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1 Introduction

Our purpose is to investigate and analyze attributed graphs. In this article we discuss
how recent extensions of Formal Concept Analysis apply to this problem. We
consider undirected graphs G.O; E/ where E is the edge set, and O the vertex set.
The vertices are labeled by a description in an attribute pattern language L with a
lattice structure, typically L D 2I where I is a set of binary attributes. Note that we
may consider such an attributed graph both as a graph whose vertices are labeled
with subsets of I and as set of objects each described by such a subset of I and that
may be related together by edges.

The former view leads to consider the methodology used to investigate graphs,
in particular social and complex networks. Most of the work in this area consider
unlabeled networks and is concerned by what may be said about the topological
structure of the network. A large set of measures have been proposed to analyze
these networks, and two main ways have been proposed to extract interesting
subgraphs. The first way consider the network as made of a core, i.e., a dense
subgraph whose vertices are highly connected, together with its periphery, made
of vertices highly connected to the core, but poorly connected between them [6].
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The second way considers the network as made of a number of dense subnetworks,
called communities whose vertices are highly connected within the community and
poorly connected to vertices of other communities [8]. Finally, the two views may
be combined, for instance, by considering the network as made of communities each
having some core/periphery structure [16].

Regarding the notion of core, there have been various ways to define it, starting
from the k-core of a network which is the greatest subnetwork whose vertices all
have degree at least k in the subnetwork [17]. By changing the topological property,
but keeping this idea of a greatest subnetwork whose vertices share the property
within the network, we obtain various core definitions [3]. A core may also be
defined as the greatest subnetwork made of a subset of a family of small, connected
subnetworks. The simplest example is the k-clique core that is only made of k-
cliques. When k D 3, the core is made of triangles which are known to be an
important substructure in social networks analysis [29].

Concerning the idea of communities, it has been extensively investigated mostly
as an optimization problem: how to optimally partition the network in subnetworks
maximizing some measure. A second view of communities derives from some
strong structural property that has to be satisfied within a community. We will
further call them structural communities, or simply communities, as we only
consider these kind of communities in the remaining part of this article. The main
example is the k-community approach that divides a k-clique core (as defined above)
in connected subnetworks each satisfying a stronger property (see below) [13] .

From the first point of view, adding attributes to the vertices means that each
attribute pattern induces a subgraph whose vertices satisfy the pattern. Each such
subgraph could then be investigated, extracting its core and communities. The
question is then how to summarize and select relevant information from such a set
of results.

The second view considers the attributed graph first as a table representing a set
of objects described by attributes, and then considers that edges may relate objects.
This leads to the use of standard methodology of data analysis by adapting it to
dealing with topological information. The whole purpose of this article is to discuss
how Formal Concept Analysis, which was originally concerned with data tables,
may be extended in order to take into account the topological information. The
main idea we propose here is to consider as parameters the notion of cores and
structural communities relevant to the data to analyze and adapt accordingly the
FCA methodology.

Regarding the reduction of a graph to its core, this may be obtained by defining
an interior operator p on the vertex powerset 2O. This approach, based on a previous
work on abstraction in Formal Concept Analysis [24], produces abstract closed
patterns structured in an abstract concept lattice together with a basis of abstract
implications written �q ! �w. All concept extents are then images of the interior
operator. When considering attributed networks, and given some core definition,
such an interior operator reduces a vertex subset e to the vertices forming the core of
the subgraph G.e/ induced by e [23]. It is then called a graph abstraction operator.
Fig. 1 represents an attributed graph G, the subgraph induced by pattern a (in plain
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Fig. 1 The pattern a
subgraph is displayed with
plain lines, the corresponding
3-clique abstract subgraph is
displayed in blue lines. The
associated abstract closed
pattern is ab
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Fig. 2 The DMKD,IDArev
pattern subgraph in the DBLP
co-authoring experiment. The
red vertices and edges
represent the subgraph
induced by the degree � 4

abstract extension

lines), and the 3-clique core of this subgraph, i.e., its abstract subgraph (in blue
lines). Note that all vertices of the core share attribute b. This means that ab is an
abstract closed pattern and that the abstract implication �a ! �ab holds, i.e., any
triangle in G whose vertices share a also share b.

Recent works in attributed graph mining are interested in searching for local
patterns made of a constraint on a subset of attributes together with a density
constraint on a vertex subset, and this using various notions of maximality [11, 18].
In a companion article [21], we have defined local closed patterns corresponding
to maximal attribute patterns each associated with one dense subgraph, allowing to
extract local implications, particular to specific dense groups of objects. For that
purpose Formal Concept Analysis (FCA) had to be extended in order to take into
account this notion of locality.

The simplest example is obtained by considering a subgraph made of various
connected components, and associating to each connected component a local closed
pattern, i.e., the most specific pattern shared by the vertices of this connected com-
ponent. More generally, local closed patterns may be associated with the connected
components of abstract subgraphs. The family of such connected components forms
a partial order called a cc-confluence while the corresponding local concepts have
a weaker structure called a pre-confluence. As an example, in Fig. 2 we display a
pattern subgraph extracted from a DBLP co-authoring network labeled by journal
and conference names, together with its abstract subgraph (in bold and red vertices
and lines) when considering a 4-core abstraction. The abstract subgraph has two
connected components, i.e., two structural communities of scientists. Again we
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Fig. 3 The original
Friendship network of a
group of West Scotland
pupils. The pupils and edges
forming 3-communities of
size at least 4 are displayed in
various colors

may associate to this structure a set of implications, called local implications. In
the previous example we found a local implication �iq ! �iw stating that in the
connected component containing vertex i of the degree � 4 abstract subgraph of
pattern q, all vertices also share pattern w.

Connected components of abstract subgraphs as represented in cc-confluences
do not always completely capture the idea of communities as considered in social
network analysis. As discussed in [21], we may, however, enlarge the local closed
patterns approach by deriving a new graph GT from G whose vertex set T is a set
of vertex subsets of G. Figure 3 displays a graph whose vertices represent pupils of
a school in the West of Scotland, whose edges represent friendship relations, and
whose vertex attributes concern substance use and sporting activity.1 As a running
example we consider the subgraph induced by the empty pattern, i.e., the whole
graph. By applying a 3-clique graph abstraction restricted to connected components
containing at least 4 vertices,2 we obtain a subgraph made of the bold and colored
edges and vertices. This abstract subgraph is made of two connected components,
therefore leading to two local concepts. However, the largest connected component
is clearly made of distinct dense parts, i.e., communities, we would like to consider
when defining local closed patterns. Fortunately, when considering k-communities
[13] we can solve this problem by applying the cc-confluence approach to a new
graph derived from the original graph. More precisely, a k-community is a vertex
subset in a graph G that corresponds to a connected component in a derived graph
GT . The vertices of GT are k-cliques in G and an edge relates two vertices whenever
the corresponding k-cliques share k � 1 vertices in G. Each colored subgraph in
Fig. 3 defines such a 3-community.

