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1 Introduction

Subgroup discovery [6, 35, 67] aims at identifying interesting descriptive subgroups
contained in a dataset—from a compositional network analysis view, aiming at a
description given, e.g., by a set of attribute values. The subgroups are identified
in such a way that they are interesting with respect to a certain target property.
In the context of ubiquitous data and social media, interesting target concepts are
given, e.g., by binary variables for obtaining characteristic descriptions of certain
phenomena, densely connected graph structures (communities), or exceptional
spatio-semantic distributions [4, 8]. This directly bridges the gap to community
detection methods [26, 53, 69] that focus on structural aspects of a network/graph,
for finding densely connected subgroups of nodes.

This paper, an extended and significantly revised version of [5] presents an
organized picture of recent research in subgroup discovery and community detection
specifically focusing on attributed graphs. We start with the introduction of neces-
sary background concepts in Sect. 2. After that, we provide a compact overview
on prominent methods for community detection, and discuss the exceptional model
mining approach. Next, Sect. 3 describes recent work on mining attributed graphs
for description-oriented approaches. Then, Sect. 4 summarizes the COMODO
algorithm combining both community detection and subgroup discovery in a
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description-oriented approach [12, 21], for which we also describe an extension
for sequential pattern mining. Finally, we conclude with a summary and point out
interesting future directions in Sect. 5.

2 Subgroup Discovery

In general, subgroup discovery can be applied for any standard dataset in tabular
form in a straight-forward manner using available efficient algorithms, e.g., [6], as
implemented in the VIKAMINE [10, 13] platform. Also, for compositional analysis
of social networks, i.e., where nodes have attached attribute information, we can
directly apply subgroup discovery for identifying interesting subgroups of nodes
according to a given quality measure. The description space is then given by all
the compositional variables and their respective value domains. As we will see
below, it is also possible to combine a structural with a compositional analysis of
a network, resulting in description-oriented community detection using subgroup
discovery.

2.1 Patterns and Subgroups

Basic concepts used in subgroup discovery [6, 35, 67] are patterns and subgroups.
Intuitively, a pattern describes a subgroup, i.e., the subgroup consists of instances
that are covered by the respective pattern. It is easy to see that a pattern describes a
fixed set of instances (subgroup), while a subgroup can also be described by different
patterns, covering the subgroup’ instances. Below, we define these concepts more
formally.

A database D D .I; A/ is given by a set of individuals I and a set of attributes
A. A selector or basic pattern selaiDvj is a Boolean function I ! f0; 1g that is
true if the value of attribute ai 2 A is equal to vj for the respective individual.
For a numeric attribute anum whose range is divided into intervals ej D Œminj; maxj�

selectors selanum2ŒminjImaxj� can be defined for each interval ŒminjI maxj� in the domain
of anum. The Boolean function is then set to true if the value of attribute anum is
within the respective interval. The set of all basic patterns is denoted by S.

Definition 1 A subgroup description or (complex) pattern sd is given by a set
of basic patterns sd D fsel1; : : : ; sellg ; where seli 2 S, which is interpreted as a
conjunction, i.e., sd.I/ D sel1 ^ : : : ^ sell, with length.sd/ D l.

Without loss of generality, we focus on a conjunctive pattern language using
nominal attribute-value pairs as defined above in this paper; internal disjunctions
can also be generated by appropriate attribute-value construction methods, if
necessary [14]. We call a pattern p a superpattern (or refinement) of a subpattern ps,
iff ps � p.
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Definition 2 A subgroup (extension)

sgsd WD ext.sd/ WD fi 2 Ijsd.i/ D trueg

is the set of all individuals which are covered by the pattern sd.
As search space for subgroup discovery the set of all possible patterns 2S is

used, that is, all combinations of the basic patterns contained in S. Then, appropriate
efficient algorithms, e.g., [6] can be applied.

2.2 Interestingness of a Pattern

A large number of quality functions have been proposed in the literature, see [29]
for a comprehensive list, in order to estimate the interestingness of a pattern selected
according to the analysis task.

Definition 3 A quality function qW 2S ! R maps every pattern in the search space
to a real number that reflects the interestingness of a pattern (or the extension of the
pattern, respectively).

