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Abstract. We study speeds of fronts in bistable, spatially inhomoge-
neous media at parameter regimes where speeds approach zero. We pro-
vide a set of conceptual assumptions under which we can prove power-law
asymptotics for the speed, with exponent depending on a local dimen-
sion of the ergodic measure near extremal values. We also show that our
conceptual assumptions are satisfied in a context of weak inhomogeneity
of the medium and almost balanced kinetics, and compare asymptotics
with numerical simulations.
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1 Fronts in Inhomogeneous Media—A Brief Introduction
and Main Results

We are interested in the speed of interfaces in spatially extended systems, sepa-
rating stable or metastable states. A prototypical example is the Allen-Cahn or
Nagumo equation, for the order parameter u(t, x) ∈ R,

ut = uxx + (u − a)(1 − u2), x ∈ R, a ∈ (−1, 1). (1)

This system possesses the spatially homogeneous, stable equilibria u ≡ ±1.
Initial conditions with u0(x) ∈ (−1, 1), u0(x) → 1, x → +∞, u0(x) → −1,
x → −∞, converge to traveling waves for t → ∞. In fact, (1) possesses a unique
(up to translation) traveling wave u∗(x − st), connecting −1 and 1, solving

u′′ + su′ + (u − a)(1 − u2) = 0, u(x) → ±1, x → ±∞. (2)
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The solution with u(t = 0, x) =: u0(x) will then converge to a suitable translate
of u∗ as t → ∞,

sup
x∈R

|u(t, x) − u∗(x − st − ξ)| → 0, t → ∞,

for some ξ ∈ R. In fact, this convergence is exponential in time, and the family
of translates of u∗ can be viewed as a normally hyperbolic manifold in the phase
space of, say, bounded uniformly continuous functions [11].

From this perspective, much of the information on a bistable medium is
captured by a single number, the speed of propagation s, which is generally a
function of a. In the specific example of the cubic, one first notices that for
at a = 0, often referred to as a “balanced nonlinearity”, or the “Maxwell point”,
the speed vanishes. Somewhat surprisingly, the speed is in fact a linear function
s =

√
2a of the parameter, for this specific cubic nonlinearity. More generally, for

bistable nonlinearities with three zeros, f(u−) = f(u+) = f(um) = 0, two stable
zeros f ′(u±) < 0 and one unstable zero f ′(um) > 0, one finds the existence of
u∗(x−st), with smooth dependence of speed and profile on parameters. In partic-
ular, one expects that, generically in one-parameter families of nonlinearities fa,
s(a) = s1(a−a∗)+O

(
(a − a∗)2

)
, where a∗ refers to the critical parameter value

of a balanced nonlinearity.
In fact, such speed asymptotics can be derived much more generally in

systems of equations, provided that the linearization at a traveling wave u∗(x)
with speed s = 0 for a = a∗ possesses an algebraically simple eigenvalue λ = 0;
see the discussion in Sect. 2 for more details. We therefore briefly write s ∼ μ1,
with μ = a−a∗ the detuning parameter from criticality, thus encoding the linear
asymptotics near zero speed. In the sequel we refer to the parameter a as imbal-
ance, the relation s = s(a) as a speed-imbalance relation. We normalize a = 0
as the balanced case with s = 0, and write ac = infa{s(a) > 0} for the critical
parameter. The generic situation described so far implies of course that ac = 0.

Fig. 1. Schematic illustration of speed versus imbalance parameter in the case of trans-
lation invariant, spatially periodic, and nonlocal media; compare (4)

Pinning from inhomogeneity—main questions. The above scenario
changes qualitatively when inhomogeneities are present in the medium. Con-
sider, for example,

ut = uxx + (u − a)(1 − u2) + g(x, u; ε), x ∈ R, a ∈ (−1, 1), (3)
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with inhomogeneity, say, g(x,±1; ε) = 0 and g(x, u; 0) = 0. Examples of interest
here are inhomogeneities that are periodic, quasi-periodic, or, more generally,
ergodic with respect to x. In these situations, in particular for small ε, one
then expects average speeds s̄ to exist, thus reducing essential properties of the
medium again to a (average-)speed-imbalance relation s̄(a). Ergodicity of the
medium here refers to the action of the shift on the medium, g(·, u; ε) �→ g(· +
ξ, u; ε) and encodes a transitivity and recurrence property (relative to an ergodic
measure) for this “dynamical systems” of spatial translations, guaranteeing in
particular the existence of averages for functions of the medium.

The phenomenon of pinning refers to a situation when such an average speed
vanishes for open sets of imbalances, that is, ac > 0 and s̄(a) = 0 for a ∈ [0, ac).
One then refers to fronts at parameter values a ∈ (0, ac) as pinned fronts, since
small changes in the system will not allow the front to propagate; see Fig. 1 for a
schematic illustration of speed-balance relations. Key questions concerning the
phenomenon of pinning are:

(I) when do we expect pinning, ac > 0?
(II) what is the size of the pinning region in terms of system parameters, ac =

ac(ε)?
(III) what are speeds near the pinning region,

s̄(a) ∼ μγ, μ = a − ac, for some γ > 0? (4)

The first item, (I), refers to a rather general question and we give several exam-
ples where ac > 0, that is, where a nontrivial pinning region occurs, at the end
of this introduction. The second item (II) refers to a dependence of ac on system
parameters. We are aware of only few cases where such dependencies are known
analytically; see however our analysis in Sect. 3 and the discussion, below. Our
focus will be on (III), striving to determine γ.

Pinning from inhomogeneity—outline of our main results. Our results
here give a rather simple formula for γ as a function of the effective dimension
of the medium near criticality. We give three different types of results:

(i) an abstract skew-product formalism for depinning dynamics, deriving
depinning asymptotics from Birkhoff’s ergodic theorem;

(ii) a specific application to weakly inhomogeneous media;
(iii) some numerical results in agreement with the abstract results.