The last task is to define interestingness measures to rank abstract or local
patterns and implications. Regarding patterns, we will search for patterns whose
abstract (resp. local) subgraph is a large part of the whole pattern subgraph, i.e.,
which preserves the core (resp. communities) definitions. The corresponding mea-
sure is called specificity. Regarding the abstract and local implications, we search for

1http://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm.
2We further call the 3-clique and cc-�4 abstraction.

http://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm
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implications which are informative, i.e., which did not hold as standard implications
and therefore bring some new information about our data. The corresponding
measure is called Informativity. A preliminary discussion of both measures was
presented in [25]. We propose here definitions of specificity and informativity both
at the abstract and local level and experiment them on two real attributed networks.

Section 2 describes the attributed graphs used in our experiments. Section 3
presents abstract concept lattices, abstract implications, and graph abstractions
together with associated interestingness measures. Section 4 defines local concept
pre-confluences, related local implications, cc-confluences, and interestingness
measures. In Sect. 5 we show how we extract the set of 3-communities associated
with pattern subgraphs by using derived cc-confluences, and we display the local
concept ordering of the attributed network of teenage friendship displayed in Fig. 3.
In Sect. 6 we briefly discuss the implementation used in our experiments.

2 Datasets

In this section we will consider experiments with two datasets. In both cases the data
are described as a graph G D .O; E/. Vertices of this graph are have labels from 2I ,
where I is a set of items, i.e., binary attributes. Since objects are not always described
by binary attributes, the binarization preprocessing is described when necessary.

2.1 Teenage Friends and Lifestyle Study

The dataset is denoted by s50-1 and is a standard attributed graph dataset.3 It
represents 148 friendship relations between 50 pupils of a school in the West of
Scotland, and labels concern the substances used (tobacco, cannabis, and alcohol)
and sporting activity. The values of the corresponding variables are ordered. The
binarization process consists in defining variables representing the value intervals.
T stands for Tobacco consumption and has values 1 (no smoking), 2 (occasional),
and 3 (regular). C stands for cannabis consumption and has values 1 (never tries)
to 4, D stands for alcohol consumption and has values 1 (does not drink) to 5, and
S stands for sporting activity and has two values 1 (occasional) and (2) regular.
Binary attributes represent intervals, for instance, C234 means that the value of C is
at least 2 and therefore represents the interval Œ2; 4�. In Table 1 we present the binary
attributes we have defined. Attribute subsets represent intersection of intervals. For
example pattern {D123, D2345} requires that the value of D lies within the interval
Œ1; 3� \ Œ2; 5� D Œ2; 3�. Note that, for the sake of simplicity we do not distinguish the
two highest values of attributes T, C, and D.

3http://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm.

http://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm
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Table 1 The binary attributes used to label the vertices in the Teenage Friendship network

Tobacco Cannabis Alcohol Sport

T1, T23 C1, C12, C234, C34 D1, D12, D123, D2345, D345, D45 S1, S2

2.2 A DBLP Dataset

This is the DBLP dataset as described in [4]. There are 45,131 vertices, 228,188
edges, and 555 connected components. Vertices are authors that have published
at least one paper in one among 29 journals or conferences of the Database and
Datamining communities4 during the 1/1990–2/2011 period. An edge links two
authors whenever they are coauthors of at least one article. The conferences are
clustered in three clusters: DB (databases), DM (data mining), and AI (artificial
intelligence) according to a conference ranking site categorization.5 The binary
attributes are the journal and conference names together with the three clusters.
An attribute has value 1 if the author has published in the corresponding journal or
conference or cluster.

3 Abstract Closed Patterns in Attributed Networks

3.1 Closed Patterns

In this section we introduce the necessary definitions and terminology we use in
the article. Note that the terminology is somewhat non-standard in FCA. Indeed, as
we need to interleave interior operators with extensional and intensional operators,
the standard X00 notation to represent closed elements is not so convenient, so we
rather denote, respectively, by ext and int the extensional and intensional operators.
Furthermore, in this introductory paragraph we relate FCA to closed pattern mining.

A standard pattern mining procedure consists in considering the set of occur-
rences of patterns, belonging to some pattern language L with a lattice structure,6

within an object set O (see, for instance, [5]). This language is partially ordered
following a general-to-specific ordering, and each object o is described as a

4Conferences: KDD, ICDM, ECML/PKDD, PAKDD, SIAM DM, AAAI, ICML, IJCAI, IDA,
DASFAA, VLDB, CIKM, SIGMOD, PODS, ICDE, EDBT, ICDT, SAC ; Journals: IEEE TKDE,
DAMI, IEEE Int. Sys., SIGKDD Exp., Comm. ACM, IDA J., KAIS, SADM, PVLDB, VLDB J.,
ACM TKDD.
5http://webdocs.cs.ualberta.ca/~zaiane/htmldocs/ConfRanking.html.. DB = {VLDB, SIGMOD,
PODS, ICDE, ICDT, EDBT, DASFAA, CIKM}; DM= {SIGKDD Explorations, ICDM, PAKDD,
ECML/PKDD, SDM}; AI= {IJCAI, AAAI, ICML, ECML/PKDD}.
6We recall that in a lattice any pair of elements .x; y/ has a greatest lower bound x ^ y (or meet)
and a least upper bound (or join) x _ y.

http://webdocs.cs.ualberta.ca/~zaiane/htmldocs/ConfRanking.html.


Formal Concept Analysis of Attributed Networks 149

particular pattern d.o/. A pattern q occurs in object o whenever d.o/ is more specific
(i.e., larger) than q. The set of occurrences ext.q/ of a pattern q is called its extension.
An intension function int.e/ returns the most specific pattern associated with the
extension e. This means that we relate a pattern q to the most specific pattern with
same extension by applying the closure operator int ı ext to q. int ı ext.q/ is then
called a closed pattern. The pattern language L typically is 2I where I is a set of
binary attributes (aka items). With no loss of generality we will further use the
powerset 2I as a pattern language while what follows also applies to wider languages
as pattern structures[10]. When L D 2I the closure operator on patterns then simply
intersects the object descriptions of the extension of the entry pattern. This means
that when considering patterns with same extension as equivalent, closed patterns
are the representatives of the equivalences classes. Such a class has therefore a
maximum but also minimal elements, called minimal generators. When the patterns
belong to 2I , the min–max basis of implications[14] is defined as follows:

m D fg ! f ng j f is a closed pattern; g is a generator, f 6D g; ext.g/ D ext.f /g
This basis represents all the implications t ! t0 that hold on O, i.e., such that

ext.t/ � ext.t0/. This precisely means that all these implications may be derived
from the min–max basis. Obviously all non-trivial implications, i.e., implications
such that t0 6� t, may be inferred from an implication l ! r of m where l � t and
r [ l � t0.

Finally, note that the enumeration of closed patterns is in general restricted to
frequent patterns, i.e., patterns whose extension is larger than some threshold. In
FCA, such a constraint leads to iceberg lattices [27].

