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1 Introduction

Online social networking services generate massive amounts of data, which can
become a valuable source for guiding Internet advertisement efforts or provide
sociological insights. Each registered user has a network of friends as well as
specific profile features. These profile features describe the user’s tastes, prefer-
ences, the groups he or she belongs to, etc. Social Network Analysis (SNA) is
a popular research field in which methods are developed for analysing one-mode
networks, like friend-to-friend,1 two-mode or affiliation networks [57, 60, 69], three-
mode [10, 20, 38, 46, 66], and even multi-mode dynamic networks [75, 76, 81, 89].
By multi-mode networks we mean namely such networks where actors can be
related with other types of entities by edges like those between users and their
interests in two-mode case or by hyperedges like those relating users, tags, and
resources in three-mode case; sometimes such networks are called heterogeneous
since different types of nodes are involved [48]. We focus on the subfield of
bicommunity identification and its higher order extensions. Thus, in particular, we
present tri- and tetracommunities examples extracted from real data. For one-mode
case a reader may refer to an extensive survey on community detection [21].

1www.https://en.wikipedia.org/wiki/Friend-to-friend.
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The notion of community in SNA and Complex Networks is closely related to the
notion of cluster in Data Analysis [3, 21]. There is the main issue in both disciplines:
what is a common definition of community and what is a common definition of
cluster? On the one hand, it is clear that actors from the same community should be
similar as well as objects in one cluster; on the other hand, these actors (or objects)
should be less similar to actors (or objects) from another community (or cluster).
This general idea allows a variety of definitions suitable for concrete purposes in
both domains [3, 21, 63].

There is a large amount of network data that can be represented as bipartite
or tripartite graphs. Standard techniques for community detection in two-mode
networks like “maximal bicliques search” return a huge number of patterns (in the
worst case exponential w.r.t. the input size) [56, 77]. Moreover, not all members
of such bicommunities should be related to the same items, for example, exactly
the same vocabulary used by each member in case of epistemic communities.
Therefore we need some relaxation of the biclique notion as well as appropriate
interestingness measures and constraints for mining and filtering such “relaxed”
biclique communities.

Applied lattice theory provides us with the definition of formal concept [27],
which is closely related to maximal biclique in a bipartite graph; formal concepts
and concept lattices (or Galois lattices) are widely known in the social network
analysis community (see, e.g., [19, 23, 24, 65, 77, 86]). However, these methods
are overly rigid for analysing large amounts of data resulting in a huge number of
concepts even if their computation is feasible.

A concept-based bicluster (or object-attribute bicluster) [37] is a scalable approx-
imation of a formal concept (maximal biclique in a bipartite graph). The advantages
of concept-based biclustering are

1. Less number of patterns to analyse (no more than the number of edges in the
original network);

2. Less computational time (polynomial vs exponential);
3. Tolerance to missing (object, attribute) pairs;
4. Filtering of biclusters (communities) by density threshold.

In general, the method of biclustering dates back to the seminal work of Hartigan
on the so-called direct clustering [31], where clusters of objects may appear sharing
only a subset of attributes. The term biclustering was introduced later in the book of
Mirkin [63]:

The term biclustering refers to simultaneous clustering of both row and column sets in a
data matrix. Biclustering addresses the problems of aggregate representation of the basic
features of interrelation between rows and columns as expressed in the data.

Following this terminology, formal concepts can be considered as maximal
inclusion biclusters of constant values in binary data [49], whereas their relaxations
tolerant to missing object-attribute pairs can be called object-attribute biclusters
[37, 39].

There are several successful attempts to mine two-mode [51, 78], three-mode
[46], and even four-mode communities [47] by means of Formal Concept Analysis.
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For analysing three-mode network data like folksonomies [83] we have also
proposed a scalable triclustering technique [40, 45].

These studies for higher-mode cases were enabled by the previous introduction of
the so-called triconcepts by Lehman and Wille [58, 87]; a formal triconcept consists
of three components: extent (objects), intent (attributes), and modus (conditions
under which an object has an attribute). It is a matter of curiosity, but such
triconcepts had been used for analysing triadic data in social cognition studies [52]
before their formal introduction. Later, a polyadic (or multimodal) extension of FCA
was introduced in [85].

Previously, we have introduced a pseudo-triclustering technique for tagging
groups of users by their common interests [28]. This approach differs from
traditional triclustering methods because it relies on the extraction of biclusters from
two separate object-attribute tables and rather belongs to methods for analysing
multi-relational networks. Here we investigate applicability of biclustering and
triclustering (as well as n-clustering, its higher-mode extension) to community
detection in two-, three-, and higher-mode networks directly.

The remainder of the paper is organised as follows. In Sect. 2, we introduce
basic notions of Formal Concept Analysis. Section 3 describes object-attribute
biclustering and its direct generalisations to higher dimensions. Section 4 briefly
discusses a variety of quality measures used in clustering, FCA, and SNA domains
and their interrelation with multimodal clustering. In Sect. 5, we describe datasets
which we have chosen to illustrate the performance of the approach. We present
the results obtained during experiments on these datasets in Sect. 6. Related work
is discussed in Sect. 7, while Sect. 8 concludes our paper and describes some
interesting directions for future research.

2 Basic Definitions

2.1 Formal Concept Analysis

A formal context in FCA [27] is a triple K D .G; M; I/, where G is a set of objects,
M is a set of attributes, and the relation I � G � M shows which object possesses
which attribute. For any A � G and B � M one can define Galois operators:

A0 D fm 2 M j gIm for all g 2 Ag;
B0 D fg 2 G j gIm for all m 2 Bg: (1)

The operator 00 (applying the operator 0 twice) is a closure operator: it is
idempotent (A0000 D A00), monotone (A � B implies A00 � B00), and extensive
(A � A00). The set of objects A � G such that A00 D A is called closed. Similar
properties are valid for closed attribute sets, subsets of a set M. A pair .A; B/ such
that A � G, B � M, A0 D B, and B0 D A, is called a formal concept of a context
K. The sets A and B are closed and called extent and intent of a formal concept
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.A; B/, respectively. For the set of objects A the set of their common attributes A0
describes the similarity of objects of the set A, and the closed set A00 is a cluster of
similar objects (with the set of common attributes A0). The relation “to be a more
general concept” is defined as follows: .A; B/ � .C; D/ iff A � C. The concepts of a
formal context K D .G; M; I/ ordered by extensions inclusion form a lattice, which
is called concept lattice. For its visualisation line diagrams (Hasse diagrams) can
be used, i.e. the cover graph of the relation “to be a more general concept”. In the
worst case (Boolean lattice) the number of concepts is equal to 2fmin jGj;jMjg, thus,
for large contexts, to make application of FCA machinery tractable the data should
be sparse. Moreover, one can use different ways of filtering formal concepts (for
example, choosing concepts by their stability index or extent size).

Let us consider a formal context K that consists of four objects, persons (Alex,
Mike, Kate, David), four attributes, books (Romeo and Juliet by William
Shakespeare, The Puppet Masters by Robert A. Heinlein, Ubik by Philip K.
Dick, and Ivanhoe by Walter Scott), and incidence relation showing which
person which book read or liked.
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There are nine concepts there. For example,
C1 D .fKate; Mikeg; fRomeo and Julietg/
C2 D .fAlex; Davidg; fThe Puppet Masters; Ubikg/
C3 D .fKate; Davidg; fIvanhoeg/.
Note that the pair of sets .A; B/ D .fAlex; Davidg; fUbikg/ does not

form a formal concept since we can enlarge its extent by one more object
Mike to fulfill .A [ fMikeg/0 D B and B0 D A [ fMikeg. So, C4 D
.fMIke; Alex; Davidg; fUbikg/ is a formal concept. The corresponding bipar-
tite graph is shown in Fig. 1 along with the biclique formed by elements of
concept C2.
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Fig. 1 Two-mode network of
readers and its community of
Sci-Fi readers (shaded)

From SNA viewpoint, if we assume that an OA-bicluster .event0; actor0/ is a
found community, we are looking for a pair .actor; event/ in an input network,
where this actor participated in all of the events typical for the community, while
the chosen event is typical for all the members of that community.

