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This book is dedicated to the memory of
Prof. Rudolf Wille who was the inventor of
Formal Concept Analysis (FCA) and the
leader of this community. He was known to
be an outstanding person and scientific
researcher who influenced the work of
many scientists. He passed away on
January 22, 2017. We will miss him in our
community centered around FCA and its
applications.



Foreword

Formal concept analysis emerged around 1980 as a mathematical theory of concepts
and concept hierarchies. It was discovered by Rudolf Wille (1937-2017) and his
group that a simple and natural mathematical definition leads to abstract objects that
are very similar to an old philosophical understanding of “concepts,” as expressed
in the Logique de Port-Royal (I’art de penser, 1662), and that this offered a broad
range of new interpretations for modern mathematics. The key ingredient of the
Port-Royal logic is that concepts are understood as having two parts, an extension
and an intension. The extension of a concept consists of all things that fall under the
concept. The intension is the collection of all properties under which the respective
concepts fall.

Formal concept analysis should not be misunderstood as a mathematical model
of human thought. It is conceivable that formal concept analysis is used as a tool
for building such psychological theories, but that would just be another one among
many applications. Formal concept analysis does not address a specific problem
or aim at a particular application. Its strength is that it offers intuitive access to
a mathematical universe and that it is comprehensible because of its similarity to
human conceptual thinking. Formal concept analysis was discovered when a group
of mathematicians reconsidered their own mathematical research with respect to
motivation and meaning, and it caused excitement because it indeed offers new ties
between common thought and mathematics.

The distinction between “human” and “formal” concepts is of crucial importance.
What is a formal concept, and how it is different from a concept of everyday
thinking? A main difference is that formal concepts always are constructed with
reference to a concrete, well-restrained set of data. In formal concept analysis one
speaks of “objects” and “attributes,” but these are always chosen from a well-
defined supply. Mathematically speaking, we start each investigation by fixing sets
G and M of objects and of attributes and also define which of these objects has
which attributes.! So what are “objects” and “attributes”? This is arbitrary; it is

! A more careful presentation would even speak of formal objects and formal attributes.

vii



viii Foreword

not assumed that they are of any specific nature or that they satisfy any particular
conditions. All that is required is that objects and attributes are given as “sets” in
the mathematical sense and that there is a relation between these sets expressing the
object-attribute relationship. No other restrictions are made. It is, for example, not
assumed that objects and attributes are different. Nor need they be “atomic” in any
sense: often objects and attributes have a complex structure; they may be molecules,
languages, algorithms, and so on. When formal concept analysis is used for data
analysis, then the data provides the formal context. Sometimes it is necessary to
translate given data to this form, and there is a standardized method for doing so,
called conceptual scaling.

So what is a formal concept? As said before, formal concepts are always
understood with reference to three sets (G, M, I), where the elements of G are called
objects, those of M are the attributes, and I € GxM is a relation in the mathematical
sense, i.e., a set of pairs. A pair (g, m) belongs to the relation 7 if and only if the
object g has the attribute m. The three sets together constitute a formal context
(G, M., I). A formal concept of such a formal context (G, M, I) consists of two sets,
called the extent and the intent of the concept. A formal concept of (G, M, ) is a
pair (A, B) such that:

e Ais a set of objects, expressed as A C G.

* Bisa set of attributes, so B C M.

* B consists of precisely those attributes in M that all objects in A share (formally
A’ = B).

e A consists of exactly those objects in G which have all the attributes in B
(formally A = B).

There is a natural way of ordering the formal concepts of any given formal
context: the subconcept-superconcept relation. One formal concept (A1, By) is a
subconcept of another one (A;, B,), if (and only if) its extent is contained in that
of the second, i.e., iff Ay € A,. It can easily be argued that this implies that its
intent contains the intent of the second, i.e., that B, C Bj. This is the mathematical
analogue of the philosophical law of reciprocity that more general concepts have
larger extensions and smaller intensions. But in the mathematical setting, this has
a surprising consequence. It can be shown that the ordered set of formal concepts
in any case carries an algebraic structure, called a complete lattice. This is why the
ordered set of all formal concepts is called the concept lattice of the underlying
formal context (G, M, I).

There is an extensive mathematical theory of complete lattices, and it can be
transferred to concept lattices. We obtain, essentially for free, powerful mathemati-
cal methods for the treatment of formal concepts. Having such a solid mathematical
basis is one of the strengths of formal concept analysis. Moreover, there is a well-
tried visualization method for complete lattices, which provides us with expressive
and reliable concept lattice diagrams, another advantage of the approach. Formal
concept analysis also offers powerful algorithms for data analysis. Many variations
of the theory have been worked on, allowing, e.g., for the conceptual analysis of
relational, fuzzy, or dynamic data. For a mathematical theory, the field is still very
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young, and certainly only a small anabranch of the great science river. But the
number of publications has long exceeded the number of 10,000. So a remarkable
supply of results is available. But there are too few systematic presentations focused
on specific application domains. This volume on formal concept analysis and social
network analysis therefore is very welcome.

As said above, the original motivation for inventing formal concept analysis
was not to use it for a particular application but came from the expectation that
it could provide meaningful mathematics for a variety of applications. Another
important aspect was that it offers a structural and less numeric approach to data.
Many of today’s data analysis methods rely on numerical values, often expressing
some kind of “similarity” by real numbers. But not all types of data are suitable
for a numerical description; some require alternative methods. Wille’s intention
even was that formal concept analysis could contribute to a more human-centered
knowledge processing, which still has the virtue of being mathematically rigorous.
Numerical methods often result in an “outcome” which compresses the result of
an investigation in a few parameters, numbers, or curves. Structural methods, as
provided by formal concept analysis, are different. They often unfold the data,
making it better accessible to the analyst’s judgments and decisions. But these
approaches are not exclusive, and formal concept analysis can include numerical
considerations whenever appropriate, typically when the amount of data is too large
to be unfolded in detail.

This has been the case in the early applications of formal concept analysis to
the analysis of networks by Freeman and White for community detection in the
1990s. Later on, Gerd Stumme and his coauthors applied formal concept analysis
for detecting trends or shared conceptualizations in so-called folksonomies. They
used methods which had been developed for data mining purposes and which would
not generate all formal concepts of given data but focus on the frequent ones.
These methods were modified so that they can handle triadic formal concepts,
which consist of three sets, extent, intent, and modus. They showed that such an
approach can indeed reveal characteristic information about social networks. Other
authors have contributed their own ideas, and it became necessary to compile the
recent trends into this volume. I hope that it will inspire future investigations and
applications of formal concept analysis.

Technische Universitit Dresden, Germany Bernhard Ganter



Preface

Introduction

With the wide spread of social networks, the advent of big data, and the increasing
number of studies toward the integration of data analysis and social network
techniques, it becomes important to get a better insight into existing work, trends,
and challenges in pattern discovery from complex social networks in order to
efficiently explore and analyze real-life applications.

The book intends to study existing and potential connections between two
research areas, social network analysis (SNA) and formal concept analysis (FCA).
The papers included in this book show how standard SNA techniques, usually based
on graph theory, can be supplemented by FCA methods, which rely on lattice theory.

To the best of our knowledge, there is no book that covers the contents of this
volume. However, the two workshops SNAFCA (2007 and 2015) organized by one
or all of the coeditors had the same goal. Also, a special issue of the Social Networks
journal on Social Network and Discrete Structure Analysis published in 1996
covered the use of lattices for the analysis of social data. Linton C. Freeman and
Douglas R. White are among the first researchers who investigated the application
of FCA for SNA.

This volume is meant to cover the state of the art of the research on the
intersection of FCA and SNA in a more systematic and detailed manner than it
was done in the workshop proceedings mentioned above. It contains seven chapters
written by SNA and FCA researchers. Three chapters are extended versions of
selected papers presented at the Social Network Analysis using Formal Concept
Analysis Workshop (SNAFCA 2015), which took place in Nerja in August 2015
jointly with the ICFCA 2015 conference. All chapters have been evaluated by two
to three reviewers.

As part of the Springer book series Lecture Notes in Social Networks, this edited
volume, Formal Concept Analysis of Social Networks, presents contributions to
the following areas: acquisition of terminological knowledge from social networks,
knowledge communities, individuality computation, other types of FCA-based anal-

xi



xii Preface

ysis of bipartite graphs (two-mode networks), community detection and description
in one-mode and multimode networks, multimodal clustering, adaptation of the
dual-projection approach to weighted bipartite graphs, and attributed graph analysis.

The goal of the chapter “Knowledge Communities and Socio-Cognitive Tax-
onomies” by Camille Roth is to show how approaches such as FCA allow the
assessment and analysis of actors and their attributes on an equal basis. In the special
case of knowledge communities in which the attributes of actors express cognitive
properties, one is in presence of joint social and cognitive taxonomies. The chapter
also shows that FCA can help solve key typical challenges of community detection
in SNA such as group hierarchy and overlapping, temporal evolution and stability
of networks.

The chapter “Individuality in Social Networks” by Daniel Borchmann and Tom
Hanika defines individuality and introduces a new measure in two-mode (affiliation)
networks using FCA by evaluating how many unique groups of users of size k can be
uniquely defined by a combination of attributes. The experimental study illustrates
the importance of the individuality notion and the additional insights it brings to
SNA.

In the chapter “Descriptive Community Detection,” Martin Atzmueller presents
an overview of recent research about descriptive community and subgroup detection
in social networks. Approaches toward the identification of descriptive patterns
related to static as well as dynamic relations are described with a focus on attributed
graphs. The author also briefly presents his approach to descriptive community
detection, which combines subgroup discovery with community detection.

The goal of the chapter “Multimodal Clustering for Community Detection”
by Dmitry I. Ignatov, Alexander Semenov, Daria Komissarova, and Dmitry V.
Gnatyshak is to present recent progress in object-attribute (OA) biclustering and
its extensions to mining multimode communities in social network analysis. Links
between clustering coefficients commonly used in SNA community for one-mode
and two-mode networks and the OA-bicluster density are also established. Empirical
studies with two-, three-, and four-mode large real-life networks show that OA-
biclusters are suitable for community detection in multimode cases.

Francesco Kriegel describes a technique for the acquisition of terminological
knowledge from social networks in the chapter “Acquisition of Terminological
Knowledge from Social Networks.” In particular, he provides an extension of
the results of Baader and Distel for the deduction of knowledge bases from
interpretations in the description logic MH w.r.t. descriptive semantics and role-
depth bounds.

The chapter “Formal Concept Analysis of Attributed Networks” by Henry
Soldano, Guillaume Santini, and Dominique Bouthinon studies social and other
complex networks as attributed graphs and addresses attribute pattern mining in
such graphs through recent developments in FCA. The main idea is to restrict
the space of possible pattern extensions in the node set to node subsets satisfying
some topological property. To that end, two levels are considered: the abstract
and the local levels. At the first level, the extension of each pattern is reduced so
that the corresponding abstract extension induces a subgraph whose nodes satisfy
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some connectivity property. At the second level, a pattern has various extensions,
each one associated with a connected component of the abstract subgraph attached
to the pattern. This leads to abstract closed patterns and local closed patterns
as well as abstract and local implications. Interestingness measures for patterns
and implications are proposed. Finally, local concepts are linked to network
communities, and the illustration of the proposed work is done through the detection
and ordering of k-communities in the subgraphs of an attributed network.

In the chapter “A Formal Concept Analysis Look at the Analysis of Affiliation
Networks,” Francisco J. Valverde-Albacete and Carmen Peléz-Moreno adapt the
dual-projection approach of Everett and Borgatti to weighted two-mode networks
using an extension of FCA for incidences with values in a special case of semiring.
In the case of networks with non-Boolean weights, the dual-projection method
is linked to both the singular value decomposition and the eigenvalue problem
of matrices with values in such algebras, as in Kleinberg’s HITS algorithm. The
chapter also introduces extensions of the HITS algorithm to calculate the influence
of nodes in a network whose adjacency matrix takes values over dioids, zerosumfree
semirings with a natural order. This work shows that the original HITS algorithm
is a particular instance of the generic construction and highlights the advantages of
working in idempotent semifields, instances of dioids.

The production of this volume would not have been possible without the
valuable involvement and efforts of the above contributing authors and the fol-
lowing reviewers: Martin Atzmueller, Jaume Baixeries, Karell Bertet, Mohamed
Bouguessa, Dmitry Ignatov, Mehdi Kaytoue, Francesco Kriegel, Léonard Kwuida,
Jurgen Lerner, Amedeo Napoli, Henry Soldano, and Francisco J. Valverde-Albacete.
We highly appreciate the efforts and commitment of all the authors and reviewers.
We would also like to express our gratitude to Christopher T. Coughlin and his team
members from Springer USA for their help in the preparation of this volume.

Gatineau, QC, Canada Rokia Missaoui
Moscow, Russia Sergei O. Kuznetsov
Moscow, Russia Sergei Obiedkov

March 2017
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Knowledge Communities and Socio-Cognitive
Taxonomies

Camille Roth

1 Introduction

A significant portion of the state of the art in social network analysis (SNA) has
been typically devoted to the characterization of groups of similar actors [68]—
oftentimes denoted as communities. While similarities and communities can be
defined in very diverse ways [6, 23], the literature can roughly be divided into
two main classes of approaches, depending on whether groups stem from cohesive
interactions or from cohesive affiliations. This dichotomy in turn refers to two
distinct types of graphs and relations. On one hand, a large number of methods
rely on interaction networks, which are purely social networks insofar as nodes are
strictly actors and links indicate actor—actor relationships: actors know each other,
they work with each other, they talk to each other, etc. Formally, this corresponds
to monopartite graphs or the so-called one-mode networks. On the other hand, SNA
scholars have made use of affiliation networks [68, Chap. 8] where nodes may be
of two types: either actors or social attributes of some sort—be it an event, an
organization, a team, an issue, an opinion, an interest, etc. Here, relationships denote
the affiliation, in the broad sense, of an actor to an attribute; formalisms are based
on bipartite graphs, or two-mode networks.

Approaches based on interaction networks traditionally seem to constitute the
bulk of the literature on social group characterization from relational data in SNA
[28, 68]. They focus on the shape and structure of relationships between actors
and appear to pay little attention to the cognitive and property-based aspects

C. Roth (<)
Sciences Po, Médialab, 84 rue de Grenelle, 75007 Paris, France

Centre Marc Bloch Berlin e.V., Friedrichstrasse 191, 10117 Berlin, Germany
e-mail: camille.roth@sciencespo.fr
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of communities as such (even though they may indirectly uncover affiliation
communities, i.e., social groups defined by similar attributes, for instance, as a
result of homophily, or the fact that similar people interact more with one another
[48]). Furthermore, many approaches based on affiliation networks nonetheless fall
back on an interaction network by transforming two-mode into one-mode data, i.e.,
by building an actor network whose links denote shared affiliations among actors.
Typical cases include co-appearance in a same movie, co-authorship of a same
scientific article, or co-membership in a same team. Some further approaches aim
at truly uncovering groups in the two-mode network [31], yet in general an actor-
centric view eventually appears to prevail. In other words, the composition of the
detected communities and, subsequently, the validity of the results are principally
discussed in terms of actors, whereas attributes essentially remain in the background
as an instrumental helper: somehow, semantic similarity is used as an indirect tool
to uncover implicit interactional patterns.

This is where, we contend, lies one of the most crucial assets of dual approaches
such as formal concept analysis (FCA [33]) with respect to SNA: the possibility of
describing hybrid communities of actors and attributes in a simultaneous manner,
without giving priority on one mode over the other, while tackling several of the key
challenges raised by community detection in traditional SNA.

By focusing on knowledge communities and, more precisely, by emphasizing the
possibility of formalizing the notion of epistemic community (EC), at the interface
between SNA and FCA, this chapter aims at showing how FCA may particularly
contribute to SNA in uncovering and describing social groups based on cognitive
affiliation patterns. To this end, we first recall how structural approaches have
formalized the notion of interactional community, discussing in particular the main
quantitative issues and qualitative connections with sociological analysis. We then
explain how FCA enables, by contrast, the description of social groups which are
characterized by attribute similarity and for which it is more straightforward to use
affiliation networks. We show how FCA still captures many important community
features of interest to SNA. We illustrate this stance with a series of empirical
examples.

2 Communities in Interaction Networks

2.1 Explicit vs. Procedural Methods

Algebraic Definitions of Social Groups Formal apprehension of the sociological
notion of “community” principally stems from SNA [22], all the more as social
interactions have progressively occurred in an increasingly networked fashion
[69]. Historically, the introduction of graph theory in sociometry [27] paved the
way to the first mathematical analyses of communities: the so-called sociogram
of a given group of actors, which describes relationships such as acquaintances,
friendships, collaborations, or exchanges, could be represented as a graph. Then, the
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Fig. 1 Explicit, algebraic definitions of groups. Left: {A,B,C,D,E} and {A, E, F} are cliques,
{B,C,G,H} is a 2-clique. Middle, Cartwright and Harary’s decomposition [13] (positive or
negative links are, respectively, represented by single or double lines). Right: structural equivalence
classes of this network include {A, B}, {C}, and {D, E, F}

abstract study of its algebraic and topological structure could reveal the existence
of “real” communities, by matching a given qualitative community definition with
quantitative graphic properties.

The notion of clique [47] has played a foundational and prototypical role in this
endeavor. Cliques shall sound familiar to FCA scholars, whose formal concepts are
maximal bicliques of a bipartite graph isomorphic to the object-attribute matrix.
Interactional cliques are even simpler patterns: they configure subsets of individuals
who are all connected with one another, i.e., complete subgraphs of the interaction
network (see an illustration in Fig. 1). Cliques can thus be seen as the most basic and
strongest cohesive community unit. In practice, however, cliques larger than a dozen
of actors are relatively rare. Furthermore, as may be the case with formal concepts,
their computation, representation, and even interpretation often prove difficult. SNA
thus quickly introduced less rigid notions of communities, starting with n-cliques
[46] which allow for a looser connectivity among individuals belonging to the same
group (they have to be at most at distance n from each other).

Methods which are more global and holistic were also proposed very early to
partition a given network into various sub-communities, rather than just exhibiting
local patterns such as cliques. Building upon the so-called balance theory introduced
in psychology [37] and which allows for either positive or negative relationships
between actors (friends/foes, i.e., valued links), Cartwright and Harary [13] were
among the first ones to formalize communities at the network-level with their
structure theorem. In a nutshell, when some composition laws on relationships hold
(namely, foes of friends are foes), they showed that it is possible to split nodes into
two groups such that intra-group (resp. inter-group) connections are positively (resp.
negatively) valued. Here, communities follow from antagonistic rather than similar
interactional configurations. Multiple refinements of this approach have later been
introduced [17, 18, 20, 21], focusing, for instance, on the role of triads—again a
very local pattern.

Beyond these foundational milestones, SNA has developed over the previous
decades a very rich and diverse set of definitions of social groups, where patterns
directly match explicit mathematical expressions. Many contributions within this
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research program are variously evoked in [29, pp. 152-153], [68, Chaps. 7, 9,
and 10], [30, pp. 743-744], or [22, pp. 206-207]. Let us mention, for instance,
the notion of “equivalence class” of individuals, which describes groups of actors
connected to other actors in an equivalent manner. This notably includes structural
equivalence [45] where actors of the same class share exactly the same neighbors,
regular equivalence [71] where actors of the same class are linked in a similar way
to actors of another class, or automorphic equivalence [25], where actors of the
same class occupy positions which are exactly interchangeable in the network (their
labels may be exchanged without changing the relational structure). In a different
direction, the structural cohesiveness of a set of actors [70] is defined as the number
of individuals which have to be removed in order to get disconnected components,
i.e., such that there exists at least one pair of individuals who are not indirectly
connected through a chain of links. A group with a structural cohesiveness of k is
called a k-component: here, communities are groups such that links between actors
exhibit some redundancy.

Procedural Methods and Approximate Patterns Formalization does not neces-
sarily imply quantification. In this respect, most of these algebraic approaches were
fueled by mathematical sociologists who initially worked on case studies based on
small datasets stemming from ethnographic observation, thereby featuring a limited
number of actors. As a result, they are essentially adapted to small-sized networks
and structures [50] since the number of patterns can grow quickly. How to deal, for
instance, with the thousands of cliques which a small network of a hundred of nodes
may contain; and what to deduce from their observation?

A more recent stream of research focused in all generality on the quantitative and
large-scale study of the topology of social (and non-social) networks. This stance
gained momentum during the 2000s, thanks to the joint availability of powerful
computational resources and large relational datasets (even if this phenomenon
could already be partly perceived as early as the 1970s [2, p. 116]). Under the
term “‘community detection,” this literature addresses the issue of the discovery of
cohesive structures in large graphs by applying data mining techniques developed
to a large extent by computer scientists and statistical physicists [28]. Within this
stream, groups or communities are consensually seen as aggregates of actors in the
network: “groups of vertices within which connections are dense, but between which
connections are sparser” [51]. This is aligned with a classical SNA definition: “its
members should have many relations with each other and few with non-members”
[2, p. 121]. Concretely, these approaches are based upon procedural methods and
thus tend to blur the distinction between the formal definition of what these “dense”
groups are and the algorithm which enables their detection. In contrast with explicit
and closed mathematical definitions where “a group/community is a set of actors
such that [- - - ],” dense group patterns are almost entirely defined by the procedure—
all the more when algorithms are stochastic and results vary from an execution to
the other. This allows for scalability and, often, compactness of the partitions, to the
expense of interpretability.

These algorithms may diversely feature the iterative construction of a series of
embedded graph partitions, either by gathering structurally close individuals into
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similarity matrix between actors
based on their neighborhoods
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Fig. 2 Partition creation algorithm. From left to right: toy network; similarity matrix based on the
number of node-independent paths between actors (i.e., paths involving strictly distinct node sets,
except for the extremities); iterative construction of the dendrogram based on these similarities
(progressively gathering nodes with highest similarities, randomly choosing in case of equality);
groups of the partition found at the cut-off stage of the dendrogram, marked by a dashed line

increasingly larger groups [14, 72] or by dividing the whole graph into increas-
ingly smaller groups [34]. This procedure is traditionally denoted as hierarchical
clustering [68], it may be represented as a dendrogram; various criteria such as
modularity [52] are then available to decide which partition to choose and where to
cut the dendrogram (see Fig.2 for a toy example). Other procedures can be based
on network exploration [7], possibly inspired by percolation processes in order to
find community boundaries [54], or holistic methods such as spectral decomposition
based on some global properties of the graph adjacency matrix [12, 56].

2.2 Structural Properties of Groups

Structural methods may go beyond the mere partitioning of nodes: they may further
be used to describe group structure in itself, i.e., the relationships between groups.
Blockmodeling methods, for one, generalize partitioning by reducing the social
graph into a meta-graph of groups called blockmodel, where nodes represent groups
and links describe their relationships.

At the group level, more broadly, we may identify three classical qualitative phe-
nomena which are an important and current research issue in SNA: (1) hierarchies
between groups, (2) multiple membership of actors in groups, and (3) temporal
dynamics of groups.

Group Hierarchies SNA makes it generally easy to describe social group orders
and hierarchies, first and foremost by relying on set inclusion. A group can be
“below” or “more specific than” another one if the former is included in the latter: a
partial order may be defined where, say, {A, B} and {B, C} are included in {A, B, C}
while {A, B} and {B, C} cannot be compared with one another. Some methods
naturally and implicitly define such an order: dendrograms configure increasingly
finer partitions, while k-components are included in k’-components when kK’ < k.
Traditionally, the resulting hierarchical structure is a tree comparable to Aristotelian
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taxonomies (as in the traditional classification of scientific disciplines: e.g., “sci-
entists” > “biologists” > “molecular biologists” > ...). Hierarchies may also
be defined among items of a partition, especially when interactions are directed
or valued: [18] uses link asymmetry to define levels between groups, such that
“admiration flows up levels” as a consequence of differences in the underlying actor
prestige or centrality [68, Chap. 5].

Group Overlap Beyond partitions where individuals are meant to belong to a
single group (as is the case with equivalence classes), a somewhat small part of
the literature has addressed the question of multiple membership [3, 9, 26, 32, 54,
for instance]. Here, actors may belong to one or more groups which can in
turn partially overlap. While the relevance of taking into account such overlap is
sometimes debated (e.g., [29, p. 153]), the relative weakness of scholarly interest
in this issue may also be explained by concrete hurdles, such as how to properly
justify thresholds triggering multiple membership, or how to deal with the potential
combinatorial complexity.

Group Dynamics By definition, interactional analysis of social groups steers
clear of intensional properties: in a dynamic perspective, this means that the old
sociological question of the perpetuation of social groups' is appraised through the
stability of interactional structures across time rather than the persistence of their
attributes. Typically, inter-temporal correspondence may be assessed longitudinally
(groups at ¢ are associated with groups with similar members at # [19, for instance])
or dynamically (the stability of relationships between ¢ and ¢ defines the group, as
in [49, 53], thereby assuming that social entities only exist by way of their temporal
stability [1]). We shall show below how FCA brings a particular added value for this
and the above issues, especially in the context of knowledge communities.

3 Reuniting Structure and Content

3.1 Affiliation Networks, Social Circles, and FCA

As mentioned in the introduction, interactional network analysis provides a robust
set of methods to define social groups, yet by overlooking a priori their non-
structural properties. In this way, since interactional SNA does not rely on inten-
sional properties, it may fail to render the most semantic and cognitive aspects
of communities—unless one assumes a strong redundancy between structural and

“The most general case in which the persistence of the group presents itself as a problem occurs in
the fact that, in spite of the departure and the change of members, the group remains identical. We
say that it is the same state, the same association, the same army, which now exists that existed so
and so many decades or centuries ago. This, although no single member of the original organization
remains.” [64, p. 667]
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mare general
more populated

less general
less populated

Fig. 3 Bipartite graphs and lattices. Left: toy bipartite graph: actors a;,as,as, ... and cognitive

properties ¢y, ¢z, . . .. Middle: formal concepts corresponding to the black portion of the previous
graph. Right: lattice-based hierarchical representation

non-structural properties. As such, a social group featuring semantic or cognitive
affinity may only be found indirectly if the similarity is manifest in the interactional
structure, for example, because of homophily: for instance, scientific collaboration
networks exhibit some disciplinary cohesiveness [34, 57]. Semantic labels for
Interactional groups are usually labelled a posteriori, if at all, and often by hand.
Moreover, larger groups such as schools of thoughts, epistemic communities,
interest circles and, more broadly, socio-cognitive groups may not correspond
univocally to a single, well-defined interactional community.

The branch of SNA based on affiliation networks appears here as a robust rela-
tional framework able to combine structure and semantics. Technically, affiliation
networks are bipartite graphs, where actors on one side are distinguished from
affiliations on the other side (Fig. 3, left panel). A link may only connect an actor
and an affiliation. This formalism is additionally dual, as are social circles [10], in
the sense that affiliations are linked to actors just as actors are linked to affiliations.

Social circles are thus explicitly codified in the data: a single affiliation already
constitutes an intensional group which denotes the shared participation in an event,
membership in an organization, interest for a topic, adhesion to a belief. In this
respect, looking for groups in affiliation networks may also be understood as the
task of uncovering new (implicit) actor groups from the multiple intersections of
social circles, which are thus seen as (explicit) intensional groups [5, 8, 32, 44].
From the viewpoint of SNA, this stance enables both a structural and a cognitive
description of communities, which is the cornerstone of describing socio-cognitive
taxonomies, i.e., joint taxonomies of actors and taxonomies of cognitive attributes—
be it in the context of scientists working on research topics, bloggers posting about
some issues, activists discussing political matters. Bipartite graphs are isomorphic to
binary relations and to labeled hypergraphs (indeed, actor nodes affiliated with the
same attribute in a bipartite graph univocally correspond to a labeled hyperedge)—
the closeness with FCA is straightforward when considering actors as objects and
affiliations as attributes.
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While several studies aim specifically at detecting group patterns in bipartite
graphs [43], they often tend to consider affiliations as an instrumental rather than
fundamental feature. More precisely, many seem to discard the inherent duality
either ex ante, by focusing on an actor—actor network derived from the original
bipartite graph (through a projection of the two-mode network onto one of the
modes), or ex post, by computing groups of actors with similar properties then
discussing the validity of the detected groups principally in terms of actors.

Typically, FCA appears to be one of only a few current methods which aim at
maintaining the duality of actors and affiliations along the whole process, from
pattern detection to taxonomy interpretation. With respect to the above-mentioned
SNA techniques (Sect. 2.1), it also relies on an explicit definition of what a group
is, rather than relying on a procedural definition. We will discuss below how FCA
also addresses the above-mentioned classical SNA challenges—dealing with group
hierarchy, overlap, and dynamics. The resulting computational complexity is also an
issue, which has been partly addressed by introducing the first practical application
of stability [41] in the very case of socio-cognitive taxonomies and knowledge
communities [42, 61].

3.2 Formal Concepts as Epistemic Communities

Before that, we first explain the plain application of FCA on affiliation networks.
Formally, we consider the affiliation network as a pair of sets of actors </ and cog-
nitive properties ¢ (described by, e.g, n-grams, lexical tags, topics, representations,
etc.), i.e., agents and notions (or “concepts” in the generic sense of the word), and
a binary relationship between them, # C &/ x €. The infent A’ of a set of actors
A C  is the intersection of all sets of cognitive properties associated with actors
of A, ie, A’ = {¢c € €|Va € A, aZc}; dually, the extent C’ of a set of cognitive
properties C is the intersection of all actor sets associated with properties of C,
ie, C' = {a € o|Vc € C,aZ%c}. Applying successively “’” yields a closure
operator. For all subsets A C & and C C %, (A”,A’) and (C’', C") are called
formal concepts and, equivalently, are maximal bicliques in the bipartite graph of
the affiliation network.

In the context of knowledge communities, an efficient qualitative interpretation
of formal concepts/biclique patterns consists in considering these socio-semantic
groups as epistemic communities (EC). Introduced in [63] and later refined by
[36] and used by many social scientists afterwards [15, 16], this notion essentially
corresponds to actor groups who (1) share some interest for a certain set of topics
or beliefs and (2) have a common goal of knowledge creation while obeying to
some set of given rules agreed upon in the underlying community. In the very
minimal sense, an EC may be formalized as a pair of agents and topics such that
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all agents share all topics; that is, a biclique in the bipartite affiliation network
(o, €,% < o/ x €). Each EC thus algebraically defined corresponds to a socio-
cognitive group which is the closure of a set of actors or equivalently of cognitive
properties—a socio-semantic pattern. See illustration in Fig. 3—middle.

Lattices and Socio-Cognitive Taxonomies This formalism addresses several of
the issues exposed in Sect.2.2 regarding interactional groups. In particular, it
enables a hierarchical representation of groups through the natural inclusion-
based partial order on formal concepts. Conceptually, this hierarchy induces a
generalization/specialization relationship: it may be represented as a lattice [5].
The most general ECs (largest actor sets/extents, smallest attribute sets/intents)
are found towards the top, while the most specific ECs are at the bottom (most
specific extents, largest intents). See illustration in Fig. 3—right. This configures
a socio-cognitive taxonomy relevant to social epistemology—for one, it is useful
to represent distributed cognition activities [38] in a given knowledge production
system, in particular the distribution of topics over actors.

Moreover, lattices configure non-Aristotelian taxonomies: ECs partially overlap.
Of course, individuals may belong to more than one EC but, more importantly,
ECs may also have more than one parent. Arguably, this property makes lattice-
based taxonomies closer to cognitive categories, where ECs may simultaneously be
subsets of several more general ECs.

Finally, it is possible to track the dynamics of these taxonomies by following
the evolution of actor sets associated with a given attribute set, thus echoing the
ambition of Simmel regarding the persistence of social groups (footnote 1). Note
that this approach also inherits a drawback typical of community detection methods
based on explicit definitions, especially in the case of cliques: computational
complexity. Even for a small number of actors and properties, the number of ECs
and the lattice size can be dramatically large [33], easily running in the thousands.
This problem is typically critical for SNA scholars, who rarely use cliques, if any.
In the next section, we discuss concrete strategies to tackle these issues efficiently.

4 Applications

From the viewpoint of FCA, knowledge communities typically feature either a
significant number of actors, or of notions, or both: it is thus key to explain and
emphasize how FCA can be of practical use despite combinatorial complexity, espe-
cially to compete or keep up with some of the above-mentioned SNA approaches,
most notably those based on procedural methods. Data reduction is here a crucial
issue, both in terms of input or output, i.e., at the level of the primary data or the
computed results.
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4.1 Datasets

We present three earlier empirical applications: two are related to scientific commu-
nities, one features political activists and motions. These case studies were diversely
introduced in [42, 60, 62]: more specific details on each of them may be found in
the respective references. In the meantime, FCA has been increasingly applied to
groups of actors sharing some properties (e.g., [4, 55]).

In all cases, the empirical material consists of text documents describing, to
some extent, who writes about or is interested in what. Actors of the corresponding
affiliation networks are identified as document authors, while cognitive attributes
are terms extracted from the plain text. A link between actor a and term c
occurs whenever a authored a document mentioning c. In this respect, epistemic
communities/formal concepts observed in these empirical case studies are strictly
speaking socio-lexical patterns.

As the number of individual terms in the original data is always very large,
especially with regard to FCA, we systematically apply some filtering relying
on simple natural language processing (NLP) techniques. We lemmatize words,
exclude stop-words, and eventually focus on the most frequent terms, additionally
selecting the most meaningful ones with the help of a domain expert. The number
of actors appears to be generally more tractable, yet when it is too large (as in the
zebrafish case), we show how simple sampling strategies can be used. See Table 1
for basic statistics regarding the datasets.

The zebrafish community case study gathers embryologists who worked on an
animal model called “zebrafish” over the years 1990-2003. This period corresponds
to the early development of the field, whose population grew approximately
tenfold [60]. Data was gathered from the publicly available bibliographical database
MEDLINE by querying papers whose abstract includes “zebrafish”—assuming that
in most cases authors who work on this animal would necessarily evoke the term in
their abstract. The ECCS dataset focuses on scholars working on complex systems,
focusing on the two first editions of the European Conference on Complex Systems,
in 2005 and 2006. The conference organizers kindly provided us with submitted
abstracts to both conferences, which we all used in the original study [42]. Finally,
the political motions example is based on the six roadmaps submitted by six groups
of members of the French socialist party towards the internal elections at their
Congress in 2008 [62]. In these texts, signatories defend their vision of where

Table 1 Basic figures

d ‘bine the si ¢ th Dataset Documents | Actors | Terms
escribing the size of the

respective empirical datasets ECCS 2005 194 413 92

in terms of original 2006 187 401 109
documents, unique actors, Political motions 6 6 85
and NLP-extracted terms Zebrafish | 1990-1995 | 533 1094 | 66

1998-2003 | 4080 9689 | 67
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the party should go in the coming years. We consider motions as actors of the
corresponding affiliation network, i.e., six nodes; we also keep 85 pre-processed
words appearing at least 32 times in the whole corpus.