From this point of view, the main open questions are how widely the abstract
approach in (i) can be shown to be valid, beyond simple examples (ii) and
numerics (iii).

To state our main results briefly, consider an equation of the form (3) with
ε-independent inhomogeneity

g(x, u; ε) ≡ h(ϑ(x), u),

where ϑ(x) = Sx(θ) denotes a trajectory of a flow Sx(ϑ0) on a smooth
manifold M with ergodic measure ν. The simplest example is a quasiperiodic
medium
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ϑ(x) = ωx mod 1, ω ∈ R
m, ωj independent over R \ Q,

ϑ(x) ∈ M = T
m = R

m/Zm, (5)

such that h(·, u) : Tm → R is quasiperiodic with m frequencies, and ν is simply
Lebesgue measure on T

m.
Our key assumption is that the dynamics near depinning can be reduced to

a skew-product flow on M ×R, with flow Sx acting on M as determined by the
medium, and reduced flow ξ′ = s(Sξ(θ);μ), s : M × R → R.

Let us assume that a = ac, μ = 0 as in (4) is critical. More precisely, we
assume that at μ = 0, s(ϑ∗; 0) = 0 and s(ϑ; 0) > 0 for ϑ 	= ϑ∗ in M. Moreover,
we assume nondegenerate criticality,

D2
ϑs(ϑ∗; 0) > 0, ∂μs(ϑ∗; 0) > 0,

where the first inequality indicates positive definiteness of the matrix in local
coordinates.

Then we find, for ν-almost all media,

s̄(μ) ∼ μγ, γ = max{1 − κ

2
, 0}, κ 	= 2, (6)

where κ is the dimension of the ergodic measure ν at ϑ∗; see Definition 2.3, below.
Here, γ = 0 refers to discontinuous behavior at μ = 0, that is, limμ↘0 s̄(μ) > 0.
For κ = 2, we find logarithmic asymptotics,

s̄(μ) ∼ 1
| log μ| , κ = 2. (7)

For quasiperiodic media, κ simply stands for the number of frequencies, and our
results predict hard depinning, that is, discontinuous speeds, for three or more
frequencies; see Fig. 2.

To our knowledge, such asymptotics for speeds are new beyond periodic
media. Existence and propagation of fronts has been established in various con-
texts; see [24] for existence of speed in random and ergodic media, with ignition
type nonlinearities, not allowing for pinning, and see [21,27] for the bistable case
with no-pinning assumption, and [29] for an overview. For depinning asymptot-
ics, we refer to [3,16,22,28,32] for results using renormalization group theory for
random media, and for results in specific model problems.

Fig. 2. Schematic illustration of speed versus imbalance parameter in the case of peri-
odic and quasiperiodic media

http://dx.doi.org/10.1007/978-3-319-64173-7_2
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In the remainder of this introduction, in order to give some context to the
somewhat general setup here, we review several special cases that are understood
to some degree.

Fig. 3. Schematic illustration dynamics in phase (function) space. Homogeneous media
with a normally attracting (red) invariant manifold (black) of translated traveling wave
profiles (left); the invariant manifold with spatially periodic vector field for periodic
media, showing the depinning transition as a saddle-node (right)

Depinning in periodic media. The key ingredients to our main result is the
description of front dynamics through positional dynamics, and the presence of
a saddle-node bifurcation. We illustrate those ingredients in the well understood
case of media with spatial period P . Similar to the translation invariant case,
one may expect, for instance when ε 
 1 in (3), that there exists a family of
interfaces parameterized by a position variable ξ ∈ R, which form a normally
hyperbolic manifold in a suitable function space such as the bounded uniformly
continuous functions. In the pinning regime, this manifold contains pinned fronts
as equilibria, and heteroclinic orbits between those equilibria; see Fig. 3 for
a schematic picture and [6] for general results towards establishing existence
of such manifolds in a non-perturbative setting. Parameterizing the manifold
by ξ ∈ R, one then infers positional dynamics

ξ′ = s(ξ; a), s(ξ + P ; a) = s(ξ; a),

where P is the spatial period of the medium. Pinning regions are given by the
values of a where s possesses a zero. Generically, zeros will disappear in a saddle-
node bifurcation, with local expansion

ξ′ = α1(a − ac) + α2(ξ − ξ0)2 + . . .

One readily finds that for α1, α2 > 0, say, and a � ac, the passage time T from
ξ0 − δ to ξ0 + δ, δ > 0, fixed, scales as T ∼ (a − ac)−1/2, such that the average
speed scales

s̄(a) ∼ (a − ac)1/2, (8)
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that is, γ = 1/2 in (iii), or κ = 1 in (6), consistent with the one-dimensional
nature of a periodic medium, m = 1 in (5). Results that establish asymptotics of
this type are abundant in the literature, and we mention here [7,17] for rigorous
results with weak inhomogeneities and [4] for explicit asymptotics in lattices.

Slowly varying media—intuition on pinning. The most intuitively acces-
sible scenario are slowly varying media, for instance

ut = uxx + (u − a)(1 − u2) + g(x, u; ε), g(x, u; ε) = A(εx)(1 − u2),

where A(y) ∈ (−1, 1) and ε 
 1. Intuitively, since the front interface experiences
an almost constant medium with effective imbalance aeff(ξ) = a − A(εξ), one
expects that speeds depend on the front position ξ through s = s(a − A(εξ)),
where s(·) is the speed-balance relation from the spatially homogeneous case
ε = 0. One then infers a leading-order differential equation for the front position

ξ′ = s(a − A(εξ)),

which exhibits equilibria whenever a−A(ζ) has at least one zero. Phenomenolog-
ically, front propagation is blocked at locations where s(a−A(εx)) = 0. Suitably
defined averages of the speed can now vanish for open sets of the parameter a
since zeros can be robust. Although this result appears intuitive, and although
a formal expansion in ε gives such a result to leading order, we are not aware
of a result that rigorously establishes such a description; see however [13,14] for
results on depinning bifurcations in this context.

