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1 Introduction

Social networks form an integral part of human societies, and their study has been
at the core of social science for a long time. It is only recently that mathematical
methods have entered the stage, mainly because social networks are now made more
explicit than ever due to the availability of social media. This has allowed classical
mathematical instruments from graph theory and elsewhere to be applied to social
networks—with astonishing results.

One of the first breakthroughs in understanding social networks by means of
properties of their graph representations is due to the seminal work by Watts and
Strogatz [26]. Here the authors introduce the notion of small world networks,
encompassing the two simple graph properties of average shortest path length and
average local clustering coefficient. Based on these properties, a graph is said to be
a small world network if the average shortest path length is small and if the average
local clustering coefficient is large. The second seminal result in that direction is the
work by Barabási and Albert [3], where social networks are characterized as graphs
whose degree distribution follows a low-degree power-law distribution. It turns out
that, surprisingly, both small world networks and power-law distributions describe
social networks to a large degree.
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In the wake of the results around small world networks, a plenitude of graph-
related properties have been reinterpreted as properties of social networks, a popular
example being the interpretation of cliques in social networks as social groups.
However, despite a comparably vast body of research, characterizing all relevant
aspects of social networks in terms of mathematical properties of their graph
representation has not been achieved to a satisfactory degree. In particular, graphs
exist on which existing measures cannot differentiate further, but which intuitively
represent qualitatively different social networks.

In this work we want to consider another facet of bipartite social networks,
which, as far as we can see, has not been investigated in the literature. This facet
is individuality in social networks, and by this we intuitively mean the number
of unique groups of users a social network has. Note that despite the fact that
individuality is concerned with individual users of a network, the measure of
individuality we want to investigate in this work is a property of the whole network.
It should thus not be confused with notions such as centrality or betweeness, which
apply only to individual vertices instead.

To define the uniqueness of a group of users, we consider the uniqueness of its
milieu in the given bipartite social network. This intuition of individuality strongly
depends on the actual definition of “milieu,” a notion that has been discussed in
the social sciences before. However, we shall define and employ in this work an
interpretation of this word that is different from the one usually used [24].

In a classical representation of social networks as graphs, two users are linked
by an edge if and only if they “know” each other in this network. Then the notion
of a milieu of a particular user could just be represented as the neighborhood of
this user in this graph. In this work, however, we want to take up a different stand
by representing bipartite social networks as formal contexts. These are structures
originating from the theory of formal concept analysis [9, 27] that allow general
investigations of data sets comprising of objects with certain attributes. Using formal
contexts, we shall represent a social network as a collection of users with certain
properties, where the actual choice of the properties is a matter of modeling. In this
way, we can represent various aspects of a social network in a uniform manner.

The main goal of this work is to illustrate that our new notions of individuality
are both natural and meaningful. To this end, we shall examine these measures on
various real-world data sets, providing evidence that our definitions are reasonable.
Even more, we shall show that networks that are similar in terms of their small world
character can vary widely when it comes to individuality, suggesting that our new
notion expresses properties of social networks that are not covered by the standard
notions.

The paper is structured as follows. After revisiting some existing research on
mathematical investigations of social networks in Sect. 2, we shall have a closer
look on how to represent social networks as formal contexts in Sect. 3. Thereafter,
we shall present our notion of individuality in Sect. 4, together with the two auxiliary
measures of individuality distribution and average milieu size. An experimental
investigation of these new notions follows in Sect. 5. We close with Outlook in
Sect. 6.
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2 Related Work

Formal concept analysis originated as a subfield of mathematical order theory,
more precisely of lattice theory [4]. Lattice theory itself has already been applied
to social network analysis, in particular to understanding the clique distribution
(among others) in social networks, for example, in [7]. In this work concept lattices
were used to analyze the relations between cliques.

Cliques indeed will play a major role in our considerations, and, as already
mentioned, cliques have been investigated in the realm of social network analysis
before. For example, the clique distribution of social networks was investigated
in [28], where the focus was on empirically studying the connection between the
power-law distribution of network nodes and the density of cliques. The authors
showed to what extent the clique size distribution can be used to estimate the clique
density in a social network. In [10] the authors proposed a method to efficiently
estimate the distribution of clique sizes from a probability sample of network nodes.
However, both works considered uni-modal social networks only. Previous work
that also considered clique distributions in bi-modal networks is [22], where it is
shown that medium sized cliques are more common in real-world networks than
triangles. However, here only cliques in the projected graph were considered, and
not in the original bipartite graph.

