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1 Introduction and Problem Description

In the last years, a rapidly increasing amount of data was collected and recorded
in so-called triple stores. Basically, those triple stores are databases of a special
kind, allowing for storing data in the form of triples .s; p; o/ which express that
the subject s is related to the object o via the (binary) predicate p. For example,
it is possible to say that an individual x is a human by means of the triple
.x;rdf:type;some-namespace:human/. As another example, with the triple
.x;foaf:hasFriend; y/ we can denote that individual x is a friend of the
individual y. The vocabulary used in the triples can be freely chosen such that it
best fits the application’s needs. Please note that there are plenty of vocabularies
available, which could be used without requiring to invent one’s own vocabulary
from scratch. The most famous examples are, of course, the vocabularies from
RDF/RDFS and OWL which allow for the expression of very basic and logical facts.
Further vocabularies specifically tailored to certain use cases are, e.g., Friend-of-
a-Friend (FOAF) and others. It is easy to see that those triple datasets can also
be represented as labeled directed graphs, the vertices of which are the elements
occurring as subjects or objects, and each triple .s; p; o/ induces an edge from s to o
with label p. Labels of vertices are induced by triples of the form .s;rdf:type; c/,
and in particular for each such triple, the vertex s is labeled with c.

The Web Ontology Language (OWL) was founded in 2004 as an improvement of
the Resource Description Framework (RDF) and the corresponding RDF Schema
(RDFS). OWL and its successor OWL2 have various dialects providing different
expressibility and complexity such that always one can be chosen that best fits the
user’s purpose. Most of the dialects, and in particular the dialects OWL DL, OWL2
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DL, and OWL2 EL, have a strong logical underpinning by means of Description
Logics (DLs). DLs are a family of logical languages for knowledge representation
and reasoning, for which the decidability and complexity of common reasoning
problems are widely explored. Those reasoning tasks allow for the deduction of
implicit knowledge from explicitly given facts and axioms, and a vast amount
of algorithms for solving those reasoning problems were developed, optimized,
and implemented—the most popular ones are the tableaux algorithms and the
completion algorithms.

An interesting problem in the field of Description Logics is the problem of
learning, a specific instance of which is the acquisition of terminological knowledge
from a given set of assertional facts. So far there are several techniques for achieving
this, and some of them utilize the algorithmic solutions of the problem of computing
implication bases in the field of Formal Concept Analysis, or utilize the Attribute
Exploration algorithm that is capable of handling incomplete data by incorporating
an expert in the domain of interest which is able to answer questions correctly
and thus enables the algorithm to process axioms the validity of which is either
not answerable within the input dataset, or is not refuted due to the non-existence
of a counterexample. A famous work in this direction was published by Baader
and Distel [2, 3, 16] who generalized the computation, or exploration, respectively,
of implication bases for formal contexts to the computation, or exploration,
respectively, of bases of concept inclusions (CIs) valid in a given interpretation and
expressible in the description logic EL?. Furthermore, Borchmann [10, 11] defined
the notion of confidence of a CI within an interpretation, a measure indicating
which fraction of the individuals in the interpretation fulfill a certain CI. He then
developed a technique for the construction of a base of CIs the confidence of which
exceeds a pre-defined threshold in Œ0; 1�. His work is particularly useful for datasets
occuring in practical use cases where it cannot be ruled out that there is some noise,
i.e., errors, in the dataset to be analyzed. Borchmann then also investigated and
constituted an explorative method for the axiomatization of confident CIs, which
also needs an interpretation as input, and furthermore an expert that is capable of
correctly answering questions in the domain of interest.

We consider social networks that are encoded as description graphs, i.e., as
directed graphs the vertices and edges of which are labeled. The aim is to extract
terminological axioms, so-called concept inclusions, from the graph in order to
describe the logical structure of the social network. Furthermore, we assume that
the underlying graph to be analyzed is complete and error-free, i.e., fully describes
all persons and entities in the social network as well as their connections. It is
straightforward that description graphs and interpretations are isomorphic—we will
later elaborate on this fact. In particular, we consider a social network that is given in
form of an interpretation I , which we indeed may assume for the aforementioned
reason. Our aim now is to formulate terminological axioms that are valid in I , i.e.,
we are searching for CIs C v D that are valid in I . Furthermore, we shall do this in
a complete manner. However, it is easy to see that the number of concept inclusions
that are expressible over a given signature is infinite; and in case of a restricted role
depth and a finite signature there are only finitely many concept inclusions. By some
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simple observations, one can verify that the number of concept descriptions with a
role depth of ı C 1 is exponential in the number of concept descriptions with a role
depth of ı. Consequently, it would certainly not be a good idea to enumerate all
valid concept inclusions of I . We should rather try to find a base for the valid CIs
of I , as it has been first investigated by Baader and Distel in [2, 16] with respect
to greatest fixpoint semantics, and later by Borchmann, Distel, and Kriegel, in [12]
with respect to descriptive semantics (the default semantics). A base of CIs for I is
a TBox B such that for each concept inclusion C v D, I ˆ C v D if, and only if,
B ˆ C v D. A slight generalization of the notion of a base for an interpretation has
been introduced in [29], which allows for the incorporation of existing knowledge.

In this chapter we in particular provide a generalization of the aforementioned
means for constructing bases of CIs in the more expressive description logic MH ,
and also demonstrate how the technique can be applied to social graphs. This
chapter is structured as follows. In Sect. 2 the notion of a social graph is defined,
and it is shown that the data model of Facebook induces a social graph. Section 3
gives a short introduction to the Web Ontology Language (OWL), and the following
Sect. 4 presents the description logic MH which is a monotonous fragment of
the DL SROIQ underlying the second version of OWL. Then in Sect. 5 we
investigate the lattice induced by theM -concept descriptions. Section 6 gives a brief
introduction to Formal Concept Analysis. In Sect. 7 we show that each interpretation
in the description logic MH induces a Galois connection between the set of
MH -concept descriptions and the powerset of the interpretation’s domain; in
particular Sect. 8 justifies the existence of the aforementioned Galois connection
by providing a construction for so-called role-depth-bounded model-based most
specific concept descriptions in the DL M . Section 9 generalizes the notion of a
concept lattice from formal contexts to MH -interpretations. Furthermore, Sect. 10
presents an important connection between Formal Concept Analysis and MH -
interpretations, which is then utilized in Sect. 11 to develop a construction method
for knowledge bases of MH -interpretations. Eventually, Sect. 12 gives a short
overview on description logics the expressivity of which is below MH and that
may also be used as a language for axiomatizing terminological knowledge. The
chapter closes with Sect. 13.

2 Social Networks and Social Graphs

A social graph is a directed graph the vertices and edges of which are labeled.
The vertices represent the entities, e.g., persons, events, messages, etc., and the
edges represent relationships between the entities, e.g., friendship between persons,
attendance of a person to an event, a person liking a message, etc. Formally, we
describe social networks as follows. First, fix a set NV of vertex labels as well as a set
NE of edge labels. Then, a social graph over .NV ; NE/ is a tuple G :D .V; E; LV ; LE/

where
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Fig. 1 An exemplary social
graph
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1. V is a set of vertices,
2. E � V � V is a set of directed edges,
3. LV W V ! }.NV / is a vertex labeling function, and
4. LEW E ! }.NE/ is an edge labeling function.

A toy example of a social graph is shown in Fig. 1. It contains two persons, Alice
and Bob, which are friends. Furthermore, Alice attends a concert and publishes a
message which Bob likes. Bob publishes a message, too.

As an exemplary social network we consider Facebook [19], which is the most
popular social network as of 2017. It has been founded by Mark Zuckerberg, and
its website was launched in 2004. In the beginning it was limited to students from
Harvard, but was later opened stepwise to a broader audience. In 2006 everybody
with an age of at least 13 was allowed to create an account on Facebook. Since
its beginning it has successfully evolved to a networking platform, which allows
its users to publish messages, share photos, etc., and interact with each other, e.g.,
by liking other’s activities, communicating with private messages, connecting by
(digital) friendship, etc. Facebook’s data is available via the Facebook Graph API,
cf. [20]. Its data model fits well for our use case—it is accessible as a directed graph
with labeled vertices and edges. In general the Facebook graph consists of nodes,
edges, and fields. The nodes represent entities, like persons, photos, comments,
events, etc.; the edges represent connections between the entities, e.g., an edge could
link a photo to a person, or express that two persons are virtual friends; the fields
represent information about the entities, e.g., a person’s name, a person’s birthday,
the publish date of a comment, etc. In terms of description logics, those field values
can be expressed by appropriate values in concrete domains. We will not go into
detail here, and rather refer the interested reader to [20].
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3 The Web Ontology Language (OWL)

The Web Ontology Language (OWL) was introduced in its first version in 2004 as an
extension of the Resource Description Framework (RDF) and RDF Schema (RDFS)
in order to provide a well-founded semantics and to increase the expressibility of the
language. There were some language constructs expressible in RDF/RDFS leading
to inconsistencies or undecidability that are not expressible in OWL anymore, i.e.,
OWL resolved this issue. Later in 2009, a more expressive second version OWL2
was founded.

However, RDF was not fully replaced, but remained a storage format for OWL,
besides other formats, e.g., XML, Manchester Syntax, etc. A new vocabulary was
defined, which allowed for the expression of the language constructs of OWL, e.g.,
the predicate owl:isA for assigning types to individuals (similar to rdf:type),
the predicate owl:subClassOf for expressing subclass relationships, etc. For
a full reference, the reader is referred to [46]—in the sequel of this chapter we
only consider some of the provided language constructs. In particular, we will
leave out concrete domains, disjunctions and negations, and others. Additionally,
plenty of information including interesting examples and use cases can be found
in the book [26] of Hitzler, Krötzsch, and Rudolph. OWL and its dialects are
used for the Semantic Web and for Linked Data, e.g., in the medical domain
(SNOMED ontology), and in DBpedia as well as Wikidata (structured machine-
readable derivations of Wikipedia).

The logical underpinning of OWL and some of its dialects is provided by
Description Logics (DLs), which are a family of conceptual languages suitable
for knowledge representation and reasoning that have a strong logical foundation
for which the decidability and complexity of common reasoning problems is
widely explored. In particular, the reasoning tasks allow for deduction of implicit
knowledge from explicitly stated facts and axioms, and plenty of appropriate algo-
rithms were developed and implemented, e.g., tableaux algorithms and completion
algorithms. In particular, the full first version of the Web Ontology Language
corresponds to the description logic SH OIN , and the full second version
of the Web Ontology Language is covered by the description logic SROIQ.
In the next Sect. 4, we shall focus on (a fragment of) the description logic
SROIQ, which is suitable for terminological learning, i.e., which allows for
a certain degree of abstraction and not only rewrites given assertional data into
terminological axioms. In particular, this implies that we shall not make use of
neither negation, nor disjunction, nor nominals, nor other constructors that can
emulate the aforementioned.

4 The Description Logic MH

This section presents the description logic ALQ�N �.Self/, which is a fragment
of SROIQ, and allows for conjunctions, primitive negations, value restrictions,
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qualified at-least restrictions, unqualified at-most restrictions, and existential self
restrictions. Furthermore, we will not focus on the implementation details of OWL,
and do not present any of the different syntaxes of OWL, but rather use the
theoretical notations that are used in the field of description logics. The considered
description logic ALQ�N �.Self/ is abbreviated as M , which encodes the
monotonicity of all allowed constructors.

Consider a finite signature ˙ :D .NC; NR/, that is, NC is a finite set of concept
names, and NR is a finite set of role names. Then an M -concept description over ˙

can be constructed according to the following inductive rule where A 2 NC , r 2 NR,
and n 2 N.

C ::D ? j > j A j :A j C u C j A

r: C j E� n: r: C j E� n: r j E

r: Self

The semantics are model-theoretic, that is, they are defined by means of so-
called interpretations. An interpretation I over ˙ D .NC; NR/ is a pair .�I ; �I /

consisting of a non-empty set �I which is called domain, and an extension function
�I W NC [ NR ! }.�I / [ }.�I � �I / that maps concept names A 2 NC to
subsets AI � �I , and role names r 2 NR to binary relations rI � �I � �I .
The extension function is then canonically extended to all M -concept descriptions
according to the following recursive definitions.

?I :D ;
>I :D �I

.:A/I :D �I n AI

.C u D/I :D CI \ DI

.