3.2 Abstract Closed Patterns

We summarize here how abstraction is applied in FCA by constraining the
extensional space. We first recall the definitions of closure operators and interior
operators, the latter being further used to restrict the pattern extensions to be
abstract extensions. In what follows all ordered sets are finite, and in particular
any topped meet-semilattice (resp. pointed join-semilattice) is a lattice.

Definition 1 Let U be an ordered set and f W U ! U a self map such that for
any x; y 2 U, f is monotone, i.e., x � y implies f .x/ � f .y/ and idempotent, i.e.,
f .f .x// D f .x/, then:

– If f is extensive, i.e., f .x/ � x, f is called a closure operator
– If f is intensive, i.e., f .x/ � x, f is called a dual closure operator, an interior

operator, or also a projection.

In the first case, an element such that x D f .x/ is called a closed element.
Ranges of interior operators on lattices are called abstractions and are character-

ized by the following Proposition:
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Proposition 1 (see [24]) A subset A of X D 2O is the range pŒX� of some interior
operator p on X, if and only if for any elements x; y in A, their join x[y also belongs
to A and A contains the empty set. The interior operator is related to its range as
follows:

p.x/ D supfa2Aja�xga.

Let then p be the interior operator associated with some abstraction A, p.x/ be the
greatest element of A contained in x. Closed pattern analysis has been recently
extended to abstract closed pattern analysis by noticing that applying an interior
operator on the extensional space 2O we obtain again a closure operator on the
pattern language 2I [15, 24]:

Proposition 2 Let X D 2O and L D 2I , p be an interior operator on 2O, and
A D pŒX� be the associated abstraction, we have that .int; p ı ext/ is a Galois
connection on .A; L/, i.e.,:

f D int ı p ı ext is a closure operator on L,
The abstract extension of pattern q is defined as p ı ext.q/. A new equivalence

relation is then defined such that q �A w whenever p ı ext.q/ D p ı ext.w/, each
equivalence class of which corresponds to some abstract extension in A. There is
then a unique abstract support closed pattern, i.e., a most specific pattern among all
patterns sharing the same abstract extension, which is obtained as f .q/ D int ı p ı
ext.q/. f .q/ is then called an abstract closed pattern. This leads to the definition of
abstract concepts organized in a concept lattice:

Corollary 1 ([24]) The set of (abstract extension, abstract closed pattern) pairs
.e D ext.c/; c D int.e//, ordered following A, is a lattice called an abstract concept
lattice.

Note that, as p is monotone, whenever ext.q/ � ext.w/, i.e., q ! w is valid, we
also have extA.p/ D p ı ext.q/ � extA.w/ D p ı ext.w/. The latter inclusion states
the validity of an abstract implication we will rewrite as �Aq ! �Aw.

This way we obtain abstract min–max basis with the same definition as earlier
in this section except that extA replaces ext and therefore abstract implications
relate minimal elements (i.e., A-generators) to maximal element (the abstract closed
pattern, or A-closed pattern) of the same abstract equivalence class. We have then
the following definition:

Definition 2 The abstract min–max basis mA of valid abstract implications is
defined as

mA D f�Ag ! �Af ng j f is an A-closed pattern; g is a A-generator; f 6D g;

extA.g/ D extA.f /g:
In the same way as in the standard min–max basis case, all implications �At !

�At0 that hold on A, i.e., such that extA.t/ � extA.t0/, may be inferred from the
abstract min–max basis.
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3.3 Graph Abstractions

These ideas have been applied to attributed graphs by defining graph abstractions
[23]. The set of objects O is then the set of vertices of a graph G D .O; E/, and each
vertex o is labeled by an attribute pattern d.o/ 2 2I .

A graph abstraction is an abstraction of 2Odefined through a characteristic
property P such that P.x; e/ expresses some minimal connectivity requirement of
the vertex x within the subgraph Ge induced by some vertex subset e.

Proposition 3 Let P be such that

• P.x; e/ implies x 2 e and
• e � e0 and P.x; e/ implies P.x; e0/,

and let q be a mapping defined by q.e/ D fx 2 ejP.x; e/g, then the mapping p
defined by p.e/ D fixedpoint.q; e/ is an interior operator on 2O.

Consider a subgraph Ge, where p.e/ represents the greatest vertex subset of e
inducing a subgraph whose vertices all satisfy the associated characteristic property.
This subgraph Gp.e/ will be further called the abstract subgraph of Ge. We give
hereunder examples of graph abstractions, defined through their characteristic
property and exemplified in Fig. 4.

1. degree � k. The degree � k-abstract subgraph of a graph is its k-core [17].
2. k-club � s: x has to belong to at least one k-club of size at least s in Ge. This

is a relaxation of the notion of clique[1]: a k-club is a subset c of vertices such
that there is a path of length � k between any pair of vertices in Gc. A triangle,
a 3-clique, is a 1-club of size 3 (Fig. 4a). Figure 4b represents a 2-club of size 6
and therefore a 2-club� 6 abstract group.

3. nearStar.k; d/: x has to have degree at least k or there must be a path of length at
most d between x and some y with degree at least k. For instance, the simplest
nearStar.8; 1/ abstract group is a central node connected with eight nodes. Such
an abstraction is useful when we want the abstraction to preserve hubs [2] (i.e.,
high degree vertices) together with their (low degree) neighbors (see Fig. 4c).

4. cc � s: x has to belong to a connected component of size at least s in Ge (see
Fig. 4d).

(a) (b) (c) (d)

Fig. 4 Graph abstractions corresponding to various vertex characteristic properties. In each graph
plain circles and plain lines form the abstract subgraph, crosses and dotted lines represent the
vertices and edges out of the abstract subgraph. (a) x has to belong to a 3-clique, (b) x has to
belong to a 2-club of size at least 6, (c) x has to be connected to a vertex y such that the degree of y
is at least 6, i.e., to a nearstar(6,1), (d) x has to belong to a connected component whose size is at
least 3
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Finally, it is interesting to note that we can combine two (or more) abstractions A1

and A2 in two ways, defining a new composite abstraction either stronger or weaker
than both A1 and A2. For instance, we may want to consider an abstract subgraph
where vertices both have a degree larger than some k and belong to a connected
component exceeding a minimal size s. On the contrary, we may want an abstract
subgraph such that at least one of the two characteristic properties is satisfied by all
the vertices. This would be the case, for instance, if we want to keep both vertices
that have a degree larger than, say 10, and vertices in a star, i.e., connected to a
hub which degree is at least 50. The following proposition states that we can freely
combine abstractions in both directions.

Proposition 4 Let P1 and P2 two characteristic properties of abstractions defined
on the same object set O, and let P1 ^ P2 and P1 _ P2 be defined as follows:

• P1 ^ P2.x; e/ D P1.x; e/ ^ P2.x; e/

• P1 _ P2.x; e/ D P1.x; e/ _ P2.x; e/

Both P1 ^ P2 and P1 _ P2 are characteristic properties of abstractions.