4.2 Socio-Cognitive Taxonomies

Hierarchy and Overlap We first use the zebrafish case study to illustrate the
hierarchy and overlap between groups which is made possible by FCA-based socio-
cognitive taxonomies. The period 1990-1995 already features a thousand of actors
and 66 attributes—something which yields about eight million ECs and, admittedly,
can get neither drawn nor interpreted. A first reduction strategy may consist in
operating at the level of the input data by sampling the actor set, assuming that
a random portion of the population would still render a faithful taxonomy of the
whole community (if needed, removed actors may later be assigned to the computed
taxonomy). We use an affiliation subnetwork including a random share of 20% of
the population and use it to compute a formal concept lattice made of about 200k
ECs. This still represents a sizeable number of ECs, and further reduction may
be needed. A second strategy may consist in filtering the output, for instance, by
conserving formal concepts according to some relevance criterion. The so-called
iceberg lattices [67] have been classically used, whereby a certain portion of the
top of the lattice is conserved, assuming that this portion corresponds plausibly to
the most interesting or the most meaningful part of the taxonomy. Extent size, i.e.,
population size of ECs, is a popular criterion; distance to the top may also be used.
In Fig. 4, we show such a truncated lattice for the period 1990-1995, together with
the last period 1998-2003, to exhibit the temporal evolution.

Let us first focus on the general structure for a given period, say 1998-2003, after
the zebrafish community reached some maturity. This picture describes succinctly
its main research axes, their representativity, overlaps, and hierarchical relation-
ships. To put it shortly, we see three pillars: (1) comparative studies occupy an
important position (human/mouse/homologous genes), (2) the study of the nervous
system, around the dorsal and ventral plates, also gathers a certain proportion of
scholars, and (3) systemic studies linked to signaling during embryonic development
are well-represented (signal/pathwayl/growth/receptor).

Temporality Additionally, we may compare lattices for different periods within
the same knowledge community. By focusing on identical attribute groups (intents)
across time, FCA makes it possible to render the temporal evolution and relative
stability of, at the macro-level, socio-cognitive taxonomies and, at the meso-level,
social groups—a key issue in SNA as well. Here, however, the inter-temporal
correspondance of groups will be based on attributes rather than interactions.

In practice, we represent evolution by coloring ECs corresponding to a given
intent according to the growth of their population share (extent representativity).
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Fig. 4 Truncated lattice of the zebrafish community [59, 60]. Lines represent direct hierarchical
(inclusion) relationships. Each EC is described by a word list (the intent of the formal concept) and
its actor size as a percentage of the underlying population (extent of the formal concept) in bold
for 1998-2003 and in parentheses for 1990-1995. White disks indicate growth from the first to the
last period, solid black disks indicate decline, and dashed disks correspond to relative stagnation
(arbitrarily defined as variation smaller than =15%). Percentage sums go over 100% as a result of
multiple membership. By definition the botfom node gathers all attributes (not listed here)

We see in Fig.4 that comparative studies have expanded within the zebrafish
community, together with the analysis of systemic signals, which echoes a general
trend in molecular biology at that time, whereas studies centered around the
embryonic nervous system are progressively fading (also a general trend in the
surrounding fields). While showing the diversity of the distribution of cognitive
tasks within the community, this comparison also demonstrates that it enjoys a
remarkable stability, given that the underlying population grew tenfold between the
two periods.

Approximation We now turn to the political motion dataset to illustrate reduction
strategies further. We use stability [41], a criterion which removes redundancy
across the whole lattice and has been widely used in the FCA community since its
inception [11, 61]. It indeed constitutes a robust approach to deal with potentially
large lattices such as those emerging from empirical social data, while still paying
attention to smaller yet plausibly meaningful and representative patterns which
would be filtered out by top-down approaches based on, e.g., iceberg-like criteria.

In a nutshell, the (extensional) stability of a given formal concept (A”,A’) is
formally defined as o(A”,A") = |{B C A”|B' = A’}|/2""], i.e., the proportion of
subsets B of the actor set A” of a given formal concept whose intent B’ is identical
to A’. Put differently, this criterion measures how much the existence of a given EC
depends on its actors. The higher the o, the more stable the EC, and the more likely
it will be presented in the final results.
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Fig. 5 Stabilized concepts for the political motion dataset (after [62]). Letters A—F refer to the
six motions. Here, for the sake of readability, cognitive attributes of nodes are labeled in a
parsimonious way: we only indicate terms which are added to formal concept intents from rop
to bottom; for instance, the node “(france, CDF)” corresponds to an EC gathering motions CDF
and terms “france,” “GMO,” and “prices” (terms are thus inherited from bottom to top)

Figure 5 presents a reduced taxonomy based on stability. It remains readable
while featuring specialized groupings quite deep down from the top. At the most
general level, the structure exhibits the omnipresence of issues related to purchase
power—all motions talk about “prices”—or GMOs, used by all but motion A. Yet,
we also see progressively smaller groupings: for instance, school-related issues
(used by motions B, D, E, and F), and then, even lower, joint use of “sustainable
development” by D and E, or “salary” by B and F. Dually, we see that motion D is
present in almost all ECs by addressing issues present in all other motions.

Combining Both We finally use the ECCS case to illustrate the application of
both principles: temporality and approximation (see [42] for more details). Figure 6
shows the 15 most stable concepts for lattices computed over all authors in each
year.

On the whole, the main pillars of this scientific field revolve around “networks,”
“models,” and their “dynamics,” as well as, to a weaker extent, “structure” and
“distribution” (which, in this context, most often refer to scale-free distributions).
At the global level, structures for both time periods are relatively comparable.
A finer examination reveals some differences: several specific ECs (subconcepts)
disappeared in 2006 ({network, dynamics}, {dynamics, model, process}, {dynam-
ics, process}, and {information}) while others appeared ({interaction}, {network,
social}, {model, agent}, and {simulation, model }). Focusing on specific intents also
provides extra information on the epistemological evolution in 2006: for instance,
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Fig. 6 Stabilized concepts for ECCS-2005 and ECCS-2006 (after [42]). Figures are absolute size
of ECs

the EC on {network, dynamics} does not exist anymore on its own, while {network,
dynamics, model} still does, suggesting that network dynamics is entirely subsumed
by dynamic network models.

5 Concluding Remarks

Beyond the diversity of the SNA literature on the detection of groups, we could draw
a fundamental dichotomy between interaction-based and affiliation-based group
definitions. In the very case of scientific communities, social scientists argue for
a similar dichotomy [40] between ‘“taxonomic collectives,” which are relevant at
a high level of observation, and interaction groups, in which actors are embedded
and which are also relevant at the local level to understand actor behavior. The case
studies presented here show how the notion of EC and, behind this, FCA applied
to affiliation networks provide a description of the configuration of actor groups in
knowledge communities in a manner at least similar to what is possible through
classical interactional SNA, while taking actor attributes into account.

With these dichotomies in mind, we can sketch some of the issues where FCA
could create a most relevant bridge over SNA for the study of knowledge networks.
This includes, first and foremost, the study of the correlation between affiliation and
interaction communities. In other words, describe to what extent socio-cognitive
communities are also strongly cohesive in interactional terms, how taxonomic
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collectives may be interaction groups and whether epistemic communities do cover
various interaction communities. More generally, do one-mode communities cor-
respond to two-mode communities or formal concepts [58]? Here, some empirical
answers have been recently proposed in this direction [65] relying on the so-called
alpha concept lattices [66].

Second, on a more practical and theoretical level, the development of approx-
imation strategies is key to guarantee the acceptance of FCA by SNA scholars.
This is all the more true in socio-cognitive contexts where result interpretability,
both in terms of social groups and in terms of cognitive taxonomies, needs to be
manually tractable and therefore involve a sensibly limited number of categories.
Stability-based pruning is an option among many, especially in the case of noisy
data stemming from social behavior [39]. The design of scalable selection criteria
[35] adapted to a socio-cognitive context could be another promising direction of
research.

Third, much remains to be done with respect to the dynamics, for instance, by
digging further the intensional stability of communities across time. As could be
seen here, socio-cognitive taxonomies plausibly evolve slowly, even in the case of
a high turnover of actors from a period to the other. On the FCA side, this touches
the issue of inter-lattice comparisons [73] and their temporal analysis [24, 74], even
though this area remains relatively nascent in FCA. On the side of SNA, group
evolution is mainly assessed through a single-network lens. Most likely, appraising
simultaneously the joint evolution of social and cognitive patterns, possibly to
the point where social groups are even defined by the dynamic stability of socio-
cognitive patterns, would constitute a fruitful contribution to social analysis.

Acknowledgements The present contribution partially relies on ideas introduced in a book
chapter originally published in French and entitled “Communautés, analyse structurale et réseaux
socio-sémantiques” [59].
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Individuality in Social Networks

Daniel Borchmann and Tom Hanika

1 Introduction

Social networks form an integral part of human societies, and their study has been
at the core of social science for a long time. It is only recently that mathematical
methods have entered the stage, mainly because social networks are now made more
explicit than ever due to the availability of social media. This has allowed classical
mathematical instruments from graph theory and elsewhere to be applied to social
networks—with astonishing results.

One of the first breakthroughs in understanding social networks by means of
properties of their graph representations is due to the seminal work by Watts and
Strogatz [26]. Here the authors introduce the notion of small world networks,
encompassing the two simple graph properties of average shortest path length and
average local clustering coefficient. Based on these properties, a graph is said to be
a small world network if the average shortest path length is small and if the average
local clustering coefficient is large. The second seminal result in that direction is the
work by Barabési and Albert [3], where social networks are characterized as graphs
whose degree distribution follows a low-degree power-law distribution. It turns out
that, surprisingly, both small world networks and power-law distributions describe
social networks to a large degree.
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In the wake of the results around small world networks, a plenitude of graph-
related properties have been reinterpreted as properties of social networks, a popular
example being the interpretation of cliques in social networks as social groups.
However, despite a comparably vast body of research, characterizing all relevant
aspects of social networks in terms of mathematical properties of their graph
representation has not been achieved to a satisfactory degree. In particular, graphs
exist on which existing measures cannot differentiate further, but which intuitively
represent qualitatively different social networks.

In this work we want to consider another facet of bipartite social networks,
which, as far as we can see, has not been investigated in the literature. This facet
is individuality in social networks, and by this we intuitively mean the number
of unique groups of users a social network has. Note that despite the fact that
individuality is concerned with individual users of a network, the measure of
individuality we want to investigate in this work is a property of the whole network.
It should thus not be confused with notions such as centrality or betweeness, which
apply only to individual vertices instead.

To define the uniqueness of a group of users, we consider the uniqueness of its
milieu in the given bipartite social network. This intuition of individuality strongly
depends on the actual definition of “milieu,” a notion that has been discussed in
the social sciences before. However, we shall define and employ in this work an
interpretation of this word that is different from the one usually used [24].

In a classical representation of social networks as graphs, two users are linked
by an edge if and only if they “know” each other in this network. Then the notion
of a milieu of a particular user could just be represented as the neighborhood of
this user in this graph. In this work, however, we want to take up a different stand
by representing bipartite social networks as formal contexts. These are structures
originating from the theory of formal concept analysis [9, 27] that allow general
investigations of data sets comprising of objects with certain attributes. Using formal
contexts, we shall represent a social network as a collection of users with certain
properties, where the actual choice of the properties is a matter of modeling. In this
way, we can represent various aspects of a social network in a uniform manner.

The main goal of this work is to illustrate that our new notions of individuality
are both natural and meaningful. To this end, we shall examine these measures on
various real-world data sets, providing evidence that our definitions are reasonable.
Even more, we shall show that networks that are similar in terms of their small world
character can vary widely when it comes to individuality, suggesting that our new
notion expresses properties of social networks that are not covered by the standard
notions.

The paper is structured as follows. After revisiting some existing research on
mathematical investigations of social networks in Sect.2, we shall have a closer
look on how to represent social networks as formal contexts in Sect. 3. Thereafter,
we shall present our notion of individuality in Sect. 4, together with the two auxiliary
measures of individuality distribution and average milieu size. An experimental
investigation of these new notions follows in Sect.5. We close with Outlook in
Sect. 6.
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2 Related Work

Formal concept analysis originated as a subfield of mathematical order theory,
more precisely of lattice theory [4]. Lattice theory itself has already been applied
to social network analysis, in particular to understanding the clique distribution
(among others) in social networks, for example, in [7]. In this work concept lattices
were used to analyze the relations between cliques.

Cliques indeed will play a major role in our considerations, and, as already
mentioned, cliques have been investigated in the realm of social network analysis
before. For example, the clique distribution of social networks was investigated
in [28], where the focus was on empirically studying the connection between the
power-law distribution of network nodes and the density of cliques. The authors
showed to what extent the clique size distribution can be used to estimate the clique
density in a social network. In [10] the authors proposed a method to efficiently
estimate the distribution of clique sizes from a probability sample of network nodes.
However, both works considered uni-modal social networks only. Previous work
that also considered clique distributions in bi-modal networks is [22], where it is
shown that medium sized cliques are more common in real-world networks than
triangles. However, here only cliques in the projected graph were considered, and
not in the original bipartite graph.

To the best of our knowledge, individuality in social networks as we consider
it in this article has not been studied before as a property of social networks. The
only relevant prior work is from the second author [2], on which this article greatly
expands.

3 Social Networks as Formal Contexts

Formal concept analysis deals at its core with the representation of complete lattices
through formal contexts. These are structures K = (G, M, I) where G and M are sets
and I € G x M is a binary relation. The standard interpretation of formal contexts
is that the set G is a set of objects, the set M is a set of attributes, and (g,m) € I
signifies that g has the attribute m.

Indeed, modeling bipartite social networks as formal contexts is straightforward:
consider a social network and identify within this network two sets U and A. We
think of the set U as the set of (interesting) users of the network and of the set
A as the set of (relevant) attributes of the users in U. Note, however, that this
interpretation of U as a set of users and A as a set of attributes is only one among
many possible ones, and there is no restriction on the type of elements contained in
these sets.

After having identified the sets U and A, a formal context representing a social
network is of the form (U, A, I) where (4,a) € I foru € U, a € A only if user u
has attribute a. This representation is also closely linked to considering bi-modal
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cabaret ballet opera
O O O
O O O O
userA userB userC userD

Fig. 1 Small motivational example, called the music interest social network (misn)

social networks, i.e., social networks that give rise to a bipartite graph. The benefit
of choosing formal contexts over bipartite graphs is that in the former case we can
apply methods from formal concept analysis to obtain further insights.

The particular choices of the user set U and the attribute set A are modeling
decisions, and finding these sets may not at all be straightforward. For the set U
one usually collects all real users of the framework, but other choices—depending
on the particular application in mind—are possible. The set A of attributes can
contain usual features such as likes, posts, and gender, but can also contain rather
“unnatural” features such as other users. In this case, one could define, say, that
some user u “has” some other user v as a feature if and only if they are linked in the
original social network.

A small example of a social network is given by the bipartite graph in Fig. 1. A
formal context representing this network is

K., A Ccabaret = ballet = opera

userA X X
userB X X
userC X X
userD X

In formal contexts we can define two natural derivation operators as follows. Let
A C G be a set of objects. Then the set A’ of common attributes of A is defined as

A ={meM|VgeA:(g,m)el}.

Dually, for a set B € M of attributes, we define the set B’ of satisfying objects of B
as

B :={geG|VYmeM:(g,m)el}.
Note that although both operators are denoted by -/, there is usually no danger of

confusion, as it is clear from the context whether we are dealing with a set of objects
or a set of attributes.
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A pair (A, B) is called a formal concept of K if and only if A’ = B and B’ = A.
The set A is then called the extent and B is called the intent of the formal concept
(A, B), respectively. Indeed, for each set A C G, the set A is an extent of K if and
only if A” = A. The set of all formal concepts of K is denoted by %5 (K).

Let us point out the connection of formal concepts to cliques in bipartite graphs:
for any formal context K emerging from a bipartite graph, every formal concept of
K corresponds to a maximal bi-clique in the graph and vice versa.

On the set of all formal concepts 2B(K) we can define a natural order as follows.
Let (A1, By), (A2, By) € B(K). Then we say that (A,, By) is more general than
(A1, By), in symbols (A1,B;) < (A, B,), if and only if A; € A,. While this
definition looks rather asymmetric at first, it turns out that (A, By) < (A, By) if and
only if B, € Bj. Moreover, the relation < is an order relation, and B (K) together
with < forms a complete lattice, the concept lattice of K. Conversely, one of the first
results of formal concept analysis states that every complete lattice is isomorphic to
the concept lattice of some formal context. In this way, formal concept analysis acts
as a representation theory of complete lattices. Formal concept analysis also allows
to link lattice theory to relational data sets, as the latter can naturally be represented
as formal contexts. In this way, formal concept analysis makes accessible methods
from lattice theory for the study of relational data tables.

4 Individuality of Social Networks

We have motivated our notion of individuality by the uniqueness of user milieus.
Clearly, this motivation strongly depends on the particular interpretation of the word
“milieu”, and it is the purpose of this section to provide a formal definition for
it. Indeed, modeling a social network by a formal context suggests an immediate
definition that is both simple and, as we find, convincing.

Let K = (U,A,]I) be a formal context representing a social network. Then for
each user u € U we define the milieu of u simply as the set {u}" of attributes common
to u. Moreover, if V C U is a set of users, then the milieu of V is the set of attributes
common to all users in V, i.e., V'. Using this definition of user milieus, we want
to measure the individuality of a social network K by the amount of milieus that
occur in K. Indeed, we shall be a bit more careful here, and propose a notion of
k-group individuality as a measure to quantify the number of milieus that occur
in K as the milieu of groups of size k, in the sense of how many of the milieus
occurring in our social network K define groups of size exactly k, compared to
the number of all groups of size k. Then, the more individuality a social network
contains, the more individual groups of a certain size can be defined through their
milieu. Conversely, if a social network is quite homogeneous, then defining certain
subgroups of individuals by their milieu is improbable.

This approach can naturally be rephrased in terms of formal concept analysis:
measuring individuality in K for user groups of size k is the question of how many
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subsets V C U with |V| = k can be expressed in terms of V = B’ for some B C A.
In other words, we ask for the number of extents of size k in K and use this number
to measure the k-group individuality in K. The following definition captures this
idea.

Definition 1 Let K = (U, A,I) be a formal context. Define the set Ext;(K) as the
set of extents of K of size k, i.e.,

Ext(K) :={VCU|V=V"|V|=k}
Then the k-group individuality gi, (K) of K is

|Ext (K)|

i, (K) = —————.
glk( ) mm{(‘[k]‘),2|A|}

e))

Note that we also normalize by the factor min{ (lgl), 21413 because this is the max-

imal number of k-groups definable by their milieu, and thus allows comparability
between individuality of different networks. The used normalization is not optimal,
as for k larger than 1 the value of gi,(K) rapidly decreases. However, so far the
authors are not aware of other normalization approaches.

On a side note, one may also consider the dual measure taking the intents of size
k, which would help to measure and describe the individuality of a social network
from the attribute point of view.

In terms of measuring the individuality in a social network, the value gi, (K) is
of particular interest, as this is the percentage of users in this network uniquely
determinable by their milieu. In this case, we shall also talk about the user
individuality vi(K) = gi, (K) of a social network K.

Using our example from Fig. 1, we first compute the extent sets. As we see in
Fig. 2, the concept lattice consists of four elements (apart from the top and bottom
ones), and consequently there are four different extents. Indeed we obtain

Fig. 2 Formal concept lattice Q.
for Kpisn

cabaret @ ballet @ userD

opera @Q_userC, userA O userB
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Ext; = {{userB}},
Ext, = {{userB, userD}, {userA, userC}},

Ext; = {{userA, userB, userC}}.

Therefore, gi; (Kmisn) = i, since only one user has a unique interest that is not
covered by another user. We also obtain gi, (Kpisn) = %, demonstrating that in this
network the individuality of “pairs” of users is higher than for individual users.
Finally, gi;(Kmisn) = %, showing that there is only one group of size three.

The network would be changed considerably if userC would have liked ballet
instead of cabaret. In this context, which we want to call misn’, there would be
three extents of size one and therefore gi, (Kpisn') = %. Additionally, the number
of extents of size two would be four, resulting in gi, (Kpisw) = % In short, by not
being a copy of the interest of userA, userC can shift the individuality of the network
massively by one interest change.

A remark on computing k-group individuality is in order. From the very definition
of gi, (K), it seems as if computing this value requires to iterate through all subsets
of G of size k and check whether they are closed under . However, using methods
from formal concept analysis, the overall effort can be reduced to compute only
extents of size at most k. More precisely, the algorithm of Next-Closure [9] is able to
enumerate closed sets of arbitrary closure operators in a particular order. Exploiting
the fact that -” is a closure operator allows us to compute all extents of K with
only polynomial overhead. Furthermore, Next-Closure can be extended to compute
only extents of size at most k, further reducing the overall computation costs. A
drawback is that Next-Closure cannot be extended to only compute extents of size
k, a disadvantage that is not of profound severity, since k-group individuality is
usually computed for values k = 1,2, ..., £ up to some limit £ € N.

Note that group individuality also allows detecting the presence of large homo-
geneous groups, i.e., groups of users with the same milieu. Clearly, such a group of
size k exists if and only if gi, (K) > 0. In other words, the set

gid(K) := {k € N | gi,(K) > 0}

can be seen as a quantity for the individuality distribution in the social network
represented by K.

Finally, another aspect of group individuality that we want to consider in this
work is the question of how much information is necessary to define the milieu of
a group of size k. In terms of our modeling of social networks as formal contexts,
we reformulate the question to ask how many attributes are necessary on average to
define a unique group of size k that is itself identifiable through its unique milieu.
This gives rise to the following definition.



26 D. Borchmann and T. Hanika

Definition 2 Let K be a formal context and let k € gid(K). Define the k-group
average milieu size ams;(K) of K as

1
ams(K) 1= s - .
) = @) ve;k:(K)' |

For k ¢ gid(K) the value of ams;(KK) is not defined. It may be set to O in those
cases if this permits further calculations.

Average milieu size can be naturally linked to robustness of group individuality:
to deprive a group of k users of being definable in terms of their milieu, on average
ams(K) attributes have to be removed from the social network. Consequently,
if there are more than ams;(K) attributes removed from the network, substantial
changes in the k-group individuality should be expected. Verifying this intuition is
not within the scope of this work, and is left for future work.

S [Experimental Results

To illustrate our definitions of measuring individuality in social networks, we shall
investigate seven different real-world social networks, introduced in Sect.5.1. We
shall see in Sect. 5.2 that all these social networks are indeed small world networks.
In Sects.5.3, 5.4, and 5.5, we examine group individuality, group individuality
distribution, and average milieu size of these networks. Finally, we discuss our
findings in Sect. 5.6.

5.1 Data and Modeling

In the following we provide short descriptions of the used data sets. The graph
properties of all mentioned graphs are summarized in Table 1.

Table 1 Investigated (bi-)partite graphs and their properties

Graph Vertices in U Vertices in V Edges Edge-density
Gewm 40 25 95 0.095
Grp 899 522 7089 0.015
GALNM 111 134 480 0.032
GpLNm 607 209 5361 0.042
GAPLNM 79 188 903 0.061
GnB 1495 367 1746 0.003

Gsw 18 14 89 0.35
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5.1.1 Club Membership Network (CM) [14]

This data set consists of a bipartite graph describing the affiliations of a set of
corporate executive officers to a set of social organizations. This graph consists
of 65 vertices representing 40 persons (Ucym) and 25 organizations (Veyp), as well
as 95 edges connecting them. In the following we shall denote this graph by
Gem = (Uem U Vewm, Ecm)-

5.1.2 Facebook-Like Forum Network (FB) [17]

This data set was created by using data from an online community of students from
the University of California, Irvine. By using a forum and posting messages to
various topics, the students and the topics constitute a bipartite social network. This
network consists of a set of 899 users (Ugg) and a set of 522 topics (Vgg) as well
as 7089 edges relating a topic to a user. We shall refer to the resulting graph as
Grg = (Urp U Vgs, Ers).

5.1.3 Lange Nacht der Musik (LNM) [20]

This data set stems from an annual cultural event organized in the city of Munich
in 2013, the so-called Lange Nacht der Musik (Long Night of Music). The
corresponding network consists of two bipartite graphs and their intersection. All
three of them make use of the same set of vertices, consisting of 1159 users (Urnm)
and 212 distinct performances (Vinm)-

The first graph records for some users their attendance to performances. We refer
to this attendance graph by GAalNM = (VALNM U UarnMm, EALNM), where Varnm C
Vinm and Varnm € Vinwe

The second graph represents the preferences of some users for where to go during
the event. We call this graph the preference graph and refer to it in the following as
Gpinm = (Vpnm U UpLnm, Epinm), Where Veinm € Vinw, and Veinm € Vinw.

Finally, by intersecting the vertex sets of Gapnm and Gppnm and restricting
Earnm accordingly, we obtain a new graph Gapr N that is the graph of performance
attendances where the preferences of the users were known beforehand.

5.1.4 Norwegian Board Members (NB) [21]

This data set was compiled to investigate interlocking directorates among 384 public
limited companies in Norway. This network consists of 367 companies (Vng), the
set of their 1495 directors (Ung), 1746 edges connecting them (Eng). We shall refer
to this bipartite graph by Gng = (Ung U Vg, ENB)-
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5.1.5 Southern Women (SW) [24]

A systematic collection observing the social activities of 18 individual women
(Usw) over a 9-month period. In this time they attended 14 events (Vsw). We shall
refer to this graph data set by Gsw = (Usw, Vsw, Esw)-

5.2 Small World Network Properties

Graphs arising from social networks empirically satisty the small world network
property (SWP), i.e., they expose specific characteristics in terms of local clustering
and global separation [5, 25, 26]. With exception of the LNM and NB networks,
it is well known that all the networks mentioned in the previous section satisfy
SWP to a certain extent. It is the purpose of this section to remind the reader of
what those specific characteristics are and what particular values they exhibit on the
corresponding networks.

In dealing with networks based on bipartite graphs, so-called bi-modal networks,
it is common to employ projections to obtain the so-called uni-model social
networks that allow arbitrary links between vertices. While this approach may result
in unforeseeable difficulties [29, 30], we shall nevertheless employ it in our work.
The main reason for this is comparability: the methods from [26] only apply to
uni-modal networks, and projections were used to turn bi-modal networks into uni-
modal ones.

Given a bipartite network G = (U U V,E), we obtain the projection GV =
(U, EY) of G by the following rule: whenever two users u;, u, € U share a common
neighborin G, i.e., {uy, v}, {uz, v} € E for some v € V, then an edge in the projected
network GU will connect them, i.e., {uy,u} € E. Then GY is an undirected graph
that corresponds to a uni-modal social network.

Since many observations of network properties are inherited from the network’s
degree distribution [13], it is common to validate the SWP of given networks
against a so-called null model: to confidently claim that a graph indeed represents
a small world social network, the values for local clustering and social separation
in the null model should not be larger than in the original network. Here a null
model for a uni-modal projection of the bipartite social network is represented
by a graph that possesses an identical vertex degree distribution but otherwise
consists of random connections between the vertices only. To obtain such a null
model, we employ the algorithm from [11], which shuffles the edges of the original
projection of the bipartite social network while preserving the degree of every
vertex. In order to obtain a valid null model, i.e., independent from the edges of
the input graph, we shuffle for at least 100 times the number of edges in the input
graph [15].

In the following we shall explain in detail how global separation and local
clustering are measured by means of average shortest path length and average local
clustering coefficients.
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5.2.1 Average Shortest Path

A path from u to w in a graph is a sequence of n € N vertices successively connected
by edges. The length of such a path is n. A shortest path between nodes u and v is a
path of minimal length that starts at # and ends at v.

A social network possessing the small world property must exhibit an average
shortest path length (ASP) that is low compared to the size of the network. For
example, the follower graph of twitter has an average path length of about 4.17 [16],
the internet router network has a value of 9.51 [23], and the southern women data
set has a value of 1.09 [8].

The results we obtained in our experiment are listed in Table 2. All mentioned
bipartite networks exhibit a low average shortest path length in their projected
graphs. The numbers vary from 2.01 for the attendance network of LNM to 1.09
in the Southern Women data set. Moreover, in almost all cases the corresponding
null model features about the same average shortest path length, as expected
for small world social networks, with the only exception being the Norwegian
Board Membership graph. For this network the value increases by about 15%. The
exceptionality of NB among all data sets will prevail in the later measures.

5.2.2 Average Local Clustering Coefficient

Intuitively, a social network possesses a high local clustering, i.e., users that are
connected to a particular user are also likely to be connected themselves. Local
clustering in networks is measured by introducing a particular quantity called the
average local clustering coefficient (ALCC) [26], and every social network must
have a comparably high value for this parameter.

The average local clustering coefficient for a graph G can be calculated using the
local clustering coefficients C; for every v; by alcc(G) = % <>, Ci, where

_ 2- 1y, v € E| v, v € Nij
l INi| - (IN;] = 1)

and N; := {v € V | {v;, v} € E} is the neighborhood of v; in G.

Table 2 Average shortest path lengths (ASP) and average local clustering coefficients (ALCC),
alongside the values in a corresponding null model (NM)

Graph # Edges Density ASP ASP:NM ALCC ALCC:NM
Gem 259 0.86 1.14 1.14 0.93 0.92
Grp 123,231 0.30 1.70 1.70 0.69 0.62
GaLNM 1145 0.19 2.01 1.93 0.52 0.31
GpLNM 78,415 0.42 1.63 1.63 0.74 0.70
GAPLNM 586 0.20 1.58 1.58 0.71 0.64
GnB 421 0.01 1.34 1.55 0.20 0.01

Gsw 138 0.90 1.09 1.09 0.94 0.93
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To get a feeling of what certain values of ALCC actually mean for social
networks, let us look at some examples: the aforementioned internet router network
has an ALCC of 0.03, see [26]. Hence, it would not be considered as a small
world social network. In comparison, the twitter followers network has an ALCC of
0.3 [16], which is bigger, but yet not high. Thus, twitter is a social network in which
the small world property is not pronounced that much. A good example for a social
network with a strong small world property is the one formed by actors using their
common movies, which has an ALCC of 0.79, see [26].

Table 2 shows the values of ALCC of the projections of our data sets and of a
corresponding null model. Here we observe values between 0.20 for NB and 0.94
for SW, and the values in the null model are lower than in the original networks.

5.2.3 Summary

The investigated data sets clearly exhibit small world network character, with excep-
tion of the Norwegian Board Member network, because of its low average local
clustering coefficient. Nonetheless, this is a social network, since it is derived from
real social data, showing that the heuristic of small world networks has its limits
when it comes to identifying social networks. Because of this, it will be even more
interesting to see the results for our new individuality measures on this network.

A drawback of our approach to identify small world networks is the usage
of projections to obtain uni-modal networks from bi-modal ones. Indeed, in the
literature bi-modal social networks are rarely analyzed without transforming them
into uni-modal networks, since there are only few methods that can be directly
applied to the former. With our new individuality measures we therefore hope to
provide a reliable new measure that can be directly applied to bi-modal networks.

5.3 Group Individuality

We present in Table 3 and Figs. 3 and 4 the values of k-group individuality for our
data sets for k = 1, 2, 3, 4. The largest value of 1-group individuality can be found
for the NB data set with 0.96. This was not expected due to the very low value of

Table 3 Experimental Graph i, g, |z o
results for gi, for oes To0a To 61 0.00
k=1,2,3,4 Gem . . . .

Grp 0.70 /0.02 1 0.00 |0.00
Garnm | 091 10.02 0.00 | 0.00
Gpnm | 0.69 10.02 1 0.00 | 0.00
Gapnm | 0.81 10.10 | 0.00 | 0.00
Gnp 0.96 |0.00 | 0.00 |0.00
Gsw 0.39 /0.08 10.02 |0.00
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ASP, which would imply many common neighbors and therefore high probability
for similar neighborhoods. A first guess could account the very low value of ALCC
for this, which is untypical for small world networks. Yet, if we consider ALNM
(ALCC of 0.52) and APLNM (ALCC of 0.71), we also observe very high values
for 1-group individuality. Hence, in our experiments ALCC does not seem to be
associated with 1-group individuality. This observation also carries over to 2-group
individuality.

In general, no correlation of 1-group individuality with ALCC, ASP, or the size
of the social network can be found in our results. This is particularly clear for
the networks FB and CM, whose k-group individuality is similar, but which are
very different in size. For 2-group individuality, the APLNM network shows the
highest value with 0.10, followed by SW with 0.08. Indeed, these two data sets
illustrate that there seems to be no connection between ALCC, ASP, or network
size with the k-group individuality, and there is also no indication that k-group
individuality depends in any way on the edge density of the network. Moreover, the
amount of deviation of the null model to a data set cannot be connected to k-group
individuality: the data sets of NB and APLNM are counterexamples to this, as both
are similar in their k-group individuality, but differ significantly in their deviation to
their null models. To sum up, all this substantiates our original intuition that group
individuality is a completely new and independent measure for social networks.

As can be seen from the values of group individuality, this measure allows us
to differentiate between the various networks by exhibiting qualitatively different
values. Moreover, we can see that in all cases increasing the value of & results in k-
group individuality to decrease significantly. This is indeed expected behavior from
the definition of group individuality, since the denominator in gi, is growing rapidly
with k. However, from the perspective of understanding social networks, the low
values of gi, for k > 1 might itself be seen as a necessary property for a small world
network: the formation of large groups definable by their milieu is something that
can hardly be expected. Indeed, large values of k-group individuality for values k >
1 are usually a sign for artificiality: it is easy to generate a formal context, and hence
a bi-modal network, with k-group individuality of 1 for k > 1, examples being fixed
row density contexts [6]. Those formal contexts, however, possess a lot of symmetry
and are thus highly artificial. On the other hand, in most of the investigated data
sets we can still observe some non-zero values for k = 2, 3, and those values could
represent intrinsic properties of the underlying network. Thus the presence of larger
groups definable by their milieu could also be associated as a necessary property of
social networks.

5.4 Individuality Distribution

In contrast to group individuality, group individuality distribution cannot be visual-
ized in the usual manner, since the latter is a set instead of a simple number. Instead,
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for every network represented by a formal context K, we computed gi, (K) for every
k from 1 up to the number of users G in the data set. We then identify the value
kmax < |G| such that k., € gid(K), i.e.,

kmax = max(gld(K) \ {|G|})

To visualize gid(K), we then plot its indicator function 1gen)ick,,.}(gid(K)). The
results are shown in Fig. 5.

The first thing we can read off from the diagrams is of course the corresponding
values of kyx, the size of the biggest individual group. Furthermore, the density of
lines in the plot signifies the existence of groups of various sizes in the network: the
more lines are present, the more groups of different sizes exist that are definable
through their milieu. From this perspective of its individuality distribution, we
perceive PLNM as special, compared to the other networks, because its individuality
distribution appears to be very dense. This is also the case for the SW network,
because with fourteen users the value for k.« of twelve is also very large. Moreover,
comparing PLNM with a data set of comparable size like FB, the structural
difference between these networks can be spotted easily: for PLNM the parameter
kmax 1s double as large as for FB. Therefore, even though both networks have
similar values for ASP, ALCC, and even for user individuality, the PLNM network
seems more interesting than the FB network with respect to their individuality
distributions. Indeed, we consider networks with a large value of k.« to be more
interesting from this point of view.

