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Abstract. We consider reaction-diffusion systems on a bounded domain
with no-flux boundary conditions. The reaction system is given by mass-
action law kinetics and is assumed to satisfy the complex-balance con-
dition. In the case of a diagonal diffusion matrix, the relative entropy
is a Liapunov functional. We give an elementary proof for the Lia-
punov property as well a few explicit examples for the condition of com-
plex or detailed balancing. We discuss three methods to obtain energy-
dissipation estimates, which guarantee exponential decay of the relative
entropy, all of which rely on the log-Sobolev estimate and suitable han-
dling of the reaction terms as well as the mass-conservation relations. The
three methods are (i) a convexification argument based on the author’s
joint work with Haskovec and Markowich, (ii) a series of analytical esti-
mates derived by Desvillettes, Fellner, and Tang, and (iii) a compactness
argument developed by Glitzky, Gröger, and Hünlich.
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1 Introduction

We consider reaction-diffusion system (RDS) for concentrations c =
(c1, . . . , cI) ∈ [0,∞]I of species A1, . . . ,AI that diffuse in a bounded Lipschitz
domain Ω ⊂ R

d (with normalized volume |Ω| = 1) and may react according to
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the mass-action law. Together with the no-flux boundary condition the system
under consideration reads

ċ = diag(δ1, ..., δI)Δc + R(c) in Ω, ν · ∇c = 0 on ∂Ω. (1)

Here δi > 0 are positive diffusion constants, and the reaction term R : [0,∞]I →
R

I will be specified later.
A function F : [0,∞]I → R is a Liapunov function for the reaction-rate

equation (RRE) ċ = R(c) (which is a ODE) if DF (c) · R(c) ≤ 0. It was
already observed in [1, Lem. 4.1] that, if additionally the symmetric part of
DD2F (c) ∈ R

I×I , where D := diag(δi), is positive semidefinite for all c, we
obtain the Liapunov function

F (c(·)) :=
∫

Ω

F (c(x))dx

for the RDS (1). Indeed, along solutions c(t) we have

d
dt

F (c(t)) =
∫

Ω

DF (c)·R(c)dx −
∫

Ω

∇c:
(
DD2F (c)

)∇cdx =: −D(c),

where the boundary terms disappear because of the no-flux boundary con-
ditions. Here “:” denotes the standard scalar product on R

I×d, A : B =∑I
i=1

∑d
α=1 AiαBiα. Obviously, the first term is non-positive since F is a Lia-

punov function for the RRE, and the second term is non-positive by the assump-
tion on DD2F (c).

In [1] there is also a general discussion about well-posedness and positivity
of solutions, which we do not address here. For general theory of existence we
refer to the survey [26] and the very general, recent construction of renormalized
solutions in [12]. The latter work as well as the existence results for an improved
Nernst-Planck-Poisson system in [2,6] essentially use variants of the energy-
dissipation estimates investigated here more quantitatively. We also refer to [9,
13] for existence results based on the logarithmic Sobolev inequality, which are
close in spirit to our methods discussed below.

We restrict our attention solely to the question of providing quantitative
decay estimates via energy-dissipation estimates of the form

D(c) ≥ KF (c) (2)

for some K > 0. Then, for well-behaved solutions we have d
dtF (c(t)) = −D(c(t))

≤ −KF (c(t)), which implies the exponential estimate F (c(t)) ≤ e−KtF (c(0))
for all c(0) and all t > 0. We will compare three methods and show that the
methods developed originally for RDS satisfying the detailed-balance condition
immediately generalize to RDS satisfying the more general complex-balance
condition. This condition is consistent with damped oscillatory behavior which is
common in many chemical systems and which may even lead to Hopf bifurcations
when an originally closed system is controlled by suitable boundary conditions,
see [10,11].
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First methods for obtaining exponential decay for RDS were developed in
[17–19], and a variant for semiconductor models was developed in [14–16]. There
as well as in the series of papers [3–5] (see also the reference therein) and in
[20,22,23] the essential structure arises from the restriction to reaction terms
in R(c) given in terms of the mass action law. More precisely, we consider R
reactions in the form

R(c) =
R∑

r=1

κrc
αSr (

αPr − αSr
)

with monomials cγ := cγ1
1 cγ2

2 · · · cγI

I ,

where the stoichiometric vectors αSr ,αPr ∈ N
I
0 for the rth reaction correspond

to the substrate (educt) complex and the product complex, respectively, see
Sect. 2, where we also discuss the conditions of detailed balancing and the weaker
notion of complex balancing with respect to a positive equilibrium concentration
c∗ = (c∗

1, ..., c
∗
I) ∈ ]0,∞]I , see Sect. 2.2. The surprising result, first established in

[21, Theorem 6A], is that for mass-action RRE satisfying the complex-balance
condition, the relative entropy

F (c) = H(c|c∗) :=
I∑

i=1

c∗
i λB(ci/c∗

i ) with λB(z) := z log z − z + 1

is a Liapunov function. Indeed, we give a simple and self-contained proof of
this fact in Proposition 1. Moreover, F is convex and DD2F (c) is semidefinite,
since D and D2F (c) are diagonal, hence we have a positive dissipation
functional D taking the form

D(c) = DD(c) + DR(c) :=
∫

Ω

I∑
i=1

δi
|∇ci|2

ci
dx +

∫
Ω

R(c)·( log(ci/c∗
i )
)
i
dx.

In general an energy-dissipation estimate like (2) is not to be expected, since
there are additional conservation laws. Defining the stoichiometric subspace
S := span{αSr−αPr | r = 1, .., R } ⊂ R

I we can choose a matrix Q such that
kernel(Q) = S and range(Q�) = S

⊥. Then, for the RRE ċ = R(c) the value
q = Qc(t) is constant along solutions, and moreover the no-flux boundary con-
ditions in the RDS (1) guarantee that q = Q(c(t)) =

∫
Ω
Qc(t, x)dx is constant

along solutions.
Thus, the correct adaptation of the energy-dissipation estimate (2) reads

∀ q ∃K(q) > 0 ∀ c ∈ L1
≥0(Ω) with Q(c) = q : D(c) ≥ K(q)Hq(c),

where Hq(c) :=
∫

Ω

H(c(x)|wq)dx.
(3)

Here wq is the unique minimizer of c �→ H(c|c∗) under the constraint Qc = q,
see Sect. 3.1 for more details.

Our first result shows that the convexity method introduced in [22] can be
generalized from the case with detailed balancing to the case with complex
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balancing. It is based on the scalar-valued logarithmic Sobolev inequality
∫

Ω

|∇u(x)|2
u(x)

dx ≥ ρlSo(Ω)
∫

Ω

H(u(x)|u)dx, where u =
∫

Ω

u(x)dx

(recall |Ω| = 1) and the nontrivial assumption that

∃μ1, . . . , μI ≥ 0 : c �→
I∑

i=1

μiλB(ci) + R(c)·( log(cj/c∗
j )
)
j

is convex.

