(Emmanuel Fernandez)

• Demand data mining and planning in semiconductor manufacturing—National
Taiwan University (Argon Chen, Shi-Chung Chang, Andy Guo)
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• Scheduling of semiconductor wafer fabrication facilities—Arizona State
University (John Fowler), University of Arkansas (Scott Mason), University of
Würzburg (Oliver Rose), Technical University of Ilmenau (Lars Mönch), and
Fraunhofer Institute for Manufacturing Engineering and Automation (Roland
Sturm)

• Demand Forecasting (IBM custom funding)—Cornell University (Robin
Roundy)

The goal for each project was to spend the first year of the project understanding
the problem and benchmarking current approaches. The second year was devoted to
developing algorithms and solutions. Finally, the third-year funding was for
implementation and to explore the possibility of commercialization.

The second MASM conference was held on April 10–12, 2002 in Tempe,
Arizona. The committee chairs were John Fowler (ASU), Jerry Mackulak (ASU),
Alexander Schömig (Infineon Technologies), and Der-Bau Perng (National Chiao
Tung University—Taiwan). The keynote talk was given by Devadas Pillai from
Intel and it emphasized challenges that lie ahead with the introduction of 300 mm
wafers. There were 74 papers with the following breakdown of topics, number of
papers, and track chairs:

• Equipment Productivity—10—Tae-Eog Lee (KAIST), Oliver. Rose (University
of Würzburg), Jeffery Cochran (ASU)

• Operational Modeling and Simulation—39—Sarah Hood (IBM), Dominique
Mercier (ST Microelectronics), Ron Billings (International SEMATECH)

• Statistical Methods—14—Paul Tobias (International SEMATECH), George
Runger (ASU)

• Supply Chain Management—11—Karl Kempf (Intel), Argon Chen (National
Taiwan University)

The next three WSC’s (2002, 2003, 2004) each had 12 papers. There was a mix
of academic and industry papers in these years, but there was increased interna-
tional participation.

In 2004, the National Science Foundation joined the Semiconductor Research
Corporation, and International SEMATECH in funding the Factory Operations
Research Center II (FORCe II) at a level of $1.2 M per year for 3 years. The
projects funded and the PIs are given below:

• Fab-wide Control and Disruption Management in High Volume Semiconductor
Manufacturing—S. J. Qin, G. Yu, J. Hasenbein, E. Kutanoglu (University of
Texas at Austin)

• Incorporating Nonlinear Phenomena in Semiconductor Supply Chain Planning
Models—Reha Uzsoy, Ron Rardin, J. Asmundsson, (Purdue University)

• Hierarchical Modeling of Yield and Defectivity to Improve Factory Opera-
tions—Doug Montgomery (ASU), Christina Mastrangelo (University of
Washington)
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• Demand Planning and Supply Chain Coordination in the Contract Manufac-
turing Environments—S. David Wu, Rosemary Berger (Lehigh University)

• Multi-product Cycle Time and Throughput Evaluation via Simulation on
Demand—Bruce Ankenman, Barry Nelson (Northwestern), John Fowler (ASU),
Jerry Mackulak (ASU)

Unfortunately this was the last major funding program for semiconductor
manufacturing operations (to date).

The 2005 MASM conference was held in Singapore on October 6–7, 2005. Peter
Lendermann (Singapore Institute of Manufacturing Technology) was the General
Chair, John Fowler was the Program Chair, and Amit Kumar (Singapore Institute of
Manufacturing Technology) was the Proceedings Chair. There were well over 200
attendees from around the globe. KC Ang from Chartered Semiconductor Ltd. gave
a keynote address on automation in the 300 mm nanotechnology fab. There were
51 papers with the following breakdown:

• Equipment Productivity—14 papers
• Operational Modeling and Simulation—18 papers
• Statistical Methods—8 papers
• Supply Chain Management—5 papers
• Enabling Computing Technologies—6 papers

A special issue of the International Journal of Production Research (Vol. 45,
No. 3, 2007) was produced with papers from the conference.

The 2005, 2066, and 2007 WSC’s had 9, 13, and 12 papers, respectively.
A number of the papers presented were as a result of the FORCe programs. In 2007,
there were 23 papers that were part of a MASM track that was held as part of the
2007 IEEE (The Institute of Electrical and Electronics Engineers) International
Conference on Automation Science and Engineering (CASE 2007). The conference
was held in Phoenix and the overall best paper in CASE 2007 was a MASM paper
that dealt with multiple cluster tools (cf. Chan et al. 2007).

After several years of holding separate MASM conferences, in 2008 the MASM
conference found its current home as part of the Winter Simulation Conference.
MASM is more than just a track within WSC because papers that do not use
simulation are allowed. The MASM chairs were John Fowler (ASU), Lars Mönch
(University of Hagen), and Chen-Fu Chien (TSMC). There was a panel session
with a title “Modeling and Analysis of Semiconductor Manufacturing in a
Shrinking World: Challenges and Successes” with panelists Chen-Fu Chien
(TSMC), Stéphane Dauzère-Pérès (Ecole des Mines de Saint-Etienne), Hans Ehm
(Infineon Technologies AG), John W. Fowler (Arizona State University), Zhibin
Jiang (Shanghai Jiao Tong University), Shekar Krishnaswamy (AMD), Lars Mönch
(University of Hagen), and Reha Uzsoy (North Carolina State University). This
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session lead to a paper in the European Journal of Industrial Engineering
(cf. Chien et al. 2011). There were a total of 44 papers in 16 sessions. The
breakdown is as follows:

• Operational Modeling and Simulation (9 sessions/24 papers)
• Supply Chain Management and Fab Economics (5 sessions/14 papers)
• Enabling Computing Techniques and Statistical Methods (2 sessions/6 papers).

A special issue of the European Journal of Industrial Engineering (Vol. 5,
No. 3, 2011) was published with papers from the MASM 2008 conference.

Making MASM a conference within WSC was well received by all and it was
agreed that it would continue. Scott Mason (Clemson University) was the MASM
chair in 2009. Karl Kempf (Intel) gave the keynote. There was a panel session
entitled “Are Simulation Standards in Our Future?” with Hans Ehm (Infineon),
Leon McGinnis (Georgia Institute of Technology), and Oliver Rose (Dresden
University of Technology) as panelists. There were 8 sessions and 18 papers.
GlobalFoundries provided funds for a small reception.

14.5 The 2010s and Beyond

As of 2010, the MASM Conference had become a regular conference within the
Winter Simulation Conference. Table 14.1 shows the number of sessions and papers
for each MASM conference this decade along with the Conference Chair(s) and the
keynote speaker or the title of a panel. An informal group of colleagues from Asia,
Europe, and the United States decide on who will be the next group of conference
chairs. In 2012 and since 2014, there have been three co-chairs with one from each of
the three regions: Asia, Europe, North America. Journal papers that were extensions
of MASM 2012 and IEEE Automation Science and Engineering (CASE) 2012
papers were published in a special issue of Computers & Operations Research (2015,
Vol. 53). In 2012, Infineon Technologies hosted a reception for the MASM con-
ference and there has been a reception in all but one WSC conference since then.

Figure 14.2 shows the number of semiconductor manufacturing papers at WSC
since 1996. Clearly, there has been a large increase in the number of papers since
MASM became part of WSC in 2008. MASM will continue to be a part of WSC for
the foreseeable future. Over the decades there has been a slight shift in the topics
covered in the WSC and MASM Conferences. There are relatively fewer papers
today at the equipment level and relatively more at the supply chain level. The fact
that a Dagstuhl Seminar was held on February 7–12, 2016 that was focused on
“Modeling and Analysis of Semiconductor Supply Chains” (http://www.dagstuhl.
de/16062) is evidence of the increasing emphasis by the MASM community on
supply chain issues. Anyone who is interested in getting involved in the MASM
community is encouraged to contact either of the authors of this chapter.
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Table 14.1 MASM conference information for 2010–2017

Year Sessions Papers MASM Chair(s) Keynote speaker or panel

2010 5 14 David Jimenez, Wright
Williams & Kelly, Inc.

2011 12 36 Stéphane Dauzère-Pérès
(Ecole des Mines de
Saint-Etienne)
John Fowler (Arizona State
University)

Panel: Challenging Issues
and Emerging Trends in
Modeling and Analysis of
Semiconductor
Manufacturing

2012 12 33 Argon Chen (National
Taiwan University), Andy
Ham (GLOBAL
FOUNDRIES), Lars Mönch
(University of Hagen)

Kurt Gruber (CVP
Corporate Supply Chain,
Infineon Technologies AG)

2013 9 27 Claude Yugma (Ecole des
Mines de Saint-Etienne),
Jesus A. Jimenez (Texas
State University)

Impacts of Imminent
Changes in the
Semiconductor Industry,
Julian Richards
(SEMATECH)

2014 10 29 John Fowler (Arizona State
University),
Lars Mönch (University of
Hagen),
James R. Morrison (KAIST)

(Almost) Present at the
Creation: 25 Years of
Modeling and Simulation in
Semiconductor
Manufacturing, Reha Uzsoy
(North Carolina State
University)

2015 9 14 Jesus Jimenez (Texas State
University),
Gerald Weigert (Technische
Universität Dresden), Kan
Wu (Nanyang Technological
University)

MASM: A Look Back and a
Peek Ahead, John Fowler
(Arizona State University)

2016 8 22 Stéphane Dauzère-Pérès
(Ecole des Mines de
Saint-Etienne), Adar Kalir
(Intel), Reha Uzsoy (North
Carolina State University)

The Engineering of Speed
and Delivery, Robert C.
Leachman
(University of California at
Berkeley)

2017 TBD TBD John W. Fowler (Arizona
State University), Lars
Mönch (University of
Hagen), Youin Choung
(Ajou University)

Achievements and Lessons
Learned from a Long-term
Academic-Industrial
Collaboration, Stéphane
Dauzère-Pérès (Ecole des
Mines de Saint-Etienne)
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Chapter 15
Social and Behavioral Simulation

Charles M. Macal and Chaitanya Kaligotla

Abstract Social and behavioral simulation is an emerging field at the intersection of
computational social science and simulation modeling and analysis. Modeling how
individual and heterogeneous agents “behave” by converting sensory inputs to
decisions, emotions, or actions, is the essence of behavioral simulation. The essence
of social simulation, analogously, is modeling how these agents “interact” with each
other, and behave collectively as a group, as a function of their behavioral imper-
atives. When techniques from these two fields are combined, social and behavioral
simulation connects individual behaviors at the micro-level to system-level behav-
iors at the macro-level, allowing the study of dynamic social behavior. This kind of
modeling can lead to new insights into the causal mechanisms that underlie social
systems. Until now, social and behavioral simulation has consisted largely of
innovative applications of simulation to illustrate social or group behavior. More
recently, the ability of agent-based modeling, system dynamics, network analysis,
and associated techniques to study these micro-macro interactions is unparalleled.
The field is ripe for methodological and theoretical advancements. This chapter
describes the history of social and behavioral simulation from the perspective of the
Winter Simulation Conference community, provides a thematic overview of the
questions being addressed, and discusses possible future directions.