Fig. 4. Schematics of phase portraits for period maps associated with (10) or (9);
depinning transition corresponds to heteroclinic tangency

Rapidly varying media, homogenization, and exponential asymptot-
ics. In the opposite direction, one can consider rapidly varying media g(x, u; ε) =
A(x/ε)(1 − u2). When variations of the medium are fast compared to the scale
of variations for the front, one would hope to replace A by its (local) aver-
age, obtaining a homogenized equation with recovered translational invariance.
Therefore, the pinning region is trivial in the averaged equation, but one expects
non-trivial pinning regions for ε > 0. In fact, assuming A periodic, with

∫
−A = 0,

say, one can see that ac(ε) > 0, generically, in the class of smooth periodic func-
tions, following the steps in [10]. For analytic functions A(ξ), the estimates there
imply ac = O(e−c/ε) for some c > 0, implying an extremely small pinning region.
Similar considerations also apply to the case where inhomogeneitiy is reflected in
a space-dependent diffusivity. Still following the ideas in [10], we can also think
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of a spatial finite-differences discretization of (1) as encoding a spatially periodic
dependence of the diffusion coefficient; see also [26]. Fine discretizations would
then lead to extremely small pinning regions in the above sense.

Lattice dynamical systems. Pinning is also present in lattice differential equa-
tions,

uj,t = d(uj+1 − 2uj + uj−1) + fa(uj), j ∈ Z, (9)

where more general, say next-nearest neighbor coupling is also possible.
Here, fa(u) is a general bistable nonlinearity, for instance the function
fa(u) = (u − a)(1 − u2) from above. Pinning regions are explicit in the case
of lattice differential equations with piecewise linear nonlinearities [8], but the
general phenomenon had been noticed much earlier in the literature; see for
instance [30,31,35] for spatially periodic media and [2,20,33] for results on lattice
dynamical systems.

Lattices can be thought of as inherently spatially inhomogeneous, periodic
media, where the translation symmetry is reduced to the discrete group Z.
They can be rigorously approximately embedded into spatially periodic media
of the form

ut = (dp(x)ux)x + fa(u), dp(x) = dp(x + 1), (10)

see [26].
Pinning regions can be associated with regions where stationary solutions

exist. Such stationary solutions solve a two-term recursion d(uj+1−2uj +uj−1)+
fa(uj) = 0, or a time-periodic differential equation, (dp(x)u′)′ + fa(u) = 0 in
the case of (10). Both define a diffeomorphism of the plane, the latter after
passing to the time-one map, the first by simply writing the recursion as a first-
order recursion in the plane. Both possess heteroclinic orbits between hyperbolic
equilibria at a = 0. Since these heteroclinic orbits are generically transverse, they
occur for open intervals of the parameter a, thus implying pinning; see Fig. 4 for
a schematic picture of heteroclinic orbits unfolding when varying a. We refer
however to [8,15] for examples of discrete systems which do not exhibit pinning.

Nonlocal coupling. We also mention a curious phenomenon that arises when
interpreting (9) as an equation on the real line,

ut(t, x) = d(u(t, x + 1) + u(t, x − 1) − 2u(t, x)) + f(u(t, x))
= 2d(−u + K ∗ u)(t, x) + f(u(t, x)), (11)

with K = (δ−1 + δ+1)/2, Dirac-δ functions shifted by ±1. Naturally (11) decou-
ples into a family of equations on x0 + Z, each equivalent to (10), for which we
expect non-trivial pinning and depinning with depinning exponent asymptotics
γ = 1/2 in (4). Curiously, this happens to be a very degenerate situation, as
far as asymptotics are concerned, as demonstrated in [1]. For smooth convolu-
tion kernels K, the results there demonstrate that one has γ = 3/2 for some
simple kernels with rational Fourier transform, which formally corresponds to
an ergodic dimension κ = −1 in (6). Numerical results strongly suggest that
γ = 3/2 for all smooth enough kernels, and γ > 3/2 for kernels with strong
singularities at the origin; see Fig. 1 for a schematic comparison.
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Outline. We give a precise statement and prove our main result in Sect. 2.
Section 3 contains an example which allows for a verification of our main assump-
tions in the case of weak inhomogeneities. We study more general situations
numerically in Sect. 4 and conclude with a brief discussion, Sect. 5.

2 Depinning—Abstract Result

We consider an abstract system,

Ut = F (U, θ;μ),
θt = 0, (12)

where U ∈ X, a Banach space, is the state vector, θ ∈ M, a smooth compact
manifold, encodes the medium, and μ ∈ R encodes the depinning parameter.
The equation for U is understood to generate a smooth semiflow, although this
is not a technically relevant assumption in addition to the hypotheses listed
below, rather relevant for their verification in specific examples. We assume that
the system possesses a translation symmetry acting on U and θ,

Tζ = diag (Tζ, Sζ), ζ ∈ R,

with action Sζ being a smooth flow on M, and Tζ encoding translations of
profiles.