Then, we obtain a simple lower bound for the decay rate K(q) in (3), namely

K(q) ≥ min
{

kR(q), δiρlSo(Ω)
kR(q)

μi+kR(q)

∣∣∣ i = 1, . . . , I
}

,

where kR(q) is the constant kR for R(c)·( log(ci/c∗
i )
)
i

≥ kRH(c|wq) under the
constraint Qc = q. As observed in [22, Sect. 4.2], the case μi = 0 is relevant for
linear reactions, which is the case for Markov processes; then the decay rate for
the RDS is simply given by the minimum of the reactive decay and the diffusive
decays of the different species.

In Sect. 3.3 we consider the nonlinear two-species model

ċ1 = δ1Δc1 + κa
(
cb
2 − ca

1

)
, ċ2 = δ2Δc2 + κb

(
ca
1 − cb

2

)
in Ω,

ν · ∇cj = 0 on ∂Ω,

where κ > 0 gives the strength of the reaction while δ1, δ2 > 0 give the strength
of diffusion. We show that the convexity method is applicable in the case b = a ∈
[1, 2] (cf. Theorem 2) and in the case a = 1 and b ∈ [1,m∗] with m∗ ≈22.06 by
choosing μ2 = 0 and μ1 = κμ̂(b) where μ̂(b) ≈ (b−1)/(1−b/m∗) (cf. Theorem 3).

In Sect. 3.4 we shortly summarize the general method of Desvillettes, Fellner,
and Tang which is based on a series of papers which started with [3,4] and first
studied complex-balanced RDS in [5].

Finally, Sect. 4 is devoted to an even more general method that is based on
a compactness argument providing a positive constant K̃(q,M) such that

∀ q ∀M > 0 ∃ K̂(q,M) > 0 ∀ c ∈ L1
≥0(Ω) with Q(c) = q :

Hq(c) ≤ M =⇒ D(c) ≥ K̃(q,M)Hq(c).
(4)

The method is based on ideas first developed in [14,15] and explained in detail
in [16]. Since that work is devoted to the more complicated case of electri-
cally charged particles interacting via the Poisson equation, the theory there is
restricted to the two-dimensional case Ω ⊂ R

2. Here we show that this restriction
is not necessary in the case without charge interactions.

As an outlook, we mention that in this work the three methods are discussed
for RDS at constant temperature, however in recent work generalizations to the
non-isothermal case were developed, see [20,23]. For this, it is advantageous to
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use the internal energy u ∈ R as an additional variable rather than the more
traditional choice of the absolute temperature θ. The main point is to allow
that in the so-called energy-reaction-diffusion systems the equilibrium states
c∗ = w(u) for the reactions depend on the internal energy u in a suitable way,
namely w′

i(u) ≥ 0 and w′′
i (u) ≤ 0.

2 Complex-Based Description of Mass-Action Kinetics

2.1 Reaction Complexes and Stoichiometric Subspaces

Each reaction is given in terms of stoichiometric coefficients in the form

α1A1 + · · · + αIAI ⇀ α̃1A1 + · · · + α̃IAI ,

where the vector α = (α1, ..., αI)� ∈ N
I
0 describes the reactant species (also

called educts), defining the substrate complex, and α̃ = (α̃1, ..., α̃I)� ∈ N
I
0

describes the product species, defining the product complex. By

C j = αj
1A1 + αj

2A2 + · · · + αj
IAI with j = 1, ..., C,

we denote the set of all occurring complexes, either as substrate complex or
product complex. Thus, all the R reactions have the form

C j kjl
⇀ C l or C Sr

κr⇀ C Pr .

In the first case we allow kjl = 0 if there is no reaction with substrate complex C j

and product complex C l. In the second case we impose κr > 0 and denote by
Sr, Pr ∈ {1, ..., C} the index of the substrate and product complex, respectively.
By definition we have κr = kSrPr

, and we always assume kjl = 0 or Sr �= Pr.
Thus, the RRE of the associated mass-action kinetics reads

ċ = R(c) =
C∑

j,l=1

kjlc
αj(

αl − αj
)

=
R∑

r=1

κrc
αSr (

αPr − αSr
)
. (5)

The stoichiometric subspace is defined via

S := span
{

αPr − αSr

∣∣∣ r = 1, ..., R
}

,

which implies that R(c) ∈ S for all c. Typically we have dimS < I, which means
that [0,∞]I decomposes into flow-invariant subset. To describe these sets we
choose a matrix Q ∈ R

m×I with m = I − dimS such that

kernel(Q) = S and range
(
Q�) = S

⊥ := { ξ ∈ R
I | ξ·v = 0 for all v ∈ S }. (6)

We now define the flow-invariant sets Cq ⊂ [0,∞]I , called stoichiometric com-
patibility classes, and the set Q of relevant q ∈ R

m via

Cq := { c ∈ [0, ∞[I | Qc = q } and Q := { q ∈ R
m | Cq contains more than 2 points }.

Clearly, we see that for solutions c(·) of the RRE c(0) ∈ Cq implies c(t) ∈ Cq

for all t > 0, as long as the solution exists.
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2.2 Complex and Detailed Balancing

The complex-balancing condition (CBC) asks that there is a positive state such
that for all complexes C l the inflow into the complex (see left-hand side below)
and the outflow from the complex (see right-hand side below) are equal:

(CBC) ∃ c∗ ∈ R
I
> ∀ l = 1, .., C :

C∑
j=1

kjlc
αj

∗ =
C∑

n=1

klncαl

∗ . (7)

The detailed-balance condition (DBC) is stronger, since it assumes that all reac-
tions are reversible, i.e. the number R of reactions is even with R = 2N , and,
after a suitable reordering, the reaction r′ = n+N is the reverse reaction of reac-
tion r = n, more precisely Sn+N = Pn and Pn+N = Sn for n = 1, .., N = R/2.
The DBC now asks that there exists a positive equilibrium c∗ such that each of
the N reaction pairs is individually in balance:

(DBC) ∃ c∗ ∈ ]0,∞[ ∀n = 1, ..., N = R/2 : κncαSn

∗ = κn+NcαPn

∗ . (8)

In this case the RRE (5) takes the simpler form

ċ =
R/2∑
n=1

κ̂n

(cαSn

cαSn

∗
− cαPn

cαPn

∗

)(
αPn−αSn

)
with κ̂n := κncαSN

∗ . (9)

To highlight the difference between these two concepts we follow [27] and
employ the graph-theoretic approach for the complex-based representation of
the RRE, namely

ċ = Z D K Exp
(
Z�Log(c)

)
, (10)

where

Log(c) :=
(
log ci

)
i=1,..,I

Exp(ζ) :=
(
eζr
)
r=1,..,R

and the matrices Z ∈ R
I×C , D ∈ Z

C×R are K ∈ R
R×C defined via

Zij = αj
i , Djr =

{
1 for j = Pr,−1 for j = Sr,
0 otherwise;

Krj =
{

κr for j = Sr,
0 otherwise.