A

r: C/I :D f d 2 �I j A

e 2 �I W .d; e/ 2 rI implies e 2 CI g
.

E� n: r: C/I :D f d 2 �I j jf e 2 �I j .d; e/ 2 rI and e 2 CI gj � n g
.

E� n: r /I :D f d 2 �I j jf e 2 �I j .d; e/ 2 rI gj � n g
.

E

r: Self/I :D f d 2 �I j .d; d/ 2 rI g

Of course, we may emulate existential restrictions, the expressibility of which
is symbolized by the letter E within the description logic’s name, by using the
abbreviation

E

r: C :D E� 1: r: C, i.e., both M and ME :D ALEQ�N �.Self/
denote essentially the same logic. It is readily verified that the following equation
for the extension of existential restrictions is satisfied.

.

E

r: C/I D f d 2 �I j E

e 2 �I W .d; e/ 2 rI and e 2 CI g

Informally, the role depth of a concept description is defined as the maximal
number of nestings of role quantifiers. More specifically, we define the role depth
rd.C/ of an M -concept description C recursively as follows.
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rd.?/ :D 0

rd.>/ :D 0

rd.A/ :D 0 for each concept name A 2 NC

rd.:A/ :D 0 for each concept name A 2 NC

rd.C u D/ :D max.rd.C/; rd.D//

rd.

A

r: C/ :D 1 C rd.C/

rd.

E� n: r: C/ :D 1 C rd.C/

rd.

E� n: r / :D 1

rd.

E

r: Self/ :D 1

The set of all M -concept descriptions over a signature ˙ is symbolized as M .˙/,
and for a role-depth bound ı 2 N, we denote by M .˙/�ı the set of all M -concept
descriptions over ˙ with a role depth not exceeding ı.

A concept inclusion (abbr. CI) is an expression C v D where both C and D are
concept descriptions. A terminological box (abbr. TBox) is a finite set of concept
inclusions. A CI C v D is valid in I if CI � DI . We then also refer to I as a
model of C v D, and denote this by I ˆ C v D. Furthermore, I is a model of
a TBox T , symbolized as I ˆ T , if each CI in T is valid in I . The entailment
relation is lifted to TBoxes as follows: A CI C v D is entailed by a TBox T ,
denoted as T ˆ C v D, if each model of T is a model of C v D, too. We then
also say that C is subsumed by D with respect to T . A TBox T entails a TBox U ,
symbolized as T ˆ U , if T entails each CI in U , or equivalently if each model of
T is also a model of U . Two M -concept descriptions C and D are equivalent with
respect to T , and we shall write T ˆ C � D, if T ˆ fC v D; D v Cg. In case
T D ; we may omit the prefix “; ˆ”. However, then we have to carefully interpret
an expression C v D—it either just denotes a concept inclusion, i.e., an axiom,
without stating where it is valid; or it expresses that C is subsumed by D (w.r.t. ;),
i.e., CI � DI is satisfied in all interpretations I . An analogous hint applies to
concept equivalences C � D.

To justify the choice of the abbreviation M for ALQ�N �.Self/, we remark
that each of the constructors is monotonous, i.e., it holds true that for all M -concept
descriptions C; D; E, all role names r 2 NR, and all natural numbers n 2 N,

fC v Dg ˆ fC u E v D u E;

A

r: C v A

r: D;

E� n: r: C v E� n: r: Dg:

A role inclusion (abbr. RI) is an expression r v s where r; s 2 NR are role names.
A relational box (abbr. RBox) is a finite set of role inclusions. For an interpretation
I , we say that r v s is valid in I , denoted as I ˆ r v s, if rI � sI .
Furthermore, an RBox R is valid in I , symbolized as I ˆ R, if each role
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inclusion in R is valid in I . In case a description logic allows for the usage of
these role inclusions, then its name contains the letter H . In what follows we are
going to merely consider the description logic MH .

In order to decide entailment, the well-known tableaux algorithm [5, Sect. 3.4]
can be utilized. It takes as input a knowledge base .T ;A / consisting of a TBox and
an ABox, and tries to construct a model of the knowledge base. It was shown that
the tableaux algorithm is sound (i.e., the output is indeed a model), complete (i.e.,
if a model exists, then a model is constructed and returned), and terminates (i.e.,
for finite input yields a result after a finite amount of time). These are the following
common reasoning problems, cf. [5, Sect. 3.2.2].

1. Knowledge Base Consistency: Given a knowledge base K , is there a model of
K ?

2. Concept Satisfiability: Given a concept description C, and a knowledge base K ,
is there a model of K in which C has a non-empty extension?

3. Concept Subsumption: Given two concept descriptions C and D, and a knowl-
edge base K , does I ˆ C v D hold true for all models I of K ?

4. Concept Equivalence: Given two concept descriptions C and D, and a knowledge
base K , does I ˆ C � D hold true for all models I of K ?

5. Instance Checking: Given an individual a, a concept description C, and a
knowledge base K , does K entail a @� C?

6. Role Instance Checking: Given two individuals a and b, a role name r, and a
knowledge base K , does K entail .a; b/ @� r?

There is a strong correspondence between interpretations and directed labeled
graphs, and in particular it is easy to translate between both formalisms. We start
with defining a description graph, which is very similar to a social graph as
introduced in Sect. 2. A description graph over a signature .NC; NR/ is a tuple
G :D .V; E; LV ; LE/ that satisfies the following conditions.

1. .V; E/ is a directed graph, i.e., V is a set of vertices, and E � V � V is a set of
directed edges,

2. LV W V ! }.NC/ is a vertex labelling, and
3. LEW E ! }.NR/ is an edge labelling.

Please note that in some works description graphs are defined to have a distinguished
root vertex—however, this is not necessary for our purposes.

Each interpretation induces a directed labeled graph as follows: let I :D
.�I ; �I / be an interpretation over the signature .NC; NR/. Then, define the descrip-
tion graph G .I / :D .V; E; LV ; LE/ over .NC; NR/ that consists of the directed graph
.V; E/ with the components

V :D �I ;

and E :D
[

f rI j r 2 NR g;
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and the corresponding labeling functions

LV W V ! }.NC/

x 7! f A 2 NC j x 2 AI g;
and LEW E ! }.NR/

.x; y/ 7! f r 2 NR j .x; y/ 2 rI g:

Note that G .I / just formalizes the natural graphical representation of interpreta-
tions as they are usually drawn in toy examples.

Vice versa, if G :D .V; E; LV ; LE/ is a description graph over .NC; NR/, then its
induced interpretation is I .G / :D .�I .G /; �I .G // the components of which are
defined in the following way.

�I .G / :D V;

and �I .G /W
(

A 7! f x 2 V j A 2 LV.x/ g
r 7! f .x; y/ 2 E j r 2 LE.x; y/ g:

It is readily verified that the two transformations are mutually inverse, and this
justifies that we do not have to distinguish between interpretations and description
graphs (or social graphs) in the sequel of this document.

5 The Lattice of M -Concept Descriptions

It is readily verified that the subsumption v with respect to the empty TBox ;
constitutes a quasi-order on the set M .˙/ of all M -concept descriptions over the
signature ˙ D .NC; NR/, i.e., the following conditions are satisfied.

1. v w.r.t. ; is reflexive, i.e., for all M -concept descriptions C, ; ˆ C v C, and
2. v w.r.t. ; is transitive, i.e., for all M -concept descriptions C; D; E, it holds true

that ; ˆ C v D and ; ˆ D v E implies ; ˆ C v E.

Of course, then the equivalence � with respect to ; is an equivalence relation, i.e.,
the following statements hold true.

1. � w.r.t. ; is reflexive, i.e., for all M -concept descriptions C, ; ˆ C � C,
2. � w.r.t. ; is transitive, i.e., for all M -concept descriptions C; D; E, we have that

; ˆ C � D and ; ˆ D � E implies ; ˆ C � E, and
3. � w.r.t. ; is symmetric, i.e., for all M -concept descriptions C; D, it holds true

that ; ˆ C � D implies ; ˆ D � C.

By definition it follows that it is the induced equivalence relation of v, i.e., ; ˆ
C � D if, and only if, ; ˆ C v D as well as ; ˆ D v C. Hence, the quotient of
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.M .˙/; v/ with respect to the induced equivalence � w.r.t. ; is a partially ordered
set (a poset). It consists of all equivalence classes ŒC�� for M -concept descriptions
C, which are defined by

ŒC�� :D f D j ; ˆ C � D g:

Furthermore, for an equivalence class ŒC��, we say that C is a representative of
it. We can then define a partial order on the classes which is induced by the
subsumption between their representatives, i.e., for all M -concept descriptions
C; D,

; ˆ ŒC�� v ŒD�� if, and only if, ; ˆ C v D:

This partial order enjoys all properties of a quasi-order as stated above, and
furthermore is anti-symmetric, i.e., for all M -concept descriptions C; D,

; ˆ ŒC�� v ŒD�� and ; ˆ ŒD�� v ŒC�� implies ŒC�� D ŒD�� :

For the sake of simplicity, we will not distinguish between the equivalence classes
and their representatives in the sequel of this chapter. The poset .M .˙/;v/=� is even a
bounded lattice. Of course, ? is the smallest element, and > is the greatest element.
It is easy to see that the (finitary) conjunction

�
corresponds to the finitary infimum

operation, since for all finite sets C of M -concept descriptions over ˙ , it holds that
the conjunction

�
C is the greatest lower bound (w.r.t. v) of all concept descriptions

in C , i.e., ; ˆ �
C v C for all C 2 C , and for all M -concept descriptions D with

; ˆ D v C for all C 2 C , it holds true that ; ˆ D v �
C . However, what

is missing is a supremum operation. Of course, in description logics allowing for
disjunction, we can easily prove that the disjunction is the supremum operation. For
the general case, the notion of a smallest upper bound is rather called least common
subsumer in the field of description logics, and is defined as follows.

Definition 5.1 Let C; D be M -concept descriptions over the signature ˙ . Then a
concept description E 2 M .˙/ is called a least common subsumer (abbr. LCS) of
C and D if the following conditions are fulfilled.

1. E subsumes both C and D, i.e., ; ˆ C v E and ; ˆ D v E.
2. Whenever F is a common subsumer of C and D, then F subsumes E, i.e., for all

concept descriptions F 2 M .˙/, ; ˆ fC v F; D v Fg implies ; ˆ E v F.

It follows that least common subsumers are always unique up to equivalence.
Hence, we can speak of the LCS of two concept descriptions, and furthermore we
denote it by C _ D. The definition can be canonically extended to an arbitrary
number of concept descriptions, and we then write

W
C for the least common

subsumer of a set C of M -concept descriptions over ˙ . It is readily verified that
the conjunction is a categorical product, cf. Fig. 2, and dually the least common
subsumer is a categorical coproduct, cf. Fig. 3.
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Fig. 2 The conjunction is a
product in the category the
objects of which are concept
descriptions and the
morphisms of which are
subsumptions, cf. [38, p. 69]

Fig. 3 The least common
subsumer is a coproduct in
the category the objects of
which are concept
descriptions and the
morphisms of which are
subsumptions, cf. [38, p. 63]

It was shown that least common subsumers always exist in several description
logics, e.g., in EL , FLE , and ALE , as shown in [4] by Baader, Küsters, and
Molitor; in ALQ and ALEN R as shown in [40, 41] by Mantay; in ALEN
as shown in [33] by Küsters and Molitor; in ALEH IN RC as shown in [18]
by Donini, Colucci, Di Noia, and Di Sciascio; in EL gfp, i.e., EL interpreted with
greatest fixpoint semantics, as shown in [1] by Baader; in FLE gfp as shown in [14]
by Distel; and in EL?

gfp as shown by Distel in [16].
As a practical means for ensuring the existence of least common subsumers,

we could also apply a bound on the role depth of the concept descriptions under
consideration. For the case of EL? this has been done in [12] by Borchmann,
Distel, and Kriegel. However, this result also applies to all other description logics
equipped with a bound on the role depths—in particular, we know that then for all
concept descriptions C and D, there are only finitely many concept descriptions that
satisfy the role depth bound, use only concept names and role names occuring in C
or D, and that only include numbers in at-least or at-most restrictions not exceeding
those occuring in C or D. Denote the conjunction of these three properties by 	.
Then, we can infer that

; ˆ C _ D �
�

f E j E satisfies 	 and ; ˆ fC v E; D v Eg g;

holds true and is a well-defined formula as the set f E j E satisfies 	 and ; ˆ fC v
E; D v Eg g must be finite, and thus its conjunction indeed exists. Note that this is
a rather theoretical argument showing the existence, but not allowing for a practical
computation of least common subsumers.