To the best of our knowledge, individuality in social networks as we consider
it in this article has not been studied before as a property of social networks. The
only relevant prior work is from the second author [2], on which this article greatly
expands.

3 Social Networks as Formal Contexts

Formal concept analysis deals at its core with the representation of complete lattices
through formal contexts. These are structures K D .G;M; I/ where G and M are sets
and I � G � M is a binary relation. The standard interpretation of formal contexts
is that the set G is a set of objects, the set M is a set of attributes, and .g;m/ 2 I
signifies that g has the attribute m.

Indeed, modeling bipartite social networks as formal contexts is straightforward:
consider a social network and identify within this network two sets U and A. We
think of the set U as the set of (interesting) users of the network and of the set
A as the set of (relevant) attributes of the users in U. Note, however, that this
interpretation of U as a set of users and A as a set of attributes is only one among
many possible ones, and there is no restriction on the type of elements contained in
these sets.

After having identified the sets U and A, a formal context representing a social
network is of the form .U;A; I/ where .u; a/ 2 I for u 2 U, a 2 A only if user u
has attribute a. This representation is also closely linked to considering bi-modal
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userA userB userC userD

cabaret ballet opera

Fig. 1 Small motivational example, called the music interest social network (misn)

social networks, i.e., social networks that give rise to a bipartite graph. The benefit
of choosing formal contexts over bipartite graphs is that in the former case we can
apply methods from formal concept analysis to obtain further insights.

The particular choices of the user set U and the attribute set A are modeling
decisions, and finding these sets may not at all be straightforward. For the set U
one usually collects all real users of the framework, but other choices—depending
on the particular application in mind—are possible. The set A of attributes can
contain usual features such as likes, posts, and gender, but can also contain rather
“unnatural” features such as other users. In this case, one could define, say, that
some user u “has” some other user v as a feature if and only if they are linked in the
original social network.

A small example of a social network is given by the bipartite graph in Fig. 1. A
formal context representing this network is

Kmisn cabaret ballet opera

userA � �
userB � �
userC � �
userD �

In formal contexts we can define two natural derivation operators as follows. Let
A � G be a set of objects. Then the set A0 of common attributes of A is defined as

A0 :D fm 2 M j 8g 2 AW .g;m/ 2 Ig:

Dually, for a set B � M of attributes, we define the set B0 of satisfying objects of B
as

B0 :D fg 2 G j 8m 2 MW .g;m/ 2 Ig:

Note that although both operators are denoted by �0, there is usually no danger of
confusion, as it is clear from the context whether we are dealing with a set of objects
or a set of attributes.
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A pair .A;B/ is called a formal concept of K if and only if A0 D B and B0 D A.
The set A is then called the extent and B is called the intent of the formal concept
.A;B/, respectively. Indeed, for each set A � G, the set A is an extent of K if and
only if A00 D A. The set of all formal concepts of K is denoted by B.K/.

Let us point out the connection of formal concepts to cliques in bipartite graphs:
for any formal context K emerging from a bipartite graph, every formal concept of
K corresponds to a maximal bi-clique in the graph and vice versa.

On the set of all formal concepts B.K/ we can define a natural order as follows.
Let .A1;B1/; .A2;B2/ 2 B.K/. Then we say that .A2;B2/ is more general than
.A1;B1/, in symbols .A1;B1/ � .A2;B2/, if and only if A1 � A2. While this
definition looks rather asymmetric at first, it turns out that .A1;B1/ � .A2;B2/ if and
only if B2 � B1. Moreover, the relation � is an order relation, and B.K/ together
with � forms a complete lattice, the concept lattice of K. Conversely, one of the first
results of formal concept analysis states that every complete lattice is isomorphic to
the concept lattice of some formal context. In this way, formal concept analysis acts
as a representation theory of complete lattices. Formal concept analysis also allows
to link lattice theory to relational data sets, as the latter can naturally be represented
as formal contexts. In this way, formal concept analysis makes accessible methods
from lattice theory for the study of relational data tables.

4 Individuality of Social Networks

We have motivated our notion of individuality by the uniqueness of user milieus.
Clearly, this motivation strongly depends on the particular interpretation of the word
“milieu”, and it is the purpose of this section to provide a formal definition for
it. Indeed, modeling a social network by a formal context suggests an immediate
definition that is both simple and, as we find, convincing.