Hypothesis 2.1 (invariant manifold). We assume that there exists a family
of smooth manifolds Nμ ⊂ X × M diffeomorphic to R × M, invariant under
the action of Tζ . The manifold Nμ carries a flow such that all trajectories are
solutions to (12). In the “coordinates” (ξ, θ) ∈ R × M, the translations act as
(ξ, θ) �→ (ξ + ζ, Sζ(θ)), and the flow on Nμ is generated by a C2-vector field

ξ′ = s(Sξ(θ);μ), θ′ = 0. (13)

Typically the existence of such an invariant manifold with smooth flow,
smoothly depending on parameters, will be obtained by establishing normal
hyperbolicity. We will give an example in the next section. The ξ-direction is
associated with the translation group, parameterizes translates in U -space. As a
consequence, s is naturally interpreted as a speed. Zeros of s are pinned profiles,
s > 0 on M corresponds to a depinned situation.

Our next hypothesis is concerned with the flow on the reduced manifold.

Hypothesis 2.2. (critical, generic pinning, and depinning) There is a
unique θ∗ ∈ M such that

s(θ; 0) > 0 for θ 	= θ∗,
s(θ∗; 0) = 0,

∂μs(θ∗; 0) > 0,

D2
θ s(θ∗; 0) > 0,

that is, in words, we have positive drift speed s except at a non-degenerate min-
imum θ∗, whose value increases linearly with μ.
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Our last assumption concerns the medium.

Hypothesis 2.3. (ergodic inhomogeneities and dimension) We assume
that the flow Sζ is ergodic with respect to an invariant measure ν on M and that
the local dimension κ of ν at θ∗, as defined below, exists.

Definition 2.4. (local dimension) We say that the measure ν at a point y∗
has the dimension κ � 0, if there are constants c, C > 0 such that the measure
of balls of radius r can be estimated through

crκ � ν(Br(y∗)) � Crκ.

We note that the definition of dimension here is more restrictive than the more
common definition κ = limr→0 log ν(Br)/ log r. In other words, the local dimen-
sion might not exist for many ergodic measures. We suspect that results of the
type derived here are possible for weaker characterizations of a local dimension,
allowing for instance for slowly varying constants c = c(log r), C = C(log r) in
our characterization. We note that the definition of dimension used here is inde-
pendent of Lipshitz coordinate changes. With these three assumptions, we are
now ready to state a precise version of our main abstract result.

Theorem 1. Assume Hypotheses 2.1–2.3 on invariant manifolds, pinning, and
ergodicity of the medium, respectively. Then we have, for ν-almost every medium
θ ∈ M, and |μ| sufficiently small,

• pinning for μ < 0, that is, ξ(t) is bounded for t ∈ R;
• depinning for μ > 0, that is, ξ(t) → ±∞ for t → ±∞;
• depinning asymptotics depending on the local dimension, that is,

limT→∞ ξ(T )/T = limT→−∞ ξ(T )/T = s̄(μ) exist, with

s̄(μ) ∼

⎧
⎨

⎩

μ1−κ/2, κ < 2,
| log μ|−1, κ = 2,
1, κ > 2,

(14)

as μ → 0, where the similarity sign refers to inequalities bounding the left-
hand side in terms of the right-hand side from above and below with μ-
independent nonzero constants.

Proof. To prove depinning, note that s > 0 for μ > 0, small. Hence, by compact-
ness of M, s > smin and ξ′ > smin, which proves the claim. To prove pinning,
note that s < 0 in an open neighborhood of θ∗ when μ < 0, which, according to
Hypothesis 2.3 has positive but not full measure. Therefore, for ν-almost every
medium, s(Sξ(t)(θ);μ) < 0 and s(Sξ(t′)(θ);μ) > 0 for arbitrarily large values
of t, t′ > 0 or t, t′ < 0, implying that s(Sξ(t)(θ);μ) changes sign. As a conse-
quence, the trajectory ξ(t) converges to an equilibrium and remains bounded.
It remains to establish depinning asymptotics. We therefore solve the equation
for ξ explicitly, using that s > 0,

∫ ξ

0

1
s(Sζ(θ);μ)

dζ = T.
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Therefore,

s̄(μ) =

(

lim
ξ→∞

1
ξ

∫ ξ

0

1
s(Sζ(θ);μ)

dζ

)−1

,

whenever the limit exists. Inspecting this integral, we notice that Birkhoff’s
ergodic theorem guarantees that the “temporal” ζ-average exists ν-almost every-
where and can be replaced by the space average over M weighted with the
ergodic measure ν, for almost all media θ (alias initial conditions for the spatial
flow Sζ),

s̄ =
(∫

M

1
s(ϑ;μ)

dν(ϑ)
)−1

.

One realizes that the integral gives a bounded contribution in a complement of
a fixed small ball Bδ(θ∗) of radius δ > 0, centered at the singularity ϑ∗ of s,
as μ → 0. We therefore find the leading-order contribution

s̄ ∼
(∫

Bδ(θ∗)

1
s(ϑ;μ)

dν

)−1

.

Further simplifying the calculation, we can choose coordinates according to the
Morse Lemma ϑ̃ = Ψ(ϑ;μ), such that θ∗ = 0 and s(ϑ;μ) = μ + |ϑ|2 in a
small neighborhood of the origin, possibly also reparameterizing the parame-
ter μ. Smoothness of the coordinate change ensures that the dimension of the
transformed measure is unchanged. This leads to the integral asymptotics

s̄ ∼
(∫

Bδ′ (0)

1
μ + |ϑ|2 dν̃

)−1

,

with transformed measure ν̃. Here, we also changed the domain of integration
to a small ball Bδ′(0) ⊂ ψ(Bδ(θ∗);μ) centered at the origin, which again does
not affect asymptotics since contributions outside of a small neighborhood are
bounded. Rescaling, we may assume δ′ = 1.

In the case of κ-dimensional Lebesgue measure, the right-hand side can now
be evaluated explicitly to find the result. Alternatively, one would obtain the
asympmtotics by scaling θ =

√
μθ̃ and exploiting scaling properties of Lebesgue

measure. This latter approach can be exploited in our context of measures with
possibly fractal dimension.