15.1 Social and Behavioral Simulation: An Introduction

Social and Behavioral simulation sits in the intersection of social sciences and
computational sciences, and is focused on the dynamic modeling and simulation of
human behavior and social interactions, often in complex systems. Simulation helps
us understand and plan for emergent system behavior of self-organizing patterns
and order, a distinct feature of complex systems.

C.M. Macal (✉) ⋅ C. Kaligotla
Argonne National Laboratory, System Science Centre,
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Social and Behavioral Simulation has been a part of the Winter Simulation
Conference from the very beginning. This chapter briefly discusses the history and
evolution of the diverse set of work related to Social and Behavioral Simulation
(hereafter denoted by SBS), from the perspective of the Winter Simulation Con-
ference community. In Sects. 15.1.1 through 15.1.4, we elucidate the motivation
and relevance for SBS within the broader field of Modeling and Simulation. The
origins and evolution of SBS techniques are briefly discussed in Sect. 15.2, along
with a focus on work presented at the Winter Simulation Conference (WSC) over
the past decades. In Sect. 15.3, we discuss the research and application frontiers
for SBS and motivate its continued significance and development within the WSC
community and beyond.

15.1.1 Understanding Human and Social Behavior:
Empirical, Analytical, Modeling & Simulations

The drive to understand human behavior is fundamental, and almost as old as
recorded history. From the earliest underpinnings in mythology and early work in
philosophy to modern academic fields wholly dedicated to understanding human
behavior, we as a species have always endeavored to better understand ourselves,
and society at large. The story of present day SBS derives from this need to
understand collective human behavior in large groups (hence the word “social”
behavior), marked by interactions with one another and with the world around us.

Theories of behavior were first conceived from empirical observations, driven in
large part by fields across the social sciences and psychology. In recent decades,
however, modeling and simulation of human and social behavior has become
recognized as an important area of research and practice in other fields beyond the
social sciences. The maturing of fields like behavioral sciences, psychology, eco-
nomics (especially game theory and utility theory), and social science, along with
new methods in the computational sciences and in modeling and simulation, has led
to the development of more integrated behavioral models. Early work on modeling
behavior is well detailed in Guetzkow et al. (1972). Refer to Epstein and Axtell
(1996) and Epstein (2006) for an overview of modeling approaches.

The underlying motivation of better understanding human and social behavior
has led to recent work leveraging a mixture of methodologies—empirical, analyt-
ical, and modeling and simulation—to yield greater insights. Axtell (2000) also
argues how SBS techniques leverage other methods to model and understand a
broad set of problems. Ultimately, a key in the past and future of SBS is the use of
various tools, techniques and methods to gain new knowledge on fundamental
human and social behavior. Figure 15.1 represents the cycle of knowledge relating
to the field of human and social behavior in general. We have roughly followed the
path from seeking to understanding human and social behavior from empirical
observations to modeling human behavior as mathematical and computational
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representations, to simulating such behaviors and gaining insights leading back to
defining new empirical observations that should be made.

15.1.2 Caveats in Modeling Human and Social Behavior

Some models of human behavior in fields like operations research and operations
management are characterized by normative, rational, and predictive models of
people or agents (Tolk et al. 2015). Other fields like behavioral economics develop
descriptive behavioral models characterized by dynamic actors who are boundedly
rational (Simon 1982). Each representative model has its strengths and weaknesses.
The former model, for instance, is often used in the context of optimization, i.e.,
what is the best strategy for a rational actor to adopt, while the latter model is
typically applied in the context of predicting behavior, i.e., what a non-perfectly-
rational actor is expected to actually do.

Modeling methodology has two distinct approaches to behavior and decision
making. One is a prescriptive view of behavior, focusing on how decisions ought to
be made, which assumes normative views of rational behavior (traditionally con-
sidered perfect rationality). Comparatively, a descriptive approach to modeling

Fig. 15.1 The cycle of knowledge. The need to understand human and social behavior typically
begins from empirical observations, leading to the modeling of such behaviors to, representing the
processes and predicting outcomes, which then leads to the need to simulate human and social
behavior to increase knowledge and understanding, which in turn leads to new questions and
observations
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behavior focuses on understanding how decisions are actually made, and does not
make strong rationality assumptions. For a comprehensive review of social-
behavioral models, across analytical, empirical, and descriptive techniques, refer to
Castellano et al. (2009), Epstein and Axtell (1996), Axtell (2000) and Epstein (2006).

One reason for the widespread popularity of SBS methods is the need for, and the
growing ability to describe, truer representations of human behavior in a wide
variety of modeling contexts.

15.1.3 SBS: Features and Relevance

Social and Behavioral simulation is used for problems across a range of domains
motivated by the need to understand the nexus between human behavior, social
interactions, and real-world systems, to manage and predict outcomes of interest. It
is prudent to note that the relevance of using modeling and simulation method-
ologies depends (mostly) on contexts where empirical, experimental or analytical
methods alone might not be adequate.

Epstein (2006, 2008) and Axtell (2000), list a number of reasons beyond pre-
diction, for the relevance of SBS. Axtell (2000) presents three distinct uses of SBS
techniques: (a) a novel method or application of traditional Operations Research
simulation, (b) mathematically non-tractable or non-solvable models, and
(c) classes of problems with clear non-quantitative models.

While SBS has consisted largely of innovative applications of modeling and
simulation to illustrate social or group behavior, the ability of agent-based, system
dynamics, and more recently hybrid modeling (that combine two or more of these
techniques in a single model) techniques to study micro-macro interactions is
becoming a popular approach to modeling complex systems that contain decision
making agents, whether human or artificial.

The representation of how individual and heterogeneous agents “behave,” by
modeling how sensory inputs are transformed into decisions, emotions, or actions,
is the essence of behavioral simulation. The essence of social simulation, analo-
gously, is the modeling of how these agents “interact” with each other collectively,
as a function of their behavioral imperatives. SBS connects individual behaviors at
the micro-level to system-level behaviors at the macro-level, allowing the study of
dynamic social behavior, as well as collective behavior, leading to potential new
insights into the causal mechanisms that underlie social systems.

Extant literature (Macal 2016; Kunc 2016; Brailsford 2014; Epstein 2006;
Martinez-Moyano and Macal 2016; Axtell 2000; Epstein and Axtell 1996) suggests
the following fundamental features of SBS:

i. Simulating true representative models of human and social behavior, espe-
cially heterogeneous agents and interactions.

ii. Ability to describe individual behavior dynamically, in a wide variety of
contexts.
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iii. Moving beyond normative behavioral decision theory to more descriptive and
causative behavioral models.

iv. The recognition of emergent system behavior in social and behavioral
systems.

15.1.4 A Note on Emergence

Emergence can be described as a property of a complex system, arising from, but
distinct to, the individual characteristics and interactions of entities in the system.
This has been widely observed, and some famous examples of such a system
property (in context of individual and social behavior) is that of the “flocking boids”
model (Reynolds 1987) or the “game of life” model (Gardner 1970).

Conceptually, emergence refers to the seemingly spontaneous appearance of
patterns, structure, or more generally, of order, that we observe in complex systems,
including social and behavioral simulations. This emergent order is often described
as surprising, since it is something that we have not explicitly programmed into our
models and often do not expect to see. In the case of an agent-based model, the
agents often appear to self-organize in the agent state space into higher-level entities
that act in unison. Why should this happen? According to the Second Law of
Thermodynamics, entropy (disorder) always increases in a closed system without a
supply of energy. Don’t we have to pay extra for this organization?

In the Boids model, for example, we might expect that the Boids agents would
randomly distribute themselves over the spatial landscape, perhaps moving and
spinning, but with little apparent coherence. In fact, that is what the Boids do for
many settings of the model parameters. The Boids model has three parameters, one
per rule: attraction, repulsion, and alignment. However, for many other combina-
tions of the parameters, what we see are groups of Boids forming and traveling
together. This is reminiscent of flocks, or schools, or colonies of animals in the
natural world exhibiting similar behaviors and collective patterns. Sometimes,
multiple groups form, and the groups interact in interesting ways. The Boids model,
as abstract as it is, is a good example of the social behaviors operating in the
social-behavioral state space.