It is easy to see that the equivalence � is compatible with both u and _. In the
sequel of this chapter, we shall denote this bounded lattice by M .˙/ :D .M .˙/;v/=�,
and accordingly M .˙/�ı :D .M .˙/�ı ;v/=� symbolizes the bounded lattice of
(equivalence classes of) M -concept descriptions the role depth of which is bounded
by ı. Note that M .˙/�ı is indeed complete if the underlying signature ˙ is finite,
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since then there are only finitely many M -concept descriptions over ˙ with a role
depth of at most ı. Eventually, the dual .M .˙//@ of the lattice M .˙/ is obtained
by simply reversing the order relation, and an analogous notion applies to the lattice
M .˙/�ı .

6 Formal Concept Analysis

This section briefly introduces the standard notions of Formal Concept Analysis
(abbr. FCA) [24]. A formal context K :D .G; M; I/ consists of a set G of objects
(Gegenstände in German), a set M of attributes (Merkmale in German), and an
incidence relation I � G � M. For a pair .g; m/ 2 I, we say that g has m. The
derivation operators of K are the mappings �IW }.G/ ! }.M/ and �IW }.M/ !
}.G/ such that for each object set A � G, the set AI contains all attributes that
are shared by all objects in A, and dually for each attribute set B � M, the set BI

contains all those objects that have all attributes from B. Formally, we define the
derivation operators as follows.

AI :D f m 2 M j A

g 2 AW .g; m/ 2 I g for object sets A � G;

and BI :D f g 2 G j A

m 2 BW .g; m/ 2 I g for attribute sets B � M:

For singleton sets, we may also use the abbreviations gI :D fggI for all objects
g 2 G, as well as mI :D fmgI for all attributes m 2 M.

It is well-known [24] that both derivation operators constitute a so-called Galois
connection between the powersets }.G/ and }.M/, i.e., the following statements
hold true for all subsets A; A1; A2 � G and B; B1; B2 � M.

1. A � BI if, and only if, B � AI if, and only if, A � B � I
2. A � AII

3. AI D AIII

4. A1 � A2 implies AI
2 � AI

1

5. B � BII

6. BI D BIII

7. B1 � B2 implies BI
2 � BI

1

For obvious reasons, formal contexts can be represented as binary tables the rows
of which are labeled with the objects, the columns of which are labeled with the
attributes, and the occurrence of a cross � in the cell at row g and column m indicates
that the object g has the attribute m.

An intent of K is an attribute set B � M with B D BII . The set of all intents
of K is denoted by Int.K/. An implication over M is an expression X ! Y where
X; Y � M. It is valid in K, denoted as K ˆ X ! Y, if XI � YI , i.e., if each object
of K that possesses all attributes in X also has all attributes in Y. An implication
set L is valid in K, denoted as K ˆ L , if all implications in L are valid in K.
Furthermore, the relation ˆ is lifted to implication sets as follows: an implication
set L entails an implication X ! Y, symbolized as L ˆ X ! Y, if X ! Y is
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valid in all formal contexts in which L is valid. More specifically, ˆ is called the
semantic entailment relation.

A model of X ! Y is an attribute set Z � M such that X � Z implies Y � Z,
and we shall then write Z ˆ X ! Y. Of course, then an implication X ! Y is
valid in K if, and only if, for each object g 2 G, the object intent gI is a model of
X ! Y. It is furthermore straightforward to verify that the following statements are
equivalent.

1. X ! Y is valid in K.
2. Each object intent of K is a model of X ! Y.
3. Each intent of K is a model of X ! Y.
4. Y � XII .

The equivalence between the first and the last statement indicates that XII is the
largest consequence of X in K, i.e., X ! XII is valid in K, and for each strict
superset Z © XII , the implication X ! Z is not valid in K.

Consider an implication set L [ fX ! Yg � Imp.M/. A model of L is an
attribute set which is a simultaneous model of each implication in L . In particular,
each model Z of L satisfies the following: for each implication X ! Y 2 L ,
X � Z implies Y � Z, i.e., Z is a fixed point of the operator

Z 7! ZL .1/ :D Z [
[

f Y j E

XW X ! Y 2 L and X � Z g:

The smallest model ZL of L that contains Z is obtained by successive exhaustive
application of the operator �L .1/, i.e., ZL D Sf ZL .n/ j n � 1 g where ZL .nC1/ :D
.ZL .1//L .n/ for all n � 1. Additionally, the following statements are equivalent.

1. L entails X ! Y.
2. Each model of L is a model of X ! Y.
3. X ! Y is valid in all those formal contexts with attribute set M in which L is

valid.
4. Y � XL .

We then infer that XL is the largest consequence of X with respect to the implication
set L , i.e., L entails X ! XL , and for all supersets Y © XL , the implication
X ! Y does not follow from L .

It was shown that entailment can also be decided syntactically by applying
deduction rules to the implication set L without the requirement to consider all
formal contexts in which L is valid, or all models of L , respectively. Recall that
an implication X ! Y is syntactically entailed by an implication set L , denoted by
L j� X ! Y, if X ! Y can be constructed from L by the application of inference
axioms, cf. [39, p. 47], which are described as follows.
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(F1) Reflexivity: ; j� X ! X
(F2) Augmentation: fX ! Yg j� X [ Z ! Y
(F3) Additivity: fX ! Y; X ! Zg j� X ! Y [ Z
(F4) Projectivity: fX ! Y [ Zg j� X ! Y
(F5) Transitivity: fX ! Y; Y ! Zg j� X ! Z
(F6) Pseudotransitivity: fX ! Y; Y [ Z ! Wg j� X [ Z ! W

In the inference axioms above the symbols X, Y, Z, and W denote arbitrary subsets
of the considered set M of attributes. Formally, we define L j� X ! Y if there is
a finite sequence of implications X0 ! Y0; : : : ; Xn ! Yn such that the following
conditions hold.

1. For each i 2 f0; : : : ; ng, there is a subset Li � L [fX0 ! Y0; : : : ; Xi�1 ! Yi�1g
such that Li j� Xi ! Yi matches one of the Axioms F1–F6.

2. Xn ! Yn D X ! Y.

Often, the Axioms F1, F2, and F6 are referred to as Armstrong’s axioms. These
three axioms constitute a complete and independent set of inference axioms for
entailment, i.e., from it the other Axioms F3–F5 can be derived, and none of them
is derivable from the others.

The semantic entailment and the syntactic entailment coincide, i.e., an impli-
cation X ! Y is semantically entailed by an implication set L if, and only if,
L syntactically entails X ! Y, cf. [39, Theorem 4.1 on Page 50] as well as [24,
Proposition 21 on Page 81]. Consequently, we do not have to distinguish between
both entailment relations ˆ and j� when it is up to decide whether an implication
follows from a set of implications.

The data encoded in a formal context can be visualized as a line diagram of the
corresponding concept lattice, which we shall shortly describe. A formal concept
of a formal context K :D .G; M; I/ is a pair .A; B/ consisting of a set A � G of
objects as well as a set B � M of attributes such that AI D B and BI D A. We then
also refer to A as the extent, and to B as the intent, respectively, of .A; B/. Another
characterization of a formal concept is as follows: .A; B/ is a formal concept of K
if, and only if, A � G, B � M, and both A and B are maximal with respect to the
property A � B � I, i.e., for each strict superset C © A, C � B 6� I, and accordingly
for each strict superset D © B, A � D 6� I. In the denotation of K as a cross table,
those formal concepts are the maximal rectangles full of crosses (modulo reordering
of rows and columns). Then, the set of all extents of K is symbolized as Ext.K/, and
the set of all formal concepts of K is denoted as B.K/, which is ordered by defining
.A; B/ � .C; D/ if, and only if, A � C. It was shown that this order always induces
a complete lattice B.K/ :D .B.K/; �; ^; _; >; ?/, called the concept lattice of K,
cf. [24, 48], in which the infimum and the supremum operation satisfy the equations

^
f .At; Bt/ j t 2 T g D .

\
f At j t 2 T g; .

[
f Bt j t 2 T g/II/;

and
_

f .At; Bt/ j t 2 T g D ..
[

f At j t 2 T g/II;
\

f Bt j t 2 T g/;
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and where > D .;I; ;II/ is the greatest element, and where ? D .;II ; ;I/ is the
smallest element, respectively. The number of formal concepts can be exponential
in the size of the formal context. Kuznetsov shows that determining this number is a
#P-complete problem, cf. [34]. Furthermore, the problems of existence of a formal
concept with restrictions on the size of the extent, intent, or both, respectively, are
investigated in [34]—Kuznetsov demonstrates that the existence of a formal concept
.A; B/ such that jAj D k, jBj D k, or jAj C jBj D k, respectively, are NP-complete
problems; the similar problems with � are all in P; and the problems with � are
also in P, except the problem where jAj C jBj � k is NP-complete.

Furthermore, the concept lattice of K can be nicely represented as a line diagram
as follows: each formal concept is depicted as a vertex. Furthermore, there is an
upward directed edge from each formal concept to its upper neighbors, i.e., to all
those formal concepts which are greater with respect to �, but for which there is
no other formal concept in between. The nodes are labeled as follows: an attribute
m 2 M is an upper label of the attribute concept .mI; mII/, and an object g 2 G is
a lower label of the object concept .gII; gI/. Then, the extent of the formal concept
represented by a vertex consists of all objects which label vertices reachable by a
downward directed path, and dually the intent is obtained by gathering all attribute
labels of vertices reachable by an upward directed path.

Let K ˆ L . A pseudo-intent of a formal context K relative to an implication
set L is an attribute set P � M which is no intent of K, but is a model of L , and
satisfies QII � P for all pseudo-intents Q ¨ P. The set of all those pseudo-intents is
symbolized by PsInt.K;L /. Then the implication set

Can.K;L / :D f P ! PII j P 2 PsInt.K;L / g

constitutes an implication base of K relative to L , i.e., for each implication X ! Y
over M, the following equivalence is satisfied.

K ˆ X ! Y if, and only if, Can.K;L / [ L ˆ X ! Y

Can.K;L / is called the canonical base of K relative to L . It can be shown that
it is a minimal implication base of K relative to L , i.e., there is no implication
base of K relative to L with smaller cardinality. Further information is given in
[21, 23, 25, 45]. The most prominent algorithm for computing the canonical base is
certainly NextClosure developed by Ganter [21, 23]. Bazhanov and Obiedkov pro-
pose an optimized version of NextClosure in [8] which speeds up the computation of
the lectically next closure, and furthermore they then perform some benchmarks to
compare both versions. Additionally, they also utilize three different algorithms for
computing closures with respect to implication sets, i.e., firstly the already presented
and straightforward algorithm which computes the (least) fixed point of the operator
X 7! XL .1/, see also [39], secondly the LinClosure algorithm [9], which computes
XL in linear time, and thirdly Wild’s Closure algorithm [47], which is essentially
an improved version of LinClosure. Please note that LinClosure is not always
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faster than computing the least fixed point of X 7! XL .1/, due to its initialization
overhead. Furthermore, Obiedkov and Duquenne constitute an attribute-incremental
algorithm for constructing the canonical base, cf. [42]. A parallel algorithm called
NextClosures is also available [28, 32], and an implementation is provided in
Concept Explorer FX [27]; its advantage is that its processing time scales almost
inverse linear with respect to the number of available CPU cores.