3 Higher-Order Extensions of FCA and Multimodal
Clustering

3.1 Triadic and Polyadic FCA

For convenience, a triadic context is denoted by .X1; X2; X3; Y/. A triadic context
K D .X1; X2; X3; Y/ gives rise to the following dyadic contexts:

K
.1/ D .X1; X2�X3; Y.1//; K

.2/ D .X2; X1�X3; Y.2//; K
.3/ D .X3; X1�X2; Y.3//;

where gY.1/.m; b/ W, mY.2/.g; b/ W, bY.3/.g; m/ W, .g; m; b/ 2 Y . The
derivation operators (primes or concept-forming operators) induced by K

.i/ are
denoted by .:/.i/. For each induced dyadic context we have two kinds of such
derivation operators. That is, for fi; j; kg D f1; 2; 3g with j < k and for Z � Xi

and W � Xj � Xk, the .i/-derivation operators are defined by:

Z 7! Z.i/ D f.xj; xk/ 2 Xj � Xkjxi; xj; xk are related by Y for all xi 2 Zg;
W 7! W.i/ D fxi 2 Xijxi; xj; xk are related by Y for all .xj; xk/ 2 Wg:
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Formally, a triadic concept of a triadic context K D .X1; X2; X3; Y/ is a triple
.A1; A2; A3/ of A1 � X1; A2 � X2; A3 � X3, such that for every fi; j; kg D f1; 2; 3g
with j < k we have .Aj � Ak/

.i/ D Ai. For a certain triadic concept .A1; A2; A3/,
the components A1, A2, and A3 are called the extent, the intent, and the modus of
.A1; A2; A3/. Since a tricontext K D .X1; X2; X3; Y/ can be interpreted as a three-
dimensional cross table, according to our definition, under suitable permutations
of rows, columns, and layers of this cross table, the triadic concept .A1; A2; A3/ is
interpreted as a maximal cuboid full of crosses. The set of all triadic concepts of
K D .X1; X2; X3; Y/ is denoted by T.X1; X2; X3; Y/.

To avoid additional technical description of n-ary concept-forming operators, we
introduce n-adic formal concepts without their usage. The n-adic concepts of an n-
adic context .X1; : : : ; Xn; Y/ are exactly the maximal n-tuples .A1; : : : ; An/ in 2X1 �
� � � � 2Xn with A1 � � � � � An � Y with respect to component-wise set inclusion
[85]. The notion of n-adic concept lattice can be introduced in the similar way to
the triadic case [85]. For mining n-adic formal concepts one can use DATA-PEELER

algorithm described in [12].

3.2 Biclustering

An alternative approach to define patterns in formal contexts can be realised via a
relaxation of the definition of formal concept as a maximal rectangle full of crosses
w.r.t. the input incidence relation. One of such relaxations is the notion of an object-
attribute bicluster [37]. If .g; m/ 2 I, then .m0; g0/ is called an object-attribute
bicluster2 (OA-bicluster or simply bicluster if there is no collision) with the density
�.m0; g0/ D jI \ .m0 � g0/j=.jm0j � jg0j/.

The main features of OA-biclusters are listed below:

1. For any bicluster .m0; g0/ � 2G � 2M it follows that jm0jCjg0j�1

jg0jjm0j � �.A; B/ � 1.
2. OA-bicluster .m0; g0/ is a formal concept iff � D 1.
3. If .m0; g0/ is a bicluster, then .g00; g0/ � .m0; m00/.

Let .A; B/ � 2G � 2M be a bicluster and �min be a non-negative real number such
that 0 � �min � 1, then .A; B/ is called dense, if it fits the constraint �.A; B/ �
�min. The above-mentioned properties show that OA-biclusters differ from formal
concepts by the fact that they do not necessarily have unit density. Graphically it
means that not all the cells of a bicluster must be filled by crosses (see Fig. 2). The
rectangle in Fig. 2 depicts a bicluster extracted from an object-attribute table. The
horizontal grey line corresponds to object g and contains only non-empty cells. The
vertical grey line corresponds to attribute m and also contains only non-empty cells.
By applying the Galois operator, as explained in Sect. 2.1, one time to g we obtain
all its attributes g0. By applying Galois operator 0 twice to g we obtain all objects that

2We omit curly brackets here it what follows implying that fgg0 D g0 and fmg0 D m0.
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Fig. 2 OA-bicluster
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Algorithm 1: Add procedure for the online algorithm for OA-biclustering
Input: I is an input set of object-attribute pairs;

B D fB D .�X; �Y/g is a current set of OA-biclusters;
PrimesOA, PrimesAO;

Output: B D fT D .�X; �Y/g;
PrimesOA, PrimesAO;

1: for all .g; m/ 2 I do
2: PrimesOAŒg� WD PrimesOAŒg� [ m
3: PrimesAOŒm� WD PrimesAOŒm� [ g
4: B WD B [ .&PrimesAOŒm�; &PrimesOAŒg�/

5: end for

have the same attributes as g. This is depicted in Fig. 2 as g00. By applying Galois
operator 0 twice to m we obtain all attributes that belong to the same objects as m.
This is depicted in Fig. 2 as m00. The white spaces indicate empty cells. The filled
black boxes indicate non-empty cells. Whereas a traditional formal concept would
cover only the green and grey area, the bicluster also covers the white and black
cells. This gives to OA-biclusters fault-tolerance properties (see Proposition 1).

To generate biclusters fulfilling a minimal density requirement we can perform
computations in two phases. The online phase, Add procedure (see Algorithm 1),
allows to process pairs from incidence relation I and generate biclusters in one pass
by means of pointer and reference variables for access to primes of objects and
attributes even without knowing the number of objects and attributes in advance;
see the version of this online algorithm for triadic case in [29]. Thus, the generation
of all biclusters is realised within O.jIj/. Note that the algorithm can start with a
non-empty collection of biclusters obtained previously. Then all biclusters can be
enumerated in a sequential manner and only those fulfilling the minimal density
constraint are retained.
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For the context shown in Fig. 1 one can find two concepts,
C2 D .fAlex; Davidg; fThe Puppet Masters; Ubikg/ and
C4 D .fAlex; Mike; Davidg; fUbikg/; and one bicluster,
B1 D .Ubik0; David0/ D .fAlex; Mike; Davidg; fThe Puppet Masters; Ubikg/,

with density � D 5=6 � 0:83.
These two concepts can be interpreted as Sci-Fi readers and cyber punk

readers (or P.K. Dick’s readers at least), respectively. However, bicluster B1

by allowing one missing pair .Mike; The Puppet Masters/ can be considered
as a community of Sci-Fi readers as well, which is larger than C2.

3.3 OAC-Triclustering and Prime-Based n-Clustering

Guided by the idea of finding scalable and noise-tolerant alternatives to triconcepts,
we have had a look at triclustering paradigm in general for a triadic binary data, i.e.
for tricontexts as input datasets.

Definition 1 Suppose K D .G; M; B; I/ is a triadic context and Z � G, Y � M, Z �
B. A triple T D .X; Y; Z/ is called an OAC-tricluster. Traditionally, its components
are called extent, intent, and modus, respectively.

