
Non-uniqueness of Solutions of a Semilinear
Heat Equation with Singular Initial Data

Marek Fila1(B), Hiroshi Matano2, and Eiji Yanagida3

1 Department of Applied Mathematics and Statistics, Comenius University,
84248 Bratislava, Slovakia

fila@fmph.uniba.sk
2 Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba,

153 Tokyo, Japan
matano@ms.u-tokyo.ac.jp

3 Department of Mathematics, Tokyo Institute of Technology, Meguro-ku,
152-8551 Tokyo, Japan

yanagida@math.titech.ac.jp

Abstract. We construct new examples of non-uniqueness of positive
solutions of the Cauchy problem for the Fujita equation. The solutions
we find are not self-similar and some of them blow up in finite time.
Heteroclinic connections and ancient solutions of a rescaled equation
play the key role in our construction.
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1 Introduction

We study non-uniqueness of positive solutions of the Fujita equation

ut = Δu + up, x ∈ R
N , p > 1, (1)

with the initial condition

u(x, 0) = �|x|−m, x ∈ R
N \ {0}, � ≥ 0, m :=

2
p − 1

. (2)

By a solution of (1) in R
N × (0, T ), 0 < T ≤ ∞, we mean a function u ∈

C2,1(RN × (0, T )) which satisfies (1) in the classical sense in R
N × (0, T ). We

call a solution global if T = ∞. By a solution of (1), (2) we mean a solution of
(1) which is continuous in R

N × [0, T ) \ {0, 0} and u(·, t) → u(·, 0) in L1
loc(R

N )
as t → 0.
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Concerning the existence of positive global solutions of (1), the Fujita expo-
nent

pF :=
N + 2

N

is critical. In fact, if 1 < p ≤ pF then there is no positive global solution of (1).
We introduce three more critical exponents which play an important role in

the sequel. The exponent

psg :=
{

N
N−2 for N > 2,

∞ for N ≤ 2,

is related to the existence of a singular steady state explicitly given by

ϕ(x) := L|x|−m, x ∈ R
N \ {0},

where
L := {m (N − 2 − m)}1/(p−1), m :=

2
p − 1

.

Namely, ϕ exists if and only if p > psg. The role of the Sobolev exponent

pS :=
{

N+2
N−2 for N > 2,

∞ for N ≤ 2,

and the Joseph-Lundgren exponent

pJL :=

{
(N−2)2−4N+8

√
N−1

(N−2)(N−10) for N > 10,

∞ for N ≤ 10,

will be explained below.
The uniqueness problem for (1), (2) is of particular interest from the view-

point of continuation beyond blow-up. The case � = L was considered in
[11] where it was shown that ϕ is the unique solution if p ≥ pJL but not if
psg < p < pJL.

For 0 < � < L, the following conjectures were formulated in [11] (page 41):

(C1) If psg < p ≤ pS then problem (1), (2) has exactly two positive solutions.
(C2) If pS < p < pJL then there exist an arbitrarily large finite number of

solutions when L − � is small.

It was shown later that there are at least two positive solutions if pF < p < pS
(see [18]) or if p = pS , 2 < N < 6 (see [20]). The existence of an arbitrarily
large finite number of solutions when L − � is small was established in [25] for
pS < p < pJL. The solutions found in [18,20,25] are self-similar. This means
that they are of the form

u(x, t) := t−1/(p−1)f(ρ), ρ := t−1/2|x|, x ∈ R
N , t > 0,
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where the function f satisfies
⎧⎪⎨
⎪⎩

fρρ +
N − 1

ρ
fρ +

ρ

2
fρ +

1
p − 1

f + fp = 0, ρ > 0,

fρ(0) = 0, lim
ρ→∞ ρmf(ρ) = �, f(ρ) > 0, ρ > 0.

(3)

In this paper we disprove conjecture (C1) from [11] by showing that if (3)
has at least two solutions then there are infinitely many positive solutions of (1),
(2) which are not self-similar. In particular, under the assumptions from (C2)
the initial value problem (1), (2) possesses infinitely many positive solutions.

Before we state our results more precisely, we recall some known facts about
problem (3). Set

�∗ : = sup {� > 0 : (3) has a solution},

�∗ : = inf {� > 0 : (3) has at least two solutions}.

