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1 Motivation and Introduction

Consider a weighted bipartite graph,1 or bipartite network or two-mode network,
.G [ M; R), where R 2 KG�M is a relation with values in an algebra K . This is a
pervasive abstraction in Graph Theory [1] and Social Network Analysis (SNA) [2]
where they are also known as affiliation or membership networks.

The direct or dual-projection approach is one of two competing methodologies
for the analysis of two-mode networks, the other being the conversion approach [2].
In the latter, the data are first projected into a one-mode network and analysed with
the tools of (weighted) graph analysis, that is (standard) network analysis. This
raises evident and justified concerns of information loss [3].

In the dual-conversion approach, however, the analysis problem is transformed
into two one-mode projection networks and analysed separately, with the projections
on the rows PG and the columns PM being the matrices:

PG D R˝ RT PM D RT ˝ R : (1)

The dual-projection approach postulates that we can provide measures of
centrality, core vs. periphery and structural equivalence for each of the projection
networks with limited loss of global information, in terms of the Singular Value
Decomposition (SVD) [4]. This is a set of results about the decomposition of real- or

1We will consider all graphs in this paper as directed graphs unless otherwise stated.
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complex-valued rectangular matrices [5, 6] with applications in data processing,
signal theory, machine learning and computer science at large [7], the most
important of which is the following:

Theorem 1 (The Singular Value Decomposition Theorem) Given a matrix M 2
Mm�n.K / where K is a field, there is a factorization M D U˙V�—where ��
stands for conjugation—given in terms of three matrices

• U 2Mm�m.K / is a unitary matrix of left singular vectors.
• ˙ 2 Mm�n.K / is a diagonal matrix of non-negative real values called the

singular values.
• V 2Mn�n.K / is a unitary matrix of right singular vectors.

Often the singular values of a matrix are listed in descending order—and the left and
right singular vectors are re-ordered accordingly—as a prelude to any of a number of
reconstruction theorems aimed at re-building the original matrix M from the triples
of singular value, left and right vectors .�i; ui; vi/ [see 5, 6, for details]. This is
particularly interesting for model building.

1.1 The Analysis of Bipartite Networks with Formal Concept
Analysis

Formal Concept Analysis (FCA) can be conceived as a data-driven unsupervised
learning technique for Boolean data. Its main results can be summarized as
follows [8].

Theorem 2 (Basic Theorem of FCA, Extended2) Let G be a set of objetcs, M
a set of attributes and .G; M; I/ be a formal context with I � G � M and polar
operators �" W 2G ! 2M and �# W 2M ! 2G .

A" D fm 2 M j 8g 2 A; gImg B# D fg 2 G j 8m 2 B; gImg

and call formal concepts the pairs with A" D B, A D B# ordered as

.A1; B1/ � .A2; B2/, A1 � A2 , B1 � B2 :

Then:

1. The set of formal concepts B.G; M; I/ with the hierarchical order is a complete
lattice called the concept lattice of .G; M; I/ in which infima and suprema are
given by:

2In [9] this is called “a fundamental pattern for the occurrence of lattices in general”; in [8] it is
the “Basic Theorem of Concept Lattices”, and in Chap. 3 of [10] it is “the fundamental theorem of
concept lattices”.
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2. Conversely, a complete lattice V D hV;�i is isomorphic to B.G; M; I/ if and
only if there are mappings � W G ! V and � W M ! V such that �.G/ is
supremum-dense in V , �.M/ is infimum-dense in V and gIm is equivalent to
�.g/ � �.m/ for all g 2 G and all m 2 M. In particular, V Š B.V; V;�/ .

The ability to analyse bipartite digraphs (that is Boolean bipartite networks)
comes from the existence of a “cryptomorphism” [11, pp. 155–156]—which we
take to mean “unexpected isomorphisms”3—with formal contexts, possibly first
identified in [13]. We adhere here to the advantages of using cryptomorphisms for
the description of apparently different objects laid out in [14], namely reaching a
better understanding of the tools being analysed.

The Cryptomorphism of Bipartite Digraphs and Formal Contexts When K is
the Boolean set, consider the two following definitions:

• In Graph Theory, let G and M be two disjoint sets and consider the graph .V; E/

with V D G[M and E 2 2V�V such that for every ordered pair e D .ge; me/ 2 E
its endpoints belong to different subsets of V , ge 2 G and me 2 M . Then .V; E/

is a bipartite graph.
• In FCA, let G be a set of objects and M be a set of attributes, and I 2 2G�M be an

incidence relation between them. Then .G; M; I/ is a formal context.

Clearly, they define cryptomorphic entities whereby I is the restriction of E to G �
M [15, Sect. 3.1].

Hence the capabilities of FCA for representing bipartite digraphs follow from
the universal representation capabilities of concept lattices expressed in the Basic
Theorem. This promises that many fundamental abstractions in each domain will
have an important role in the other. Crucially, formal concepts are cryptomorphic to
bicliques maximal with respect to inclusion [15, Proposition 1]. This was probably
first suggested in [16], clearly stated in [13], an later taken up by a number of
researchers [17, 18]. Note that these techniques and concerns pre-date the apparition
of multi-valued extensions to FCA and therefore concentrate in Boolean data.

Some of the advantages of using FCA for modelling bipartite networks stem
from the hierarchical, non-partitional (overlapping) clustering of both domains G
and M [19]. This approach is contextualized and summarized in the wider context

3Birkhoff actually coined “crypto-isomorphism”, but the term seems to have been forced to
evolve [12]. We point out that the “surprise” must come from finding concepts of different subfields
to be the same. Of course cryptomorphisms boil down to plain isomorphisms as soon as the surprise
fades away, so it is a mathematical concept more of an educational or sociological than a formal
nature.
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of Social Network Visualization in [20], whose most harrying problem is the
visual clutter. For concept lattices this is mostly addressed by means of algebraic
information reduction techniques [21] or heuristic pruning [19].

For our present purposes [22] has already noted that formal concepts define
optimal factors for the reconstruction of Boolean matrices—whether incidences or
adjacencies—and this is a result that strongly hints that FCA is related to the SVD.