Let K D .U;A; I/ be a formal context representing a social network. Then for
each user u 2 U we define the milieu of u simply as the set fug0 of attributes common
to u. Moreover, if V � U is a set of users, then the milieu of V is the set of attributes
common to all users in V , i.e., V 0. Using this definition of user milieus, we want
to measure the individuality of a social network K by the amount of milieus that
occur in K. Indeed, we shall be a bit more careful here, and propose a notion of
k-group individuality as a measure to quantify the number of milieus that occur
in K as the milieu of groups of size k, in the sense of how many of the milieus
occurring in our social network K define groups of size exactly k, compared to
the number of all groups of size k. Then, the more individuality a social network
contains, the more individual groups of a certain size can be defined through their
milieu. Conversely, if a social network is quite homogeneous, then defining certain
subgroups of individuals by their milieu is improbable.

This approach can naturally be rephrased in terms of formal concept analysis:
measuring individuality in K for user groups of size k is the question of how many
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subsets V � U with jVj D k can be expressed in terms of V D B0 for some B � A.
In other words, we ask for the number of extents of size k in K and use this number
to measure the k-group individuality in K. The following definition captures this
idea.

Definition 1 Let K D .U;A; I/ be a formal context. Define the set Extk.K/ as the
set of extents of K of size k, i.e.,

Extk.K/ :D fV � U j V D V 00; jVj D kg:

Then the k-group individuality gik.K/ of K is

gik.K/ :D jExtk.K/j
minf�jUj

k

�
; 2jAjg : (1)

Note that we also normalize by the factor minf�jUj
k

�
; 2jAjg, because this is the max-

imal number of k-groups definable by their milieu, and thus allows comparability
between individuality of different networks. The used normalization is not optimal,
as for k larger than 1 the value of gik.K/ rapidly decreases. However, so far the
authors are not aware of other normalization approaches.

On a side note, one may also consider the dual measure taking the intents of size
k, which would help to measure and describe the individuality of a social network
from the attribute point of view.

In terms of measuring the individuality in a social network, the value gi1.K/ is
of particular interest, as this is the percentage of users in this network uniquely
determinable by their milieu. In this case, we shall also talk about the user
individuality ui.K/ D gi1.K/ of a social network K.

Using our example from Fig. 1, we first compute the extent sets. As we see in
Fig. 2, the concept lattice consists of four elements (apart from the top and bottom
ones), and consequently there are four different extents. Indeed we obtain

Fig. 2 Formal concept lattice
for Kmisn

userC, userAopera userB

cabaret userDballet
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Ext1 D ffuserBgg;
Ext2 D ffuserB; userDg; fuserA; userCgg;
Ext3 D ffuserA; userB; userCgg:

Therefore, gi1.Kmisn/ D 1
4
, since only one user has a unique interest that is not

covered by another user. We also obtain gi2.Kmisn/ D 1
3
, demonstrating that in this

network the individuality of “pairs” of users is higher than for individual users.
Finally, gi3.Kmisn/ D 1

4
, showing that there is only one group of size three.

The network would be changed considerably if userC would have liked ballet
instead of cabaret. In this context, which we want to call misn’, there would be
three extents of size one and therefore gi1.Kmisn’/ D 3

4
. Additionally, the number

of extents of size two would be four, resulting in gi2.Kmisn’/ D 2
3
. In short, by not

being a copy of the interest of userA, userC can shift the individuality of the network
massively by one interest change.

A remark on computing k-group individuality is in order. From the very definition
of gik.K/, it seems as if computing this value requires to iterate through all subsets
of G of size k and check whether they are closed under �00. However, using methods
from formal concept analysis, the overall effort can be reduced to compute only
extents of size at most k. More precisely, the algorithm of Next-Closure [9] is able to
enumerate closed sets of arbitrary closure operators in a particular order. Exploiting
the fact that �00 is a closure operator allows us to compute all extents of K with
only polynomial overhead. Furthermore, Next-Closure can be extended to compute
only extents of size at most k, further reducing the overall computation costs. A
drawback is that Next-Closure cannot be extended to only compute extents of size
k, a disadvantage that is not of profound severity, since k-group individuality is
usually computed for values k D 1; 2; : : : ; ` up to some limit ` 2 N.

Note that group individuality also allows detecting the presence of large homo-
geneous groups, i.e., groups of users with the same milieu. Clearly, such a group of
size k exists if and only if gik.K/ > 0. In other words, the set

gid.K/ :D fk 2 N j gik.K/ > 0g

can be seen as a quantity for the individuality distribution in the social network
represented by K.

Finally, another aspect of group individuality that we want to consider in this
work is the question of how much information is necessary to define the milieu of
a group of size k. In terms of our modeling of social networks as formal contexts,
we reformulate the question to ask how many attributes are necessary on average to
define a unique group of size k that is itself identifiable through its unique milieu.
This gives rise to the following definition.