What we do not see in the Boids model is the emergence of group behaviors or
norms that come out of the group. There is no awareness on the part of the Boids
agents that they are organized; the emergent “organization” that we observe has no
awareness of itself, and no ability to create new group behaviors, affordances, or
constraints for the individuals in the group to adhere. This is reminiscent of an ant
colony, a set of mindless individuals acting on their own set of behavioral rules that
have been passed down and perfected for survival through an evolutionary process.
Although they are comprised of mindless individuals, we can still think of the
colony as having a collective behavior; for example, the behavior that causes a
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colony of Army ants to uproot itself and forage for miles through a rain forest
looking for their next home.

Humans, on the other hand, are capable of self-organization and creating
organizations that themselves make new rules of behavior that come back to act as
affordances or constraints on the individuals of the group. This process is called
downward causation in the literature (Gilbert 2002; Salgado and Gilbert 2013;
Sawyer 2000), and it closes the loop between the individuals creating group
behavior and that behavior then acting upon the individuals. Currently, this
downward causation process cannot be modeled in social and behavioral simula-
tion, but would be a significant advancement in the field if methods could be
developed for modeling this kind of process.

For all its strengths, modeling, by itself, is imperfect, as are qualitative and
empirical descriptions of behavior. Simulation bridges an important gap—espe-
cially in its ability to reproduce emergent behaviors seen in large systems that
involve human interaction. This is arguably the most important reason d’être for
SBS, the relevance of which can be seen in the broad range of applications
described in the following section.

15.2 Social and Behavioral Simulation: Methods
and Applications

SBS has been a part of the Winter Simulation Conference from the very beginning
—WSC archives revealed a session on Simulation of Human Behavior in 1968 and
Urban/Social Systems in 1969. Papers included: models of innovation diffusion
using stochastic simulation methods (Carroll and Hanneman 1968); management
decision games using discrete event simulation (DES) methods (Bubenko 1968);
mail service systems for the US Post Office (Tuan and Nee 1969); health and social
service programs using DES methods (Bremner and Eicker 1969); and electricity
adoption in village communities (Pfaff and Jambotkar 1969).

This section provides a brief history of the methods and applications social and
behavioral simulation, especially from the perspective of the WSC, and provides a
thematic overview of the main application areas.

15.2.1 Evolution of Methods and Techniques

Goldsman et al. (2010) provide an overview of the history of simulation as a field,
including the types of simulation, programming environments, and application
domains. Most SBS methods have their origins from Cellular Automata (CA) con-
cepts and Discrete Event Simulation (DES), progressing into Stochastic Simulation
including Monte Carlo methods, System Dynamic Simulation models and even-
tually and recently into Agent-Based methods (ABMS) and Hybrid Simulation
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methods. We first present a brief history of the classic literature in the field of SBS
and then describe methodological work at the WSC specifically. In the following
subsections, we present our view of SBS and its indefinitive history and one
interpretation of how it came to be. We recognize that others may interpret the
origins and developments of SBS differently.

15.2.1.1 The Classics:

The origins of SBS began from the groundwork laid by Von Neumann and Mor-
genstern (1944), followed by concepts of cellular automata in Neumann and Burks
(1966). Conway (1970) arguably produced the first ever SBS called the “game of
life”, which was very popular (Gardner 1970). Schelling (1971) created a SBS
similar model to explain segregation as a system property, irrespective of individual
intent. Sakoda (1971) is credited with one of the earlier computational SBS models
of social interactions, showing how continuous social interactions leads to social
structure. Another famous SBS model showing emergent social structure and
behavior was Reynolds (1987). A generative and simple explanation for the
emergence of social processes was described in (Axelrod 1984; Epstein and Axtell
1996). Axelrod and Hamilton (1981) in their “Tit for Tat” model used repeated
prisoner dilemma games to show the dominance of dynamic behavior strategies by
agents.

Figure 15.2 shows the timeline of the classical papers in SBS as a field, and
shows a sampling of papers from the WSC, mapping out some key methodological
tutorials and papers.

Fig. 15.2 Evolution of major techniques in SBS, including a sampling of WSC papers
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15.2.1.2 Methods and Techniques at WSC:

Cellular Automata, Stochastic Simulation and AI

Wainwright (1974) is one of the earlier papers we could find in the WSC archives,
who talks about Cellular Automata theory from Conway (1970), and describes how
complex systems arise from simple rules. Wildberger (1996) provides a technical
overview of genetic algorithms and cellular automata for SBS and argues for a
combination of methods involving discrete event simulations with multiple agents
to generate insights on emergent social behavior. To the best of our knowledge, the
first tutorial on using Artificial Intelligence methods at the WSC is Rothenberg
(1991), who noted that discrete event simulation techniques benefited from, and
contributed to earlier work in AI, especially the refinement of the object-oriented
paradigm and sensitivity analysis. He predicted that AI and simulation would come
together to create value in two distinct ways—modeling motivation, which seeks to
model cognitive processes of intelligence, and the engineering motivation, which
seeks to solve problems beyond conventional intelligence.

System Dynamics

System Dynamics (SD) pioneered by Forrester (1961), is a longstanding and robust
technique for modeling social and behavioral systems. Refer to Forrester (2007) for
seminal work on the development of SD, it’s methods and applications. At the
WSC, Kunc (2016) provides a recent tutorial on SD methods to model behavior,
and discusses challenges and best practices. SD methods have proven to be highly
flexible, as common differential equation models are easily converted into differ-
ence equations, which are representative of SD models. These models have been
successfully applied in epidemiology, innovation diffusion, and other application
domains (Kunc 2016).

Discrete Event Simulation

DES owes its origins to the field of Operations Research in the 50s, and gained in
popularity in the late 60s with the advent of computing hardware and software.
Refer to Fishman (1978) and Banks, Carson, and Nelson, 1996 for a comprehensive
overview. At the WSC, Bubenko (1968), presented one of the very first SBS papers
using a DES model to highlight management decision making as a social process.
Maria (1997) provided a tutorial on using DES, emphasizing the best practices in
modeling, designing and analyzing a simulation to study real-world systems. More
recently, Schruben (2011) introduced Activity Interaction, a new approach for
modeling system dynamics, and Self-Simulating Systems, a new method for discrete
event/hybrid modeling to generate real-time simulations. This has relevance to SBS
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in terms of new hybrid techniques to solve some specific problems where the use of
DES methods in combination with agent-based methods might be beneficial.

Agent-Based Modeling and Simulations

Agent-based modeling and simulation (denoted by ABMS) combines elements of
game theory, Monte Carlo methods, complex systems, emergence, computational
sociology, multi-agent systems, and evolutionary programming. The use of ABMS
is becoming increasing popular, due in large part to the flexibility and wide
applicability in its use. See Macal (2016) and (Macal 2009) for a comprehensive
overview of the literature and methods for modeling social and behavioral systems,
and their applications.

At the WSC, an early tutorial was given by Macal and North (2005) describing
the theoretical and practical foundations of agent-based methods, while highlighting
the relationships between ABMS and other traditional modeling techniques. Macal
(2010) lists similarities and in some cases, equivalences between the SD and ABMS
approaches in the infectious disease domain. More recently, increasingly compre-
hensive tutorials followed at the WSC, in Macal and North (2009) and Macal and
North (2014).

Hybrid Simulations

Another recent trend at the WSC has been to combine different modeling
approaches to capture the complexity of real-world systems. These have been
commonly referred to as Hybrid Modeling and Simulation methods. Brailsford
et al. (2013) introduce the concepts of the method and provide a narrative
description of the process of building a hybrid model. Brailsford (2014) compares
simulation methodologies of DES, ABMS, and Hybrid Modeling, and argues that
the latter should be a matter or last-resort due to the inherent complications of
analysis and interpretations of results arising using hybrid modeling. Nonetheless,
the complexity of real-world systems may necessitate using a combination of
multiple modeling approaches. At the most recent WSC, Martinez-Moyano and
Macal (2016) discuss the broader use, techniques, and applications for Hybrid
Simulations.

15.2.2 Major Application Areas Across WSC Papers

The first two years of the WSC, 1968 and 1969, already proved the wide relevance
of SBS, with applications to modeling innovation diffusion, to management decision
making, to healthcare and social services, and other public services. Listing all the
application domains of SBS is beyond the scope of this chapter, consider for
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instance Table 1 from Macal (2016), which lists 18 distinct disciplines using
ABMS methods. We could expect the same by extending the exercise to the wider
field of SBS. Here, we highlight a sampling of major application domains for the
SBS methods described in the previous section and list examples of some interesting
work.

15.2.2.1 Healthcare and Health Services

SBS is useful for modeling human behavior both individually, and collectively, in
the context of public and private health systems, which are complex and critically
relevant across counties, cities, and countries. Noble et al. (2012), for example, use
ABMS as a tool for generating scenarios to inform public policy making.
Addressing the challenges represented by UK’s aging population, they use SBS to
model a concept they term “linked lives” which is a form of emergent social
behavior, as a means to develop a synthetic population to test hypotheses and
alternatives for policy making, by measuring endogenous outcomes of the average
cost of state-funded care.

Fakhimi et al. (2014) provide a case study using a novel approach of hybrid
ABMS-DES modeling for strategic planning and simulation analytics of the Lon-
don ambulance service. Modeling the triple objectives of financial constraints,
environmental impact, and service quality, they use data from the SBS model to
analyze different sustainable planning strategies.

Closely related, Anagnostou et al. (2013) study a representative hybrid
ABMS-DES model to simulate emergency medical services in London. Seeking to
demonstrate the potential of distributed hybrid simulation, they report the relevance
and promise of SBS as a “what-if” analysis tool. All these papers highlight the
relevance, value and use of SBS.