3.4 Interestingness Measures on Abstract Patterns
and Implications

3.4.1 Specificity of Abstract Patterns

We are now interested in measuring knowledge brought by abstract closed patterns
and abstract implications [25]. For that purpose we first generalize hereunder
the structural correlation measure introduced by A. Silva and co-authors [19],
originally introduced to relate a subgraph to its content in terms of quasi-cliques
and rename it as specificity.

Definition 3 Let q be a pattern, A an abstraction of some powerset of objects O, the
specificity of q with respect to A is defined as:

SA.q/ D j extA.q/ j
j ext.q/ j

Consider, for instance, a 3-clique abstraction. Whenever SA.q/ is close to 1, the
pattern q subgraph is mainly made of triangles. To the contrary, whenever SA.q/ is
close to 0, the pattern q subgraph almost displays no triangles, which means quite
isolated vertices. We relate this way a pattern q to the measure of how selecting
vertices satisfying this pattern preserves the topological property associated with
the abstraction.

Example 1 Figure 1 displays a graph each vertex of which is described by an
itemset. We observe then that:
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• ext.a/ D e D f1; 2; 3; 4; 5; 7g induces the subgraph G.e/ (blue+black).
• extA.a/ D f1; 2; 3g as 4; 5; 7 do not belong to any 3-clique in G.e/.
• int ı extA.a/ D ab \ ab \ ab D ab is an abstract closed pattern.
• SA.a/ D 1=2; SA.ab/ D 3=4.

Note that among the patterns of some equivalence class of �A the abstract closed
pattern c has maximal specificity:

For any t, if extA.t/ D extA.c/ then SA.c/ � SA.t/

3.4.2 Informativity of Abstract Implications

Apart from measuring through specificity what is specific to the pattern in its
abstract view, we are also interested when considering abstract implications in how
informative they are. For that purpose we consider abstract implications whose left
and right patterns are equivalent in the abstract space A, i.e., have same abstract
extension, as in the min–max abstract implication basis defined above. Whenever
these patterns are also equivalent in the original space 2O intuitively the implication
is uninformative. Assume, for instance, that a ! abc is valid, then validity of
the abstract implication with same left and right members does not bring any new
information. On the contrary, assume that �Aa ! �Aabc is valid while a ! abc
has only confidence 0:5, i.e., ext.abc/ D 0:5 � ext.a/, then clearly the abstract
implication brings some information.

Definition 4 Let q be a pattern, A an abstraction of 2O, the informativity of the valid
implication r W �Aq ! �Aw is defined as:

IA.r/ D 1 � j ext.qw/ j
j ext.q/ j

Informativity has a range between 0 and 1 and estimates the probability of not
having w whenever we have q in graph G. This quantity has value 0 whenever q !
w holds and has limit 1 whenever j ext.qw/ j approaches 0, i.e., restricting the
extension of patterns to elements of A concentrates the extension of q to the very
few sharing also w.

Intuitively, the informativity of an abstract implication measures what we
discovered when we observed that q and qw share the same abstract support.

Example 2 Following Example 1 illustrated in Fig. 1 consider the abstract impli-
cation r W �a ! �ab. This abstract implication has the following semantics:
“a 3-clique of G whose vertices share pattern a also share pattern b,” and its
informativity is therefore IA.r/ D 1 � 1=2 D 0:5:

Note that implications of the abstract min–max basis which relate minimal
elements g of an abstract equivalence class to the corresponding abstract closed
pattern c have maximal informativity:

Let g �A t �A t0 �A c then IA.�Ag ! �Ac/ � IA.�At ! �At0/.
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Table 2 Top-15 abstract
closed patterns in the Teenage
Friendship network ranked
according to their 3-clique
and cc�4 specificity

Nı �Ac jextA.c/j jext.c/j SA.c/

1 �AD45-C34 5 7 0.714

2 �AC12 27 42 0.643

3 �A; 32 50 0.64

4 �AC12-T1 21 36 0.583

5 �AD45 9 17 0.529

6 �AD345 15 29 0.517

7 �AC1-T1 17 33 0.515

8 �AD123-C12-T1 15 30 0.5

9 �AD345-C12 10 21 0.476

10 �AD2345 21 45 0.467

11 �AC12-S2 15 33 0.455

12 �AD45-C12-S2 4 9 0.444

13 �AD2345-C12 16 37 0.432

14 �AS2 16 37 0.432

15 �AD123-C1-T1 11 27 0.407

3.5 Experiments

Some experiments on the two datasets described in Sect. 2 have been performed and
discussed in [23]. We discuss hereunder new experiments in particular regarding the
interestingness measures.

We firs consider the Teenage Friendship network s50. Among the 50 pupils
38 belong to triangles (i.e., 3-cliques). As there are no isolated triangles, the
abstract subgraph when considering only connected components with size at least
4 is reduced to 32 pupils. The corresponding abstraction is therefore 3-clique and
cc � 4.

Table 2 displays the top 15 patterns according to the corresponding specificity.
We observe that specificity is clearly non-monotonic with respect to abstract
extension size and that among top patterns we find both small (and therefore general)
and large patterns. We further discuss the pattern with highest specificity D45-C34,
which corresponds to pupils with high alcohol and cannabis consumption, in Sect. 5
where we search for communities.

Table 3 displays the top 15 abstract implications according to the 3-clique and
cc � 4 abstract informativity. Again, informativity is clearly nonmonotonic with
respect to extension size. The first and third implications have the same abstract
pattern as their rightmost member: it concerns the same abstract subgraph, whose
pupils have in common the behavior D45-C12-S2, but is obtained either by reducing
the pattern D345-S2 subgraph or the pattern D45-S2 subgraph. Obviously the
former subgraph corresponds to a higher informativity as it includes the latter
subgraph. As a matter of fact, the third implication is redundant with the first one
and could be removed with no information loss. This leads to reduce the abstract
min–max basis by eliminating all such redundant rules. We will apply such an idea
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Table 3 Top-15 abstract implications in the Teenage Friendship network ranked according to their
3-clique and cc�4 informativity

Nı �Ag ! �Ac jext.c/j jext.g/j IA.r/

1 �AD345-S2 ! �AD45-C12-S2 9 22 0.591

2 �AC234 ! �AD45-C34 7 14 0.5

3 �AD45-S2 ! �AD45-C12-S2 9 13 0.308

4 �AT1-D345 ! �AD345-C1-T1 14 18 0.222

5 �AD23 ! �AD23-C1-T1 23 28 0.179

6 �AC1-D345 ! �AD345-C1-T1 14 17 0.176

7 �AC34 ! �AD45-C34 7 8 0.125

8 �AD2345-S2 ! �AD2345-C12-S2 29 33 0.121

9 �AT1-D2345 ! �AD2345-C1-T1 29 33 0.121

10 �AC1-D2345-S2 ! �AD2345-C1-S2-T1 22 25 0.12

11 �AC1-S2- ! �AC1-S2-T1 25 28 0.107

12 �AC12-D45 ! �AD45-C12-S2 9 10 0.1

13 �AD12 ! �AD12-C1-T1 19 21 0.0952

14 �AC1-D2345 ! �AD2345-C1-T1 29 32 0.0938

15 �AD123 ! �AD123-C12-T1 30 33 0.0909

when defining a basis for local implications in Sect. 4.2. The second implication
in this ranking concerns pattern D45-C34, mentioned as the highest specificity
pattern. The implication states that the 3-clique and cc � 4 subgraph of pupils that
have pattern C234, which corresponds to a medium-to-high cannabis consumption
behavior, selects pupils with the D45-C34 pattern, i.e., those who have both high
alcohol and cannabis consumption behavior. When applying no abstraction, the
implication only holds on 7 among the 14 pupils that have pattern C234, which
results in informativity 1 � 7=14 D 0:5.