26 D. Borchmann and T. Hanika

Definition 2 Let K be a formal context and let k 2 gid.K/. Define the k-group
average milieu size amsk.K/ of K as

amsk.K/ :D 1

jExtk.K/j �
X

V2Extk.K/

jV 0j

For k 62 gid.K/ the value of amsk.K/ is not defined. It may be set to 0 in those
cases if this permits further calculations.

Average milieu size can be naturally linked to robustness of group individuality:
to deprive a group of k users of being definable in terms of their milieu, on average
amsk.K/ attributes have to be removed from the social network. Consequently,
if there are more than amsk.K/ attributes removed from the network, substantial
changes in the k-group individuality should be expected. Verifying this intuition is
not within the scope of this work, and is left for future work.

5 Experimental Results

To illustrate our definitions of measuring individuality in social networks, we shall
investigate seven different real-world social networks, introduced in Sect. 5.1. We
shall see in Sect. 5.2 that all these social networks are indeed small world networks.
In Sects. 5.3, 5.4, and 5.5, we examine group individuality, group individuality
distribution, and average milieu size of these networks. Finally, we discuss our
findings in Sect. 5.6.

5.1 Data and Modeling

In the following we provide short descriptions of the used data sets. The graph
properties of all mentioned graphs are summarized in Table 1.

Table 1 Investigated (bi-)partite graphs and their properties

Graph Vertices in U Vertices in V Edges Edge-density

GCM 40 25 95 0.095

GFB 899 522 7089 0.015

GALNM 111 134 480 0.032

GPLNM 607 209 5361 0.042

GAPLNM 79 188 903 0.061

GNB 1495 367 1746 0.003

GSW 18 14 89 0.35



Individuality in Social Networks 27

5.1.1 Club Membership Network (CM) [14]

This data set consists of a bipartite graph describing the affiliations of a set of
corporate executive officers to a set of social organizations. This graph consists
of 65 vertices representing 40 persons (UCM) and 25 organizations (VCM), as well
as 95 edges connecting them. In the following we shall denote this graph by
GCM D .UCM [ VCM;ECM/.

5.1.2 Facebook-Like Forum Network (FB) [17]

This data set was created by using data from an online community of students from
the University of California, Irvine. By using a forum and posting messages to
various topics, the students and the topics constitute a bipartite social network. This
network consists of a set of 899 users (UFB) and a set of 522 topics (VFB) as well
as 7089 edges relating a topic to a user. We shall refer to the resulting graph as
GFB D .UFB [ VFB;EFB/.

5.1.3 Lange Nacht der Musik (LNM) [20]

This data set stems from an annual cultural event organized in the city of Munich
in 2013, the so-called Lange Nacht der Musik (Long Night of Music). The
corresponding network consists of two bipartite graphs and their intersection. All
three of them make use of the same set of vertices, consisting of 1159 users (ULNM)
and 212 distinct performances (VLNM).

The first graph records for some users their attendance to performances. We refer
to this attendance graph by GALNM D .VALNM [ UALNM;EALNM/, where VALNM �
VLNM and VALNM � VLNM.

The second graph represents the preferences of some users for where to go during
the event. We call this graph the preference graph and refer to it in the following as
GPLNM D .VPLNM [ UPLNM;EPLNM/, where VPLNM � VLNM, and VPLNM � VLNM.

Finally, by intersecting the vertex sets of GALNM and GPLNM and restricting
EALNM accordingly, we obtain a new graph GAPLNM that is the graph of performance
attendances where the preferences of the users were known beforehand.

5.1.4 Norwegian Board Members (NB) [21]

This data set was compiled to investigate interlocking directorates among 384 public
limited companies in Norway. This network consists of 367 companies (VNB), the
set of their 1495 directors (UNB), 1746 edges connecting them (ENB). We shall refer
to this bipartite graph by GNB D .UNB [ VNB;ENB/.
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5.1.5 Southern Women (SW) [24]

A systematic collection observing the social activities of 18 individual women
(USW) over a 9-month period. In this time they attended 14 events (VSW). We shall
refer to this graph data set by GSW D .USW;VSW;ESW/.

5.2 Small World Network Properties

Graphs arising from social networks empirically satisfy the small world network
property (SWP), i.e., they expose specific characteristics in terms of local clustering
and global separation [5, 25, 26]. With exception of the LNM and NB networks,
it is well known that all the networks mentioned in the previous section satisfy
SWP to a certain extent. It is the purpose of this section to remind the reader of
what those specific characteristics are and what particular values they exhibit on the
corresponding networks.