The results of [18–20] and [25] imply:

Proposition 1. Let pF < p < pJL. Then

0 ≤ �∗ < �∗ < ∞.

Moreover, we have:

(i) �∗ = 0 if pF < p < pS or if p = pS and 2 < N < 6;
(ii) �∗ ∈ (0, L] if pS < p < pJL or if p = pS and N ≥ 6.

These statements are contained in Propositions A and B in [21] and
Remark 1.4 (iv) in [20].

We remark here that if p ≥ pJL then �∗ = L and (3) has a unique solution for
� ∈ (0, L), see [19]. Concerning ordering and intersection properties of solutions
of (3), the following was established in [18,19,21].

Proposition 2. Let pF < p < pJL and � ∈ (�∗, �∗). Then there is a solution f0
of (3) with the property that if f is a different solution then f(ρ) > f0(ρ) for
all ρ > 0. If f1 and f2 are two solutions of (3), f1, f2 �≡ f0, then there is ρ0 > 0
such that f1(ρ0) = f2(ρ0).

The first statement follows from Lemma 3.1 (i) in [19] and the second from
Proposition 4.1 in [21].

Now we can state our result on the non-uniqueness.

Theorem 1. Assume that pF < p < pJL and � ∈ (�∗, �∗). Let f be a solution of
(3), f �≡ f0.

(i) There is a solution u of (1), (2) in R
N × (0,∞) such that

f0(ρ) < t1/(p−1)u(x, t) < f(ρ), x ∈ R
N , t > 0.
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(ii) For every T > 0 there is a solution u of (1), (2) in R
N × (0, T ) such that

t1/(p−1)u(x, t) > f(ρ), x ∈ R
N , 0 < t < T,

and
lim
t→T

u(0, t) = ∞.

It is clear from Proposition 2 that the solution in Theorem 1 (i) cannot be
self-similar. Obviously, the solution in Theorem 1 (ii) is not self-similar either.
For a more detailed description of these solutions see Propositions 3 and 4.
Since problem (1), (2) possesses a scaling invariance, Theorem 1 in fact yields
two different one-parameter families of solutions. Namely, if u is a solution which
is not self-similar then

uλ(x, t) := λ2/(p−1)u(λx, λ2t), λ > 0,

is also a solution and it is different from u if λ �= 1.
As a consequence of Theorem 1 we obtain the existence of infinitely many

non-selfsimilar continuations of some backward self-similar solutions of (1)
beyond their blow-up time. Namely, it was shown [6] that there is a sequence
{�n}∞

n=1 such that �n → L and �n|x|−m is the blow-up profile of a backward
self-similar solution. Theorem 1 then yields a continuum of continuations which
remain regular for all t after blow-up and converge to zero as t → ∞, and another
continuum of continuations which blow up at the origin again.

A radial solution which blows up twice was first found in [15] for p > pJL.
That result was later extended in [16] by finding radial solutions (for the same
range of p) which blow up k-times, where k > 1 is an arbitrary integer. The
solutions from [15,16] blow-up at the origin at each blow-up time.

Later, radial solutions of (1) which blow up twice were constructed in [17] for
p > pS . There, the new features are that the two blow-up times can be controlled
(but not prescribed precisely) and the second blow-up is on a sphere.

We can prescribe both blow-up times precisely but our continuation beyond
the first blow-up time is not minimal while the continuations in [15–17] are
minimal.

Let us mention here that the issue of non-uniqueness of continuations beyond
singularity is relevant for many other parabolic equations, such as the heat flow
for harmonic maps between spheres [3], the Yang-Mills heat flow [12], the mean
curvature flow [1], fourth order equations [10], to give just a few examples.

Before we introduce our second non-uniqueness result, we recall that
if pF < p < pS then there is a unique positive solution f∗ of (3) with � = 0,
see [5,13,29]. The function f∗ satisfies

f∗(ρ) = O
(
ρm−N exp(−ρ2/4)

)
as ρ → ∞, (4)

see [23], and u(x, t) = t−1/(p−1)f∗(ρ) is a solution of (1), (2) with � = 0, see [13].
Our second result on non-uniqueness is the following:

Theorem 2. Let pF < p < pS and � = 0.
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(i) There is a solution u of (1), (2) in R
N × (0,∞) such that

0 < t1/(p−1)u(x, t) < f∗(ρ), x ∈ R
N , t > 0.