A more thorough examination reveals that none of the networks exhibits large
gaps in their individuality distribution. This is a bit surprising, because one may
have expected the existence of very large individual groups and also big gaps in the
individuality distribution to the smaller groups, but this is not the case. In general,
except for SW, no network exhibits big individual groups definable through their
milieu compared to the number of its users.

Finally let us point out that although APLNM is a sub-network of ALNM, their
individuality distributions are very similar, although their sizes differ significantly.
Based on this observation, one could conjecture that a large part of the individuality
of ALNM is already contained in APLNM, or put differently, that most of the
individuality of ALNM comes from the APLNM sub-network. However, this
conjecture requires further study that is not within the scope of this work.

5.5 Average Millieu Size

The results for our experiments on average milieu size are presented in Table 4
and Figs. 6 and 7. For every data set we computed ams; for k = 1,...,7. Indeed,
for comparing these results with the ones in Sect. 5.3, a maximal value of k = 4
would have been sufficient. Yet we observed an interesting peak for the CM data
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Table 4 Values of ams; for Graph ams; |ams, |amsz | ams; |amss |amsg |amsy

k=1...7 Gem 425 |3.50 [250 (1.75 |1.00 |3.00 |2.00
Grp 9.80 [3.33 |2.55 |2.18 [1.98 |1.69 |1.59
Gainv | 458 1217 145 147 |1.25 |1.33 | 1.14
Gpinv | 115|582 [4.69 [4.07 |3.62 333 |3.13
Gapnm | 137 [5.04 339 265 221 |[191 |1.69
GnB 497 131 |[1.12 | 1.00 |1.00 |1.00 |1.0
Gsw 7.14 |523 |3.85 |270 243 200 |20

amsy, for k& from 1 to 7 of CM amsy, for & from 1 to 7 of FB
14 14
12 12
10 10

amsy, value
amsy, value

S NN = O
[ = e

o 1 2 3 4 5 6 7 8 o 1 2 3 4 5 6 7 8
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amsy, for k from 1 to 7 of NB amsy, for k& from 1 to 7 of SW
14 14
12 12
o 10 o 10
s 8 E 8
£ 6 6
! E
2 2
0 0
o 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
k k

Fig. 6 Average milieu size (ams;) for CM, FB, NB, and SW data sets (from top left to right
bottom)

set, so we decided to show the result as seen. Additionally, we bounded for all plots
the maximal value of their y-axis to fourteen to make comparison between the data
sets easier.

Comparing the properties of the previous sections, as shown in Tables 1 and 2, to
the values of average milieu size in our data sets, again no immediate correlation is
visible, suggesting the independence of the introduced measure. In particular, a high
value of group individuality does not imply anything on the average milieu size and
vice versa. Moreover, the plot for the CM network reveals that, surprisingly, average
milieu size does not necessarily need to be monotone in &, as suggested by the other
plots.
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amsy, for k& from 1 to 7 of ALNM amsy, for & from 1 to 7 of PLNM
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Fig. 7 Average milieu size (ams;) for ALNM, PLNM, and APLNM data sets (from fop left to
right bottom)

Among the plots, the one for the NB network stands out for its low average
milieu size for groups of size k > 1: on average all k-groups have about one
attribute in common. Therefore, groups of two or more users rarely have an attribute
in common. It is important to point out that in particular the average clustering
coefficient is not able to represent this fact: compared to the NB network, the ALNM
network has similar average milieu sizes, but a significantly larger value for ALCC.

An interesting observation in the plots is the difference between average milieu
size for groups of size 1 compared to larger groups: there is usually a steep decline
from the value of ams; to the one of ams;, say. One may consider a ratio between
these values as a measure of how different the milieus of users are compared to
those of larger groups of users.

Finally, as explained in Sect. 4, average milieu size can be perceived as a measure
for the robustness of the number of k-groups. For this we observe that the APLNM
data set reached a value of 14 for ams;, and hence the milieus of milieu-definable
users consist on average of 14 attributes. We consequently conjecture the robustness
of the user individuality in the APLNM network to be very high, but leave an
experimental validation of this hypothesis for future work.
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5.6 Discussion and Interpretation

The measures introduced in this work clearly represent facets of individuality in
social networks, and it was the purpose of this Sect. 5 to demonstrate the usability
and benefit of these quantities. To this end, we discussed various cases where the
classical notion of small world networks suggests that two social networks were very
similar, but where group individuality and its distribution revealed great structural
differences.

The authors can only conjecture the reasons that lead to the observed results. For
example, the very high user individuality in the NB network may be explained by
strict rules for appointing board members. Especially the very low average milieu
sizes for k > 1 lead to the impression that there are certain policies in place
preventing “clubs” across boards.

The LNM data sets are somewhat special, since they are all intertwined. For
example, each of them shows a high user individuality. Using k-group individuality,
one may deduce that single users that were tracked during the event were in general
more individual in their actions than the ones planning their evening. For the
APLNM network, where both attendance and preferences were known, we observe
values of user individuality between the ones of ALNM and PLNM. Yet, 2-group
individuality is significantly larger in APLNM than in ALNM and PLNM. An
interpretation could be that people who planned the evening beforehand are more
likely to spend the evening in pairs of two.

To summarize, we claim that the benefit from having an instrument like group
individuality is apparent. Furthermore, we assert that there is no method, known to
the authors, to get comparable information from a social network.

We want to close this section with a note on the practicability of our approach. We
refrained from giving concrete running times for our experiments, mostly because
our implementations of the proposed algorithms are preliminary. Showing these
values may nevertheless be worthwhile, in particular for arguing that our approach
can be applied in practice. Because of this, we show the running times of all our
experiments in Table 5. As can be seen from these numbers, the computation
times for our data sets never posed a serious problem for the feasibility of our

Table 5 Running times of

ndividual : 1 gi gid ams

individual experiments, al

times in seconds Gem 10.06 9.94 9.84
Grp 170.67 212.94 210.18

Gainm | 13.21 14.04 13.00
Gpinm | 1330.58 | 2302.80 | 2327.90
Gapinm | 13.64 16.00 15.70
G 138.56 | 134.51 | 140.36
Gsw 10.10 10.69 10.44
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approach. Moreover, all these running times can be greatly improved by using
optimized implementations specifically designed for the fast computation of all
formal concepts [1, 18].

6 Conclusions and Outlook

It was the purpose of this work to introduce a new measure on social networks
that incorporates the notion of individuality in social networks, an approach that
has not been examined before. For this we made use of ideas from formal concept
analysis to provide a notion of milieu definability. Based on this, we developed
in a natural way the notions of group individuality, individuality distribution, and
average milieu size. Conducting experiments on real-world data sets, we were
able to show that these new measures were both independent of previously known
metrics like ASP and ALCC and allowed differentiating further otherwise similar
networks. To sum up, we claim to have shown that the measures of individuality
introduced in this work are both natural and meaningful.

This work has only started the study of our individuality measures, and it has
not reached its end. For example, so far we have investigated individuality only on
real-world networks, where this notion has a natural interpretation. However, we
have not even started to look at individuality in networks that do not stem from real-
world networks, and we do not know what values of individuality to expect there. In
a similar vein, one could ask in how far group individuality is suitable to distinguish
real-world networks from artificial ones.

Another aspect that requires further research is the scaling factor for k-group
individuality. To improve comparability, we divide the number of extents of size k
by (lfl) , the theoretical maximal number of such extents. Due to this scaling, k-group
individuality is always between zero and one. However, this maximum is never
achieved in practice and results in almost-zero values of k-group individuality for
larger values of k, making those values virtually useless. Finding a better approach
to scale k-group individuality is subject to further investigations.

In our experiments, the running times of our algorithms never posed a problem.
However, for larger networks, measuring group individuality can represent a
serious challenge: our methods require in the worst case the computation of the
whole concept lattice of the representing formal context, and this lattice can be
exponentially large. This somehow limits the usefulness of our approach, and
further investigations are necessary to explore the possibilities of measuring group
individuality of real-world networks.

The networks we have considered in this paper were bi-modal networks from
the start, and the actual modeling of finding a suitable attribute set was not an
issue. However, for uni-modal networks, finding a suitable set of attributes for a
contextual representation may be difficult. To what extent group individuality can
be adapted to this kind of networks remains an open problem and is subject to future
research.
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To establish the small world character of our used data sets, we employ
the approach of using null models—something we have not yet done for our
individuality measures. One of the main reasons for this is that generating null
models for bi-modal networks has received attention from the research community
only recently [19], and a proper evaluation is still missing.

A particular kind of social network that is not covered with our contextual
representation are the so-called tripartite networks, sometimes also called folk-
sonomies [12]. The corresponding structure in formal concept analysis is the one
of a triadic formal context, and generalizing group individuality to those structures
is also a promising line for future research.
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Descriptive Community Detection

Martin Atzmueller

1 Introduction

Subgroup discovery [6, 35, 67] aims at identifying interesting descriptive subgroups
contained in a dataset—from a compositional network analysis view, aiming at a
description given, e.g., by a set of attribute values. The subgroups are identified
in such a way that they are interesting with respect to a certain target property.
In the context of ubiquitous data and social media, interesting target concepts are
given, e.g., by binary variables for obtaining characteristic descriptions of certain
phenomena, densely connected graph structures (communities), or exceptional
spatio-semantic distributions [4, 8]. This directly bridges the gap to community
detection methods [26, 53, 69] that focus on structural aspects of a network/graph,
for finding densely connected subgroups of nodes.

This paper, an extended and significantly revised version of [5] presents an
organized picture of recent research in subgroup discovery and community detection
specifically focusing on attributed graphs. We start with the introduction of neces-
sary background concepts in Sect.2. After that, we provide a compact overview
on prominent methods for community detection, and discuss the exceptional model
mining approach. Next, Sect.3 describes recent work on mining attributed graphs
for description-oriented approaches. Then, Sect.4 summarizes the COMODO
algorithm combining both community detection and subgroup discovery in a
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description-oriented approach [12, 21], for which we also describe an extension
for sequential pattern mining. Finally, we conclude with a summary and point out
interesting future directions in Sect. 5.

2 Subgroup Discovery

In general, subgroup discovery can be applied for any standard dataset in tabular
form in a straight-forward manner using available efficient algorithms, e.g., [6], as
implemented in the VIKAMINE [10, 13] platform. Also, for compositional analysis
of social networks, i.e., where nodes have attached attribute information, we can
directly apply subgroup discovery for identifying interesting subgroups of nodes
according to a given quality measure. The description space is then given by all
the compositional variables and their respective value domains. As we will see
below, it is also possible to combine a structural with a compositional analysis of
a network, resulting in description-oriented community detection using subgroup
discovery.

2.1 Patterns and Subgroups

Basic concepts used in subgroup discovery [6, 35, 67] are patterns and subgroups.
Intuitively, a pattern describes a subgroup, i.e., the subgroup consists of instances
that are covered by the respective pattern. It is easy to see that a pattern describes a
fixed set of instances (subgroup), while a subgroup can also be described by different
patterns, covering the subgroup’ instances. Below, we define these concepts more
formally.

A database D = (I,A) is given by a set of individuals / and a set of attributes
A. A selector or basic pattern sel,—,, is a Boolean function / — {0, 1} that is
true if the value of attribute a; € A is equal to v; for the respective individual.
For a numeric attribute a,,, whose range is divided into intervals e¢; = [minj, maxj]
selectors selanume[mini;max,.] can be defined for each interval [min;; max;] in the domain
of apum. The Boolean function is then set to true if the value of attribute apy, is
within the respective interval. The set of all basic patterns is denoted by S.

Definition 1 A subgroup description or (complex) pattern sd is given by a set
of basic patterns sd = {selj,...,sel;}, where sel; € S, which is interpreted as a
conjunction, i.e., sd(/) = sel; A ... A sel;, with length(sd) = [.

Without loss of generality, we focus on a conjunctive pattern language using
nominal attribute-value pairs as defined above in this paper; internal disjunctions
can also be generated by appropriate attribute-value construction methods, if
necessary [14]. We call a pattern p a superpattern (or refinement) of a subpattern py,
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Definition 2 A subgroup (extension)
$g.q := ext(sd) := {i € I|sd(i) = true}

is the set of all individuals which are covered by the pattern sd.

As search space for subgroup discovery the set of all possible patterns 25 is
used, that is, all combinations of the basic patterns contained in S. Then, appropriate
efficient algorithms, e.g., [6] can be applied.

2.2 Interestingness of a Pattern

A large number of quality functions have been proposed in the literature, see [29]
for a comprehensive list, in order to estimate the interestingness of a pattern selected
according to the analysis task.

Definition 3 A quality function q: 25 — R maps every pattern in the search space
to a real number that reflects the interestingness of a pattern (or the extension of the
pattern, respectively).

Many quality functions for a single target concept (e.g., binary [6, 35] or
numerical [6, 43]) trade off the size n = |ext(sd)| of a subgroup for the deviation
tsa — to, where tyq is the average value of a given target concept in the subgroup
identified by the pattern sd and #, the average value of the target concept in the
general population. In the binary case, the averages relate to the share of the target
concept. Thus, typical quality functions are of the form

Qu(Sd) =n"- (tsd - lo), ac [0’ 1] . (D

For binary target concepts, this includes, for example, the weighted relative
accuracy for the size parameter a = 1 or a simplified binomial function, fora = 0.5.
Multi-target concepts, e.g., [6, 20, 36, 37] that define a target concept captured by a
set of variables can be defined similarly, e.g., by extending a univariate statistical test
to the multivariate case, e.g., [20]: Then, the multivariate distributions of a subgroup
and the general population are compared in order to identify interesting patterns.
While a quality function provides a ranking of the discovered subgroup patterns,
often also a statistical assessment of the patterns is useful in data exploration. Qual-
ity functions that directly apply a statistical test, for example, the Chi-square quality
function, e.g., [6] provide a p-value for simple interpretation. However, the Chi-
square quality function estimates deviations in two directions. An alternative, which
can also be directly mapped to a p-value is given by the adjusted residual quality
function g,, since the values of g, follow a large standard normal distribution [3]:

1
) i == D)

(@)

qr = n(tsq — 1
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The result of top-k subgroup discovery is the set of the k patterns sd, ..., sd;,
where sd; € 25, with the highest interestingness according to the applied quality
function. A subgroup discovery task can now be specified by the five-tuple:
(D,c,S,q,k), where c indicates the target concept; the search space 25 is defined
by the set of basic patterns S.

For several quality functions optimistic estimates [6, 31] can be applied for
determining upper quality bounds: Consider the search for the k best subgroups: If
it can be proven that no subset of the currently investigated hypothesis is interesting
enough to be included in the result set of k subgroups, then we can skip the
evaluation of any subsets of this hypothesis, but can still guarantee the optimality of
the result. More formally, an optimistic estimate oe(g) of a quality function ¢ is a
function such that p C p’ — (0e(q))(p) > q(p’), i.e., such that no refinement p’ of
the pattern p can exceed the quality obtained by (oe(q))(p).

2.3 Community Detection

Communities and cohesive subgroups have been extensively studied in social
sciences, e.g., using social network analysis methods [66]. Community detection
methods can be classified according to several dimensions, e.g., disjoint vs.
overlapping communities. Here, actors in a network can only belong to exactly
one community, or to multiple communities at the same time. Furthermore, we
distinguish between methods that work on extended (attributed) graphs, i.e., includ-
ing descriptive information about the nodes. Below, we provide an overview on
representative methods, including several basic methods working on simple graphs.
After that, we elaborate on methods for detecting overlapping communities, before
we focus on descriptive methods.

2.3.1 Basics of Community Detection

Wasserman and Faust [66] discuss social network analysis in depth and pro-
vide an overview on the analysis of subgroups/communities in graphs, including
clique-based, degree-based, and matrix-perturbation-based methods. Furthermore,
several algorithms for community detection have been proposed, formalizing the
notions of interesting community structures, and introducing the modularity quality
measure [51-53]. Fortunato [26] presents a thorough survey on the state-of-
the-art community detection algorithms in graphs, focusing on detecting disjoint
communities.

For assessing the quality of a community, usually not only the density of the com-
munity is assessed but also the connection density of the community is compared to
the density of the rest of the network [53]. For the modularity measure the number
of connections within the community is compared to the statistically “expected”
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number based on all available connections in the network. Besides modularity,
prominent examples of community quality measures include, for example, the
segregation index [27] and the inverted average out-degree fraction [70].

2.3.2 Detecting Overlapping Communities

Overlapping communities allow an extended modeling of actor—actor relations in
social networks: Nodes of a corresponding graph can then participate in multiple
communities. This is also typically observed in real-world networks regarding
different complementary facets of social interactions [55]. A general overview on
algorithms for overlapping community detection is provided by Xie et al. [69].
For example, clique percolation methods proposed in [55, 56] detect k-cliques and
then merge them into overlapping communities. Xie and Szymanski [68] present
methods that extend the idea of label propagation [58]. Lancichinetti et al. [40]
describe an approach for overlapping and hierarchical community structure using
a local community metric. The presented metric itself is computed locally but still
assesses a global clustering. Further statistical and local optimization algorithms
include the COPRA [30] algorithm by Gregory using label propagation of neighbor-
ing nodes until a consensus is reached, and the MOSES [46] algorithm by McDaid
and Hurley using statistical model-based techniques. Concerning quality measures,
extensions of the modularity metric for handling overlapping communities are
described in [45, 50, 54].

2.4 Exceptional Model Mining

A general framework for multi-target quality functions in subgroup discovery is
given by exceptional model mining [6, 41]: It tries to identify interesting patterns
with respect to a local model derived from a set of attributes. The interestingness
can be defined, e.g., by a significant deviation from a model that is derived from the
total population or the respective complement set of instances within the population.

In general, a model consists of a specific model class and model parameters
which depend on the values of the model attributes in the instances of the respective
pattern cover. The quality measure g then determines the interestingness of a
pattern according to its model parameters. Following [42], we outline some simple
examples below, focusing on relations between pairs (correlation) and sets of
variables (logistic regression):

* A relatively simple example for an exceptionality measure considers the task of
identifying subgroups in which the correlation between two numeric attributes
is especially strong, e.g., as measured by the Pearson correlation coefficient.
This correlation model class has exactly one parameter, i.e., the correlation
coefficient.



46 M. Atzmueller

» Furthermore, using a simple linear regression model, we can compare the slopes
of the regression lines of the subgroup to the general population or the subgroups’
complement. This simple linear regression model shows the dependency between
two numeric variables x and y: It is built by fitting a straight line in the two
dimensional space by minimizing the squared residuals e; of the model:

yi=a+b-xi+e
The slope

_cov(x,y)
T var(x)

computed given the covariance cov(x, y) of x and y, and the variance var(x) of x
can then be used for identifying interesting patterns [41].

» The logistic regression model is used for the classification of a binary target
attribute y € T from a set of independent binary attributes x; € T \ y,j =
1,...,|T| — 1. The model is given by:

1

YT Tt e z=bo+;bj);,».
Interesting patterns are then those, for example, for which the model parameters
b; differ significantly from those derived from the total population.

Considering network structures, we can also adapt exceptional model mining to
that setting. Essentially, it can be regarded as a description-oriented approach for
assessing network structures, if the patterns are used to induce graphs or subgraphs.
As we will discuss below, we can then also apply exceptional model mining for
descriptive community detection, in essence combining subgroup discovery and
community detection into a unified approach.

Below, we first outline a quality function for comparing graph structures that
correspond to individual patterns (QAP). After that, we discuss quality functions
used in community detection in order to assess subgraphs that are induced by some
criterion, e.g., by a descriptive pattern.

For some notation, we follow the notions presented in [21]: As outlined above,
the concept of a community intuitively describes a group C of individuals out of
a population such that members of C are strongly “related” among each other but
weakly “related” to individuals outside of C. By intuition, this relates, for example,
to strongly connected groups of actors in social networks. This idea translates to
communities as vertex sets C € V of a graph G = (V, E). To determine the amount
of relatedness (or connectedness, and thus, the community quality of such a subset)
several measures have been proposed.
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For further concepts regarding our terminology and also the standard community
quality functions outlined below, we follow the notation introduced in [21]: For
a given undirected graph G = (V,E) and a community C € V: n = |V], let
m = |E|, nc := |C|, mc := |{{u, v} € E : u,v € C}|—the number of intra-edges
of C, and m¢ := |{{u,v} € E : |{u,v} N C| = 1}|—the number of inter-edges of
C. Here, it is also convenient to introduce an inter-degree for a node u € C (that
depends on the choice of C) by dc(u) = |{{u.v} € E : v ¢ C}|, counting the
number of edges between u and nodes outside of C, and d(u) =:= |[{{u, v} € E}| is
the degree of node u.

There is a wide range of different community evaluation functions 2V — R
for estimating the community quality. In the context of this paper, we focus on
maximizing local quality functions for single communities (which are induced by
specific patterns). Therefore, we consider the inverse of a quality measure in those
cases, where the measure itself indicates higher quality by lower values.

* Concerning network structures, we can compare adjacency matrices induced
by a specific pattern, see [7]. For the assessment we can apply, for example,
the quadratic assignment procedure [39] (QAP): it is a standard approach for
comparing network structures, e.g., using a graph correlation measure: For
comparing two graphs G, and Gy, it estimates the correlation of the respective
adjacency matrices M and M, and tests that graph level statistic against a QAP
null hypothesis [39].

QAP compares the observed graph correlation of (G, G,) to the distribution
of the respective resulting correlation scores obtained on repeated random row
and column permutations of the adjacency matrix of G,. As a result, we obtain
a correlation and a statistical significance level according to the randomized
distribution scores.

For deriving a quality measure based on QAP and graph correlation, we
compare the reference matrix My and the matrix Mp for pattern P:

cov(My, Mp)
Vvar(My) - var(Mp)

CIQ(P) = QAP(MN,MP) =

where My is the transition matrix induced by some reference model (see [7, 24]),
and Mp is the transition matrix induced by pattern P, cov indicates the covariance
of the matrices, and var(M) = cov(M, M) the variance.

For an in-depth description of QAP, we refer to [39]. Furthermore, for the
transition matrix, we refer to [23, 24] for more details on the matrix construction
step.

* Regarding the quality of a subgraph induced by a pattern, we can adapt the
well-known modularity measure to the idea of assessing the induced subgraph
captured by a local pattern, i.e., a community pattern (with an associated
subgroup description).
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In general, the modularity MOD [51-53] of a graph clustering with k com-
munities Cy,...,C; € V focuses on the number of edges within a community
and compares that with the expected such number given a null-model (i.e., a
corresponding random graph where the node degrees of G are preserved). It is
given by

MOD = Z ( 4w d(”))S(Cw),C(v)), 3)

quV

where C(i) denotes for i € V the community to which node i belongs.
8(C(u), C(v)) is the Kronecker delta symbol that equals 1 if C(u) = C(v), and
0 otherwise. So, the modularity assesses the community quality of a graph par-
titioning, but can also be adapted to overlapping communities, e.g., [45, 50, 54]
for considering the complete graph structure.

For exceptional model mining, however, we need to consider individual
patterns. In order to focus on a subgraph induced by a pattern, the modularity
contribution of a single community C in a local context (subgraph induced by
the nodes contained in the community C) can then be computed [52, 54] as:

MODL(C) = Z ( _ 4@ d(v))

u,veC 2m
yielding
2mc duw)d(v) mc d(u) d(v)
MODL(C) = — — —— == _ - )
O=F0 =2 4 =~ 2 a2

u,veC u,veC

The segregation index SIDX [27] is another prominent measure from community
detection. It focuses on the local contribution of the pattern, and compares
the number of expected inter-edges to the number of observed inter-edges,
normalized by the expectation:

_ E(ﬁ’lc) —ﬁ’lc 1 ﬁ”lcl’l(l’l— 1)
B S T ) @

Finally, the Inverse Average-ODF (out-degree fraction) ITAODF [70] captures the
basic intuition of a community regarding the contained vs. the outgoing edges
discussed above. As another local measure, IAODF compares the number of
inter-edges to the number of all edges of a community C, and averages this for
the whole community by considering the fraction for each individual node:

IAODE(C) := 1 — i Z ddc((u”;) 5)
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3 Community Detection and Description

While the community detection methods described above only focus on the graph
structure, richer graph representations, i.e., attributed graphs, enable approaches
that specifically exploit the descriptive information of the labels assigned to nodes
and/or edges of the graph. Nodes of a network representing users, for example, can
be labeled with tags that the respective users utilized in social bookmarking systems,
or nodes (denoting actors) can be labeled with properties of the latter. Then, explicit
descriptions for the characterization of a community can be provided.

Concerning methods that focus on such descriptions in general, an approach
for community detection using features identified by frequent pattern mining is
presented in [1]; closed frequent patterns are derived and are then used for creating a
social network model based on an entropy analysis. However, the network structure
itself is not exploited. Similarly, [63] extracts subgraphs with common itemsets.
Given a labeled graph, itemset-sharing subgraphs can then be enumerated. However,
this approach also does not consider the density of graphs, nor any community
measures.

Focusing on methods for generating explicit descriptions connected with the
graph structure, we distinguish between two types of approaches: first, methods
that mainly work on the graph structure but apply descriptive information for
restricting the possible sets of communities; second, methods that mine descriptive
patterns for obtaining community candidates evaluated using the graph structure.
As a representative of the first type, the concepts of dense subgraphs and subspace
clusters for mining cohesive patterns are combined in [49].

Starting with quasi-cliques, these are expanded until constraints regarding the
description or the graph structure are violated. Similarly, [32] combines subspace
clustering and dense subgraph mining, also interleaving quasi-clique and subspace
construction. As an example for the second type outlined above, [28] proposes
an approach for the problem of finding overlapping communities in graphs and
social networks that aims at detecting the top-k communities such that the total
edge density over all k communities is maximized. The three algorithmic variants
proposed in [28] apply a greedy strategy for detecting dense subgroups, and restrict
the result set of communities, such that each edge can belong to at most one
community. This partitioning involves a global approach on the community quality.
Furthermore, [64] study the correlation between attribute sets and the occurrence of
dense subgraphs in large attributed graphs. The proposed method considers frequent
attribute sets using an adapted frequent item mining technique, and identifies
the top-k dense subgraphs induced by a particular attribute set, called structural
correlation patterns. The DCM method presented in [57] includes a two-step process
of community detection and community description. A heuristic approach is applied
for discovering the top-k communities. Pool et al. utilize a special interestingness
function which is based on counting outgoing edges of a community similar to the
IAODF measure; for that, they also demonstrate the trend of a correlation with the
modularity function.
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Furthermore, the COMODO algorithm [21] that we summarize in the next
section combines community detection and subgroup discovery resulting in a
description-oriented approach. By specifying a standard quality function the quality
of the communities to discover can be estimated. Then, this quality function can be
specifically selected according to the analysis task.

4 Community Detection Using Exceptional Model Mining

For providing both structurally valid and interpretable communities we utilize the
graph structure as well as additional descriptive features of the nodes. Hence, we
identify communities as sets of nodes together with a description composed of the
nodes’ features. Such a community pattern then provides an intuitive description of
the community, e.g., by an easily interpretable conjunction of attribute-value pairs.
Basically, we aim at identifying communities according to standard community
quality measures. Below, we first provide an algorithmic overview on the approach
and summarize exemplary evaluation results. After that, we sketch the application
of the algorithm for community detection on dynamic networks, i.e., for identifying
exceptional sequential patterns.

4.1 COMODO: Description-Oriented Community Detection

Below, we summarize the COMODO algorithm presented in [21]: It focuses on
description-oriented community detection using subgroup discovery, and aims at
discovering the top-k communities (described by community patterns). The method
is based on an adapted subgroup discovery approach [12, 42], and also tackles
typical problems that are not addressed by standard approaches for community
detection such as pathological cases like small community sizes. COMODO utilizes
optimistic estimates [31, 67], which are efficient to compute, in order to prune the
search space significantly. For that, a number of standard community evaluation
functions have been applied using optimistic estimates for an efficient approach.

4.1.1 Algorithmic Overview

COMODO utilizes both the graph structure and descriptive information of the
attributed graph. This information is contained in two data structures: The graph
structure is encoded in graph G while the attribute information is contained in
database D describing the respective attribute values of each node. In a preprocess-
ing step, we merge these data sources. Since the communities considered in our
approach do not contain isolated nodes, we can describe them as sets of edges. We
transform the data (of the given graph G and the database D containing the nodes’
descriptive information) into a new dataset focusing on the edges of the graph G:
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Each data record in the new dataset represents an edge between two nodes. The
attribute values of each such data record are the common attributes of the edge’s
two nodes. For a more detailed description, we refer to [21].

COMODO utilizes an extended FP-tree (frequent pattern tree) structure inspired
by the FP-growth algorithm, which compiles the data in a convenient prefix pattern
tree structure for mining frequent itemsets, see [2] for a detailed description. Our
adapted tree structure is called the community pattern tree (CP-tree) that allows to
efficiently traverse the solution space. The tree is built in two scans of the graph
dataset and is then mined in a recursive divide-and-conquer manner, see [9, 42] for
more details. In the main algorithmic procedure of COMODO, patterns containing
only one basic pattern are mined first. Then, patterns conditioned on the occurrence
of a (prefixed) complex pattern (as a set of basic patterns, chosen in the previous
recursion step) are considered recursively. For more algorithmic details, we refer
to [21]. As described there, we can apply standard quality functions efficiently using
optimistic estimates, e.g., for the modularity or the segregation index, see [21] for
more details.

4.1.2 Illustrative Evaluation Results

Below, we present illustrative evaluation results [21] considering the efficiency
of the applied optimistic estimates, and the validity of the obtained patterns. For
that, we compared the total number of search steps, that is community allocations
that are considered by the COMODO algorithm, with no optimistic estimate
pruning to optimistic estimate pruning using different community quality measures.
Additionally, we measured the impact of using different minimal community size
thresholds. Some results are shown in Fig. 1 for the BibSonomy click graph for
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Fig. 1 Runtime performance of COMODO on the BibSonomy click graph, see [21] for more
details: search steps with no optimistic estimate pruning (NOP) vs. community quality functions
with optimistic estimate pruning: MODL (Local modularity), SIDX (Segregation Index), and
IAODF (Inverse Average-ODF), for minimal size thresholds 7, = 10, 20
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k = 10,20, 50 and minimal size thresholds 7, = 10,20. We consider a number
of standard community quality functions, that is, the segregation index, the Inverse
Average-ODF, and the modularity.

The large, exponential search space can be exemplified, e.g., for the click graph
with a total of about 2 - 10'? search steps for a minimal community size threshold
7, = 10. The results demonstrate the effectiveness of the proposed descriptive
mining approach applying the presented optimistic estimates. The implemented
pruning scheme makes the approach scalable for larger datasets, especially when
the local modularity quality function is chosen to assess the communities’ quality.
Concerning the validity of the patterns, we focused on structural properties of
the patterns and the subgraphs induced by the respective community patterns. We
applied the significance test described in [38] for testing the statistical significance
of the density of a discovered subgraph. Furthermore, we compared COMODO
to three baseline community detection algorithms [30, 46, 57], where COMODO
consistently shows a significantly better performance concerning validity and
description length; for more details, we refer to [21].

4.2 Sequential Pattern Analysis: Detecting Exceptional
Link Trails

In addition to static community detection, we can also consider temporal aspects,
i.e., focusing on sequences of states or events which can be applied for a variety
of analysis ranging from the analysis of human behavior [23] to industrial appli-
cations [24]. In an extended modeling approach, we can map transitions between
states to a weighted network, according to a first-order Markov chain model. Below,
we outline an approach for detecting exceptional sequential link trails captured by
community patterns, see [7] for a detailed description.

As before, our subject of analysis is given by an attributed graph that models the
link trails in the following way: Nodes of the graph denote actors of a social network,
e.g., users of a social system or locations in a location-based social network. The
edges of the graph model the links between the nodes (as transitions). As a simple
example, we can consider a set of users and a set of locations. Each user visits a
sequence of locations—in a location-based social network. Then, we are interested
in modeling these sequences (of locations), and in detecting exceptional groups of
transitions (between locations) w.r.t. users and their properties, respectively.

At a music event festival, for example, possible characterizing factors describing
certain users groups could be specific music genres. Here, exceptional patterns could
include, for example, users being interested in rock music and dance visiting only a
very specific selection of performances in characteristic sequences, compared to the
behavior of all users and their sequential link trails. Essentially, we apply descriptive
community detection (e.g., using COMODO) on the attributed graph, where the
edges indicate transitions between states according to a first-order Markov chain
modeling approach [44, 65].
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4.2.1 Modeling

For our attributed graph model, we label the links according to the descriptive
information of the sequential trail. Then, we identify exceptional community
patterns based on the labels and structure of the contained links using exceptional
model mining. In particular, we assess a pattern capturing a set of nodes that model
the state space of the respective transitions.

For constructing a reference model, we construct transition matrices corre-
sponding to the observed data. For those observed sequences we can simply
construct transition matrices counting the transitions between the individual states.
We construct an according matrix MY with mf;’ = |suc(i,j)|, where suc(i, ) denotes
the successive sequences from state i to state j contained in the sequence.

A community pattern P induces a subgraph (community) Cp given a set of
labels P, selecting all links that are covered, i.e., that share a label contained in
P. Then, all transitions in the matrix MV are selected (corresponding to a set of
links of the network) that are covered by the pattern P. Using that, we construct
an according transition pattern matrix M” based on the respective counts of the
covered transitions. Intuitively, the matrix M” can then be regarded as some kind
of “projection” of matrix MY given the pattern P using our modeling approach. In
the simplest case, we can just transfer the weighted links of the subgraph Cp. For
identifying exceptional models (Mp induced by P) we can then apply, e.g., the QAP
quality function go(P) = QAP(My, Mp) introduced above.

4.2.2 Results

For some illustrative results (see [7] for more details), we utilized data from the
EveryAware' project, e.g., [19]. Specifically, we focused on collectively orga-
nized noise measurements collected using the WideNoise Plus application between
December 14, 2011 and June 6, 2014, see [20] for more details. WideNoise Plus
allows the collection of noise measurements using smartphones. It includes sensor
data from the microphone given as noise level in dB(A), the location from the GPS-,
GSM-, and WLAN-sensor represented as latitude and longitude coordinate, as well
as a timestamp. In addition, tags can be assigned to the recording. We collected data
from all around the world using iOS and Android devices.

In total, the applied dataset contains 6069 data records, i.e., noise measurements
of 635 users (i.e., 635 trails, with an average trail length of about 10) and 2009
distinct tags. Table 1 shows exemplary exceptional conforming and deviating
patterns using go as quality measure. In addition, it shows the sizes of the covered
subsets. From a qualitative point of view, the patterns shown in the table are intuitive

Thttp://www.everyaware.eu.
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Table 1 Illustrative
exceptional
conforming/deviating
community patterns for
WideNoise Plus

qo | Size | Description

0.94 | 5078 | Traffic

0.89 3990 | Car

0.76 | 3326 | Noise

0.43 | 707 | Bird A courtyard

5 10.24 600 | Background A quiet
Patterns #1-#3 tend rather to conform to
the reference model (especially #1 and

#2), while patterns #4—#5 (increasingly)
show a deviating behavior

AW =3

to interpret and also tend to conform to our expectations concerning the reference
behavior of the dataset, where we can clearly identify deviations concerning noisy
and relatively quiet environments.