The density of a tricluster T D .X; Y; Z/ is defined as the fraction of all triples of
I in X � Y � Z:

�.T/ D jI \ .X � Y � Z/j
jXjjYjjZj (2)

Definition 2 A tricluster T is called dense iff its density is not less than some
predefined threshold, i.e. �.T/ � �min.

The collection of all triclusters for a given tricontext K is denoted by T .
Since we deal with all possible cuboids in Cartesian product G � M � B, it

is evident that the number of all OAC-triclusters, jT j, is equal to 2jGjCjMjCjBj.
However, not all of them are supposed to be dense, especially for real data which
are frequently quite sparse. Below we discuss one of the possible OAC-tricluster
definitions, which gives us an efficient way to find, within polynomial time, a
number of (dense) triclusters not greater than the number of triples in the initial
data, jIj.

Here, let us define the prime operators and describe prime OAC-triclustering,
which extends the biclustering method from [39] to the triadic case.
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Derivation (prime) operators for elements of a triple .eg; em;eb/ 2 I from a triadic
context K can be defined as follows:

eg 0 WD f .m; b/ j .eg; m; b/ 2 Ig (3)

em0 WD f .g; b/ j .g; em; b/ 2 Ig (4)

eb0 WD f .g; m/ j .g; m;eb/ 2 Ig (5)

.eg; em/0, .eg;eb/0, .em;eb/0 prime operators can be defined in the same way.

.eg; em/0 WD f b j .eg; em; b/ 2 Ig (6)

.eg;eb/0 WD f m j .eg; m;eb/ 2 Ig (7)

.em;eb/0 WD f g j .g; em;eb/ 2 Ig (8)

The following definition uses only prime operators [Eqs. (6)–(8)] to generate
triclusters, however, other variants are possible. Thus, in [45], OAC-triclusters based
on box operator have been studied; this type of tricluster relies on Eqs. (3)–(5).

Definition 3 Suppose K D .G; M; B; I/ is a triadic context. For a triple .g; m; b/ 2 I
a triple T D ..m; b/0; .g; b/0; .g; m/0/ is called a prime operator based OAC-
tricluster. Its components are called extent, intent, and modus, respectively.

Prime-based OAC-triclusters are more dense than the ones based on box operator.
Their structure is illustrated in Fig. 3: every element corresponding to the “grey”
cell is an element of I. Thus, prime operator based OAC-triclusters in a three-
dimensional matrix (tensor) form contain an absolutely dense cross-like structure
of crosses (or ones).

The proposed OAC-tricluster definition has a fruitful property (see Proposi-
tion 1): for every triconcept in a given tricontext there exists a tricluster of the same
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Fig. 3 Prime operator based tricluster structure
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tricontext in which the triconcept is contained w.r.t. component-wise inclusion. It
means that there is no information loss, we keep all the triconcepts in the resulting
tricluster collection.

Proposition 1 Let K D .G; M; B; I/ be a triadic context and �min D 0. For every
Tc D .Xc; Yc; Zc/ 2 T.G; M; B; I/ with non-empty Xc, Yc, and Zc there exists a prime
OAC-tricluster T D .X; Y; Z/ 2 T 0.G; M; B; Y/ such that Xc � X; Yc � Y; Zc � Z.
Here, T 0.G; M; B; I/ denotes the set of all OAC-prime triclusters fulfilling the
chosen value of �min.

Proof Let .g; m; b/ 2 Xc � Yc � Zc. By the definition of prime operators .m; b/0 WD
feg j .eg; m; b/ 2 Ig. Since m 2 Yc and b 2 Zc then by the definition of formal
triconcept .m; b/ is related by Y to every eg 2 Xc, therefore .m; b/0 \ Xc D Xc.
Consequently for all gi 2 Xc we have gi 2 .m; b/0. For .g; b/0 and .g; m/0 tricluster
components the proof is similar. Finally, we have Xc � X D .m; b/0; Yc � Y D
.g; b/0; and Zc � Z D .g; m/0.

Prime-based n-clustering can be introduced similarly. Let K D .X1; X2;: : : ; Xn; Y/

be an n-adic context and Y is binary relation between X1 : : : Xn.
Then for a tuple .x1; x2; : : : ; xn/ 2 Y we define n prime operators for each tuple

.x1; : : : ; xi�1; xiC1; : : : ; xn/ as follows:

.fx1g; : : : ; fxi�1g; xiC1; : : : ; fxng/0 D fzi j .x1; : : : ; xi�1; zi; xiC1; : : : ; xn/ 2 Yg:

For a given tuple .x1; x2; : : : ; xn/ 2 Y , a prime operator based n-cluster is defined
as follows:

P D ..fx2g; : : : ; fxng/0; : : : ; .fx1g; : : : ; fxi�1g; fxiC1g; : : : ; fxngg/0; : : : ;

.fx1g; : : : ; fxn�1g/0/:

The density of n-cluster P D .Z1; Z2; : : : ; Zn/ is �.P/ D jY\Z1�Z2�:::�Znj
jZ1�Z2�:::�Znj . To keep

analogy of � with physical density we refer to its numerator as the mass of P, i.e.
mass.P/, while its denominator plays a role of the volume of P, i.e. vol.P/.

The description of a one-pass algorithm for OAC-prime tricluster generation can
be found in [29]. A Map-Reduce based prototype of OAC-prime triclustering and
possible implementation variants are presented in [94].

4 Quality Measures for Multimodal Clustering

4.1 Connection Between � and Local Clustering Coefficient

Since we use density as a local measure of n-cluster quality, it is useful to find its
connection to local clustering coefficients (we use cc�.�/ notation from [57]). For
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.V; E � V � V/, the local clustering coefficient is cc�.v/ D jN.v/�N.v/\Ej
N.v/.N.v/�1/=2

, here
N.v/ is the degree of v 2 V .

If one considers a one-mode network .V; E � V � V/ as a formal context K D
.G; G; I � G � G/, where V D G, and for g; m 2 V gEm ” gIm, then for
bicluster .g0; g0/ it follows that3

�.g0; g0/ D jg0 � g0 \ Ij
jg0jjg0j D jN.g/ � N.g/ \ Ij

jN2.g/j D jN.g/ � N.g/ \ Ij
.jN.g/j�1/jN.g/j

2

1 	 1=jN.g/j
2

D cc�.g/
1 	 1

jN.g/j
2

:

Note that N.g/ D deg.g/ D fujgEug D g0.
Moreover, for large neighbourhoods �.g0; g0/ � cc�.g/

2
.

4.2 Connection Between � and Modularity

Since we do not optimise any modularity-like criterion in our study, multimodal
clusters are supposed to be overlapping in general, and, moreover, to the best of
our knowledge there is no widely accepted modularity criterion even for bipartite
overlapping communities; the introduction and study of such criteria could be a
subject of a separate research. However, we show the interconnection between
average of values in the input modularity matrix for a particular bicluster and its
density.

Let Agm be the adjacency matrix of an input context K D .G; M; I � G � M/,
i.e. Agm D ŒgIm�4 for .g; m/ 2 G � M. For bipartite graphs an entry of modularity
matrix is defined as follows:

Bgm D Agm 	 deg.g/deg.m/

jIj D ŒgIm� 	 jg0jjm0j
jIj :

For non-overlapping communities modularity in two-mode networks is defined
as follows [4]:

Mod D 1

jIj
X

.g;m/2G�M

�

ŒgIm� 	 jg0jjm0j
jIj

�

Œ.g; m/ 2 C�; where

3Note that technically .g0; g0/ is not an OA-bicluster since .g; g/ 62 I.