SVD Leads to Non-Boolean Contexts The previous argumentation would seem
to imply that the SVD, as a technique to analyse weighted bipartite digraphs, is also
important for the analysis of formal contexts and concept lattices. Alas, although
the SVD is cursorily applied to bipartite digraphs whose entries belong to f0; 1g ,
it is actually a procedure developed for matrices with entries in the complex field
C . To draw a parallel with the nice situation in the previous section would call
for the consideration of an isomorphism between bipartite digraphs whose edge
weights belong to an algebra and multi-valued formal contexts with incidences in
said algebra.

Unfortunately, the theory of concept lattices issuing from such multi-valued
contexts is not as complete as (standard) FCA: for instance, when the context
takes values in a fuzzy-semiring the universal representation capabilities in the
Main Theorem [23, Theorem 5.3] have not been cast in terms of (fuzzy) bipartite
networks, to the best of our knowledge, and the Main Theorem of K -FCA [24,
Theorem 2.14], where K is a complete idempotent semifield (see below) has as
yet unexplored representation capabilities. We note that, despite these limitations,
a number of results on the reconstruction of matrices specifically based on fuzzy-
formal concepts are available [25].

1.2 The Study of Networks Using HITS and the SVD

In this chapter we are interested in laying out the relationship between Formal
Concept Analysis [8] and the dual-projection approach to the analysis of bipartite
networks. At the beginning of this section we have argued that the SVD must figure
prominently in this picture, so we will detour slightly to show yet one more instance
of the pervasiveness of it in the analysis of networks: its relation to one of the first
well-known approaches to link analysis on the Web, the HITS algorithm.

The Hubs and Authorities algorithm or Hyperlink-Induced Topic Search
(HITS) [26, 27] was designed to solve the problem of ranking the nodes of
a dynamic, directed 1-mode network of nodes obtained from a query against
a search engine. It postulates the existence of two qualities in nodes: their
authoritativeness—their quality of being authorities with respect to a pervasive
topic in the nodes—and their hubness—their quality of being good pointers to
authorities. These are now cursorily available in software for analysing network
data, e.g. [28].
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Consider a network, that is, a weighted directed graph, N D .V; E; w/ where
V D fvigniD1 is a set of nodes E � V � V is a set of edges, and w W E ! Œ0; 1� a
weight function on the edges w.vi; vj/ > 0; .vi; vj/ 2 E and w.vi; vj/ D 0 otherwise.
It can alternatively be defined by an adjacency matrix TN with Œ0; 1�-weights for
its edges, .TN/ij D w.vi; vj/ . The notation tries to suggest that TN is a stochastic
transition matrix rather than a generic adjacency.4

HITS is solved in terms of the left and right eigenvectors of this matrix TN , where
the vertices and edges of the digraph model the nodes and links in any (social)
network. HITS finds an authority score a.vi/ and a hub score h.vi/ for each node
aggregated as vectors, based on the following iterative procedure:

• Start with initial vector estimates h<0> and a<0> of the hub and authority scores.
• Upgrade the scores with5:

h Ta a TTh (3)

so that in general, for k � 1:

h<k> D .TTT/kh<0> a<k> D .TTT/ka<0>

h<k> D .TTT/k�1Ta<0> a<k> D .TTT/k�1TTh<0> (4)

• Since matrix T is non-negative, in general the sequences fh<k>gk and fa<k>gk
would diverge, so the next step is to prove that the limits:

lim
k!1

h<k>

ck
D h<�> lim

k!1
a<k>

dk
D a<�> (5)

exist, in which case they are eigenvectors of their respective matrices for
seemingly arbitrary c and d,

.TTT/h<�> D ch<�> .TTT/a<�> D da<�> : (6)

• As long as the initial estimates do not inhabit the null space of these matrices—
making them orthogonal to h<�> and a<�>, respectively—the iterative process
will end up finding the principal eigenvectors. The proof of this fact entails that
the initial estimates h<0> and a<0> should be non-negative.

It is easy to prove the following:

Lemma 1 HITS is a specialized version of the SVD.

4This procedure will be extended in Sect. 2.3.
5To lessen the visual clutter, we drop the graph index from the matrix.
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Proof Since we want to emphasize the mutual dependence of hubness and authori-
tativeness scores, so after [29] we write (3) in matrix form

�
h
a

�
 
� � T

TT �
�
˝
�

h
a

�

where we have substituted zero matrices for dots, as customary.
The arrows are used to suggest that we are interested in the fixpoint of the

iterative update of this matrix equation. But we know that a fixpoint of it is the
analytical solution of the following eigenproblem in the variable z D ŒxTyT�T,

A˝ z D z˝ � ,
� � T

TT �
�
˝
�

x
y

�
D
�

x
y

�
˝ � (7)

for eigenvalue � D 1 .
To see that the solutions to this problem are of the form w D ŒhTaT�T that is, pairs

of hub and authority vectors, we expand the system (7) into two equations—called
by Lanczos the “shifted eigenvalue problem” [29]—

T ˝ a D h˝ � TT ˝ h D a˝ � (8)

Equation (8) is the proof that HITS is actually trying to solve the singular value-
singular vector problem [5, 29], where h has the role of a left singular vector, a that
of a right singular vector, and � D 1 is the singular value. ut

Note that:

• Under the conditions laid out in the original HITS setting, the singular value is
not important.

• The projectors appear in the solution of (7) by pre-multiplying both sides of the
equation with A and then we would obtain decoupled solutions that can be re-
coupled with (8).

A2 ˝ z D z˝ �2 ,
�

TTT �
� TTT

�
˝
�

x
y

�
D
�

x
y

�
˝ �2 (9)

In light of this, we can see how HITS, which in principle is available for 1-mode
networks, that is, it is a conversion approach procedure is actually using a direct or
dual-projection approach in considering both vector spaces associated with T.

In light of this, we can see how HITS is actually using a direct or dual-projection
approach—in considering both vector spaces associated with T—in spite of being
actually available for 1-mode networks, that is, being a conversion approach.
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1.3 The Problem and Reading Guide

In this paper we develop a similar tool as the SVD for bipartite networks with
non-Boolean edge weights, but we develop it as if it were an instance of the better
understood, HITS problem.