(ii) For every T > 0 there is a solution u of (1) (2) in R
N × (0, T ) such that

t1/(p−1)u(x, t) > f∗(ρ), x ∈ R
N , 0 < t < T,

and
lim
t→T

u(0, t) = ∞.

As before, the solutions in Theorem 2 are not self-similar and they yield
two different one-parameter families of solutions. A more detailed description of
these solutions is given in Propositions 5 and 6.

For other previous examples of non-uniqueness of solutions of (1) with the
initial condition

u(x, 0) = u0(x), x ∈ R
N , (5)

we refer to [14,26] where the case p = psg, u0 ∈ Lp(RN ) was treated. In the case
when the domain is a ball and the homogeneous Dirichlet boundary condition is
imposed, examples of non-uniqueness were given in [2,22].

On the other hand, it is well known that for q > N(p − 1)/2, q ≥ 1 or
q = N(p− 1)/2 > 1 and u0 ∈ Lq(RN ) there exists a unique solution u of (1), (5)
in the class C([0, T ), Lq(RN )) ∩ L∞

loc((0, T ), L∞(RN )) for some T ∈ (0,∞], see
[4,27,28].

2 Results for a Transformed Equation

For a solution u of (1) defined for t ∈ (0, T ), we set

v(y, s) := t1/(p−1)u(x, t), y := t−1/2x, s := log t.

Then we obtain the following equation for v:

vs = Δv +
1
2
y · ∇v +

1
p − 1

v + vp, y ∈ R
N , (6)

where s ∈ (−∞, log T ).
If f is a solution of (3) then it is a radial steady state of (6).
The first two propositions give a more precise description of the solutions

from Theorem 1.

Proposition 3. Assume that pF < p < pJL and � ∈ (�∗, �∗). Let f be a solution
of (3), f �≡ f0. Then there exists a solution v of (6) in R

N ×R with the following
properties:

(i) The solution is positive, radially symmetric in space with respect to the origin,
decreasing in ρ = |y| and in s, and satisfies

f0(|y|) < v(y, s) < f(|y|), y ∈ R
N , s ∈ R,
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(ii) ‖v(·, s) − f(| · |)‖L∞(RN ) → 0 as s → −∞,
(iii) ‖v(·, s) − f0(| · |)‖L∞(RN ) → 0 as s → ∞.

Proposition 4. Assume that pF < p < pJL and � ∈ (�∗, �∗). Let f be a solution
of (3), f �≡ f0. Then for every s∗ ∈ R there is a solution v of (6) in R

N ×
(−∞, s∗) such that:

(i) The solution is positive, radially symmetric in space with respect to the origin,
decreasing in ρ = |y| and increasing in s, and satisfies

v(y, s) > f(|y|), y ∈ R
N , s ∈ (−∞, s∗),

(ii) ‖v(·, s) − f(| · |)‖L∞(RN ) → 0 as s → −∞,
(iii) v(0, s) → ∞ as s → s∗.

The next two propositions describe in more detail the solutions from Theo-
rem 2.

Proposition 5. Assume that pF < p < pS. Then there exists a solution v of
(6) in R

N × R with the following properties:

(i) The solution is positive, radially symmetric in space with respect to the origin,
decreasing in ρ = |y| and in s, and satisfies

0 < v(y, s) < f∗(|y|), y ∈ R
N , s ∈ R,

(ii) ‖v(·, s) − f∗(| · |)‖L∞(RN ) → 0 as s → −∞,
(iii) ‖v(·, s)‖L∞(RN ) → 0 as s → ∞.

Proposition 6. Assume that pF < p < pS. Then for every s∗ ∈ R there is a
solution v of (6) in R

N × (−∞, s∗) such that:

(i) The solution is positive, radially symmetric in space with respect to the origin,
decreasing in ρ = |y| and increasing in s, and satisfies

v(y, s) > f∗(|y|), y ∈ R
N , s ∈ (−∞, s∗),

(ii) ‖v(·, s) − f∗(| · |)‖L∞(RN ) → 0 as s → −∞,
(iii) v(0, s) → ∞ as s → s∗.