Many quality functions for a single target concept (e.g., binary [6, 35] or
numerical [6, 43]) trade off the size n D jext.sd/j of a subgroup for the deviation
tsd � t0, where tsd is the average value of a given target concept in the subgroup
identified by the pattern sd and t0 the average value of the target concept in the
general population. In the binary case, the averages relate to the share of the target
concept. Thus, typical quality functions are of the form

qa.sd/ D na � .tsd � t0/; a 2 Œ0I 1� : (1)

For binary target concepts, this includes, for example, the weighted relative
accuracy for the size parameter a D 1 or a simplified binomial function, for a D 0:5.
Multi-target concepts, e.g., [6, 20, 36, 37] that define a target concept captured by a
set of variables can be defined similarly, e.g., by extending a univariate statistical test
to the multivariate case, e.g., [20]: Then, the multivariate distributions of a subgroup
and the general population are compared in order to identify interesting patterns.

While a quality function provides a ranking of the discovered subgroup patterns,
often also a statistical assessment of the patterns is useful in data exploration. Qual-
ity functions that directly apply a statistical test, for example, the Chi-square quality
function, e.g., [6] provide a p-value for simple interpretation. However, the Chi-
square quality function estimates deviations in two directions. An alternative, which
can also be directly mapped to a p-value is given by the adjusted residual quality
function qr, since the values of qr follow a large standard normal distribution [3]:

qr D n.tsd � t0/ � 1
p

nt0.1 � t0/.1 � n
N /

(2)
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The result of top-k subgroup discovery is the set of the k patterns sd1; : : : ; sdk ;

where sdi 2 2S, with the highest interestingness according to the applied quality
function. A subgroup discovery task can now be specified by the five-tuple:
.D; c; S; q; k/ ; where c indicates the target concept; the search space 2S is defined
by the set of basic patterns S.

For several quality functions optimistic estimates [6, 31] can be applied for
determining upper quality bounds: Consider the search for the k best subgroups: If
it can be proven that no subset of the currently investigated hypothesis is interesting
enough to be included in the result set of k subgroups, then we can skip the
evaluation of any subsets of this hypothesis, but can still guarantee the optimality of
the result. More formally, an optimistic estimate oe.q/ of a quality function q is a
function such that p � p0 ! .oe.q//.p/ � q.p0/, i.e., such that no refinement p0 of
the pattern p can exceed the quality obtained by .oe.q//.p/.

2.3 Community Detection

Communities and cohesive subgroups have been extensively studied in social
sciences, e.g., using social network analysis methods [66]. Community detection
methods can be classified according to several dimensions, e.g., disjoint vs.
overlapping communities. Here, actors in a network can only belong to exactly
one community, or to multiple communities at the same time. Furthermore, we
distinguish between methods that work on extended (attributed) graphs, i.e., includ-
ing descriptive information about the nodes. Below, we provide an overview on
representative methods, including several basic methods working on simple graphs.
After that, we elaborate on methods for detecting overlapping communities, before
we focus on descriptive methods.

2.3.1 Basics of Community Detection

Wasserman and Faust [66] discuss social network analysis in depth and pro-
vide an overview on the analysis of subgroups/communities in graphs, including
clique-based, degree-based, and matrix-perturbation-based methods. Furthermore,
several algorithms for community detection have been proposed, formalizing the
notions of interesting community structures, and introducing the modularity quality
measure [51–53]. Fortunato [26] presents a thorough survey on the state-of-
the-art community detection algorithms in graphs, focusing on detecting disjoint
communities.

For assessing the quality of a community, usually not only the density of the com-
munity is assessed but also the connection density of the community is compared to
the density of the rest of the network [53]. For the modularity measure the number
of connections within the community is compared to the statistically “expected”
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number based on all available connections in the network. Besides modularity,
prominent examples of community quality measures include, for example, the
segregation index [27] and the inverted average out-degree fraction [70].