We discuss now some new details on experiments performed on the DBLP
dataset. The experiment consisted in applying a degree � k abstraction with
increasing k-values and we focused in abstract patterns obtained with k D
16, which corresponds to a very strong abstraction: in an abstract extension
each author is required to have 16 co-authors within the abstract extension. We
obtained few abstract closed patterns and in particular the abstract closed pattern
VLDBJ; ICDE; SIGMOD; VLDB and the related abstract implication � VLDBJ
! � ICDE; SIGMOD; VLDB. Both the abstract closed pattern and its abstract
minimal generator VLDBJ have an abstract extension of 38 among the 1276 VLDBJ
authors in the dataset. The implication states that a dense group of co-authors that
have published in the Very Large Database Journal also have published in several
database conferences. In Fig. 5 we present the corresponding subgraph. Such a very
dense co-authoring subgraph within the VLDBJ subgraph is somewhat unexpected.
Its abstract specificity 38=1276 	 0:085 is low, but still higher than the 0 value
we could expect from such a high abstraction level. The abstract implication has a
high informativity about 	 0:65 coming from the fact that among the 1276 authors
who published in VLDBJ journal only 441 did publish in all the conferences ICDE,
SIGMOD, and VLDB.
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Fig. 5 The subgraph obtained when applying the degree � 16 abstraction to the VLDBJ subgraph
in the DBLP co-authoring experiment

[j56] Serge Abiteboul,  Rakesh Agrawal,  Philip A. Bernstein,  Michael J.
Carey, Stefano Ceri, W. Bruce Cro�, David J. DeWi�, Michael J.
Franklin, Hector Garcia-Molina, Dieter Gawlick, Jim Gray, Laura M.
Haas, Alon Y. Halevy, Joseph M. Hellerstein, Yannis E. Ioannidis,
Mar�n L. Kersten, Michael J. Pazzani, Michael Lesk, David Maier,
Jerey F. Naughton, , Timos K. Sellis, Avi
Silberschatz, Michael Stonebraker, Richard T. Snodgrass, Jeffrey D.
Ullman, Gerhard Weikum, Jennifer Widom, Stanley B. Zdonik:
The Lowell database research self-assessment.Commun. ACM
48(5): 111-118 (2005)

Fig. 6 An example of reference with many authors that leads to a high degree subnetwork

We made then some investigations in the DBLP repository, focussing of the 38
authors of the abstract extension, and found an article whose reference is given in
Fig. 6 and whose abstract begins as follows:

A group of senior database researchers gathers every few years to assess the state of database
research . . .

In some sense the explanation of the pattern we discovered is straightforward.
However, the whole purpose of pattern mining is to find unexpected patterns, hidden
within large datasets, and interpret them in order to acquire some new knowledge.
It is exactly what happens here: we were not aware of these regular meetings of
senior database researchers, and we learned something new, though, of course, this
knowledge is clearly widely known within the database community.

When considering a weaker abstraction, namely here a degree � 4 abstraction,
we obtain more abstract closed patterns sometimes made of several connected
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components. Figure 2 in Sect. 1 represents the DMKD; IDArev pattern subgraph
together with the subgraph induced by the abstract extension of the pattern. This
abstract subgraph is made of two connected components, the one in the right part
of the figure is made of ten vertices and we are then interested in knowing whether
there is some more specific pattern than the abstract closed pattern DMKD; IDArev,
which would be shared by this connected component. Answering such questions
means mining at a local level the attributed graph, and this is the subject of the next
section.

4 Local Closed Patterns in Attributed Networks

Given some attribute pattern, we are now interested in extracting local support
closed patterns, i.e., maximal attribute patterns each associated with one dense
subgraph, so allowing to extract local implications particular to specific dense
groups of objects. Recently FCA has been extended to local closed patterns: they
are obtained by applying a set of local closure operators [22]. In the graph case, this
means that from the extension of some (closed) pattern c, various dense extensions,
called local extensions are extracted each associated with a local closed pattern, i.e.,
the most specific pattern l common to the elements of the local extension. Again we
obtain a set of local implications corresponding to inclusion of local extensions, but
now such an implication is only valid in the vicinity of some dense group of vertices.

In [21] we introduced locality in the closure framework with the main motivation
of investigating local patterns in attributed graphs. For that purpose we have first to
define pre-confluences and confluences which are structures weaker than lattices
that have been investigated in FCA [21, 23]. Confluences, in particular, are close to
but different from confluent families as defined in [5]. We further denote by Ex the
up sets fy 2 Ejy � xg of an ordered set E, by Ex its down sets fy 2 Ejy � xg, and by
min.E/ the set of its minimal elements.

First note that ordered sets we consider are all finite. We define a pre-confluence
as a finite ordered structure that generalizes the (finite) lattice structure:

Definition 5 A finite ordered set F is a pre-confluence if and only if for any m 2
min.F/, Fm D fx 2 F j x � mg is a lattice.

A consequence of this definition is that a (finite) lattice is a pre-confluence with
a minimum. The structure has a partial join operator:

Proposition 5 For any m 2 min.F/ and any x; y 2 Fm their least upper bound is
the least element of Fx \ Fy we further denote by x _F y.

This means that a pre-confluence is a union of lattices in which joins coincide. A
particular case is which of a pre-confluence included in a host lattice and which is
join preserving:

Definition 6 Let T be a lattice and F � T be a pre-confluence with as join _F D
_T , F is called a confluence of T .
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An abstraction of T , as defined above is a confluence of T with ?T as minimum. We
have then the following property when considering 2O as the host lattice:

Proposition 6 Let X D 2O be a lattice, F � X is a confluence of X if and only if for
any x; y 2 Fm with m 2 min.F/, we have that x [ y belongs to F.

A confluence is then associated with a set of interior operators:

Proposition 7 Let F be a confluence of a lattice X, and m 2 min.F/,

• pm W Xm ! Xm, such that pm.x/ D _q2Fm\Xx q, is an interior operator and
pmŒXm� D Fm.