1. First, as suggested by the form of (4), we consider two sets G and M, because
we want to study the quality of being a hub and being an authority separately.
This implies passing from directed bipartite graphs to networks, also known as
weighted (directed) bipartite graphs.

2. Second, the matrix algorithm HITS requires a “positive” algebra with addition,
multiplication and scalar division—in the case of the original HITS, this
semifield is RC, the positive reals. Hence we consider edge weights R 2 KG�M in
a naturally ordered semiring with division or positive semifield K (cfr. Sect. 2.1).
Then K -formal contexts, denoted as .G; M; R/, are a natural encoding for this
type of weighted bipartite digraphs.

Note that the original HITS setting can be recovered by using V WD G D M and
T WD R and working in the semifield of positive reals RC

0 with Rij D 1 if .vi; vj/ 2 E
and Rij D 0 otherwise. Similarly, the original dual-projection approach deals only
with the case where R is actually binary but is considered to be embedded in the
complex numbers.

To develop our program we first introduce in Sect. 2.1 some definitions and
notation about semirings in general, and about positive semifields in particular. In
Sect. 2.2 we introduce the eigenproblem over dioids as a step to solving the singular
value problem in dioids, and in Sects. 2.3 and 2.4 a very general technique to do
so. Section 3 presents the weight of our results, including a short Example and a
Discussion. We finish with a Summary and Conclusions.

2 Theory and Methods

2.1 Semiring and Semimodules over Semirings

A semiring is an algebra S D hS;˚;˝; �; eiwhose additive structure, hS;˚; �i, is a
commutative monoid and whose multiplicative structure, hSnf�g;˝; ei, is a monoid
with multiplication distributing over addition from right and left and an additive
neutral element absorbing for˝, i.e. 8a 2 S; � ˝ a D �. A semiring is:

• Commutative, if its multiplication is commutative.
• Zerosumfree, if it does not have non-null additive factors of zero, a˚ b D � )

a D � and b D � ;8a; b 2 S .
• Entire, if a˝ b D �) a D � or b D � ;8a; b 2 S .
• Idempotent, if its addition is.
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• A selective semiring, if the arguments attaining the value of the additive operation
can be identified.

• Radicable, if the equation ab D c can be solved for a.
• Complete, [30] if for every (possibly infinite) family of elements faigi2I � S we

can define an element
P

i2I ai 2 S such that

1. if I D ¿, then
P

i2I ai D � ,
2. if I D f1 : : : ng, then

P
i2I ai D a1 ˚ : : :˚ an ,

3. if b 2 S, then b˝ �Pi2I ai
� DPi2I b˝ ai and

�P
i2I ai

�˝ b DPi2I ai˝ b ,
and

4. if fIjgj2J is a partition of I, then
P

i2I ai DPj2J

�P
i2Ij

ai

�
.

Entire zerosumfree semirings are called sometimes information algebras and have
abundant applications [31]. Their importance stems from the fact that they model
positive quantities.

Crucially, every commutative semiring accepts a canonical preorder, as a � b if
and only if there exists c 2 S with a˚ c D b which is compatible with addition. A
dioid is a commutative semiring where this relation is actually an order. Dioids are
zerosumfree. A dioid that is also entire—that is, when a˝ b D � then either a D �

or b D � or both—is a positive dioid.
If I is countable in the definitions above, then S is countably complete and

already zerosumfree [32, Proposition 22.28]. The importance for us is that in
complete semirings, the existence of the transitive closures is guaranteed (see
Sect. 2.3). Commutative complete dioids are already complete residuated lattices.

A semiring whose commutative multiplicative structure is a group will be called
a semifield.6 Semifields are all entire, and we will use K to refer to them. Therefore
semifield which is also a dioid is both entire and naturally ordered. These are
sometimes called positive semifields, examples of which are the positive rationals,
the positive reals or the max-plus and min-plus semifields. Semifields are all
incomplete except for the Booleans, but they can be completed as K [24], and
we will not differentiate between complete or completed structures.

A semimodule (over a semiring) is an analogue of a vector space over a
field. Semimodules inherit from their defining semirings the qualities of being
zerosumfree, complete or having a natural order. In fact, semimodules over complete
commutative dioids are also complete lattices. Rectangular matrices over a semiring
form a semimodule Mm�n.S /, and in particular, row- and column-spaces S 1�n and
S n�1. The set of square matrices Mn.S / is also a semiring (but non-commutative
unless n D 1).

6This term is not standard: for instance, [33] prefer to use “semiring with a multiplicative group
structure”, but we prefer semifield to shorten out statements.
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2.2 The Eigenvalue Problem over Dioids

Given (6), understanding the HITS iteration is easier once understood the eigenvalue
problem in a semiring. So let Mn.S / be the semiring of square matrices over
a semiring S with the usual operations. Given A 2 Mn.S / the right (left)
eigenproblem is the task of finding the right eigenvectors v 2 Sn�1 and right
eigenvalues � 2 S (respectively, left eigenvectors u 2 S1�n and left eigenvalues
� 2 S) satisfying:

u˝ A D �˝ u A˝ v D v ˝ � (10)

The left and right eigenspaces and spectra are the sets of these solutions:

	.A/ D f� 2 S j U�.A/ ¤ f�ngg P.A/ D f� 2 S j V�.A/ ¤ f�ngg
U�.A/ D fu 2 S1�n j u˝ A D �˝ ug V�.A/ D fv 2 Sn�1 j A˝ v D v ˝ �g
U .A/ D

[

�2	.A/

U�.A/ V .A/ D
[

�2P.A/

V�.A/ (11)

Since 	.A/ D P.AT/ and UA.A/ D V�.AT/ , from now on we will omit references to
left eigenvalues, eigenvectors and spectra, unless we want to emphasize differences.

In order to solve (7) in dioids we have to use the following theorem [33, 34]:

Theorem 3 (Gondran and Minoux [34, Theorem 1]) Let A 2 S n�n. If A� exists,
the following two conditions are equivalent:

1. AC
:i ˝ � D A�

:i ˝ � for some i 2 f1 : : : ng, and � 2 S.
2. AC

:i ˝ � (and A�
:i ˝ �) is an eigenvector of A for e , AC

:i ˝ � 2 Ve.A/ .

where we define the transitive closure AC D P1
kD1 A and the transitive reflexive

closure A� DP1
kD0 A of A (also called Kleene’s plus and star operators).