In particular, we may define the matrix L = −DK ∈ R
C×C , which takes the

form

L =
R∑

r=1

κr

(
eC

Sr
⊗eC

Sr
− eC

Pr
⊗eC

Sr

)
∈ R

C×C ,

where eC
j , j = 1, .., C, are the unit vectors in R

C . Obviously, L satisfies

Ljj =
C∑

l=1

kjl ≥ 0, Ljl = −kjl ≤ 0 for l �= j, and
L∑

j=1

Ljl = 0 for l = 1, .., C.

(11)
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Thus, we can interprete −L as the generator of a Markov process on {1, ..., C}.
For a positive state c∗ we can introduce the complex vector ζ∗ =

Exp
(
Z�Log(c∗)

)
, then complex balancing can be characterized as follows:

c∗ satisfies (CBC) ⇐⇒ L ζ∗ = 0. (12)

For a similar characterization of detailed balancing we assume R = 2N and the
numbering such that Sn+N = Pn and Pn+N = Sn for n = 1, .., N = R/2, which
simply means

D =
(
D ,−D

) ∈ Z
C×2N and K =

[
Kforw

Kbackw

]
∈ R

2N×C

with D ∈ Z
C×N and Kforw,Kbackw ∈ R

N×C .
Hence for a positive c∗ with complex vector ζ∗ = Exp

(
Z�Log(c∗)

)
we have

(DBC) ⇐⇒ Kforwζ∗ = Kbackwζ∗. (13)

This shows that (DBC) implies (CBC) since DKζ∗ = D
(
Kforw−Kbackw

)
ζ∗ = 0.

However, the condition ζ∗ ∈ kernel(Kforw−Kbackw) (typically N conditions) is
generally stronger than ζ∗ ∈ kernel(DK), since D ∈ Z

C×N may have a non-
trivial kernel.

Example 1 (Linear reaction = Markov processes). We consider a linear RRE
c = Ac ∈ R

I , which can be written based on complexes by taking Cj =
Aj . This gives Z = I and Exp

(
Z�Log(c)) = c. Moreover, we simply have

L = −DK = −A.
This leads us to the observation that every strictly positive equilibrium

c∗ ∈ R
I
> of the Kolmogorov equation ċ = Ac = −Lc is already a complex-

balanced equilibrium. Clearly, detailed balance needs the additional relations
Aijc

∗
j = Ajic

∗
i for all i, j = 1, .., I, which are not satisfied in general. Markov

processes with detailed balance are usually called (microscopically) reversible
Markov processes, see e.g. [25].

Example 2 (A case with deficiency 1). We consider an example with two
species A1 and A2, three complexes, and 6 reactions, namely

C1 := 2A1

κ1�
κ2

C2 := 2A2

κ3�
κ4

C3 := A1+A2

κ5�
κ6

C1 (14)

All 6 reactions have a stoichiometric vector that is parallel to (1,−1)�, and the
RRE reads(

ċ1
ċ2

)
=
(
2κ1c

2
1 − 2κ2c

2
2 − κ3c

2
2 + κ4c1c2 − κ5c1c2 + κ6c

2
1

)(−1
+1

)
.

The deficiency δ is obtained from the formula δ = m− −dim S, where m = 3 is
the number of complexes,  = 1 is the number of connected components of the
complex graph, and S has dimension 1. Hence, we conclude δ = 1.
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The matrices Z and D in [27] for ċ = Z D K Exp
(
Z�Log(c)

)
are given via

Z=

(
2 0 1
0 2 1

)
, D=

⎛
⎝−1 1 0 0 1 −1

1 −1 −1 1 0 0

0 0 1 −1 −1 1

⎞
⎠, K=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

κ1 0 0
0 κ2 0

0 κ3 0
0 0 κ4

0 0 κ5

κ6 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, L =

⎛
⎝κ1+κ6 −κ2 −κ5

−κ1 κ2+κ3 −κ4

−κ6 −κ3 κ4+κ5

⎞
⎠

if all kj > 0, otherwise the corresponding columns in D and rows in K
disappear. Clearly, we have kernelZ = span(1, 1,−2)� and thus kernelZ ⊂ imD,
if at least two of the three values κi+κ3+i, i = 1, 2, 3, are positive. This
confirms δ = dim

(
kerZ ∩ imD

)
= 1.

The system satisfies the detailed-balance condition if and only if the two
Wegscheider conditions

κ1κ
2
3 = κ2κ

2
4 and κ4κ5 = κ3κ6

hold. The exact conditions for the complex-balancing can be derived by the
theory in [27, Sect. 3], which leads to one transcendental relation for (k1, . . . , k6).

We highlight the difference by considering the special case that c∗ = (1, 1)� is
an equilibrium. Then, Exp

(
Z�Log(c∗)) = (1, 1, 1)�. Defining the three relations

(R1) 2κ1+κ4+κ6 = 2κ2+κ3+κ5, (R2) κ3+κ6 = κ4+κ5, (R3) κ3 = κ4,

we obtain the following conditions for the different balancing conditions:
(A) c∗ = (1, 1)� is an equilibrium if and only if (R1) holds.
(B) c∗ = (1, 1)� is a complex-balanced equilibrium if and only if (R1) and

(R2) hold.
(C) c∗ = (1, 1)� is a detailed-balanced equilibrium if and only if (R1)–(R3)

hold.
Another important case of deficiency-1 systems arises in semiconductor

physics, see [24], where the three species are electrons, holes, and photons.
The first reaction pair is spontaneous emission and recombination, namely
Xel + Xho � Xph; while the second reaction pair is optical generation, namely
Xel + Xho + Xph � 2Xph, such that both vectors γr = αr−βr = (1, 1,−1).
We have m = 4 complexes,  = 2 connected components, and dimS = 1, hence
δ = 1. In this system complex balance and detailed balance coincide.

2.3 Decay of Relative Entropy

We now discuss the decay of the relative entropy. First we give a short, self-
contained proof of the fact that for every complex-balanced RRE equation the
relative entropy c �→ H(c|c∗) is a Liapunov function. This result was first
obtained already in [21, Theorem 6A]. The main ideas is to transfer the well-
known decay result for the relative entropy for linear Markov processes of the
form ζ̇ = −Lζ from the level of complexes to the concentrations c by exploiting
the representation ċ = R(c) = Z(−L)Exp

(
Z�Log(c)

)
.
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Proposition 1 (Complex balancing and relative entropy). Consider a RRE ċ =
R(c) of mass-action type with an equilibrium c∗ ∈ R

I
> satisfying the complex-

balance condition (CBC), see (7). Then, the relative entropy

F (c) = H(c|c∗) =
I∑

i=1

c∗
i λB

(
ci/c∗

i

)
with λB(z) = z log z − z + 1

is a Liapunov function, i.e. R(c) · DF (c) ≤ 0 for all c ∈ R
I
>.