5 Conclusions

In this paper, we have presented an organized view on descriptive community
detection. Specifically, we described subgroup discovery for compositional network
analysis concerning properties of the actors, with extensions to the analysis of
complex target concepts like correlations between a set of variables, or dense
subgraphs—captured by exceptional model mining approaches. Then, this directly
extends to community detection on attributed graphs. In particular, we summarized
the COMODO algorithm that combines community detection and exceptional
model mining, resulting in a description-oriented approach for community analytics.
We furthermore sketched an extension to dynamic data, considering sequential pat-
terns capturing exceptional sequential link trails. This adds one further dimension to
the descriptive approaches, by considering by static as well as dynamic phenomena,
and enables the modeling and investigation of complex analysis tasks.

For future work, we aim to extend the analysis towards further time-oriented
representations, e.g., considering sequences of graphs, and the evolution of commu-
nities, e.g., [33, 34]. Also, we aim to integrate and exploit methods for generating
descriptions and the respective relations in link analytics, e.g., in link predic-
tion [60—62] on multiplex networks. Then, besides the detection of communities,
also their analysis and assessment in the form of descriptive patterns is highly
relevant, e.g., [11, 15, 17, 18] also concerning their semantic grounding [47, 48], and
integration into explanation-aware approaches [16, 25, 59]. Furthermore, developing
scalable methods for enabling such approaches for large and complex datasets,
e.g., [22, 42] is another interesting direction for future work.
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Multimodal Clustering for Community
Detection

Dmitry I. Ignatov, Alexander Semenov, Daria Komissarova,
and Dmitry V. Gnatyshak

1 Introduction

Online social networking services generate massive amounts of data, which can
become a valuable source for guiding Internet advertisement efforts or provide
sociological insights. Each registered user has a network of friends as well as
specific profile features. These profile features describe the user’s tastes, prefer-
ences, the groups he or she belongs to, etc. Social Network Analysis (SNA) is
a popular research field in which methods are developed for analysing one-mode
networks, like friend-to-friend,' two-mode or affiliation networks [57, 60, 69], three-
mode [10, 20, 38, 46, 66], and even multi-mode dynamic networks [75, 76, 81, 89].
By multi-mode networks we mean namely such networks where actors can be
related with other types of entities by edges like those between users and their
interests in two-mode case or by hyperedges like those relating users, tags, and
resources in three-mode case; sometimes such networks are called heterogeneous
since different types of nodes are involved [48]. We focus on the subfield of
bicommunity identification and its higher order extensions. Thus, in particular, we
present tri- and tetracommunities examples extracted from real data. For one-mode
case a reader may refer to an extensive survey on community detection [21].

Iwww.https://en.wikipedia.org/wiki/Friend-to-friend.
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The notion of community in SNA and Complex Networks is closely related to the
notion of cluster in Data Analysis [3, 21]. There is the main issue in both disciplines:
what is a common definition of community and what is a common definition of
cluster? On the one hand, it is clear that actors from the same community should be
similar as well as objects in one cluster; on the other hand, these actors (or objects)
should be less similar to actors (or objects) from another community (or cluster).
This general idea allows a variety of definitions suitable for concrete purposes in
both domains [3, 21, 63].

There is a large amount of network data that can be represented as bipartite
or tripartite graphs. Standard techniques for community detection in two-mode
networks like “maximal bicliques search” return a huge number of patterns (in the
worst case exponential w.r.t. the input size) [56, 77]. Moreover, not all members
of such bicommunities should be related to the same items, for example, exactly
the same vocabulary used by each member in case of epistemic communities.
Therefore we need some relaxation of the biclique notion as well as appropriate
interestingness measures and constraints for mining and filtering such “relaxed”
biclique communities.

Applied lattice theory provides us with the definition of formal concept [27],
which is closely related to maximal biclique in a bipartite graph; formal concepts
and concept lattices (or Galois lattices) are widely known in the social network
analysis community (see, e.g., [19, 23, 24, 65, 77, 86]). However, these methods
are overly rigid for analysing large amounts of data resulting in a huge number of
concepts even if their computation is feasible.

A concept-based bicluster (or object-attribute bicluster) [37] is a scalable approx-
imation of a formal concept (maximal biclique in a bipartite graph). The advantages
of concept-based biclustering are

1. Less number of patterns to analyse (no more than the number of edges in the
original network);

2. Less computational time (polynomial vs exponential);

. Tolerance to missing (object, attribute) pairs;

4. Filtering of biclusters (communities) by density threshold.

(O8]

In general, the method of biclustering dates back to the seminal work of Hartigan
on the so-called direct clustering [31], where clusters of objects may appear sharing
only a subset of attributes. The term biclustering was introduced later in the book of
Mirkin [63]:

The term biclustering refers to simultaneous clustering of both row and column sets in a

data matrix. Biclustering addresses the problems of aggregate representation of the basic
features of interrelation between rows and columns as expressed in the data.

Following this terminology, formal concepts can be considered as maximal
inclusion biclusters of constant values in binary data [49], whereas their relaxations
tolerant to missing object-attribute pairs can be called object-attribute biclusters
[37, 39].

There are several successful attempts to mine two-mode [51, 78], three-mode
[46], and even four-mode communities [47] by means of Formal Concept Analysis.
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For analysing three-mode network data like folksonomies [83] we have also
proposed a scalable triclustering technique [40, 45].

These studies for higher-mode cases were enabled by the previous introduction of
the so-called triconcepts by Lehman and Wille [58, 87]; a formal triconcept consists
of three components: extent (objects), intent (attributes), and modus (conditions
under which an object has an attribute). It is a matter of curiosity, but such
triconcepts had been used for analysing triadic data in social cognition studies [52]
before their formal introduction. Later, a polyadic (or multimodal) extension of FCA
was introduced in [85].

Previously, we have introduced a pseudo-triclustering technique for tagging
groups of users by their common interests [28]. This approach differs from
traditional triclustering methods because it relies on the extraction of biclusters from
two separate object-attribute tables and rather belongs to methods for analysing
multi-relational networks. Here we investigate applicability of biclustering and
triclustering (as well as n-clustering, its higher-mode extension) to community
detection in two-, three-, and higher-mode networks directly.

The remainder of the paper is organised as follows. In Sect.2, we introduce
basic notions of Formal Concept Analysis. Section 3 describes object-attribute
biclustering and its direct generalisations to higher dimensions. Section 4 briefly
discusses a variety of quality measures used in clustering, FCA, and SNA domains
and their interrelation with multimodal clustering. In Sect. 5, we describe datasets
which we have chosen to illustrate the performance of the approach. We present
the results obtained during experiments on these datasets in Sect. 6. Related work
is discussed in Sect.7, while Sect.8 concludes our paper and describes some
interesting directions for future research.

2 Basic Definitions

2.1 Formal Concept Analysis

A formal context in FCA [27] is a triple K = (G, M, I), where G is a set of objects,
M is a set of attributes, and the relation I € G x M shows which object possesses
which attribute. For any A € G and B € M one can define Galois operators:

A'={meM|glmforall g € A},
B = {g € G| glmforallm € B}. (1)

The operator ” (applying the operator ’ twice) is a closure operator: it is
idempotent (A" = A”), monotone (A C B implies A” C B”), and extensive
(A C A”). The set of objects A € G such that A” = A is called closed. Similar
properties are valid for closed attribute sets, subsets of a set M. A pair (A, B) such
that A € G,B C M, A’ = B, and B’ = A, is called a formal concept of a context
K. The sets A and B are closed and called extent and intent of a formal concept
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(A, B), respectively. For the set of objects A the set of their common attributes A’
describes the similarity of objects of the set A, and the closed set A” is a cluster of
similar objects (with the set of common attributes A’). The relation “to be a more
general concept” is defined as follows: (A, B) > (C, D) iff A D C. The concepts of a
formal context K = (G, M, I) ordered by extensions inclusion form a lattice, which
is called concept lattice. For its visualisation line diagrams (Hasse diagrams) can
be used, i.e. the cover graph of the relation “to be a more general concept”. In the
worst case (Boolean lattice) the number of concepts is equal to 2{minIGLIME "y,
for large contexts, to make application of FCA machinery tractable the data should
be sparse. Moreover, one can use different ways of filtering formal concepts (for
example, choosing concepts by their stability index or extent size).

Let us consider a formal context K that consists of four objects, persons (Alex,
Mike, Kate, David), four attributes, books (Romeo and Juliet by William
Shakespeare, The Puppet Masters by Robert A. Heinlein, Ubik by Philip K.
Dick, and Ivanhoe by Walter Scott), and incidence relation showing which
person which book read or liked.

c
D
S =
\ il
-
K = S
N L V
Q S S
v | R e -§
S| (8|8
£ R S =2
Kate X X
Mike X X
Alex X | X
David X | X | X

There are nine concepts there. For example,

C1 = ({Kate, Mike}, {Romeo and Juliet})

C, = ({Alex, David}, {The Puppet Masters, Ubik})

C; = ({Kate, David}, {Ivanhoe}).

Note that the pair of sets (A,B) = ({Alex, David}, {Ubik}) does not
form a formal concept since we can enlarge its extent by one more object
Mike to fulfill (A U {Mike})) = B and B = A U {Mike}. So, Cy =
({Mlke, Alex, David}, {Ubik}) is a formal concept. The corresponding bipar-
tite graph is shown in Fig. 1 along with the biclique formed by elements of
concept C,.
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Fig. 1 Two-mode network of Romeo and Juliet
readers and its community of Kate
Sci-Fi readers (shaded)

The Puppet Masters
Mike

Alex

Ubik

Ivanhoe
David

From SNA viewpoint, if we assume that an OA-bicluster (event’,actor’) is a
found community, we are looking for a pair (actor, event) in an input network,
where this actor participated in all of the events typical for the community, while
the chosen event is typical for all the members of that community.

3 Higher-Order Extensions of FCA and Multimodal
Clustering

3.1 Triadic and Polyadic FCA

For convenience, a triadic context is denoted by (X1, X2, X3, Y). A triadic context
K = (X}, X», X3, Y) gives rise to the following dyadic contexts:

KO = (X1, X,xX3. YD), K® = (X, X;xX3,Y?), KO = (X3.X,xX,, Y?),

where g¥V(m,b) & mY®(g.b) :& bYP(g,m) & (g.mb) € Y. The
derivation operators (primes or concept-forming operators) induced by K@ are
denoted by (.)?. For each induced dyadic context we have two kinds of such
derivation operators. That is, for {i,j, k} = {1,2,3} withj < k and for Z C X;
and W C X; x Xy, the (i)-derivation operators are defined by:

Z>Z0 = {(xj, xx) € Xj < Xi|x;, xj, x; are related by Y for all x; € Z},
Wi Wi = {xi € Xil|xi, xj, x; are related by Y for all (x;, xx) € W}.
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Formally, a triadic concept of a triadic context K = (X;,X;,X3,Y) is a triple
(Al,Az,A3) OfAl - Xl,A2 - Xz,A3 - X3, such that for every {i,j, k} = {1,2, 3}
with j < k we have (A4; x A;)”) = A;. For a certain triadic concept (A1, A3, A;3),
the components A, Ay, and Az are called the extent, the intent, and the modus of
(A1,A3,A3). Since a tricontext K = (X, X3, X3,Y) can be interpreted as a three-
dimensional cross table, according to our definition, under suitable permutations
of rows, columns, and layers of this cross table, the triadic concept (A;, Az, A3) is
interpreted as a maximal cuboid full of crosses. The set of all triadic concepts of
K = (X1, X3, X3,Y) is denoted by T(X;, X3, X3, 7).

To avoid additional technical description of n-ary concept-forming operators, we
introduce n-adic formal concepts without their usage. The n-adic concepts of an n-
adic context (X, ...,X,,Y) are exactly the maximal n-tuples (A, ...,A,) in 2% x

- x 2% with A; x --- x A, C Y with respect to component-wise set inclusion
[85]. The notion of n-adic concept lattice can be introduced in the similar way to
the triadic case [85]. For mining n-adic formal concepts one can use DATA-PEELER
algorithm described in [12].

3.2 Biclustering

An alternative approach to define patterns in formal contexts can be realised via a
relaxation of the definition of formal concept as a maximal rectangle full of crosses
w.r.t. the input incidence relation. One of such relaxations is the notion of an object-
attribute bicluster [37]. If (g,m) € I, then (n,g’) is called an object-attribute
bicluster* (OA-bicluster or simply bicluster if there is no collision) with the density
p(m', g") = |10 (m' xgH|/(m'| - |g']).

The main features of OA-biclusters are listed below:
1. For any bicluster (n', g') € 2¢ x 2™ it follows that % < p(A,B) < 1.
2. OA-bicluster (m', g’) is a formal concept iff p = 1.
3. If (m', ¢’) is a bicluster, then (g”, g') < (m’,m").

Let (A, B) € 29 x 2™ be a bicluster and pp,;, be a non-negative real number such
that 0 < pmin < 1, then (A, B) is called dense, if it fits the constraint p(A, B) >
Pmin- The above-mentioned properties show that OA-biclusters differ from formal
concepts by the fact that they do not necessarily have unit density. Graphically it
means that not all the cells of a bicluster must be filled by crosses (see Fig.2). The
rectangle in Fig.2 depicts a bicluster extracted from an object-attribute table. The
horizontal grey line corresponds to object g and contains only non-empty cells. The
vertical grey line corresponds to attribute m and also contains only non-empty cells.
By applying the Galois operator, as explained in Sect. 2.1, one time to g we obtain
all its attributes g’. By applying Galois operator ' twice to g we obtain all objects that

2We omit curly brackets here it what follows implying that {g}’ = g’ and {m}’ = m’.
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Fig. 2 OA-bicluster g

Algorithm 1: Add procedure for the online algorithm for OA-biclustering

Input: 7 is an input set of object-attribute pairs;
B = {B = (*X, *Y)} is a current set of OA-biclusters;
PrimesOA, PrimesAO;

Output: 2 = {T = (*X, *Y)};
PrimesOA, PrimesAO;

1: for all (g,m) € I do

2 PrimesOA[g] := PrimesOA[g] U m

3:  PrimesAO[m] := PrimesAO[m] U g

4

5:

B = B\ (&PrimesAO[m], & PrimesOA[g])
end for

have the same attributes as g. This is depicted in Fig.2 as g”. By applying Galois
operator ’ twice to m we obtain all attributes that belong to the same objects as m.
This is depicted in Fig. 2 as m”. The white spaces indicate empty cells. The filled
black boxes indicate non-empty cells. Whereas a traditional formal concept would
cover only the green and grey area, the bicluster also covers the white and black
cells. This gives to OA-biclusters fault-tolerance properties (see Proposition 1).

To generate biclusters fulfilling a minimal density requirement we can perform
computations in two phases. The online phase, Add procedure (see Algorithm 1),
allows to process pairs from incidence relation / and generate biclusters in one pass
by means of pointer and reference variables for access to primes of objects and
attributes even without knowing the number of objects and attributes in advance;
see the version of this online algorithm for triadic case in [29]. Thus, the generation
of all biclusters is realised within O(|I]). Note that the algorithm can start with a
non-empty collection of biclusters obtained previously. Then all biclusters can be
enumerated in a sequential manner and only those fulfilling the minimal density
constraint are retained.
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For the context shown in Fig. | one can find two concepts,

C, = ({Alex, David}, {The Puppet Masters, Ubik}) and

Cy = ({Alex, Mike, David}, {Ubik}), and one bicluster,

B; = (Ubik', David') = ({Alex, Mike, David}, {The Puppet Masters, Ubik}),
with density p = 5/6 &~ 0.83.

These two concepts can be interpreted as Sci-Fi readers and cyber punk
readers (or PK. Dick’s readers at least), respectively. However, bicluster B
by allowing one missing pair (Mike, The Puppet Masters) can be considered
as a community of Sci-Fi readers as well, which is larger than C,.

3.3 OAC-Triclustering and Prime-Based n-Clustering

Guided by the idea of finding scalable and noise-tolerant alternatives to triconcepts,
we have had a look at triclustering paradigm in general for a triadic binary data, i.e.
for tricontexts as input datasets.

Definition 1 Suppose K = (G, M, B,I) is a triadic contextandZ C G, Y C M,Z C
B. Atriple T = (X, Y,Z) is called an OAC-tricluster. Traditionally, its components
are called extent, intent, and modus, respectively.

The density of a tricluster T = (X, Y, Z) is defined as the fraction of all triples of
IinXxYxZ:

_INXxYxZ)|

"D =Xz

(@)

Definition 2 A tricluster T is called dense iff its density is not less than some
predefined threshold, i.e. p(T) > Ppin-

The collection of all triclusters for a given tricontext K is denoted by 7.

Since we deal with all possible cuboids in Cartesian product G x M x B, it
is evident that the number of all OAC-triclusters, |.7|, is equal to 2/CI+MI+IBl,
However, not all of them are supposed to be dense, especially for real data which
are frequently quite sparse. Below we discuss one of the possible OAC-tricluster
definitions, which gives us an efficient way to find, within polynomial time, a
number of (dense) triclusters not greater than the number of triples in the initial
data, |1|.

Here, let us define the prime operators and describe prime OAC-triclustering,
which extends the biclustering method from [39] to the triadic case.
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Derivation (prime) operators for elements of a triple (g, %,Z) € [ from a triadic
context K can be defined as follows:

7= {(mb) | (Zmb) €1} 3)
W = {(g,b) | (g,7,b) € I} (4)
b i={(g.m) | (g.m,b) €I} (5)

(Z.m), (Z.b)', (, ) prime operators can be defined in the same way.

(Z.m) = {b| (Z.7,b) €1} (6)
(.0) == {m| (g, mb) el} ()
(,b) :={g| (g,7,b) € I} (8)

The following definition uses only prime operators [Egs. (6)—(8)] to generate
triclusters, however, other variants are possible. Thus, in [45], OAC-triclusters based
on box operator have been studied; this type of tricluster relies on Egs. (3)—(5).

Definition 3 Suppose K = (G, M, B, I) is a triadic context. For a triple (g, m, b) € I
a triple T = ((m,b),(g.b),(g,m)) is called a prime operator based OAC-
tricluster. Its components are called extent, intent, and modus, respectively.

Prime-based OAC-triclusters are more dense than the ones based on box operator.
Their structure is illustrated in Fig. 3: every element corresponding to the “grey”
cell is an element of /. Thus, prime operator based OAC-triclusters in a three-
dimensional matrix (tensor) form contain an absolutely dense cross-like structure
of crosses (or ones).

The proposed OAC-tricluster definition has a fruitful property (see Proposi-
tion 1): for every triconcept in a given tricontext there exists a tricluster of the same

9 b . b .. bz Veg#3d by b . bz

my my

3.
3.

My, My,

Fig. 3 Prime operator based tricluster structure
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tricontext in which the triconcept is contained w.r.t. component-wise inclusion. It
means that there is no information loss, we keep all the triconcepts in the resulting
tricluster collection.

Proposition 1 Let K = (G, M, B, ) be a triadic context and pyin = 0. For every
T. = (X, Y., Z.) € (G, M, B, I) with non-empty X, Y., and Z. there exists a prime
OAC-tricluster T = (X,Y,Z) € 9'(G,M,B,Y) suchthat X, C X,Y. C Y,Z. C Z.
Here, '(G,M, B,I) denotes the set of all OAC-prime triclusters fulfilling the
chosen value of p;p-

Proof Let (g,m,b) € X, x Y. X Z.. By the definition of prime operators (m, b)’ :=
{g| (g m,b) € I}. Since m € Y, and b € Z. then by the definition of formal
triconcept (m, b) is related by Y to every g € X, therefore (m,b) N X, = X..
Consequently for all g; € X, we have g; € (m,b)’. For (g, b)’ and (g, m)’ tricluster
components the proof is similar. Finally, we have X, € X = (m,b),Y. C Y =
(8.b), and Z. € Z = (g, m)".

Prime-based n-clustering can be introduced similarly. Let K = (X1, X>,...,X,,Y)
be an n-adic context and Y is binary relation between X; ... X,,.

Then for a tuple (x1, x2,...,x,) € Y we define n prime operators for each tuple
(X1, ..., Xi—1, Xi+1, - - - , Xp,) as follows:

(Axtds oo Xt s X1 - - - {xn}), =1z | (1,000 X1, 2 Xie 15 -+ 25 X)) € Y

For a given tuple (x;,x»,...,x,) € Y, a prime operator based n-cluster is defined
as follows:

P=((fr} o o) (A b D)
({xl}s cee {xn—l})/)'

The density of n-cluster P = (Z;,2,,...,7Z,) is p(P) = W To keep
analogy of p with physical density we refer to its numerator as the mass of P, i.e.
mass(P), while its denominator plays a role of the volume of P, i.e. vol(P).

The description of a one-pass algorithm for OAC-prime tricluster generation can
be found in [29]. A Map-Reduce based prototype of OAC-prime triclustering and

possible implementation variants are presented in [94].

4 Quality Measures for Multimodal Clustering

4.1 Connection Between p and Local Clustering Coefficient

Since we use density as a local measure of n-cluster quality, it is useful to find its
connection to local clustering coefficients (we use cce(-) notation from [57]). For
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IN(v)XN(v)NE|

NwN@w—D/2° Nere

(V,E C V x V), the local clustering coefficient is cce(v) =
N(v) is the degree of v € V.

If one considers a one-mode network (V,E C V x V) as a formal context K =
(G,G,I € G xG),where V = G, and for g,m € V gEm <= gIm, then for

bicluster (g’, g’) it follows that?

lg xg' NI IN(g)xN(@ NIl _[N(g)xN(@g)nIl1-1/|N(g)
lg'llgl IN2(g)| ~ NEEDNG) )

pg.¢g) =

1
1 — W

= cce(8)—,
Note that N(g) = deg(g) = {u|gEu} = ¢’

. ~ cce(g)
Moreover, for large neighbourhoods p(g’. g') ~ “<5%.

4.2 Connection Between p and Modularity

Since we do not optimise any modularity-like criterion in our study, multimodal
clusters are supposed to be overlapping in general, and, moreover, to the best of
our knowledge there is no widely accepted modularity criterion even for bipartite
overlapping communities; the introduction and study of such criteria could be a
subject of a separate research. However, we show the interconnection between
average of values in the input modularity matrix for a particular bicluster and its
density.

Let Ag, be the adjacency matrix of an input context K = (G,M,I € G x M),
i.e. Agn = [gIm]* for (g,m) € G x M. For bipartite graphs an entry of modularity
matrix is defined as follows:

deg(g)deg(m) _ 7, 181l
1] '

Fom = Agn = 1]

For non-overlapping communities modularity in two-mode networks is defined
as follows [4]:

Mod = 1 Z ([glm] — M) [(g,m) € C], where

|1] |71
(g m)EGXM

3Note that technically (g’, g’) is not an OA-bicluster since (g, g) & I.

4 1 if Pis true;
Here [-] means Iverson bracket defined as [P] = .
0 otherwise,
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C € G x M is a module (or community) from a set of non-overlapping
communities % of the original network. Non-overlapping here is formally defined
as follows: VC,D e ¥ CND = @.

Let (m/, g’) be a bicluster of K, then the sum over all entries (g, m) € m’ x g’ in
B gives

D [
|m, % g, n 1| _ (g.m)em’xg’
1]

Instead of normalising that sum by || as in modularity definition, we can try to
calculate (local) bicluster modularity, Mod,(n’, '), by normalising the sum by the
bicluster volume Vol(m', g') = |¢’||n"|:

YR o
|m' x g ﬂl|_gem/ meg' = ot g,)_deg@deg(m)

Mod;(m', g") =
g’ [|m’| g’ l|m| 1] |1

, where

X~ ~. . . — .
£ is the average degree of g in the input bicluster and deg(i) is the

deg(9) = —7
average degree of 7 and defined similarly.

It is clear that to maximise Mod; criterion one needs to find a bicluster with high
density and low average degrees of its elements.

However, the original modularity criterion for bipartite non-overlapping net-
works has intrinsic drawbacks. The first problem, low resolution, consists in the
dependence between the size of detected communities and the size of an input graph

[21]. Another one can be demonstrated by a model example.

Let K = (G, M, I) be a formal context, where for a certain pair (g, m) € [ we
have g = M,m' = G,and I = m' x mU g x g’. Without loss of generality let
|G| = |[M| = n. Then

| _
Il 2n—1

Bgm = [gIm] =

For large n, Bgn ~ 1 — n/2 and this value tends to —oo by implying
n — oo. To keep the second term of an entry of the modularity matrix no
greater than 1 (the maximal probability of incidence of g and m), one needs
to require |g'|, [m’| < /|I| (which is in fact should be normally fulfilled for
large and sparse (real) networks).
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4.3 Least Square Optimal n-Clusters

One of the important statistics in clustering is the data scatter of an input matrix, i.e.
the sum of squares of all its entries [63]. In [64], least squares based maximisation
criterion to generate n-cluster was proposed:

g(P) = p*(P) - Vol(P) = p(P) - mass(P), where

P is an n-cluster of a certain n-adic context. On the one hand, its direct
interpretation implies that we care about dense n-clusters of large size instead
of only dense (that may be small) or only large (that may be sparse); in other
words such n-clusters tend to be massive (with low number of missing tuples in
the input binary relation) and dense. On the other hand, this criterion measures the
contribution of P to the data scatter of the input n-adic context.

In [45], one can find a theorem saying that by maximisation of g(P) we require
higher density within n cluster P than in the corresponding outside regions along its
dimensions.

4.4 Weak Bicluster Communities and Graph Cuts

In network analysis, a community is called weak if its average internal degree is
greater than its average out degree [3].

In two-mode case, for an input context K = (G, M, I) and its bicluster (', g’),
we have

NZ (8 U gl +~Z ({7} U {m})'| zNZ T NM\g| +~Z i NG\ .

/ / / !

gEM meg' gEmM meg’

The left-hand side of the inequality is the doubled sum of the number of object-
attribute pairs from (', g’). The right-hand side shows how many pairs the objects
from bicluster extent and the attributes from bicluster intent form with the remaining
attributes and objects of the context, respectively. In network analysis this measure
is known as cut [21], i.e. the number of edges one should delete to make the
community disconnected from the remaining vertices in the input graph. Thus, the
inequality can be rewritten as follows:

cut(m’, g’)

p(m',g") > -
2|g'||m|

This criterion can be used for selection of biclusters during their generation
instead of fixed ppmin.
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4.5 Stability of OA-Biclusters

Stability of formal concepts [53, 54] has been used as a means of concepts’ filtering
in studies on epistemic communities [56, 77, 78] and communities of website
visitors [55].

Let K = (G, M, I) be a formal context and (A, B) be a formal concept of K. The
(intensional) stability index, o, of (A, B) is defined as follows:

HCCSA|C =Bj

o(A,B) = 2]

As we know, not all of the OA-biclusters of a given formal context are formal
concepts.

Only those OA-biclusters that fulfill condition (m',g") = (g”,m”) are formal
concepts. However, stability index can be technically computed for any OA-
bicluster as follows:

_HAcw |A =g}
o 2lm’|

o(m', g

Set 2" can be decomposed into three parts: 2¢” U 2"\¢" U A. The numerator is
equalto [{A € 28" | A" = g} |+{A € 2"\ | A" = gW\B|+|[{A € A | A = g }\d).
Since every set of objects from m’\ g” does not have all attributes from g’, the second
summand is 0, and the same applies to the third one due to each set from A contains
at least one object’g from m’ \ g” such that g’ # g’. Hence,

A e2 1A =g
- 20|

o(m', g

Since the number of all A that contain g is |28”\g |, the tight lower bound of OA-
bicluster’s stability is 2le"\sl=lm'l,

The stability index of a concept indicates how much the concept intent depends
on particular objects of the extent.

4.6 Coverage and Diversity

Diversity is an important measure in Information Retrieval for diversified search
results and in Machine Learning for ensemble construction [82].

To define diversity for multimodal clusters we use a binary function that equals
to 1 if the intersection of triclusters 7; and 7} is not empty, and 0 otherwise.

intersect(T;, T;) = [Gr, N G, # @ A My, N\ My, # @ A By, N By, # 0] )
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It is also possible to define intersect for the sets of objects, attributes, and
conditions. For instance, intersects (T}, T;) is equal to 1 if triclusters 7; and T; have
non-empty intersection of their extents, and O otherwise.

Now we can define diversity of the tricluster set T

> > intersect(T;, T))
[EANEZAR)]
2

diversity(J) = 1 — (10)

The diversity for the sets of objects (attributes or conditions) is similarly defined:

Zj ZKJ. intersectg (T}, T)
Z1d71=1 (o
2

diversity;(T) = 1 —

Coverage is defined as a fraction of the triples of the context (alternatively, objects,
attributes, or conditions) included in at least one of the triclusters of the resulting
set.

More formally, let K = (G, M, B,I) be a tricontext and .7 be the associated
triclustering set obtained by some triclustering method, then coverage of 7

coverage(J) = Z (g,m,b) € U XXYxZ| /. (12)

(g.m,b)€l X,Y.2) es

The coverage of the object set G by the tricluster collection .7 is defined as
follows:

coverageG(§)=Z g€ U X 1/IG]|. (13)

geG X,Y.2) e

Coverage of attribute or condition sets can be defined analogously. These
measures may have sense when one would like to know how many actors or items
in the network do not belong to any found community.

We also use the coverage of formal concepts by biclusters, i.e. we count the
number of concepts covered by at least one bicluster in the corresponding bicluster
collection B. We say that bicluster B = (X, Y) covers concept C = (Z, W) w.r.t.
component-wise inclusion of their extents and intents, namely C C B : <= Z C
Xand W CY.

{CeBG,M,I)|IBe B:CCB)

coverage z(B(G,M, 1)) = B(G. M.D)|

(14)
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S Data

For our experiments we collected datasets from one-mode to four-mode networks.
In particular, we have analysed the following classic one-mode datasets:

o Karate club, 34x34, 78 edges;

* Florentine family 1, 16x16, 40 edges;
* Florentine family 2, 16x16, 30 edges;
* Hi-tech, 36x36, 147 edges;

* Mexican people, 35x35, 117 edges.

For two-mode datasets we have used Southern women of size 18x14 with 93
edges and four datasets studied in [57]:

e co-authoring, 19,885x16,400, and 45,904 edges;

e co-occurrence, 13,587x9,263, and 1,833,63 edges;

* actor, 127,823x383,640, and 1,470,418 edges;

* p2p, 1,986,588 peersx5,380,546 data, and 55,829,392 links (edges).

As for three-mode network, we have analysed Bibsonomy dataset® with |U| =
2467 users, |T| = 69,904 tags, |R| = 268,692 resources that related by |Y| =
816,197 triples.

Finally, MovieLens data® with 100,000 ratings (integers from 1 to 5) and 1300
tag applications applied to 9000 movies by 700 users is considered as a four-mode
dataset. We have used only user, movie, rating, and time modes.

6 Experiments

We have tested our implementations for one- and two-mode networks in Python 2.7
and for higher modes in C# with our tool, Multimodal Clustering Toolbox, on a Mac
Pro computer with 3.7 GHz and 16 GB RAM.

6.1 Two-Mode Networks

For each two-mode dataset we report the number of unique biclusters and the
number of all generated biclusters; note that when all objects (and attributes) are
pairwise different there are no duplicates by definition.

Shttp://www.kde.cs.uni-kassel.de/bibsonomy/dumps/.
Shttp://grouplens.org/datasets/movielens/.
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Table 1 Southern women:

Concept | Unique Fraction of
18x14, 93 edges p coverage | biclusters | Biclusters | covered concepts
0 65 83 93 1.00
0.05 |65 83 93 1.00
0.1 65 83 93 1.00
0.15 |65 83 93 1.00
02 |65 83 93 1.00
0.25 |65 83 93 1.00
03 |65 83 93 1.00
035 |65 82 92 1.00
04 |65 81 91 1.00
045 |65 77 87 1.00
05 |65 71 81 1.00
0.55 |65 63 73 1.00
06 |65 60 7 1.00
0.65 |64 51 59 0.98
0.7 |63 40 47 0.97
0.75 |57 33 4 0.88
0.8 |51 22 28 0.78
0.85 |35 13 19 0.54
09 |20 7 9 0.31
095 |0 0 0 0.00
1 0 0 0 0.00

For small and medium size classic two-mode and one-mode datasets we have
reported the number of formal concepts covered by the generation bicluster
collection for a specific pmin as well as their fraction, i.e. coverage (B(G, M, I)).

In 1930s, a group of ethnographers collected data on the social activities of 18
women over a nine-month period [17]. Different subgroups of these women had
met in 14 informal social events; the incidence of a woman to a particular event was
established using “interviews, the records of participant observers, guest lists, and
the newspapers” [17, p. 149]. Later on, this Southern Women dataset has become
a benchmark for comparing communities detection methods in two-mode social
network analysis, in particular, including concept lattices as a community detection
approach [22, 23].7

The results of our experiments with Southern Women dataset are summarised in
Table 1.

"There is a small inconsistency in the profiles of women w14 (Helen) and w5 (Dorothy), namely
between their description in [22] and the downloaded dataset provided at https://networkdata.ics.
uci.edu/netdata/html/davis.html, thus according to the latter e}, e13 € wq sandejj,e9 € wq 5.
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There are 66 formal concepts for the Southern woman network. Since OA-
biclusters are tolerant to missing values, let us illustrate how rather dense
biclusters include the largest concepts with non-empty extent and intent.

For example, with py,i, = 0.8 we show five bicluster-concept pairs B; =
(¢',w'), C; = (W,E) related by component-wise inclusion of their extents
and intents, respectively, namely C; C B; : <= W C e andE C w':

1. Cl = ({Wo,Wl,Wz,W3,W5,W6,W7},{65,67}) E B1 = ({W(),Wl,WQ,Wg,Ws,
We, W7, Wg}, {€2, e4, €5, e7}) with p(By) = 0.84;

2. C2 = ({W(),WQ,Wg,},{62,63,64,65,87}) E B2 = ({Wo,Wz,W3,W4},{€(),€2,
e3, ey, €5, €6, €7}) With p(B;) = 0.82;

3. C3 = ({wo, wio, Wit, Wi2, Wiz, Wig, Wist ter1}) E By = ({wg, wio, Wi,
W12, W13, Wi4, Wis}, {€6, €7, s, e11}) with p(B3) = 0.82;

4. C4 = ({wi0, w11, W12, Wis}, €7, e, €9, e11}) E By = ({wio, wi1, Wiz, W13,
Wi4, Wis), {€7, es, €9, e11 }) with p(By) = 0.92;

5. Cs = ({wis, w17, w1z}, {e1,es}) T Bs = ({wie. w17, w13, w14}, {e1, eg})
with p(Bs) = 0.88.

The corresponding bipartite graph is shown in Fig.4 along with the
biclique formed by elements of concept C; and bicluster B;, and concept
C3 and bicluster B;. According to [18, 22] there is the “true structure”
of the Southern women network: namely, there are two groups of women
{wo,...,wg} and {wq,...,wy7}. The first group of women participated in
events ey through e4, while the second group was not. The second group
participated in events e3 through e;3, while the first group was not. Both
groups participated eg, €7, and eg.