In [35–37] Gondran and Minoux’ theorem was made more specific in two
directions: on the one hand, by focusing on particular types of completed idempotent
semirings—semirings with a natural order where infinite additions of elements exist,
so transitive closures are guaranteed to exist and sets of generators can be found for
the eigenspaces—and, on the other hand, by considering more easily visualizable
subsemimodules than the whole eigenspace—a better choice for exploratory data
analysis.

2.3 Graphs, Matrices and Closures over Dioids

From Theorem 3 it is clear that we need efficient methods to obtain the closures in
order to solve the eigenvalue-eigenvector problem—and hence HITS and SVD—
in the general setting of semirings. For this purpose, it is interesting to extend
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the cryptomorphism between weighted graphs and square matrices of Sect. 1.2
explicitly:

• For a matrix A 2Mn.S /, the network or weighted digraph induced by A, NA D
.VA; EA; wA/, consists of a set of vertices VA, a set of arcs , EA D f.i; j/ j Aij ¤
�Sg, and a weight wA W VA � VA ! S; .i; j/ 7! wA.i; j/ D aij.

• For a weighted directed graph, N D .V; E; w/ where V D fvigniD1 is a set of
nodes E � V �V is a set of edges, and w W E! S a weight function on the edges
w.vi; vj/ > 0; .vi; vj/ 2 E and w.vi; vj/ D 0 otherwise, the matrix AN 2Mn.S /

is defined as .AN/ij D w.vi; vj/ .

This allows us intuitively to apply all notions from networks to matrices and vice
versa, like the underlying graph GA D .VA; EA/ disregarding the weights, the set of
paths ˘C

A .i; j/ between nodes i and j or the set of cycles CC
A . The following account

is a summary of results in this respect, and we refer the reader to [35, 36] for proofs.

Lemma 2 Let A 2Mn.S/ be a square matrix over a commutative semiring S . A�
exists if and only if AC exists and then:

AC D A˝ A� D A� ˝ A A� D I ˚ AC

But since in incomplete semirings the existence of the closures is not warranted, our
natural environment should be that of complete semirings.

On the other hands, in dioids the following lemma holds:

Lemma 3 Let A 2 Mn.S/ be a square matrix over a dioid S . For partition Nn D
˛ [ ˇ call PER .A/ D Aˇ˛A�̨

˛A˛ˇ ˚ Aˇˇ . Then

�
A˛˛ A˛ˇ

Aˇ˛ Aˇˇ

	C
D
�

AC̨̨ ˚ A�̨
˛A˛ˇPER .A/�Aˇ˛A�̨

˛ A�̨
˛A˛ˇPER .A/�

PER .A/�Aˇ˛A�̨
˛ PER .A/C

	

Proof Adapted from [38, Lemma 4.101] ut
Notice that closures and simultaneous row and column permutations commute:

Lemma 4 Let A; B 2 Mn.S / and let P be a permutation such that B D PTAP.
Then BC D PTACP and B� D PTA�P.

A square matrix is irreducible if it cannot be simultaneously permuted into a
triangular upper (or lower) form. Otherwise we say it is reducible. Irreducibility
expresses itself as a graph property on the induced digraph DA of Sect. 1.2.

Lemma 5 If A 2Mn.S/ is irreducible, then:

• The induced digraph DA has a single strongly connected component.
• All nodes in its induced digraph DA are connected by cycles.
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The irreducible case is used as a basic case in the recursive building of the closure
of any possible matrix next. In it, the condensation digraph is built using the classes
of the reachability relation in DA as the vertices (the strongly connected components
of DA) and their connections as edges:

Lemma 6 (Recursive Upper Frobenius Normal Form, UFNF) Let A 2 Mn.S/

be a matrix over a semiring and GA its condensation digraph. Then,

1. (UFNF3) If A has zero lines it can be transformed by a simultaneous row and
column permutation of VA into the following form:

PT
3 ˝ A˝ P3 D

2

664

E

 � � �
� E˛˛ A˛ˇ A˛!

� � Aˇˇ Aˇ!

� � � E!!

3

775 (12)

where either A˛ˇ or A˛! or both are non-zero, and either A˛! or Aˇ! or both
are non-zero. Furthermore, P3 is obtained concatenating permutations for the
indices of simultaneously zero columns and rows V
, the indices of zero columns
but non-zero rows V˛ , the indices of zero rows but non-zero columns V! and the
rest Vˇ as P3 D P.V
/P.V˛/P.Vˇ/P.V!/.

2. (UFNF2) If A has no zero lines it can be transformed by a simultaneous row and
column permutation P2 D P.A1/ : : : P.Ak/ into block diagonal UFNF:

PT
2 ˝ A˝ P2 D

2

6664

A1 � : : : �
� A2 : : : �
:::

:::
: : :

:::

� � : : : AK

3

7775 (13)

where fAkgKkD1; K � 1 are the matrices of connected components of GA.
3. (UFNF1) If A is reducible with no zero lines and a single connected component

it can be simultaneously row- and column-permuted by P1 to

PT
1 ˝ A˝ P1 D

2

6664

A11 A12 � � � A1R

� A22 � � � A2R
:::

:::
: : :

:::

� � � � � ARR

3

7775 (14)

where Arr are the matrices associated with each of its R strongly connected
components (sorted in a topological ordering), and P1 D P.A11/ : : : P.ARR/.

Note that irreducible blocks are the base case of UFNF1, so we sometimes refer to
irreducible matrices as being in UFNF0.

Note that as a result of this Section, we know how to calculate algorithmically
the transitive closure for any type of matrix A in any complete semiring.
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2.4 Eigenvalues and Eigenvectors of Matrices
over Complete Dioids

By the reasoning in previous sections and the cryptomorphism above, eigenvectors
of the projection matrices in the dual-projection approach are vectors describing
some qualities of the nodes in the weighted bipartite graph, e.g. authoritativeness or
hubness in HITS. This is the reason why we need to characterize such vectors better.