In order to estimate the integral, define D� = Bρ�(0) \ Bρ�+1(0), for ρ < 1
sufficiently small, and find

c̃ρκ� �
∞∑

�=1

∫

D�

dν � C̃ρκ�,

where c̃ = c − ρκC > 0, C̃ = C − ρκc in terms of c, C from Hypothesis 2.3.
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Suppose now that κ < 2. We evaluate the integral by first decomposing into
sums,

∫
B1(0)

=
∑∞

�=0

∫
D�

, which gives

∫

Bδ(ϑ∗)

1
s(ϑ;μ)

dν ∼
∞∑

�=0

∫

D�

1
μ + |ϑ|2 dν̃.

In a region D�, the integrand can be estimated from above and below with
μ-uniform constants as (μ + ρ2�)−1, which gives

∫

Bδ(ϑ∗)

1
s(ϑ;μ)

dν ∼
∞∑

�=0

ρκ� 1
μ + ρ2�

∼
∫ ∞

x=1

ρκx 1
μ + ρ2x

dx

∼
∫ 1

0

rκ−1 1
μ + r2

dr ∼ μκ/2−1.

Here we used the integral criterion for sums to reduce the sum to an elementary
integral, which can be computed after the substitution r = ρx.

For κ > 2, the resulting integral is uniformly bounded away from zero,
∫

Bδ(ϑ∗)

1
s(ϑ;μ)

dν ∼
∫ ∞

x=1

ρκx 1
μ + ρ2x

dx ∼ 1,

and for κ = 2 we find logarithmic asymptotics,
∫

Bδ(ϑ∗)

1
s(ϑ;μ)

dν ∼
∫ ∞

x=1

ρ2x 1
μ + ρ2x

dx ∼ | log μ|.

�

Intuitively, for larger dimensions, regions where the front is almost pinned are less
frequently explored, such that the front encounters regions where it is very slow
less frequently. In this sense, our result can be thought of as simply describing the
effect of extreme-value statistics on the average speed of the front: the front will
experience an effective slow down near the depinning threshold only when the
extremely small values of the speed are explored sufficiently frequently in a power
law scaling sense. Depinning is “soft”, with small speeds near the threshold, for
κ < 2, and “hard” for κ > 2, with speeds O(1) immediately after depinning.

The simplest examples are of course quasi-periodic media, where M =
R

κ/Zκ, the κ-dimensional torus, with irrational flow preserving κ-dimensional
Lebesgue measure. Depinning occurs with exponent 1/2 for one frequency, with
logarithmic asymptotics for two frequencies, and we find hard depinning for more
than two frequencies. The degenerate case of κ = 0 comprises the case of a Dirac
measure at θ∗, which corresponds to a translation-invariant medium, where we
expect smooth asymptotics for the speed s ∼ μ, consistent with our expansions
for κ = 0.

Remark 2.5. (autonomous formulation) The reduced equation can be
written in somewhat more compact form. Introducing the shifted medium
Sξ(θ) =: ψ ∈ M as a new variable, we find the system

ξ̇ = s(ψ), ψ̇ = s(ψ)σ(ψ),



Depinning Asymptotics in Ergodic Media 99

where σ is the vector field associated with the flow S. Geometrically, the flow
for ψ is the same flow as the ergodic flow of the medium, scaled by the scalar
local velocity associated with the medium. Pinning occurs when the flow for ψ
possesses hypersurfaces of equilibria. Depinning occurs when those equilibria
disappear, generically in the form of small shrinking ellipsoid. Slow speeds are
caused by long passage times of trajectories in those regions.

Remark 2.6. (Birkhoff-a.e.) In the theorem, we exploit the measure in order
to use Birkhoff’s ergodic theorem. While Birkhoff’s theorem guarantees ergodic
averages to converge to the average over the ergodic measure, convergence often
holds for more trajectories, for instance trajectories with positive Lebesgue mea-
sure; see for instance [5]. In the simple example of quasiperiodic media with irra-
tional flow on a torus, Birkhoff’s theorem holds of course for all initial conditions,
such that results are valid for all rather than almost every medium.

In the next section, we address how the assumptions made here can be verified
in a prototypical example of weakly inhomogeneous media.

3 Depinning with Weak Inhomogeneities—An Example

Our goal here is to provide an example where the hypotheses of Theorem 1 can
be verified. Consider therefore the classical bistable Nagumo equation

ut = uxx + (u + μ)(1 − u2) + εα(x; θ)g(u). (15)

Note that for μ = ε = 0, the equation possesses a family of standing fronts,
given explicitly as translates of u∗(x) = tanh(x/

√
2).

It is natural to assume that the weak inhomogeneity εα(x; θ) depends on the
variable θ ∈ M in a smooth fashion, on compact intervals of x. Thinking for
instance about solving (15) in spaces of bounded, uniformly continuous func-
tions BC0

unif(R), equipped with the supremum norm, one would then like to
assume even stronger uniform smooth dependence, that is, smoothness of the
map θ �→ α(·; θ) ∈ BC0

unif(R), say. This, however, would conflict with allowing
for spatially “chaotic” media, which would incoporate some sensitive dependence
of the spatial “trajectory” Sx(θ) on θ, typically through exponential growth in
the linearization measured by Lyaupunov exponents. As a consequence, there
will exist locations xj such that d(Sxj

(θj), Sxj
(θ∞)) � δ > 0 when θj → θ∞,

such that the map θ �→ α(·; θ) ∈ BC0
unif(R) cannot be continuous (it would of

course be continuous in a local topology). In order to recover smooth dependence
of solutions on θ, we exploit the fact that the bounded function α is multiplied
by a term g(u). Making suitable assumptions on g will ensure exponential decay,
that is, the effect of the medium vanishes at the asymptotic states of the front.