4Here Œ�� means Iverson bracket defined as ŒP� D
(

1 if P is true;

0 otherwise,
.
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C � G � M is a module (or community) from a set of non-overlapping
communities C of the original network. Non-overlapping here is formally defined
as follows: 8C; D 2 C C \ D D ;.

Let .m0; g0/ be a bicluster of K, then the sum over all entries .eg; em/ 2 m0 � g0 in
B gives

jm0 � g0 \ Ij 	

P

.eg;em/2m0�g0

jeg0jjem0j

jIj :

Instead of normalising that sum by jIj as in modularity definition, we can try to
calculate (local) bicluster modularity, Modl.m0; g0/, by normalising the sum by the
bicluster volume Vol.m0; g0/ D jg0jjm0j:

Modl.m
0; g0/D jm0 � g0 \ Ij

jg0jjm0j 	

P

eg2m0

jeg0j P

em2g0

jem0j

jg0jjm0jjIj D �.m0; g0/	deg.eg/deg.em/

jIj ; where

deg.eg/ D
P

eg2m0

jg0j is the average degree of eg in the input bicluster and deg.em/ is the
average degree of em and defined similarly.

It is clear that to maximise Modl criterion one needs to find a bicluster with high
density and low average degrees of its elements.

However, the original modularity criterion for bipartite non-overlapping net-
works has intrinsic drawbacks. The first problem, low resolution, consists in the
dependence between the size of detected communities and the size of an input graph
[21]. Another one can be demonstrated by a model example.

Let K D .G; M; I/ be a formal context, where for a certain pair .g; m/ 2 I we
have g0 D M; m0 D G, and I D m0 � m [ g � g0. Without loss of generality let
jGj D jMj D n. Then

Bgm D ŒgIm� 	 jg0jjm0j
jIj D 1 	 n2

2n 	 1
:

For large n, Bgm � 1 	 n=2 and this value tends to 	1 by implying
n ! 1. To keep the second term of an entry of the modularity matrix no
greater than 1 (the maximal probability of incidence of g and m), one needs
to require jg0j; jm0j � pjIj (which is in fact should be normally fulfilled for
large and sparse (real) networks).
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4.3 Least Square Optimal n-Clusters

One of the important statistics in clustering is the data scatter of an input matrix, i.e.
the sum of squares of all its entries [63]. In [64], least squares based maximisation
criterion to generate n-cluster was proposed:

g.P/ D �2.P/ � Vol.P/ D �.P/ � mass.P/; where

P is an n-cluster of a certain n-adic context. On the one hand, its direct
interpretation implies that we care about dense n-clusters of large size instead
of only dense (that may be small) or only large (that may be sparse); in other
words such n-clusters tend to be massive (with low number of missing tuples in
the input binary relation) and dense. On the other hand, this criterion measures the
contribution of P to the data scatter of the input n-adic context.

In [45], one can find a theorem saying that by maximisation of g.P/ we require
higher density within n cluster P than in the corresponding outside regions along its
dimensions.

4.4 Weak Bicluster Communities and Graph Cuts

In network analysis, a community is called weak if its average internal degree is
greater than its average out degree [3].

In two-mode case, for an input context K D .G; M; I/ and its bicluster .m0; g0/,
we have

X

eg2m0

j.fegg [ fgg/0j C
X

em2g0

j.femg [ fmg/0j �
X

eg2m0

jeg0 \ M n g0j C
X

em2g0

jem0 \ G n m0j:

The left-hand side of the inequality is the doubled sum of the number of object-
attribute pairs from .m0; g0/. The right-hand side shows how many pairs the objects
from bicluster extent and the attributes from bicluster intent form with the remaining
attributes and objects of the context, respectively. In network analysis this measure
is known as cut [21], i.e. the number of edges one should delete to make the
community disconnected from the remaining vertices in the input graph. Thus, the
inequality can be rewritten as follows:

�.m0; g0/ � cut.m0; g0/
2jg0jjm0j :

This criterion can be used for selection of biclusters during their generation
instead of fixed �min.
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4.5 Stability of OA-Biclusters

Stability of formal concepts [53, 54] has been used as a means of concepts’ filtering
in studies on epistemic communities [56, 77, 78] and communities of website
visitors [55].

Let K D .G; M; I/ be a formal context and .A; B/ be a formal concept of K. The
(intensional) stability index, � , of .A; B/ is defined as follows:

�.A; B/ D jfC � A j C0 D Bgj
2jAj

As we know, not all of the OA-biclusters of a given formal context are formal
concepts.

Only those OA-biclusters that fulfill condition .m0; g0/ D .g00; m00/ are formal
concepts. However, stability index can be technically computed for any OA-
bicluster as follows:

�.m0; g0/ D jfA � m0 j A0 D g0gj
2jm0j

Set 2m0

can be decomposed into three parts: 2g00 [ 2m0ng00 [ �. The numerator is
equal to jfA 2 2g00 j A0 D g0gjCjfA 2 2m0ng00 j A0 D g0gn;jCjfA 2 � j A0 D g0gn;j.
Since every set of objects from m0ng00 does not have all attributes from g0, the second
summand is 0, and the same applies to the third one due to each set from � contains
at least one objecteg from m0 n g00 such that Qg0 6D g0. Hence,

�.m0; g0/ D jfA 2 2g00 j A0 D g0gj
2jm0j :

Since the number of all A that contain g is j2g00ngj, the tight lower bound of OA-
bicluster’s stability is 2jg00ngj�jm0j.

The stability index of a concept indicates how much the concept intent depends
on particular objects of the extent.

4.6 Coverage and Diversity

Diversity is an important measure in Information Retrieval for diversified search
results and in Machine Learning for ensemble construction [82].

To define diversity for multimodal clusters we use a binary function that equals
to 1 if the intersection of triclusters Ti and Tj is not empty, and 0 otherwise.

intersect.Ti; Tj/ D �

GTi \ GTj 6D ; ^ MTi \ MTj 6D ; ^ BTi \ BTj 6D ;�

(9)
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It is also possible to define intersect for the sets of objects, attributes, and
conditions. For instance, intersectG.Ti; Tj/ is equal to 1 if triclusters Ti and Tj have
non-empty intersection of their extents, and 0 otherwise.

Now we can define diversity of the tricluster set T :

diversity.T / D 1 	
P

j

P

i<j intersect.Ti; Tj/

jT j.jT j�1/

2

(10)

The diversity for the sets of objects (attributes or conditions) is similarly defined:

diversityG.T/ D 1 	
P

j

P

i<j intersectG.Ti; Tj/

jT j.jT j�1/

2

(11)

Coverage is defined as a fraction of the triples of the context (alternatively, objects,
attributes, or conditions) included in at least one of the triclusters of the resulting
set.

More formally, let K D .G; M; B; I/ be a tricontext and T be the associated
triclustering set obtained by some triclustering method, then coverage of T :

coverage.T / D
X

.g;m;b/2I

2

4.g; m; b/ 2
[

.X;Y;Z/2T
X � Y � Z

3

5 =jIj: (12)

The coverage of the object set G by the tricluster collection T is defined as
follows:

coverageG.T / D
X

g2G

2

4g 2
[

.X;Y;Z/2T
X

3

5 =jGj: (13)

Coverage of attribute or condition sets can be defined analogously. These
measures may have sense when one would like to know how many actors or items
in the network do not belong to any found community.

We also use the coverage of formal concepts by biclusters, i.e. we count the
number of concepts covered by at least one bicluster in the corresponding bicluster
collection B. We say that bicluster B D .X; Y/ covers concept C D .Z; W/ w.r.t.
component-wise inclusion of their extents and intents, namely C v B W ” Z �
X and W � Y .

coverageB.B.G; M; I// D fC 2 B.G; M; I/ j 9B 2 B W C v Bg
jB.G; M; I/j : (14)
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5 Data

For our experiments we collected datasets from one-mode to four-mode networks.
In particular, we have analysed the following classic one-mode datasets:

• Karate club, 34�34, 78 edges;
• Florentine family 1, 16�16, 40 edges;
• Florentine family 2, 16�16, 30 edges;
• Hi-tech, 36�36, 147 edges;
• Mexican people, 35�35, 117 edges.