2.3.2 Detecting Overlapping Communities

Overlapping communities allow an extended modeling of actor–actor relations in
social networks: Nodes of a corresponding graph can then participate in multiple
communities. This is also typically observed in real-world networks regarding
different complementary facets of social interactions [55]. A general overview on
algorithms for overlapping community detection is provided by Xie et al. [69].
For example, clique percolation methods proposed in [55, 56] detect k-cliques and
then merge them into overlapping communities. Xie and Szymanski [68] present
methods that extend the idea of label propagation [58]. Lancichinetti et al. [40]
describe an approach for overlapping and hierarchical community structure using
a local community metric. The presented metric itself is computed locally but still
assesses a global clustering. Further statistical and local optimization algorithms
include the COPRA [30] algorithm by Gregory using label propagation of neighbor-
ing nodes until a consensus is reached, and the MOSES [46] algorithm by McDaid
and Hurley using statistical model-based techniques. Concerning quality measures,
extensions of the modularity metric for handling overlapping communities are
described in [45, 50, 54].

2.4 Exceptional Model Mining

A general framework for multi-target quality functions in subgroup discovery is
given by exceptional model mining [6, 41]: It tries to identify interesting patterns
with respect to a local model derived from a set of attributes. The interestingness
can be defined, e.g., by a significant deviation from a model that is derived from the
total population or the respective complement set of instances within the population.

In general, a model consists of a specific model class and model parameters
which depend on the values of the model attributes in the instances of the respective
pattern cover. The quality measure q then determines the interestingness of a
pattern according to its model parameters. Following [42], we outline some simple
examples below, focusing on relations between pairs (correlation) and sets of
variables (logistic regression):

• A relatively simple example for an exceptionality measure considers the task of
identifying subgroups in which the correlation between two numeric attributes
is especially strong, e.g., as measured by the Pearson correlation coefficient.
This correlation model class has exactly one parameter, i.e., the correlation
coefficient.
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• Furthermore, using a simple linear regression model, we can compare the slopes
of the regression lines of the subgroup to the general population or the subgroups’
complement. This simple linear regression model shows the dependency between
two numeric variables x and y: It is built by fitting a straight line in the two
dimensional space by minimizing the squared residuals ej of the model:

yi D a C b � xi C ej

The slope

b D cov.x; y/

var.x/

computed given the covariance cov.x; y/ of x and y, and the variance var.x/ of x
can then be used for identifying interesting patterns [41].

• The logistic regression model is used for the classification of a binary target
attribute y 2 T from a set of independent binary attributes xj 2 T n y; j D
1; : : : ; jTj � 1. The model is given by:

y D 1

1 C e�z
; z D b0 C

X

j

bjxj :

Interesting patterns are then those, for example, for which the model parameters
bj differ significantly from those derived from the total population.

Considering network structures, we can also adapt exceptional model mining to
that setting. Essentially, it can be regarded as a description-oriented approach for
assessing network structures, if the patterns are used to induce graphs or subgraphs.
As we will discuss below, we can then also apply exceptional model mining for
descriptive community detection, in essence combining subgroup discovery and
community detection into a unified approach.

Below, we first outline a quality function for comparing graph structures that
correspond to individual patterns (QAP). After that, we discuss quality functions
used in community detection in order to assess subgraphs that are induced by some
criterion, e.g., by a descriptive pattern.

For some notation, we follow the notions presented in [21]: As outlined above,
the concept of a community intuitively describes a group C of individuals out of
a population such that members of C are strongly “related” among each other but
weakly “related” to individuals outside of C. By intuition, this relates, for example,
to strongly connected groups of actors in social networks. This idea translates to
communities as vertex sets C � V of a graph G D .V; E/. To determine the amount
of relatedness (or connectedness, and thus, the community quality of such a subset)
several measures have been proposed.
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For further concepts regarding our terminology and also the standard community
quality functions outlined below, we follow the notation introduced in [21]: For
a given undirected graph G D .V; E/ and a community C � V: n WD jVj, let
m WD jEj, nC WD jCj, mC WD jffu; vg 2 E W u; v 2 Cgj—the number of intra-edges
of C, and NmC WD jffu; vg 2 E W jfu; vg \ Cj D 1gj—the number of inter-edges of
C. Here, it is also convenient to introduce an inter-degree for a node u 2 C (that
depends on the choice of C) by NdC.u/ WD jffu; vg 2 E W v … Cgj, counting the
number of edges between u and nodes outside of C, and d.u/ DWD jffu; vg 2 Egj is
the degree of node u.