There are some important complexity problems related to the pseudo-intents and
canonical bases. Kuznetsov, and later together with Obiedkov, has proven in [35–37]
that the number of pseudo-intents can be exponential in jMj as well as in jGj � jMj
or in jIj, and determining this number is #P-hard, furthermore that recognizing a
pseudo-intent is in coNP, and that determining the number of non-pseudo-intents is
#P-complete. Sertkaya and Distel demonstrated in [15, 17, 43, 44] that the number
of intents can be exponential in the number of pseudo-intents, i.e., the set of
pseudo-intents cannot be enumerated in output-polynomial time by utilizing one
of the existing algorithms, which all enumerate the closure system of both intents
and pseudo-intents, and that the lectically first pseudo-intent can be computed
in polynomial time, but recognizing the first n pseudo-intents is coNP-complete.
Consequently, the pseudo-intents of a given formal context cannot be enumerated
in the lectic order with polynomial delay, unless P D NP. Enumeration of pseudo-
intents (in an arbitrary order) was also investigated, but concrete complexity results
are outstanding. Babin and Kuznetsov showed in [6, 7] that recognizing a pseudo-
intent is coNP-complete, and furthermore that recognizing the lectically largest
pseudo-intent is coNP-hard. Hence, computing pseudo-intents in the dual lectic
order is also intractable, i.e., not possible with polynomial delay, unless P D NP. As
a corollary Babin and Kuznetsov conclude that the maximal pseudo-intents cannot
be enumerated with polynomial delay, unless P D NP. Further consequences which
they found are, for example, that premises of minimal implication bases cannot be
tractably recognized, since this problem is coNP-complete, and that there cannot
be an algorithm that outputs a random pseudo-intent in polynomial time, unless
NP D coNP.

Eventually, in case a given formal context is not complete in the sense that it
does not contain enough objects to refute invalid implications, i.e., only contains
some observed objects in the domain of interest, but one aims at exploring all valid
implications over the given attribute set, a technique called Attribute Exploration
can be utilized, which guides the user through the process of axiomatizing an
implication base for the underlying domain in a way the number of questions posed
to the user is minimal. For a sophisticated introduction as well as for theoretical and
technical details, the interested reader is rather referred to [21–23, 31, 45]. A parallel
variant of the Attribute Exploration also exists, cf. [28, 31], which is implemented
in Concept Explorer FX [27].

For transferring and extending the results on canonical bases from Formal
Concept Analysis to Description Logics, there are two key observations, namely
that in the simple description logic L0, which only allows for > and u, there is
a one-to-one correspondence between interpretations over the signature .M; ;/ and
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formal contexts with attribute set M, and furthermore that implications over M can
be represented as concept inclusions over .M; ;/, and vice versa. In particular, an
attribute subset X � M then corresponds to the conjunction

�
X, and accordingly

an implication X ! Y corresponds to the CI
�

X v �
Y. These observations were

successfully used in [2, 12, 16], among others. All of the aforementioned papers
have in common that they provide a certain extension of the method for axiomatizing
bases of implications from formal contexts. In particular, each of the methods makes
heavy use of the canonical base. We will later elaborate on that, and provide results
specifically tailored to our considered description logic MH .

7 The Galois Connection of an Interpretation

In Sect. 6 we have seen that in Formal Concept Analysis the pair of the derivation
operators �IW }.G/ ! }.M/ and �IW }.M/ ! }.G/ of a formal context K :D
.G; M; I/ constitutes a Galois connection. In Description Logics however, for an
interpretation I :D .�I ; �I / we only have an extension mapping �I WM .˙/ !
}.�I /, which is defined recursively on the structure of concept descriptions,
cf. Sect. 4. As a short repetition on Galois connections between posets, the interested
reader is referred to [13, Definition 7.23] and [13, Lemma 7.26]. However, we will
later formulate corresponding notions specifically tailored to our use case.

By definition the extension mapping �I WM .˙/ ! }.�I / preserves finitary
joins, i.e., we have that .

�f Ct j t 2 T g/I D Tf CI
t j t 2 T g for all finite families

f Ct j t 2 T g of M -concept descriptions over ˙ . When imposing a role-depth
bound ı on the concept descriptions, then we know that there are only finitely many
concept descriptions in case of a finite signature, and thus the extension mapping
�I WM .˙/�ı ! }.�I / preserves arbitrary joins—then [13, 7.34] yields that there
is another mapping }.�I / ! M .˙/�ı , which together with �I constitutes a
Galois connection, and in terms of lattice theory this mapping is called the upper
adjoint of the extension mapping �I . In [2, 12, 16] this upper adjoint is rather
called model-based most specific concept description mapping, and in each of the
references it was shown that the pair of this mapping together with the extension
mapping forms a Galois connection. Furthermore, [13, 7.33] then states that this
other mapping can be found as X 7! Minf C 2 M .˙/�ı j X � CI g,1 i.e., the
mapping which assigns to each subset X � �I its role-depth-bounded model-based
most specific concept description (or, to be formally correct, its equivalence class)
which is characterized by the following definition.

1For a subset X � P of a quasi-ordered set .P; �/, we use the expression Min.X/ to denote the set
of all those elements in X which are minimal with respect to �, i.e., x 2 Min.X/ if, and only if,
x 2 X and there is no other element y 2 X such that y � x and y 6� x.
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Definition 7.1 Let I be an interpretation over the signature ˙ D .NC; NR/, and
let ı 2 N be a role-depth bound. Then, for a subset X � �I , a concept description
C 2 M .˙/�ı is called role-depth-bounded model-based most specific concept
description (abbr. RMMSC) of X in I with respect to ı if it satisfies the following
conditions.

1. rd.C/ � ı,
2. X � CI , and
3. for all M -concept descriptions D over ˙ with a role depth not exceeding ı, it

holds true that ; ˆ C v D if X � DI .

We shall denote the set of all RMMSCs in I w.r.t. ı by Mmsc.I ; ı/.
Firstly, all role-depth-bounded model-based most specific concept descriptions

of X in I with respect to ı are equivalent, and a representative of the equivalence
class is hence denoted as XI .ı/. Secondly, we can easily convince us that XI .ı/

always exists—provided that the underlying signature is finite. This is due to the
fact that for a finite signature, only finitely many concept descriptions with a role
depth of at most ı exist. Consequently, in order to construct XI .ı/ we may just
build the (finite) conjunction of all those concept descriptions the role depth of
which does not exceed ı and the extension of which contains X as a subset. Of
course, this does not yield a practical means for the construction of role-depth-
bounded model-based most specific concept descriptions, but we will investigate
an appropriate computation method later in Sect. 8.

Lemma 7.2 Let I be an interpretation over the signature ˙ D .NC; NR/, f Xt j t 2
T g be a family of subsets Xt � �I , and f Cs j s 2 S g a family of concept
descriptions Cs 2 M .˙/. Then, the following statements hold.

1. ; ˆ .
Sf Xt j t 2 T g/I .ı/ � Wf XI .ı/

t j t 2 T g
2. .

�f Cs j s 2 S g/I D Tf CI
s j s 2 S g

Proof

1. Let f Xt j t 2 T g be a family of subsets Xt � �I . Then we can show thatWf XI .ı/
t j t 2 T g is indeed a role-depth-bounded model-based most specific

concept description of
Sf Xt j t 2 T g. (It would also be possible to dually prove

that .
Sf Xt j t 2 T g/I .ı/ is a least common subsumer of the concept descriptions

XI .ı/
t for t 2 T.)

First, we prove that
Sf Xt j t 2 T g is a subset of the extension .

Wf XI .ı/
t j t 2

T g/I . By definition, it holds that Xt � XI .ı/I
t for all t 2 T. Furthermore, every

RMMSC XI .ı/
t is subsumed by the LCS

Wf XI .ı/
t j t 2 T g. It then immediately

follows that each Xt must be a subset of the extension .
Wf XI .ı/

t j t 2 T g/I .
Second, we have to show that whenever C is a concept description the

extension of which contains
Sf Xt j t 2 T g, then C subsumes

Wf XI .ı/
t j t 2 T g

with respect to the empty TBox ;. By definition of RMMSCs then we infer that
each XI .ı/

t is subsumed by C, and hence by definition of LCS,
Wf XI .ı/

t j t 2 T g
must be subsumed by C, too.

2. holds true by definition of the semantics of conjunctions. ut
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Lemma 7.3 Let I be an interpretation over the signature ˙ D .NC; NR/, and
ı 2 N be a role-depth bound. Then, the extension mapping �I and the MMSC-
mapping �I .ı/ constitute a Galois connection between the powerset lattice of the
domain �I and the dual of the concept description lattice M .˙/�ı .

In particular, the following statements hold true for all subsets X; Y � �I , and
for all M -concept descriptions C; D over ˙ with a role-depth not exceeding ı.

1. X � CI if, and only if, ; ˆ XI .ı/ v C
2. X � XI .ı/I

3. ; ˆ XI .ı/ � XI .ı/II .ı/

4. X � Y implies ; ˆ XI .ı/ v YI .ı/

5. ; ˆ C w CII .ı/

6. CI D CII .ı/I

7. ; ˆ C v D implies CI � DI

Proof It suffices to prove the first statement, since the others are then obtained as
consequences, cf. [13, Definition 7.23 and Lemma 7.26]. Hence, assume that X �
CI . Then by Statement 3 of Definition 7.1 we conclude that ; ˆ XI .ı/ v C. Vice
versa, if XI .ı/ is subsumed by C with respect to the empty TBox ;, then in particular
it follows that XI .ı/I � CI . An application of Statement 2 of Definition 7.1 then
yields X � XI .ı/I � CI . ut

From the preceding lemma we conclude that the composition of the extension
mapping and the MMSC mapping yields a closure operator in the dual of M�ı ,
and it furthermore holds true that the implications which are valid in �II .ı/ are
exactly those concept inclusions which are valid in I and the subsumee and the
subsumer of which have a role depth not exceeding ı. Furthermore, we infer that
each implication base, of �II .ı/ is a base of CIs for I and ı. Further information
on implications that are valid in closure operators can be found in [30, Sect. 3].

8 Computation of Role-Depth-Bounded Model-Based Most
Specific Concept Descriptions

In this section we are going to develop a method for the computation of RMMSCs
in M . By definition of the M -concept descriptions in Sect. 4, it follows that
each such M -concept description is essentially a conjunction of other M -concept
descriptions, i.e., for each C 2 M .˙/, there is a finite set Conj.C/ � M .˙/

such that C D �
Conj.C/2 is satisfied and Conj.C/ does not contain any elements

of the form D u E. We call the elements in Conj.C/ the top-level conjuncts of
C. Furthermore, we can distinguish between the different possible types of these
top-level conjuncts, i.e., if X � M .˙/, then Conj.C;X / :D Conj.C/ \ X . If
A � NC, R � NR, N � N, and C � M .˙/, then define the following sets.

2Please note that
� ; D >.
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:A :D f :A j A 2 A g

A

R: C :D f A

r: C j r 2 R; C 2 C g

E� N: R: C :D f E� n: r: C j n 2 N; r 2 R; C 2 C g

E� N: R :D f E� n: r j n 2 N; r 2 R g

E

R: Self :D f E

r: Self j r 2 R g

It is readily verified that then for every M -concept description C,

Conj.C/ D Conj.C; f?; >g/
[ Conj.C; NC/

[ Conj.C; :NC/

[ Conj.C;

A

NR:M .˙//

[ Conj.C;

E� N: NR:M .˙//

[ Conj.C;

E� N: NR /

[ Conj.C;

E

NR: Self/;

i.e., C must be of the following form.

C D
�

Conj.C; f?; >g/

u
�

Conj.C; NC/

u
�

Conj.C; :NC/

u
�

Conj.C;

A

NR:M .˙//

u
�

Conj.C;

E� N: NR:M .˙//

u
�

Conj.C;

E� N: NR /

u
�

Conj.C;

E

NR: Self/

We conclude that for the construction of an RMMSC we have to investigate
which conjuncts of the different types must occur in the RMMSC. In particular,
we investigate a technique for the construction of an RMMSC XI .ı/ of a subset
X � �I within a given interpretation I and with respect to a pre-defined bound
ı 2 N on the role depths. We start by considering the smallest bound ı D 0. It is
then readily verified that the RMMSC must have the form
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XI .0/ D
�

Conj.XI .0/; f?; >g/

u
�

Conj.XI .0/; NC/

u
�

Conj.XI .0/; :NC/;

where

Conj.XI .0/; f?; >g/ D f>g [ f ? j X D ; g;
Conj.XI .0/; NC/ D f A j A 2 NC and X � AI g;

and Conj.XI .0/; :NC/ D f :A j A 2 NC and X \ AI D ; g:

Now assume that ı > 0. We have already argued that for a finite signature ˙ ,
which we can always assume for practical cases, the RMMSC XI .ı/ must exist, and
furthermore must then be of the following form.