The following hypothesis quantifies this divergence. Therefore, define the
function space of exponentially growing continuous functions BC0

η as the image
of BC0

unif under the multiplication map u(·) �→ eη|·|u(·), that is, we allow for
exponential growth with rate η > 0.
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Hypothesis 3.7. (small Lyapunov exponent inhomogeneity) We assume
that the function α : R × M → R is smooth, bounded, and equivariant in the
sense that α(x; θ) = α(0;Sx(θ)) for a smooth flow S on M with ergodic invariant
measure ν. Moreover, we assume that the map

Iα : M → BC0
η , θ �→ α(0;S·(θ)),

is of class C2 for some η ∈ R.

We next state our assumption on the nonlinearity in the perturbation g.

Hypothesis 3.8. (vanishing tail corrections) We assume that the effect
of inhomogeneities vanishes to zeroth and first order at the asymptotic states,
g(±1) = g′(±1) = 0, g ∈ C2.

Theorem 2. Consider Eq. (15) for ε sufficiently small. Assume that α satisfies
Hypothesis 3.7 with tail-Lyapunov dominance, δ � η, where δ =

√
2 is the decay

rate of the front and η is specified in Hypothesis 3.7. Further, assume that g
satisfies Hypothesis 3.8.

Then Hypothesis 2.1 is satisfied, that is, there is a flow-invariant normally
hyperbolic invariant manifold with an equivariant flow as stated there. Moreover,
the reduced vector field s : M × R → R is smooth in ε, μ and C2 in θ, and
possesses the expansion

s(θ; ε, μ) = sε(θ)ε + sμμ + O
(
ε2 + μ2

)
,

where

sε(θ) =
〈u′

∗(y), α(y; θ)g(u∗(y))〉
〈u′∗, u′∗〉

,

sμ =
〈u′

∗(y), g(u∗(y))〉
〈u′∗, u′∗〉

,

with 〈·, ·〉 the L2-inner product.

Proof. In our ansatz, we start with the basic front u∗(x) = tanh(x/
√

2), which
solves (15) at μ = ε = 0. We account for translations and corrections with the
ansatz

u(t, x) = u∗(x − ξ(t)) + w(t, x − ξ(t)),

which yields the equation

−ξ̇u′
∗ + wt − wy ξ̇ = wyy + f ′(u∗)w + h(y, w;μ) + εα(y + ξ; θ)g(u∗ + w),

where f(u) = u(1 − u2) and

h(y, w;μ) = f(u∗+w)−f(u∗)−f ′(u∗)w+μ(1+u∗+w)(1−u∗−w) = O(|w|2+|μ|).
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The linear operator L = ∂yy + f ′(u∗) is self-adjoint with kernel u′
∗, and we will

normalize w through

〈w, u′
∗〉 :=

∫

R

w(t, y) · u′
∗(y)dy = 0,

which implies 〈wt, u
′
∗〉 = 0. Decomposing with the orthogonal projection onto u′

∗,
we obtain

ξ̇ = − 1
〈u′∗ + wy, u′∗〉

〈u′
∗, h(y, w;μ) + εα(y + ξ; θ)g(u∗ + w)〉

wt = Lw + h(y, w;μ) + εα(y + ξ; θ)g(u∗ + w) + ξ̇(u′
∗ + wy),

where in the equation for wt, we substitute the expression from the first equation
for ξ̇ to obtain a system of evolution equations for (ξ, w).

Clearly, given ξ and w, we can reconstruct u and vice-versa. Translation
symmetries act trivially in these new coordinates, Tζ(ξ, w) = (ξ + ζ, w). Since
α(y + ξ; θ) = α(y;Sξ(θ)), the right-hand side of the w-equation depends on ξ
only through its dependence on Sξ.

We pose this equation in a space of exponentially localized functions w(t, ·) ∈
BC0

−δ, where δ is sufficiently small such that u′
∗ ∈ BC0

−δ. Since g and g′ vanish
at ±1, the map w �→ g(u∗ + w) is smooth from BC0

−δ to BC0
−2δ. Multiplication

with α yields a smooth map (θ, w) ∈ M × BC0
−δ → BC0

η−2δ. For tail-Lyapunov
dominance, δ � η, the nonlinearity therefore defines a smooth automorphism on
BC0

−δ with C2-dependence on θ, by Hypothesis 3.7.
A standard contraction mapping theorem [11], now gives the existence of a

center manifold smoothly depending on the parameters μ and θ with induced
flow respecting the symmetry. Expansions for the reduced vector field follow by
projecting the leading order terms in ε and μ onto the eigenspace, which here is
equivalent to computing the leading order terms of the ξ-vector field. �
Remark 3.9. (vanishing tail vs. Lyapunov growth) It is clear from the proof
that tail-Lyapunov dominance can be weakened when assuming higher order of
vanishing tail corrections, say, g(j)(±1) = 0, 0 � j � �, which readily gives a
required tail-Lyapunov dominance relation of η � �δ.

Remark 3.10. (quasiperiodic media) When the flow S is simply irrational
rotation on a torus, one readily sees that trajectories are bounded and Hypothesis
3.8 on vanishing tail corrections is not needed.