There is a wide range of different community evaluation functions 2V ! R

for estimating the community quality. In the context of this paper, we focus on
maximizing local quality functions for single communities (which are induced by
specific patterns). Therefore, we consider the inverse of a quality measure in those
cases, where the measure itself indicates higher quality by lower values.

• Concerning network structures, we can compare adjacency matrices induced
by a specific pattern, see [7]. For the assessment we can apply, for example,
the quadratic assignment procedure [39] (QAP): it is a standard approach for
comparing network structures, e.g., using a graph correlation measure: For
comparing two graphs G1 and G2, it estimates the correlation of the respective
adjacency matrices M1 and M2 and tests that graph level statistic against a QAP
null hypothesis [39].

QAP compares the observed graph correlation of (G1; G2) to the distribution
of the respective resulting correlation scores obtained on repeated random row
and column permutations of the adjacency matrix of G2. As a result, we obtain
a correlation and a statistical significance level according to the randomized
distribution scores.

For deriving a quality measure based on QAP and graph correlation, we
compare the reference matrix MN and the matrix MP for pattern P:

qQ.P/ D QAP.MN ; MP/ D cov.MN ; MP/
p

var.MN/ � var.MP/
;

where MN is the transition matrix induced by some reference model (see [7, 24]),
and MP is the transition matrix induced by pattern P, cov indicates the covariance
of the matrices, and var.M/ D cov.M; M/ the variance.

For an in-depth description of QAP, we refer to [39]. Furthermore, for the
transition matrix, we refer to [23, 24] for more details on the matrix construction
step.

• Regarding the quality of a subgraph induced by a pattern, we can adapt the
well-known modularity measure to the idea of assessing the induced subgraph
captured by a local pattern, i.e., a community pattern (with an associated
subgroup description).



48 M. Atzmueller

In general, the modularity MOD [51–53] of a graph clustering with k com-
munities C1; : : : ; Ck � V focuses on the number of edges within a community
and compares that with the expected such number given a null-model (i.e., a
corresponding random graph where the node degrees of G are preserved). It is
given by

MOD D 1

2m

X

u;v2V

�
Au;v � d.u/ d.v/

2m

�
ı.C.u/; C.v// ; (3)

where C.i/ denotes for i 2 V the community to which node i belongs.
ı.C.u/; C.v// is the Kronecker delta symbol that equals 1 if C.u/ D C.v/, and
0 otherwise. So, the modularity assesses the community quality of a graph par-
titioning, but can also be adapted to overlapping communities, e.g., [45, 50, 54]
for considering the complete graph structure.

For exceptional model mining, however, we need to consider individual
patterns. In order to focus on a subgraph induced by a pattern, the modularity
contribution of a single community C in a local context (subgraph induced by
the nodes contained in the community C) can then be computed [52, 54] as:

MODL.C/ D 1

2m

X

u;v2C

�
Au;v � d.u/ d.v/

2m

�
;

yielding

MODL.C/ D 2mC

2m
�

X

u;v2C

d.u/ d.v/

4m2
D mC

m
�

X

u;v2C

d.u/ d.v/

4m2
:

• The segregation index SIDX [27] is another prominent measure from community
detection. It focuses on the local contribution of the pattern, and compares
the number of expected inter-edges to the number of observed inter-edges,
normalized by the expectation:

SIDX.C/ D E. NmC/ � NmC

E. NmC/
D 1 � NmCn.n � 1/

2mnC.n � nC/
(4)

• Finally, the Inverse Average-ODF (out-degree fraction) IAODF [70] captures the
basic intuition of a community regarding the contained vs. the outgoing edges
discussed above. As another local measure, IAODF compares the number of
inter-edges to the number of all edges of a community C, and averages this for
the whole community by considering the fraction for each individual node:

IAODF.C/ WD 1 � 1

nC

X

u2C

NdC.u/

d.u/
(5)
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3 Community Detection and Description

While the community detection methods described above only focus on the graph
structure, richer graph representations, i.e., attributed graphs, enable approaches
that specifically exploit the descriptive information of the labels assigned to nodes
and/or edges of the graph. Nodes of a network representing users, for example, can
be labeled with tags that the respective users utilized in social bookmarking systems,
or nodes (denoting actors) can be labeled with properties of the latter. Then, explicit
descriptions for the characterization of a community can be provided.