Proof Using the relation R(c) = −ZLExp
(
Z�Log(c)

)
, we obtain the identity

−R(c) · DF (c) = LExp
(
Z�Log(c)

) ·
(
Z�Log(c) − Z�Log(c∗)

)
.

We introduce ζ = Exp
(
Z�Log(c)

)
and ζ∗ = Exp

(
Z�Log(c∗)

)
lying in R

C
>

and satisfying Lζ∗ = 0 because of the CBC, see (12). Setting G(ζ) =∑C
j=1 ζ∗

j λB

(
ζj/ζ∗

j

)
we find

− R(c) · DF (c) = Lζ · DG(ζ). (15)

Since −L ∈ R
C×C is the generator of a Markov process, cf. (11), there is

a t1 > 0 such that St := I−tL ∈ R
C×C
≥ for all t ∈ ]0, t1[, i.e. all entries are

non-negative and
∑C

j=1 St
jl = 1 for all l. Note that G is again a relative entropy

in the form

G(ζ) = H(ζ|ζ∗) :=
C∑

j=1

h(ζj , ζ
∗
j ) with h(a, b) = a log a − a log b − a + b.

Since (a, b) �→ h(a, b) is convex and 1-homogeneous on R
2
≥, we can apply Jensen’s

inequality for the probability distribution
(

1
σj

Sjl

)
l=1,..,C

with σj =
∑C

l=1 Sjl to
obtain

h
(
(Stζ)j , (Stξ)j

)
= h
( C∑

l=1

St
jl

(
ζl, ξl

)) 1-hom= σj h
( C∑

l=1

St
jl

σj

(
ζl, ξl

))

Jensen≤ σj

C∑
l=1

St
jl

σj
h
(
ζl, ξl

)
=

C∑
l=1

St
jl h
(
ζl, ξl

)
.

Adding over j = 1, .., C we can use
∑l

j=1 Sjl = 1 for all l and find H(Stζ|Stξ) ≤
H(ζ|ξ). With Stζ∗ = ζ∗ we conclude

G(Stζ) = H(Stζ|ζ∗) = H(Stζ|Stζ∗) ≤ H(ζ|ζ∗) = G(ζ).

Hence, we have 1
t

(
G(ζ)−G(Stζ)

) ≥ 0 for all t ∈ ]0, t1]. Now 1
t (S

t − I) → −L
yields

0 ≤ lim
t↘0

1
t

(
G(ζ) − G(Stζ)

)
= DG(ζ) · Lζ,

which gives the desired result after exploiting (15). ��
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Note that in the above result the equilibrium c∗ does not have to lie in the
same stoichiometric compatibility class Cq as the solution. However, on each Cq

the strictly convex and coercive functional c �→ H(c|c∗) attains its unique min-
imizer and we set

wq := argmin{H(c|c∗) | c ∈ Cq }.

By La Salle’s principle, wq is an equilibrium, i.e. R(wq) = 0. Vice versa any
equilibrium of ċ = R(c) must be a stationary point of H( · |c∗) on Cq, so it must
coincide with wq unless it is a boundary equilibrium. The minimizer property
of wq implies that

DcH(wq|c∗) =
(

log
(
wq

i /c∗
i

))
i=1,..,I

=: t(c∗,wq) ∈ S
⊥,

and, using (6) we find the explicit representation of all positive equilibria, viz.

wq = diag
(
Q�μq

)
c∗ for some μq ∈ R

m. (16)

From this we easily see that c �→ H(c|wq) is a Liapunov function as well. Indeed,
using

H(c|wq) = H(c|c∗) + c · t(c∗,wq) +
(
wq−c∗)

) · (1, .., 1)�

implies that d
dtH(c(t)|wq) = d

dtH(c(t)|c∗) along solutions of the RRE.
Moreover, defining ζq = Exp

(
Z�Log(wq)

)
gives

ζq = Exp
(
Z�(Log(c∗) + t(c∗,wq)

))
= Exp

(
Z�Log(c∗)

)
=: ζ∗,

because t(c∗,wq) ∈ S
⊥ implies Z�t(c∗,wq) = 0. Thus, we have Lζq = Lζ∗ = 0,

which means that wq also satisfies the CBC. This fact was already established
in [7].

For a quantitative decay argument we now assume that in each Cq there is
exactly one equilibrium, namely the unique equilibrium condition (UEC):

(UEC) ∀ q ∈ Q : { c ∈ Cq | R(c) = 0 } = {wq}, (17)

which follows e.g. from the assumptions that for all reactions we have αSr
i αPr

i = 0
for i = 1, .., I (no autocatalytic species).

Now we can define the dissipation

DR(c) := R(c) · DcH(c|c∗) = R(c) · ( log(ci/c∗
i )
)
i=1,..,I

and note that in the above arguments we may replace c∗ by any wq, without
changing the value of DR. For the RRE we now define an energy-dissipation
estimate depending on q ∈ Q. By kR(q) ≥ 0 we denote the largest value such
that the estimate

∀ c ∈ Cq : DR(c) ≥ kR(q)H(c|wq) (18)
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holds. Further on, we are only interested in the case kR(q) > 0, which is easy to
show if Cq is compact, e.g. it is an implicit consequence of our compact argument
in Sect. 4, see also [16,22]. We do not know whether positivity of kR(q) also holds
for non-compact Cq.

Of course, (18) provides a uniform quantitative decay estimate for c(t) to the
solutions namely

c(0) ∈ Cq ⇐⇒ H(c(t)|wq) ≤ exp
(−kR(q)t

)
H(c(0)|wq) for all t > 0.

The lower estimate λB(z) ≥ 4(
√

z−1)2 gives H(c|w) ≥ 4
∑I

i=1

(√
ci − √

wi

)2,
and the convergence |c(t) − wq| ≤ C exp

(−kR(q)t/2
)

follows.

3 Constructive Methods

3.1 Basic Observations for RDS

We now want to discuss some of the recently developed methods to show similar
decay estimates for RDS of the form

ċ = diag(δ1, ..., δI)Δc + R(c) in Ω, ν · ∇c = 0 on ∂Ω. (19)

Having identified a Liapunov function Hq(c) = H(c|wq) for the RRE we can use
the argument in [1] to define a Liapunov functional Hq for the RDS as well. For
this we note that the conserved quantities q still exist, but now in an averaged
sense. Recalling |Ω| = 1 we define

c =
∫

Ω

c(x)dx, Qc =
∫

Ω

Qc(x)dx = Qc.

Then, using the no-flux boundary conditions in (19) we easily obtain Qc(t) =
Qc(0) for all t > 0. Thus, for q ∈ Q we define the sets

S(q) :=
{

c ∈ L1(Ω)I
∣∣∣ c(x) ∈ [0,∞[I a.e. in Ω, Qc = q

}

and the adjusted Liapunov functions

Hq(c) :=
∫

Ω

H(c(x)|wq)dx.