15.2.2.2 Disease Modeling

Brailsford et al. (2013) use a behavioral simulation model for a disease called
age-related macular degeneration (AMD), a common cause of sight loss in people
aged over 65. They use the hybrid model to explore the wider links between the
health and social care systems in the UK. Wong, Goldsman, and Tsui (2015) use
SBS to evaluate the effectiveness of various practical non-medical interventions in
containing a potential pandemic outbreak, such as H1N1, in Hong Kong. They
describe a detailed community interaction dynamics model, taking into account the
system dynamics, the natural history of influenza, and social and behavioral
dynamics, to model the impact of a combination of various school closure modes,
triggers, types, and durations, on the course of the disease outbreak. Their simu-
lation results suggest that the strategy of closing all types of schools generally
outperforms that of closing only a subset, especially if the closure period is
substantial.
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These papers highlight the value of SBS to provide insights and sound metrics
used to guide practical decision making at a public policy level.

15.2.2.3 Public Policy

The following two papers describe good examples of the applications of SBS
methods and techniques in modeling policy issues and the insights and benefits to
inform policy.

Padgham et al. (2015) use social simulation for community awareness. Fol-
lowing a Belief Desire Intention (BDI) approach to modeling cognitive agents using
ABMS, they report that the use of an interactive simulation was more effective than
print media for getting across key messages. Wilcox (2011) uses SBS as a method to
formulate a theory and empirically test for the same, in the domain of neighborhood
crime. He simulates a system of social relationships using ABMS to reflect
applicable social theory and reports that the use of SBS does increase the precision
of theoretical arguments, but cautions about the increased rigor necessary in
elaborating model specifics and the data analysis required for validation and
verification.

Allen and Davis (2010) propose an agent-based simulation model based on
social impact theory, to investigate factors that influence student selection of STEM
majors in U.S. colleges. Their computational experiments suggest policy insights
and social benefits related to reaching students early, segregating STEM students,
and making changes to the job market. The power of using SBS in informing policy
is shown by the insights from their study, which includes that small environmental
change could precipitate a dramatic shift in outcomes.

15.2.2.4 Social Influence, Opinions, Rumors, and Social Networks

A recent application domain for SBS is to study human and social behavior online,
both individually and for the internet community as a whole. The study of social
influence, opinion and rumor dynamics on social networks is in its infancy and has
been featured in SBS tracks in the last two WSC meetings. A sampling of papers on
the topic is discussed next.

Merlone et al. (2015) study social influence online, analyzing minority (group)
influence on opinion dynamics. They provide a heterogeneous model in which
minority opinion holders strategically choose their social behavior to exert influ-
ence. Simulating opinion dynamics, they show how opinion dynamics is affected by
the presence of such a strategic minority.

Birdsey et al. (2015) analyze emergent behavior in Twitter and propose a def-
inition of emergent behavior focused on the pervasiveness of a topic within a
community. Specifically, they extend an existing stochastic model for user
behavior, focusing on advocate–follower relationships and model the behavior of
users on Twitter to predict when topics reach a certain stage of evolution.
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Kaligotla et al. (2015) develop an ABMS framework to study agent behavior in
the spread of competing rumors through measured networked interactions, whereby
agents update their beliefs with respect to a rumor, and attempt to influence peers
through interactions, uniquely shaping group behavior in the spread of rumors.
Kaligotla et al. (2016) continue to develop the model to focus on broadcasting
opinions (one-to-many interactions) alongside narrowcasts (one-to-one interactions)
in social media conversations, explicitly considering behavioral characteristics of
agents and the properties of the underlying network. Their generalized model for
the spread of influence on social media discussion sites, and simulation experiments
indicates that increased broadcasting (in terms of frequency, depth, and a number of
broadcasters) increases homogeneity in an evolving scale-free network.

While we have only provided a sampling of papers from the WSC, an interesting
observation to note is the diverse range of applications of SBS and the evolution of
methods, from the very beginning of the WSC to today. The Winter Simulation
Conference has been, and will continue to be, an ideal home for this field of work
given the confluence of academic researchers, practitioners, and software vendors,
all dedicated to fundamentally understanding and solving real-world problems
involving human and social systems through simulation methods.

15.3 Next for Social and Behavioral Simulation: Frontiers
and Opportunities

A 2015 WSC panel discussion (Tolk et al. 2015) on the need for a national research
agenda for modeling and simulation included a section on SBS. Common questions
for further generalizations and domain-independent disciplines were on the topics
of validation and verification, reusability and composability, credibility and trust-
worthiness, complexity and uncertainty, and going beyond domain-specificity.

In this section, we focus on SBS in particular, highlighting the challenges and
frontiers, while motivating its continued significance and development within the
WSC community.

15.3.1 Challenges in SBS: Validation and Verification

Bharathy and Silverman (2010) present a well-recognized and experienced argu-
ment that validating social systems is not a trivial task. They propose assessing the
validity under four broad dimensions of methodological validity—internal validity,
external validity and qualitative, causal and narrative validity. Hofmann (2015),
however, reviews and reassesses technical and philosophical arguments on the
limits of empirical validation with respect to social simulation. He proffers an
argument that a single experimental frame cannot guarantee the objective “validity”
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of simulation results since the data used for validation, the experimental frame, and
the simulation model itself are interdependent. His recommendation is to put the
focus on model transparency with respect to assumptions, model, and data, while
empirical validation on the macro-level should be the focus when comparisons with
similar models are possible.

All of the methods and approaches to the validation of simulation models, in
general, apply to social and behavioral systems modeling (Sargent 2013). Social
systems modeling, and agent-based modeling in particular, has additional
requirements for validation. These include validating the agent behavioral models
and validating the emergent phenomenon that arise in the models. Good examples
of validated social systems models are needed and lessons learned from the process
will help establish a standard practice. For example, Bert et al. (2014) provide
lessons from validating a model of the Argentinean agricultural system.

15.3.2 Methodological and Research Frontiers

Schruben (2011) compares two fundamental historical approaches to developing
new simulation modeling methodology: academic and commercial, noting that
while the twain (academics and software vendors) do not meet, there is a need for
academics to work together with practitioners, beyond fundamental academic
research, to include actual implementations.

There are several research areas that show great promise for advancing the
capabilities of social and behavioral systems modeling to solve real-world problems
of great significance. A few of these research areas are described next.

15.3.2.1 Behavioral Modeling

The behavioral modeling challenge for social and behavioral systems modeling is to
develop better representations of agent behavior and the methods that populate
behavioral models with the requisite data. One of the primary reasons that people
are interested in social systems modeling is because they would like to include truer
representations of human behavior into their models and understand how the
diversity of behaviors plays itself out over the modeled population. Advancements
in behavioral economics and behavioral operations management have fueled
interest in better models of behavior. Causative agent behavioral models, based on
insights from behavioral economics (Kahneman 2011) and cognitive sciences (Sun
2006) that include social and emotional factors could be essential elements of more
predictive, and useful, social and behavioral models. For example, Epstein (2014)
introduces a new theoretical entity, Agent_Zero, a conceptual software individual
endowed with distinct emotional or affective, cognitive or deliberative, and social
aspects, grounded in contemporary neuroscience that represents explicit causative
factors underlying agent behaviors.
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15.3.2.2 Simulation Analytics

The simulation analytics challenge for social and behavioral systems modeling is to
develop the methods and tools, such as data analytics and statistical analysis
techniques, for extracting meaningful information from simulation results. Social
systems modeling’s gain in complexity is at the loss of analytical tractability and
the ability to derive facts a priori about agent-based models, such as relating
micro-level agent behaviors to macro-level system outcomes. Instead, agent-based
models must be simulated on a computer. Computational experiments must be
cleverly designed in advance to efficiently obtain the data that can be used to
understand model behaviors, sensitivities to parameters, and how uncertainties in
input data and structural relationships (e.g., agent behaviors) are propagated to
model outputs. Data analytics approaches turned to simulation output data such as
simulation analytics (Nelson 2016) will be needed. In addition, new statistical
methods and existing methods implemented for large-scale application of data
analytics are needed to support social and behavioral modeling requirements (ten
Broeke et al. 2016; Thiele et al. 2014).

15.3.2.3 Hybrid Modeling

The hybrid modeling challenge is to understand how agent-based modeling can be
effectively used with other simulation and modeling techniques operating together
in the same “hybrid” model in such a way that each technique addresses the part of
the problem that it does best. Agent-based models need not be viewed as displacing
other simulation techniques (Siebers et al. 2010). The ABMS/SD and ABM/DES
combinations are the agent-related hybrid configurations that have received the
most attention (Heath et al. 2011). The hybrid modeling challenge has both logical
(how to link models together in a way that makes sense) and mechanistic elements
(how to link two existing models together that use disparate modeling tools). The
challenge is to adopt these approaches as standard practice throughout the simu-
lation community.

15.3.2.4 Large-Scale Agent-Based Modeling and Simulation

The large-scale agent-based modeling challenge is to efficiently and effectively
simulate large-scale agent-based models, consisting of millions of agents, at the city
scale, or even billions of agents, at the global scale. The computing challenge is to
develop algorithms and software for distributing agent-based models, or their
interacting components, on high-performance computing, cloud computing, and
other platforms (Collier et al. 2015). Research challenges include how to dynam-
ically balance simulation workloads, interact with running simulations, and effi-
ciently collect model outputs for further analysis. A large-scale social systems
modeling challenge is to engineer a process for efficiently developing synthetic
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populations of agents, whether agents represent actual people, which comes with
the associated data access and privacy issues, or only surrogate agents that corre-
spond to the population, but only in the aggregate, to properly address anonymity
concerns.