2.4.1 Orthogonality of Eigenvectors

In spectral decomposition, orthogonality of the eigenvectors plays an important role.
In zerosumfree semimodules orthogonality cannot be as prevalent as in standard
vector spaces. To see this, first call the support of a vector, the set of indices of
non-null coordinates supp.v/ D fi 2 njvi ¤ �g, and consider a simple lemma:

Lemma 7 In semimodules over entire, zerosumfree semirings, only vectors with
empty intersection of supports are orthogonal.

Proof Suppose v?u, then
Pn

iD1 vi ˝ ui D �. If any vi D � or ui D � then their
product is null, so we need only consider a non-empty supp.v/ \ supp.u/ . In this
case, vT ˝ u DPi2supp.v/\supp.u/ vi˝ ui. But if S is zerosumfree, for the sum to be
null every factor has to be null. And for a factor to be null, since S is entire, either
vi is null, or ui is null, and then i would not belong to the common support. ut

2.4.2 The Null Eigenspaces

If any, the eigenvectors of the null eigenvalue are interesting in that they define the
null eigenspace. Also, the particular eigenvalue ? can only appear in UFNF3. The
following proposition describes the null eigenvalue and eigenspace:

Proposition 1 Let S be a semiring and A 2Mn.S /. Then:

1. If the i-th column is zero then the characteristic vector ei is a fundamental
eigenvector of � for A and � 2 PP.A/ .

2. Non-collinear eigenvectors of � are orthogonal, so the order of multiplicity of
? 2 PP.A/ is the number of empty columns of A .

3. If S is entire, then GA has no cycles if and only if PP.A/ D f�g .
4. If S is entire and zerosumfree, the null eigenspace if generated by the funda-

mental eigenvectors of � for A, V�.A/ D hFEV�.�/ Ai .
Proof See [35, 3.6 and 3.7]. Claim 2 is a consequence of claim 1 and Lemma 7. ut
Note that these are important in as much as they generate ? coordinates in the
eigenvectors, that is, in the hubs and authorities vectors.
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2.4.3 Eigenvalues and Eigenvectors of Matrices over Positive Semifields

When S has more structure we can improve on the results in the previous section.
The first proposition advises us to concentrate on the irreducible blocks:

Proposition 2 If K is a positive semifield, A 2 Mn.K / is irreducible, and v 2
V�.A/ then � > � and 8i 2 n ; vi > � .

Proof See [33, Lemma 4.1.2]. ut
Note that these results apply to R

C
0 , but not to RC;�, the reals, or to CC;�, the

complex numbers, since the latter are not dioids.
For a finite � 2 K in a semifield, let .eA�/

C D .��1 ˝ A/
C

be the normalized
transitive closure of A. The lemma below allows us to change the focus from the
transitive closures to the circuit structure of GA and vice versa.

Lemma 8 If K is a semifield and A 2 Mn.K /, then if .��1 ˝ A/
�

exists and
if either

P
c2Ci

w.c/ ˝ .��1/l.c/ ˚ e D P
c2Ci

w.c/ ˝ .��1/l.c/ where Ci denotes

the set of circuits in CC
A containing node vi , or .��1 ˝ A/

�
�i D .��1 ˝ A/

C
�i then

.��1 ˝ A/
�
�i is an eigenvector of A for eigenvalue � .

Proof See [33, Chapter 6, Corollary 2.4]. ut
When K is a radicable semifield, the mean of cycle c is �˚.c/ D l.c/

p
w.c/, If

the semifield is (additively) idempotent the aggregate cycle mean of A is �˚.A/ DPf�˚.c/ j c 2 CC
A g. If the semiring is idempotent and selective, the nodes in

the circuits that attain this mean are called the critical nodes of A, Vc
A D fi 2 c j

�˚.c/ D �˚.A/g. Then the critical nodes are Vc
A D fi 2 VA j .eAC/

C
ii D eg .

We define the set of (right) fundamental eigenvectors of A for � as those indexed
by the critical nodes.

FEV�.A/ D f.eA/
C
�i j i 2 Vc

Ag D f.eA/
C
�i j .eA/

C
ii D eg:

The basic building block is the spectrum of irreducible matrices:

Theorem 4 ((Right) Spectral Theory for Irreducible Matrices [35]) Let A 2
Mn.K / be an irreducible matrix over a complete commutative selective radicable
semifield. Then:

1. The right spectrum of the matrix includes the whole semiring but the zero:

P.A/ D K n f?g

2. The right proper spectrum only comprises the aggregate cycle mean:

PP.A/ D f�˚.A/g

3. If an eigenvalue is improper � 2 P.A/ n PP.A/, then its eigenspace (and
eigenlattice) is reduced to the two vectors:
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V�.A/ D f?n;>ng D L�.A/

4. The eigenspace for a finite proper eigenvalue � D �˚.A/ < > is generated from
its fundamental eigenvectors over the whole semifield, while the eigenlattice is
generated by the semifield � D hf?; e;>g;˚;˝;?; e;>i .

V�.A/ D hFEV�.A/iK � L�.A/ D hFEV�.A/i�
Note how this theorem introduces the notion of eigenlattices to finitely represent

an eigenspace over an idempotent semifield. Refer to [35] for further details.
We will see in our results that the only other UFNF type we need be concerned

about is UFNF2: Let the partition of VA generating the permutation that renders
A in UFNF2, block diagonal form, be VA D fVkgKkD1, and write A D UK

kD1 Ak,
Ak D A.Vk; Vk/.

Lemma 9 Let A D UK
kD1 Ak 2 Mn.S / be a matrix in UFNF2, over a semiring,

and V�.Ak/ (U�.Ak/) a right (left) eigenspace of Ak for � (�). Then,

U�.A/ Š
K�

kD1

U�.Ak/ V�.A/ Š
K�

kD1

V�.Ak/: (15)

Proof See [36] Lemma 3.12. ut
Note that this procedure is constructive and how the combinatorial nature of the

proof in [36] makes the claim hold in any semiring. Clearly, if � 2 PP.Ak/ for any k,
then � 2 PP.A/. Since PP.Ak/ D 	P.Ak/ for matrices admitting an UFNF2, PP.Ak/ D
	P.Ak/ DSK

kD1 PP.Ak/.