Obviously, Hq(c) ≥ 0 for all c with equality if and only if c ≡ wq ∈ S(q). Taking
another q̃ ∈ Q, then for c ∈ S(q) we have Hq̃(c) = Hq(c) + Hq̃(wq), which
implies that all functionals Hq are Liapunov functions for (19) independent
of q̃ = Qc(0). However, only in the case q = q̃ we have the chance to show
exponential decay of Hq(c(t)).
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The dissipation generated by (19) and Hq is given by

D(c) := − d
dt

Hq(c) = DD(c) + DR(c),

where DD(c) =
∫

Ω

I∑
i=1

δi
|∇ci|2

ci
dx and DR(c) =

∫
Ω

DR(c(x))dx.

As in the case of the RRE the dissipation for Hq does not depend on the value
of q. Nevertheless the decay of Hq(c(t)) may depend on q = Qc(0), since the
solutions are confined to stay in S(q).

The aim of this paper is to establish energy-dissipation estimate in the form

∀ q ∈ Q ∃K(q) > 0 ∀ c ∈ S(q) : D(c) ≥ K(q)Hq(c). (20)

We see that the two dissipative parts DD and DR have to interact to gener-
ate the desired estimate. The diffusion part DD controls the deviation of each
individual ci from its mean value ci, but generates not interaction between the
species. The reactive part DR controls at a fixed point x ∈ Ω the distance of
c(x) from the set of equilibria of R(c).

3.2 The Convexity Method

For scalar drift-diffusion equations the log-Sobolev inequality plays a crucial role.
For our bounded, Lipschitz domain Ω ⊂ R

d we denote by ρlSo(Ω) the largest
constant such that

∀u ∈ W1,∞(Ω) :
∫

Ω

|∇u(x)|2
u(x)

dx ≥ ρlSo(Ω)u
∫

Ω

λB

(
u(x)/u

)
dx = ρlSoH (u|u).

Further on, we will drop the argument Ω in the log-Sobolev constant ρlSo(Ω)
for notational convenience. The major result of the convexity method is given in
the following theorem. It relies on the first simple observation that

DR(c) =
∫

Ω

I∑
i=1

δi
|∇ci|2

ci
dx ≥ ρlSo

∫
Ω

I∑
i=1

δiH(ci(x)|ci)dx ≥ ρlSoδminH (c|c),

(21)

where δmin = min{ δi | i = 1, .., I }. Second we use that for c ∈ S(q) we have the
relation

H (c|c) = H (c|wq) − H (c|wq) = Hq(c) − Hq(c), (22)

where we use the definitions Hq(c) := H(c|wq) and Hq(c) := H (c|wq). Obvi-
ously, the negative term Hq(c) must be controlled by the reactive dissipation
as in (18). However, the major point is to relate the pointwise reactive dissipa-
tion DR(c(x)) with that of the average, namely DR(c). Following [22] a suitable
control of the difference between DR(c) = DR(c) and DR(c) can be obtained
through a convexity assumption exploiting the strict convexity of c �→ H(c|wq).
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In the following condition (23) we generalize the condition in [22, Theorem 3.1],
where only the case μ1 = .. = μI = μ is considered.

Theorem 1 (Convexity method). Consider the setting of equation (19) with the
Liapunov functionals Hq and the dissipation D = DD +DR, where the pointwise
dissipation DR satisfies (18). Assume further that

∃μ1, ..., μI ≥ 0 : c �→ DR(c) +
I∑

i=1

μiλB(ci) is convex, (23)

then we have the energy-dissipation estimate (20) with

K(q) ≥ min
{

kR(q) , ρlSoδi
kR(q)

μi+kR(q)

∣∣∣ i = 1, . . . , I
}

. (24)

Proof For each i we set ri = δiρlSo(Ω) > 0 and choose θ ∈ ]0, 1[. Then, for all
c ∈ S(q), we have the estimate

D(c) ≥
∫

Ω

(
DR(c(x)) +

I∑
i=1

H(ci(x)|ci)
)

dx

=
∫

Ω

(
DR(c(x)) +

I∑
i=1

θiriH(ci(x)|ci) +
I∑

j=1

(1−θj)riH(ci(x)|cj)
)

dx

≥ ΘR

∫
Ω

(
DR(c(x)) +

I∑
i=1

μiH(ci(x)|ci)
)

dx + ΘDH (c(·)|c),

where ΘR := min
{

1 , θiri/μi

∣∣ i = 1, .., I
}

and

ΘD := min
{

(1−θj)rj

∣∣ j = 1, .., I
}
.

For the first term we use the convexity (23) and Jensen’s inequality, and for the
second we use c ∈ S(q) and (22):

≥ ΘR

∫
Ω

(
μH(c|c) + DR(c)

)
dx + ΘD

(
H (c|wq)−H (c|wq)

)

≥(18)
Qc=q ΘRkR(q)Hq(c) + ΘD

(
Hq(c)−Hq(c)

) ≥ min
{
ΘR, ΘD

}
Hq(c).

Using the optimal θi = μi/(μi+kR(q)) the desired estimate (20) with K(q)
satisfying (24) is established. ��

We emphasize that the convexity method described above does not depend
on the condition of detailed balance as used in [22], but only used the reactive
dissipation DR(c) which has to be non-negative, satisfy the estimate (18), and
must be convexifiable by adding μH(c|c∗). Thus, it is ideally suited to handle
the case of complex-balanced reaction systems as well.

Of course, the above theorem is only the simplest form of the convexity
method. We refer to [22] for generalizations involving more general relative
entropies or cases where δi = 0 for some i. In [20,23] it is also shown that the
method can be adapted to the case of energy-reaction-diffusion systems where
the equilibrium state c∗ = w(u) may depend on the internal energy u ∈ [0,∞].
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Example 3 (Explicit bounds for A1 � 2A2). To highlight the usability of the
approach we consider the system

ċ1 = ÷(δ1∇c1
)

+ κ(c22−c1), ċ2 = ÷(δ2∇c2
)

+ 2κ(c1−c22), (25)

for which we have Qc = 2c1 + c2 and c∗ = (1, 1)�. The reactive part of the
dissipation is DR(c) = κ(c22−c1) log

(
c22/c1

)
, which is clearly nonconvex, since

DR(c) = 0 if and only if c1 = c22. It was shown in [22, Lem. 4.3] that the function

c �→ μ1H(c1|1) + DR(c1, c2)

is convex for μ1 ≥ κμ∗ with μ∗ ≈ 1.1675. Based on this, and an analysis of the
RRE it is shown that (20) holds with

K(q) ≥ min
{1

4
δ1ρlSo(Ω), δ2ρlSo(Ω),

2
5
κ
}
.

Moreover, it could be shown that a suitable generalization of the convexity
method allows one to handle the case δ2 = 0 as well leading to a lower esti-
mate of the form

K(q) ≥ min{δ1ρlSo(Ω), 2κ}min
{ q

10
,

7
100
}
.