XI .ı/ D
�

Conj.XI .ı/; f?; >g/

u
�

Conj.XI .ı/; NC/

u
�

Conj.XI .ı/; :NC/

u
�

Conj.XI .ı/;

A

NR:M .˙/�ı�1/

u
�

Conj.XI .ı/;

E� N: NR:M .˙/�ı�1/

u
�

Conj.XI .ı/;

E� N: NR /

u
�

Conj.XI .ı/;

E

NR: Self/

For the first three parts, we can, of course, utilize the results from the case ı D 0.
Furthermore, we can immediately see that

Conj.XI .ı/;

E

NR: Self/ D f E

r: Self j r 2 NR and

A

x 2 XW .x; x/ 2 rI g:

For analyzing the remaining parts, we repeat the definitions of extensions of some
of the corresponding M -concept descriptions as follows.

.

A

r: C/I D f d 2 �I j A

e 2 �I W .d; e/ 2 rI implies e 2 CI g
D f d 2 �I j f e 2 �I j .d; e/ 2 rI g � CI g
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.

E� n: r: C/I D f d 2 �I j jf e 2 �I j .d; e/ 2 rI and e 2 CI gj � n g
D f d 2 �I j jf e 2 �I j .d; e/ 2 rI g \ CI j � n g

.

E� n: r /I D f d 2 �I j jf e 2 �I j .d; e/ 2 rI gj � n g

If we denote the set of all r-successors of an element d 2 �I by sucI .d; r/,
i.e., if we set sucI .d; r/ :D f e 2 �I j .d; e/ 2 rI g, then we can rewrite the
equations given above as follows.

.

A

r: C/I D f d 2 �I j sucI .d; r/ � CI g
.

E� n: r: C/I D f d 2 �I j jsucI .d; r/ \ CI j � n g
.

E� n: r /I D f d 2 �I j jsucI .d; r/j � n g

Consequently, when lifting the equations from a characterization of elements of
the extensions to subsets of the extensions, we get the following equivalences.

X � .

A

r: C/I if, and only if,

A

x 2 XW x 2 .

A

r: C/I

if, and only if,

A

x 2 XW sucI .x; r/ � CI

X � .

E� n: r: C/I if, and only if,

A

x 2 XW x 2 .

E� n: r: C/I

if, and only if,
A

x 2 XW jsucI .x; r/ \ CI j � n

X � .

E� n: r /I if, and only if,

A

x 2 XW x 2 .

E� n: r /I

if, and only if,

A

x 2 XW jsucI .x; r/j � n

Further define

CSuc.X;

A

r/ :D f C 2 M .˙/ j A

x 2 XW sucI .x; r/ � CI g;
CSuc.X;

E� n: r / :D f C 2 M .˙/ j A

x 2 XW jsucI .x; r/ \ CI j � n g;
and n.X; r/ :D maxf jsucI .x; r/j j x 2 X g;

i.e., n.x; r/ denotes the number of r-successors of x in I , and n.X; r/ is the smallest
n such that X � .

E� n: r /I . Then, of course it holds true that

X � .

A

r: C/I if, and only if, C 2 CSuc.X;

A

r/;

X � .

E� n: r: C/I if, and only if, C 2 CSuc.X;

E� n: r /;

and X � .

E� n: r /I if, and only if, n � n.X; r/:
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We can then collect all subsets of the interpretation’s domain the extension of
which serves as a filler for the appropriate constructors, and in particular we set

SucI .X;

A

r/ :D f Y � �I j A

x 2 XW sucI .x; r/ � Y g;
and SucI .X;

E� n: r / :D f Y � �I j A

x 2 XW jsucI .x; r/ \ Yj � n g:

Obviously, then

X � .

A

r: YI .ı�1//I for all Y 2 SucI .X;

A

r/;

and X � .

E� n: r: YI .ı�1//I for all Y 2 SucI .X;

E� n: r /;

and applying Statement 1 of Lemma 7.3 yields that

; ˆ XI .ı/ v A

r: YI .ı�1/ for all Y 2 SucI .X;

A

r/;

; ˆ XI .ı/ v E� n: r: YI .ı�1/ for all Y 2 SucI .X;

E� n: r /;

and ; ˆ XI .ı/ v E� n: r for all n � n.X; r/:

The connection between the sets CSuc.: : :/ and Suc.: : :/ is as follows.

1. For all C 2 CSuc.X;

Q

r/ it holds true that CI 2 Suc.X;

Q

r/.
2. For all Y 2 Suc.X;

Q
r/ it holds true that YI .ı�1/ 2 CSuc.X;

Q
r/.

Continuing the way towards a construction of the RMMSC of a subset X � �I ,
we can see that it must satisfy the following subsumption.

; ˆ XI .ı/ v
�

f A j A 2 NC and X � AI g

u
�

f :A j A 2 NC and X � .:A/I g

u
�

f A

r: C j r 2 NR; C 2 M .˙/�ı�1; and X � .

A

r: C/I g

u
�

(

E� n: r: C

ˇ̌
ˇ̌
ˇ

n 2 N; r 2 NR; C 2 M .˙/�ı�1;

and X � .

E� n: r: C/I

)

u
�

f E� n: r j n 2 N; r 2 NR; and X � .

E� n: r /I g

u
�

f E

r: Self j r 2 NR; and X � .

E

r: Self/I g

�
�

f A j A 2 NC and X � AI g

u
�

f :A j A 2 NC and X \ AI D ; g

u
�

f A

r: C j r 2 NR; and C 2 CSuc.X;

A

r/ \ M .˙/�ı�1 g
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u
�

(

E� n: r: C

ˇ̌
ˇ̌
ˇ

n 2 N; r 2 NR;

and C 2 CSuc.X;

E� n: r / \ M .˙/�ı�1

)

u
�

f E� n: r j n 2 N; r 2 NR; and n � n.X; r/ g

u
�

f E

r: Self j r 2 NR; and X � .

E

r: Self/I g

It is easy to see that for the construction of the RMMSC it suffices to consider
the minimal successors, and hence we explicitly define them as follows.

sucI .X; r/ :D
[

f sucI .x; r/ j x 2 X g
D f y 2 �I j E

x 2 XW .x; y/ 2 rI g
MinSucI .X;

A

r/ :D Min.SucI .X;

A

r//

D fsucI .X; r/g
MinSucI .X;

E� n: r / :D Min.SucI .X;

E� n: r //

D Minf Y � sucI .X; r/ j A

x 2 XW jsucI .x; r/ \ Yj � n g

Definition 8.1 Let I be a finite interpretation over a finite signature ˙ :D
.NC; NR/, X � �I with X ¤ ; be a subset of the domain, and ı 2 N be a
role-depth bound. Then, the syntactic RMMSC of X in I with respect to ı is the
concept description mmsc.X;I ; ı/ which is defined by induction on the role depth
as follows.

mmsc.X;I ; 0/ :D
�

f A j A 2 NC and X � AI g
u

�
f :A j A 2 NC and X \ AI D ; g

mmsc.X;I ; ı/ :D mmsc.X;I ; 0/

u
�

(

A

r: mmsc.Y;I ; ı � 1/

ˇ̌
ˇ̌
ˇ

r 2 NR

and Y 2 MinSucI .X;

A

r/

)

u
�

(

E� n: r: mmsc.Y;I ; ı � 1/

ˇ̌
ˇ̌
ˇ

n 2 NC; r 2 NR; and

Y 2 MinSucI .X;

E� n: r /

)

u
�

f E� n.X; r/: r j r 2 NR g
u

�
f E

r: Self j r 2 NR and f .x; x/ j x 2 X g � rI g

Furthermore, we define mmsc.;;I ; ı/ :D ? for all ı 2 N.
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Lemma 8.2 Let C1; : : : ; Cm and D1; : : : ; Dn be M -concept descriptions over the
signature ˙ :D .NC; NR/. Then ; ˆ �f Ci j i 2 f1; : : : ; mg g v �f Dj j j 2
f1; : : : ; ng g if for each j 2 f1; : : : ; ng, there is an i 2 f1; : : : ; mg such that ; ˆ Ci v
Dj.

Proof Obviously, it holds true that ; ˆ �f Ci j i 2 f1; : : : ; mg g v Ci for all
indices i 2 f1; : : : ; mg. We conclude that for each j 2 f1; : : : ; ng, the subsumption
; ˆ �f Ci j i 2 f1; : : : ; mg g v Dj is satisfied, and thus ; ˆ �f Ci j i 2
f1; : : : ; mg g v �f Dj j j 2 f1; : : : ; ng g. ut
Theorem 8.3 Let I be a finite interpretation over a finite signature ˙ :D
.NC; NR/, X � �I a subset of the domain, and ı 2 N a role-depth bound. Then,
the concept description mmsc.X;I ; ı/ is the role-depth-bounded model-based
most-specific concept description of X in I with respect to ı, i.e., ; ˆ XI .ı/ �
mmsc.X;I ; ı/.

Proof The case X D ; is obvious. Hence, consider a non-empty subset X �
�I . It is easy to see that for a finite interpretation I , it always holds true that
MinSucI .X;

E� n: r / D ; for all numbers n > j�I j and all role names r 2 NR.
Consequently mmsc.X;I ; ı/ consists of finitely many conjunctions, and thus is
indeed a well-defined M -concept description.

We now show the three properties of Definition 7.1 by simultaneous induction
on the role-depth bound ı.

.ı D 0/ 1. Since concept names and their negations possess a role depth of 0,
it obviously follows that mmsc.X;I ; 0/ must have a role-depth of 0, too.

2. Since for each concept name A 2 NC occurring in mmsc.X;I ; 0/, it is true
that X � AI , and furthermore for each primitive negation :A for an A 2 NC

which is a top-level conjunct in mmsc.X;I ; 0/, we have that X � �I n AI ,
we can easily conclude that X � mmsc.X;I ; 0/I .

3. Assume that D is an M -concept description over ˙ with a role depth of 0, i.e.,
D consists only of a conjunction of concept names and primitive negations,
and let X � DI . Then, for concept name A 2 NC occurring in D, it certainly
holds that X � AI , and hence A is a top-level conjunct in mmsc.X;I ; 0/,
too. Analogously, for a primitive negation :A in D, we know that X � .:A/I

must be satisfied, and so also :A is contained in the top-level conjunction
of mmsc.X;I ; 0/. We just showed that each conjunct in D also occurs in
mmsc.X;I ; 0/, and hence ; ˆ mmsc.X;I ; 0/ v D.

.ı > 0/ 1. Note that rd.mmsc.X;I ; ı// D 1Cmax frd.mmsc.Y;I ; ı � 1//

jY 2 MinSuc.X;

Q

r/;

Q2 f Ag [ f � n: j n 2 NC gg for ı > 0. By induc-
tion hypothesis, rd.mmsc.Y;I ; ı � 1// � ı � 1, and hence it follows that
rd.mmsc.X;I ; ı// � ı.

2. Let ı > 0, and consider a top-level conjunct

Q

r: mmsc.Y;I ; ı � 1/

occurring in mmsc.X;I ; ı/, i.e., Y 2 MinSucI .X;

Q

r/. By induction
hypothesis, Y is a subset of mmsc.Y;I ; ı � 1/I . We continue with a case
distinction on the quantifier

Q

.
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.

QD � n/ By definition of the successor sets, it holds true that all elements
in Y are r-successors of some element in X, since Y � sucI .X; r/.
Furthermore, Y satisfies the condition that for each element x 2 X, the
cardinality of the intersection sucI .x; r/ \ Y is at least n, i.e., each
element x 2 X has n or more r-successors in Y. Consequently, X �
.

E� n: r: mmsc.Y;I ; ı � 1//I .
.

QD A

/ In this case, we have that Y D sucI .X; r/. Consider an arbitrary
x 2 X. If y 2 �I and .x; y/ 2 rI , then y 2 Y, and so x 2
.

A

r: mmsc.Y;I ; ı � 1//I .
3. Consider ı > 0, and let E be a conjunct on the top-level of D. Of course,

it then holds true that X � EI . We proceed with a case distinction on E,
and prove that there is always a top-level conjunct in mmsc.X;I ; ı/ which
is subsumed by E with respect to the empty TBox ;. As a consequence then
Lemma 8.2 yields that ; ˆ mmsc.X;I ; ı/ v D.
(E D A

r: F) Since X � .