In dealing with networks based on bipartite graphs, so-called bi-modal networks,
it is common to employ projections to obtain the so-called uni-model social
networks that allow arbitrary links between vertices. While this approach may result
in unforeseeable difficulties [29, 30], we shall nevertheless employ it in our work.
The main reason for this is comparability: the methods from [26] only apply to
uni-modal networks, and projections were used to turn bi-modal networks into uni-
modal ones.

Given a bipartite network G D .U [ V;E/, we obtain the projection GU D
.U;EU/ of G by the following rule: whenever two users u1; u2 2 U share a common
neighbor in G, i.e., fu1; vg; fu2; vg 2 E for some v 2 V , then an edge in the projected
network GU will connect them, i.e., fu1; u2g 2 E. Then GU is an undirected graph
that corresponds to a uni-modal social network.

Since many observations of network properties are inherited from the network’s
degree distribution [13], it is common to validate the SWP of given networks
against a so-called null model: to confidently claim that a graph indeed represents
a small world social network, the values for local clustering and social separation
in the null model should not be larger than in the original network. Here a null
model for a uni-modal projection of the bipartite social network is represented
by a graph that possesses an identical vertex degree distribution but otherwise
consists of random connections between the vertices only. To obtain such a null
model, we employ the algorithm from [11], which shuffles the edges of the original
projection of the bipartite social network while preserving the degree of every
vertex. In order to obtain a valid null model, i.e., independent from the edges of
the input graph, we shuffle for at least 100 times the number of edges in the input
graph [15].

In the following we shall explain in detail how global separation and local
clustering are measured by means of average shortest path length and average local
clustering coefficients.
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5.2.1 Average Shortest Path

A path from u to w in a graph is a sequence of n 2 N vertices successively connected
by edges. The length of such a path is n. A shortest path between nodes u and v is a
path of minimal length that starts at u and ends at v.

A social network possessing the small world property must exhibit an average
shortest path length (ASP) that is low compared to the size of the network. For
example, the follower graph of twitter has an average path length of about 4:17 [16],
the internet router network has a value of 9:51 [23], and the southern women data
set has a value of 1:09 [8].

The results we obtained in our experiment are listed in Table 2. All mentioned
bipartite networks exhibit a low average shortest path length in their projected
graphs. The numbers vary from 2.01 for the attendance network of LNM to 1.09
in the Southern Women data set. Moreover, in almost all cases the corresponding
null model features about the same average shortest path length, as expected
for small world social networks, with the only exception being the Norwegian
Board Membership graph. For this network the value increases by about 15%. The
exceptionality of NB among all data sets will prevail in the later measures.

5.2.2 Average Local Clustering Coefficient

Intuitively, a social network possesses a high local clustering, i.e., users that are
connected to a particular user are also likely to be connected themselves. Local
clustering in networks is measured by introducing a particular quantity called the
average local clustering coefficient (ALCC) [26], and every social network must
have a comparably high value for this parameter.

The average local clustering coefficient for a graph G can be calculated using the
local clustering coefficients Ci for every vi by alcc.G/ D 1

n � Pn
iD1 Ci, where

Ci D 2 � jffvj; vkg 2 E j vj; vk 2 Nigj
jNij � .jNij � 1/

and Ni :D fv 2 V j fvi; vg 2 Eg is the neighborhood of vi in G.

Table 2 Average shortest path lengths (ASP) and average local clustering coefficients (ALCC),
alongside the values in a corresponding null model (NM)

Graph # Edges Density ASP ASP:NM ALCC ALCC:NM

GCM 259 0.86 1.14 1.14 0.93 0.92

GFB 123,231 0.30 1.70 1.70 0.69 0.62

GALNM 1145 0.19 2.01 1.93 0.52 0.31

GPLNM 78,415 0.42 1.63 1.63 0.74 0.70

GAPLNM 586 0.20 1.58 1.58 0.71 0.64

GNB 421 0.01 1.34 1.55 0.20 0.01

GSW 138 0.90 1.09 1.09 0.94 0.93
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To get a feeling of what certain values of ALCC actually mean for social
networks, let us look at some examples: the aforementioned internet router network
has an ALCC of 0.03, see [26]. Hence, it would not be considered as a small
world social network. In comparison, the twitter followers network has an ALCC of
0.3 [16], which is bigger, but yet not high. Thus, twitter is a social network in which
the small world property is not pronounced that much. A good example for a social
network with a strong small world property is the one formed by actors using their
common movies, which has an ALCC of 0.79, see [26].

Table 2 shows the values of ALCC of the projections of our data sets and of a
corresponding null model. Here we observe values between 0.20 for NB and 0.94
for SW, and the values in the null model are lower than in the original networks.