3.3 Applicability of Convexity Method for aA1 � BA2

Here we investigate the question to which two-species models with reaction pair
aA1 � bA2 the convexity method can be applied. The RDS in Ω reads

ċ1 = δ1Δc1 + κa
(
cb
2 − ca

1

)
, ċ2 = δ2Δc2 + κb

(
ca
1 − cb

2

)
, (26)

together with no-flux boundary conditions on ∂Ω. Here δi, κ > 0 and the stoi-
chiometric coefficients satisfy a, b ≥ 1. The stoichiometric subspace is S = span
(−a, b)�, and Q ∈ R

1×2 is given via Qc = bc1+ac2,
The RRE reads ċ = −(ca

1−cb
2) (a,−b)�, and we need convexity of the function

Gμ(c1, c2) := μ1λB(c1) + μ2λB(c2) + (ca
1−cb

2) log(ca
1/cb

2)

for some μ1, μ2 ≥ 0. Here and in the sequel we often set κ = 1, but recover the
obvious position of κ in the final result.

For joint convexity in both variables it is necessary to have separate convexity,
namely that of Gμ(·, c2) and Gμ(c1, ·) for all c2 and c1, respectively. Taking the
second derivative of Gμ(·, c2) we have to show that the infimum for c1, c2 > 0 is
non-negative for some μ1. From the explicit form

∂2
c1Gμ(c1, c2) =

a

c1

(μ1

a
+

cb
2

c1
+ ca−1

1

(
2a−1+(a−1) log(ca

1/cb
2)
))
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we see that the infimum is −∞ for a < 1, by fixing c1 > 0 and considering
c2 ↘ 0. For a ≥ 1, we can minimize first with respect to c2, which is attained
for cb

2 = (a−1)ca
1 . Thus, for a ≥ 1 we have

min
c2>0

∂2
c1Gμ(c1, c2) =

a

c1

(
μ1 + f(a)ca−1

1

)
with f(a) := 3a−2−(a−1) log(a−1).

For a ∈ [1,m∗] with m∗ ≈ 22.06217 we have f(a) ≥ 0 such that the term is
non-negative for all μ1 ≥ 0, while for a > m∗ the infimum over c1 > 0 is −∞.
In summary, we conclude that Gμ is separately convex if and only if DR(c1, c2)
is so, and this is the case if and only if a, b ∈ [1,m∗], i.e. μ1 and μ2 cannot help
for separate convexity.

It remains to find the subset where joint convexity holds. Using the diagonal
matrix K(c) := diag

(
(c1/a)1/2, (c2/b)1/2

)
the Hessian gives

K(c)D2Gμ(c)K(c) =
(

μ1
a 0
0 μ2

b

)
+ L(c) with

L(c) :=

⎛
⎝

cb2
c1

+ ca−1
1

(
2a−1+(a−1) log ca1

cb2

) −( ab
c1c2

)1/2(
ca
1+cb

2

)
−( ab

c1c2

)1/2(
ca
1+cb

2

) ca1
c2

+ cb−1
2

(
2b−1+(b−1) log cb2

ca1

)
⎞
⎠ .

Thus, the existence of μ = (μ1, μ2) such that Gμ(·) is (jointly) convex, is equiv-
alent to showing that the eigenvalues of L(c) are bounded from below uniformly
for c1, c2 > 0. By our restriction a, b ∈ [1,m∗] we know that the diagonal terms
are non-negative.

For a = b = 1 we obviously have L(c) ≥ 0, which is the convexity of c �→
(c1−c2) log(c1/c2). For b = a ∈ [1,m∗] we have (with y = c1/c2)

L(c) = ca−1
1

(
y−a+2a−1+a(a−1) log y −a

√
y(1+y−a)

−a
√

y(1+y−a) y+y1−a
(
2a−1−a(a−1) log y

)
)

.

Because y and c1 can be chosen independently, we have to show L(c) ≥ 0.
Since the diagonal elements are non-negative it suffices to make the determinant
non-negative as well. We have det L(c) = c2a−2

1 y a(y) with

�a(y) :=
(
y−a+2a−1 + (a2−a) log y

)(
1 + y−a(2a−1−(a2−a) log y)

) − a2(1+y−a)2.

It is easily checked that a(1) = ′
a(1) = 0 and ′′

a(1) = 4a2(a−1)(2−a). Thus, for
a = b > 2 we have no lower bound for the eigenvalues of L(c). For a = b ∈ [1, 2]
we summarize the positive result as follows.

Theorem 2 For a ∈ [1, 2] the function

(c1, c2) �→ (ca
1−ca

2) log(ca
1/ca

2) is convex.

Consequently, for the two-species RDS (26) with b = a ∈ [1, 2] the convexity
method applies with μ = 0, and we obtain the lower estimate

K(q) = min
{

min{δ1, δ2}ρlSo , 4κqa−1
}

.
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Proof The first result follows from showing a(y) ≥ 0. Setting z = y−a we need
(
z + 2a − 1 − (a−1) log z

)(
1 + z(2a−1 + log z

) ≥ a2(1+z)2 for all z > 0,

but this can be checked easily by a numerical plot.
To obtain the lower bound for K(q) we need to estimate the reactive decay

rate kR as defined in (18). Using Qc = a(c1+c2) = q and w(q) = q
2a (1, 1), we set

c = q
2a (s, 2−s) with s ∈ [0, 2], then for a ∈ [1, 2] we have

kR(q) = inf
{ a(ca

1−ca
2) log(c1/c2)

H(c|w(q))

∣∣∣ Qc = q
}

= qa−1 inf
{ a(sa−(2−s)a) log(s/(2−s))

(2a)a−1
(
λB(s)+λB(2−s)

) ∣∣∣ s ∈ [0, 2]
}

≥ 4qa−1,

where the last estimate follows by inspecting the graph of the function in the
infimum numerically: the minimum is attained at (s, a) ∈ {(1, 1), (1, 2)}.

Now the lower estimate for K(q) follows from Theorem 1 with μ = 0. ��
For the general case 1 ≤ a < b we have

L(c) =
(

y(a−1)b

ρb−1

)1/(b−a)
(

A1(ρ) −√yA2(ρ)
−√yA2(ρ) yA3(ρ)

)

with ρ = ca
1/cb

2 and y = c1/c2.

The coefficient functions are given by A1(ρ) = 1 + ρ
(
2a−1+(a−1) log ρ

)
,

A2(ρ) = ab(1+ρ)2, A3(ρ) = ρ + 2b−1 − (b−1) log ρ.

In the case a = 1 it suffices to show that L(c)+μ1

(
1 0
0 0

) ≥ 0 for some μ1 ≥ 0,
which is equivalent to

(A1(ρ)+ρμ1)A3(ρ) ≥ A2(ρ) ⇐⇒ μ1 ≥ μ̂(b) := sup
ρ>0

A2(ρ)−A1(ρ)A3(ρ)
ρA3(ρ)

.