A

r: F/I , we infer that each r-successor of each
element in X is in the extension FI , i.e.,

A

x 2 X

A

y 2 �I W .x; y/ 2 rI implies y 2 FI :

As the set sucI .X; r/ contains all r-successors of any element in X and
no additional elements, we conclude that sucI .X; r/ � FI . Applying
Statement 1 of Lemma 7.3 yields ; ˆ .sucI .X; r//I .ı�1/ v F. An appli-
cation of the induction hypothesis implies that ; ˆ .sucI .X; r//I .ı�1/ �
mmsc.sucI .X; r/;I ; ı � 1/. Eventually, it follows that

; ˆ A

r: mmsc.sucI .X; r/;I ; ı � 1/ v A

r: F:

(E D E� n: r: F) By assumption, we have that X � .

E� n: r: F/I , i.e.,
every element x 2 X has n or more r-successors which are in the extension
of F. Thus, jsucI .x; r/ \ FI j � n for all x 2 X, and consequently there
is a set Y 2 MinSucI .X;

E� n: r / such that Y � FI . By applying
Statement 1 of Lemma 7.3 we conclude that ; ˆ YI .ı�1/ v F, and since
the induction hypothesis yields that ; ˆ YI .ı�1/ � mmsc.Y;I ; ı � 1/,
it eventually follows that ; ˆ E� n: r: mmsc.Y;I ; ı � 1/ v E� n: r: F
where the subsumee is a top-level conjunct in mmsc.X;I ; ı/.

(E D E� n: r ) The set inclusion X � .

E� n: r /I yields that for every
element x 2 X, the number of r-successors of x does not exceed n. It is
readily verified that then n.X; r/ � n, and thus ; ˆ E� n.X; r/: r vE� n: r . Of course,

E� n.X; r/: r is contained as a top-level conjunct in
mmsc.X;I ; ı/.

(E D E

r: Self) From X � .

E

r: Self/I it follows that each element x 2 X
is an r-successor of itself, i.e., f .x; x/ j x 2 X g � rI . By definition,
mmsc.X;I ; ı/ then also contains

E

r: Self as a top-level conjunct. ut
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9 Concept Lattices of Interpretations

Let I be an interpretation over ˙ :D .NC; NR/, and assume that ı 2 N is a role
depth bound. A formal concept of I with respect to the role depth bound ı is a pair
.X; ŒC��/ such that its extent X is a subset of �I , its intent ŒC�� is an equivalence
class of M -concept descriptions over ˙ , and XI .ı/ D ŒC�� as well as CI D X
are satisfied. For the sake of simplicity, we denote the formal concept .X; ŒC��/

simply as .X; C/. Then we may furthermore define an ordering of formal concepts
by .X; C/ � .Y; D/ if X � Y. In case .X; C/ � .Y; D/ we say that .X; C/ is a
subconcept of .Y; D/, and vice versa that .Y; D/ is a superconcept of .X; C/. Using
the Galois properties from Lemma 7.3, it is easy to prove that .X; C/ � .Y; D/ if,
and only if, ; ˆ C v D. The set of all formal concepts of I w.r.t. ı is denoted by
B.I ; ı/, and the set of all extents is symbolized as Ext.I ; ı/.

Lemma 9.1 Let I be a finite interpretation over the signature ˙ , and ı 2 N a
role-depth bound.

1. For all formal concepts .X; C/ and .Y; D/ of I w.r.t. ı, it is true that

.X; C/ � .Y; D/ if, and only if, X � Y if, and only if, ; ˆ C v D:

2. The relation � is an order on B.I ; ı/.

Proof

1. The first equivalence holds by definition. Assume that X is a subset of Y, then
from Statement 4 of Lemma 7.3 it follows that ; ˆ XI .ı/ v YI .ı/. Finally,
since .X; C/ and .Y; D/ are description concepts we conclude ; ˆ C � XI .ı/ v
YI .ı/ � D. The other direction can be shown analogously, as also the extension
mapping is monotonous, cf. Statement 7 of Lemma 7.3.

2. It is well-known that the subset inclusion is an order relation, hence also � must
be reflexive and transitive. ut
Furthermore,B.I ; ı/ is in fact a lattice, in which the infimum and the supremum

of a finite family f .Xt; Ct/ j t 2 T g of formal concepts satisfy the following
equations.

^
f .Xt; Ct/ j t 2 T g D .

\
f Xt j t 2 T g; .

�
f Ct j t 2 T g/II .ı//

_
f .Xt; Ct/ j t 2 T g D ..

[
f Xt j t 2 T g/I .ı/I ;

_
f Ct j t 2 T g/

The lattice is bounded by the smallest formal concept .;; ?/, and by the greatest
formal concept .�I ; .�I /I /. We denote this lattice byB.I ; ı/ :D .B.I ; ı/; �/.
Note that in case of finiteness of the interpretationI , the concept lattice is complete.
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10 Induced Formal Contexts

In this section we are going to consider the notion of induced formal contexts,
which has first been defined and utilized by Baader and Distel [2, 16], and later also
by Borchmann [11], for the description logic EL?

gfp. Similar results were found

by Borchmann, Distel, and Kriegel, cf. [12], for the description logic EL? where
the role depth of the considered concept descriptions is restricted. In the sequel of
this section, we extend the previous definitions and results to the more expressive
description logic M .

Consider a set C of M -concept descriptions over the signature ˙ :D .NC; NR/.
Then, we define a projection �C with respect to C as follows.

�C WM .˙/ ! }.C /

C 7! f D 2 C j ; ˆ C v D g

Furthermore, we say that an M -concept description C over ˙ is expressible in terms
of C if there is a subset X � C such that ; ˆ C � �

X . It turns out that the
projection �C is a counterpart for the conjunction

�
such that their pair constitutes

a Galois connection between the lattice M .˙/ and the powerset }.C /, i.e., the
statements in the following lemma hold true.

Lemma 10.1 Let C be a set of M -concept descriptions over ˙ . Then for all
subsets X ;Y � C and all concept descriptions C; D 2 M .˙/, the following
statements are valid.

1. X � �C .C/ if, and only if, ; ˆ �
X w C

2. X � Y implies ; ˆ �
X w �

Y
3. X � �C .

�
X /

4. ; ˆ �
X � �

�C .
�
X /

5. ; ˆ C v D only if �C .C/ 
 �C .D/

6. ; ˆ C v �
�C .C/

7. �C .C/ D �C .
�

�C .C//

Proof It suffices to show Statement 1. Then the other statements are obtained as a
consequence. We can easily see that the following equivalences hold.

X � �C .C/ if, and only if,

A

D 2 X W ; ˆ C v D

if, and only if, ; ˆ C v
�

X : ut

In the case of EL?
gfp, Baader and Distel showed that each (unbounded) MMSC

of an interpretation I can be expressed in terms of f?g [ NC [ f E

r: XI j r 2
NR and ; ¤ X � �I g. Similarly, for the role-depth-bounded case, Borchmann,
Distel, and Kriegel showed that each RMMSC of I w.r.t. ı is expressible in terms
of f?g [ NC [ f E

r: XI .ı�1/ j r 2 NR and ; ¤ X � �I g. As a straightforward
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extension to M , we can infer from Theorem 8.3 that each RMMSC is expressible
in terms of

C .I ; ı/ :D f?g [ f A; :A j A 2 NC g [

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

A

r: XI .ı�1/;

E� m: r: XI .ı�1/;

E� n: r ;

E

r: Self

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

r 2 NR;

0 < m � j�I j;
0 � n � j�I j;
; ¤ X � �I

9
>>>>>>=

>>>>>>;

D f?g [ NC [ :NC

[ A

NR: .Mmsc.I ; ı � 1/ n f?g/
[ E� f1; : : : ; j�I jg: NR: .Mmsc.I ; ı � 1/ n f?g/
[ E� f0; : : : ; j�I jg: NR

[ E

NR: Self;

i.e., the set C .I ; ı/ is
�

-dense in the set Mmsc.I ; ı/ of all RMMSCs of I with
respect to ı.

Definition 10.2 Let I be an interpretation, and let C be a set of M -concept
descriptions, both over the same signature ˙ . Then, the induced formal context of
I and C is defined as K.I ;C / :D .�I ;C ; I/ the incidence of which is defined by
.d; C/ 2 I if, and only if, d 2 CI . Furthermore, the induced formal context K.I ; ı/

of I and a role-depth bound ı 2 N is defined as the induced formal context of I
and C .I ; ı/. The projection �C .I ;ı/ with respect to C .I ; ı/ is simply denoted as
�I ;ı .

Lemma 10.3 Let K.I ;C / be an induced formal context such that C � M .˙/�ı

for a role depth bound ı 2 N. Then, for all subsets X � �I , all subsets X � C ,
and all M -concept descriptions C 2 M .˙/, the following statements hold true.

1. �C .XI .ı// D XI

2. .
�
X /I D X I

3. CI � �C .C/I

4. �C ..
�
X /II .ı// D X II

Furthermore, if C is expressible in terms of C , then also the following statements
are satisfied.

5. ; ˆ C � �
�C .C/

6. CI D .�C .C//I

Eventually, if X is an intent of K.I ;C /, then the following equality is valid, too.

7. X D �C .
�
X /
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Proof

1. Let X � �I . Then we have

�C .XI .ı// D f D 2 C j ; ˆ XI .ı/ v D g
.�/D f D 2 C j X � DI g
D f D 2 C j A

x 2 XW .x; D/ 2 I g
D XI;

where the equality .	/ follows from Statement 1 of Lemma 7.3.
2. Let X � C . Then it holds that

.
�

X /I D
\

f DI j D 2 X g D
\

f fDgI j D 2 X g D X I :

3. Let C 2 M .˙/ be a concept description. Then we have

CI �
\

f DI j D 2 C and ; ˆ C v D g

D
\

f DI j D 2 C and ; ˆ C v D g
D f D j D 2 C and ; ˆ C v D gI

D �C .C/I:

4. Let X � C be a set of concept descriptions from C . Then it holds that

�C ..
�

X /II .ı// D f D 2 C j ; ˆ .
�

X /II .ı/ v D g

D f D 2 C j ; ˆ .
�

X /I � DI g
D f D 2 C j X I � fDgI g
D f D 2 C j D 2 X II g
D X II :

Now let furthermore C be a concept description that is expressible in terms of C .
Then we know that there is a subset X � C such that ; ˆ C � �

X .

5. By an application of Statement 4 of Lemma 10.1 we immediately conclude that

; ˆ C �
�

X �
�

�C .
�

X / �
�

�C .C/:
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6. The equality follows from the former Statements 2 and 5—in particular, from
; ˆ C � �

�C .C/ we deduce that CI D .
�

�C .C//
I D �C .C/I .

Finally consider an intent X of K.I ;C /.

7. We have the following equations which follow from Statement 4 and Statement 7
of Lemma 10.1:

�C .
�

X / D �C .
�

X II/ D �C .
�

�C ..
�

X /II .ı///

D �C ..
�

X /II .ı// D X II D X : ut

Lemma 10.4 Let K.I ;C / be an induced formal context. Then for all subsets
X ;Y � C , the concept inclusion

�
X v �

Y is valid in I if, and only if,
the implication X ! Y is valid in K.I ;C /.

Proof It is readily verified that the following equivalences hold true.

I ˆ
�

X v
�

Y if, and only if, .
�

X /I � .
�

Y /I

if, and only if, X I � Y I

if, and only if, K.I ;C / ˆ X ! Y ut

Definition 10.5 Let I be an interpretation over the signature ˙ , let ı 2 N be a
role depth bound, and assume that C is an M -concept description over ˙ . Then
the lower approximation of C with respect to I and ı is defined as the concept
description

bCcI ;ı :D
�

Conj.C; f?; >g/

u
�

Conj.C; NC/

u
�

Conj.C; :NC/

u
�

f A

r: DII .ı�1/ j A

r: D 2 Conj.C;

A

NR:M .˙// g

u
�

f E� n: r: DII .ı�1/ j E� n: r: D 2 Conj.C;

E� N: NR:M .˙// g

u
�

Conj.C;

E� N: NR /

u
�

Conj.C;

E

NR: Self/:
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Lemma 10.6 Let I be an interpretation over the signature ˙ , and assume that
ı 2 N is a role depth bound. Then, for all concept descriptions C; D 2 M .˙/, all
role names r 2 NR, and all natural numbers n 2 N, the following statements hold
true.

1. .C u D/I D .CII .ı/ u D/I

2. .

A

r: C/I D .

A

r: CII .ı//I

3. .

E� n: r: C/I D .