Concerning methods that focus on such descriptions in general, an approach
for community detection using features identified by frequent pattern mining is
presented in [1]; closed frequent patterns are derived and are then used for creating a
social network model based on an entropy analysis. However, the network structure
itself is not exploited. Similarly, [63] extracts subgraphs with common itemsets.
Given a labeled graph, itemset-sharing subgraphs can then be enumerated. However,
this approach also does not consider the density of graphs, nor any community
measures.

Focusing on methods for generating explicit descriptions connected with the
graph structure, we distinguish between two types of approaches: first, methods
that mainly work on the graph structure but apply descriptive information for
restricting the possible sets of communities; second, methods that mine descriptive
patterns for obtaining community candidates evaluated using the graph structure.
As a representative of the first type, the concepts of dense subgraphs and subspace
clusters for mining cohesive patterns are combined in [49].

Starting with quasi-cliques, these are expanded until constraints regarding the
description or the graph structure are violated. Similarly, [32] combines subspace
clustering and dense subgraph mining, also interleaving quasi-clique and subspace
construction. As an example for the second type outlined above, [28] proposes
an approach for the problem of finding overlapping communities in graphs and
social networks that aims at detecting the top-k communities such that the total
edge density over all k communities is maximized. The three algorithmic variants
proposed in [28] apply a greedy strategy for detecting dense subgroups, and restrict
the result set of communities, such that each edge can belong to at most one
community. This partitioning involves a global approach on the community quality.
Furthermore, [64] study the correlation between attribute sets and the occurrence of
dense subgraphs in large attributed graphs. The proposed method considers frequent
attribute sets using an adapted frequent item mining technique, and identifies
the top-k dense subgraphs induced by a particular attribute set, called structural
correlation patterns. The DCM method presented in [57] includes a two-step process
of community detection and community description. A heuristic approach is applied
for discovering the top-k communities. Pool et al. utilize a special interestingness
function which is based on counting outgoing edges of a community similar to the
IAODF measure; for that, they also demonstrate the trend of a correlation with the
modularity function.
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Furthermore, the COMODO algorithm [21] that we summarize in the next
section combines community detection and subgroup discovery resulting in a
description-oriented approach. By specifying a standard quality function the quality
of the communities to discover can be estimated. Then, this quality function can be
specifically selected according to the analysis task.

4 Community Detection Using Exceptional Model Mining

For providing both structurally valid and interpretable communities we utilize the
graph structure as well as additional descriptive features of the nodes. Hence, we
identify communities as sets of nodes together with a description composed of the
nodes’ features. Such a community pattern then provides an intuitive description of
the community, e.g., by an easily interpretable conjunction of attribute-value pairs.
Basically, we aim at identifying communities according to standard community
quality measures. Below, we first provide an algorithmic overview on the approach
and summarize exemplary evaluation results. After that, we sketch the application
of the algorithm for community detection on dynamic networks, i.e., for identifying
exceptional sequential patterns.

4.1 COMODO: Description-Oriented Community Detection

Below, we summarize the COMODO algorithm presented in [21]: It focuses on
description-oriented community detection using subgroup discovery, and aims at
discovering the top-k communities (described by community patterns). The method
is based on an adapted subgroup discovery approach [12, 42], and also tackles
typical problems that are not addressed by standard approaches for community
detection such as pathological cases like small community sizes. COMODO utilizes
optimistic estimates [31, 67], which are efficient to compute, in order to prune the
search space significantly. For that, a number of standard community evaluation
functions have been applied using optimistic estimates for an efficient approach.

4.1.1 Algorithmic Overview

COMODO utilizes both the graph structure and descriptive information of the
attributed graph. This information is contained in two data structures: The graph
structure is encoded in graph G while the attribute information is contained in
database D describing the respective attribute values of each node. In a preprocess-
ing step, we merge these data sources. Since the communities considered in our
approach do not contain isolated nodes, we can describe them as sets of edges. We
transform the data (of the given graph G and the database D containing the nodes’
descriptive information) into a new dataset focusing on the edges of the graph G:
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Each data record in the new dataset represents an edge between two nodes. The
attribute values of each such data record are the common attributes of the edge’s
two nodes. For a more detailed description, we refer to [21].