One can clearly construct examples of nonlinearities satisfying Hypothesis 3.8
quite easily, using for instance g(u) = (u2−1)2. A simplest example for Hypothe-
sis 2.3 are quasiperiodic flows on T

κ with zero Lyapunov exponent η and invariant
ergodic Lebesgue measure, for instance

α(y; θ) =
κ∑

j=1

αj cos(ωjy + 2πθj), (16)

with (ωj)j=1,...,κ independent over the rationals, and αj 	= 0. We describe how
more intriguing examples for media satisfying Hypothesis 2.3 can be constructed,
next.
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Remark 3.11. (ergodic media beyond quasiperioidicity—examples for
Hypothesis 2.3) We outline how to construct examples for Hypothesis 2.3 rom
suspensions of ergodic diffeomorphisms. Consider a diffeomorphism on a com-
pact manifold Ψ : M0 → M0 and define M := (M0 × [0, 1])/ ∼, where the
equivalence relation identifies (1, θ) and (0,Ψ(θ)). The suspension flow Sζ sim-
ply translates along the interval [0, 1], such that S1(θ, 0) = (Ψ(θ), 0). An ergodic
measure ν0 for Ψ induces an ergodic product measure for the suspension flow
ν = ν0 × νR, where νR is Lebesgue measure on [0, 1], augmenting the dimension
of ν0 by 1. Anosov diffeomorphisms such as the cat map (u, v) �→ (2u+v, u+v) on
R

2/Z2 are examples of ergodic maps with in this particular case, 2-dimensional
ergodic Lebesgue measure. Lower-dimensional examples can be obtained from
horseshoe maps; see for instance [34]. For the simplest horseshoe and precisely
(affine) linear dynamics on the invariant set, one finds

κ0 = dim ν0 = (log 2)
(

1
log ρu

− 1
log ρs

)
,

where log 2 is the entropy (more generally given through log(#{crossings})),
and ρu/s are expansion and contraction rates, respectively. To see this, one first
notices that the ergodic measure of maximal dimension is a product measure.
One then uses invariance of the measure to see that the measure of a narrow
vertical stripe equals the measure of two vertical stripes with width contracted
by ρs, which gives, after iteration, ν(Sr) = (1/2)n with r = (ρs)n for vertical
strips Sr of width r. A similar consideration for vertical strips and backward
iteration then yields the desired result for the dimension.

Observing that ρu > 2 and ρs < 1/2, we note that we can realize arbitrary
dimensions κ0 ∈ (0, 2) and hence ergodic dimensions κ ∈ (1, 3) for the suspension
flow.

Abandoning invertibility of Sξ and focusing on t → +∞, simpler exam-
ples can be constructed from suspensions of (expanding) interval maps such as
x �→ 2x mod 1 or x �→ 4x(1 − x).

Remark 3.12. (hypothesis on depinning) Hypothesis 2.2 can be realized
under suitable assumptions on the inhomogeneity α(y; θ).With the example from
irrational media (16), g(u) = (u2 − 1)2, one finds

sε(θ) =
∫

R

3
4
sech (x/

√
2)6

κ∑

j=1

αj cos(ωjy + 2πθj)dy

=
κ∑

j=1

αj

πωj(2 + ω2
j )(8 + ω2

j )
20

csch (πωj/
√

2) cos(2πθj),

which is an expression of the form
∑

j βj cos(2πθj) with nondegenerate minimum
θ = 0 ∈ T

κ for βj < 0, say.
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4 Depinning—Numerical Corroborations

We expect the results from the abstract framework in Sect. 2 to be applicable
in a much wider context than guaranteed by the results in Sect. 3. We therefore
tested the predicted asymptotics in the context of lattice-dynamical systems.
Due to the discrete nature of translation symmetry, motion of traveling waves
here is inherently periodic, such that the dimension of the medium needs to be
increased by one. Considering for instance a lattice-differential equation

u̇j = d(uj+1 − 2uj + uj−1) + (uj − aj)(1 − u2
j ), (17)

one would consider the dimension of the set of translates of the sequences (aj)j∈Z

in a local topology, and add one, to obtain our dimension κ. The additional
dimension can also be understood from the results in [26], where lattice dynami-
cal systems were approximately embedded into reaction-diffusion equations with
spatially periodic coefficients. In that respect, a constant, translational invariant
lattice dynamical system aj ≡ a, would correspond to a periodic medium, κ = 1.

Fig. 5. Speed-imbalance relations computed for the lattice-dynamical system (9), with
spatially periodic, 2-frequency, and 3-frequency media from left to right, top row, as
specified in the text; plot of s̄2 for periodic and exp(−c/s̄) with visual best fit c = 0.14
exhibit linear asymptotics as predicted by our analysis

We performed numerical experiments for (17) with various choices for the aj .
Since we expect results to be robust across many systems, we used rough numer-
ical discretization, explicit Euler with step size h = 0.1, on a finite-dimensional
approximation with N = 71 points, and inhomogeneous Dirichlet boundary con-
ditions fitting the asymptotic states of the front. We used appropriate shifts to
keep the moving interface in the center of the domain; see [2] for an equivalent
setup. We ran simulations for times that amount to about 500 effective shifts on
the lattice.
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Specifically, we chose

Periodic: aj = a + ε cos(ωj + θ), with ε = 0.1, ω = π/2, θ = 0;
2-Frequency: aj = a + ε cos(ωj + θ), with ε = 0.1, ω =

√
2, θ =

√
3

3-Frequency: aj = a+ε cos(ω1j+θ1)+ε cos(ω2j+θ2), with ε = 0.05, ω1 =
√

2,
θ1 =

√
3, ω2 =

√
5, θ2 =

√
6.

The results are shown in Fig. 5. The plots show the steepening of speed-
imabalance relations as the dimension of the medium increases. We also
plotted s̄1/κ in the periodic medium, which according to our prediction should
exhibit linear asymptotics. For the critical dimension κ = 2, 2-frequency medium,
we plotted exp(−c/s̄), which should again exhibit linear asymptotics when
s̄ ∼ c| log μ|. We found c = 0.14 for a best visual fit. More rigorously fitting
the parameter c would require a more accurate computation of the depinning
threshold ac.

5 Summary and Extensions

After summarizing our point of view, we comment on a number of open questions
related to the results here.