15.3.3 Conclusion: Looking Forward for SBS at the WSC

Social systems modeling, with the need to include people, their behaviors and
actions, as part of the complex systems that we model, has had a role in WSC since
its inception. Beginning with the normative, optimizing approaches to modeling
behavior, and more recently with the social and behavioral sciences disciplines such
as behavioral economics and behavioral operations management that focus on the
descriptive, we are gaining many new insights on how people behave in a variety of
contexts. While we have only provided a sampling of papers from the WSC, an
interesting observation to note is the diverse range of applications of SBS and the
evolution of methods, from the very beginning of the WSC to today.

This is fertile ground for developing new models and methods that provide new
insights into how the complex systems, in which we are all a part of, behave. In
fact, social and behavior simulation is getting increasing recent attention in several
new domains. One example as in the military domain (Bharathy et al. 2012; Shults
et al. 2017) that demonstrates that SBS is making a difference in real-world analysis
and applications.

By providing a forum among researchers and practitioners for new ideas and
approaches founded on rigorous simulation principles, WSC will continue to play
an important role in promoting and advancing the field of social and behavioral
modeling. The Winter Simulation Conference has been, and will continue to be, an
ideal home for this field of work given the confluence of academic researchers,
practitioners, and software vendors, all dedicated to fundamentally understanding
and solving real-world problems involving human and social systems through
simulation methods.
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Chapter 16
Analysis of M&S Literature Published
in the Proceeding of the Winter Simulation
Conference from 1981 to 2016

Navonil Mustafee and Paul Fishwick

Abstract In the era of big data, data science and data analytics, it is logical to
address the impact of the Winter Simulation Conference (WSC) by treating the
papers (and metadata associated with publications) as raw data. This data then
serves as a treasure trove from which to answer questions and pose new ones about
modelling and simulation as a field to the extent that WSC, its associated authors,
serves as a proxy for the field. Since the goal was to pick the years 1981 and 2016
as beginning and end values demarcating a year band, there were challenges. One
challenge was that one data set ISI/CPCI-S begins in 1989 and so does not offer
complete coverage. However, we address this by fusing this data set with Scopus,
which begins in 1981. Unless there is a single authoritative source, some type of
fusion process is necessary. We gathered the data, validated the data, merged or
fused data where necessary and then delineated specific objectives. We then pro-
duced the results along with analysis. In any good data analysis, we find curious
patterns in the data or other places where we should look further. In summary,
formal data analysis gives us a 50,000 foot view of WSC but also points to new
questions and pathways for further exploration in Modeling and Simulation (M&S).

16.1 Introduction

The Winter Simulation Conference is a leading international conference, which
disseminates peer-review research and recent advances in the field of M&S. The
conference is co-sponsored by M&S societies and standards bodies, such as, the
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American Statistical Association (ASA), ACM Special Interest Group on Simulation
and Modeling (ACM/SIGSIM), IEEE Systems, Man, and Cybernetics Society
(IEEE/SMC), Institute for Operations Research and the Management Sciences—
Simulation Society (INFORMS-SIM), Institute of Industrial and Systems Engineers
(IISE), National Institute of Standards and Technology (NIST) and The Society for
Modeling and Simulation International (SCS). The conference is governed by the
Board of Directors, with the operational matters usually the purview of the annual
WSC Committees. The conference is also supported by the WSC Foundation
(WSCF), whose core purpose is to develop and manage funds that would ensure
continuity of the conference. The quality of the conference has meant that atten-
dance levels are high and there is representation from both academia and industry
(including defense). As an example, the last seven editions of the conference
(2010–2016) were attended by 600–700 delegates. The 2017th edition marks the
remarkable 50th Anniversary of the WSC. To mark the golden jubilee, the authors
present a profile of research published during the past 36 years of WSC.

The authors draw inspiration from their previous work, done to mark the 60th
anniversary year of the SCS, where they prepared a profiling study of literature
published in the Society’s journal—Simulation: The Transactions of the SCS
(Mustafee et al. 2012)—and presented a co-citation analysis for the same journal
(Mustafee et al. 2014). Similar to their previous work, which they considered to be
a fitting tribute to those “scientists and engineers, who had actively shaped and
influenced the growth and development of SCS and continue to contribute to the
theory, methodology, and applications of simulation science” (Yilmaz 2011), the
book chapter acknowledges the contributions of the WSC authors and their affili-
ated institutions in the development of the field of M&S. Our literature analysis is
also an art of introspection (Palvia et al. 2017); it facilitates, among others, the
numerous simulation societies and sponsors of the conference, the WSC Board of
Directors and the readers to reflect on the scholarly content that have been pub-
lished over the years and how this has shaped our discipline. For those new to
M&S, our chapter will not only provide an overview of the field but will inform
readers of the leading authors and their seminal pieces of work (achieved through
citation analysis). Previous profiling studies have mainly been done for journals, for
example, Palvia et al. (2007) presented a profiling study of the journal Information
and Management (I&M); the authors have conducted similar analysis for the
European Journal of Information Systems (EJIS) (Dwivedi and Kuljis 2008),
Information Systems Frontiers (Dwivedi et al. 2009), Journal of the Operational
Research Society (Katsaliaki et al. 2010), and Simulation: Transactions (Mustafee
et al. 2012). Further, there have been several studies that have compared between
journals, for example Management Information Systems Quarterly (MISQ) and
I&M (Claver et al. 2000), MISQ and EJIS (Mustafee 2011), and I&M, EJIS and
MISQ (Palvia et al. 2017).

Having provided an overview of the conference and the purpose of this study,
we now list the objectives which will define the variables for data collection and its
subsequent analysis. Our objectives are, (a) to analyze authorship and identify the
authors with the most number of publications in the period considered in this study,
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(b) to determine the institutions and geographical locations associated with the
majority of publications, (c) to identify the most-cited papers through citation
analysis, (d) to identify the research areas under which the WSC papers are clas-
sified, and (e) to identify the top funding organizations. The findings of the study
will thus present a ranking of the most productive authors, institutions, etc.; how-
ever, we would like to voice a note of caution to the readers with regard to
interpreting this data. Such findings should be regarded as indicative only of WSC
activity. This is because our conference-specific profiling exercise does not take
into consideration several leading researchers, institutions and research papers
because they have not been published in WSC (e.g. researchers may have been
published in ACM SIGSIM PADS Conference, Spring Simulation
Multi-Conference, etc.) and/or within the timeframe of the analysis.

The remainder of this paper is organized as follows. In the following section, we
present the methodology that was employed to conduct the profiling exercise. Here,
we describe the abstract and indexing databases that were used, the validation of the
data set and the constitution of the final set to inform analysis. In Sect. 16.3 we
present the results and discuss the findings. The chapter concludes with Sect. 16.4.

16.2 Methodology

We used the ISI Web of Knowledge database and selected the Conference Pro-
ceedings Citation Index for Science (CPCI-S). The ISI/CPCI-S provides proceed-
ings coverage for conferences in Science, and together with the equivalent index for
Social Science & Humanities (CPCI-SSH), the CPCI provides coverage of over
148,000 conference proceedings from 1990 with more than 400,000 conference
proceedings included in the index every year (Clarivate Analytics, n.d). The CPCI
index starts from 1990 and therefore the “1990 Winter Simulation Conference
Proceedings” is the start point of our analysis. The end point of our analysis is the
“2016 Winter Simulation Conference Proceedings”. Thus, we planned for our
analysis to include a total of 27 years (1990–2016, both years inclusive).

We used the Basic Search option from the Web of Science™ Core Collection
and selected “Publication Name” as the field to be searched. Although, it would
have been possible for us to retrieve records through a combination of terms
associated with the conference title and wild char characters, we decided to selected
publication name from the index. This gave us a total of over 9300 records from 27
conference proceedings. However, the output thus attained showed, in some cases,
the lack of structure/indexing, for example the output included 145 records
attributed to the “1989 WSC Proceedings” (although the ISI/CPCI-S database starts
from 1990), some proceedings names/volumes did not include the year and seemed
to have been clubbed together (e.g. one publication had a generic name “Winter
Simulation Conference Proceedings” and showed over 2300 associated records).
Through the analysis of the record set (pertaining to publication name), it became
obvious that there would be some duplication, however, our previous experience
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has shown that ISI seldom includes duplicated records in the main search results.
We therefore decided to include all the 27 proceedings with the “OR” operator for
the search field—Publication Name. We conducted the search on ISI/CPCI-S; this
resulted in a total of 6,985 records (as of May 2017). Comparing this with the initial
record count of 9300 records, gives us 2315 records that appear to be duplicated.

16.2.1 Validation of the Data Set

We used the Scopus® citation database for the validation of our record set. Scopus,
which is owned by Elsevier, is marketed as the largest abstract and citation database
of peer-reviewed journals, books and conference proceedings. In terms of confer-
ence coverage, it includes close to 8 million conference papers from nearly 100,000
worldwide events, such as, conferences, coverage for society meetings, etc.
(Elsevier n.d.). Whereas for ISI/CPCI-S, the dataset starts from 1989, the start date
for Scopus archived records for WSC begins from 1981. We, therefore, considered
extending our search to include both Scopus and ISI/CPCI-S (ISI Web of
Knowledge), and which would give us a period of analysis from 1981 to 2016 (both
years inclusive)—a total of 36 years! This would mean combining both the data-
bases and then running our analysis. However, this does have a downside. With
more databases being included, there are higher chances of errors and omission. In
indexing databases, and because of the scale on which they operate, most of the
records are automatically imported and curation of individual records is not often
possible by the database provider. A further level of error may be introduced by us
(the authors’), because of the task of merging records retrieved in different formats.
We, therefore, decided on using data analysis features that are included in both ISI
Web of Knowledge and Scopus.