Since the Southern women network is a well-studied case in SNA community
and one of the first SNA datasets analysed by sociologists using concept lattices, an
interested reader may refer to [22, 23] to find professional interpretation of several
important communities of women found by means of formal concepts.

Even though that such networks as co-authoring, co-occurrence, actor, and p2p
are two-mode and known to SNA community about a decade, even the number
of concepts (maximal bicliques) for these datasets is not reported in the literature
(Tables 2 and 3).

An interesting issue has appeared: At which pni, the generated biclusters do
not cover all formal concepts with non-empty extent and intent? According to our
experiments for two-mode (see also Appendix) and one-mode networks, it usually
happens around pmin, = 0.5 or higher (containing intervals marked by two horizontal
lines in the tables), so, we may hypothesise that one can normally set minimal
density value equal to 0.5.
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Fig. 4 The two-mode network for the Southern women dataset, bicluster B; and concept C;, and
bicluster B3 and concept C;

6.2 Folksonomies as Three-Mode Networks

Folksonomy is a typical example of a three-mode network, where a hyperedge
connects a user, a tag, and an attribute. Thus each hyperedge is a set of size
three with three vertices of different types; it is convenient to represent edges as
tuples (user, tag, resource). Since we experiment with Bibsonomy, a Folksonomy-
based resource sharing system for scientific bibliography, our users are scientists,
resources are papers that they bookmarked or even authored; a tag is assigned by a
scientist to a particular paper while bookmarking.
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Table 2 The numbers of unique and all OA-biclusters for the four large two-mode networks

Datasets

Co-authoring Co-occurrence Actor P2p

Unique Unique Unique Unique
P biclusters| Biclusters| biclusters| Biclusters| biclusters | Biclusters| biclusters | Biclusters
0 43253 45904 161,386 | 183,363 | 1,278,989 1,470,418/ 54,789,256/ 55,829,169
0.05/ 43,253 | 45,904 161,386 | 183,363 | 1,226,429 1,417,827| 41,937,580 42,973,016
0.1 43,253 45,904 160,200 | 181,630 | 962,389 |1,153,704|27,178,639| 28,196,480
0.15/ 43,253 | 45,904 124,383 | 137,367 | 700,207 | 891,401 |18,320,253| 19,321,315
0.2 43251 45902 69,283 |75,761 523,446 | 714,509 | 13,179,196 14,165,402
0.25/ 43,184 | 45,835 39,081 43,252 410,118 | 601,065 |9,789,039 | 10,759,880
0.3 42,748 41,774 24,484 |27,672 318,245 |509,068 | 7,019,097 | 7,969,965
0.35/ 41,774 44,423 17,011 19,718 269,642 | 460,361 |5,088,606 | 6,017,582
0.4 139,366 | 42,008 12,796 | 15,100 | 214,979 | 405,543 | 3,950,659 | 4,856,567
0.45/ 36,194 | 38,809 10,111 12,251 190,704 | 381,106 | 3,369,522 | 4,261,678
0.5 | 34,141 | 36,737 8539 10,515 182,906 | 373,191 |3,056,597 | 3,938,536
0.55/29,404 | 31,960 | 6926 8699 110,464 299,895 | 1,156,887 | 1,918,111
0.6 23,150 |25,615 5395 7036 84,459 272,894 |764,584 1,483,586
0.65/ 20,604 23,007 4572 6127 77,904 265,699 |614,743 1,308,939
0.7 16,391 18,707 3929 5386 72,651 259,877 | 50,981 1,182,631
0.75/ 15,951 18,234 3726 5129 71,663 258,550 | 472,869 1,126,702
0.8 12,989 | 15,137 3490 4846 69,449 255,904 419,533 1,046,786
0.85/ 11,533 | 13,530 3313 4568 68,555 254,703 | 39,189 986,811
09 11,053 12,976 3214 4437 68,186 | 254,138 |377,377 949,637
0.95/ 10,875 | 12,756 3105 4290 67,871 253,623 | 369,401 929,765
1 10,874 | 12,756 3079 4250 67,798 253,390 367,946 | 926,380
Table 3 Elapsed time for online OA-biclustering
Dataset 11| G| M| Time, s
Co-authoring 45,904 19,885 16,400 0.13
Co-occurrence 183,363 13,587 9264 0.25
Actor 1,470,418 127,823 383,640 3.55
p2p 55,829,392 19,86,588 5,380,546 260.13

Let us consider a toy imaginary example of Bibsonomy data; the input context
is shown by three layers in Table 4. There are four users (u; = Fortunato,
uy, = Freeman, u3 = Newman, and uy = Roth) and three tags (f; =
Galois Lattices, t, = SNA, and t; = Statistical Physics). Three papers pj,
P2, and p3 are marked according to the research interests of those users. Thus
Freeman and Roth marked paper 1 by tags “Galois Lattices” and “SNA”,

(continued)
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Table 4 A toy example with Bibsonomy data

n 1% 13 n 15 13 n 15 13
uy uy X uj X X
up X X up X 125
us us X us X X
[n X X Uy X Uy

p1 P2 P3

Fortunato

StatPhys

Galois lattices

pl p3

Fig. 5 Three triconcepts C;, C,, Cs for the Bibsonomy three-mode network
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Table 5 Experimental results for & first triples of Bibsonomy dataset with ppi, = 0

k, number of OAC-Prime,s

first triples | |U| | |T)| IR| iy | Zoac’| | TRIAS, s | Full time | Online phase
100 1 47 52 57 77 0.2 0.02 0.003

1000 1 248 482 368 656 1 0.043 0.001

10,000 1 444 5193 733 1461 2 273 0.031
100,000 59 5823 28,920 22,804 33,172 |3386 24,185 0.542
200,000 340 | 14,982 | 61,568 |- 105,571 | > 24 h 25,446 1.268
500,000 1191 | 45,232 | 148,695 | — 316,139 | > 24h 29,035 3.529
816,197 2467 | 69,904 | 268,692 | — 484,349 | > 24 h 241,341 |5.186

Table 6 Density distribution of OAC-prime triclusters for 816,197 triples of Bibsonomy dataset
with ppin =0

Lower bound of p Upper bound of p Number of triclusters
0 0.05 172
0.05 0.1 3070
0.1 0.2 36,878
0.2 0.3 77,170
0.3 0,4 90,005
0.4 0.5 67,659
0.5 0.6 66,711
0.6 0.7 41,507
0.7 0.8 22,225
0.8 0.9 11,662
0.9 1 67,290

To build all triconcepts of a certain context we have used a Java implementation
of the TRIAS algorithm by R. Jaschke [46]. The last two columns in Table 5 mean
time of execution of TRIAS and OAC-prime algorithms.

Note that here we have reported both the full execution time of OAC-prime
algorithm, i.e. tricluster generation with density calculation, and the time of online
phase for tricluster generation only. One may note a dramatical drop-off in time
efficiency between the last and penultimate lines in Table 5 for the full execution
time, while online phase took only about half a second more. The devil is in the
hashing data structures used for duplicate elimination and we believe the timing can
be improved, for example, by a specially designed Bloom filter. Note that a more
general and efficient algorithm Data-Peeler [13] could be used suitable for mining
n-concepts.

Distribution of density of triclusters for all the triples of Bibsonomy dataset is
given in Table 6.
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6.3 MovieLlens Data as Four-Mode Network

We summarise the results of prime-based tetraclustering execution on Movielens
data below:

Time: 13,252 ms

Number of n-clusters: 89,931

Average volume, Vol: 4554

Average density, p: 0.35

Average coverage: 0.1%

Average mass, mass:  103.7

Average p - mass: 28.1

In addition to average density we report average volume, average coverage (the
number of covered original tuples by each tetracluster on average), average mass
(the number of tuples inside each tetraclusters on average), and quite an interesting
statistic, average p - mass. If we maximise the latter criterion, then we require for
our tetraclusters to be dense and large at the same time while criterion p - Vol could
result in sparse patterns.

To provide concrete examples of tetraclusters, we have selected rather small-
sized dense communities in Table 7.

Table 7 Tetraclusters for Movielens data

No. | Generating tuple Volume | p Coverage | mass | p - mass

1 | (483, Star Trek 1V, 5, 1997/11) |27 093/003% |25 |23.1

2 | (384, Evita, 5, 1998/03) 15 0.87001% |13 11.3

3 | (872, Scream 2, 5, 1998/02) 15 0.87001% |13 11.3

4 | (102, Face/Oft, 3, 1997/10) 12 092/001% |11 10.1

5 | (750, Gang Related, 1, 1997/11) | 9 1.000.01% |9 9.0

No. | Users Movies Rating | Time

1 {109,307,374,483, {Star Trek: The Wrath of Khan (82), Star Trek IV: | {5} {97/11}
87,545,815,882,927} | The Voyage Home (86), Star Wars (77) }

2 {378,384,392} {Good Will Hunting (97), Evita (96), Titanic (97), | {5} {98/03}
L.A. Confidential (97), As Good As It Gets (97)}
3 {206,332,872} {Time to Kill, A (96), Scream (96), Scream 2 (97), | {5} {98/02}

Air Force One (97), Titanic (97)}

4 {102,116,268,430} | {Grosse Pointe Blank (1997), Face/Off (1997) } {3} {97/10}
Air Force One (1997)}

5 {181,451,750} {Gang Related (1997), Rocket Man (1997) {1} {97/11}
Leave It to Beaver (1997)}
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For example, one can easily identify the community of modern space opera
lovers in 4-cluster no. 1. Note that their third and fourth components are always
sets containing a single element due to the chosen mode nature: the same people
cannot rate the same movies by different marks simultaneously or within a different
month.

6.4 One-Mode Networks as Two-Mode Ones

There are different techniques called projections to transform two-mode graphs to
their one-mode versions [57, 67]. Sometimes, researchers even do transformations
in backward direction to consider interactions between different subgroups of actors
as they were from different modes of the corresponding two-mode network [18, 91].

An undirected one-mode network in the form I" = (G,E € G x G) can be
considered as the two-mode network by composing a context K = (G, G, I) where
gEh <= glhfor any g, h € G, with two options for / being a symmetric relation:
a) reflexive and b) irreflexive.

In reflexive case, each concept (A, B) of such context K that fulfills A = B
corresponds to the maximal clique A in the original one-mode network.

We provide the reader with the results of OA-biclustering for one-mode networks
in Tables 8, 9, 10, 11, and 12.

In addition to the fraction of covered concepts by component-wise set inclusion
we have reported intervals [p, pg], Where the fraction of covered concepts decreases
below 1 first time for each dataset (see two vertical lines in the tables).

In addition to the reported statistics, let us demonstrate found biclusters and
concepts for Zachary’s karate club dataset. Originally, the author of [90], an
anthropologist, described social relationships between members of a karate club in
the period of 1970-72; the network contains 34 active members of the karate club
who interacted outside the club, including 78 pairwise links between them. The club
was split into two parts after a conflict between its instructor and president. This
dataset is usually used as a benchmark for demonstration and testing of community
detection algorithms [3].

In Fig. 6, one can see three biclusters (B, By, and B3) with density less than 1
but greater 0.8 each. Thus none of them is a concept; moreover, union of their
intent and extent does not form a clique of the input one-mode network.
B, = (29,29 = ({32, 33, 26,29, 23}, {32, 33, 26,29, 23}) with p = 0.84
B, = (3,12)) = ({0,1,2,3,7,12,13},0, 3, 12}) with p = 0.81
B; = (5,4) = ({0, 10, 4, 6}, {0, 10, 4, 5}) with p = 0.88

(continued)
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Among all generated concepts, each concept (X, ¥) with X = Y results in
clique X.

Thus concept ({0,1,2,3,7},{0,1,2,3,7}) forms clique Q; =
{0,1,2,3,7}, while concepts ({0,1,2,3,13},{0,1,2,3,13}) and
({32, 33,29, 23},{32,33,29,23}) result in @, = {0,1,2,3,13} and
0s = {32,33,29,23}, respectively. Those are cliques of maximal size 5
and 4 from two parts of the karate club after its fission. It is evident that for
each of those cliques its set of vertices can be found in some OA-bicluster.
One can check that the set of vertices of B; contains those of (3, and
vertices of B, include those of O and Q,. So, it is possible to conclude that
even though the density of a bicluster may be less than 1, they can contain
more vertices resulting in larger communities than cliques. Note that the
club instructor, 0, belongs to extents of B, and B; being a “missing link”
between two corresponding subcommunities, which lack in active interaction
otherwise.

Table 8 Karate club: 34x34,

Covered | Unique Biclusters | Fraction of
190 edges o concepts | biclusters covered concepts
0 134 190 190 1.00
0.05 134 190 190 1.00
0.1 134 190 190 1.00
0.15 | 134 190 190 1.00
02 134 190 190 1.00
0.25 | 134 190 190 1.00
0.3 134 184 184 1.00
0.35 | 134 178 178 1.00
04 134 163 163 1.00
045 134 142 142 1.00
0.5 132 128 128 0.99
0.55 | 126 108 108 0.94
06 115 91 91 0.86
0.65 |97 71 71 0.72
0.7 190 67 67 0.67
0.75 |68 47 47 0.51
0.8 |31 25 25 0.23
0.85 |27 20 20 0.20
0.9 12 12 12 0.09
095 |12 12 12 0.09

1 12 12 12 0.09
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Fig. 6 Three dense biclusters Bj, B;, B, found in Karate club network with py,;, = 0.8

In Fig. 7, one can see three found communities that are composed of vertices
corresponding to three concepts Cj, C,, and Cs.

C1 = ({32,33},{32,33,8, 14, 15, 18, 20,22, 23,29, 30, 31})
G, = ({0,1},{0,1,2,3,7,13,17,19,21})
C; = ({0,10,6},{0,4,5})

In this concrete example, the usage of formal concepts for representing
communities seems to be even more beneficial than that of dense OA-
biclusters since we have been able to cover almost both parts of the separated
karate club by three concepts without sharing members between the coun-
terparts; concepts C; and C, contain more vertices than biclusters B, and B,
shown in Fig 6. Note that the semantic of C) lies in the interpretation of its
intent as common contacts of 32 and 33, an active club member who is loyal
to the club’s president and the president, respectively. Intent of C, contains
members mutually connected with the club instructor, 0, and member 1.
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Fig. 7 Three formal concepts Cy, C,, C, found in Karate club network

7 Related Work

There is a so-called subspace clustering [1] closely related to biclustering, where
objects are considered as points in high dimensional space and clustered within
multidimensional grid of a certain granularity. However, these methods cannot be
directly applied to multidimensional relational data, i.e. multi-mode networks, since
entities from different modes are often numbered arbitrarily and do not follow a pre-
specified order like values along numerical axes. However, biclustering of numerical
data, which may describe two-mode weighted networks, can be realised with Triadic
Concept Analysis in case we consider attribute values as a mode of conditions
under which an object has an attribute [50]. These results are also applicable to
n-dimensional numerical datasets. Two other ways to deal with numeric data are
to apply the so-called scaling, e.g., using a binary threshold, or Pattern Structures
defined on vectors of numeric intervals [16, 25, 49]. Pattern Structures were also
used to rethink collaborative filtering and find relevant taste communities for a
particular user in terms of vectors of desirable rating intervals for good movies [34].

As for OA-biclustering, it has been used in several applications; for example,
OA-biclustering has been applied for finding market segments in two-mode data
on Internet advertising to recommend advertising terms to companies playing on
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these segments [35, 39]. In crowdsourcing platforms, OA-biclustering helps to find
similar ideas (proposals) to discuss potential collaborators [43, 44] as well as answer
questions [14]; in case we consider opinions of users over a set of different ideas
(proposals), it is possible to find antagonists, which may be prospective opponents
in crowdsourcing teams [41].

In fact, biclustering is a well-established tool in Bioinformatics, especially for
Gene Expression Analysis in genes-samples networks [49, 70]. A non-exhaustive
concept lattice based taxonomy of biclustering techniques can be found in [36].
Methods for three-mode networks are applicable in this domain when in addition to
genes and samples time mode comes [92].

Going back to networks, several researchers define other kinds of networks where
the role of dimensions is played by different types of labels of multi-edges between
actors [8, 9]; they call such networks multidimensional while others use the term
multi-relational networks [88].

One more variation of networks is realised by n-partite networks where connec-
tion are edges between vertices of allowed types [80]. It is possible to mine maximal
closed and connected subgraphs in them and interpret them as communities [59];
these patterns coincide with bicliques and formal concepts in two-mode case.
However, for higher dimensions such n-partite graphs are not equivalent to n-adic
contexts and may result in information loss or phantom hyperedges if we reduce the
latter to the former or vice versa [33]. In [28], for analysing such tripartite network
composed by two two-mode networks with one shared part, biclusters from these
two networks have been used. Namely, those biclusters that are similar with respect
to their extents are merged by taking the intersection of their extents. The intent
of the first bicluster and the intent of the second bicluster become the intent and
modus, respectively, of the resulting tricluster. In FCA domain, analysis of n-partite
and multi-relational networks can be unified within Relational Concept Analysis
where objects can be involved in different types of relations with attributes and each
other [30].

Another related subject is tensor factorisation, which is of high importance in
Data Mining [71] and Machine Learning [15] due to its ability to reduce data
dimensionality, find the so-called hidden factors, and even perform information
fusion. The closest approaches to ones in the presented study can be found in works
on Boolean matrix [6, 7] and tensor factorisation [5, 62]. Thus in [7] it was shown
that formal concepts may result in optimal factors in Boolean matrix decompo-
sition; in [2, 42] these decompositions showed their competitive applicability to
collaborative filtering by finding communities of similar tastes. Tensor clustering
is another way to find dense patterns; this approach is very similar to multimodal
clustering in n-ary relations, especially in case of Boolean tensors, which normally
represent n-ary relations between entities [38, 61, 64, 79]. An interesting issue here,
whether it is possible to obtain improvements in classification accuracy for tensors
with labeled objects from one of their dimensions over conventional object-attribute
representations [93].
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Since the proposed multimodal clustering is an approach to find approximate
patterns, not absolutely dense as closed n-sets or n-adic concepts, various similar
ideas can be proposed. Thus, in [13] another type of fault-tolerant patterns was
proposed, which is guided by the number of allowed non-missing tuples inside an
n-cluster rather than by maximising their relative number. It seems that techniques
searching for relaxed n-cliques maximal according a density-like criteria can be
proposed for multi-mode networks as well [84]. The classic definition of biplex can
be compared with the one of the OA-biclusters as many more similar relaxations for
cliques and their possible n-adic generalisations [11].

Comparison of several existing triclustering techniques based on spectral cluster-
ing (SPECTRIC), least squares approximation (TRIBOX), OAC-prime and OAC-box
operators, and formal triconcepts (TRIAS) can be found in [40, 45]. In [45], the
complexity of the problem of optimal triclustering cover with respect to several
quality criteria is discussed; it is shown that the problem belongs to NP-complete
complexity class whereas the problem of the number of such covers belongs
to #P.

Formal concepts and their lattices have been used in criminal studies to find
communities of criminals operating together [72]. Many more successful applica-
tions based on FCA are known as well as related models and techniques [73, 74].
A comprehensive introduction to FCA can be found in the recent book [26] and
application-oriented tutorial [32].

8 Conclusions

We have proposed a scalable technique for community detection in n-mode
networks (where nodes are normally connected by hyperedges in case of n > 2).
The approach welcomes improvements and may benefit from fine tuning and
efficient filtering criteria in order to increase the scalability at the stage of density
calculation and guarantee high-quality of the found communities. We consider
several directions for such improvements: efficient hashing for elimination of
duplicate patterns, strategies for approximate density calculation and selection of
meaningful n-clusters as well as theoretical justification of choosing good thresholds
for minimal density of n-clusters.

The proposed technique can also be compared with other existing approaches
like fault-tolerant n-concepts [13] and with possible multimodal extensions of
the existing ones like different techniques for relaxed cliques [84], variations of
bicliques [68], or higher-order extensions of modularity-based criteria [66].

Since we have only showcased several relevant examples to community detection
in multi-mode networks, validation of the method for analysing similar cases
requires domain expert feedback, for example, by a sociologist practitioner.
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Appendix: Experiments with One-Mode Networks

Table 9 Florentine family 1:
16X16, 58 edges

0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

Covered | Unique
biclusters

concepts
43
43
43
43
43
43
43
43
43
43
43
43
37
33
29
29
1

W | O —

58
58
58
58
58
58
58
58
57
53
47
40
31

Biclusters

58
58
58
58
58
58
58
58
57
53
47
40
31

Fraction of
covered concepts

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.86
0.77
0.67
0.67
0.26
0.21
0.12
0.12
0.12
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Table 10 Florentine family
2: 16x16, 46 edges

Table 11 Hi-tech: 36x36,
218 edges

89

Covered | Unique Fraction of
p concepts | biclusters | Biclusters | covered concepts
0 27 46 46 1.00
0.05 |27 46 46 1.00
0.1 |27 46 46 1.00
0.15 |27 46 46 1.00
02 |27 46 46 1.00
0.25 |27 46 46 1.00
03 |27 46 46 1.00
0.35 |27 46 46 1.00
04 |27 46 46 1.00
045 |27 46 46 1.00
0.5 |27 44 44 1.00
0.55 |27 43 43 1.00
0.6 |27 41 41 1.00
0.65 |27 41 41 1.00
0.7 |25 26 26 0.93
0.75 |23 22 22 0.85
0.8 |23 19 19 0.85
0.85 |17 14 14 0.63
09 |12 12 12 0.44
095 |10 10 10 0.37
1 10 10 10 0.37
Covered | Unique Fraction of
p concepts | biclusters | Biclusters | covered concepts
0 191 218 218 1.00
0.05 | 191 218 218 1.00
0.1 |191 218 218 1.00
0.15 | 191 218 218 1.00
0.2 |191 218 218 1.00
0.25 | 191 218 218 1.00
03 | 191 218 218 1.00
0.35 | 191 213 213 1.00
04 |191 198 198 1.00
0.45 | 191 174 174 1.00
0.5 189 134 134 0.99
0.55 | 163 99 99 0.85
0.6 | 126 78 78 0.66

(continued)
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Table 11 (continued)

Table 12 Mexican people:
35%35, 268 edges

References

D.I. Ignatov et al.

Covered | Unique Fraction of
p concepts | biclusters | Biclusters | covered concepts
0.65 |86 49 49 0.45
0.7 |65 31 31 0.34
0.75 |47 22 22 0.25
0.8 |28 16 16 0.15
0.85 |16 13 13 0.08
09 |16 13 13 0.08
095 |12 12 12 0.06
1 12 12 12 0.06
Covered | Unique Fraction of
P concepts | biclusters | Biclusters | covered concepts
0 373 268 268 1.00
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Acquisition of Terminological Knowledge from
Social Networks in Description Logic

Francesco Kriegel

1 Introduction and Problem Description

In the last years, a rapidly increasing amount of data was collected and recorded
in so-called triple stores. Basically, those triple stores are databases of a special
kind, allowing for storing data in the form of triples (s, p,0) which express that
the subject s is related to the object o via the (binary) predicate p. For example,
it is possible to say that an individual x is a human by means of the triple
(x, rdf : type, some-namespace : human). As another example, with the triple
(x, foaf:hasFriend,y) we can denote that individual x is a friend of the
individual y. The vocabulary used in the triples can be freely chosen such that it
best fits the application’s needs. Please note that there are plenty of vocabularies
available, which could be used without requiring to invent one’s own vocabulary
from scratch. The most famous examples are, of course, the vocabularies from
RDF/RDFS and OWL which allow for the expression of very basic and logical facts.
Further vocabularies specifically tailored to certain use cases are, e.g., Friend-of-
a-Friend (FOAF) and others. It is easy to see that those triple datasets can also
be represented as labeled directed graphs, the vertices of which are the elements
occurring as subjects or objects, and each triple (s, p, 0) induces an edge from s to o
with label p. Labels of vertices are induced by triples of the form (s, rdf : type, ¢),
and in particular for each such triple, the vertex s is labeled with c.

The Web Ontology Language (OWL) was founded in 2004 as an improvement of
the Resource Description Framework (RDF) and the corresponding RDF Schema
(RDFS). OWL and its successor OWL?2 have various dialects providing different
expressibility and complexity such that always one can be chosen that best fits the
user’s purpose. Most of the dialects, and in particular the dialects OWL DL, OWL2
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DL, and OWL2 EL, have a strong logical underpinning by means of Description
Logics (DLs). DLs are a family of logical languages for knowledge representation
and reasoning, for which the decidability and complexity of common reasoning
problems are widely explored. Those reasoning tasks allow for the deduction of
implicit knowledge from explicitly given facts and axioms, and a vast amount
of algorithms for solving those reasoning problems were developed, optimized,
and implemented—the most popular ones are the tableaux algorithms and the
completion algorithms.

An interesting problem in the field of Description Logics is the problem of
learning, a specific instance of which is the acquisition of terminological knowledge
from a given set of assertional facts. So far there are several techniques for achieving
this, and some of them utilize the algorithmic solutions of the problem of computing
implication bases in the field of Formal Concept Analysis, or utilize the Attribute
Exploration algorithm that is capable of handling incomplete data by incorporating
an expert in the domain of interest which is able to answer questions correctly
and thus enables the algorithm to process axioms the validity of which is either
not answerable within the input dataset, or is not refuted due to the non-existence
of a counterexample. A famous work in this direction was published by Baader
and Distel [2, 3, 16] who generalized the computation, or exploration, respectively,
of implication bases for formal contexts to the computation, or exploration,
respectively, of bases of concept inclusions (CIs) valid in a given interpretation and
expressible in the description logic & %+ Furthermore, Borchmann [10, 11] defined
the notion of confidence of a CI within an interpretation, a measure indicating
which fraction of the individuals in the interpretation fulfill a certain CI. He then
developed a technique for the construction of a base of CIs the confidence of which
exceeds a pre-defined threshold in [0, 1]. His work is particularly useful for datasets
occuring in practical use cases where it cannot be ruled out that there is some noise,
i.e., errors, in the dataset to be analyzed. Borchmann then also investigated and
constituted an explorative method for the axiomatization of confident Cls, which
also needs an interpretation as input, and furthermore an expert that is capable of
correctly answering questions in the domain of interest.

We consider social networks that are encoded as description graphs, i.e., as
directed graphs the vertices and edges of which are labeled. The aim is to extract
terminological axioms, so-called concept inclusions, from the graph in order to
describe the logical structure of the social network. Furthermore, we assume that
the underlying graph to be analyzed is complete and error-free, i.e., fully describes
all persons and entities in the social network as well as their connections. It is
straightforward that description graphs and interpretations are isomorphic—we will
later elaborate on this fact. In particular, we consider a social network that is given in
form of an interpretation .#, which we indeed may assume for the aforementioned
reason. Our aim now is to formulate terminological axioms that are valid in ., i.e.,
we are searching for CIs C C D that are valid in .. Furthermore, we shall do this in
a complete manner. However, it is easy to see that the number of concept inclusions
that are expressible over a given signature is infinite; and in case of a restricted role
depth and a finite signature there are only finitely many concept inclusions. By some



Acquisition of Terminological Knowledge from Social Networks in Description Logic 99

simple observations, one can verify that the number of concept descriptions with a
role depth of § + 1 is exponential in the number of concept descriptions with a role
depth of §. Consequently, it would certainly not be a good idea to enumerate all
valid concept inclusions of .#. We should rather try to find a base for the valid CIs
of ., as it has been first investigated by Baader and Distel in [2, 16] with respect
to greatest fixpoint semantics, and later by Borchmann, Distel, and Kriegel, in [12]
with respect to descriptive semantics (the default semantics). A base of Cls for .# is
a TBox Z such that for each concept inclusion C C D, .# |= C C D if, and only if,
A = C C D. A slight generalization of the notion of a base for an interpretation has
been introduced in [29], which allows for the incorporation of existing knowledge.

In this chapter we in particular provide a generalization of the aforementioned
means for constructing bases of Cls in the more expressive description logic .# 77,
and also demonstrate how the technique can be applied to social graphs. This
chapter is structured as follows. In Sect.2 the notion of a social graph is defined,
and it is shown that the data model of Facebook induces a social graph. Section 3
gives a short introduction to the Web Ontology Language (OWL), and the following
Sect. 4 presents the description logic .# .7 which is a monotonous fragment of
the DL Y20 . 2 underlying the second version of OWL. Then in Sect.5 we
investigate the lattice induced by the .# -concept descriptions. Section 6 gives a brief
introduction to Formal Concept Analysis. In Sect. 7 we show that each interpretation
in the description logic .# .7 induces a Galois connection between the set of
M 7 -concept descriptions and the powerset of the interpretation’s domain; in
particular Sect. 8 justifies the existence of the aforementioned Galois connection
by providing a construction for so-called role-depth-bounded model-based most
specific concept descriptions in the DL .# . Section 9 generalizes the notion of a
concept lattice from formal contexts to .# 7¢ -interpretations. Furthermore, Sect. 10
presents an important connection between Formal Concept Analysis and A -
interpretations, which is then utilized in Sect. 11 to develop a construction method
for knowledge bases of .# .77 -interpretations. Eventually, Sect. 12 gives a short
overview on description logics the expressivity of which is below .# .7 and that
may also be used as a language for axiomatizing terminological knowledge. The
chapter closes with Sect. 13.

2 Social Networks and Social Graphs

A social graph is a directed graph the vertices and edges of which are labeled.
The vertices represent the entities, e.g., persons, events, messages, etc., and the
edges represent relationships between the entities, e.g., friendship between persons,
attendance of a person to an event, a person liking a message, etc. Formally, we
describe social networks as follows. First, fix a set Ny of vertex labels as well as a set
N of edge labels. Then, a social graph over (Ny, Ng) isatuple ¥ := (V,E, Ly, Lg)
where
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Fig. 1 An exemplary social
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A toy example of a social graph is shown in Fig. 1. It contains two persons, Alice
and Bob, which are friends. Furthermore, Alice attends a concert and publishes a
message which Bob likes. Bob publishes a message, too.

As an exemplary social network we consider Facebook [19], which is the most
popular social network as of 2017. It has been founded by Mark Zuckerberg, and
its website was launched in 2004. In the beginning it was limited to students from
Harvard, but was later opened stepwise to a broader audience. In 2006 everybody
with an age of at least 13 was allowed to create an account on Facebook. Since
its beginning it has successfully evolved to a networking platform, which allows
its users to publish messages, share photos, etc., and interact with each other, e.g.,
by liking other’s activities, communicating with private messages, connecting by
(digital) friendship, etc. Facebook’s data is available via the Facebook Graph API,
cf. [20]. Its data model fits well for our use case—it is accessible as a directed graph
with labeled vertices and edges. In general the Facebook graph consists of nodes,
edges, and fields. The nodes represent entities, like persons, photos, comments,
events, etc.; the edges represent connections between the entities, e.g., an edge could
link a photo to a person, or express that two persons are virtual friends; the fields
represent information about the entities, e.g., a person’s name, a person’s birthday,
the publish date of a comment, etc. In terms of description logics, those field values
can be expressed by appropriate values in concrete domains. We will not go into
detail here, and rather refer the interested reader to [20].
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3 The Web Ontology Language (OWL)

The Web Ontology Language (OWL) was introduced in its first version in 2004 as an
extension of the Resource Description Framework (RDF) and RDF Schema (RDFS)
in order to provide a well-founded semantics and to increase the expressibility of the
language. There were some language constructs expressible in RDF/RDFS leading
to inconsistencies or undecidability that are not expressible in OWL anymore, i.e.,
OWL resolved this issue. Later in 2009, a more expressive second version OWL2
was founded.

However, RDF was not fully replaced, but remained a storage format for OWL,
besides other formats, e.g., XML, Manchester Syntax, etc. A new vocabulary was
defined, which allowed for the expression of the language constructs of OWL, e.g.,
the predicate owl : i sA for assigning types to individuals (similar to rdf : type),
the predicate owl : subClassOf for expressing subclass relationships, etc. For
a full reference, the reader is referred to [46]—in the sequel of this chapter we
only consider some of the provided language constructs. In particular, we will
leave out concrete domains, disjunctions and negations, and others. Additionally,
plenty of information including interesting examples and use cases can be found
in the book [26] of Hitzler, Krotzsch, and Rudolph. OWL and its dialects are
used for the Semantic Web and for Linked Data, e.g., in the medical domain
(SNOMED ontology), and in DBpedia as well as Wikidata (structured machine-
readable derivations of Wikipedia).

The logical underpinning of OWL and some of its dialects is provided by
Description Logics (DLs), which are a family of conceptual languages suitable
for knowledge representation and reasoning that have a strong logical foundation
for which the decidability and complexity of common reasoning problems is
widely explored. In particular, the reasoning tasks allow for deduction of implicit
knowledge from explicitly stated facts and axioms, and plenty of appropriate algo-
rithms were developed and implemented, e.g., tableaux algorithms and completion
algorithms. In particular, the full first version of the Web Ontology Language
corresponds to the description logic .50 . .4, and the full second version
of the Web Ontology Language is covered by the description logic .S Z0 .7 2.
In the next Sect.4, we shall focus on (a fragment of) the description logic
S ROI 2, which is suitable for terminological learning, i.e., which allows for
a certain degree of abstraction and not only rewrites given assertional data into
terminological axioms. In particular, this implies that we shall not make use of
neither negation, nor disjunction, nor nominals, nor other constructors that can
emulate the aforementioned.

4 The Description Logic .#Z 77

This section presents the description logic .7 ¥ 2= _4"=(Self), which is a fragment
of RO 72, and allows for conjunctions, primitive negations, value restrictions,
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qualified at-least restrictions, unqualified at-most restrictions, and existential self
restrictions. Furthermore, we will not focus on the implementation details of OWL,
and do not present any of the different syntaxes of OWL, but rather use the
theoretical notations that are used in the field of description logics. The considered
description logic &7 2= .4'=(Self) is abbreviated as .#, which encodes the
monotonicity of all allowed constructors.

Consider a finite signature X = (N¢, Ng), that is, N¢ is a finite set of concept
names, and Ny is a finite set of role names. Then an .4 -concept description over X
can be constructed according to the following inductive rule where A € N¢, r € Ng,
andn € N.

Cx=1|T|A|-A|CNC|Vr.C|A=nr.C|3T <n.r|3Ir. Self

The semantics are model-theoretic, that is, they are defined by means of so-
called interpretations. An interpretation .9 over X = (N¢, Ng) is a pair (A, -7)
consisting of a non-empty set A~ which is called domain, and an extension function
' Ne UNg = 9(A7) U p(A7 x AY) that maps concept names A € N¢ to
subsets AY € A, and role names r € N to binary relations r7 AT x A7
The extension function is then canonically extended to all . -concept descriptions
according to the following recursive definitions.