3 Proofs of the Main Results

Proof of Proposition 3. For each θ ∈ (0, 1), let vθ(y, s) denote the solution of (6)
with the following initial data:

vθ(y, 0) = fθ(y) := (1 − θ)f0(|y|) + θf(|y|), y ∈ R
N .

Then, since f0(|y|) < f(|y|) for y ∈ R
N and since the function g(v) := 1

p−1v +vp

is strictly convex, one easily finds that

Δfθ +
1
2
y · ∇fθ +

1
p − 1

fθ + (fθ)p < 0, y ∈ R
N . (7)
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In other words, fθ is a time-independent strict super-solution of (6). Conse-
quently, vθ(y, s) is decreasing in s and satisfies fθ(|y|) ≥ vθ(y, s) > f0(|y|) for
all s ≥ 0, y ∈ R

N . Hence vθ is defined for all s ≥ 0 and converges as s → ∞ to
a stationary solution that lies between fθ and f0. Since there is no stationary
solution that lies between f and f0 by Proposition 2, we have vθ(y, s) → f0(|y|)
as s → ∞ uniformly in y ∈ R

N . Now, for each θ ∈ [ 12 , 1), let sθ be such that

vθ(0, sθ) =
f0(0) + f(0)

2
.

Since vθ is decreasing in s, the above quantity sθ is uniquely determined, and
we have

sθ = 0 for θ =
1
2
, sθ → ∞ as θ ↗ 1.

Let us define
v̂θ(y, s) := vθ(y, s + sθ). (8)

Then v̂θ is a solution of (6) on the time interval [−sθ,∞) and it satisfies

v̂θ(0, 0) =
f0(0) + f(0)

2
, v̂θ(y, s) ↘ f0(|y|) as s → ∞.

By parabolic estimates, we can find a sequence θk → 1 such that v̂θk converges
to a solution of (6) which is defined for all s ∈ R, and we denote it by v̂(y, s).
Clearly, v̂ is non-increasing in s and satisfies

f0(|y|) < v̂(y, s) < f(|y|), y ∈ R
N , s ∈ R, v̂(0, 0) =

f0(0) + f(0)
2

.

The monotonicity of v̂(y, s) and the parabolic estimates, along with the inequal-
ities f0 < v̂ < f imply that v̂ converges to some stationary solutions f± of (6)
as s → ±∞ that satisfy

f0 ≤ f+ ≤ f− ≤ f, f+(0) ≤ f0(0) + f(0)
2

≤ f−(0).

By Proposition 2, we have f+ = f0 and f− = f . Hence

v̂(y, s) →
{

f(|y|) as s → −∞,

f0(|y|) as s → ∞,
uniformly in y ∈ R

N .

This completes the proof of the proposition. �

Proof of Proposition 4. We use a similar argument as in the proof of Proposi-
tion 3. For each θ > 1, let vθ(y, s) denote the solution of (6) with the initial
data

vθ(y, 0) = fθ(y) := θf(|y|), y ∈ R
N .
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Since fθ with θ > 1 satisfies the inequality opposite to (7), vθ is increasing in s.
Denote by [0, σθ) the maximal time-interval for the existence of vθ. Now, for each
θ ∈ (1, 2), let sθ be such that

vθ(0, sθ) =
3
2
f(0),

and define v̂θ by (8). Then, arguing as in the proof of Proposition 3, we can
choose a sequence θk ↘ 1 such that v̂θk converges to a solution v̂ of (6) such
that v̂ is defined for s ∈ (−∞, s∗) for some 0 < ŝ ≤ ∞, v̂ is increasing in s, and
satisfies

v̂(0, 0) =
3
2
f(0), lim

s→−∞ v̂(y, s) = f(y) uniformly in y ∈ R
N .

Next we show that ŝ < ∞. Suppose ŝ = ∞. Then Lemma 3.1 in [21] implies
that, as s → ∞, v̂(·, s) converges to a regular or singular radial steady state
of (6) which is bigger than f . However, such a steady state does not exist, see
Proposition 4.1 in [21]. This is a contradiction.