COMODO utilizes an extended FP-tree (frequent pattern tree) structure inspired
by the FP-growth algorithm, which compiles the data in a convenient prefix pattern
tree structure for mining frequent itemsets, see [2] for a detailed description. Our
adapted tree structure is called the community pattern tree (CP-tree) that allows to
efficiently traverse the solution space. The tree is built in two scans of the graph
dataset and is then mined in a recursive divide-and-conquer manner, see [9, 42] for
more details. In the main algorithmic procedure of COMODO, patterns containing
only one basic pattern are mined first. Then, patterns conditioned on the occurrence
of a (prefixed) complex pattern (as a set of basic patterns, chosen in the previous
recursion step) are considered recursively. For more algorithmic details, we refer
to [21]. As described there, we can apply standard quality functions efficiently using
optimistic estimates, e.g., for the modularity or the segregation index, see [21] for
more details.

4.1.2 Illustrative Evaluation Results

Below, we present illustrative evaluation results [21] considering the efficiency
of the applied optimistic estimates, and the validity of the obtained patterns. For
that, we compared the total number of search steps, that is community allocations
that are considered by the COMODO algorithm, with no optimistic estimate
pruning to optimistic estimate pruning using different community quality measures.
Additionally, we measured the impact of using different minimal community size
thresholds. Some results are shown in Fig. 1 for the BibSonomy click graph for
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Fig. 1 Runtime performance of COMODO on the BibSonomy click graph, see [21] for more
details: search steps with no optimistic estimate pruning (NOP) vs. community quality functions
with optimistic estimate pruning: MODL (Local modularity), SIDX (Segregation Index), and
IAODF (Inverse Average-ODF), for minimal size thresholds �n D 10; 20
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k D 10; 20; 50 and minimal size thresholds �n D 10; 20. We consider a number
of standard community quality functions, that is, the segregation index, the Inverse
Average-ODF, and the modularity.

The large, exponential search space can be exemplified, e.g., for the click graph
with a total of about 2 � 1010 search steps for a minimal community size threshold
�n D 10. The results demonstrate the effectiveness of the proposed descriptive
mining approach applying the presented optimistic estimates. The implemented
pruning scheme makes the approach scalable for larger datasets, especially when
the local modularity quality function is chosen to assess the communities’ quality.
Concerning the validity of the patterns, we focused on structural properties of
the patterns and the subgraphs induced by the respective community patterns. We
applied the significance test described in [38] for testing the statistical significance
of the density of a discovered subgraph. Furthermore, we compared COMODO
to three baseline community detection algorithms [30, 46, 57], where COMODO
consistently shows a significantly better performance concerning validity and
description length; for more details, we refer to [21].

4.2 Sequential Pattern Analysis: Detecting Exceptional
Link Trails

In addition to static community detection, we can also consider temporal aspects,
i.e., focusing on sequences of states or events which can be applied for a variety
of analysis ranging from the analysis of human behavior [23] to industrial appli-
cations [24]. In an extended modeling approach, we can map transitions between
states to a weighted network, according to a first-order Markov chain model. Below,
we outline an approach for detecting exceptional sequential link trails captured by
community patterns, see [7] for a detailed description.

As before, our subject of analysis is given by an attributed graph that models the
link trails in the following way: Nodes of the graph denote actors of a social network,
e.g., users of a social system or locations in a location-based social network. The
edges of the graph model the links between the nodes (as transitions). As a simple
example, we can consider a set of users and a set of locations. Each user visits a
sequence of locations—in a location-based social network. Then, we are interested
in modeling these sequences (of locations), and in detecting exceptional groups of
transitions (between locations) w.r.t. users and their properties, respectively.

At a music event festival, for example, possible characterizing factors describing
certain users groups could be specific music genres. Here, exceptional patterns could
include, for example, users being interested in rock music and dance visiting only a
very specific selection of performances in characteristic sequences, compared to the
behavior of all users and their sequential link trails. Essentially, we apply descriptive
community detection (e.g., using COMODO) on the attributed graph, where the
edges indicate transitions between states according to a first-order Markov chain
modeling approach [44, 65].
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4.2.1 Modeling

For our attributed graph model, we label the links according to the descriptive
information of the sequential trail. Then, we identify exceptional community
patterns based on the labels and structure of the contained links using exceptional
model mining. In particular, we assess a pattern capturing a set of nodes that model
the state space of the respective transitions.