We are concerned here with extensional confluences, i.e., confluences of X D
2O [21] that generalize extensional abstractions as graph abstractions. In this case,
let x be an element of X greater than or equal to some minimal element m of F, then
pm.x/ returns the greatest subset of x in F that includes m. We now define graph
confluences, which are the original motivation for defining confluences:

Definition 7 Let G D .O; E/ be a graph, and F be the family of vertex subsets
inducing connected subgraphs of G. F is a confluence of 2O called the graph
confluence of G.

Proof By definition, any singleton fsg induces a connected subgraph of G. Further-
more, the union of two connected vertex subsets that each includes a given vertex
singleton fsg also is a connected vertex subset. Following Proposition 6, F is then a
confluence of 2O.

The elements of F are simply called the connected vertex subsets of O. By abuse
of notation we write ps and Fs rather than pfsg and Ffsg. The interior operator ps

projects then any vertex subset e containing vertex s on the connected component
of the subgraph Ge induced by e that contains s. The up set Fs is then the set of
connected vertex subsets containing s, and the union of all these Fs represents the
whole set of connected subgraphs of G.

Example 3 Let G D .O; E/ be a graph (displayed at the bottom of Fig. 7) whose
vertex set is O D f1; 2; 3; 4g. Let F � 2O be the set of connected vertex subsets of
G. F is a confluence whose set of minimal elements is min.F/ D ff1g; f2g; f3g; f4gg.
The subset F1C3 D F1 [ F3 representing connected vertex subsets containing
vertices 1 or 3 is also a confluence. Figure 7 displays the diagram of F1C3. �

The extension e of a pattern q may then be projected through interior operators
on various smaller local extensions feig corresponding to the connected components
of the pattern subgraph. These interior operators are associated with local closure
operators [21]:

Proposition 8 Let F be a confluence of X D 2O, m a minimal element of F, and
Lint.m/ be the down set of the pattern lattice L whose elements q are such that q �
int.m/, then

fm D int ı pm ı ext is a closure operator on Lint.m/
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Fig. 7 A square graph (in the
bottom of the figure) and the
Hasse diagram of the
confluence F1C3 of
connected vertex subsets that
contain vertices 1 or 3
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In a graph confluence, let e D ext.q/, then ps.e/ is the connected component of
the pattern subgraph Ge to which the vertex s belongs. Obviously, ps.e/ D pv.e/

for any vertex v in the same connected component. Therefore fs.q/ is a local closed
pattern w.r.t. any vertex in this connected component, i.e., the most specific pattern
shared by the vertices in the connected component.

Now a general result is that the set of local extensions is a pre-confluence:

Theorem 1 The mapping h W F ! F W h.e/ D pm ı ext ı int.e/ for m � e
is a closure operator on F and E D hŒF� is a pre-confluence.
h.e/ is therefore the local extension of int.e/ that contains m � e and hŒF� is a

pre-confluence isomorphic to the set P of local concept pairs defined as follows:

Definition 8 The set of local concept pairs P D f.e; l/ j e D pm ı ext.l/; l D
int.e/; m � eg is called a local concept pre-confluence.

To summarize we have defined local concepts as (local extension, local closed
patterns) pairs and we have shown that they are organized in a structure with
possibly several minimal elements, therefore generalizing the concept lattice defi-
nition. In the graph confluence exemplified above the local extensions simply are
the connected components of the pattern subgraphs. We will now extend graph
confluences by intersecting graph confluences with abstractions.

4.1 Cc-Confluences

We remark now that we can freely intersect confluences:

Proposition 9 Let F1 and F2 be confluences of X, then F1 \ F2 is a confluence.
Since abstractions of X are confluences of X with the bottom element of X as

their unique minimal element, the above proposition means we can freely intersect
abstractions with confluences to build smaller confluences. Many confluences can
then be derived from a graph confluence by intersecting it with some abstractions.
We call this family of confluences the cc-confluences.
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Definition 9 Let F be the graph confluence of some graph G and A be a graph
abstraction of G, then the confluence F \ A is called the cc-confluence of G
associated with A.

For instance, considering A as the k-clique abstraction, we obtain the cc-
confluence of connected subgraphs of G made of k-cliques. Note that cc-confluences
have an important property: rather than considering the minimal elements m of
F when defining local closure operators we can consider vertices as in the graph
confluence F. This is because, given any abstract subgraph and any m included in
its vertex set, all vertices v of m belong to the same connected component and
therefore to the same local extension. This is computationally important as this
means that when considering local extensions we only need to consider each vertex
in the extension and associate it to the connected component to which it belongs.

4.2 Local Implications

Inclusion of local extensions defines validity of local implications �A
mq ! �A

mw,
where m is a minimal element of FA in the extension of q. Note that, as the
local extension of pattern q is obtained by applying an interior operator, which is
monotone, to the support set of q, we have that, whenever �Aq ! �Aw is valid and
m � extA.w/, we also have that �A

mq ! �A
mw is valid, i.e., we may infer the latter

local implication from the former abstract implication.

Example 4 Consider the graph displayed in Fig. 8. The 3-clique cc-confluence has
as minimal elements f123; 567; 678g and rewrites as FA D f123; 567; 678; 5678g.
The extension of pattern b is equal to its abstract extension 123; 678, and the abstract
closed pattern is also b. However, the corresponding abstract subgraph displays two
connected components 123 and 678. The vertices of the latter share bc which is
consequently its local closed pattern. This leads to a local implication:

• �A
678b ! �A

678bc

In a cc-confluence the local implication may be indexed with respect to any
vertex of the corresponding connected component: a triangle in the same connected

1
ab

2
ab

3
ab

4
ac

5
ac

6
bc

7
abc

8
bc

Fig. 8 The pattern b 3-clique abstract subgraph displays two connected components. The blue
one, on the left, is also the pattern b abstract subgraph of motif a leading to the local implication
�A

123a ! �A
123ab
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component as 6, when considering the pattern b abstract subgraph, also has c, which
rewrites as �A

6 b ! �A
6 bc. We will simply say that “a triangle containing 6 and

which has b also has c.”
We search now for a basis BFA of valid local implications from which we may

infer any local implications. We will consider a basis Bm for a given minimal element
m of F and obtain the whole basis BFA D [Bm by joining these bases. Consider a
given abstract closed pattern c whose abstract extension has a connected component
that contains m, and let l D fm.c/ be the corresponding local closed pattern, with
respect to the cc-confluence FA. This means that the implication �mc ! �ml holds.
We select then a basis Bm of informative (l 6D c) and irredundant (there is no other
implication �mc0 ! �ml with c0 less specific than c in the implication set) ones.
From Bm we may infer all local implications associated with m by applying standard
axioms in the same way as in the case of the min–max basis in the standard closed or
abstract framework. The basis BFA D [Bm represents the local knowledge deriving
from the reduction of the extensional space from abstraction A to cc-confluence FA:

Definition 10 The Local Min–max Basis BFA associated with the cc-confluence FA

is defined as:
BFA D f�A

mc ! �A
ml j where c A-closed ; l locally closed ; c 6D l; extAm.c/ D

extAm.l/;
and for all c0 
 c we have extAm.c0/ 6D extAm.c/g

4.3 Interestingness Measures on Local Patterns
and Implications

As in the abstract case, we may measure novelty brought locally [25]. We first
extend the specificity measure to local patterns. If the ratio of a local extension to the
abstract extension is high this means that the corresponding connected component
is the largest part of the abstract subgraph.