In Table 16.1, we tabulate results retrieved from the ISI/CPCI-S and Scopus.
The leftmost column lists the year that the conference was held. This may be
different to the year the records were archived in the respective databases, and
indeed, we identified a few errors in Scopus where the publication year was
interchanged with the year the conference was held. For example, a basic Scopus
search will reveal WSC publications for the year 2017; however, these are the
“Proceedings for the 2016 Winter Simulation Conference”. The second and third
column show the number of records retrieved from CPSI-S and its corresponding
proportion in regard to total records. The fourth and fifth columns show the same
data but for Scopus. As can be seen, the total number of records retrieved using
CPSI-S and Scopus is 6985 and 7920 respectively. Scopus includes publications
from 1981 to 2016, the only proceedings missing is from 1992. On the other hand,
ISI/CPCI-S includes publications from 1989 onwards (and therefore papers from
1981 to 1988 are not available); further, the 1999 and the 2015 WSC proceedings
are not included. We have also compared the differences in terms of the number of
records reported by the two databases. For most years, this difference is not
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Table 16.1 Records retrieved from ISI/CPCI-S web of knowledge and scopus

Publication
years

ISI web of
science/CPCI-S

Scopus Difference in
#Records
(ISI-Scopus)Record

count
% of total
records

Record
count

% of total
records

1981 N/A N/A 94 1.19 (94)
1982 N/A N/A 80 1.01 (80)
1983 N/A N/A 100 1.26 (100)
1984 N/A N/A 107 1.35 (107)
1985 N/A N/A 97 1.22 (97)
1986 N/A N/A 130 1.64 (130)
1987 N/A N/A 136 1.72 (136)
1988 N/A N/A 131 1.65 (131)
1989 145 2.08 146 1.84 (1)
1990 159 2.28 160 2.02 (1)
1991 162 2.32 162 2.05 0
1992 182 2.61 N/A N/A 182
1993 206 2.95 206 2.60 0
1994 217 3.11 217 2.74 0
1995 215 3.08 213 2.69 2
1996 213 3.05 214 2.70 (1)
1997 201 2.88 201 2.54 0
1998 237 3.39 237 2.99 0
1999 N/A N/A 244 3.08 (244)
2000 281 4.02 107 1.35 174
2001 223 3.19 159 2.01 64
2002 280 4.01 261 3.30 19
2003 264 3.78 132 1.67 132
2004 280 4.01 283 3.57 (3)
2005 341 4.88 343 4.33 (2)
2006 320 4.58 298 3.76 22
2007 291 4.17 297 3.75 (6)

2008 395 5.65 367 4.63 28
2009 296 4.24 316 3.99 (20)
2010 310 4.44 314 3.96 (4)
2011 386 5.53 390 4.92 (4)
2012 339 4.85 345 4.36 (6)
2013 347 4.97 348 4.39 (1)
2014 353 5.05 349 4.41 4
2015 N/A N/A 395 4.99 (395)
2016 342 4.90 341 4.31 1
Total 6985 100 7920 100 (935)
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significant, with the exception of year 2000 (174 additional records in ISI/CPCI-S),
2001 (64), 2002 (19), 2003 (132), 2006 (22) and 2008 (28). Considering all the
adjustments detailed above, Scopus has an additional 900 records. However, these
should not be mistaken to be unique records, the calculation of which is presented
next.

16.2.2 Defining the Data Set for Analysis

Our previous discussion has shown that, in order to provide the maximum coverage
for the papers published in the proceedings of the conference, we will need to
consider both records retrieved from both ISI/CPCI-S and Scopus. For records that
are missing from either of the two databases, we consider the one which has the
information (obviously), however for the 25 years (1989–1991; 1993–1998; 2000–
2014; 2017) for which records are present in both the databases, we select
ISI/CPCI-S over Scopus. Our rationale for this is the significant number of addi-
tional records (including a total of 439 additional records in 2000–2003, 2006 and
2008) that are reported by ISI over Scopus (see Table 16.1). Our final dataset
therefore includes:

• The timespan of analysis includes 36 years, starting from 1981 until 2016
• Years 1981–1988 (total of 8 years): Data set from Scopus
• Years 1989–1998 (10 years): ISI/CPCI-S
• Year 1999 (1 year): from Scopus
• Year 2000–2014 (15 years): ISI/CPCI-S
• Year 2015 (1 year): Scopus
• Year 2016 (1 year): ISI/CPCI-S
• In total we cover a total of 8499 records from both ISI/CPCI-S (26 years) and

Scopus (10 years)

Figure 16.1 shows the total number of publications published in the proceedings
from 1981 to 2016. The label for the year indicates whether the data was included
from Scopus, in which case (S) is appended, or from ISI (only the year is pre-
sented). The primary axis on the left denotes the number of publications, with the
secondary axis indicating the % of records. There is obviously a correlation between
the total number of publications and % publications for each year. The figure
illustrates that, the 1982 Proceedings of WSC had the least number of papers
(80) which contributed to 0.94% of the total papers included in our analysis. On the
other side of the scale, we have the 2008 and 2015 WSC Proceedings, each of
which published a total of 395 papers each (4.65%). The average number of articles
is therefore 236.
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The trend in Fig. 16.1 is upward even if non-monotonic. This is good news for
the conference as a whole, showing growth in terms of publications. Will this
growth move to a steady state and cap at a certain level? Does the community want
this? Can we correlate the minima and maxima points to other events or situations
—for example, we might pose the dip in 2001 to be due to decreased travel.
Expanding on this, WSC2001 was held in Arlington (VA) shortly after the
September 2001 attacks. This had a substantial impact on the attendance and
finances of the conference. Indeed, the origins of the WSC Foundation can be
traced to this event (WSC Foundation 2017). What about the peaks in 2008 (Miami,
FL), 2011 (Phoenix, AZ) and 2015 (Huntington Beach, CA)?

16.3 Findings

This section will present findings based on the analysis of, (a) authorship and
editorships of WSC proceedings (Sect. 16.3.1); (b) authors’ institutional affiliations
(Sect. 16.3.2); (c) geographical location of the authors’ institutional affiliations
(Sect. 16.3.3) (d) WSC papers that have received the highest number of citations
(Sect. 16.3.4); (e) analysis based on research areas (Sect. 16.3.5), and, finally,
(f) sources of funding (Sect. 16.3.5).
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Fig. 16.1 No. of papers published in the proceedings each year and % contribution to total
number of WSC articles (using both ISI/CPCI-S and scopus)
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16.3.1 Analysis Based on Authorship and Editors
of Proceedings

Table 16.2 lists authors with 35 or more WSC publications within our timeframe of
analysis. Authors could be sole authors, first authors or co-authors. We have used
both ISI/CSCI-S and Scopus databases using the methodology defined in Sect. 16.2.
We present database-specific counts (columns 2 and 3; columns 6 and 7) and the
total authorship count (columns 4 and 8).

What are we to do with the author counts? Other than these counts indicating
prolific writing within WSC, are there any counts due to co-authorship? If we were
to plot the number of publications over time for one author, what would we find?
We might also ask ourselves about the most prolific authors. For example, for
Nelson and Wilson, how have their research topics (i.e. the topic of the paper)
evolved or changed over time or are there one consistent topic for each?

WSC publishes high-quality conference proceedings. This is overseen by the
Proceedings Co-editors, the Program Chair(s) and the General Chair. The co-editors
ensure that the WSC template is being meticulously followed by the authors. Papers
are electronically submitted in both PDF and word versions through the conference
paper management system (Linklings). If the paper is accepted, the final version
(i.e. the original paper with changes subsequent to peer-review) is uploaded through
Linklings. The co-editors then use this source file to check conformity with the
published template. If the paper requires minor formatting changes, then they may
be actioned directly by the co-editors; however, for papers requiring changes that
are non-trivial, the source file may be sent back to the authors with the request to
make changes that conform to the conference guidelines. Considering the volume
of papers published in WSC, the resultant editing effort and which conforms to the

Table 16.2 List of authors with 35 or more publications in WSC proceedings

Authors ISI/CSCI-S
count

Scopus
count

Total Authors ISI/CSCI-S
count

Scopus
count

Total

Nelson, B.L. 72 14 86 Henderson, S.G. 38 4 42

Wilson, J.R. 63 21 84 Nicol, D.M. 35 7 42

Goldsman, D. 55 17 72 Kelton, W.D. 29 12 41

Law, A.M. 47 20 67 Balci, O. 32 8 40

Sargent, R.G. 40 20 60 Nance, R.E. 31 9 40

Rose, O. 53 4 57 Verbraeck, A. 39 0 39

Schriber, T.J. 40 14 54 Paul, R.J. 34 3 37

Glynn, P.W. 36 15 51 Fishwick, P.A. 33 3 36

L’ecuyer, P. 38 10 48 Chen, C.H. 32 4 36

Henriksen, J.O. 32 12 44 Uhrmacher, A.M. 35 35

Schmeiser, B.W. 31 13 44 Alexopoulos, C. 32 3 35

Takakuwa, S. 43 43 Yucesan, E. 30 5 35

Taylor, S.J.E. 42 42 Brunner, D.T. 30 5 35

Fu, M.C. 39 3 42
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process described above, is substantial. This effort is usually shared by three or
more WSC proceedings co-editors. WSC acknowledges the contribution of the
editors by suggesting a referencing style for papers from WSC conferences, which
should include the name of the editors. Table 16.3 presents the list of editors (it is
also the convention to include the Program Chair(s) and the General Chair as
co-editors) and the number of papers that were edited by the extended team. The
number of edited articles could be a guide to ask the editors for their advice on
editing process, or good practice in framing an article for WSC—what makes a
good WSC article?