For constructing a reference model, we construct transition matrices corre-
sponding to the observed data. For those observed sequences we can simply
construct transition matrices counting the transitions between the individual states.
We construct an according matrix MN with mN

ij D jsuc.i; j/j ; where suc.i; j/ denotes
the successive sequences from state i to state j contained in the sequence.

A community pattern P induces a subgraph (community) CP given a set of
labels P, selecting all links that are covered, i.e., that share a label contained in
P. Then, all transitions in the matrix MN are selected (corresponding to a set of
links of the network) that are covered by the pattern P. Using that, we construct
an according transition pattern matrix MP based on the respective counts of the
covered transitions. Intuitively, the matrix MP can then be regarded as some kind
of “projection” of matrix MN given the pattern P using our modeling approach. In
the simplest case, we can just transfer the weighted links of the subgraph CP. For
identifying exceptional models (MP induced by P) we can then apply, e.g., the QAP
quality function qQ.P/ D QAP.MN ; MP/ introduced above.

4.2.2 Results

For some illustrative results (see [7] for more details), we utilized data from the
EveryAware1 project, e.g., [19]. Specifically, we focused on collectively orga-
nized noise measurements collected using the WideNoise Plus application between
December 14, 2011 and June 6, 2014, see [20] for more details. WideNoise Plus
allows the collection of noise measurements using smartphones. It includes sensor
data from the microphone given as noise level in dB(A), the location from the GPS-,
GSM-, and WLAN-sensor represented as latitude and longitude coordinate, as well
as a timestamp. In addition, tags can be assigned to the recording. We collected data
from all around the world using iOS and Android devices.

In total, the applied dataset contains 6069 data records, i.e., noise measurements
of 635 users (i.e., 635 trails, with an average trail length of about 10) and 2009
distinct tags. Table 1 shows exemplary exceptional conforming and deviating
patterns using qQ as quality measure. In addition, it shows the sizes of the covered
subsets. From a qualitative point of view, the patterns shown in the table are intuitive

1http://www.everyaware.eu.

http://www.everyaware.eu
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Table 1 Illustrative
exceptional
conforming/deviating
community patterns for
WideNoise Plus

# qQ Size Description

1 0.94 5078 Traffic

2 0.89 3990 Car

3 0.76 3326 Noise

4 0.43 707 Bird ^ courtyard

5 0.24 600 Background ^ quiet

Patterns #1–#3 tend rather to conform to
the reference model (especially #1 and
#2), while patterns #4–#5 (increasingly)
show a deviating behavior

to interpret and also tend to conform to our expectations concerning the reference
behavior of the dataset, where we can clearly identify deviations concerning noisy
and relatively quiet environments.

5 Conclusions

In this paper, we have presented an organized view on descriptive community
detection. Specifically, we described subgroup discovery for compositional network
analysis concerning properties of the actors, with extensions to the analysis of
complex target concepts like correlations between a set of variables, or dense
subgraphs—captured by exceptional model mining approaches. Then, this directly
extends to community detection on attributed graphs. In particular, we summarized
the COMODO algorithm that combines community detection and exceptional
model mining, resulting in a description-oriented approach for community analytics.
We furthermore sketched an extension to dynamic data, considering sequential pat-
terns capturing exceptional sequential link trails. This adds one further dimension to
the descriptive approaches, by considering by static as well as dynamic phenomena,
and enables the modeling and investigation of complex analysis tasks.

For future work, we aim to extend the analysis towards further time-oriented
representations, e.g., considering sequences of graphs, and the evolution of commu-
nities, e.g., [33, 34]. Also, we aim to integrate and exploit methods for generating
descriptions and the respective relations in link analytics, e.g., in link predic-
tion [60–62] on multiplex networks. Then, besides the detection of communities,
also their analysis and assessment in the form of descriptive patterns is highly
relevant, e.g., [11, 15, 17, 18] also concerning their semantic grounding [47, 48], and
integration into explanation-aware approaches [16, 25, 59]. Furthermore, developing
scalable methods for enabling such approaches for large and complex datasets,
e.g., [22, 42] is another interesting direction for future work.
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