5.2.3 Summary

The investigated data sets clearly exhibit small world network character, with excep-
tion of the Norwegian Board Member network, because of its low average local
clustering coefficient. Nonetheless, this is a social network, since it is derived from
real social data, showing that the heuristic of small world networks has its limits
when it comes to identifying social networks. Because of this, it will be even more
interesting to see the results for our new individuality measures on this network.

A drawback of our approach to identify small world networks is the usage
of projections to obtain uni-modal networks from bi-modal ones. Indeed, in the
literature bi-modal social networks are rarely analyzed without transforming them
into uni-modal networks, since there are only few methods that can be directly
applied to the former. With our new individuality measures we therefore hope to
provide a reliable new measure that can be directly applied to bi-modal networks.

5.3 Group Individuality

We present in Table 3 and Figs. 3 and 4 the values of k-group individuality for our
data sets for k D 1; 2; 3; 4. The largest value of 1-group individuality can be found
for the NB data set with 0.96. This was not expected due to the very low value of

Table 3 Experimental
results for gik for
k D 1; 2; 3; 4

Graph gi1 gi2 gi3 gi4
GCM 0.64 0.04 0.01 0.00

GFB 0.70 0.02 0.00 0.00

GALNM 0.91 0.02 0.00 0.00

GPLNM 0.69 0.02 0.00 0.00

GAPLNM 0.81 0.10 0.00 0.00

GNB 0.96 0.00 0.00 0.00

GSW 0.39 0.08 0.02 0.00
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Fig. 3 Group individuality (gik) for CM, FB, NB, and SW data sets (from top left to right bottom)
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ASP, which would imply many common neighbors and therefore high probability
for similar neighborhoods. A first guess could account the very low value of ALCC
for this, which is untypical for small world networks. Yet, if we consider ALNM
(ALCC of 0.52) and APLNM (ALCC of 0.71), we also observe very high values
for 1-group individuality. Hence, in our experiments ALCC does not seem to be
associated with 1-group individuality. This observation also carries over to 2-group
individuality.

In general, no correlation of 1-group individuality with ALCC, ASP, or the size
of the social network can be found in our results. This is particularly clear for
the networks FB and CM, whose k-group individuality is similar, but which are
very different in size. For 2-group individuality, the APLNM network shows the
highest value with 0.10, followed by SW with 0.08. Indeed, these two data sets
illustrate that there seems to be no connection between ALCC, ASP, or network
size with the k-group individuality, and there is also no indication that k-group
individuality depends in any way on the edge density of the network. Moreover, the
amount of deviation of the null model to a data set cannot be connected to k-group
individuality: the data sets of NB and APLNM are counterexamples to this, as both
are similar in their k-group individuality, but differ significantly in their deviation to
their null models. To sum up, all this substantiates our original intuition that group
individuality is a completely new and independent measure for social networks.

As can be seen from the values of group individuality, this measure allows us
to differentiate between the various networks by exhibiting qualitatively different
values. Moreover, we can see that in all cases increasing the value of k results in k-
group individuality to decrease significantly. This is indeed expected behavior from
the definition of group individuality, since the denominator in gik is growing rapidly
with k. However, from the perspective of understanding social networks, the low
values of gik for k � 1 might itself be seen as a necessary property for a small world
network: the formation of large groups definable by their milieu is something that
can hardly be expected. Indeed, large values of k-group individuality for values k >

1 are usually a sign for artificiality: it is easy to generate a formal context, and hence
a bi-modal network, with k-group individuality of 1 for k > 1, examples being fixed
row density contexts [6]. Those formal contexts, however, possess a lot of symmetry
and are thus highly artificial. On the other hand, in most of the investigated data
sets we can still observe some non-zero values for k D 2; 3, and those values could
represent intrinsic properties of the underlying network. Thus the presence of larger
groups definable by their milieu could also be associated as a necessary property of
social networks.

5.4 Individuality Distribution

In contrast to group individuality, group individuality distribution cannot be visual-
ized in the usual manner, since the latter is a set instead of a simple number. Instead,
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for every network represented by a formal context K, we computed gik.K/ for every
k from 1 up to the number of users G in the data set. We then identify the value
kmax < jGj such that kmax 2 gid.K/, i.e.,

kmax D max.gid.K/ n fjGjg/:

To visualize gid.K/, we then plot its indicator function 1fi2Nji<kmaxg.gid.K//. The
results are shown in Fig. 5.