For two-mode datasets we have used Southern women of size 18�14 with 93
edges and four datasets studied in [57]:

• co-authoring, 19,885�16,400, and 45,904 edges;
• co-occurrence, 13,587�9,263, and 1,833,63 edges;
• actor, 127,823�383,640, and 1,470,418 edges;
• p2p, 1,986,588 peers�5,380,546 data, and 55,829,392 links (edges).

As for three-mode network, we have analysed Bibsonomy dataset5 with jUj D
2467 users, jTj D 69,904 tags, jRj D 268,692 resources that related by jYj D
816,197 triples.

Finally, MovieLens data6 with 100,000 ratings (integers from 1 to 5) and 1300
tag applications applied to 9000 movies by 700 users is considered as a four-mode
dataset. We have used only user, movie, rating, and time modes.

6 Experiments

We have tested our implementations for one- and two-mode networks in Python 2.7
and for higher modes in C# with our tool, Multimodal Clustering Toolbox, on a Mac
Pro computer with 3.7 GHz and 16 GB RAM.

6.1 Two-Mode Networks

For each two-mode dataset we report the number of unique biclusters and the
number of all generated biclusters; note that when all objects (and attributes) are
pairwise different there are no duplicates by definition.

5http://www.kde.cs.uni-kassel.de/bibsonomy/dumps/.
6http://grouplens.org/datasets/movielens/.

http://www.kde.cs.uni-kassel.de/bibsonomy/dumps/
http://grouplens.org/datasets/movielens/
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Table 1 Southern women:
18�14, 93 edges

Concept Unique Fraction of
� coverage biclusters Biclusters covered concepts

0 65 83 93 1.00

0.05 65 83 93 1.00

0.1 65 83 93 1.00

0.15 65 83 93 1.00

0.2 65 83 93 1.00

0.25 65 83 93 1.00

0.3 65 83 93 1.00

0.35 65 82 92 1.00

0.4 65 81 91 1.00

0.45 65 77 87 1.00

0.5 65 71 81 1.00

0.55 65 63 73 1.00

0.6 65 60 7 1.00

0.65 64 51 59 0.98

0.7 63 40 47 0.97

0.75 57 33 4 0.88

0.8 51 22 28 0.78

0.85 35 13 19 0.54

0.9 20 7 9 0.31

0.95 0 0 0 0.00

1 0 0 0 0.00

For small and medium size classic two-mode and one-mode datasets we have
reported the number of formal concepts covered by the generation bicluster
collection for a specific �min as well as their fraction, i.e. coverageB.B.G; M; I//.

In 1930s, a group of ethnographers collected data on the social activities of 18
women over a nine-month period [17]. Different subgroups of these women had
met in 14 informal social events; the incidence of a woman to a particular event was
established using “interviews, the records of participant observers, guest lists, and
the newspapers” [17, p. 149]. Later on, this Southern Women dataset has become
a benchmark for comparing communities detection methods in two-mode social
network analysis, in particular, including concept lattices as a community detection
approach [22, 23].7

The results of our experiments with Southern Women dataset are summarised in
Table 1.

7There is a small inconsistency in the profiles of women w14 (Helen) and w15 (Dorothy), namely
between their description in [22] and the downloaded dataset provided at https://networkdata.ics.
uci.edu/netdata/html/davis.html, thus according to the latter e12; e13 2 w0

14 and e11; e9 2 w0

15.

https://networkdata.ics.uci.edu/netdata/html/davis.html
https://networkdata.ics.uci.edu/netdata/html/davis.html
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There are 66 formal concepts for the Southern woman network. Since OA-
biclusters are tolerant to missing values, let us illustrate how rather dense
biclusters include the largest concepts with non-empty extent and intent.

For example, with �min D 0:8 we show five bicluster-concept pairs Bi D
.e0; w0/, Ci D .W; E/ related by component-wise inclusion of their extents
and intents, respectively, namely Ci v Bi W ” W � e0 and E � w0 :

1. C1 D .fw0; w1; w2; w3; w5; w6; w7g; fe5; e7g/ v B1 D .fw0; w1; w2; w3; w5;

w6; w7; w8g; fe2; e4; e5; e7g/ with �.B1/ D 0:84;
2. C2 D .fw0; w2; w3g; fe2; e3; e4; e5; e7g/ v B2 D .fw0; w2; w3; w4g; fe0; e2;

e3; e4; e5; e6; e7g/ with �.B2/ D 0:82;
3. C3 D .fw9; w10; w11; w12; w13; w14; w15g; fe11g/ v B3 D .fw9; w10; w11;

w12; w13; w14; w15g; fe6; e7; e8; e11g/ with �.B3/ D 0:82;
4. C4 D .fw10; w11; w12; w15g; fe7; e8; e9; e11g/ v B4 D .fw10; w11; w12; w13;

w14; w15g; fe7; e8; e9; e11g/ with �.B4/ D 0:92;
5. C5 D .fw16; w17; w13g; fe1; e8g/ v B5 D .fw16; w17; w13; w14g; fe1; e8g/

with �.B5/ D 0:88.

The corresponding bipartite graph is shown in Fig. 4 along with the
biclique formed by elements of concept C1 and bicluster B1, and concept
C3 and bicluster B3. According to [18, 22] there is the “true structure”
of the Southern women network: namely, there are two groups of women
fw0; : : : ; w8g and fw1; : : : ; w17g. The first group of women participated in
events e0 through e4, while the second group was not. The second group
participated in events e3 through e13, while the first group was not. Both
groups participated e6, e7, and e8.

Since the Southern women network is a well-studied case in SNA community
and one of the first SNA datasets analysed by sociologists using concept lattices, an
interested reader may refer to [22, 23] to find professional interpretation of several
important communities of women found by means of formal concepts.

Even though that such networks as co-authoring, co-occurrence, actor, and p2p
are two-mode and known to SNA community about a decade, even the number
of concepts (maximal bicliques) for these datasets is not reported in the literature
(Tables 2 and 3).

An interesting issue has appeared: At which �min the generated biclusters do
not cover all formal concepts with non-empty extent and intent? According to our
experiments for two-mode (see also Appendix) and one-mode networks, it usually
happens around �min D 0:5 or higher (containing intervals marked by two horizontal
lines in the tables), so, we may hypothesise that one can normally set minimal
density value equal to 0.5.
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Fig. 4 The two-mode network for the Southern women dataset, bicluster B1 and concept C1, and
bicluster B3 and concept C3

6.2 Folksonomies as Three-Mode Networks

Folksonomy is a typical example of a three-mode network, where a hyperedge
connects a user, a tag, and an attribute. Thus each hyperedge is a set of size
three with three vertices of different types; it is convenient to represent edges as
tuples .user; tag; resource/. Since we experiment with Bibsonomy, a Folksonomy-
based resource sharing system for scientific bibliography, our users are scientists,
resources are papers that they bookmarked or even authored; a tag is assigned by a
scientist to a particular paper while bookmarking.
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Table 2 The numbers of unique and all OA-biclusters for the four large two-mode networks

Datasets

Co-authoring Co-occurrence Actor p2p

Unique Unique Unique Unique
� biclusters Biclusters biclusters Biclusters biclusters Biclusters biclusters Biclusters