Corollary 1 Let A 2 Mn.S / be a matrix in UFNF2 over a semiring. Then the
(left) right eigenspace of A for � 2 P.A/ is the product of the (left) right eigenspaces
for the blocks, U�.A/ D�K

kD1 U�.Ak/ and V�.A/ D�K
kD1 V�.Ak/.

In complete semirings, looking for generators for the eigenspaces with ık.k/ D e
and ık.i/ D ? for k ¤ i, we define the right fundamental eigenvectors as

FEV2
�.A/ D

K[

kD1

�
K�

iD1

ık.i/
˘̋

FEV1
�.Ai/

�
: (16)

Lemma 9 proves that FEV2
�.A/ 	 V�.A/, but we also have the following:

Lemma 10 Let A 2 Mn.D/ be a matrix in UFNF2 over a complete idempotent
semiring with � 2 P.A/. Then,

1. If � 2 PP.A/, then FEV2,F
� .A/ DSkj�2PP.Ak/

h�K
iD1 ık.i/

˘̋

FEV1,F
� .Ai/

i
.

2. If � 2 P.A/ n PP.A/ then FEV2
�.A/ D FEV2;>.A/.

3. If � 2 PP.A/ then FEV�.A/ D FEV2,F
� .A/ [ FEV2;>.A/ n >

˘̋

FEV2,F
� .A/.
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4. FEV2;>.A/ D >
˘̋

FEV2
�.A/.

So call FEV2;>.A/ the saturated fundamental eigenvectors of A, and define the
(right) saturated eigenspace as V >.A/ D hFEV2;>.A/iD .

Corollary 2 Let A 2 Mn.S / be a matrix in UFNF2 over a complete selective
radicable idempotent semifield. Then

1. For � 2 PP.A/, V�.A/ � V >.A/.
2. For � 2 P.A/ n PP.A/, V�.A/ D V >.A/.

Notice that the very general proposition below is for all complete dioids.

Proposition 3 Let A 2 Mn.D/ be a matrix in UFNF2 over a complete dioid.
Then,

1. For � 2 P.A/ n PP.A/,

U >.A/ D hFEV2;>�AT
�i� V >.A/ D hFEV2;>.A/i� :

2. For � 2 PP.A/, � < >,

U�.A/ D hFEV2
�

�
AT
�iD V�.A/ D hFEV2

�.A/iD :

To better represent eigenspaces, we define the spectral lattices of A,

L�.A/ D hFEV2
�

�
AT
�Ti� L�.A/ D hFEV2

�.A/i�:

involving the product of the component lattices, L�.A/ D�K
kD1 L�.Ak/.

3 Results

3.1 HITS over Idempotent Semifields: iHITS

Let K D hK;˚;˝;?i be a complete dioid, in general, and let .G; M; R/ be a K -
formal context. Then the space of hub scores is X D KG and that of authorities is
Y D KM and they get mutually transformed by the actions of two linear functions:

RT ˝ � W KG ! KM R˝ � W KM ! KG

x 7! RT ˝ x y 7! R˝ y (17)

To relate this problem back to the original one, we rewrite (7) in the new spaces,
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A˝ z D z˝ � ,
� � R

RT �
�
˝
�

x
y

�
D
�

x
y

�
˝ � (18)

we premultiply (18) by the new symmetric A to obtain

.R˝ RT/˝ h D h˝ �˝2 .RT ˝ R/˝ a D a˝ �˝2 (19)

expressing the solution in terms of the projectors on both modes of (1). This
proves that in order to solve the HITS problem in a dioid we have to solve the
Singular Value Problem (18) which amounts to solving both decoupled Eigenvalue
Problems (19).

However, these manipulations have overlooked the fact that to obtain the
original HITS an idempotent semifield—not a dioid—was needed. In the interest
of generality, we will develop the calculations below in terms of dioids, but the
reader is warned that after a certain point we must suppose that K is a semifield
to reach a solution, and in particular an idempotent semifield. In this way we obtain
the analog of HITS over idempotent semifields which we call iHITS.

3.2 The Eigenproblem in Symmetric Matrices

Since A is symmetric, we no longer have to worry about the distinction between the
left and right eigenproblem:

Lemma 11 If A is symmetric then 	P.Ak/ D PP.Ak/ and
�
U�.A/

�T D V�.A/ .
We can also refine the results in Proposition 1:

Proposition 4 Let S be a semiring and a symmetric A 2Mn.S /. Then:

1. The multiplicity of ? 2 PP.A/ is the number of empty rows/columns of A .
2. If S is entire, PP.A/ D f�g if and only if A D En .

Proof First, if A D AT, then the number of empty rows and empty columns is the
same, and Proposition 1.2 provides the result. Second, after Proposition 1.3 PP.A/ D
f�g means GA has no cycles. But if Aij ¤ � then c D i ! j ! i is a cycle with
non-null weight w.c/ D Aij ˝ Aji ¤ �, which is a contradiction. ut
Note that empty rows of R generate left eigenvalues while empty columns generate
right eigenvalues, so the multiplicity of the null singular value may change from left
to right.

To use Lemma 8 and Theorem 4, we need the maximum cycle mean:

Proposition 5 Let K be a complete idempotent semifield and let A 2 Mn.K/ be
symmetric. Then �˚.c/ D supi;j Aij , where the sup, taken in the natural order of the
semifield is attained.

Proof Since A is symmetric, c D i ! j ! i is a cycle whenever Aij D Aji ¤ ? .
Then �˚.c/ D Aij . Consider one c0 such that �˚.c0/ D supi;j Aij D maxi;j Ai;j

in the order of the semiring. This must exist since i; j are finite. If we can extend
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any of these critical cycles with another node k such that c00 D i ! j ! k !
i then w.c00/ D Aij ˝ Ajk ˝ Aki � A3

ij D �˚.c0/l.c00/, so in the aggregate mean
�˚.c0/ ˚ �˚.c00/ D �˚.c0/ . So we induce on the length of any cycle that is an
extension of c0 that

P
c2CC

A
D �˚.c0/ D supi;j Ai;j . ut

To find the cycle means easily, we use the UFNF form.