Definition 11 Let q be a pattern, F be a cc-confluence and m 2 F be such that
m � extA.q/, the specificity of q near m is defined by

SF.q; m/ D j extAm.q/ j
j extA.q/ j

We then define the informativity of a local implication by observing that in a
valid local implication the left and right parts have same local extensions, while
their abstract extensions are different. Therefore, as in the abstract knowledge case,
we define the local informativity as the probability, at the abstract level, not to have
the right part when the left one is true:
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Definition 12 The local informativity of valid local implication r W �A
mq ! �A

mqw
is defined by

IF.r/ D 1 � j extA.qw/ j
j extA.q/ j

When local informativity is close to 1, it means that the probability to observe w
when we have q at the abstract level is low: to be able to deduce w from q is specific
of the graph region where m lies.

Example 5 We carry on Example 4 displayed in Fig. 8. The local specificity near
678 of pattern bc is SF.bc; 678/ D 3 � 3 D 1: it does not appear elsewhere in
the bc abstract subgraph. Informativity of local implication �A

678b ! �A
678bc is

1 � .2 � 6/ D 0; 5: the abstract support of b is 6, but only three vertices share
the local closed pattern bc. Regarding the local closed pattern ab, it also has local
specificity 1 as ab is only found in the connected component 123, and it leads to a
new local implication �A

123b ! �A
123ab whose informativity is 0; 5. What we see

here is that we obtain new knowledge regarding pattern b which depends on the
region of the graph we consider.

Now, when considering the Teenage Friends attributed graph displayed in Fig. 3,
clearly the friendship relations are organized in 3-cliques, therefore any stronger
abstraction will be poorly informative. However, as mentioned in Sect. 1, when
considering the 3-clique abstract graph associated with the empty pattern the unique
connected component could be separated in several (overlapping) communities
(displayed in Fig. 3 in various colors). We discuss and exemplify in the next section
how to apply the local closure strategy to discover such sub-communities in an
attributed graph.

5 Local Concepts from a Derived Graph

In what follows, we will consider a family T � 2O of vertex subsets, and
consider T as the vertex set of a graph GT D .T; ET/ derived from G. The simple
graph confluence F of 2T is then the new extensional space and we will search
for the corresponding local closed patterns. The local extensions are afterwards
transformed into extensions in 2O. Let u W 2T ! 2O be such that u.eT/ D [t2eT t.
u.eT/ is called the flattening of eT . We consider then the two maps extT and intT
defined as follows:

• extT W L ! 2T with extT.q/ D ftjt � ext.q/g
• intT W 2T ! L with intT.eT/ D int ı u.eT/

extT.q/ represents the extension of q in T when considering that q occurs in t
whenever q occurs in all elements of t (seen as a subset of O). Conversely intT.eT/

represents the greatest pattern in L whose extension in T includes eT , i.e., whose
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extension in O contains, as subsets, the elements of eT . Now, consider as T the
family of k-cliques of G and that .t1; t2/ 2 ET whenever t1 and t2 share k �1 vertices
in G. A k-community in G [13] is a vertex subset that results from the flattening (in
the sense defined above) of some connected component of GT . The local closed
patterns w.r.t. F are then most specific patterns occurring in k-communities of
pattern subgraphs of G. This way we obtain local concepts and associated local
implications, whose local extensions are these k-communities. Note that, in the
derived case, the local concepts do not form a pre-confluence: technically we obtain
a pre-confluence of 2T , but two different local extensions in 2T may result in the
same flattening, corresponding to one 3-community. As a consequence, the local
concept order is no more a pre-confluence.

5.1 Experiments on a Derived Graph

Coming back to our Teenage Friendship attributed graph, we have applied this
strategy and built the derived graph GT , where T is the set of 3-cliques of the original
attributed graph. In Figs. 9 and 10 we display the ordered set of 3-communities with

Fig. 9 The ordered set of size � 4 3-communities of the Teenage Friendship network (part-I). The
3-communities are displayed in red and bold lines from the larger ones on the top to the smaller
one on the bottom.The abstract subgraphs are displayed in plain lines. On the right at the bottom
we have a 3-community displayed twice as it is built from two different abstract closed patterns
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Fig. 10 The ordered set of size � 4 3-communities of the Teenage Friendship network (part-II)

size at least 4.7 The minimal 3-communities are the lowest ones on both figures.
Each element of the pre-confluence represents a (3-community, local closed pattern)
pair but may be associated with several non-redundant local implications. This
happens for one 3-community displayed on the right at the bottom of Fig. 9 and
associated with two local implications each represented in a square. Each square
displays in red the 3-community, and in red+green+blue the abstract extension of
the abstract closed pattern forming the left part of the implication. In Fig. 10 we have
a unique maximal 3-community on the top, and a hierarchy of sub-communities.

We now investigate interestingness of local patterns and local implications. Note
that the definitions given in Sect. 4.3 have to be adapted since we have to replace
local extensions as defined in Sect. 4 by 3-communities, i.e., flattening of local
extensions in the derived graph GT . Table 4 displays the local closed patterns ranked
according to their specificities. Each local closed pattern is indexed by the first
triangle, in the lexicographic ordering, leading to the corresponding 3-community.
Consider, for instance, the first two local patterns l1 = D45-C12-S2 and l2 = D45-
C34 which have both specificity 1. This means that the set of pupils triangle having

7Formally, this means that we also apply an abstraction to the derived graph to avoid connected
components corresponding to 3-communities smaller than four members.
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Table 4 Top 15 local closed patterns ranked according to their specificity in the Teenage
Friendship network

Nı �A
ml jextA

m.l/j jextA.l/j SF.l; m/

1 �A
25;31;32D2345-C1-S2-T1 5 5 1

2 �A
21;31;32C1-S2-T1 6 6 1

3 �A
17;19;24D23-C1-T1 4 4 1

4 �A
27;29;30D123-C12-S2-T1 4 4 1

5 �A
22;25;31D345-C1-T1 4 4 1

6 �A
10;11;15D45-C12-S2 4 4 1

7 �A
26;44;7D45-C34 5 5 1

9 8�A
40;45;46D12-C1-T1 4 6 0.667

10 �A
17;19;24C1-T1 11 17 0.647

11 �A
22;25;31D2345-C1-T1 6 10 0.6

12 �A
1;11;14D345-C12 6 10 0.6

13 �A
17;18;19D2345-C1-T1 5 10 0.5

14 �A
46;48;49D12-C1-T1 3 6 0.5

15 �A
17;19;24D123-C1-T1 5 11 0.455

D45-C12-S2 (respectively, D45-C34) forms a (unique) 3-community we further
refer to as Community 1 (respectively, Community 2). Communities 1 and 2 have in
common high alcohol consumption behavior (D45), but differ in that the members
of Community 1 do not smoke cannabis (C12) and have a regular sporting activity
(S2), while the members of Community 2 have regular cannabis consumption (C34).