The first thing we can read off from the diagrams is of course the corresponding
values of kmax, the size of the biggest individual group. Furthermore, the density of
lines in the plot signifies the existence of groups of various sizes in the network: the
more lines are present, the more groups of different sizes exist that are definable
through their milieu. From this perspective of its individuality distribution, we
perceive PLNM as special, compared to the other networks, because its individuality
distribution appears to be very dense. This is also the case for the SW network,
because with fourteen users the value for kmax of twelve is also very large. Moreover,
comparing PLNM with a data set of comparable size like FB, the structural
difference between these networks can be spotted easily: for PLNM the parameter
kmax is double as large as for FB. Therefore, even though both networks have
similar values for ASP, ALCC, and even for user individuality, the PLNM network
seems more interesting than the FB network with respect to their individuality
distributions. Indeed, we consider networks with a large value of kmax to be more
interesting from this point of view.

A more thorough examination reveals that none of the networks exhibits large
gaps in their individuality distribution. This is a bit surprising, because one may
have expected the existence of very large individual groups and also big gaps in the
individuality distribution to the smaller groups, but this is not the case. In general,
except for SW, no network exhibits big individual groups definable through their
milieu compared to the number of its users.

Finally let us point out that although APLNM is a sub-network of ALNM, their
individuality distributions are very similar, although their sizes differ significantly.
Based on this observation, one could conjecture that a large part of the individuality
of ALNM is already contained in APLNM, or put differently, that most of the
individuality of ALNM comes from the APLNM sub-network. However, this
conjecture requires further study that is not within the scope of this work.

5.5 Average Millieu Size

The results for our experiments on average milieu size are presented in Table 4
and Figs. 6 and 7. For every data set we computed amsk for k D 1; : : : ; 7. Indeed,
for comparing these results with the ones in Sect. 5.3, a maximal value of k D 4

would have been sufficient. Yet we observed an interesting peak for the CM data
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Table 4 Values of amsk for
k D 1; : : : ; 7

Graph ams1 ams2 ams3 ams4 ams5 ams6 ams7
GCM 4.25 3.50 2.50 1.75 1.00 3.00 2.00

GFB 9.80 3.33 2.55 2.18 1.98 1.69 1.59

GALNM 4.58 2.17 1.45 1.47 1.25 1.33 1.14

GPLNM 11.5 5.82 4.69 4.07 3.62 3.33 3.13

GAPLNM 13.7 5.04 3.39 2.65 2.21 1.91 1.69

GNB 4.97 1.31 1.12 1.00 1.00 1.00 1.0

GSW 7.14 5.23 3.85 2.70 2.43 2.00 2.0
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Fig. 6 Average milieu size (amsk) for CM, FB, NB, and SW data sets (from top left to right
bottom)

set, so we decided to show the result as seen. Additionally, we bounded for all plots
the maximal value of their y-axis to fourteen to make comparison between the data
sets easier.

Comparing the properties of the previous sections, as shown in Tables 1 and 2, to
the values of average milieu size in our data sets, again no immediate correlation is
visible, suggesting the independence of the introduced measure. In particular, a high
value of group individuality does not imply anything on the average milieu size and
vice versa. Moreover, the plot for the CM network reveals that, surprisingly, average
milieu size does not necessarily need to be monotone in k, as suggested by the other
plots.
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Fig. 7 Average milieu size (amsk) for ALNM, PLNM, and APLNM data sets (from top left to
right bottom)

Among the plots, the one for the NB network stands out for its low average
milieu size for groups of size k > 1: on average all k-groups have about one
attribute in common. Therefore, groups of two or more users rarely have an attribute
in common. It is important to point out that in particular the average clustering
coefficient is not able to represent this fact: compared to the NB network, the ALNM
network has similar average milieu sizes, but a significantly larger value for ALCC.

An interesting observation in the plots is the difference between average milieu
size for groups of size 1 compared to larger groups: there is usually a steep decline
from the value of ams1 to the one of ams2, say. One may consider a ratio between
these values as a measure of how different the milieus of users are compared to
those of larger groups of users.

Finally, as explained in Sect. 4, average milieu size can be perceived as a measure
for the robustness of the number of k-groups. For this we observe that the APLNM
data set reached a value of 14 for ams1, and hence the milieus of milieu-definable
users consist on average of 14 attributes. We consequently conjecture the robustness
of the user individuality in the APLNM network to be very high, but leave an
experimental validation of this hypothesis for future work.
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5.6 Discussion and Interpretation

The measures introduced in this work clearly represent facets of individuality in
social networks, and it was the purpose of this Sect. 5 to demonstrate the usability
and benefit of these quantities. To this end, we discussed various cases where the
classical notion of small world networks suggests that two social networks were very
similar, but where group individuality and its distribution revealed great structural
differences.