3.3 UFNF Forms of Symmetric Matrices and Their Closures

For symmetric reducible matrices, the feasible UFNF types are simplified:

Proposition 6 Let S be a dioid, and a symmetric A 2Mn.S /. Then:

• (UFNF3) A admits a proper symmetric UFNF3 form if it has zero lines, and, in
that case, the set of zero lines and zero rows are the same.

PT
3 ˝ A˝ P3 D

�
Aˇˇ �
� E



�
(20)

• (UFNF2) If a A has no zero lines it can be transformed by a simultaneous row
and column permutation P2 D P.A1/ : : : P.Ak/ into symmetric block diagonal
UFNF:

PT
2 ˝ A˝ P2 D

2

6664

A1 � : : : �
� A2 : : : �
:::

:::
: : :

:::

� � : : : AK

3

7775 D
K]

kD1

Ak (21)

where fAkgKkD1; K � 1 are the symmetric matrices of connected components of
GA.

• (no UFNF1) A cannot be permuted into a proper UFNF1 form.

Proof A simple matrix conformation procedure on Lemma 6 when the matrix is
symmetric. ut
We will see that this is almost the only structure we need to consider to find the
eigenvectors. Consider R 2MGCM.S/, the bipartite network matrix, for instance, of
the form:

R D
�

R1 R12

R21 R2

�
(22)

If R12 and R21 are null, then we can find a permutation P so that
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PT ˝ A˝ P D PT ˝

2

664

� � R1 �
� � � R2

RT
1 � � �
� RT

2 � �

3

775˝ P D

2

664

� R1 � �
RT

1 � � �
� � � R2

� � RT
2 �

3

775 (23)

Now, if R2 D EG2M2 is null, then (23) is in UFNF3 with E

 D E.G2CM2/.G2CM2/ ,
while if R1 and R2 are both full, then (23) is in UFN2 with blocks A1 and A2,
respectively. Note that other blocked forms of R simply generate an irreducible A,
since the UFNF1 form is not possible.

So we can suppose that A can be simultaneously row and column permuted into
a diagonal block form

PT ˝ A˝ P D

2

6664

A1 � � � � �
:::

: : :
:::

:::

� � � � AK �
� � � � � E



3

7775 D
 

K]

kD1

Ak

!
] E

 Ak D

� � Rk

RT
k �

�
(24)

with the empty lines and rows permuted to the beginning E

 and irreducible blocks
Ak. Recall that closures and permutations commute, whence the closures of the
matrices in the forms above are really simple: the closure of (24) is straightforward
in terms of the closures of the blocks:

PT ˝ AC ˝ P D

2

6664

AC
1 � � � � �
:::

: : :
:::

:::

� � � � AC
K �

� � � � � E



3

7775 (25)

The solution of this base case is highly dependent in the dioid in which the
problem is stated. Since we will be solving the problem in idempotent semifields,
for the irreducible base case we need only be concerned about matrix:

eA� .̊A/ D
"

� eR� .̊A/

.eR� .̊A//
T �

#
D
� � B

BT �
�

(26)

where we are using the shorthand B DeR� .̊A/ to account for the normalization with
the cycle means that we need to use to find the eigenvectors. To find the closures of
such irreducible matrices apply Lemma 3 to (26):

�
eA� .̊A/

�C D
�

.B˝ BT/C B˝ .BT ˝ B/�

BT ˝ .B˝ BT/� .BT ˝ B/C
�

(27)

where we have used that .BT ˝ B/� ˝ BT D BT ˝ .B˝ BT/� .
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3.4 Pairs of Singular Vectors of Symmetric Matrices over
Idempotent Semifields

To extract the eigenvectors corresponding to left singular vectors i 2 G (respectively,
right singular vectors j 2 M) we need to check Theorem 3 against each block in its
diagonal:

i 2 G;
�
eA� .̊A/

��
�i D

�
eA� .̊A/

�C
�i , .B˝ BT/

�
�i D .B˝ BT/

C
�i

j 2 M;
�
eA� .̊A/

��
�j D

�
eA� .̊A/

�C
�j , .BT ˝ B/

�
�j D .BT ˝ B/

C
�j

So the existence of
�eA� .̊A/

�C
requires the existence of the transitive closures

.BT ˝ B/C and .B˝ BT/C as we could have expected from (19). Note that after
(6), the hub and authority scores are those columns such that:

.B˝ BT/
C
�i D .B˝ BT/

�
�i .BT ˝ B/

C
�j D .BT ˝ B/

�
�j

but, importantly, (27) gives us the form of the authority score related to a particular
hub score and vice versa, which is a kind of formal-concept property:

hi D .B˝ BT/
�
�i , ai D BT ˝ .B˝ BT/

�
�i (28)

aj D .BT ˝ B/
�
�j , hj D B˝ .BT ˝ B/

�
�j

This solves completely the description of the left and right singular vectors. To find
the singular values, we note from (19) that they are the square roots of the cycle
means of the independent blocks or, equally, the proper eigenvalues of A,

˙ D fp� j � D �˚.Ak/ ; A D ˚kAkg D fp� j � D PP.Ak/g

This would include the bottom if and only if one of the blocks is empty.

3.5 Relationship to FCA

In order to interpret the results above in the light of FCA, we have to use the proper
multi-valued extension of it. For such purpose, K -Formal Concept Analysis is an
extension of FCA for formal contexts with entries in an idempotent semifield [24]
which has been used for the analysis of confusion matrices and other data with the
appropriate characteristics [39–41].
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Regarding the glimpse of a formal concept-like property of (28), a cursory analy-
sis with the techniques in [24] shows that the analogue of the polars in FCA declared
in (17) actually comes from two different generalized Galois connections:

• R˝ � W KM ! KG is the right adjunct of a left (Galois) adjunction, while
• RT ˝ � W KG ! KM is the left adjunct in a right (Galois) adjunction.

It is well known that the iteration of these operators in the Boolean case is
not concept-forming. Nevertheless, they do lead to closures. For instance, in [15]
a discussion of the issue leads to operators achieving transitive closures for
endorelations—that is, binary relations with identical domain and codomain—and
the finding of strongly connected components in the one-mode projection graphs
these endorelations define. This agrees with a technical condition often imposed
on graphs prior to their study through HITS: that their adjacency matrices be irre-
ducible, which translates into a graph with a single strongly connected component.
Note also that the transitive closure of the matrix also figures prominently in this
application.