Consider now the implications of the local min–max basis, ranked according to
their informativities, displayed in Table 5. We have here some implications with
high informativity. As an example, the fifth (I5) and ninth (I9) local implications
concern Community 1 while the second (I2) concerns Community 2.

As an illustration we consider Community 1 and its two related local implications
I5 and I9. As associated with the same community their rightmost member is
the same local closed pattern D45-C12-S2. However, as they are extracted from
different abstract subgraphs corresponding, respectively, to abstract closed patterns
S2 and D45, they have different informativities. I5 has informativity 0:75, while I9

has informativity 	 0:56. In Fig. 11 we display Community 1 together with the
necessary information to compute the local informativity of I5.

The high informativity value of I5 means that what the pupils in this community
have in common, i.e., high alcohol consumption, no cannabis consumption and
regular sporting activity (D45-C12-S2) is unfrequent among pupils in triangles with
regular sporting activity outside of the community.
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Table 5 Top 15 local implications of the min–max basis ranked according to their informativity
int the Teenage Friendship network

Nı �A
mc ! �A

ml jextA.l/j jextA.c/j IF.r/

1 �A
27;29;30C12 ! �A

27;29;30D123-C12-S2-T1 4 27 0.852

2 �A
26;44;7; ! �A

26;44;7D45-C34 5 32 0.844

3 �A
46;48;49; ! �A

46;48;49D12-C1-T1 6 32 0.813

4 �A
40;45;46; ! �A

40;45;46D12-C1-T1 6 32 0.813

5 �A
10;11;15S2 ! �A

10;11;15D45-C12-S2 4 16 0.75

6 �A
22;25;31D345 ! �A

22;25;31D345-C1-T1 4 15 0.733

7 �A
1;11;14; ! �A

1;11;14D345-C12 10 32 0.688

8 �A
21;31;32S2 ! �A

21;31;32C1-S2-T1 6 16 0.625

9 �A
10;11;15D45 ! �A

10;11;15D45-C12-S2 4 9 0.556

10 �A
22;25;31D2345 ! �A

22;25;31D2345-C1-T1 10 21 0.524

11 �A
17;18;19D2345 ! �A

17;18;19D2345-C1-T1 10 21 0.524

12 �A
11;19;30; ! �A

11;19;30S2 16 32 0.5

13 �A
17;19;24; ! �A

17;19;24C1-T1 17 32 0.469

14 �A
11;19;30C12 ! �A

11;19;30C12-S2 15 27 0.444

15 �A
25;31;32D2345-C12-S2 ! �A

25;31;32D2345-C1-S2-T1 5 9 0.444

10 11

15
16

Fig. 11 Community 1 (represented as bold dots joined by bold lines) composed of five pupils with
high alcohol consumption, no cannabis consumption C12 and regular sporting activity (D45-C12-
S2). The community has size 4 and is one of the communities of the S2 abstract subgraph which
is represented with gray plain lines joining 16 vertices. The Informativity of the local implication
I5 associated with community 1, which has S2 as its leftmost member and D45-C12-S2 as its
rightmost member, is therefore 1 � 4=16 D 0:75. Note also the three black dots representing
vertices which have the S2 pattern but do not belong to its abstract subgraph
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6 Implementation

In our experiments we first used the CORON software [28] to compute frequent
closed patterns, according to some frequency threshold, then apply a set of
PYTHON functions as a post-processing8 to compute abstract and local patterns
and implications. More recently we have implemented an efficient algorithm using
a divide and conquer strategy similar to that proposed in [5] and implemented
in [12]. This allows in particular to directly apply the frequency constraints at
the abstract and local levels. A first version, named ParaminerLC, is experimented
in [26] and was designed to handle the 3-communities local knowledge extraction
problem. The selection of the implications belonging to the local min–max local
basis is performed as a post-processing. Our current implementation in progress is a
versatile program enumerating abstract and local frequent closed patterns and local
implications with various definition of abstraction and locality.

7 Conclusion

In this article we have addressed problems in which the extensional space, made of
the vertex subsets of an attributed network, is constrained according to connectivity
properties. We have first considered abstract vertex subsets in which a constraint
has to be satisfied by each vertex in the subgraph they induce, as, for instance,
a minimum degree constraint. The extensional space is in this case a particular
lattice called an abstraction. We have then shown, benefiting from previous work
in FCA, how abstract support closed patterns, i.e., maximal patterns among those
sharing the same abstract extension, could be obtained using a closure operator.
This has resulted in defining a wide class of abstract concept lattices, whose
elements are (abstract extension, abstract closed pattern) pairs, each corresponding
to a particular abstraction. This way we obtain a global information on how the
graph topology is related to the pattern extensions. We have then considered a way
to extract local knowledge from an attributed network. For that purpose, using
a recent extension of FCA to local extensional spaces, called confluences, we
have related each pattern to various local extensions, corresponding to connected
components in subgraphs induced by abstract vertex subsets. We obtain this way a
set of local concepts, organized in a generalization of the lattice structure called a
pre-confluence. Furthermore we have defined both abstract implications and local
implications representing knowledge which is valid at the abstract and local levels,
i.e., regarding the latter, in the vicinity of particular vertices. For both abstract and
local patterns and implications we have proposed proper interestingness measures,
namely specificity which measures to what extent the original extensions of patterns

8The corresponding software is to be found in https://lipn.univ-paris13.fr/~santini/data/ProjClos.
tgz.

https://lipn.univ-paris13.fr/~santini/data/ProjClos.tgz
https://lipn.univ-paris13.fr/~santini/data/ProjClos.tgz
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are preserved in abstract and local concepts, and informativity, which measures
novelty brought by abstract and local implications. Finally we have applied these
ideas to enumerate 3-communities in a network. These 3-communities are in fact
sub-communities as each is a 3-community in some subnetwork induced by an
attribute pattern.

Overall, what we propose here is a new way, brought by recent developments
in Formal Concept Analysis, to explore social and complex networks as attributed
graphs. As an application, we are currently involved in the ADALAB project
which aims at helping the robot scientist EVE [30] to design experiments.9 In this
context, we use our methodology to explore a co-regulation network labeled with
information regarding gene expression. Future works concerns, on the extensional
side, applying these ideas to attributed directed graphs or multiplex networks. We
also consider to use abstract and local extensional constraints while extending
the pattern language to a wider class of pattern languages. First, as in [7, 9, 15]
by building a meet-semilattice adapted to the mining problem and using interior
operators to reduce it to a tractable language. This has been in particular successfully
applied to graph mining [10]. Then, as in [5, 20] by considering confluent languages
allowing to treat connectivity within the pattern language.
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