17 =9
T7 = A7
(_|A)ﬂ — AJ\AJ
(cnbD)y?” =c” np”
Vr.C)” =={de A’ |Vee AY:(d,e) € r’ impliese € C”}
A>nr.C0) ={deA” ||{eec A’ |(d.e)cr” andeec C”}| >n}
A<nr)’ ={deA” ||{fecA” |d,e)er’} <n}
3r.Self)y” :={de A’ | d.d)er”}

Of course, we may emulate existential restrictions, the expressibility of which
is symbolized by the letter & within the description logic’s name, by using the
abbreviation 3r.C:=3 > 1.r.C,i.e.,both A4 and A4 & = o L E 2= N =(Self)
denote essentially the same logic. It is readily verified that the following equation
for the extension of existential restrictions is satisfied.

@Ar.C)Y ={de A’ |TecA”:(d.¢)er’ ande e C”}
Informally, the role depth of a concept description is defined as the maximal

number of nestings of role quantifiers. More specifically, we define the role depth
rd(C) of an .# -concept description C recursively as follows.
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rd(L) =0

rd(T):=0

rd(A) :=0 for each concept name A € N¢
rd(—A) =0 for each concept name A € N¢

rd(C 1 D) := max(rd(C), rd(D))
rd(Vr.C) := 1 4 rd(C)
rd(3 > n.r.C) := 1+ rd(C)
rd3 <n.r):=1
rd(3r. Self) :=1

The set of all .# -concept descriptions over a signature X is symbolized as .Z (X)),
and for a role-depth bound § € IN, we denote by .Z (X') |5 the set of all .# -concept
descriptions over X with a role depth not exceeding 8.

A concept inclusion (abbr. CI) is an expression C & D where both C and D are
concept descriptions. A terminological box (abbr. TBox) is a finite set of concept
inclusions. A CI C T D is valid in .# if C¥ € D?. We then also refer to .# as a
model of C T D, and denote this by .# = C T D. Furthermore, . is a model of
a TBox .7, symbolized as .# = .7, if each Cl in 7 is valid in .#. The entailment
relation is lifted to TBoxes as follows: A CI C T D is entailed by a TBox 7,
denoted as .7 | C C D, if each model of 7 is a model of C T D, too. We then
also say that C is subsumed by D with respect to 7. A TBox 7 entails a TBox % ,
symbolized as .7 = %, if 7 entails each CI in %, or equivalently if each model of
7 is also a model of % . Two .# -concept descriptions C and D are equivalent with
respect to 7, and we shall write 7 = C = D, if 7 = {C T D,D C C}. In case
J = () we may omit the prefix “@) =". However, then we have to carefully interpret
an expression C & D—it either just denotes a concept inclusion, i.e., an axiom,
without stating where it is valid; or it expresses that C is subsumed by D (w.r.t. @),
ie, C7 C D7 is satisfied in all interpretations .#. An analogous hint applies to
concept equivalences C = D.

To justify the choice of the abbreviation .# for o7 ¥ 2= 4= (Self), we remark
that each of the constructors is monotonous, i.e., it holds true that for all .# -concept
descriptions C, D, E, all role names r € N, and all natural numbers n € IN,

{CCD}E{CNECDNE, Vr.CCVr.D, A>n.r.CCE3I>n.r.D}

A role inclusion (abbr. RI) is an expression r = s where r, s € N are role names.
A relational box (abbr. RBox) is a finite set of role inclusions. For an interpretation
#, we say that r T s is valid in .Z, denoted as & = r C s, if ¥ C s7.
Furthermore, an RBox Z is valid in .%, symbolized as . = %, if each role
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inclusion in &% is valid in .#. In case a description logic allows for the usage of
these role inclusions, then its name contains the letter .##. In what follows we are
going to merely consider the description logic .# 7.

In order to decide entailment, the well-known tableaux algorithm [5, Sect. 3.4]
can be utilized. It takes as input a knowledge base (.7, /) consisting of a TBox and
an ABox, and tries to construct a model of the knowledge base. It was shown that
the tableaux algorithm is sound (i.e., the output is indeed a model), complete (i.e.,
if a model exists, then a model is constructed and returned), and terminates (i.e.,
for finite input yields a result after a finite amount of time). These are the following
common reasoning problems, cf. [5, Sect. 3.2.2].

1. Knowledge Base Consistency: Given a knowledge base %', is there a model of
H?

2. Concept Satisfiability: Given a concept description C, and a knowledge base 7,
is there a model of .Z" in which C has a non-empty extension?

3. Concept Subsumption: Given two concept descriptions C and D, and a knowl-
edge base #, does .# |= C C D hold true for all models .# of JZ?

4. Concept Equivalence: Given two concept descriptions C and D, and a knowledge
base Z, does .# |= C = D hold true for all models .# of JZ?

5. Instance Checking: Given an individual a, a concept description C, and a
knowledge base %", does % entail a E C?

6. Role Instance Checking: Given two individuals a and b, a role name r, and a
knowledge base %", does %  entail (a, b) E r?

There is a strong correspondence between interpretations and directed labeled
graphs, and in particular it is easy to translate between both formalisms. We start
with defining a description graph, which is very similar to a social graph as
introduced in Sect.2. A description graph over a signature (N¢,Ng) is a tuple
¢ = (V,E, Ly, Lg) that satisfies the following conditions.

1. (V,E) is a directed graph, i.e., V is a set of vertices, and E C V x V is a set of
directed edges,

2. Ly:V — ©(N¢) is a vertex labelling, and

3. Lg: E — ©(Ng) is an edge labelling.

Please note that in some works description graphs are defined to have a distinguished
root vertex—however, this is not necessary for our purposes.

Each interpretation induces a directed labeled graph as follows: let . =
(A7, -7 be an interpretation over the signature (N¢, Ng). Then, define the descrip-
tion graph ¢4 (.#) := (V, E, Ly, Lg) over (N¢, Ng) that consists of the directed graph
(V, E) with the components

V.= AJ,

and E = U{r]|r€NR},
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and the corresponding labeling functions

Ly: V— p(N¢)
x> {AeNc|xeA”},
and Lg: E — p(Ng)

(x,y) > {reNg | (xy) er’}

Note that ¢ (.#) just formalizes the natural graphical representation of interpreta-
tions as they are usually drawn in toy examples.

Vice versa, if 4 := (V,E, Ly, Lg) is a description graph over (N¢, Ng), then its
induced interpretation is .#(¥4) = (A7), .7@)) the components of which are
defined in the following way.

AT D =y,
A {xeV]|AecLy(x)}

and 9.
ri—>{(xy €E|relLpxy)}.

It is readily verified that the two transformations are mutually inverse, and this
justifies that we do not have to distinguish between interpretations and description
graphs (or social graphs) in the sequel of this document.

5 The Lattice of .#-Concept Descriptions

It is readily verified that the subsumption T with respect to the empty TBox @
constitutes a quasi-order on the set .# (X') of all .Z -concept descriptions over the
signature X' = (N¢, Ng), i.e., the following conditions are satisfied.

1. C w.rt. @ is reflexive, i.e., for all .# -concept descriptions C, @ = C E C, and
2. C w.r.t. @ is transitive, i.e., for all .4 -concept descriptions C, D, E, it holds true
that) = CC Dand @ =D C Eimplies@ = CC E.

Of course, then the equivalence = with respect to @ is an equivalence relation, i.e.,
the following statements hold true.

1. = w.r.t. @ is reflexive, i.e., for all .# -concept descriptions C, ¥ = C = C,

2. = w.r.t. @ is transitive, i.e., for all .# -concept descriptions C, D, E, we have that
EC=Dand@ =D = Eimplies d = C = E, and

3. = w.r.t. @ is symmetric, i.e., for all .# -concept descriptions C, D, it holds true
that @ = C = D implies @ = D = C.

By definition it follows that it is the induced equivalence relation of C, i.e., @
C=Dif,andonly if, = C C D as well as @ = D C C. Hence, the quotient of
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(A (X), C) with respect to the induced equivalence = w.r.t. @ is a partially ordered
set (a poset). It consists of all equivalence classes [C]= for .# -concept descriptions
C, which are defined by

[Clo:={D|0}C=D).

Furthermore, for an equivalence class [C]=, we say that C is a representative of
it. We can then define a partial order on the classes which is induced by the
subsumption between their representatives, i.e., for all .#-concept descriptions
C,D,

@ = [C]= C [D]= if, and only if, # = C C D.

This partial order enjoys all properties of a quasi-order as stated above, and
furthermore is anti-symmetric, i.e., for all .# -concept descriptions C, D,

@ = [Cl= C [D]= and @ = [D]= C [C]= implies [C]= = [D]=.

For the sake of simplicity, we will not distinguish between the equivalence classes
and their representatives in the sequel of this chapter. The poset (-#(2).5)/= is even a
bounded lattice. Of course, L is the smallest element, and T is the greatest element.
It is easy to see that the (finitary) conjunction [ | corresponds to the finitary infimum
operation, since for all finite sets ¢ of . -concept descriptions over X, it holds that
the conjunction [ ] € is the greatest lower bound (w.r.t. C) of all concept descriptions
in%,ie,dE[]|¢ C Cforall C € ¥, and for all .# -concept descriptions D with
@ E DC Cforall C € %, it holds true that § = D C [|%. However, what
is missing is a supremum operation. Of course, in description logics allowing for
disjunction, we can easily prove that the disjunction is the supremum operation. For
the general case, the notion of a smallest upper bound is rather called least common
subsumer in the field of description logics, and is defined as follows.

Definition 5.1 Let C, D be .# -concept descriptions over the signature X'. Then a
concept description E € . (X) is called a least common subsumer (abbr. LCS) of
C and D if the following conditions are fulfilled.

1. E subsumes both Cand D, ie.,d =CC Eand@ = DLC E.
2. Whenever F is a common subsumer of C and D, then F subsumes E, i.e., for all
concept descriptions F € .#(X),d ={CE F,DC F}impliesd = EC F.

It follows that least common subsumers are always unique up to equivalence.
Hence, we can speak of the LCS of two concept descriptions, and furthermore we
denote it by C v D. The definition can be canonically extended to an arbitrary
number of concept descriptions, and we then write \/ % for the least common
subsumer of a set € of .# -concept descriptions over X. It is readily verified that
the conjunction is a categorical product, cf. Fig.2, and dually the least common
subsumer is a categorical coproduct, cf. Fig. 3.
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Fig. 2 The conjunction is a
product in the category the
objects of which are concept
descriptions and the EZZ--»CnD
morphisms of which are
subsumptions, cf. [38, p. 69]

Fig. 3 The least common
subsumer is a coproduct in
the category the objects of
which are concept
descriptions and the
morphisms of which are
subsumptions, cf. [38, p. 63]

It was shown that least common subsumers always exist in several description
logics, e.g., in &%, L&, and &/ £ &, as shown in [4] by Baader, Kiisters, and
Molitor; in &/ £ 2 and & L E N X as shown in [40, 41] by Mantay; in o LE N
as shown in [33] by Kiisters and Molitor; in &/ £ & A S N+ as shown in [18]
by Donini, Colucci, Di Noia, and Di Sciascio; in &% gpp, i.e., .2 interpreted with
greatest fixpoint semantics, as shown in [1] by Baader; in # £ & gip as shown in [14]
by Distel; and in & .Zéfp as shown by Distel in [16].

As a practical means for ensuring the existence of least common subsumers,
we could also apply a bound on the role depth of the concept descriptions under
consideration. For the case of &% this has been done in [12] by Borchmann,
Distel, and Kriegel. However, this result also applies to all other description logics
equipped with a bound on the role depths—in particular, we know that then for all
concept descriptions C and D, there are only finitely many concept descriptions that
satisfy the role depth bound, use only concept names and role names occuring in C
or D, and that only include numbers in at-least or at-most restrictions not exceeding
those occuring in C or D. Denote the conjunction of these three properties by .
Then, we can infer that

0|=CVDE|_|{E|Esatisﬁes x and@={CCE, DC E}},

holds true and is a well-defined formula as the set { E | E satisfies * and § = {C T
E, D C E} } must be finite, and thus its conjunction indeed exists. Note that this is
a rather theoretical argument showing the existence, but not allowing for a practical
computation of least common subsumers.

It is easy to see that the equivalence = is compatible with both M and V. In the
sequel of this chapter, we shall denote this bounded lattice by .#Z (X' := (#(2).5)/=,
and accordingly Z(X) s = (#(X)1:.5)/= symbolizes the bounded lattice of
(equivalence classes of) .# -concept descriptions the role depth of which is bounded
by 8. Note that .# (X) |5 is indeed complete if the underlying signature X' is finite,
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since then there are only finitely many .# -concept descriptions over X' with a role
depth of at most §. Eventually, the dual (.# (X))? of the lattice .# (X)) is obtained
by simply reversing the order relation, and an analogous notion applies to the lattice

W/ACHIVE

6 Formal Concept Analysis

This section briefly introduces the standard notions of Formal Concept Analysis
(abbr. FCA) [24]. A formal context IK := (G, M, I) consists of a set G of objects
(Gegenstinde in German), a set M of attributes (Merkmale in German), and an
incidence relation I € G x M. For a pair (g,m) € I, we say that g has m. The
derivation operators of KK are the mappings -: p(G) — p(M) and /: p(M) —
#(G) such that for each object set A C G, the set A’ contains all attributes that
are shared by all objects in A, and dually for each attribute set B C M, the set B!
contains all those objects that have all attributes from B. Formally, we define the
derivation operators as follows.

Al:'={meM|VgeA:(g,m) el} forobjectsetsA C G,
and B':={geG|VmeB:(g,m)el} forattribute sets B C M.
For singleton sets, we may also use the abbreviations g/ := {g}/ for all objects
g € G, as well as m! := {m} for all attributes m € M.
It is well-known [24] that both derivation operators constitute a so-called Galois

connection between the powersets ©(G) and (M), i.e., the following statements
hold true for all subsets A,A{,A> € Gand B,B;,B, C M.

1. A C B'if, and only if, B C A if, and only if, A x B C I

2. AcC Al 5. BC B!
3. Al = Alll 6. B = Bl
4. A| C Ay implies A} C Al 7. By C B, implies B, C B}

For obvious reasons, formal contexts can be represented as binary tables the rows
of which are labeled with the objects, the columns of which are labeled with the
attributes, and the occurrence of a cross x in the cell at row g and column m indicates
that the object g has the attribute m.

An intent of IK is an attribute set B € M with B = B'. The set of all intents
of K is denoted by Int(IK). An implication over M is an expression X — Y where
X,Y C M. 1Itis valid in K, denoted as K = X — Y, if X C Y/, i.e., if each object
of K that possesses all attributes in X also has all attributes in Y. An implication
set .Z is valid in K, denoted as K | &, if all implications in . are valid in K.
Furthermore, the relation |= is lifted to implication sets as follows: an implication
set .Z entails an implication X — Y, symbolized as ¥ | X — Y,if X — Y is
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valid in all formal contexts in which .Z is valid. More specifically, = is called the
semantic entailment relation.

A model of X — Y is an attribute set Z € M such that X € Z implies ¥ C Z,
and we shall then write Z = X — Y. Of course, then an implication X — Y is
valid in K if, and only if, for each object g € G, the object intent g' is a model of
X — Y. It is furthermore straightforward to verify that the following statements are
equivalent.

1. X — Y is valid in K.

2. Each object intent of K is a model of X — Y.
3. Each intent of K is a model of X — Y.

4.y cxI

The equivalence between the first and the last statement indicates that X" is the
largest consequence of X in KK, i.e., X — X is valid in K, and for each strict
superset Z 2 X", the implication X — Z is not valid in K.

Consider an implication set £ U {X — Y} C Imp(M). A model of £ is an
attribute set which is a simultaneous model of each implication in .Z. In particular,
each model Z of % satisfies the following: for each implication X — Y € %,
X C Zimplies Y C Z, i.e., Z is a fixed point of the operator

z2z70 =z iy |IX:X > Y e LandX S Z}.

The smallest model Z< of & that contains Z is obtained by successive exhaustive
application of the operator -2, ie., Z% = (J{ZZ" | n > 1} where ZZ 0"+ :=
(ZZ )< ® for all n > 1. Additionally, the following statements are equivalent.

1. ZLentails X — Y.

2. Each model of .Z is a model of X — Y.

3. X — Y is valid in all those formal contexts with attribute set M in which .Z is
valid.

4. Y C X<,

We then infer that X is the largest consequence of X with respect to the implication
set .Z, i.e., £ entails X — X, and for all supersets Y 2 X<, the implication
X — Y does not follow from .Z.

It was shown that entailment can also be decided syntactically by applying
deduction rules to the implication set .Z without the requirement to consider all
formal contexts in which £ is valid, or all models of .Z, respectively. Recall that
an implication X — Y is syntactically entailed by an implication set ., denoted by
L X — Y,if X — Y can be constructed from .Z by the application of inference
axioms, cf. [39, p. 47], which are described as follows.



110 F. Kriegel

(F1) Reflexivity: IEX—X
(F2) Augmentation: X—>Y}FXUZ->Y
(F3) Additivity: X>YX>ZVFX—>YUZ
(F4) Projectivity: X—>YUZ}LFX—>Y
(F5) Transitivity: X-=>Y,Y>Z})FX—>Z

(F6) Pseudotransitivity: X—->Y,YUZ>W}XUZ->W

In the inference axioms above the symbols X, Y, Z, and W denote arbitrary subsets
of the considered set M of attributes. Formally, we define ¥ - X — Y if there is
a finite sequence of implications Xy — Yp,...,X, — Y, such that the following
conditions hold.

1. Foreachi € {0,...,n}, thereis asubset .Z; C ZU{Xy — Yo,...,Xi—1 — Yi_1}
such that .%; | X; — Y; matches one of the Axioms F1-F6.
2. X, > Y, =X — Y.

Often, the Axioms F1, F2, and F6 are referred to as Armstrong’s axioms. These
three axioms constitute a complete and independent set of inference axioms for
entailment, i.e., from it the other Axioms F3—F5 can be derived, and none of them
is derivable from the others.

The semantic entailment and the syntactic entailment coincide, i.e., an impli-
cation X — Y is semantically entailed by an implication set . if, and only if,
& syntactically entails X — Y, cf. [39, Theorem 4.1 on Page 50] as well as [24,
Proposition 21 on Page 81]. Consequently, we do not have to distinguish between
both entailment relations = and |- when it is up to decide whether an implication
follows from a set of implications.

The data encoded in a formal context can be visualized as a line diagram of the
corresponding concept lattice, which we shall shortly describe. A formal concept
of a formal context K := (G, M,I) is a pair (A, B) consisting of a set A € G of
objects as well as a set B € M of attributes such that A’ = B and B’ = A. We then
also refer to A as the extent, and to B as the intent, respectively, of (A, B). Another
characterization of a formal concept is as follows: (A, B) is a formal concept of IK
if, and only if, A € G, B € M, and both A and B are maximal with respect to the
property A x B C I, i.e., for each strict superset C 2 A, C x B € I, and accordingly
for each strict superset D 2 B, A x D € I. In the denotation of KK as a cross table,
those formal concepts are the maximal rectangles full of crosses (modulo reordering
of rows and columns). Then, the set of all extents of KK is symbolized as Ext(IK), and
the set of all formal concepts of K is denoted as 25 (IK), which is ordered by defining
(A,B) < (C, D) if, and only if, A C C. It was shown that this order always induces
a complete lattice B(K) := (B(K), <, A, V, T, 1), called the concept lattice of K,
cf. [24, 48], in which the infimum and the supremum operation satisfy the equations

N{@.B)|teT}= (VA |teT}h( JiB [teTh"),
and  \/{@.B) [1eT}=JlAlreT)" [ [B 1T},
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and where T = (@, 0") is the greatest element, and where 1. = (@, @) is the
smallest element, respectively. The number of formal concepts can be exponential
in the size of the formal context. Kuznetsov shows that determining this number is a
#P-complete problem, cf. [34]. Furthermore, the problems of existence of a formal
concept with restrictions on the size of the extent, intent, or both, respectively, are
investigated in [34]—Kuznetsov demonstrates that the existence of a formal concept
(A, B) such that |A| = k, |B| = k, or |A| + |B| = k, respectively, are NP-complete
problems; the similar problems with > are all in P; and the problems with < are
also in P, except the problem where |[A| + |B| < k is NP-complete.

Furthermore, the concept lattice of IK can be nicely represented as a line diagram
as follows: each formal concept is depicted as a vertex. Furthermore, there is an
upward directed edge from each formal concept to its upper neighbors, i.e., to all
those formal concepts which are greater with respect to <, but for which there is
no other formal concept in between. The nodes are labeled as follows: an attribute
m € M is an upper label of the attribute concept (m', m'"), and an object g € G is
a lower label of the object concept (g, g'). Then, the extent of the formal concept
represented by a vertex consists of all objects which label vertices reachable by a
downward directed path, and dually the intent is obtained by gathering all attribute
labels of vertices reachable by an upward directed path.

Let K E Z. A pseudo-intent of a formal context K relative to an implication
set .Z is an attribute set P € M which is no intent of IK, but is a model of .¥, and
satisfies Q! C P for all pseudo-intents Q < P. The set of all those pseudo-intents is
symbolized by PsInt(IK, ). Then the implication set

Can(K,. %) :={P— P"|PecPsInt(K,.%)}

constitutes an implication base of K relative to .Z, i.e., for each implication X — Y
over M, the following equivalence is satisfied.

KE X — Yif,and only if, Can(K, ) UL EX > Y

Can(K,.?) is called the canonical base of K relative to .£. It can be shown that
it is a minimal implication base of KK relative to .Z, i.e., there is no implication
base of K relative to . with smaller cardinality. Further information is given in
[21, 23, 25, 45]. The most prominent algorithm for computing the canonical base is
certainly NextClosure developed by Ganter [21, 23]. Bazhanov and Obiedkov pro-
pose an optimized version of NextClosure in [8] which speeds up the computation of
the lectically next closure, and furthermore they then perform some benchmarks to
compare both versions. Additionally, they also utilize three different algorithms for
computing closures with respect to implication sets, i.e., firstly the already presented
and straightforward algorithm which computes the (least) fixed point of the operator
X > X240 gee also [39], secondly the LinClosure algorithm [9], which computes
X in linear time, and thirdly Wild’s Closure algorithm [47], which is essentially
an improved version of LinClosure. Please note that LinClosure is not always
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faster than computing the least fixed point of X — X< (1) due to its initialization
overhead. Furthermore, Obiedkov and Duquenne constitute an attribute-incremental
algorithm for constructing the canonical base, cf. [42]. A parallel algorithm called
NextClosures is also available [28, 32], and an implementation is provided in
Concept Explorer FX [27]; its advantage is that its processing time scales almost
inverse linear with respect to the number of available CPU cores.

There are some important complexity problems related to the pseudo-intents and
canonical bases. Kuznetsov, and later together with Obiedkov, has proven in [35-37]
that the number of pseudo-intents can be exponential in |M| as well as in |G| - |M|
or in |I|, and determining this number is #P-hard, furthermore that recognizing a
pseudo-intent is in CONP, and that determining the number of non-pseudo-intents is
#P-complete. Sertkaya and Distel demonstrated in [15, 17, 43, 44] that the number
of intents can be exponential in the number of pseudo-intents, i.e., the set of
pseudo-intents cannot be enumerated in output-polynomial time by utilizing one
of the existing algorithms, which all enumerate the closure system of both intents
and pseudo-intents, and that the lectically first pseudo-intent can be computed
in polynomial time, but recognizing the first n pseudo-intents is CONP-complete.
Consequently, the pseudo-intents of a given formal context cannot be enumerated
in the lectic order with polynomial delay, unless P = NP. Enumeration of pseudo-
intents (in an arbitrary order) was also investigated, but concrete complexity results
are outstanding. Babin and Kuznetsov showed in [6, 7] that recognizing a pseudo-
intent is CONP-complete, and furthermore that recognizing the lectically largest
pseudo-intent is CONP-hard. Hence, computing pseudo-intents in the dual lectic
order is also intractable, i.e., not possible with polynomial delay, unless P = NP. As
a corollary Babin and Kuznetsov conclude that the maximal pseudo-intents cannot
be enumerated with polynomial delay, unless P = NP. Further consequences which
they found are, for example, that premises of minimal implication bases cannot be
tractably recognized, since this problem is CONP-complete, and that there cannot
be an algorithm that outputs a random pseudo-intent in polynomial time, unless
NP = coNP.

Eventually, in case a given formal context is not complete in the sense that it
does not contain enough objects to refute invalid implications, i.e., only contains
some observed objects in the domain of interest, but one aims at exploring all valid
implications over the given attribute set, a technique called Attribute Exploration
can be utilized, which guides the user through the process of axiomatizing an
implication base for the underlying domain in a way the number of questions posed
to the user is minimal. For a sophisticated introduction as well as for theoretical and
technical details, the interested reader is rather referred to [21-23, 31, 45]. A parallel
variant of the Attribute Exploration also exists, cf. [28, 31], which is implemented
in Concept Explorer FX [27].

For transferring and extending the results on canonical bases from Formal
Concept Analysis to Description Logics, there are two key observations, namely
that in the simple description logic %5, which only allows for T and M, there is
a one-to-one correspondence between interpretations over the signature (M, @) and
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formal contexts with attribute set M, and furthermore that implications over M can
be represented as concept inclusions over (M, @), and vice versa. In particular, an
attribute subset X C M then corresponds to the conjunction [ | X, and accordingly
an implication X — Y corresponds to the CI[|X T []Y. These observations were
successfully used in [2, 12, 16], among others. All of the aforementioned papers
have in common that they provide a certain extension of the method for axiomatizing
bases of implications from formal contexts. In particular, each of the methods makes
heavy use of the canonical base. We will later elaborate on that, and provide results
specifically tailored to our considered description logic .Z €.

7 The Galois Connection of an Interpretation

In Sect. 6 we have seen that in Formal Concept Analysis the pair of the derivation
operators -: p(G) — (M) and ': (M) — ©(G) of a formal context IK :=
(G, M, I) constitutes a Galois connection. In Description Logics however, for an
interpretation .# := (A ,-”) we only have an extension mapping - : # (%) —
©(A?), which is defined recursively on the structure of concept descriptions,
cf. Sect. 4. As a short repetition on Galois connections between posets, the interested
reader is referred to [13, Definition 7.23] and [13, Lemma 7.26]. However, we will
later formulate corresponding notions specifically tailored to our use case.

By definition the extension mapping -7 : .Z (%) — p(A”) preserves finitary
joins, i.e., we have that ({ C, |t € T})” = (N{C” | t € T} for all finite families
{C; | t € T} of #-concept descriptions over X'. When imposing a role-depth
bound § on the concept descriptions, then we know that there are only finitely many
concept descriptions in case of a finite signature, and thus the extension mapping
A M(X) s — p(AY) preserves arbitrary joins—then [13, 7.34] yields that there
is another mapping (A”) — .#(X) |5, which together with - constitutes a
Galois connection, and in terms of lattice theory this mapping is called the upper
adjoint of the extension mapping -. In [2, 12, 16] this upper adjoint is rather
called model-based most specific concept description mapping, and in each of the
references it was shown that the pair of this mapping together with the extension
mapping forms a Galois connection. Furthermore, [13, 7.33] then states that this
other mapping can be found as X — Min{C € .Z(Z); | X € C” },' i.e., the
mapping which assigns to each subset X € A~ its role-depth-bounded model-based
most specific concept description (or, to be formally correct, its equivalence class)
which is characterized by the following definition.

"For a subset X C P of a quasi-ordered set (P, <), we use the expression Min(X) to denote the set
of all those elements in X which are minimal with respect to <, i.e., x € Min(X) if, and only if,
X € X and there is no other element y € X such that y < x and y # x.
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Definition 7.1 Let .# be an interpretation over the signature ¥ = (N¢, Ng), and
let 6 € N be a role-depth bound. Then, for a subset X C A a concept description
C € A# (X)) is called role-depth-bounded model-based most specific concept
description (abbr. RMMSC) of X in . with respect to § if it satisfies the following
conditions.

1. rd(C) <6,

2. X< C’,and

3. for all .#-concept descriptions D over X with a role depth not exceeding 4, it
holds true that @ = C E Dif X € D7

We shall denote the set of all RMMSCs in . w.r.t. § by Mmsc(.7, §).

Firstly, all role-depth-bounded model-based most specific concept descriptions
of X in .# with respect to § are equivalent, and a representative of the equivalence
class is hence denoted as X”®. Secondly, we can easily convince us that X'
always exists—provided that the underlying signature is finite. This is due to the
fact that for a finite signature, only finitely many concept descriptions with a role
depth of at most § exist. Consequently, in order to construct X we may just
build the (finite) conjunction of all those concept descriptions the role depth of
which does not exceed § and the extension of which contains X as a subset. Of
course, this does not yield a practical means for the construction of role-depth-
bounded model-based most specific concept descriptions, but we will investigate
an appropriate computation method later in Sect. 8.

Lemma 7.2 Let .7 be an interpretation over the signature ¥ = (N¢,Ng), { X, | t €
T } be a family of subsets X, € A”, and { C; | s € S} a family of concept
descriptions C; € M (X). Then, the following statements hold.

L0k UX 1eTh?O = \/{x"D |1eT}
2. HC | seSH” =N{C |sesS}

Proof

1. Let { X, | t € T} be a family of subsets X, € A~ . Then we can show that
V{ th(&) | t € T} is indeed a role-depth-bounded model-based most specific
concept description of | J{ X; | ¢ € T }. (It would also be possible to dually prove
that (J{ X, | t € T})”® is aleast common subsumer of the concept descriptions
X,](s) forteT.)

First, we prove that | J{ X, | # € T } is a subset of the extension (\/{ X;](S) |t e
T )7 . By definition, it holds that X, C X,ﬂg)j for all t € T. Furthermore, every
RMMSC X,‘ﬂ ©) is subsumed by the LCS \/{X,j @ | t € T}. It then immediately
follows that each X; must be a subset of the extension (\/{ th(a) lteT})”.

Second, we have to show that whenever C is a concept description the
extension of which contains | J{ X; | # € T }, then C subsumes \/{X,‘y(a) |teT}
with respect to the empty TBox @. By definition of RMMSCs then we infer that
each X,] ®) is subsumed by C, and hence by definition of LCS, \/{ X,‘ﬁ ® |teT}
must be subsumed by C, too.

2. holds true by definition of the semantics of conjunctions. O
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Lemma 7.3 Let & be an interpretation over the signature ¥ = (N¢,Ng), and
§ € N be a role-depth bound. Then, the extension mapping -* and the MMSC-
mapping > ® constitute a Galois connection between the powerset lattice of the
domain A” and the dual of the concept description lattice A (X) | 5

In particular, the following statements hold true for all subsets X,Y € A”, and
for all A -concept descriptions C, D over X with a role-depth not exceeding §.

1. X< C”ifandonlyif, 9 EX"® EC
2. X c X707 5.0ECaCcr0
3. 0EXTO =x70)770) 6. CF =CcrIEI
4. X C Y implies @ = X7 C y7© 7. @ = C C D implies C” < DY

Proof 1Tt suffices to prove the first statement, since the others are then obtained as
consequences, cf. [13, Definition 7.23 and Lemma 7.26]. Hence, assume that X C
C” . Then by Statement 3 of Definition 7.1 we conclude that @ = X-©® C C. Vice
versa, if X @ is subsumed by C with respect to the empty TBox @, then in particular
it follows that X~ C C. An application of Statement 2 of Definition 7.1 then
yields X € X7® c ¢~ 0

From the preceding lemma we conclude that the composition of the extension
mapping and the MMSC mapping yields a closure operator in the dual of .Z |,
and it furthermore holds true that the implications which are valid in -~ ©® are
exactly those concept inclusions which are valid in .# and the subsumee and the
subsumer of which have a role depth not exceeding §. Furthermore, we infer that
each implication base, of 778 is a base of CIs for .# and §. Further information
on implications that are valid in closure operators can be found in [30, Sect. 3].

8 Computation of Role-Depth-Bounded Model-Based Most
Specific Concept Descriptions

In this section we are going to develop a method for the computation of RMMSCs
in .. By definition of the .#-concept descriptions in Sect.4, it follows that
each such . -concept description is essentially a conjunction of other .# -concept
descriptions, i.e., for each C € .#(X), there is a finite set Conj(C) C .#(X)
such that C = []Conj(C)? is satisfied and Conj(C) does not contain any elements
of the form D M E. We call the elements in Conj(C) the rop-level conjuncts of
C. Furthermore, we can distinguish between the different possible types of these
top-level conjuncts, i.e., if 2 C .#(X), then Conj(C, Z) = Conj(C) N Z . If
A C N¢c, RC Ny, NC N, and C C .Z(X), then define the following sets.

2Please note that [ 10 = T.
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—A={-A|AcA}
VR.C={Vr.C|reR,CeC}
A>N.RC={3F>nr.ClneN,reR CeC}
A<N.R:={3<nr|neNreR}
JR.Self:= {3r.Self | r e R}

It is readily verified that then for every .# -concept description C,

Conj(C) = Conj(C,{L, T}
U Conj(C, N¢)
U Conj(C, —=Nc¢)
U Conj(C,V Ng. . # (X))
U Conj(C,3 > N.Ng..Z (X))
U Conj(C,3 < N.Ng)
U Conj(C, 3 Ng. Self),

i.e., C must be of the following form.
C= []Conj(C.{L. T}

n[ ]Conj(C.Nc)

n[ ]Conj(C.~Nc)

N[ ]Conj(C.V Ng..22(X))

N[ ]Conj(C.3 = N.Ng..#(X))

n[ ]Conj(C.3 < N.Ng)

[ ]Conj(C. 3 Ng. Self)
We conclude that for the construction of an RMMSC we have to investigate
which conjuncts of the different types must occur in the RMMSC. In particular,
we investigate a technique for the construction of an RMMSC X @ of a subset
X C A within a given interpretation .# and with respect to a pre-defined bound

8 € N on the role depths. We start by considering the smallest bound § = 0. It is
then readily verified that the RMMSC must have the form
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x7O = ["]Conj(x”© {1, T}
n[ ]Conjx”©. N
N[ ] Conjx”®. =N).
where
Conj(Xx” @ {L, TH ={TIu{L|X =0},
Conj(X” @ N¢) ={A|AeNcandX € A7},
and Conj(X”©,=N¢) ={—-A|AeNcandXNAY =@}
Now assume that § > 0. We have already argued that for a finite signature X,

which we can always assume for practical cases, the RMMSC X ¥ must exist, and
furthermore must then be of the following form.

x7® = |_|Conj(X"(5),{J-, ™
n[ ] Conjx”®. Nc)
M |_|Conj(X‘f(8), —N¢)
M |_|COI'I].(X](8),VNR- AM(X) s5-1)
N[ |Conj(x”®, 3 = N.Ng..#(2) }5_))
N[ ]Conj(x”®.3 < N.Ng)

N[ |Conj(x”®. 3 Ny. Self)

For the first three parts, we can, of course, utilize the results from the case § = 0.
Furthermore, we can immediately see that

Conj(x”® 3 Ng.Self) = {3r.Self | r € Ngand Vx € X: (x,x) € r’ }.