0 43,253 45,904 161,386 183,363 1,278,989 1,470,418 54,789,256 55,829,169

0.05 43,253 45,904 161,386 183,363 1,226,429 1,417,827 41,937,580 42,973,016

0.1 43,253 45,904 160,200 181,630 962,389 1,153,704 27,178,639 28,196,480

0.15 43,253 45,904 124,383 137,367 700,207 891,401 18,320,253 19,321,315

0.2 43,251 45,902 69,283 75,761 523,446 714,509 13,179,196 14,165,402

0.25 43,184 45,835 39,081 43,252 410,118 601,065 9,789,039 10,759,880

0.3 42,748 41,774 24,484 27,672 318,245 509,068 7,019,097 7,969,965

0.35 41,774 44,423 17,011 19,718 269,642 460,361 5,088,606 6,017,582

0.4 39,366 42,008 12,796 15,100 214,979 405,543 3,950,659 4,856,567

0.45 36,194 38,809 10,111 12,251 190,704 381,106 3,369,522 4,261,678

0.5 34,141 36,737 8539 10,515 182,906 373,191 3,056,597 3,938,536

0.55 29,404 31,960 6926 8699 110,464 299,895 1,156,887 1,918,111

0.6 23,150 25,615 5395 7036 84,459 272,894 764,584 1,483,586

0.65 20,604 23,007 4572 6127 77,904 265,699 614,743 1,308,939

0.7 16,391 18,707 3929 5386 72,651 259,877 50,981 1,182,631

0.75 15,951 18,234 3726 5129 71,663 258,550 472,869 1,126,702

0.8 12,989 15,137 3490 4846 69,449 255,904 419,533 1,046,786

0.85 11,533 13,530 3313 4568 68,555 254,703 39,189 986,811

0.9 11,053 12,976 3214 4437 68,186 254,138 377,377 949,637

0.95 10,875 12,756 3105 4290 67,871 253,623 369,401 929,765

1 10,874 12,756 3079 4250 67,798 253,390 367,946 926,380

Table 3 Elapsed time for online OA-biclustering

Dataset jIj Gj jMj Time, s

Co-authoring 45,904 19,885 16,400 0.13

Co-occurrence 183,363 13,587 9264 0.25

Actor 1,470,418 127,823 383,640 3.55

p2p 55,829,392 19,86,588 5,380,546 260.13

Let us consider a toy imaginary example of Bibsonomy data; the input context
is shown by three layers in Table 4. There are four users (u1 D Fortunato,
u2 D Freeman, u3 D Newman, and u4 D Roth) and three tags (t1 D
Galois Lattices, t2 D SNA, and t3 D Statistical Physics). Three papers p1,
p2, and p3 are marked according to the research interests of those users. Thus
Freeman and Roth marked paper 1 by tags “Galois Lattices” and “SNA”,

(continued)
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while Fortunato and Newnam tagged paper 3 by tags ‘SNA” and “Statistical
Physics”. All the users assigned tag “SNA” to paper 2. Three corresponding
communities can be easily captured by formal triconcepts:

C1 D .fu2; u4g; ft1; t2g; fp1g/
C2 D .fu1; u3g; ft2; t3g; fp3g/
C3 D .fu1; u2; u3; u4g; ft2g; fp2g/:

Concept C3 is more general than C1 and C2 w.r.t. extent inclusion, and
corresponds to SNA-interested users, while C1 corresponds to those who are
interested in concept lattices for SNA domain, and C2 unites users interested
in SNA by means of methods similar to their prototypes in Statistical Physics.
The corresponding hypergraph with these triconcepts is shown in Fig. 5.

Table 4 A toy example with Bibsonomy data

t1 t2 t3
u1

u2 � �
u3

u4 � �
p1

t1 t2 t3
u1 �
u2 �
u3 �
u4 �

p2

t1 t2 t3
u1 � �
u2

u3 � �
u4

p3

Fig. 5 Three triconcepts C1, C2, C3 for the Bibsonomy three-mode network
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Table 5 Experimental results for k first triples of Bibsonomy dataset with �min D 0

k, number of OAC-Prime,s

first triples jUj jTj jRj jTj jTOAC0 j TRIAS, s Full time Online phase

100 1 47 52 57 77 0.2 0.02 0.003

1000 1 248 482 368 656 1 0.043 0.001

10,000 1 444 5193 733 1461 2 273 0.031

100,000 59 5823 28,920 22,804 33,172 3386 24,185 0.542

200,000 340 14,982 61,568 – 105,571 > 24 h 25,446 1.268

500,000 1191 45,232 148,695 – 316,139 > 24 h 29,035 3.529

816,197 2467 69,904 268,692 – 484,349 > 24 h 241,341 5.186

Table 6 Density distribution of OAC-prime triclusters for 816,197 triples of Bibsonomy dataset
with �min D 0

Lower bound of � Upper bound of � Number of triclusters

0 0.05 172

0.05 0.1 3070

0.1 0.2 36,878

0.2 0.3 77,170

0.3 0,4 90,005

0.4 0.5 67,659

0.5 0.6 66,711

0.6 0.7 41,507

0.7 0.8 22,225

0.8 0.9 11,662

0.9 1 67,290

To build all triconcepts of a certain context we have used a Java implementation
of the TRIAS algorithm by R. Jäschke [46]. The last two columns in Table 5 mean
time of execution of TRIAS and OAC-prime algorithms.

Note that here we have reported both the full execution time of OAC-prime
algorithm, i.e. tricluster generation with density calculation, and the time of online
phase for tricluster generation only. One may note a dramatical drop-off in time
efficiency between the last and penultimate lines in Table 5 for the full execution
time, while online phase took only about half a second more. The devil is in the
hashing data structures used for duplicate elimination and we believe the timing can
be improved, for example, by a specially designed Bloom filter. Note that a more
general and efficient algorithm Data-Peeler [13] could be used suitable for mining
n-concepts.

Distribution of density of triclusters for all the triples of Bibsonomy dataset is
given in Table 6.
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6.3 MovieLens Data as Four-Mode Network

We summarise the results of prime-based tetraclustering execution on Movielens
data below:

Time: 13; 252 ms

Number of n-clusters: 89,931

Average volume, Vol: 455.4

Average density, �: 0.35

Average coverage: 0.1%

Average mass, mass: 103.7

Average � � mass: 28.1

In addition to average density we report average volume, average coverage (the
number of covered original tuples by each tetracluster on average), average mass
(the number of tuples inside each tetraclusters on average), and quite an interesting
statistic, average � � mass. If we maximise the latter criterion, then we require for
our tetraclusters to be dense and large at the same time while criterion � � Vol could
result in sparse patterns.

To provide concrete examples of tetraclusters, we have selected rather small-
sized dense communities in Table 7.

Table 7 Tetraclusters for Movielens data

No. Generating tuple Volume � Coverage mass � � mass

1 (483, Star Trek IV, 5, 1997/11) 27 0.93 0.03 % 25 23.1

2 (384, Evita, 5, 1998/03) 15 0.87 0.01 % 13 11.3

3 (872, Scream 2, 5, 1998/02) 15 0.87 0.01 % 13 11.3

4 (102, Face/Off, 3, 1997/10) 12 0.92 0.01 % 11 10.1

5 (750, Gang Related, 1, 1997/11) 9 1.00 0.01 % 9 9.0

No. Users Movies Rating Time

1 {109,307,374,483, {Star Trek: The Wrath of Khan (82), Star Trek IV: {5} {97/11}

87,545,815,882,927} The Voyage Home (86), Star Wars (77) }

2 {378,384,392} {Good Will Hunting (97), Evita (96), Titanic (97), {5} {98/03}

L.A. Confidential (97), As Good As It Gets (97)}

3 {206,332,872} {Time to Kill, A (96), Scream (96), Scream 2 (97), {5} {98/02}

Air Force One (97), Titanic (97)}

4 {102,116,268,430} {Grosse Pointe Blank (1997), Face/Off (1997) } {3} {97/10}

Air Force One (1997)}

5 {181,451,750} {Gang Related (1997), Rocket Man (1997) {1} {97/11}

Leave It to Beaver (1997)}
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For example, one can easily identify the community of modern space opera
lovers in 4-cluster no. 1. Note that their third and fourth components are always
sets containing a single element due to the chosen mode nature: the same people
cannot rate the same movies by different marks simultaneously or within a different
month.