Since the function in the supremum is continuous for b ∈ [1,m∗] and converges
to b−1 for ρ → ∞ and to −∞ for ρ → 0, the supremum M(b) exists for all
b ∈ [1,m∗]. Of course, μ̂(1) = 0 and μ̂(1) ≈ 1.1675, see Example 3. Numerically
we find (b−1)/(1 − b/m∗) ≤ μ̂(b) ≤ 1.1(b−1)/(1 − b/m∗) for b ∈ [1,m∗]. We
summarize this positive result as follows:

Theorem 3 For a = 1 and b ∈ [1,m∗[ the convexity method is applicable to the
two-species RDS (26) with the choice μ = κμ̂(b) giving the lower bound

K(q) ≥ min
{

kR(q) , δ1ρlSo
kR(q)

κμ̂(b)+kR(q) , δ2ρlSo

}
.

In the case 1 < a < b, we can use that for fixed ρ > 0 the smaller
eigenvalue of

( A1(ρ) −(yA2)
1/2

−(yA2)1/2 A3(ρ)

)
converges to n(ρ) := A1(ρ) − A2(ρ)/A3(ρ) for

y → ∞. However, this value is still multiplied by yc with a positive power
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c = (a−1)b/(b−a). Hence, if there is a ρ with n(ρ) < 0, then the eigenvalues
of L(c) cannot be bounded from below. An explicit calculation gives n(1) = 0
and n′(1) = 2(a−b)/b < 0 such that ρ > 1 with n(ρ) < 0 always exists.

We conclude by stating our expectation that exploiting higher entropies (cf.
[22, Sect. 3.4]) allows us to widen the applicability of the convexity method for
a much larger variety of cases.

3.4 The Method of Desvillettes, Fellner, and Tang

In a series of papers starting with [3,4] and culminating with [5] a more general
method for the derivation of explicit energy-dissipation estimates was derived.
We give a short overview of the Steps 1 to 4 in [8, Sect. 2.2] to highlight the dif-
ferences to the above convexity method. Of course, this general method avoids
any convexity assumption of the type (23), which is rather restrictive, but gives
simpler and sharper results if it is applicable. The general method uses several
explicit estimates from functional analysis but needs to estimate some logarith-
mically growing terms from above.

For simplicity we restrict to the case with DBC (cf. (9)) and assume c∗ =
(1, .., 1)�, but emphasize that RRE with the CBC can be handled as in [5]. The
major idea is to introduce the functions ai =

√
ci and the vector a = (a1, .., aI)

such that the two parts of the dissipation can be estimated via

DD(c) =

∫

Ω

I∑

i=1

δi

( |∇ci|2
2ci

+ 2|∇ai|2
)

dx ≥ δmin

(
ρlSo(Ω)H (c|c) + 2‖∇a‖2L2

)
and

DR(c) =

∫

Ω
DR(c(x))dx ≥

∫

Ω

R/2∑

n=1

4κ̂n
∣
∣aαSn − aαPn ∣

∣2dx,

where we used the elementary inequality

∀ a, b > 0 : (a−b) log(a/b) ≥ 4
(√

a −
√

b
)2 (27)

to estimate the reactive part from below. As above, for c ∈ S(q) we have
H (c|c) = H (c|wq) + H (c|wq), and we have to control the second term. For
this, one introduces the continuous and increasing function

Φ(z) =
λB(z)

(
√

z−1)2
= log z + O(1)z→∞,

which provides the elementary estimate H (c|wq) = H(c|wq) =
I∑

i=1

H(ci|wq
i ) =

I∑

i=1

Φ(ci/w
q
i )

(
(ci)

1/2 − (wq
i )1/2)2 ≥ Φ(M)

I∑

i=1

(
(ci)

1/2 − (wq
i )1/2)2,

where the constant M is given by max{Φ(K0/w
q
i )|i = 1, .., I } with K0 = max{ ci

| i = 1, .., I }. Thus, one needs an upper bound for ci which follows from λB(z) ≥
z − 2 which gives bλB(a/b) ≥ a − 2b and hence

Hq(c) = H (c|wq) ≥
∫

Ω

I∑
i=1

(
ci(x) − 2wq

i

)
dx =

I∑
i=1

ci − W with W = 2
∑
i=1

wq
i .
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Since Hq is a Liapunov function solutions satisfy

ci(t) ≤ Hq(c(t)) + W ≤ Hq(c(0)) + W =: K0.

The most difficult part in this method is to find a constant K3(q) such that the
estimate

‖∇a‖2L2+
∫

Ω

R/2∑
n=1

(
aαSn −aαPn )2dx ≥ K3

(
‖∇a‖2L2+

R/2∑
n=1

(
aαSn −aαPn

)2)
(28)

holds. The constant K3 depends on the Poincare constant for Ω and polynomially
on K0 from above, where the degree of the polynomial depends on the maximum
of |αr|, since one exploits the Lipschitz continuity of a �→ aαr

on large balls.
In the final step it remains to show that the term ‖∇a‖2L2 can be used to

control the mismatch between
(
(ci)1/2

)
i

and a such that the constraint q = Qc
can be exploited. We refer to [5] for the full proof and conclude with some
remarks of comparison.

Obviously, this method works in much more general cases than the convexity
method. In both cases it is possible to derive explicit constants, however in the
general method these constants are much more involved and cannot be inter-
preted as easily by the optimal decay rates of the diffusion alone and of the
reactions alone.

Nevertheless, the central idea is quite similar: in both cases it is crucial to
estimate suitable integral quantities by the corresponding averages, namely using
Jensen’s inequality in the convexity method (cf. the proof of Theorem 1) and
(28) for the general method.

4 The Glitzky-Gröger-Hünlich Approach

Gröger started his work on entropic methods for reaction-diffusion system with
mass-action kinetics already in [17,18]. In the unpublished work [19, Theorem 2]
we provided a new approach for estimating the relative entropy F in terms of the
dissipation rate D . This approach, which relies on an interesting contradiction
argument and compactness methods, was then further developed in [14–16] to
derive global exponential decay rates was developed for electro-reaction-diffusion
systems with reaction systems satisfying a detailed balance condition. The theory
there is restricted to the two-dimensional case, but this restriction is only needed
because of the coupling of the charges via the Poisson equation. We repeat the
arguments and show how they simplify and generalize to arbitrary dimensions
for uncharged particles.

Throughout we consider functions

c ∈ S(q) :=
{

c ∈ L1(Ω)I
∣∣∣ ci ≥ 0, Qc = Qc = q

}
.
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We recall the energy-dissipation balance d
dtHq(c(t)) = −D(c(t)) with Hq(c) =

H (c|wq) =
∫

Ω
H(c(x)|wq) dx, and the dissipation is estimated from below as

follows:

D(c) ≥ δDD(c) + κDR(c) with δ, κ > 0 where

DD(c) =
∫

Ω

(
I∑

i=1

∣∣∇√
ci

∣∣2
)

dx and DR(c) =
∫

Ω

DR(c(x))ddx.

Obviously, all c ∈ S(q) satisfy the equivalences

Hq(c) = 0 ⇐⇒ c ≡ wq ⇐⇒ DD(c)+DR(c) = 0 ⇐⇒ D(c) = 0.