For analyzing the remaining parts, we repeat the definitions of extensions of some
of the corresponding . -concept descriptions as follows.

Vr.C)Y ={de A” |Veec A”:(d,e) e r” impliese € C” }
={de A’ |{ec A’ |de)ecr’}cC”}
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A=nr.0) ={deA” ||{fec A” |(d,e)er’ andeec C”}| >n}
={deA’ |{lecA? |[de)er’InCT|=n}
@A<nr)’ ={de A’ ||{ec A’ |d.e)er’} <n}
If we denote the set of all r-successors of an element d € AY by suc s (d,r),

ie., if we set sucs(d,r) = {e € A” | (d,e) € r” }, then we can rewrite the
equations given above as follows.

(Vr.C) ={de A’ |sucy(d,r)cC”}
A=>nr.0) ={deA” ||sucy(d,r)NCT|>n}

@<nr)” ={de A’ ||sucy(d.r)| <n}

Consequently, when lifting the equations from a characterization of elements of
the extensions to subsets of the extensions, we get the following equivalences.

X C (Vr.C)” if,and only if, Vx € X:x € (Vr.C)”
if, and only if, Vx € X:suc s (x,r) C c’
X< @=nr.C) if,andonlyif, Vxe X:x e (A > n.r.C)*"
if, and only if, Vx € X: |sucy(x,r) N C7| > n
Xc@<nr)’ifandonlyif, VxeX:xe @A <n.r)’

if, and only if, Vx € X: [suc #(x,r)| <n
Further define

CSuc(X,Vr):={Ce . #(X)|V¥xeX:sucy(x,r) € C”},
CSuc(X,A>n.r):={Ce#(X)|VxeX:|sucy(x,r)NC”| >n},

and n(X,r) = max{|sucs(x,r)||xe X},

i.e., n(x, r) denotes the number of r-successors of x in ., and n(X, r) is the smallest
n such that X € (3 < n.r)” . Then, of course it holds true that

XC(Vr. C)] if, and only if, C € CSuc(X,V r),
X € (3= n.r.C)7 if, and only if, C € CSuc(X,3 > n.r),

and XC(3<n. r)JZ if, and only if, n > n(X, r).
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We can then collect all subsets of the interpretation’s domain the extension of
which serves as a filler for the appropriate constructors, and in particular we set

Suc,(X.Vr):={YC A’ |[VxeX:sucy(x,r) C Y},
and Suc,(X,A>nr):={YCAY |VxeX:|sucy(x.r)NY|>n}.
Obviously, then
X C (Vr.y70=h” forall Y € Suc.»(X,V r),
and XC@=>nr.Y”0 D) forallY € Suc,(X,3 > n.r),
and applying Statement 1 of Lemma 7.3 yields that
PEX’OCcVry”6-D forall Y € Suc.»(X,Vr),

] }:Xﬂ(s) CA>nr. Y’ Diorally e Suc,(X,3 =n.r),

and 0 XD cI<nr foralln > n(X, r).

The connection between the sets CSuc(. . .) and Suc(...) is as follows.

1. For all C € CSuc(X, D r) it holds true that C” € Suc(X,Dr).
2. Forall Y € Suc(X,Or) it holds true that Y= ¢ CSuc(X,Or).

Continuing the way towards a construction of the RMMSC of a subset X € A,
we can see that it must satisfy the following subsumption.

PEXx"c [[{A|AeNcandX A7}
N[ |{-A|AeNcandX S (-4)”}

N[ {VYr.ClreNg Ce.#(2)sy. andX S (Vr.C)” }

[l

N[ {3 <nr|neN reNg andX @ <nr)”}

neN, reNg, Ce H(X)ls_.
d>nr.C

andX C @A =>nr.C)”

N[ [(3r.Self | r € Ng. and X € (3 r. Self)” }
= [{AlAeNcandX A7}
N[ {-A|AeNcandX NA” =0}

N[ J{Vr.C|reNg and C € CSUCX.V r) N.#(Z) 15, }
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neN, r e Ng,

and C € CSuc(X, 3 > n.r)N . #(X) bs_,

I‘Il_lgElzn.r.C

H|_|{3§n.r |neN, reNg andn > n(X,r)}

N[ [(3r.Self | r € Ng. and X € (3 r. Self)” }

It is easy to see that for the construction of the RMMSC it suffices to consider
the minimal successors, and hence we explicitly define them as follows.

sucs(X.r) == | J{sucs(x.r) | xe X}
={yeA’ |AxeX:(x,y) er’}
MinSuc 4 (X, V r) := Min(Suc_» (X, V r))
= {sucs(X,r)}
MinSuc s (X,3 > n.r) :== Min(Suc »(X,3 > n.r))

=Min{Y Csucy,(X,r) |VxeX:|sucys(x,r)NY|>n}
Definition 8.1 Let .# be a finite interpretation over a finite signature X :=
(N¢,Ng), X C A7 with X # (0 be a subset of the domain, and § € N be a
role-depth bound. Then, the syntactic RMMSC of X in .# with respect to § is the

concept description mmsc(X, .#, §) which is defined by induction on the role depth
as follows.

mmsc(X,.#,0) := [ [{A|A€NcandX A7}
N[ J{-A|AeNcandX NA” =0}
mmsc(X, .#,8) = mmsc(X, .#,0)

r € Ng
N[ 13 vr.mmsc(y,.#.5 1)

and Y € MinSuc » (X, V r)
ne N4, reNg, and }

|‘||_|§ 3> n.r.mmsc(Y, 7,8 —1)
Y € MinSuc s (X,3 > n.r)

N[ {3 <nX.r.r|reNg}

N[ ]{3r.Self | r e Npand { (x.x) [xe X} S r”}

Furthermore, we define mmsc(9, .#,§) := L forall § € N.
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Lemma 8.2 Let Cy,...,C, and D,,...,D, be .# -concept descriptions over the
signature X = (N¢,Ng). Then @ = [[{C; | i e {l.....m} } E[{D; |Jj e
{1,...,n}}ifforeachj e {l,...,n}, thereisani € {1,...,m} suchthat @ = C; C
D;.

Proof Obviously, it holds true that @ = [|{ C; | i € {l,...,m}} T C; for all

indices i € {1,...,m}. We conclude that for each j € {1, ..., n}, the subsumption
O ETKC | ie{l,....m}} E D,is satisfied, and thus § = [[{ C; | i €
{1,....om}}E[|Dj|jed{l,....n}}. |

Theorem 8.3 Let .7 be a finite interpretation over a finite signature X =
(N¢, Ng), X € AY a subset of the domain, and 8§ € N a role-depth bound. Then,
the concept description mmsc(X, .7, 8) is the role-depth-bounded model-based
most-specific concept description of X in & with respect to §, i.e, ¥ = X7 =
mmsc(X, .Z, §).

Proof The case X = ( is obvious. Hence, consider a non-empty subset X C
A7 1t is easy to see that for a finite interpretation .#, it always holds true that
MinSuc_»(X,3 > n.r) = @ for all numbers n > |A~| and all role names r € Ng.
Consequently mmsc(X, .#, §) consists of finitely many conjunctions, and thus is
indeed a well-defined . -concept description.

We now show the three properties of Definition 7.1 by simultaneous induction
on the role-depth bound §.

(6 =0) 1. Since concept names and their negations possess a role depth of 0,
it obviously follows that mmsc(X, .#, 0) must have a role-depth of 0, too.

2. Since for each concept name A € N¢ occurring in mmsc(X, .7, 0), it is true
that X € A, and furthermore for each primitive negation —A for an A € N¢
which is a top-level conjunct in mmsc(X, .#, 0), we have that X € A* \ A7,
we can easily conclude that X € mmsc(X, .7, O)j .

3. Assume that D is an .# -concept description over X' with a role depth of 0, i.e.,
D consists only of a conjunction of concept names and primitive negations,
and let X € D Then, for concept name A € N¢ occurring in D, it certainly
holds that X € A, and hence A is a top-level conjunct in mmsc(X, .7, 0),
too. Analogously, for a primitive negation —A in D, we know that X € (—A)”
must be satisfied, and so also —A is contained in the top-level conjunction
of mmsc(X, .#,0). We just showed that each conjunct in D also occurs in
mmsc(X, .#, 0), and hence @ = mmsc(X, .#,0) C D.

(6 >0) 1. Notethatrd(mmsc(X,.#,§)) = 1+max{rd(mmsc(Y,.7,5 — 1))
|Y € MinSuc(X,0r), D e {V}U{ >n.|neN;}} for § > 0. By induc-
tion hypothesis, rd(mmsc(Y, .#,§ — 1)) < § — 1, and hence it follows that
rd(mmsc(X, .7, 8)) < 6.

2. Let § > 0, and consider a top-level conjunct Or.mmsc(Y,.#,§—1)
occurring in mmsc(X, .#,§), ie., Y € MinSuc,(X,0r). By induction
hypothesis, Y is a subset of mmsc(Y,.#,§ — 1)*. We continue with a case
distinction on the quantifier O.
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(O = >n) By definition of the successor sets, it holds true that all elements
in Y are r-successors of some element in X, since Y C sucs(X,r).
Furthermore, Y satisfies the condition that for each element x € X, the
cardinality of the intersection SucC_s(x,r) N Y is at least n, i.e., each
element x € X has n or more r-successors in Y. Consequently, X C
3 =>n.r.mmsc(Y, 7,5 —1))7.

(O =V) Inthis case, we have that ¥ = suc (X, r). Consider an arbitrary
x € X.Ify € AY and (x,y) € r”, theny € Y, and so x €
(Vr.mmsc(Y, 7,6 —1))7.

. Consider § > 0, and let E be a conjunct on the top-level of D. Of course,

it then holds true that X € E. We proceed with a case distinction on E,

and prove that there is always a top-level conjunct in mmsc(X, .#, §) which

is subsumed by E with respect to the empty TBox @. As a consequence then

Lemma 8.2 yields that @ = mmsc(X, .#,§) C D.

(E=Vr.F) SinceX C (Vr.F )] , we infer that each r-successor of each
element in X is in the extension F*, i.e.,

VxeXVyeA”:(x,y) € r’ impliesy € F”.

As the set suc # (X, r) contains all r-successors of any element in X and
no additional elements, we conclude that suc »(X,r) € F. Applying
Statement 1 of Lemma 7.3 yields @ |= (suc_» (X, r))? ¢~ C F. An appli-
cation of the induction hypothesis implies that @ = (suc_» (X, r))?¢~D =
mmsc(suc (X, r), .#,8 — 1). Eventually, it follows that

@ =VYr.mmsc(sucys(X,r), #,§ —1)CVr.F.

(E=3>n.r.F) By assumption, we have that X € (3 > n.r.F)”, ie.,
every element x € X has n or more r-successors which are in the extension
of F. Thus, |suc_s(x,r) N F¥| > n for all x € X, and consequently there
is a set Y € MinSuc(X,3 > n.r) such that Y € F”. By applying
Statement 1 of Lemma 7.3 we conclude that @ = Y*"¢~D C F, and since
the induction hypothesis yields that @ = Y ¢~D = mmsc(Y, .#,8 — 1),
it eventually follows that @ =3 > n.r.mmsc(¥, ¥, 6 — 1) C I >n.r. F
where the subsumee is a top-level conjunct in mmsc(X, .#, §).

(E=3 <n.r) The setinclusion X € (I < n.r)” yields that for every
element x € X, the number of r-successors of x does not exceed n. It is
readily verified that then n(X,r) < n, and thus @ = 3 <n(X,r).r C
3 < n.r.Of course, A < n(X, r).r is contained as a top-level conjunct in
mmsc(X, .7, §).

(E=13r.Selfy From X C (3. Self)” it follows that each element x € X
is an r-successor of itself, i.e., { (x,x) | x € X } € r”. By definition,
mmsc(X, .7, §) then also contains 3 . Self as a top-level conjunct. O
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9 Concept Lattices of Interpretations

Let .# be an interpretation over X = (N¢, Ng), and assume that § € N is a role
depth bound. A formal concept of .# with respect to the role depth bound § is a pair
(X, [C]=) such that its extent X is a subset of A, its intent [C]= is an equivalence
class of .#/-concept descriptions over ¥, and X*©® = [C]= as well as C¥ = X
are satisfied. For the sake of simplicity, we denote the formal concept (X, [C]=)
simply as (X, C). Then we may furthermore define an ordering of formal concepts
by (X,C) < (Y,D) if X C Y. In case (X,C) < (Y,D) we say that (X,C) is a
subconcept of (Y, D), and vice versa that (Y, D) is a superconcept of (X, C). Using
the Galois properties from Lemma 7.3, it is easy to prove that (X, C) < (Y, D) if,
and only if, @ | C T D. The set of all formal concepts of .# w.r.t.§ is denoted by
B(7,§), and the set of all extents is symbolized as Ext(.#, §).

Lemma 9.1 Let .7 be a finite interpretation over the signature X, and § € N a
role-depth bound.

1. For all formal concepts (X, C) and (Y, D) of & w.r.t. §, it is true that
(X,C) < (Y,D) if, and only if, X C Y if, and only if, @ = C E D.

2. The relation < is an order on B(.Z, §).
Proof

1. The first equivalence holds by definition. Assume that X is a subset of Y, then
from Statement 4 of Lemma 7.3 it follows that @ = X7® = y“©)_ Finally,
since (X, C) and (Y, D) are description concepts we conclude @ = C = X7 C
Y ® = D. The other direction can be shown analogously, as also the extension
mapping is monotonous, cf. Statement 7 of Lemma 7.3.

2. It is well-known that the subset inclusion is an order relation, hence also < must
be reflexive and transitive. O

Furthermore, 5(.#, §) is in fact a lattice, in which the infimum and the supremum
of a finite family { (X;,C;) | t+ € T } of formal concepts satisfy the following
equations.

NE.CylteTt= (X |teTh( [(ClteTH” D)
Vix.CylreTy = Jix |teT)”@7 \/{C|teT}
The lattice is bounded by the smallest formal concept (@, 1), and by the greatest

formal concept (A, (A*)*). We denote this lattice by B(.7, §) := (B(.7, ), <).
Note that in case of finiteness of the interpretation .#, the concept lattice is complete.
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10 Induced Formal Contexts

In this section we are going to consider the notion of induced formal contexts,
which has first been defined and utilized by Baader and Distel [2, 16], and later also

by Borchmann [11], for the description logic &.%% . Similar results were found

gfp-
by Borchmann, Distel, and Kriegel, cf. [12], for the description logic & £ where
the role depth of the considered concept descriptions is restricted. In the sequel of
this section, we extend the previous definitions and results to the more expressive
description logic .Z .

Consider a set € of .# -concept descriptions over the signature X' := (N¢, Ng).
Then, we define a projection w4 with respect to € as follows.

g M(X) —> 9(F)
C{De% |0} CCD)

Furthermore, we say that an ./ -concept description C over X is expressible in terms
of € if there is a subset 2~ C ¢ such that @ = C = [].2". It turns out that the
projection 7 is a counterpart for the conjunction [ | such that their pair constitutes
a Galois connection between the lattice . (X') and the powerset ©(%), i.e., the
statements in the following lemma hold true.

Lemma 10.1 Let € be a set of .# -concept descriptions over X. Then for all
subsets X, % C € and all concept descriptions C,D € #(X), the following
statements are valid.

1. Z Crag0)if,andonlyif, 9 E[1Z 3 C

2. X C W implies@ =12 3[% 5 9 CEDonlyifng(C) 2 ne(D)
3 X Cae(12) 6. 0= CC[]ne(C)

4 0EMNZ =MNre(12) 7. 1¢(C) = nw ([ 7% (C))

Proof 1Tt suffices to show Statement 1. Then the other statements are obtained as a
consequence. We can easily see that the following equivalences hold.

Z C g (C)if,andonly if, VD€ Z:0 = CC D

if,andonlyif,@l:CEl_l%. O

In the case of éa.i”Jg‘fp, Baader and Distel showed that each (unbounded) MMSC

of an interpretation .# can be expressed in terms of {L} UNc U {3r.X7 | r €
Ngand @ # X € A ). Similarly, for the role-depth-bounded case, Borchmann,
Distel, and Kriegel showed that each RMMSC of .# w.r.t. § is expressible in terms
of {LYUNcU{3r.X70=D |y c Nyand@® # X € A” }. As a straightforward



Acquisition of Terminological Knowledge from Social Networks in Description Logic 125

extension to .#, we can infer from Theorem 8.3 that each RMMSC is expressible
in terms of

VX707, r € N,

I>mr. X7V | 0<m< |A]|,
€(F,0):

{1L}U{A,—-A|A € Nc} U
d<nr, 0<n<|A”|,

3. Self g£Xxc A’

= {L}UNcU=N¢
UV Ng. (Mmsc(.#,8 — 1) \ {L})
Ua=>{1,....|A7|}. Ng. (Mmsc(.#, 8 — 1) \ {L})
Uad<{0,...,]A7|}. Ng
U3 Ng. Self,

i.e., the set € (.7, §) is [ ]-dense in the set Mmsc(.#, §) of all RMMSCs of .# with
respect to §.

Definition 10.2 Let .# be an interpretation, and let ¥ be a set of .#-concept
descriptions, both over the same signature X. Then, the induced formal context of
# and € is defined as K(Z, €) := (A, €, I) the incidence of which is defined by
(d,C) e Iif,andonlyif,d € C” . Furthermore, the induced formal context IK(Z, §)
of .# and a role-depth bound § € N is defined as the induced formal context of ¢
and €' (.7, §). The projection 7 s 5) With respect to €'(.#, §) is simply denoted as
Lemma 10.3 Let K(.#, €) be an induced formal context such that € € M#(X) s

for a role depth bound § € N. Then, for all subsets X € A, all subsets 2~ C €,
and all A -concept descriptions C € (X)), the following statements hold true.

1 g (X70) = X!

2. N2 =27

3. C7 C e (C)

4 me([12)77 ) = 271

Furthermore, if C is expressible in terms of €, then also the following statements
are satisfied.

5 0k C=[re(C)
6. C7 = (m¢(C))

Eventually, if Z" is an intent of IK(.¥, €), then the following equality is valid, too.
7. X =ne(12)
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Proof

1. Let X € A Then we have

(X7 ={De? |0EX"PCD)}
Yipew|xcD’}
={De¥|VxeX:(x,D)ecl}

=x!

where the equality (x) follows from Statement 1 of Lemma 7.3.
2. Let 2 C €. Then it holds that

(12) =" Ipe2 =D} |Dec2}=2"
3. Let C € .#(X) be a concept description. Then we have
¢/ c(){p”|De%andf = CC D}
=(){D'|De%and@}= CE D}
={D|De%and@CED}
= 7(C)".
4. Let 2 C % be a set of concept descriptions from %’. Then it holds that
we([12)77 ) =(pev|0E ([ ]2)7"PCD}
={De?|0F(]2)" c<D”}
={Dev | 2" c{D}}
={De¥¢|De2"}
— 3{/}/’11'

Now let furthermore C be a concept description that is expressible in terms of €.
Then we know that there is a subset 2" € ¢ suchthatd = C =[] Z".

5. By an application of Statement 4 of Lemma 10.1 we immediately conclude that

o=c=[]2=[|m( |2) =] |me(O.
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6. The equality follows from the former Statements 2 and 5—in particular, from
0 = C = []74(C) we deduce that C¥ = ([ 74 (C))” = m¢(C).

Finally consider an intent 2~ of K(.%, %).

7. We have the following equations which follow from Statement 4 and Statement 7
of Lemma 10.1:

mo([ | 2) =7 (27" = we ([ |ma(([ | 2)77P)
= |2)77 )= 2" =2 O
Lemma 10.4 Let IK(.#,€) be an induced formal context. Then for all subsets

X, % C €, the concept inclusion [ |2 T [¥ is valid in . if, and only if,
the implication & — % is valid in K(, ).

Proof 1t is readily verified that the following equivalences hold true.
SE=[2 e[ |#it.andonlyif, ( |2)7 < ([ |2)”

if, and only if, 27/ € #'

if, and only if, K(V¥, €)= 2 — % O
Definition 10.5 Let .# be an interpretation over the signature X', let § € IN be a
role depth bound, and assume that C is an .# -concept description over X. Then

the lower approximation of C with respect to .# and § is defined as the concept
description

LC) s 5= [ |Coni(C.{L, T}
[ ]Conj(C.Nc)
N[ ]Conj(C.=Nc)
N[ {Vr.D77C"D | Vr.D € Conj(C.V Ng..#(X)) }
N[ {3 =nr.D”76V | 3> nr.DeConj(C,3 = N.Np.. (X))}
n[ ]Conj(C.3 < N.Ng)

N[ ]Conj(C. 3 Ng. Self).
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Lemma 10.6 Let ¥ be an interpretation over the signature X, and assume that
8 € N is a role depth bound. Then, for all concept descriptions C,D € .#(X), all
role names r € Ng, and all natural numbers n € N, the following statements hold
true.

1. (cnD)” =(c77® np)”
2. (Vr.C)Y = (Vr.c77®)7
3. @>nr.0)Y =@>nr.c770)”

Proof Beforehand observe that according to Statement 6 of Lemma 7.3, for all .# -
concept descriptions C over X, it holds true that @ = C7 = ¢/ ®7

1. It holds true that (C D) = C¥ ND?Y = ¢77®OY NnD7 = (77O nD)”.
2. It holds true that

Vr. C)] ={de A7 |Vee A‘ﬁi(d, e) € r implies e € Cﬂ}
={deA” |Vee A”:(de) er” impliese e 77O}

= (Vr.c770)7,
3. It holds true that

@A=>nr.C) ={deA” |JE€c (Af’)ve €E:(de)er’ andee C”}
={deA” |JE€c (Af)ve €E:(de)er” andeec C77O7

=@3=nr.c?7O)7, u]

Lemma 10.7 Let . be an interpretation over X. Then for every .# -concept
description C over X the role depth of which does not exceed §, it holds true that

PEACTTDC(Cl 4 |ClysEC)

Proof We know that @ = D¥“©¢=D C D for all concept descriptions D over
XY with rd(D) < § — 1, and since value restrictions as well as qualified greater-
than restrictions are monotonous in its concept argument, we have that @ |=
Vr.DZ?6-D C Yr.D and @ E 3d>n r.D776=) C 3 > p r. D is satisfied
for all role names r € Ny and all natural numbers n € IN. Hence, we conclude that
the lower approximation |C] , 5 is subsumed by C with respect to the empty TBox
@.

Furthermore, we infer the following equivalences, in particular the equality ()
follows by applying Lemma 10.6.

(ICls5)7

- (|_| Conj(C, {.L, T} UN¢ U—=Ne U3 < N. Ng U3 N. Self)
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N[ {Vr.D7C~D | Vr.D € Conj(C.V Ng..#(X)) }
B2
N[ (3 = n.r.D"?¢V| 32 n.r.D e Coni(C.3 = N.Ng..2/(X)) })

g
= (|_| Conj(C, {L, T UNc U—=Nc U3 < N.Ng UIN;. Self))
N[V r.D77C"D)7 | Vr.D € Conj(C.V Ng..#(X)) }
N(N@=nr.D”70 ) | 3= nr.DeConj(C.3 > N.Np.. /(X)) }
(%) . B4
o (|_| Conj(C, {.L, T} UN¢ U—=Ne U3 < N.Ng U3 Ng. Self))
N[ (Vr.D)” | Vr.D e Conj(C.V Ng..# (X))}

N @=nr.D)” | 3> n.r.DeConj(C.3 > N.Ne.. # (X))}

Eventually, it follows that C* C (|C]| f.s)f and using Statement 1 of Lemma 7.3
we infer that @ = C77®) C |C] . |

Lemma 10.8 Let .# be an interpretation and § € N be a role depth bound. Then
every model-based most specific concept description of & with role depth bound §
is expressible in terms of € (7, §).

Proof Let C be a model-based most specific concept description in .# with respect
to the role depth §. Then Statement 3 of Lemma 7.3 yields that @ = C = ¢/ ®,
Using the previous Lemma 10.7, we then know that C is equivalent to its lower
approximation w.r.t. .#. Obviously, C is then expressible in terms of €'(.#,§). O

Lemma 10.9 Let K(.#,68) be an induced formal context. Then, for all subsets
X C 6(F,8) and all A -concept descriptions C over X, the following statements
hold true.

LOE((2)770 =2

2. If Z is an intent of K(.Z, 8), then [ | X" is a model-based most specific concept
description of .% with role-depth bound §.

3. If C is a model-based most specific concept description of .% with role-depth
bound 8, then ¢ 5(C) is an intent of K(.7, §).

Proof

1. We already know that 27 = 74 s((( .27 ®) holds, cf.Statement 4 of
Theorem 10.3, and thus also ¢ = [|7.s5((2)77®) = [ 27", Further-
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Fig. 4 Overview on the isomorphisms between the extent lattice, intent lattice, and RMMSC
lattice of K(.#, §) and .7, §, respectively. Note that Ext(K(.#, §)) = Ext(.#, §) holds

more, from Lemma 10.8 it follows that ([].2)”~® is expressible in terms of
€ (S,8),i.e., Statement 5 of Lemma 10.3 implies @ |= [ 7 s(([1 2)7 7 @) =
(l—l %)ﬂﬂ(&.

2. Let 2 = 27" be an intent. Then it follows that @ = [12 = [12", and
Lemma 10.3 yields @ =12 = (1 2)77®, ie,[]2 isa RMMSC.

3. Conversely, let C be an RMMSC, ie., @ = C = C”“©® . Then Statement 5
of Lemma 10.3 implies § = C = []|n.#3(C). Furthermore, it follows that
0 = MNrssC) = (Nrsrs(C)”” P = Mrs5(C). In particular then
@ E C C [|rss(C)" holds, and according to Lemma 10.1 this is equivalent
to 7.7 5(C)! C 74 5(C). Of course, the inverse set inclusion also holds, i.e.,
eventually 7 ¢ 5(C) is an intent. |

Corollary 10.10 The concept lattice of IK(Z,38) is isomorphic to the concept
lattice of .7 and 8. A complete overview on the corresponding isomorphisms is
shown in Fig. 4.

11 Knowledge Bases of Interpretations

In Sect. 4 we introduced the notion of a concept inclusion. In particular, a CI C E D
is valid in an interpretation . if C < < DY is satisfied. We denote the set of all valid
CIs of .# by 7 (.#). In contrast to formal contexts, where there are only finitely
many valid implications in case of a finite attribute set, the set .7 (.#) is infinite,
even for finite interpretations over finite signatures. As an example, consider the
CI T £ T, which is valid in all interpretations. Furthermore, if a CI C & D is
valid in .Z, then so is r.C T I r. D. We conclude that 7 (.#) always contains at
least countably infinitely many CIs, provided that there is at least one role name. An
important question now is, whether there is a finite base of CIs for .#, i.e., a (finite)
TBox () such that Z(¥) E T(F) as well as 7 (&) E Z(F). Baader and
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Distel found an affirmative answer in [2, 16] for the case of finite interpretations
over finite signatures in the description logic ELL, where they take an elegant
detour over @@féfp, ie., &L+ interpreted with greatest fixpoint semantics, and
later Borchmann, Distel, and Kriegel found a positive answer in [12] for finite
interpretations over finite signatures in the description logic &L restricted by a
role depth bound, which is easier to apply and implement, since the descriptive
semantics are utilized for which plenty of reasoners already exist. Furthermore, it
was investigated how the technique of construction of a base of ClIs can be iterated
for taking into account input interpretations which can be observed on a daily basis,
and similarly taking into account existing knowledge in form of a TBox, cf. [29].

Definition 11.1 Let .# be an interpretation over a signature X', and assume that § €
N is arole depth bound. Then, a knowledge base for . and § is a pair & := (T, %)
consisting of a TBox .7 and an RBox % such that for all concept inclusions « the
role depth of the subsumee of which, and of the subsumer of which, respectively,
does not exceed §, and also for all role inclusions «, it holds true that

4 E aif, and only if, Z" = «.

A knowledge base %" is non-redundant if none of the axioms is entailed by the
others, i.e., if for each @ € 7 U £, it holds true that (7 \ {«},Z \ {¢}) £ «.
Furthermore, a knowledge base for .# and § is minimal if there is no knowledge
base for .# and § of a smaller cardinality.

By means of the results of the previous sections we are now ready to formulate a
knowledge base for an interpretation .#, or for a description graph ¢, respectively.
Beforehand, we inspect the interplay of role and concept inclusions, and we list
some trivial concept inclusions that are valid in all interpretations.

Lemma 11.2 Let m,n € Ny be non-negative integers withn < m, r € Ng be a role
name, and C, D be . -concept descriptions. Then, the following concept inclusions
hold in every interpretation 7.

AN—-AC L
Ar.SelfnVr.CCC
Ar.SelfncCc3r.C
dr.SelfnCcna<1l.rcVr.C
Ad>nr.CNVr..DCIA>nr.(CND)
d<nrC3I<mr
A>mr.CC3IA>nr.C
3> A7 |.r.cccnVr.cn3r. Self
TCca<|A?).r



132 F. Kriegel

Proof Most of the concept inclusions are obviously valid. We are only going to
explain the validity of the penultimate concept inclusion. If a domain element
has at least | A | r-successors in C, then especially it must be an r-successor of
itself, hence be in C and in 3 r. Self. Furthermore, there cannot be any further 7-
successors, and so all 7-successors must be in C. m]

Please note that there are no direct subsumptions between existential restrictions
3 r. C and value restrictions Vr.C, i.e., bothdr.CE Vr.CandVr.C C 3r.C
do not hold. There is also a crossover between both which is denoted by V3, and
has the semantics (VAr.C)? = (3r.C)” N (Vr.C)”, i.e., a domain element is
in the extension of VA r. C if, and only if, there is an r-successor in C, and all r-
successors are in C. Furthermore, there is also a reversed value restriction V C. r
with the semantics (V C.7)?” = {d € A | Ve € A”:e € C” implies (d,e) €
7 }. However, we do not use either of them for our mining technique.

The next two lemmas show us which concept inclusions can be inferred from
known role inclusions.

Lemma 11.3 Let .7 be a model of the role inclusion r T s, as well as of the concept
inclusion C T D, and furthermore let m < n be natural numbers. Then % is also a
model of the following concept inclusions.

A>nr.CC3IA>m.s.D
3r. SelfC 3. Self
Vs.CCVr.D

d<msC3IA<nr

Proof Assume that m < n, and let .# be an interpretation such that r” C s and
¢’ cD”.

(=) Then we have that

@>nr.C)” ={deA” |FEec (*):{dyx EC r’ and EC C7 }

n

ci{deA’ |AEe (X)) {dyx EC s’ and E € D7 }

m

=3 >m.s.D)”.
(3) For the existential self restrictions we can infer the following.

Ar.Sel)” ={de AV |(d.d)er’}
C{deA” | (d.d)es”}
= (3s.Self)”
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(V) Furthermore, consider a concept inclusion Vs. C C V r. C. We can infer the
following.

(Vs.C) ={de A’ |Veec AV:(d,e) € s’ impliese € C”}
C{deA”’ |Vee A”:(d, e)er” impliese € D7}

=Wr.C)”
(<) Finally, it holds true that

@<ms)” ={de s’ |VEe (%)} xEZs” )

Clde AV |VEe (Y )y xEZ "}

=3<nr)”’. O

First, we want to extract a minimal RBox Z(.#) from the interpretation that
entails all role inclusions valid in .. We therefore define an equivalence relation
=, on the role names as follows: r = s s if, and only if, ¥ = 5. Then let N
be a set of representatives of this equivalence relation, i.e., [NZ N [rl=, | = 1for
all role names r € Ng. If [r]= , = {ry,..., r¢} is an enumeration of the equivalence
class of r, then add the following role equivalence axioms to Z(.¥).

H(I,r)={rnCrnntr,. .. rnaCrrCr

Furthermore, define an order relation = » on the representatives N ;f by r C.s sif,
and only if, " C s”. Let < be the neighborhood relation of = , then add the
role inclusion axioms r C s for each pair r <_# s to the RBox Z(.#). Obviously,
the constructed RBox is minimal w.r.t. the property to entail all valid role inclusion
axioms holding in the interpretation .#. Eventually, the RBox is defined as follows.

H(I)={rCs|rseN{ andr<ys}U| J{2(I. )| reN}
Proposition 11.4 Let . be an interpretation. Then the RBox % (%) as defined
above is a base for the role inclusions which are valid in .#, i.e., for each role
inclusion r T s, the following equivalence holds true.

S ErCsif,andonlyif, Z(F)ErCs

In particular, Z(-¥) is non-redundant, i.e., for every role inclusion r C s € Z(5),
it holds true that Z(F)\ {r C s} £ rCs.
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Proof The statements are immediate consequences of the construction of Z(.%)
preceding the proposition. O

Lemma 11.5 Let .# be an interpretation over a signature X, let C and D be M -
concept descriptions over X, and further assume that § € N is a role depth bound.
Ifthe CI C T D is valid in .#, and both C and D have a role depth not exceeding
8, then the CI C = C77©) is valid in .7 too, and furthermore, C = D follows from
cC Cﬂﬂ(ﬁ)'

Proof For the concept description C it follows by an application of Statement 6 of
Lemma 7.3 that C* = C¥¥® e, the CI C E C¥“ @ is always valid in .#.
Now consider a model ¢ of the CI C E Cc77® Since .# = C E D, it follows
that ¥ < D, and by Statement 1 of Lemma 7.3 we conclude that @ = C SIE6)
D. In particular, then the last CI is also validin ¢, and hence ¢ = C C D. Since
_# was an arbitrary model, we conclude that {C C C7®} = C C D. O

Proposition 11.6 Let .# be a finite interpretation, and let § € N be a role depth
bound. Then, the following TBox is sound and complete for the CIs which satisfy the
role depth bound § and are valid in 7.

Jlzell2"z cews.8);
UB> (A7 |+ 1).rnTEL TCA<|A7|.r|reNg}

Proof For the sake of improving the readability, denote the above given TBox as
7. Since for all 2 € €(A£,6), the implication 2~ — 2 trivially holds in
the induced formal context IK(.#, §), it immediately follows by an application of
Lemma 10.4 that the CI[] 2" C []2™ is valid in .#. Consequently, we have just
proven the soundness of 7.

Consider a CI C T D which is valid in ., and where both C and D possess a role
depth of at most §. Then Lemma 11.5 yields that the CI C £ C*© is also valid
in .Z, and furthermore the entailment {C T lodd (5)} = C C D holds true. Hence,
it suffices to show that our TBox 7 entails all CIs of the form C = C7“® . For
this purpose, consider an arbitrary model _# of 7 as well as an arbitrary concept
description C € .# (X)) | s—we are now going to prove that the CI C & C7“® is
valid in _#, too. Beforehand, note that for the right-hand sides of the ClIs it holds
true that @ =[] 277 = ([12)7 7@, cf. Statement 1 of Lemma 10.9. Furthermore,
we also know that each CI C C C7©®) where C is expressible in terms of €' (.#, §)
isvalidin _# . We prove this as follows: if C is expressible in terms of €' (., §), then
there is a subset 2° C €(#,8) suchthat @ = C =[] 2. Since ¢ [|Z E
(1 %)yy(a)’ we can immediately conclude that ¢ = C C cr/70),

We proceed with a proof by induction on the structure of C.