6.4 One-Mode Networks as Two-Mode Ones

There are different techniques called projections to transform two-mode graphs to
their one-mode versions [57, 67]. Sometimes, researchers even do transformations
in backward direction to consider interactions between different subgroups of actors
as they were from different modes of the corresponding two-mode network [18, 91].

An undirected one-mode network in the form � D .G; E � G � G/ can be
considered as the two-mode network by composing a context K D .G; G; I/ where
gEh ” gIh for any g; h 2 G, with two options for I being a symmetric relation:
a) reflexive and b) irreflexive.

In reflexive case, each concept .A; B/ of such context K that fulfills A D B
corresponds to the maximal clique A in the original one-mode network.

We provide the reader with the results of OA-biclustering for one-mode networks
in Tables 8, 9, 10, 11, and 12.

In addition to the fraction of covered concepts by component-wise set inclusion
we have reported intervals Œ�˛; �ˇ�, where the fraction of covered concepts decreases
below 1 first time for each dataset (see two vertical lines in the tables).

In addition to the reported statistics, let us demonstrate found biclusters and
concepts for Zachary’s karate club dataset. Originally, the author of [90], an
anthropologist, described social relationships between members of a karate club in
the period of 1970–72; the network contains 34 active members of the karate club
who interacted outside the club, including 78 pairwise links between them. The club
was split into two parts after a conflict between its instructor and president. This
dataset is usually used as a benchmark for demonstration and testing of community
detection algorithms [3].

In Fig. 6, one can see three biclusters (B1, B2, and B3) with density less than 1
but greater 0.8 each. Thus none of them is a concept; moreover, union of their
intent and extent does not form a clique of the input one-mode network.

B1 D .290; 290/ D .f32; 33; 26; 29; 23g; f32; 33; 26; 29; 23g/ with � D 0:84

B2 D .30; 120/ D .f0; 1; 2; 3; 7; 12; 13g; f0; 3; 12g/ with � D 0:81

B3 D .50; 40/ D .f0; 10; 4; 6g; f0; 10; 4; 5g/ with � D 0:88

(continued)
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Among all generated concepts, each concept .X; Y/ with X D Y results in
clique X.

Thus concept .f0; 1; 2; 3; 7g; f0; 1; 2; 3; 7g/ forms clique Q1 D
f0; 1; 2; 3; 7g, while concepts .f0; 1; 2; 3; 13g; f0; 1; 2; 3; 13g/ and
.f32; 33; 29; 23g; f32; 33; 29; 23g/ result in Q2 D f0; 1; 2; 3; 13g and
Q3 D f32; 33; 29; 23g, respectively. Those are cliques of maximal size 5
and 4 from two parts of the karate club after its fission. It is evident that for
each of those cliques its set of vertices can be found in some OA-bicluster.
One can check that the set of vertices of B1 contains those of Q3, and
vertices of B2 include those of Q1 and Q2. So, it is possible to conclude that
even though the density of a bicluster may be less than 1, they can contain
more vertices resulting in larger communities than cliques. Note that the
club instructor, 0, belongs to extents of B2 and B3 being a “missing link”
between two corresponding subcommunities, which lack in active interaction
otherwise.

Table 8 Karate club: 34�34,
190 edges

Covered Unique Biclusters Fraction of
� concepts biclusters covered concepts

0 134 190 190 1.00

0.05 134 190 190 1.00

0.1 134 190 190 1.00

0.15 134 190 190 1.00

0.2 134 190 190 1.00

0.25 134 190 190 1.00

0.3 134 184 184 1.00

0.35 134 178 178 1.00

0.4 134 163 163 1.00

0.45 134 142 142 1.00

0.5 132 128 128 0.99

0.55 126 108 108 0.94

0.6 115 91 91 0.86

0.65 97 71 71 0.72

0.7 90 67 67 0.67

0.75 68 47 47 0.51

0.8 31 25 25 0.23

0.85 27 20 20 0.20

0.9 12 12 12 0.09

0.95 12 12 12 0.09

1 12 12 12 0.09
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Fig. 6 Three dense biclusters B1, B2, B2 found in Karate club network with �min D 0:8

In Fig. 7, one can see three found communities that are composed of vertices
corresponding to three concepts C1, C2, and C3.

C1 D .f32; 33g; f32; 33; 8; 14; 15; 18; 20; 22; 23; 29; 30; 31g/

C2 D .f0; 1g; f0; 1; 2; 3; 7; 13; 17; 19; 21g/

C3 D .f0; 10; 6g; f0; 4; 5g/

In this concrete example, the usage of formal concepts for representing
communities seems to be even more beneficial than that of dense OA-
biclusters since we have been able to cover almost both parts of the separated
karate club by three concepts without sharing members between the coun-
terparts; concepts C1 and C2 contain more vertices than biclusters B1 and B2

shown in Fig 6. Note that the semantic of C1 lies in the interpretation of its
intent as common contacts of 32 and 33, an active club member who is loyal
to the club’s president and the president, respectively. Intent of C2 contains
members mutually connected with the club instructor, 0, and member 1.
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Fig. 7 Three formal concepts C1, C2, C2 found in Karate club network

7 Related Work

There is a so-called subspace clustering [1] closely related to biclustering, where
objects are considered as points in high dimensional space and clustered within
multidimensional grid of a certain granularity. However, these methods cannot be
directly applied to multidimensional relational data, i.e. multi-mode networks, since
entities from different modes are often numbered arbitrarily and do not follow a pre-
specified order like values along numerical axes. However, biclustering of numerical
data, which may describe two-mode weighted networks, can be realised with Triadic
Concept Analysis in case we consider attribute values as a mode of conditions
under which an object has an attribute [50]. These results are also applicable to
n-dimensional numerical datasets. Two other ways to deal with numeric data are
to apply the so-called scaling, e.g., using a binary threshold, or Pattern Structures
defined on vectors of numeric intervals [16, 25, 49]. Pattern Structures were also
used to rethink collaborative filtering and find relevant taste communities for a
particular user in terms of vectors of desirable rating intervals for good movies [34].

As for OA-biclustering, it has been used in several applications; for example,
OA-biclustering has been applied for finding market segments in two-mode data
on Internet advertising to recommend advertising terms to companies playing on
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these segments [35, 39]. In crowdsourcing platforms, OA-biclustering helps to find
similar ideas (proposals) to discuss potential collaborators [43, 44] as well as answer
questions [14]; in case we consider opinions of users over a set of different ideas
(proposals), it is possible to find antagonists, which may be prospective opponents
in crowdsourcing teams [41].

In fact, biclustering is a well-established tool in Bioinformatics, especially for
Gene Expression Analysis in genes-samples networks [49, 70]. A non-exhaustive
concept lattice based taxonomy of biclustering techniques can be found in [36].
Methods for three-mode networks are applicable in this domain when in addition to
genes and samples time mode comes [92].

Going back to networks, several researchers define other kinds of networks where
the role of dimensions is played by different types of labels of multi-edges between
actors [8, 9]; they call such networks multidimensional while others use the term
multi-relational networks [88].