Any shift of v̂ in s yields again a solution of (6), so the blow-up time s∗ can
be chosen arbitrarily. �

Proof of Proposition 5. One can proceed as in the proof of Proposition 3 with f0
and f replaced by 0 and f∗, respectively. �

In the proof of Proposition 6 we shall use the following fact:

Lemma 1. If pF < p < pS then there is no solution fs of the problem
⎧⎨
⎩

fρρ +
N − 1

ρ
fρ +

ρ

2
fρ +

1
p − 1

f + fp = 0, ρ > 0,

f(0) = ∞, f(ρ) > 0, ρ > 0,

(9)

such that fs(ρ) > f∗(ρ) for ρ > 0.

Proof of Proposition 5. Suppose fs is such a solution. Let

C := inf{c ∈ R : cfs(ρ) ≥ f∗(ρ) for all ρ ∈ (0,∞)} ∈ (0, 1].

Then there are two cases:
Case I: Cfs(R) = f∗(R) and Cfs

ρ (R) = f∗
ρ (R) at some R ∈ (0,∞).

Case II: Cfs(ρ) > f∗(ρ) for all ρ ∈ (0,∞) and limρ→∞
fs(ρ)
f∗(ρ)

= 1.

Case I: f∗ and fs satisfy

(h(ρ)f∗
ρ )ρ + h(ρ)

{ 1
p − 1

f∗ + (f∗)p
}

= 0

and
(h(ρ)fs

ρ )ρ + h(ρ)
{ 1

p − 1
fs + (fs)p

}
= 0,
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respectively, where h(ρ) := ρN−1 exp(ρ2/4). Multiplying the first equation by fs

and the second by f∗ then taking their difference, we obtain

d

dρ
{h(f∗

ρ fs − f∗fs
ρ )} = −h{(f∗)p−1 − (fs)p−1}f∗fs. (10)

Integrating this on [ρ,R], we have
[
h(f∗

ρ fs − f∗fs
ρ )

]R
ρ

= −
∫ R

ρ

h(σ){(f∗)p−1(σ) − (fs)p−1(σ)}f∗(σ)fs(σ)dσ > 0.

Since f∗
ρ fs − f∗fs

ρ = 0 at ρ = R, we obtain f∗
ρ fs − f∗fs

ρ < 0 for ρ ∈ (0, R).
This implies that fs/f∗ is increasing in ρ ∈ (0, R). However, this contradicts the
assumption that fs is singular at ρ = 0.

Case II: It follows from (4) that

f∗(ρ) ≤ Aρm−N exp(−ρ2/4), ρ > 1,

for some constant A > 0. Then we have

h(1)f∗
ρ (1) − h(ρ)f∗

ρ (ρ) =
∫ ρ

1

h
{ 1

p − 1
f∗ + (f∗)p

}
dσ ≤ K

∫ ρ

1

σm−1dσ

=
K

m
(ρm − 1), ρ > 1,

for some constant K > 0. Therefore, we have

0 < −f∗
ρ (ρ) ≤ K∗ρm−N exp(−ρ2/4), ρ > 1,

for some constant K∗ > 0 and the same holds for fs
ρ .

Hence the right-hand side of (10) is integrable up to ρ = ∞, and h(f∗
ρ fs −

f∗fs
ρ ) → 0 as ρ → ∞, so that

h(f∗
ρ fs − f∗fs

ρ ) =
∫ ∞

ρ

h{(f∗)p−1 − (fs)p−1}f∗fsdσ < 0, ρ > 0.

This implies that fs/f∗ is increasing in ρ ∈ (0,∞), a contradiction. �

Proof of Proposition 6. The proof is analogous to the proof of Proposition 4
with f replaced by f∗ except that we now use Lemma 1 to show that ŝ < ∞. We
again suppose ŝ = ∞. Then Lemma 3.1 in [21] guarantees that v̂(y, s) converges
(as s → ∞) to a regular or singular radial steady state of (6) which is bigger
than f∗. However, by Lemma 1, such a singular steady state does not exist. On
the other hand, regular steady states different from f∗ satisfy (3) with � > 0 and
their value at 0 is smaller than f∗(0), see [13], a contradiction. �

We remark that alternative proofs of Propositions 3–6 can be given using
linearizations around f, f∗ and construction of suitable sub- and supersolutions,
see [7,9].
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