The authors can only conjecture the reasons that lead to the observed results. For
example, the very high user individuality in the NB network may be explained by
strict rules for appointing board members. Especially the very low average milieu
sizes for k > 1 lead to the impression that there are certain policies in place
preventing “clubs” across boards.

The LNM data sets are somewhat special, since they are all intertwined. For
example, each of them shows a high user individuality. Using k-group individuality,
one may deduce that single users that were tracked during the event were in general
more individual in their actions than the ones planning their evening. For the
APLNM network, where both attendance and preferences were known, we observe
values of user individuality between the ones of ALNM and PLNM. Yet, 2-group
individuality is significantly larger in APLNM than in ALNM and PLNM. An
interpretation could be that people who planned the evening beforehand are more
likely to spend the evening in pairs of two.

To summarize, we claim that the benefit from having an instrument like group
individuality is apparent. Furthermore, we assert that there is no method, known to
the authors, to get comparable information from a social network.

We want to close this section with a note on the practicability of our approach. We
refrained from giving concrete running times for our experiments, mostly because
our implementations of the proposed algorithms are preliminary. Showing these
values may nevertheless be worthwhile, in particular for arguing that our approach
can be applied in practice. Because of this, we show the running times of all our
experiments in Table 5. As can be seen from these numbers, the computation
times for our data sets never posed a serious problem for the feasibility of our

Table 5 Running times of
individual experiments, all
times in seconds

gi gid ams

GCM 10.06 9.94 9.84

GFB 170.67 212.94 210.18

GALNM 13.21 14.04 13.00

GPLNM 1330.58 2302.80 2327.90

GAPLNM 13.64 16.00 15.70

GNM 138.56 134.51 140.36

GSW 10.10 10.69 10.44
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approach. Moreover, all these running times can be greatly improved by using
optimized implementations specifically designed for the fast computation of all
formal concepts [1, 18].

6 Conclusions and Outlook

It was the purpose of this work to introduce a new measure on social networks
that incorporates the notion of individuality in social networks, an approach that
has not been examined before. For this we made use of ideas from formal concept
analysis to provide a notion of milieu definability. Based on this, we developed
in a natural way the notions of group individuality, individuality distribution, and
average milieu size. Conducting experiments on real-world data sets, we were
able to show that these new measures were both independent of previously known
metrics like ASP and ALCC and allowed differentiating further otherwise similar
networks. To sum up, we claim to have shown that the measures of individuality
introduced in this work are both natural and meaningful.

This work has only started the study of our individuality measures, and it has
not reached its end. For example, so far we have investigated individuality only on
real-world networks, where this notion has a natural interpretation. However, we
have not even started to look at individuality in networks that do not stem from real-
world networks, and we do not know what values of individuality to expect there. In
a similar vein, one could ask in how far group individuality is suitable to distinguish
real-world networks from artificial ones.

Another aspect that requires further research is the scaling factor for k-group
individuality. To improve comparability, we divide the number of extents of size k
by

�jGj
k

�
, the theoretical maximal number of such extents. Due to this scaling, k-group

individuality is always between zero and one. However, this maximum is never
achieved in practice and results in almost-zero values of k-group individuality for
larger values of k, making those values virtually useless. Finding a better approach
to scale k-group individuality is subject to further investigations.

In our experiments, the running times of our algorithms never posed a problem.
However, for larger networks, measuring group individuality can represent a
serious challenge: our methods require in the worst case the computation of the
whole concept lattice of the representing formal context, and this lattice can be
exponentially large. This somehow limits the usefulness of our approach, and
further investigations are necessary to explore the possibilities of measuring group
individuality of real-world networks.

The networks we have considered in this paper were bi-modal networks from
the start, and the actual modeling of finding a suitable attribute set was not an
issue. However, for uni-modal networks, finding a suitable set of attributes for a
contextual representation may be difficult. To what extent group individuality can
be adapted to this kind of networks remains an open problem and is subject to future
research.
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To establish the small world character of our used data sets, we employ
the approach of using null models—something we have not yet done for our
individuality measures. One of the main reasons for this is that generating null
models for bi-modal networks has received attention from the research community
only recently [19], and a proper evaluation is still missing.

A particular kind of social network that is not covered with our contextual
representation are the so-called tripartite networks, sometimes also called folk-
sonomies [12]. The corresponding structure in formal concept analysis is the one
of a triadic formal context, and generalizing group individuality to those structures
is also a promising line for future research.
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