16.3.2 Analysis Based on Authors’ Institutional Affiliations

Tables 16.4 and 16.5 present analysis based on the geographical location of the
authors’ institutional affiliations. In Table 16.4, we present the name of the insti-
tution, followed by country and the number of records retrieved from ISI/CSCI-S
and Scopus respectively, followed by the total count. As can be seen from the table,
of the 29 institutes with 50 or more publications, 22 institutions (approx. 75%) are
from the US, two each from the UK and Singapore, and one each from The
Netherlands, Germany and Canada. This list might aid future students, who are
seeking graduate opportunities for M&S. The regional data is also noteworthy—
would more non-US papers be present in WSC, if the conference were held more

Table 16.3 WSC proceedings editors and the volume of articles edited (over 275 articles only)

Editors Edited Editors Edited Editors Edited

Himmelspach,
J.

725 Morrice, D.J. 477 Yilmaz, L.
Tolk, A.
Ryzhov, I.O.
Diallo, S.Y.

353
each

Jain, S. 696 Medeiros, D.J. 460 Steiger, N.M.
Kuhl, M.E.
Armstrong, F.B.

341
each

Joines, J.A. 622 Manivannan, M.
S.

454 Pasupathy, R.
Laroque, C.

339
each

Yucesan, E. 590 Goldsman, D. 397 Montoyatorres,
J.
Johansson, B.
Hugan, J.

310
each

Smith, J.S.
Peters, B.A.

503
each

Swain, J.J. 395 Fishwick, P.A.
Barton, R.R.

281
each

Kang, K. 496 Creasey, R. 386 Snowdon J.L.
Rossetti M.D.
Ingalls R.G.
Chen C.H.

280
eachCharnes, J.M. 493 Nelson, B.L. 363
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regularly outside of the US? Students looking to enter industry will use this data to
ponder potential places to interview and work. For example, IBM and MITRE are
highly active in the technical part of the conference.

Unlike Table 16.4 which presents data from both ISI/CSCI-S and Scopus, in
Table 16.5 we use a different variable to categorize institutions in a higher level of
granularity—this is referred to as Organizations-Enhanced in ISI/CSCI-S database.
This allows us to search for preferred organizations names and/or their name
variants (Thomson Reuters 2013). To take an example, University System of

Table 16.4 List of institutions with 50 or more publications in WSC proceedings

Institution name Country ISI/CSCI-S
count

Scopus
count

Total
count

Georgia Institute of Technology US 172 33 205
Virginia Polytechnic Institute and State
University (VIRGINIA TECH)

US 104 26 130

University of Michigan US 101 25 126
Purdue University US 85 27 112
Brunel University London UK 83 9 92
Cornell University US 72 18 90
Pennsylvania State University US 72 17 89
University of Central Florida US 77 8 85
IBM Corp US 74 11 85
MITRE CORP US 68 16 84
US Navy US 83 0 83
Northwestern University US 70 10 80
Arizona State University US 65 9 74
Nanyang Technological University Singapore 61 12 73
National University of Singapore Singapore 61 9 70
University of Virginia US 60 10 70
University of Alberta Canada 61 8 69
University of Illinois US 62 6 68
Old Dominion University US 54 11 65
University of Maryland US 61 3 64
University of Arizona US 47 16 63
University of Southampton UK 55 7 62
University of Wisconsin US 32 26 58
Columbia University US 51 6 57
Virginia Polytechnic Institute and State
University

US 30 26 56

North Carolina State University US 44 11 55
Texas A&M University US 32 22 54
Delft University of Technology Netherlands 51 0 51
Technical University of Dresden Germany 50 0 50
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Georgia (USG) includes research universities such as Augusta University, Georgia
Institute of Technology, Georgia State University, University of Georgia and
several other State Universities, Comprehensive Universities and State Colleges
(USG 2017). It should therefore come as no surprise that the number of USG
records identified in Table 16.5 is higher than records identified for Georgia
Institute of Technology, since the latter is a sub-set of the former.

16.3.3 Analysis Based on Authors’ Geographic Location

Table 16.6 creates geographically related questions similar to Table 16.4. The
countries in the lead are the USA, Germany and the UK. Why? The venue for the
conference might be one clue, but are there other reasons? What strategies can the
WSC Board apply to diversify these numbers? Perhaps we need better social net-
working for M&S students and researchers?

Table 16.5 List of institutions (using ISI/CSCI-S—organizations enhanced) with 70 or more
publications in WSC proceedings

Organizations
enhanced

Records % ef
6985

Organizations enhanced Records % ef
6985

University System
of Georgia

226 3.24 Purdue University 90 1.29

United States
Department of
Defense

222 3.18 Pennsylvania
Commonwealth System of
Higher Education (PCSHE)

90 1.29

Georgia Institute
of Technology

176 2.52 North Carolina State
University

87 1.25

State University
System of Florida

158 2.26 Naval Postgraduate School 85 1.22

International
Business
Machines (IBM)

130 1.86 Brunel University 83 1.19

Virginia
Polytechnic
Institute State
University

105 1.50 University of Central
Florida

77 1.10

United States
Navy

105 1.50 Penn State University 75 1.07

University of
Michigan

104 1.49 Cornell University 72 1.03

University of
North Carolina

100 1.43 Northwestern University 70 1.00

Department of
Energy

90 1.29
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16.3.4 Citation Analysis

Citation analysis is presented by merging data retrieved from ISI/CSCI-S and
Scopus (refer to the section on methodology). These records pertain to the total
number of WSC papers published/per year and the total citations received/year. It is
to be noted that the number of citations will vary from one database to the other. For
example, recent studies have compared databases to illustrate that indexing data-
bases possess some shortcomings which may affect the quality and the precision of
citation data (Clarke 2008a, b; Jacso 2005). For example, Jacso (2005) found that
Google Scholar records citations from all sources including conferences, book
chapters, working papers and other non-traditional sources, which may affect the
quality of citation data. In the case of both ISI/CSCI-S and Scopus, citations are
recorded only if the citing articles have also been indexed by the database. What
does this mean? A database which is relatively selective in the inclusion of
scholarly artefacts for indexing (for example, ISI Web of Knowledge only indexes
journals with an associated impact factor) will typically report lesser number of
citations, when compared to databases with a more comprehensive listing, for
example, Google Scholar and Scopus.

As shown in Fig. 16.2, generally, the citations are increasing in number over
time, suggesting several things: Are WSC authors increasing the sizes of their
reference sections? Are the WSC proceedings being cited from outside of WSC
papers? This result is highly favourable for WSC in terms of impact over time.
More people are reading WSC papers. Hopefully, the answer is not that we are just
citing more of ourselves although some of that is beneficial to demonstrate our
research being built upon our peers.

Table 16.7 presents a list of articles with over 50 citations. A study of these
papers may enlighten us as to what areas or topics are of most interest to others.
From some of the papers, we may logically conclude that papers of a tutorial,

Table 16.6 Geographical location of authors’ affiliation (data from both ISI/CSCI and Scopus;
total number of records retrieved which has the county field is 7499)

Countries Records % of 7499 Countries Records % of 7499

USA 4420 58.94 Sweden 101 1.35
Germany 487 6.49 South Korea 89 1.19
United Kingdom 325 4.33 Spain 74 0.99
Canada 322 4.29 Italy 71 0.95
Singapore 181 2.41 Taiwan 60 0.80
Netherlands 178 2.37 Austria 59 0.79
China 160 2.13 Australia 58 0.77
France 138 1.84 Ireland 50 0.67
Brazil 115 1.53 India 42 0.56
Japan 112 1.49 Turkey 38 0.51
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survey or introductory nature are more generally read and so cited. Consider the
two high-ranking papers by papers by Sargent and Macal as random examples. It is
interesting to note that 9 of the 25 papers listed in Table 16.7 were published in the
proceedings of the 1999 Winter Simulation Conference; this includes four of the top
seven highly cited papers. What could be the reason for this? One possible
explanation is that the records for WSC 1999 were extracted from Scopus—see
Fig. 16.1; note the label 1999(S) in the x-axis. As mentioned earlier, Scopus pro-
vides a more comprehensive database, and it is arguable that it indexes relatively
higher number of articles (when compared to ISI/CSCI-S), which have cited papers
from the 1999 WSC proceedings.

Consider the average number of citations per year (column 3; Table 16.7)—a
value obtained by dividing the total number of citations by the total number of years
subsequent to its publication. This metric normalizes the relative advantage that is
intrinsic with papers published in an earlier proceedings when compared with those
published in subsequently editions (citations increase over time). The 2005 paper
by Sargent on the verification and validation of simulation models has the highest
number of average citations (approx. 10 citations per year), this is followed by the
2005 paper on simulation optimization by Fu et al. (9 citations/year), and the 2009
paper by Macal and North on agent-based M&S (8/year).
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Table 16.7 Articles with more than 50 citations (as of May 2017)

Article Total
citations

Avg
citations/Year

Hajjar, D., and Abourizk, S. (1999). Simphony: An
Environment For Building Special Purpose Construction
Simulation Tools. 1999 WSC, pp. 998–1006.

127 6.68

Chang, X. (1999). Network Simulations With OPNET. 1999
WSC, pp. 307–316.

124 6.53

Sargent, RG. (2005). Verification And Validation Of Simulation
Models. 2005 WSC, pp. 130–143.

123 9.46

Azadivar, F. (1999). Simulation Optimization Methodologies.
1999 WSC, pp. 93–100.

119 6.26

Meketon, MS., and Schmeiser, B. (1984). Overlapping Batch
Means: Something For Nothing? 1984 WSC, pp. 227–230.

112 3.29

Fu, MC., Glover, FW., and April, J. (2005). Simulation
Optimization: A Review, New Developments, And
Applications. 2005 WSC, pp. 83–95.

109 8.38

Sargent, RG. (1999). Validation And Verification Of Simulation
Models. 1999 WSC, pp. 39–48.

94 4.95

Glynn, PW. (1987). Likelihood Ratio Gradient Estimation: An
Overview. 1987 WSC, pp. 366–375.