Yet, in this chapter the isomorphism between the ranges of the operators in (17)
defining the duality between hubs and authorities is clear and attested in a more
generic context than HITS was initially conceived. Specifically, we consider graphs
with any number of strongly connected components, even with none (see Sect. 3.3).

In parallel work, also, we suggest that the “standard” take on what a formal
concept of a K -context is should be enlarged to include not only closures, but also
the interior of (multi-valued) sets of objects and attributes [42]. It may be the case
that the hub and authority score vectors in the idempotent version of HITS belong
to these systems of interiors. In any case, it would seem that there is not a single
SVD for matrices with values in an idempotent semifield, and this issue needs to be
explored further.

3.6 Example

In this section we present a HITS analysis for a weighted two-mode network both
using standard HITS and HITS over the max-min-plus idempotent semifield. The
data being analysed is the example in [43, p. 31], the worries data, which is a
two-mode network of the type of worry declared as most prevalent by 1554 adult
Israeli depending on their living countries—and sometimes those of their parents.
The graph of the network is depicted in Fig. 1a.

To be amenable for max-min-plus processing the original counts in the contin-
gency matrix were transformed into a joint probability function PWP with marginals
PW over worries and PP over procedence. The idempotent SVD was carried out on
the pointwise mutual information matrix

IWP.i; j/ D PWP.i; j/

PW.i/ � PP.j/
:
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Fig. 1 Weighted, directed graph of the worries data [43, p. 31] and its weighted idempotent and
standard “authority” (worry) and “hub” (procedence) scores. There are clear differences in both
approaches. (a) Worries weighted bipartite network. (b) Principal worry scores. (c) Procedence
scores

The “authority” and “hub” scores are differentiated for each of the modes: they
return “type of worry” and “procedence” scores, respectively. We can see that
HITS and iHITS produce somehow different results: the actual meaning of these
differences is data dependent and a matter for future, more specialized analyses. The
idempotent primitives were developed in-house and are available from the authors
upon request.

3.7 Discussion

Extensions to Other Semirings Note that the original HITS problem was set in a
positive semifield that is not idempotent; hence, our method of solution does not
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apply yet to that case, but does apply to the max-min-plus and max-min-times
semifields, examples of which are given in terms of their normalized closures. In
the case of the R

C
0 the Perron-Frobenius theorem is usually invoked to solve HITS

iteratively by means of the power method [44].
A reviewer of this paper requested a consideration of the solution of the HITS

problem for the rest of dioids which are not semifields. The problem with further
generalization of our scheme is the base case for the recursion of Frobenius
normal forms. In the idempotent semifield case, the cycle means of Proposition 5
provide the eigenvalues needed for the normalization of the matrices that allow
the calculation of the closures in the irreducible case. But in the generic positive
semifield case the cycle means and the possibility of choosing the critical circuits to
select the eigenvectors in the closures are not granted. Also, in inclines—and in the
fuzzy semirings included in them—the base, irreducible case is completely different
to that of semifields [33]. But since the generic development on dioids for UFNF1

and UFNF2 is based on combinatorial considerations, we believe that a solution for
the base case for other dioids could be plugged into this UFNF recursion to obtain
analogous results to those presented here. These extensions will be considered in
future work.

On the Orthogonality of Solutions On another note, the SVD in standard algebra
makes a strong case about the orthogonality of the left and right singular vectors
belonging to different singular values in order to guarantee certain properties of
the bases of singular vectors in the reconstruction. But in entire zerosumfree
semirings, and in entire dioids or positive semifields a fortiori, orthogonality is a
rare phenomenon, after Lemma 7.

Indeed, irreducible matrices do not have any orthogonal, but rather collinear left
or right singular vectors. Regarding reducible matrices, note that (24) factors in all
the possible orthogonality between eigenvectors. In fact we have,

Corollary 3 Let .G; M; R/ be an S -formal context over a dioid S , and A 2
Mn.S / as in (27). Then two of the eigenvectors for A or (left, right) singular vectors
for R can only be orthogonal if they arise from different blocks.
and Proposition 3 proves that even in that case they might not be orthogonal.

However, after the work in [22, 25] orthogonality may not be needed in
the case of dioids: the use of join- and meet-irreducible may guarantee perfect
reconstruction.

On the Effectiveness of the Dual-Projection Approach for 2-Mode Network
Analysis Yet another reviewer raised the concern that the work in [3] proves the
dual-projection approach hopeless. This work of Latapy and colleagues propounds
a more “direct” approach to the study of bipartite networks by means of collecting
and creating measures designed specifically for them, as opposed to those adapted
from 1-mode networks. They develop to some extent a criticism of the projection
approach and, indirectly, of the dual-projection approach on Boolean networks.

However, they suggest that theirs and the projection approach are, in general,
complementary. And in particular, that none of the criticism for Boolean projection
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approaches applies to projection approaches on weighted affiliation networks. On
these grounds and the present work, the criticism of [3] notwithstanding, we believe
the dual-projection approach is adequate for the study of 2-mode networks and can
bring many insights about their behaviour.

4 Summary and Conclusions

In this paper, we related the HITS algorithms to the SVD of the adjacency matrix
of a weighted 2-mode network and argued that this supports the dual-projection
approach to SNA.

To make evident the relationship of these techniques to K -Formal Concept
Analysis, we generalized the HITS algorithms for semirings, then instantiated it in
dioids, semifields (including the original semifield where it was defined) and finally
in idempotent semifields, which are the algebras used by K -FCA.

We showed that the projection operators are related to Galois adjunctions, rather
than to the polars in Galois connections, and that this approach to weighted graph
analysis has affinities to finding strongly connected components in Boolean graphs.
What the connected components of weighted graphs might mean is subject for
further work.

We have also provided an example of how to use the new calculations to obtain
idempotent authority and hubness scores for a weighted bipartite graph, although the
interpretation of such scores vis-à-vis the original ones needs further investigation.
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