Summary of results. Our goal was to derive universal scaling laws near depin-
ning transitions. Our main result distills a framework in which depinning asymp-
totics are governed by power laws with exponent depending on the local dimen-
sion of the invariant measure near criticality. The framework is inspired by sym-
metry considerations, viewing translations of the front as equivalent to shifts of
the medium. Those shifts of the medium are naturally viewed as a flow, which,
as our main assumption, we view as being induced by a smooth flow on a smooth
compact manifold, with an ergodic measure capturing the statistics of translates
of the medium when considered in a local topology. The emphasis on symme-
try and reduction to skew-product flows is inspired by [9,25], where motion on
groups was forced by “internal” dynamics of fronts or other coherent structures.
As such, our results rely crucially on smoothness of extensions. We view ergod-
icity as somewhat more natural, given that flows on a manifold always possess
ergodic measures. When constructing the reduced skew-product flow in a more
concrete example, we noticed a subtle condition, requiring bounds on spatial
Lyapunov exponents of the medium in terms of exponential convergence rates
of the front.

Critical fronts. At μ = 0, the critical threshold for depinning, the medium
supports a pinned front—in the support of the ergodic measure, therefore not
necessarily in the given fixed medium. The rate of growth of ξ depends very
much on the dimension and on the particular medium. Clearly, trajectories are
bounded in one-dimensional media. In quasi-periodic media, the orbit is bounded
whenever the critical medium θ∗ is a specific shift of the given medium, that
is, the maximum lies on the given trajectory on the torus. For most media θ,
however, this will not be the case, and the front position will not be bounded.
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For dimensions κ > 2, the propagation will be ballistic ξ ∼ t, with limiting
speed the continuous limit of speeds for μ > 0, as one can readily see from
the calculation of the speed, exploiting that the singular integral converges for
μ = 0. For dimensions κ � 2, we expect propagation to be sub-ballistic. Heuris-
tically, times spent near the pinned front scale with 1/|ψ|, where ψ is a variable
parameterizing a section to the flow for ψ on M near the pinned value θ∗; see
Remark 2.5 for a description of geometry. We then expect that ξ = N at times
T ∼

∑N
j=1 ψ−1

j , which, for ψj asymptotically uniformly distributed according to
a κ − 1-dimensional measure in the section, gives

T ∼ N

∫ 1

r=N
−1
κ−1

1
rκ−2

dr ∼ N · N
2−κ
κ−1 for κ ∈ (1, 2),

which then gives
ξ ∼ Tκ−1, 1 < κ < 2. (18)

A similar calculation for κ = 2 gives

ξ ∼ T/| log T |. (19)

Sharp asymptotics. In the case of two-dimensional quasi-periodic media,
the expansion coefficient is in fact explicit, given quadratic terms of the
minimum and the dependence on μ. Consider therefore the inhomogeneity
(1 − u2)2

∑2
j=1 αj cos(ωjx + θj), which gives the reduced vector field expansion

sε(θ) =
2∑

j=1

βj cos(2πθj), sμ =
√

2,

with

βj = αj

ωj(2 + ω2
j )(8 + ω2

j )π
20

csch (πωj/
√

2).

Assuming αj < 0, we find minima at θj = 0, which leads to depinning thresholds
μc = ε

∑
βj and to an expansion s(θ) =

√
2μ −

∑
2π2βjθ

2
j , with resulting

depinning asymptotics for the ergodic integral

s̄(μ) = 16π
√

β1β2| log μ|−1.

Similar calculations are possible whenever the measure ν is known explicitly.
Higher asymptotics. Beyond ballistic asymptotics, corresponding to the
ergodic average, one could ask for rates of convergence. In quasi-periodic media,
one encounters subtle dependence on frequencies [19, Sects. 2,3], with conver-
gence ξ(T )/T ∼ s̄ + O(log T/T ) for “good” irrational numbers, hence not quite
asymptotic phase to an appropriately shifted uniformly translating front of
speed s̄. The correction to ξ(T ) is usually referred to as the discrepancy, for
which log T/T bounds are optimal, and bounds T δ/T are common for (positive
measure) diophantine numbers.
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For “chaotic” media, we expect Brownian deviations, as is common for
ergodic averages; see [5] for general background and [23] for results on fronts.
Deviations can, however, be arbitrarily slowly decaying [18].

Extensions. There clearly is a multitude of possible extensions. In immediate
generalizations, one could focus on averages as t → +∞, only, allowing for “het-
eroclinic” media with ergodic measures on the limit sets with respect to right
shifts in a local topology. One could also allow more directly for random sam-
plings of the medium. Generalizations that affect the scalings more directly are
degenerate minima, or, more interestingly, minima that occur at the boundary
of the support of ν, such that ∇s 	= 0 at θ∗. In that case, one could obtain
integrals of the type

∫ 1

0
rκ−1 1

μ+rdr, resulting in asymptotics μ1−κ.
Beyond the more narrow scope of one-dimensional inhomogeneous media,

one could look at time-dependent media, periodic, quasi-periodic, or random, or
even consider higher dimensional wave-fronts; see for instance [12] for results in
lattices. In a different direction, motion of localized pulses in higher-dimensional
media presents intriguing other possibilities, such as determining the direction
of drift. In this context, relaxation towards translational Goldstone modes may
be much slower, due to interaction with continuous spectra, present whenever
the “traveling wave” is not spatially localized. In this direction, one may also
wish to study the effect of long-range interactions, such as through nonlocal
coupling K ∗ u, K a weakly localized convolution kernel.

More modestly, one would also wish to establish the validity of the hypothe-
ses used in our main theorem beyond a weak inhomogeneity context, or, at least,
specify numerical computations that would allow for a (semi-)rigorous verifica-
tion.
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