89 2.87

Macal, CM, and North, MJ. (2005). Tutorial On Agent-Based
Modeling And Simulation. 2005 WSC, pp. 2–15.

85 6.54

Carson, Y., and Maria, A. (1997). Simulation Optimization:
Methods And Applications. 1997 WSC, pp. 118–126.

85 4.05

Rossetti, MD., Trzcinski, GF., And Syverud, SA. (1999).
Emergency Department Simulation And Determination Of
Optimal Attending Physician Staffing Schedules. 1999 WSC,
pp. 1532–1540.

79 4.16

Schwetman, H. (1986). CSIM: A C-Based, Process-Oriented
Simulation Language. 1986 WSC, pp. 387–396.

77 2.41

Kleijnen, JPC. (1999). Validation Of Models: Statistical
Techniques And Data Availability. 1999 WSC, pp. 647–654.

75 3.95

Swisher, JR., Hyden, PD., Jacobson, SH., and Schruben, LW.
(2000). A Survey Of Simulation Optimization Techniques And
Procedures. 2000 WSC, pp. 119–128.

72 4

Macal, CM., and North, MJ. (2009). Agent-Based Modelling
And Simulation. 2009 WSC, pp. 86–98.

70 7.78

Macal, CM., and North, MJ.(2006). Tutorial On Agent-Based
Modeling And Simulation Part 2: How To Model With Agents.
2006 WSC, pp. 73–83.

70 5.83

Glover, F., Kelly, JP., and Laguna, M. (1999). New Advances
For Wedding Optimization And Simulation. 1999 WSC,
pp. 255–260.

66 3.47

April, J., Glover, F., Kelly, JP., and Laguna, M. (2003).
Practical Introduction To Simulation Optimization. 2003 WSC,
pp. 71–78.

65 4.33

(continued)
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16.3.5 Analysis Based on Research Area

The research areas pertaining to the publications is extracted from both ISI/CPCI-S
and Scopus, as per the methodology outlined in Sect. 16.2. The research area is
assigned to source publication; a publication may have more than one research area.
As can be seen in Table 16.8, both ISI/CPCI-S and Scopus identify the top three
research areas associated with the WSC publication, namely, Computer Science,
Engineering, and Operations Research and Management Science (note: it is
arguable that ORMS is identified as Mathematics in Scopus). Indeed, these have
been the core parts of WSC since its inception as a conference. Records from
Scopus show over 1100 records classified under both Engineering and Chemical
Engineering. Since WSC is primarily a conference on discrete-event simulation,
and simulation pertaining to chemical reactions and diffusion is perhaps more suited
to the continuous paradigm of modelling, we conclude that there may be mis-
classification in tagging approx. 74% of records as Chemical Engineering under
Scopus.

In Table 16.8, other research areas stand out: Transportation and Computational
Biology are identified with some prominence in the ISI/CPCI-S database. However,
it has to be ascertained whether these publications are specific to a particular year,
or indeed, is this further evidence of interdisciplinary M&S? The analysis presented
in Table 16.9 will try to answer this question. The analysis presented is specific to

Table 16.7 (continued)

Article Total
citations

Avg
citations/Year

Fujimoto, RM. (1999). Parallel And Distributed Simulation.
1999 WSC, pp. 122–131.

65 3.42

Dahmann, JS., Fujimoto, RM., and Weatherly, RM. (1997). The
Department Of Defense High Level Architecture. 1997 WSC,
pp. 142–149.

62 2.95

Angerhofer, BJ., and Angelides, MC. (2000). System Dynamics
Modelling In Supply Chain Management: Research Review.
2000 WSC, pp. 342–351.

61 3.39

Page, EH., and Opper, JM. (1999). Observations On The
Complexity Of Composable Simulation. 1999 WSC, pp. 553–
560.

53 2.79

Olafsson, S, and Kim, J. (2002). Simulation Optimization. 2002
WSC, pp. 79–84.

52 3.25

Balci, O. (1997). Verification, Validation And Accreditation Of
Simulation Models. 1997 WSC, pp. 135–141.

52 2.48

Chen, HC., Chen, CH., Dai, LY., and Yucesan, E. (1997). New
Development Of Optimal Computing Budget Allocation For
Discrete Event Simulation. 1997 WSC, pp. 334–341.

52 2.48
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ISI Web of Science. WOS Categories are the subject categories of the source
publication. Since a source publication can be assigned to multiple subject cate-
gories, articles from those publications could therefore contain multiple subject
categories. Comparing the WOS Categories with the total number of WSC
publications/year, we make the following observations:

• Ergonomics was defined as subject category for the WSC 1989 conference
proceedings

• Telecommunications—WSC 1991
• Computer Science Cybernetics and Statistics Probability—WSC 1996
• Transportation—WSC 1998
• Computer Science Artificial Intelligence—WSC 2006
• Engineering Multidisciplinary—WSC 2008
• Mathematical Computational Biology—WSC 2010
• The remaining ISI WOS categories have been attributed to a minimum of two

WSC conference proceedings

Does the theme of the conference dictate further subject-wise categorisation of
the WSC proceedings (as listed above), and which extends the traditional classi-
fication of WSC as a multi-disciplinary conference with primary focus on Computer
Science, Engineering and ORMS/Mathematics?

Table 16.8 Classification of articles according to research areas (note: one article can be
classified under multiple areas)

Research areas ISI/CPCI-S Scopus
Records
classified
under
research
area

% of total
records
retrieved from
CSCI-S (6985)

Records
classified
under
research
area

% of Total
records
retrieved from
scopus (1514)

Computer science 6337 90.72 1514 100
Engineering 3797 54.36 1119 73.91
Operations research
and management
science

2250 32.21 0 0

Mathematics 1477 21.15 1514 100
Mathematical
computational
biology

310 4.44 0 0

Transportation 237 3.39 0 0
Telecommunication 162 2.32 0 0
Chemical engineering 0 0 1119 73.91
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16.3.6 Analysis Based on Funding Body

Our final analysis is specific to funding bodies that have been acknowledged by the
WSC authors. The data for this is retrieved using the ISI/CPCI-S database. This
means that only 26 years of data is being considered here (see Sect. 16.2). Funding
agencies are essential for promoting academic, and non-profit, use of M&S. By
knowing these agencies in different countries, it may be possible for researchers
from different countries to work together to seek new hybrid funding and new
collaboration. As can be seen from Table 16.10, almost half of the 275-odd studies
listed below have received funding from the NSF. The predominance of US con-
tinues when we consider funding sources from US military and government
departments—a total of 47 studies have been funded through channels, such as,
DoE, AFOSR and NIH. Canada is a distant second with a total of 18 studies funded
studies, followed by Spain with 16 studies funded through channels like various
Spanish ministries.

Table 16.9 Classification of articles as per ISI web of science categories (note one article can be
classified under multiple ISI categories)

ISI web of science categories Records % of total records retrieved from
ISI/CSCI-S (6985)

Computer science interdisciplinary
applications

3802 54.431

Engineering electrical electronic 2849 40.787
Computer science software
engineering

2558 36.621

Operations research management
science

2250 32.212

Computer science theory methods 1977 28.304
Computer science information
systems

1355 19.399

Mathematics applied 1264 18.096
Engineering manufacturing 1239 17.738
Engineering industrial 708 10.136
Engineering multidisciplinary 396 5.669
Computer science artificial
intelligence

320 4.581

Mathematical computational biology 310 4.438
Transportation 237 3.393
Statistics probability 213 3.049
Computer science cybernetics 213 3.049
Telecommunications 162 2.319
Ergonomics 145 2.076
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16.4 Conclusion

We have presented a bottom-up, data-driven analysis of WSC papers from 1981 to
2016; a total of 8499 records were covered during this 36-year period. The goal in
this analysis is to first obtain the data and then to “read the data” through the
subjective process of asking questions. Creating data for its own sake is illogical,
but starting with data and a set of objectives is the first step towards mining gems in
the data set. Classic approaches to analyzing data sets involve looking for maxima,
minima, points of inflection (in curves) and noting outliers. Each finding in this
manuscript should be considered with a “query lens”. What new questions do the
data suggest? Generally, the analysis of data generates insight, but also a wealth of
new questions we would not have known to ask ahead of time. We hope that while

Table 16.10 Funding bodies acknowledged in WSC publications (ISI/CPCI-S)

Funding body Country Studies
funded

National Science Foundation (NSF), including, NSF Grant
Opportunities for Academic Liaison with Industry (GOALI)

US 133

Department of energy US 15
Air Force Office of Scientific Research (AFOSR) US 12
Hong Kong Research Grants Council (RGC) Hong

Kong
12

Government of Canada Research Chairs Canada 10
Office of Naval Research US 9
Spanish Ministry of Economy and Competitiveness Spain 8
Natural Sciences and Engineering Research Council of Canada
(NSERC)

Canada 8

National Natural Science Foundation of China (NSFC) China 8
United States Government US 7
Fonds Européen de Développement Économique et Régional
(FEDER)

EU 7

Engineering and Physical Sciences Research Council (EPSRC) UK 7
Japan Society for the Promotion of Science (JSPS) Japan 5
Spanish Ministry of Science and Innovation Spain 4
National Institute of Health (NIH) US 4

Intel Research Council US 4
German Research Foundation (DFG) Germany 4
Finnish Funding Agency for Technology and Innovation (TEKES) Finland 4
Department of Universities, Research & Information Society of the
Catalan Government

Spain 4

Coordination for the Improvement of Higher Education Personnel
(CAPES)

Brazil 4

Australian Research Council (ARC) Australia 4
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this data analysis is preliminary, that it will be a starting point for new questions and
also new data-driven analyses. All of the data indicates that WSC is a growing and
vibrant conference, with the number of submissions and citations on the increase.
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