The following result is an adaptation of the results in [16, Theorem 5.2],
which rely on a non-constructive compactness argument. There the theory was
developed for a semiconductor model involving a Poisson equation, which led to
a restriction of the space dimension, namely d ≤ 2. We will show that such a
restriction is not necessary for pure RDS. We refer to [23] for a generalization
to the non-isothermal case. Note that this result is also somewhat weaker than
the convexity method, since the decay constant K(q, R) depends on R which is
an upper bound for Hq(c)

Theorem 4 (General exponential decay). Let Ω ⊂ R
d with d ∈ N be a

bounded domain with Lipschitz boundary. Furthermore assume that the unique-
equilibrium condition (17) holds. Then,

∀ q ∈ Q, R > 0 ∃K(q, R) > 0 ∀ c ∈ S(q) with Hq(c) ≤ R :
D(c) ≥ K(q, R)Hq(c).

(29)

Proof Throughout this proof we fix q ∈ Q and write for simplicity w = wq.
In order to produce a contradiction, we assume that for all n ∈ N there exist

c(n) with

Q(c(n)) = q and R ≥ Hq(c(n)) ≥ nD(c(n)) �= 0.

In particular, this implies DD(c(n)) + DR(c(n)) → 0. Moreover, the bound
Hq(c(n)) ≤ R and the standard estimate λB(z) ≥ (

√
z−1)2 provide the bounds

∥∥∥∇√
c(n)i

∥∥∥
L2

→ 0 and
∥∥∥√c(n)i

∥∥∥
L2

≤ C.

Thus, we conclude ‖√c(n)i − √
ai ‖H1 → 0 for a constant vector a = (a1, .., aI).

By the strong convergence and the strong lower semicontinuity we have

Qa = lim
n→∞Qc(n) = q and 0 ≤ DR(a) = DR(a) ≤ lim inf

n→∞ DR(c(n)) = 0.

Hence, the UEC (17) implies a = w.
This in turn implies Hq(c(n)) → 0. To see this, we use that the convergence√

c(n)i → √
wi in H1 implies the same convergence in L2p for some p > 1. Taking
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squares we find c(n)i → wi in Lp. Now the estimate λB(z) ≤ Cp(1+z)p and the
continuity of λB imply the continuity of Hq on Lp(Ω)I by Lebesgue’s dominated
convergence theorem. Hence, we conclude Hq(c(n)) → Hq(w) = 0.

Continuing in our task to produce a contradiction we set

λn :=
(
Hq(c(n))

)1/2 → 0 and b(n) := Ψ(λn, c(n)),

where the mapping Ψ(λ, ·) and its inverse Φ(λ, ·) are given by

Ψ(λ, c) :=
( 1
λ

(c1/2
i −w1/2

i )
)
i=1,..,I

and Φ(λ, b) :=
(
(w1/2

i +λbi)2
)
i=1,..,I

.

For b(n) we have the following two estimates

‖∇b(n)‖2L2 =
1

λ2
N

DD(c(n)) ≤ 1

nλ2
n
Hq(c(n)) =

1

n
→ 0.

λ2
n = Hq(c(n)) ≥

I∑

i=1

∥
∥∥
√

c(n)i−
√
wi

∥
∥∥
2

L2
≥ λ2

n

(
min

i
wi

) ‖b(n)‖2L2 =⇒ ‖b(n)‖L2 ≤ C.

Thus, there exists a constant vector d such that b(n) → d strongly in H1(Ω;RI).
To analyze the limit of the sequence 1

λ2
n
DR(c(n)) we use the function D :

[0, 1] × R
I → [0,∞] via

D(λ, b) =

⎧⎨
⎩

1
λ2 DR(Φ(λ, b)) for λ > 0 and (λ, b) ∈ dom(D),

A(b) for λ = 0,
∞ otherwise,

where dom(D) = { (λ, b) ∈ [0, 1] × R
I | ∀ i : w1/2

i +λbi ≥ 0 }
and A(b) = 2b · W1/2

HW
1/2b.

Here W = diag(w1, ..,wI) and H ≥ 0 is the Hessian D2DR(w). By construction
the function D is lower semi-continuous, since A is simply the limit of D(λ, ·) =
DR(Φ(λ, ·)/λ2, where we use the expansion Φ(λ, b) = w + 2λW1/2b + O(|λb|2).

Using b(n) → d in H1(Ω) provides a subsequence such that b(n)(x) → d a.e.
in Ω. Since by construction we have

∫
Ω
D(λn, b(n))dx = DR(c(n))/λ2

n, the lower
semicontinuity and positivity of D and Fatou’s lemma yield

A(d) =
∫

Ω

D(0,d)dx ≤ lim inf
k→∞

∫
Ω

D(λnk
, b(nk))dx

= lim
k→∞

1
λ2

nk

DR(c(n)) = lim
k→∞

1
nkλ2

nk

Hq(c(n)) = 0.

The UEC (17) and the CBC for the mass-action structure imply that the Hessian
H = D2DR(w) has a well-defined kernel, namely exactly the one given by the
linearization at w of set of all equilibria wq̃ for q̃ ∈ Q. Thus, the explicit formula
(16) shows kernel(K) = WS

⊥, such that A(d) = 0 implies W
−1/2d ∈ S

⊥.
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Moreover, q = Qw = Q(c(n)) and the strong L2 convergence b(n) → d imply

0 =
1
λn

(
Q
(
Φ(λn, b(n))

)− Qw
)

→ 2QW1/2d.

This implies W
1/2d ∈ S. Since we already know W

−1/2d ∈ S
⊥, we arrive at

0 = W
−1/2d · W1/2d = |d|2. (30)

To generate the desired contradiction we introduce the function

H̃(λ, b) =

⎧⎨
⎩

1
λ2 λB((1+λb)2) for 1 + λb ≥ 0 and λ > 0,

2b2 for λ = 0,
∞ otherwise.

Note that H̃ is continuous on its domain dom(H̃) = { (λ, b) ∈ [0, 1]×R | 1+λb ≥
0 }, which is closed. Moreover, using (

√
z−1)2 ≤ λB(z) ≤ Cp(

√
z−1)2(1+z)p we

have b2 ≤ H̃(λ, b) ≤ b2Cp(3+2λ2b2)p on the domain. Thus,

1 =
1
λ2

n

Hq(c(n)) =
1
λ2

n

Hq

(
Φ(λn, b(n))

)

=
∫

Ω

( I∑
i=1

wiH̃
(
λn, b(n)i/w

1/2
i

))
dx

n→∞→
∫

Ω

( I∑
i=1

2d2i

)
dx = 2|d|2,

(31)

where we used bn → d in H1(Ω)I and that the functional defined via H̃ is
continuous on H1(Ω)I ⊂ L2p(Ω)I because of the continuity of and the upper
bound for H̃.

Thus, (30) and (31) provide the desired contradiction, and proof is finished.
��
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