One more variation of networks is realised by n-partite networks where connec-
tion are edges between vertices of allowed types [80]. It is possible to mine maximal
closed and connected subgraphs in them and interpret them as communities [59];
these patterns coincide with bicliques and formal concepts in two-mode case.
However, for higher dimensions such n-partite graphs are not equivalent to n-adic
contexts and may result in information loss or phantom hyperedges if we reduce the
latter to the former or vice versa [33]. In [28], for analysing such tripartite network
composed by two two-mode networks with one shared part, biclusters from these
two networks have been used. Namely, those biclusters that are similar with respect
to their extents are merged by taking the intersection of their extents. The intent
of the first bicluster and the intent of the second bicluster become the intent and
modus, respectively, of the resulting tricluster. In FCA domain, analysis of n-partite
and multi-relational networks can be unified within Relational Concept Analysis
where objects can be involved in different types of relations with attributes and each
other [30].

Another related subject is tensor factorisation, which is of high importance in
Data Mining [71] and Machine Learning [15] due to its ability to reduce data
dimensionality, find the so-called hidden factors, and even perform information
fusion. The closest approaches to ones in the presented study can be found in works
on Boolean matrix [6, 7] and tensor factorisation [5, 62]. Thus in [7] it was shown
that formal concepts may result in optimal factors in Boolean matrix decompo-
sition; in [2, 42] these decompositions showed their competitive applicability to
collaborative filtering by finding communities of similar tastes. Tensor clustering
is another way to find dense patterns; this approach is very similar to multimodal
clustering in n-ary relations, especially in case of Boolean tensors, which normally
represent n-ary relations between entities [38, 61, 64, 79]. An interesting issue here,
whether it is possible to obtain improvements in classification accuracy for tensors
with labeled objects from one of their dimensions over conventional object-attribute
representations [93].
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Since the proposed multimodal clustering is an approach to find approximate
patterns, not absolutely dense as closed n-sets or n-adic concepts, various similar
ideas can be proposed. Thus, in [13] another type of fault-tolerant patterns was
proposed, which is guided by the number of allowed non-missing tuples inside an
n-cluster rather than by maximising their relative number. It seems that techniques
searching for relaxed n-cliques maximal according a density-like criteria can be
proposed for multi-mode networks as well [84]. The classic definition of biplex can
be compared with the one of the OA-biclusters as many more similar relaxations for
cliques and their possible n-adic generalisations [11].

Comparison of several existing triclustering techniques based on spectral cluster-
ing (SPECTRIC), least squares approximation (TRIBOX), OAC-prime and OAC-box
operators, and formal triconcepts (TRIAS) can be found in [40, 45]. In [45], the
complexity of the problem of optimal triclustering cover with respect to several
quality criteria is discussed; it is shown that the problem belongs to NP-complete
complexity class whereas the problem of the number of such covers belongs
to #P.

Formal concepts and their lattices have been used in criminal studies to find
communities of criminals operating together [72]. Many more successful applica-
tions based on FCA are known as well as related models and techniques [73, 74].
A comprehensive introduction to FCA can be found in the recent book [26] and
application-oriented tutorial [32].

8 Conclusions

We have proposed a scalable technique for community detection in n-mode
networks (where nodes are normally connected by hyperedges in case of n > 2).
The approach welcomes improvements and may benefit from fine tuning and
efficient filtering criteria in order to increase the scalability at the stage of density
calculation and guarantee high-quality of the found communities. We consider
several directions for such improvements: efficient hashing for elimination of
duplicate patterns, strategies for approximate density calculation and selection of
meaningful n-clusters as well as theoretical justification of choosing good thresholds
for minimal density of n-clusters.

The proposed technique can also be compared with other existing approaches
like fault-tolerant n-concepts [13] and with possible multimodal extensions of
the existing ones like different techniques for relaxed cliques [84], variations of
bicliques [68], or higher-order extensions of modularity-based criteria [66].

Since we have only showcased several relevant examples to community detection
in multi-mode networks, validation of the method for analysing similar cases
requires domain expert feedback, for example, by a sociologist practitioner.
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Appendix: Experiments with One-Mode Networks

Table 9 Florentine family 1:
16�16, 58 edges

Covered Unique Fraction of
� concepts biclusters Biclusters covered concepts

0 43 58 58 1.00

0.05 43 58 58 1.00

0.1 43 58 58 1.00

0.15 43 58 58 1.00

0.2 43 58 58 1.00

0.25 43 58 58 1.00

0.3 43 58 58 1.00

0.35 43 58 58 1.00

0.4 43 57 57 1.00

0.45 43 53 53 1.00

0.5 43 47 47 1.00

0.55 43 40 40 1.00

0.6 37 31 31 0.86

0.65 33 28 28 0.77

0.7 29 19 19 0.67

0.75 29 19 19 0.67

0.8 11 8 8 0.26

0.85 9 6 6 0.21

0.9 5 5 5 0.12

0.95 5 5 5 0.12

1 5 5 5 0.12
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Table 10 Florentine family
2: 16�16, 46 edges

Covered Unique Fraction of
� concepts biclusters Biclusters covered concepts

0 27 46 46 1.00

0.05 27 46 46 1.00

0.1 27 46 46 1.00

0.15 27 46 46 1.00

0.2 27 46 46 1.00

0.25 27 46 46 1.00

0.3 27 46 46 1.00

0.35 27 46 46 1.00

0.4 27 46 46 1.00

0.45 27 46 46 1.00

0.5 27 44 44 1.00

0.55 27 43 43 1.00

0.6 27 41 41 1.00

0.65 27 41 41 1.00

0.7 25 26 26 0.93

0.75 23 22 22 0.85

0.8 23 19 19 0.85

0.85 17 14 14 0.63

0.9 12 12 12 0.44

0.95 10 10 10 0.37

1 10 10 10 0.37

Table 11 Hi-tech: 36�36,
218 edges

Covered Unique Fraction of
� concepts biclusters Biclusters covered concepts

0 191 218 218 1.00

0.05 191 218 218 1.00

0.1 191 218 218 1.00

0.15 191 218 218 1.00

0.2 191 218 218 1.00

0.25 191 218 218 1.00

0.3 191 218 218 1.00

0.35 191 213 213 1.00

0.4 191 198 198 1.00

0.45 191 174 174 1.00

0.5 189 134 134 0.99

0.55 163 99 99 0.85

0.6 126 78 78 0.66

(continued)
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Table 11 (continued) Covered Unique Fraction of
� concepts biclusters Biclusters covered concepts

0.65 86 49 49 0.45

0.7 65 31 31 0.34

0.75 47 22 22 0.25

0.8 28 16 16 0.15

0.85 16 13 13 0.08

0.9 16 13 13 0.08

0.95 12 12 12 0.06

1 12 12 12 0.06

Table 12 Mexican people:
35�35, 268 edges

Covered Unique Fraction of
� concepts biclusters Biclusters covered concepts

0 373 268 268 1.00

0.05 373 268 268 1.00

0.1 373 268 268 1.00

0.15 373 268 268 1.00

0.2 373 268 268 1.00

0.25 373 266 266 1.00

0.3 373 260 260 1.00

0.35 373 247 247 1.00

0.4 373 225 225 1.00

0.45 371 189 189 0.99

0.5 360 151 151 0.97

0.55 348 119 119 0.93

0.6 298 69 69 0.80

0.65 211 45 45 0.57

0.7 141 24 24 0.38

0.75 86 15 15 0.23

0.8 17 5 5 0.05

0.85 13 4 4 0.03

0.9 1 1 1 0.00

0.95 1 1 1 0.00

1 1 1 1 0.00
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