E� n: r: CII .ı//I

Proof Beforehand observe that according to Statement 6 of Lemma 7.3, for all M -
concept descriptions C over ˙ , it holds true that ; ˆ CI � CII .ı/I .

1. It holds true that .C u D/I D CI \ DI D CII .ı/I \ DI D .CII .ı/ u D/I .
2. It holds true that

.

A

r: C/I D f d 2 �I j A

e 2 �I W .d; e/ 2 rI implies e 2 CI g
D f d 2 �I j A

e 2 �I W .d; e/ 2 rI implies e 2 CII .ı/I g
D .

A

r: CII .ı//I :

3. It holds true that

.

E� n: r: C/I D f d 2 �I j E

E 2 �
�I

n

� A

e 2 EW .d; e/ 2 rI and e 2 CI g
D f d 2 �I j E

E 2 �
�I

n

� A
e 2 EW .d; e/ 2 rI and e 2 CII .ı/I g

D .

E� n: r: CII .ı//I : ut

Lemma 10.7 Let I be an interpretation over ˙ . Then for every M -concept
description C over ˙ the role depth of which does not exceed ı, it holds true that

; ˆ fCII .ı/ v bCcI ;ı ; bCcI ;ı v Cg:

Proof We know that ; ˆ DII .ı�1/ v D for all concept descriptions D over
˙ with rd.D/ � ı � 1, and since value restrictions as well as qualified greater-
than restrictions are monotonous in its concept argument, we have that ; ˆA

r: DII .ı�1/ v A

r: D and ; ˆ E� n: r: DII .ı�1/ v E� n: r: D is satisfied
for all role names r 2 NR and all natural numbers n 2 N. Hence, we conclude that
the lower approximation bCcI ;ı is subsumed by C with respect to the empty TBox
;.

Furthermore, we infer the following equivalences, in particular the equality .	/

follows by applying Lemma 10.6.

.bCcI ;ı/
I

D
� �

Conj.C; f?; >g [ NC [ :NC [ E� N: NR [ E

NR: Self/
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u
�

f A

r: DII .ı�1/ j A

r: D 2 Conj.C;

A

NR:M .˙// g

u
�

f E� n: r: DII .ı�1/ j E� n: r: D 2 Conj.C;

E� N: NR:M .˙// g
�I

D
� �

Conj.C; f?; >g [ NC [ :NC [ E� N: NR [ E

NR: Self/
�I

\
\

f .

A

r: DII .ı�1//I j A

r: D 2 Conj.C;

A

NR:M .˙// g

\
\

f .

E� n: r: DII .ı�1//I j E� n: r: D 2 Conj.C;

E� N: NR:M .˙// g
.�/D

� �
Conj.C; f?; >g [ NC [ :NC [ E� N: NR [ E

NR: Self/
�I

\
\

f .

A

r: D/I j A

r: D 2 Conj.C;

A

NR:M .˙// g

\
\

f .

E� n: r: D/I j E� n: r: D 2 Conj.C;

E� N: NR:M .˙// g
D CI

Eventually, it follows that CI � .bCcI ;ı/
I and using Statement 1 of Lemma 7.3

we infer that ; ˆ CII .ı/ v bCcI ;ı. ut
Lemma 10.8 Let I be an interpretation and ı 2 N be a role depth bound. Then
every model-based most specific concept description of I with role depth bound ı

is expressible in terms of C .I ; ı/.

Proof Let C be a model-based most specific concept description in I with respect
to the role depth ı. Then Statement 3 of Lemma 7.3 yields that ; ˆ C � CII .ı/.
Using the previous Lemma 10.7, we then know that C is equivalent to its lower
approximation w.r.t.I . Obviously, C is then expressible in terms of C .I ; ı/. ut
Lemma 10.9 Let K.I ; ı/ be an induced formal context. Then, for all subsets
X � C .I ; ı/ and all M -concept descriptions C over ˙ , the following statements
hold true.

1. ; ˆ .
�
X /II .ı/ � �

X II

2. If X is an intent of K.I ; ı/, then
�
X is a model-based most specific concept

description of I with role-depth bound ı.
3. If C is a model-based most specific concept description of I with role-depth

bound ı, then �I ;ı.C/ is an intent of K.I ; ı/.

Proof

1. We already know that X II D �I ;ı..
�
X /II .ı// holds, cf. Statement 4 of

Theorem 10.3, and thus also ; ˆ �
�I ;ı..

�
X /II .ı// � �

X II . Further-
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Fig. 4 Overview on the isomorphisms between the extent lattice, intent lattice, and RMMSC
lattice of K.I ; ı/ and I ; ı, respectively. Note that Ext.K.I ; ı// D Ext.I ; ı/ holds

more, from Lemma 10.8 it follows that .
�
X /II .ı/ is expressible in terms of

C .I ; ı/, i.e., Statement 5 of Lemma 10.3 implies ; ˆ �
�I ;ı..

�
X /II .ı// �

.
�
X /II .ı/.

2. Let X D X II be an intent. Then it follows that ; ˆ �
X � �

X II , and
Lemma 10.3 yields ; ˆ �

X � .
�
X /II .ı/, i.e.,

�
X is a RMMSC.

3. Conversely, let C be an RMMSC, i.e., ; ˆ C � CII .ı/. Then Statement 5
of Lemma 10.3 implies ; ˆ C � �

�I ;ı.C/. Furthermore, it follows that
; ˆ �

�I ;ı.C/ � .
�

�I ;ı.C//
II .ı/ � �

�I ;ı.C/II . In particular then
; ˆ C v �

�I ;ı.C/II holds, and according to Lemma 10.1 this is equivalent
to �I ;ı.C/II � �I ;ı.C/. Of course, the inverse set inclusion also holds, i.e.,
eventually �I ;ı.C/ is an intent. ut

Corollary 10.10 The concept lattice of K.I ; ı/ is isomorphic to the concept
lattice of I and ı. A complete overview on the corresponding isomorphisms is
shown in Fig. 4.

11 Knowledge Bases of Interpretations

In Sect. 4 we introduced the notion of a concept inclusion. In particular, a CI C v D
is valid in an interpretation I if CI � DI is satisfied. We denote the set of all valid
CIs of I by T .I /. In contrast to formal contexts, where there are only finitely
many valid implications in case of a finite attribute set, the set T .I / is infinite,
even for finite interpretations over finite signatures. As an example, consider the
CI > v >, which is valid in all interpretations. Furthermore, if a CI C v D is
valid in I , then so is

E

r: C v E

r: D. We conclude that T .I / always contains at
least countably infinitely many CIs, provided that there is at least one role name. An
important question now is, whether there is a finite base of CIs for I , i.e., a (finite)
TBox B.I / such that B.I / ˆ T .I / as well as T .I / ˆ B.I /. Baader and
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Distel found an affirmative answer in [2, 16] for the case of finite interpretations
over finite signatures in the description logic EL?, where they take an elegant
detour over EL?

gfp, i.e., EL? interpreted with greatest fixpoint semantics, and
later Borchmann, Distel, and Kriegel found a positive answer in [12] for finite
interpretations over finite signatures in the description logic EL? restricted by a
role depth bound, which is easier to apply and implement, since the descriptive
semantics are utilized for which plenty of reasoners already exist. Furthermore, it
was investigated how the technique of construction of a base of CIs can be iterated
for taking into account input interpretations which can be observed on a daily basis,
and similarly taking into account existing knowledge in form of a TBox, cf. [29].

Definition 11.1 Let I be an interpretation over a signature ˙ , and assume that ı 2
N is a role depth bound. Then, a knowledge base forI and ı is a pairK :D .T ;R/

consisting of a TBox T and an RBox R such that for all concept inclusions ˛ the
role depth of the subsumee of which, and of the subsumer of which, respectively,
does not exceed ı, and also for all role inclusions ˛, it holds true that

I ˆ ˛ if, and only if, K ˆ ˛:

A knowledge base K is non-redundant if none of the axioms is entailed by the
others, i.e., if for each ˛ 2 T [ R, it holds true that .T n f˛g;R n f˛g/ 6ˆ ˛.
Furthermore, a knowledge base for I and ı is minimal if there is no knowledge
base for I and ı of a smaller cardinality.

By means of the results of the previous sections we are now ready to formulate a
knowledge base for an interpretation I , or for a description graph G , respectively.
Beforehand, we inspect the interplay of role and concept inclusions, and we list
some trivial concept inclusions that are valid in all interpretations.

Lemma 11.2 Let m; n 2 NC be non-negative integers with n < m, r 2 NR be a role
name, and C; D be M -concept descriptions. Then, the following concept inclusions
hold in every interpretation I .

A u :A v ?

E

r: Self u A

r: C v C

E

r: Self u C v E

r: C

E

r: Self u C u E� 1: r v A

r: C

E� n: r: C u A

r: D v E� n: r: .C u D/

E� n: r v E� m: r

E� m: r: C v E� n: r: C

E� j�I j: r: C v C u A

r: C u E

r: Self

> v E� j�I j: r
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Proof Most of the concept inclusions are obviously valid. We are only going to
explain the validity of the penultimate concept inclusion. If a domain element
has at least j�I j r-successors in C, then especially it must be an r-successor of
itself, hence be in C and in

E

r: Self. Furthermore, there cannot be any further r-
successors, and so all r-successors must be in C. ut

Please note that there are no direct subsumptions between existential restrictionsE

r: C and value restrictions

A

r: C, i.e., both

E

r: C v A

r: C and

A

r: C v E

r: C
do not hold. There is also a crossover between both which is denoted by

AE

, and
has the semantics .

AE

r: C/I :D .

E

r: C/I \ .

A

r: C/I , i.e., a domain element is
in the extension of

AE

r: C if, and only if, there is an r-successor in C, and all r-
successors are in C. Furthermore, there is also a reversed value restriction

A

C: r
with the semantics .

A

C: r/I :D f d 2 �I j A

e 2 �I W e 2 CI implies .d; e/ 2
rI g. However, we do not use either of them for our mining technique.

The next two lemmas show us which concept inclusions can be inferred from
known role inclusions.

Lemma 11.3 Let I be a model of the role inclusion r v s, as well as of the concept
inclusion C v D, and furthermore let m � n be natural numbers. Then I is also a
model of the following concept inclusions.

E� n: r: C v E� m: s: D

E

r: Self v E

s: Self
A

s: C v A
r: D

E� m: s v E� n: r

Proof Assume that m � n, and let I be an interpretation such that rI � sI and
CI � DI .

.�/ Then we have that

.

E� n: r: C/I D f d 2 �I j E

E 2 �
�I

n

�W fdg � E � rI and E � CI g
� f d 2 �I j E

E 2 �
�I

m

�W fdg � E � sI and E � DI g
D .

E� m: s: D/I :

.

E

/ For the existential self restrictions we can infer the following.

.

E

r: Self/I D f d 2 �I j .d; d/ 2 rI g
� f d 2 �I j .d; d/ 2 sI g
D .

E

s: Self/I
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.

A

/ Furthermore, consider a concept inclusion

A

s: C v A

r: C. We can infer the
following.

.

A

s: C/I D f d 2 �I j A

e 2 �I W .d; e/ 2 sI implies e 2 CI g
� f d 2 �I j A

e 2 �I W .d; e/ 2 rI implies e 2 DI g
D .

A

r: C/I

.�/ Finally, it holds true that

.

E� m: s /I D f d 2 �I j A

E 2 �
�I

mC1

�W fdg � E 6� sI g
� f d 2 �I j A

E 2 �
�I

nC1

�W fdg � E 6� rI g
D .

E� n: r /I : ut

First, we want to extract a minimal RBox R.I / from the interpretation that
entails all role inclusions valid in I . We therefore define an equivalence relation
�I on the role names as follows: r �I s if, and only if, rI D sI . Then let NI

R
be a set of representatives of this equivalence relation, i.e., jNI

R \ Œr��I
j D 1 for

all role names r 2 NR. If Œr��I
D fr1; : : : ; r`g is an enumeration of the equivalence

class of r, then add the following role equivalence axioms to R.I /.

R.I ; r/ :D fr1 v r2; r2 v r3; : : : ; r`�1 v r`; r` v r1g

Furthermore, define an order relation vI on the representatives NI
R by r vI s if,

and only if, rI � sI . Let �I be the neighborhood relation of vI , then add the
role inclusion axioms r v s for each pair r �I s to the RBox R.I /. Obviously,
the constructed RBox is minimal w.r.t. the property to entail all valid role inclusion
axioms holding in the interpretation I . Eventually, the RBox is defined as follows.

R.I / :D f r v s j r; s 2 NI
R and r �I s g [

[
fR.I ; r/ j r 2 NI

R g

Proposition 11.4 Let I be an interpretation. Then the RBox R.I / as defined
above is a base for the role inclusions which are valid in I , i.e., for each role
inclusion r v s, the following equivalence holds true.

I ˆ r v s if, and only if, R.I / ˆ r v s

In particular, R.I / is non-redundant, i.e., for every role inclusion r v s 2 R.I /,
it holds true that R.I / n fr v sg 6ˆ r v s.
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Proof The statements are immediate consequences of the construction of R.I /

preceding the proposition. ut
Lemma 11.5 Let I be an interpretation over a signature ˙ , let C and D be M -
concept descriptions over ˙ , and further assume that ı 2 N is a role depth bound.
If the CI C v D is valid in I , and both C and D have a role depth not exceeding
ı, then the CI C v CII .ı/ is valid in I too, and furthermore, C v D follows from
C v CII .ı/.

Proof For the concept description C it follows by an application of Statement 6 of
Lemma 7.3 that CI D CII .ı/I , i.e., the CI C v CII .ı/ is always valid in I .

Now consider a model J of the CI C v CII .ı/. Since I ˆ C v D, it follows
that CI � DI , and by Statement 1 of Lemma 7.3 we conclude that ; ˆ CII .ı/ v
D. In particular, then the last CI is also valid in J , and hence J ˆ C v D. Since
J was an arbitrary model, we conclude that fC v CII .ı/g ˆ C v D. ut
Proposition 11.6 Let I be a finite interpretation, and let ı 2 N be a role depth
bound. Then, the following TBox is sound and complete for the CIs which satisfy the
role depth bound ı and are valid in I .

f
�

X v
�

X II jX � C .I ; ı/ g
[ f E� .j�I j C 1/: r: > v ?; > v E� j�I j: r j r 2 NR g

Proof For the sake of improving the readability, denote the above given TBox as
T . Since for all X � C .I ; ı/, the implication X ! X II trivially holds in
the induced formal context K.I ; ı/, it immediately follows by an application of
Lemma 10.4 that the CI

�
X v �

X II is valid in I . Consequently, we have just
proven the soundness of T .

Consider a CI C v D which is valid in I , and where both C and D possess a role
depth of at most ı. Then Lemma 11.5 yields that the CI C v CII .ı/ is also valid
in I , and furthermore the entailment fC v CII .ı/g ˆ C v D holds true. Hence,
it suffices to show that our TBox T entails all CIs of the form C v CII .ı/. For
this purpose, consider an arbitrary model J of T as well as an arbitrary concept
description C 2 M .˙/�ı—we are now going to prove that the CI C v CII .ı/ is
valid in J , too. Beforehand, note that for the right-hand sides of the CIs it holds
true that ; ˆ �

X II � .
�
X /II .ı/, cf. Statement 1 of Lemma 10.9. Furthermore,

we also know that each CI C v CII .ı/ where C is expressible in terms of C .I ; ı/

is valid in J . We prove this as follows: if C is expressible in terms of C .I ; ı/, then
there is a subset X � C .I ; ı/ such that ; ˆ C � �

X . Since J ˆ �
X v

.
�
X /II .ı/, we can immediately conclude that J ˆ C v CII .ı/.
We proceed with a proof by induction on the structure of C.
Let C D ?. Since ? 2 C .I ; ı/, we may immediately conclude that J ˆ ? v

?II .ı/.
Assume that C D >. From > D � ; it follows that J ˆ > v >II .ı/.
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For a concept name C D A 2 NC, we have that A 2 C .I ; ı/, and hence J ˆ
A v AII .ı/.

For a primitive negation C D :A, it follows that :A 2 C .I ; ı/, and so we
conclude that J ˆ :A v .:A/II .ı/.

Consider a conjunction C D D u E. By induction hypothesis it holds true that
J ˆ D v DII .ı/ as well as J ˆ E v EII .ı/. Consequently,

J ˆ D u E v DII .ı/ u EII .ı/

v .DII .ı/ u EII .ı//II .ı/

v .D u E/II .ı/:

The second subsumption follows from the fact that the concept description DII .ı/u
EII .ı/ is expressible in terms of C .I ; ı/, and the last subsumption is a conse-
quence of Statement 5 of Lemma 7.3.

Assume that C D A

r: D is a value restriction. Then the following subsumptions
hold true in J .

J ˆ A

r: D v A

r: DII .ı/

v A

r: DII .ı�1/

v .

A
r: DII .ı�1//II .ı/

v .

A

r: D/II .ı/

The first subsumption is a consequence of the induction hypothesis and the fact
that value restrictions are monotonous. For the second subsumption, observe that
DII .ı�1/ certainly satisfies that rd.DII .ı�1// � ı as well as DI � DII .ı�1/I ,
and so an application of Statement 3 of Definition 7.1 yields that ; ˆ DII .ı/ v
DII .ı�1/. Since

A

r: DII .ı�1/ is contained in C .I ; ı/, it must in particular
be expressible in terms of C .I ; ı/, and this justifies the validity of the third
subsumption. Again, the last subsumption follows from Statement 5 of Lemma 7.3.

Now let C D E� n: r: D be a qualified greater-than restriction, and first assume
that n � j�I j. Then, we may argue similarly as for the value restrictions that the
following subsumptions hold true in J .

J ˆ E� n: r: D v E� n: r: DII .ı/

v E� n: r: DII .ı�1/

v .

E� n: r: DII .ı�1//II .ı/

v .

E� n: r: D/II .ı/
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For the remaining case where n > j�I j, we argue as follows:

J ˆ E� n: r: D v E� n: r: >
v E� j�I j C 1: r: >
v ?;

and hence the concept descriptions ? and

E� n: r: D are equivalent in J . Since
we have already proven above that ? v ?II .ı/ is valid in J , also the CIE� n: r: D v .

E� n: r: D/II .ı/ is valid in J .
Assume that C D E� n: r is an unqualified less-than restriction, and let n �

j�I j. Of course, then J ˆ E� n: r v .

E� n: r /II .ı/ certainly holds true,
since

E� n: r 2 C .I ; ı/. In case n > j�I j, then

E� n: r and > are equivalent
in J , and the validity of J ˆ E� n: r v .

E� n: r /II .ı/ follows from J ˆ
> v >II .ı/, which we have shown above.

Eventually, consider an existential self restriction

E

r: Self. Obviously,

E

r: Self
is contained in C .I ; ı/, and so the CI

E

r: Self v .

E

r: Self/II .ı/ is valid in J .
ut

As final step we use the trivial concept inclusions and concept inclusions that
are entailed by valid role inclusions to define some background knowledge for the
computation of the canonical implication base of the induced concept context which
is trivial in terms of Description Logics, but not for Formal Concept Analysis, due
to their different semantics.

Theorem 11.7 Let I be an interpretation over the signature ˙ , and ı 2 N a role-
depth bound. Furthermore, assume that L is an implication base of the induced
formal context K.I ; ı/ with respect to the background knowledge

S .I ; ı/ :D
(

fC1; : : : ; C`g ! fDg
ˇ̌
ˇ̌
ˇ

C1; : : : ; C`; D 2 C .I ; ı/

and R.I / ˆ C1 u : : : u C` v D

)
:

Then ..
�
L / [ N .I /;R.I // where

N .I / :D f E� .j�I j C 1/: r: > v ?; > v E� j�I j: r j r 2 NR g

is a knowledge base for I and ı. In particular, the canonical knowledge base for
I and ı is defined as

K .I ; ı/ :D .T .I ; ı/ [ N .I /;R.I //

where T .I ; ı/ :D f
�

P v
�

P II jP 2 PsInt.K.I ; ı/;S .I ; ı// g:

Proof It is obvious that

K .I ; ı/ D ..
�

Can.K.I ; ı/;S .I ; ı/// [ N .I /;R.I //;
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and hence it suffices to prove that for each implication base L of K.I ; ı/

with respect to the background knowledge S .I ; ı/, the pair K :D ..
�
L / [

N .I /;R.I // is a knowledge base for I .
It is obvious that I ˆ K , i.e., K is sound. We proceed with proving complete-

ness. Completeness for role inclusions follows immediately from Proposition 11.4.
In Proposition 11.6 we have proven that the TBox

f
�

X v
�

X II jX � C .I ; ı/ g [ N .I /

is complete for the concept inclusions which are valid in I and satisfy the role
depth bound ı, and thus it suffices to show that for each subset X � C .I ; ı/,

K ˆ
�

X v
�

X II :

Consider a model J of K . We divide the remaining part of this proof in three
steps:

1. First, we show that all implications in L are also valid in the induced formal
context K.J ;C .I ; ı// the incidence relation of which we denote as J.

2. Then, we prove that the background knowledge S .I ; ı/ is valid in the induced
formal context K.J ;C .I ; ı//, too.

3. Finally, we show that J is a model of the CI
�
X v �

X II .

From the last step, we then immediately conclude that J is also a model of the
TBox from Proposition 11.6. Since J was chosen arbitrarily, then K must be
complete.

W.l.o.g. we may assume that L only contains implications of the form X !
X II . Hence, let X ! X II 2 L , then it follows that

X J D .
�

X /J � .
�

X II/J D X IIJ ;

i.e., the implication X ! X II is valid in K.J ;C .I ; ı//.
Now consider an implication fC1; : : : ; C`g ! fDg in S .I ; ı/, i.e., it holds

true that C1; : : : ; C`; D 2 C .I ; ı/ and R.I / ˆ C1 u : : : u C` v D. Since
J is a model of R.I /, the aforementioned CI is valid in J . Lemma 10.4 then
justifies that the considered implication must be valid in the induced formal context
K.J ;C .I ; ı//.

As the last step, we consider an arbitrary CI
�
X v �

X II where X �
C .I ; ı/, and prove that it is valid in J . Since the implication set L [ S .I ; ı/

is sound and complete for K.I ; ı/, and X ! X II is trivially valid in K.I ; ı/,
it holds true that X ! X II is entailed by L [ S .I ; ı/. Consequently, since
K.J ;C .I ; ı// is a model of both L and S .I ; ı/, it follows that X ! X II

is valid in K.J ;C .I ; ı//, too. By Lemma 10.4 we conclude that the CI
�
X v�

X II is valid in J . ut



138 F. Kriegel

Fig. 5 Overview on various Description Logics below MH

12 Other Description Logics

If only a lower expressivity of the underlying description logic is necessary, then
one could also use EL , FL 0, FLE , ALE , or extensions thereof with role
hierarchies H . All of the previous results are then still valid, if the expressivity
is not higher than that of MH . Figure 5 gives an overview on description logics
that have a lower expressivity than MH , and can thus also be used for knowledge
acquisition.

As a future step, it would be interesting to investigate methods that also take
into account complex role inclusions, e.g., consider the description logic MR. A
complex role inclusion is an expression r1 ı : : : ı rn v s where r1; : : : ; rn; s 2 NR are
role names. Its semantics is defined by

I ˆ r1 ı : : : ı rn v s if, and only if, rI1 ı : : : ı rIn � sI ;

where ı denotes composition of binary relations, i.e.,

rI1 ı : : : ı rIn D
(

.d0; dn/ 2 �I � �I

ˇ̌
ˇ̌
ˇ

E

d1; : : : ; dn�1 2 �I W
.d0; d1/ 2 rI1 ; : : : ; .dn�1; dn/ 2 rIn

)
:

13 Conclusion

We have provided an extension of the results of Baader and Distel [2, 3, 16]
for the deduction of knowledge bases from interpretations in the more expressive
description logic MH w.r.t. descriptive semantics and role-depth bounds, and
furthermore explained how this technique can be applied to social graphs. Since
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role-depth-bounded model-based most specific concept descriptions always exist,
this technique can always be applied. Furthermore, the construction of knowledge
bases has been reduced to the computation of implication bases of formal contexts,
which is a well-understood problem that has several available algorithms—for
example the standard NextClosure algorithm by Ganter [21, 23], or the parallel
algorithm NextClosures that was introduced in [28, 30–32] and implemented in
[27]. The presented methods in this document are also prototypically implemented
in Concept Explorer FX [27].
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