Let C = L. Since L € ¥ (£, ), we may immediately conclude that ¢ = L C
1LIIE)

Assume that C = T.From T = [|@ it follows that # = T C TII@),
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For a concept name C = A € N, we have that A € € (.7, ), and hence 7 |=
ALC AJJ(S).

For a primitive negation C = —A, it follows that —A € % (.7, §), and so we
conclude that ¢ |= —A C (=A)7 7O,

Consider a conjunction C = D M E. By induction hypothesis it holds true that
JEDCD”7®aswellas ¢ = EC EZ® . Consequently,

JZ EDNECD?7OnE”7®

C (DY O 0 EFF ) I 6)

C (DNE)77O,

The second subsumption follows from the fact that the concept description D ()
EZ7® is expressible in terms of %' (.#,§), and the last subsumption is a conse-
quence of Statement 5 of Lemma 7.3.

Assume that C = V r. D is a value restriction. Then the following subsumptions
hold true in _#.

I EVr.DCEY DY

CVr D]ﬂ(z?—l)

C (Y r. DFFC-D)75®

C (Vr.D)”7®

The first subsumption is a consequence of the induction hypothesis and the fact
that value restrictions are monotonous. For the second subsumption, observe that
D77 6= certainly satisfies that rd(D]](s_l)) < § as well as D7 € D7/ 6-DI
and so an application of Statement 3 of Definition 7.1 yields that @ = D@ &
D776=D Since Vr.D7?0=D is contained in € (#,38), it must in particular
be expressible in terms of ¥'(.#,8), and this justifies the validity of the third
subsumption. Again, the last subsumption follows from Statement 5 of Lemma 7.3.

Now let C = 3 > n.r. D be a qualified greater-than restriction, and first assume
that n < |A“|. Then, we may argue similarly as for the value restrictions that the
following subsumptions hold true in 7.

S EI>nr.DEI>nr.D77O
C3>nr.D”70D
C @3> nr. DIy 750

c@=>nr.D)"7®
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For the remaining case where n > |A” |, we argue as follows:

S EI>nr.DEI>nr. T
caA> A7+ 1L T
cC 1,

and hence the concept descriptions L and 3 > n.r. D are equivalent in _#. Since
we have already proven above that 1 C 177® ig valid in / , also the CI
d>nr.DC (3 >n r.D)y](‘S) isvalidin 7.

Assume that C = 3 < n.r is an unqualified less-than restriction, and let n <
|Ay|. Of course, then ¢ = I <nr E 3 =< n.r)yj(é) certainly holds true,
sinced <n.r € ¢(,8). Incase n > |Af|, then 3 < n.r and T are equivalent
in ¢, and the validity of # 3 <n.r E (3 <n. r)yy(a) follows from 7 =
T T776 which we have shown above.

Eventually, consider an existential self restriction 3 r. Self. Obviously, 3 r. Self
is contained in €'(.#, §), and so the CI 3 r. Self T (3 r. Self)” @ is valid in .

O

As final step we use the trivial concept inclusions and concept inclusions that
are entailed by valid role inclusions to define some background knowledge for the
computation of the canonical implication base of the induced concept context which
is trivial in terms of Description Logics, but not for Formal Concept Analysis, due
to their different semantics.

Theorem 11.7 Let . be an interpretation over the signature X, and § € N a role-
depth bound. Furthermore, assume that £ is an implication base of the induced
formal context IK(.Z, §) with respect to the background knowledge

Ci,...,C0,D € €(F,8)

yf’g = ey g '
(7,5) {C, Ce} — {D} and #(F)E CiN...NC,CD

Then ([1L) U N (), Z(IF)) where
N(F)={T>(A7|+ D)., TC L TCA<|AY|.r | reNg}

is a knowledge base for . and §. In particular, the canonical knowledge base for
& and § is defined as

H(I,8) = (T (I, 8) UN(I), Z(F))
where 7(5.8) = {[ |2 E[ | 2"|2 € PsInt(K(7.5)..7(.7.6)) }.
Proof 1t is obvious that

H(SF,0) = ((|_| Can(K(.#.,6), 7 (5,8)) UN(I), Z(I)),
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and hence it suffices to prove that for each implication base £ of K(.Z,4)
with respect to the background knowledge .7 (.#, §), the pair ¥ = (([]-£) U
N(F), Z(F)) is a knowledge base for .#.

It is obvious that . |= ¢, i.e., ¢ is sound. We proceed with proving complete-
ness. Completeness for role inclusions follows immediately from Proposition 11.4.
In Proposition 11.6 we have proven that the TBox

2z cll2"2 cew.sur (s

is complete for the concept inclusions which are valid in .# and satisfy the role
depth bound §, and thus it suffices to show that for each subset 2~ C €' (.7, §),

YA NEZIRESE

Consider a model _# of 2. We divide the remaining part of this proof in three
steps:

1. First, we show that all implications in . are also valid in the induced formal
context IK(_#, ¢ (7, §)) the incidence relation of which we denote as J.

2. Then, we prove that the background knowledge .¥(.#, §) is valid in the induced
formal context K(_#, € (7, §)), too.

3. Finally, we show that ¢ is a model of the CI[].2" C [ 2.

From the last step, we then immediately conclude that ¢ is also a model of the
TBox from Proposition 11.6. Since # was chosen arbitrarily, then J#" must be
complete.

W.l.0.g. we may assume that . only contains implications of the form 2~ —
2T Hence, let 2 — 27 € &, then it follows that

27 =17 (]2 =2,

i.e., the implication 2~ — 2 is valid in K(_#, € (., §)).

Now consider an implication {Cy,...,C;} — {D} in ./ (Z,§), i.e., it holds
true that Cy,...,Cy,D € €(F#,8) and Z(F) = C; N ...1M C¢ © D. Since
J is a model of Z (), the aforementioned CI is valid in ¢ . Lemma 10.4 then
justifies that the considered implication must be valid in the induced formal context
K(7.%(5.9)).

As the last step, we consider an arbitrary CI [ 2" C [% I where 27 C
% (7, 6), and prove that it is valid in _#. Since the implication set £ U (.7, §)
is sound and complete for K(.#,§), and 2 — 2 is trivially valid in K(.#, §),
it holds true that 2~ — 2 is entailed by .£ U .%(.#, §). Consequently, since
K( 7,%(4,8)) is a model of both . and .7 (.7, §), it follows that 2~ — 2/
is valid in IK(_#, 6 (.#, 6)), too. By Lemma 10.4 we conclude that the CI[].Z" E
M2 "isvalidin ¢. O
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Fig. 5 Overview on various Description Logics below .Z ¢

12 Other Description Logics

If only a lower expressivity of the underlying description logic is necessary, then
one could also use &%, F Ly, FLE, o L&, or extensions thereof with role
hierarchies 7. All of the previous results are then still valid, if the expressivity
is not higher than that of .# 7. Figure 5 gives an overview on description logics
that have a lower expressivity than .# #, and can thus also be used for knowledge
acquisition.

As a future step, it would be interesting to investigate methods that also take
into account complex role inclusions, e.g., consider the description logic .#ZZ%. A
complex role inclusion is an expression rjo...or, C s where r, ..., r,, s € Ng are
role names. Its semantics is defined by

. . j
S Ero...or,Csif,andonlyif,r{ o...or
where o denotes composition of binary relations, i.e.,

3Ad,.....d,_1 € A”:
r]]o”.or;f: (do,dn)eAﬂxA“"
(do,dy) €r{,... (dw-r,dy) €T

13 Conclusion

We have provided an extension of the results of Baader and Distel [2, 3, 16]
for the deduction of knowledge bases from interpretations in the more expressive
description logic .Z ¢ w.r.t.descriptive semantics and role-depth bounds, and
furthermore explained how this technique can be applied to social graphs. Since
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role-depth-bounded model-based most specific concept descriptions always exist,
this technique can always be applied. Furthermore, the construction of knowledge
bases has been reduced to the computation of implication bases of formal contexts,
which is a well-understood problem that has several available algorithms—for
example the standard NextClosure algorithm by Ganter [21, 23], or the parallel
algorithm NextClosures that was introduced in [28, 30-32] and implemented in
[27]. The presented methods in this document are also prototypically implemented
in Concept Explorer FX [27].

References

1. Baader, F.: Least common subsumers and most specific concepts in a description logic with
existential restrictions and terminological cycles. In: Gottlob, G., Walsh, T. (eds.) IJCAI-
03, Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence,
pp- 319-324, Acapulco, 9-15 August 2003. Morgan Kaufmann, San Francisco (2003). http://
dblp.uni-trier.de/rec/bib/conf/ijcai/Baader03

2. Baader, F., Distel, F.: A finite basis for the set of &%-implications holding in a finite
model. In: Medina, R., Obiedkov, S.A. (eds.) Formal Concept Analysis, Proceedings
of the 6th International Conference, ICFCA 2008, Montreal, 25-28 February 2008. Lec-
ture Notes in Computer Science, vol. 4933, pp. 46-61. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78137-0_4. http://dblp.uni-trier.de/rec/bib/conf/icfca/BaaderD08

3. Baader, F, Distel, F.: Exploring finite models in the description logic & 4. In: Ferré, S.,
Rudolph, S. (eds.) Formal Concept Analysis, Proceedings of the 7th International Conference,
ICFCA 2009, Darmstadt, 21-24 May 2009. Lecture Notes in Computer Science, vol. 5548,
pp. 146-161. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01815-2_12. http://dblp.
uni-trier.de/rec/bib/conf/icfca/BaaderD09

4. Baader, F,, Kiisters, R., Molitor, R.: Computing least common subsumers in description logics
with existential restrictions. In: Dean, T. (ed.) Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence, IICAI 99, pp. 96-103, Stockholm, 31 July—6 August
1999. 2 Volumes, 1450 pages. Morgan Kaufmann, San Francisco (1999). http://dblp.uni-trier.
de/rec/bib/conf/ijcai/BaaderKM99

5. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: van Harmelen, F.,
Lifschitz, V., Porter, B.W. (eds.) Handbook of Knowledge Representation. Founda-
tions of Artificial Intelligence, vol. 3, pp. 135-179. Elsevier, Amsterdam (2008).
doi:10.1016/S1574-6526(07)03003-9. http://dblp.uni-trier.de/rec/bib/reference/fai/3

6. Babin, M.A., Kuznetsov, S.0.: Recognizing pseudo-intents is coNP-complete. In:
Kryszkiewicz, M., Obiedkov, S.A. (eds.) Proceedings of the 7th International Conference on
Concept Lattices and Their Applications, Sevilla, 19-21 October 2010. CEUR Workshop
Proceedings, vol. 672, pp. 294-301. CEUR-WS.org (2010). http://dblp.uni-trier.de/rec/bib/
conf/cla/BabinK10

7. Babin, M.A., Kuznetsov, S.O.: Computing premises of a minimal cover of func-
tional dependencies is intractable. Discrete Appl. Math. 161(6), 742-749 (2013).
doi:10.1016/j.dam.2012.10.026. http://dblp.uni-trier.de/rec/bib/journals/dam/BabinK13

8. Bazhanov, K., Obiedkov, S.A.: Optimizations in computing the Duquenne-Guigues basis of
implications. Ann. Math. Artif. Intell. 70(1-2), 5-24 (2014). doi:10.1007/s10472-013-9353-y.
http://dblp.uni-trier.de/rec/bib/journals/amai/BazhanovO14

9. Beeri, C., Bernstein, P.A.: Computational problems related to the design of nor-
mal form relational schemas. ACM Trans. Database Syst. 4(1), 30-59 (1979).
doi:10.1145/320064.320066. http://doi.acm.org/10.1145/320064.320066. http://dblp.uni-trier.
de/rec/bib/journals/tods/BeeriB79


http://dblp.uni-trier.de/rec/bib/conf/ijcai/Baader03
http://dblp.uni-trier.de/rec/bib/conf/ijcai/Baader03
http://dx.doi.org/10.1007/978-3-540-78137-0_4
http://dblp.uni-trier.de/rec/bib/conf/icfca/BaaderD08
http://dx.doi.org/10.1007/978-3-642-01815-2_12
http://dblp.uni-trier.de/rec/bib/conf/icfca/BaaderD09
http://dblp.uni-trier.de/rec/bib/conf/icfca/BaaderD09
http://dblp.uni-trier.de/rec/bib/conf/ijcai/BaaderKM99
http://dblp.uni-trier.de/rec/bib/conf/ijcai/BaaderKM99
http://dx.doi.org/10.1016/S1574-6526(07)03003-9
http://dblp.uni-trier.de/rec/bib/reference/fai/3
http://dblp.uni-trier.de/rec/bib/conf/cla/BabinK10
http://dblp.uni-trier.de/rec/bib/conf/cla/BabinK10
http://dx.doi.org/10.1016/j.dam.2012.10.026
http://dblp.uni-trier.de/rec/bib/journals/dam/BabinK13
http://dx.doi.org/10.1007/s10472-013-9353-y
http://dblp.uni-trier.de/rec/bib/journals/amai/BazhanovO14
http://dx.doi.org/10.1145/320064.320066
http://doi.acm.org/10.1145/320064.320066
http://dblp.uni-trier.de/rec/bib/journals/tods/BeeriB79
http://dblp.uni-trier.de/rec/bib/journals/tods/BeeriB79

140 F. Kriegel

10.

11.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

217.

Borchmann, D.: Towards an error-tolerant construction of &.%--ontologies from data using
formal concept analysis. In: Cellier, P, Distel, F., Ganter, B. (eds.) Formal Concept Analysis,
Proceedings of the 11th International Conference, ICFCA 2013, Dresden, 21-24 May 2013.
Lecture Notes in Computer Science, vol. 7880, pp. 60-75. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38317-5_4. http://dblp.uni-trier.de/rec/bib/conf/icfca/Borchmann13
Borchmann, D.: Learning terminological knowledge with high confidence from erroneous data.
Ph.D. thesis, Dresden University of Technology (2014). http://dblp.uni-trier.de/rec/bib/phd/
dnb/Borchmann14

. Borchmann, D., Distel, F, Kriegel, F.: Axiomatisation of general concept inclusions

from finite interpretations. J. Appl. Non-Classical Log. 26(1), 1-46 (2016).
doi:10.1080/11663081.2016.1168230. http://dblp.uni-trier.de/rec/bib/journals/jancl/
BorchmannDK16

Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge
University Press, Cambridge (2002). http://dblp.uni-trier.de/rec/bib/books/daglib/0023601
Distel, F.: Model-based most specific concepts in description logics with value restrictions.
Tech. Rep. 08-04, Institute for theoretical computer science, TU Dresden, Dresden (2008).
http://1at.inf.tu-dresden.de/research/reports.html

Distel, F.: Hardness of enumerating pseudo-intents in the lectic order. In: Kwuida, L., Sertkaya,
B. (eds.) Formal Concept Analysis, Proceedings of the 8th International Conference, ICFCA
2010, Agadir, 15-18 March 2010. Lecture Notes in Computer Science, vol. 5986, pp. 124—
137. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11928-6_9. http://dblp.uni-trier.de/
rec/bib/conf/icfca/Distel 10

Distel, F.: Learning description logic knowledge bases from data using methods from formal
concept analysis. Ph.D. thesis, Dresden University of Technology (2011). http://dblp.uni-trier.
de/rec/bib/phd/de/Distel2011

Distel, E., Sertkaya, B.: On the complexity of enumerating pseudo-intents. Discrete Appl.
Math. 159(6), 450-466 (2011). doi:10.1016/j.dam.2010.12.004. http://dblp.uni-trier.de/rec/
bib/journals/dam/DistelS11

Donini, EM., Colucci, S., Noia, T.D., Sciascio, E.D.: A tableaux-based method for computing
least common subsumers for expressive description logics. In: Boutilier, C. (ed.) IJCAI
2009, Proceedings of the 21st International Joint Conference on Atrtificial Intelligence, pp.
739-745, Pasadena, CA, 11-17 July 2009 (2009). http://dblp.uni-trier.de/rec/bib/cont/ijcai/
DoniniCNS09

Facebook: Facebook (2016). https://www.facebook.com

Facebook for Developers: The Graph API (2016). https://developers.facebook.com/docs/
graph-api

Ganter, B.: Two Basic Algorithms in Concept Analysis. FB4-Preprint 831, Technische
Hochschule Darmstadt, Darmstadt (1984)

Ganter, B.: Attribute exploration with background knowledge.  Theor. Comput. Sci.
217(2), 215-233 (1999). doi:10.1016/S0304-3975(98)00271-0. http://dblp.uni-trier.de/rec/bib/
journals/tcs/Ganter99

Ganter, B.: Two basic algorithms in concept analysis. In: Kwuida, L., Sertkaya, B. (eds.)
Formal Concept Analysis, Proceedings of the 8th International Conference, ICFCA 2010,
Agadir, 15-18 March 2010. Lecture Notes in Computer Science, vol. 5986, pp. 312-340.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-11928-6_22. http://dblp2.uni-trier.de/
rec/bib/conf/icfca/Ganter10

Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations. Springer,
Heidelberg (1999). http://dblp.uni-trier.de/rec/bib/books/daglib/0095956

Guigues, J.L., Duquenne, V.: Famille minimale d’implications informatives résultant d’un
tableau de données binaires. Math. Sci. Hum. 95, 5-18 (1986)

Hitzler, P., Kr6tzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman
and Hall/CRC Press, Boca Raton (2010). http://dblp.uni-trier.de/rec/bib/books/crc/Hitzler2010
Kriegel, F.: Concept Explorer FX (2010-2017). Software for Formal Concept Analysis with
Description Logic Extensions. https://github.com/francesco-kriegel/conexp-fx


http://dx.doi.org/10.1007/978-3-642-38317-5_4
http://dblp.uni-trier.de/rec/bib/conf/icfca/Borchmann13
http://dblp.uni-trier.de/rec/bib/phd/dnb/Borchmann14
http://dblp.uni-trier.de/rec/bib/phd/dnb/Borchmann14
http://dx.doi.org/10.1080/11663081.2016.1168230
http://dblp.uni-trier.de/rec/bib/journals/jancl/BorchmannDK16
http://dblp.uni-trier.de/rec/bib/journals/jancl/BorchmannDK16
http://dblp.uni-trier.de/rec/bib/books/daglib/0023601
http://lat.inf.tu-dresden.de/research/reports.html
http://dx.doi.org/10.1007/978-3-642-11928-6_9
http://dblp.uni-trier.de/rec/bib/conf/icfca/Distel10
http://dblp.uni-trier.de/rec/bib/conf/icfca/Distel10
http://dblp.uni-trier.de/rec/bib/phd/de/Distel2011
http://dblp.uni-trier.de/rec/bib/phd/de/Distel2011
http://dx.doi.org/10.1016/j.dam.2010.12.004
http://dblp.uni-trier.de/rec/bib/journals/dam/DistelS11
http://dblp.uni-trier.de/rec/bib/journals/dam/DistelS11
http://dblp.uni-trier.de/rec/bib/conf/ijcai/DoniniCNS09
http://dblp.uni-trier.de/rec/bib/conf/ijcai/DoniniCNS09
https://www.facebook.com
https://developers.facebook.com/docs/graph-api
https://developers.facebook.com/docs/graph-api
http://dx.doi.org/10.1016/S0304-3975(98)00271-0
http://dblp.uni-trier.de/rec/bib/journals/tcs/Ganter99
http://dblp.uni-trier.de/rec/bib/journals/tcs/Ganter99
http://dx.doi.org/10.1007/978-3-642-11928-6_22
http://dblp2.uni-trier.de/rec/bib/conf/icfca/Ganter10
http://dblp2.uni-trier.de/rec/bib/conf/icfca/Ganter10
http://dblp.uni-trier.de/rec/bib/books/daglib/0095956
http://dblp.uni-trier.de/rec/bib/books/crc/Hitzler2010
https://github.com/francesco-kriegel/conexp-fx

Acquisition of Terminological Knowledge from Social Networks in Description Logic 141

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Kriegel, F.: NextClosures — parallel exploration of constrained closure operators. LTCS-Report
15-01, Chair for Automata Theory, Technische Universitdt Dresden (2015). http://lat.inf.tu-
dresden.de/research/reports.html

Kriegel, F.: Axiomatization of general concept inclusions from streams of interpretations with
optional error tolerance. In: Kuznetsov, S.O., Napoli, A., Rudolph, S. (eds.) Proceedings of the
Sth International Workshop “What can FCA do for Artificial Intelligence”? Co-located with the
European Conference on Artificial Intelligence, FCA4AI@ECAI 2016, The Hague, 30 August
2016. CEUR Workshop Proceedings, vol. 1703, pp. 9-16. CEUR-WS.org (2016). http://dblp.
uni-trier.de/rec/bib/conf/ecai/Kriegel 16

Kriegel, F.: NextClosures with constraints. In: Huchard, M., Kuznetsov, S.O. (eds.) Proceed-
ings of the Thirteenth International Conference on Concept Lattices and Their Applications,
Moscow, 18-22 July 2016. CEUR Workshop Proceedings, vol. 1624, pp. 231-243. CEUR-
WS.org (2016). http://dblp2.uni-trier.de/rec/bib/conf/cla/Kriegel 16

Kriegel, F.: Parallel attribute exploration. In: Haemmerlé, O., Stapleton, G., Faron-
Zucker, C. (eds.) Graph-Based Representation and Reasoning - Proceedings of the 22nd
International Conference on Conceptual Structures, ICCS 2016, Annecy, 5-7 July 2016.
Lecture Notes in Computer Science, vol. 9717, pp. 91-106. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-40985-6_8. http://dblp2.uni-trier.de/rec/bib/cont/iccs/Kriegel 16
Kriegel, F., Borchmann, D.: NextClosures: parallel computation of the canonical base. In: Ben
Yahia, S., Konecny, J. (eds.) Proceedings of the Twelfth International Conference on Concept
Lattices and Their Applications, Clermont-Ferrand, 13—16 October 2015. CEUR Workshop
Proceedings, vol. 1466, pp. 181-192. CEUR-WS.org (2015). http://dblp.uni-trier.de/rec/bib/
conf/cla/KriegelB15

Kiisters, R., Molitor, R.: Computing least common subsumers in ALEN. In: Nebel, B. (ed.)
Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, [ICAI
2001, pp. 219-224, Seattle, WA, 4—10 August 2001. Morgan Kaufmann, San Francisco (2001).
http://dblp.uni-trier.de/rec/bib/conf/ijcai/KustersMO1

Kuznetsov, S.0.: On computing the size of a lattice and related decision problems.
Order 18(4), 313-321 (2001). doi:10.1023/A:1013970520933. http://dblp.uni-trier.de/rec/bib/
journals/order/Kuznetsov01

Kuznetsov, S.O.: On the intractability of computing the Duquenne-Guigues base. J. UCS 10(8),
927-933 (2004). doi:10.3217/jucs-010-08-0927. http://dblp.uni-trier.de/rec/bib/journals/jucs/
Kuznetsov04

Kuznetsov, S.0., Obiedkov, S.A.: Counting pseudo-intents and #p-completeness. In: Missaoui,
R., Schmid, J. (eds.) Formal Concept Analysis, Proceedings of the 4th International Con-
ference, ICFCA 2006, Dresden, 13—17 February 2006. Lecture Notes in Computer Science,
vol. 3874, pp. 306-308. Springer, Heidelberg (2006). doi:10.1007/11671404_21. http://dblp.
uni- trier.de/rec/bib/conf/icfca/KuznetsovO06

Kuznetsov, S.0., Obiedkov, S.A.: Some decision and counting problems of the Duquenne-
Guigues basis of implications. Discrete Appl. Math. 156(11), 1994-2003 (2008).
doi:10.1016/j.dam.2007.04.014. http://dblp.uni-trier.de/rec/bib/journals/dam/KuznetsovO08
Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics,
vol. 5, 2nd edn. Springer, New York (1978). doi:10.1007/978-1-4757-4721-8_1. http://dx.doi.
org/10.1007/978-1-4757-4721-8_1

Maier, D.: The Theory of Relational Databases. Computer Science Press, Rockville (1983).
http://dblp.uni-trier.de/rec/bib/books/cs/Maier83

Mantay, T.: Computing least common subsumers in expressive description logics. In:
Foo, N.Y. (ed.) Advanced Topics in Artificial Intelligence, Proceedings of the 12th Aus-
tralian Joint Conference on Artificial Intelligence, Al '99, Sydney, 6-10 December 1999.
Lecture Notes in Computer Science, vol. 1747, pp. 218-230. Springer, Heidelberg (1999).
doi:10.1007/3-540-46695-9_19. http://dblp.uni-trier.de/rec/bib/conf/ausai/Mantay99

Mantay, T.: A least common subsumer operation for an expressive description logic.
In: Loganantharaj, R., Palm, G. (eds.) Intelligent Problem Solving, Methodologies and
Approaches, Proceedings of the 13th International Conference on Industrial and Engineering


http://lat.inf.tu-dresden.de/research/reports.html
http://lat.inf.tu-dresden.de/research/reports.html
http://dblp.uni-trier.de/rec/bib/conf/ecai/Kriegel16
http://dblp.uni-trier.de/rec/bib/conf/ecai/Kriegel16
http://dblp2.uni-trier.de/rec/bib/conf/cla/Kriegel16
http://dx.doi.org/10.1007/978-3-319-40985-6_8
http://dblp2.uni-trier.de/rec/bib/conf/iccs/Kriegel16
http://dblp.uni-trier.de/rec/bib/conf/cla/KriegelB15
http://dblp.uni-trier.de/rec/bib/conf/cla/KriegelB15
http://dblp.uni-trier.de/rec/bib/conf/ijcai/KustersM01
http://dx.doi.org/10.1023/A:1013970520933
http://dblp.uni-trier.de/rec/bib/journals/order/Kuznetsov01
http://dblp.uni-trier.de/rec/bib/journals/order/Kuznetsov01
http://dx.doi.org/10.3217/jucs-010-08-0927
http://dblp.uni-trier.de/rec/bib/journals/jucs/Kuznetsov04
http://dblp.uni-trier.de/rec/bib/journals/jucs/Kuznetsov04
http://dx.doi.org/10.1007/11671404_21
http://dblp.uni-trier.de/rec/bib/conf/icfca/KuznetsovO06
http://dblp.uni-trier.de/rec/bib/conf/icfca/KuznetsovO06
http://dx.doi.org/10.1016/j.dam.2007.04.014
http://dblp.uni-trier.de/rec/bib/journals/dam/KuznetsovO08
http://dx.doi.org/10.1007/978-1-4757-4721-8_1
http://dx.doi.org/10.1007/978-1-4757-4721-8_1
http://dx.doi.org/10.1007/978-1-4757-4721-8_1
http://dblp.uni-trier.de/rec/bib/books/cs/Maier83
http://dx.doi.org/10.1007/3-540-46695-9_19
http://dblp.uni-trier.de/rec/bib/conf/ausai/Mantay99

142 F. Kriegel

Applications of Artificial Intelligence and Expert Systems, IEA/AIE 2000, New Orleans, LA,
19-22 June 2000. Lecture Notes in Computer Science, vol. 1821, pp. 474-481. Springer, Hei-
delberg (2000). doi:10.1007/3-540-45049-1_57. http://dblp.uni-trier.de/rec/bib/conf/icaaie/
Mantay00

42. Obiedkov, S.A., Duquenne, V.: Attribute-incremental construction of the canonical implication
basis. Ann. Math. Artif. Intell. 49(1-4), 77-99 (2007). doi:10.1007/s10472-007-9057-2. http://
dblp.uni-trier.de/rec/bib/journals/amai/ObiedkovD07

43. Sertkaya, B.: Some computational problems related to pseudo-intents. In: Ferré, S., Rudolph,
S. (eds.) Formal Concept Analysis, Proceedings of the 7th International Conference, ICFCA
2009, Darmstadt, 21-24 May 2009. Lecture Notes in Computer Science, vol. 5548, pp. 130-
145. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01815-2_11. http://dblp.uni-trier.
de/rec/bib/cont/icfca/Sertkaya09

44. Sertkaya, B.: Towards the complexity of recognizing pseudo-intents. In: Rudolph, S.,
Dau, F., Kuznetsov, S.O. (eds.) Conceptual Structures: Leveraging Semantic Technologies,
Proceedings of the 17th International Conference on Conceptual Structures, ICCS 2009,
Moscow, 26-31 July 2009. Lecture Notes in Computer Science, vol. 5662, pp. 284-292.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03079-6_22. http://dblp.uni-trier.de/rec/
bib/conf/iccs/Sertkaya09

45. Stumme, G.: Attribute exploration with background implications and exceptions. In: Stud-
ies in Classification, Data Analysis, and Knowledge Organization, pp. 457-469. Springer,
Berlin/Heidelberg (1996). doi:10.1016/S0304-3975(98)00271-0. http://dblp.uni-trier.de/rec/
bib/journals/tcs/Ganter99

46. (W3C), W.W.W.C.: Owl 2 web ontology language document overview, 2nd edn. (2012). https://
www.w3.org/TR/owl2-overview/

47. Wild, M.: Computations with finite closure systems and implications. In: Du, D., Li, M. (eds.)
Computing and Combinatorics, Proceedings of the First Annual International Conference,
COCOON 95, Xi’an, 24-26 August 1995. Lecture Notes in Computer Science, vol. 959,
pp- 111-120. Springer, Heidelberg (1995). doi:10.1007/BFb0030825. http://dx.doi.org/10.
1007/BFb0030825. http://dblp.uni-trier.de/rec/bib/conf/cocoon/Wild95

48. Wille, R.: Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts,
pp. 445-470. Springer, Dordrecht (1982). doi:10.1007/978-94-009-7798-3_15. http://dx.doi.
org/10.1007/978-94-009-7798-3_15


http://dx.doi.org/10.1007/3-540-45049-1_57
http://dblp.uni-trier.de/rec/bib/conf/ieaaie/Mantay00
http://dblp.uni-trier.de/rec/bib/conf/ieaaie/Mantay00
http://dx.doi.org/10.1007/s10472-007-9057-2
http://dblp.uni-trier.de/rec/bib/journals/amai/ObiedkovD07
http://dblp.uni-trier.de/rec/bib/journals/amai/ObiedkovD07
http://dx.doi.org/10.1007/978-3-642-01815-2_11
http://dblp.uni-trier.de/rec/bib/conf/icfca/Sertkaya09
http://dblp.uni-trier.de/rec/bib/conf/icfca/Sertkaya09
http://dx.doi.org/10.1007/978-3-642-03079-6_22
http://dblp.uni-trier.de/rec/bib/conf/iccs/Sertkaya09
http://dblp.uni-trier.de/rec/bib/conf/iccs/Sertkaya09
http://dx.doi.org/10.1016/S0304-3975(98)00271-0
http://dblp.uni-trier.de/rec/bib/journals/tcs/Ganter99
http://dblp.uni-trier.de/rec/bib/journals/tcs/Ganter99
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/
http://dx.doi.org/10.1007/BFb0030825
http://dx.doi.org/10.1007/BFb0030825
http://dx.doi.org/10.1007/BFb0030825
http://dblp.uni-trier.de/rec/bib/conf/cocoon/Wild95
http://dx.doi.org/10.1007/978-94-009-7798-3_15
http://dx.doi.org/10.1007/978-94-009-7798-3_15
http://dx.doi.org/10.1007/978-94-009-7798-3_15

Formal Concept Analysis of Attributed
Networks

Henry Soldano, Guillaume Santini, and Dominique Bouthinon

1 Introduction

Our purpose is to investigate and analyze attributed graphs. In this article we discuss
how recent extensions of Formal Concept Analysis apply to this problem. We
consider undirected graphs G(O, E) where E is the edge set, and O the vertex set.
The vertices are labeled by a description in an attribute pattern language L with a
lattice structure, typically L = 27 where I is a set of binary attributes. Note that we
may consider such an attributed graph both as a graph whose vertices are labeled
with subsets of 7 and as set of objects each described by such a subset of I and that
may be related together by edges.

The former view leads to consider the methodology used to investigate graphs,
in particular social and complex networks. Most of the work in this area consider
unlabeled networks and is concerned by what may be said about the topological
structure of the network. A large set of measures have been proposed to analyze
these networks, and two main ways have been proposed to extract interesting
subgraphs. The first way consider the network as made of a core, i.e., a dense
subgraph whose vertices are highly connected, together with its periphery, made
of vertices highly connected to the core, but poorly connected between them [6].
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The second way considers the network as made of a number of dense subnetworks,
called communities whose vertices are highly connected within the community and
poorly connected to vertices of other communities [8]. Finally, the two views may
be combined, for instance, by considering the network as made of communities each
having some core/periphery structure [16].

Regarding the notion of core, there have been various ways to define it, starting
from the k-core of a network which is the greatest subnetwork whose vertices all
have degree at least k in the subnetwork [17]. By changing the topological property,
but keeping this idea of a greatest subnetwork whose vertices share the property
within the network, we obtain various core definitions [3]. A core may also be
defined as the greatest subnetwork made of a subset of a family of small, connected
subnetworks. The simplest example is the k-clique core that is only made of k-
cliques. When k = 3, the core is made of triangles which are known to be an
important substructure in social networks analysis [29].

Concerning the idea of communities, it has been extensively investigated mostly
as an optimization problem: how to optimally partition the network in subnetworks
maximizing some measure. A second view of communities derives from some
strong structural property that has to be satisfied within a community. We will
further call them structural communities, or simply communities, as we only
consider these kind of communities in the remaining part of this article. The main
example is the k-community approach that divides a k-clique core (as defined above)
in connected subnetworks each satisfying a stronger property (see below) [13] .

From the first point of view, adding attributes to the vertices means that each
attribute pattern induces a subgraph whose vertices satisfy the pattern. Each such
subgraph could then be investigated, extracting its core and communities. The
question is then how to summarize and select relevant information from such a set
of results.

The second view considers the attributed graph first as a table representing a set
of objects described by attributes, and then considers that edges may relate objects.
This leads to the use of standard methodology of data analysis by adapting it to
dealing with topological information. The whole purpose of this article is to discuss
how Formal Concept Analysis, which was originally concerned with data tables,
may be extended in order to take into account the topological information. The
main idea we propose here is to consider as parameters the notion of cores and
structural communities relevant to the data to analyze and adapt accordingly the
FCA methodology.

Regarding the reduction of a graph to its core, this may be obtained by defining
an interior operator p on the vertex powerset 2°. This approach, based on a previous
work on abstraction in Formal Concept Analysis [24], produces abstract closed
patterns structured in an abstract concept lattice together with a basis of abstract
implications written (g — Ow. All concept extents are then images of the interior
operator. When considering attributed networks, and given some core definition,
such an interior operator reduces a vertex subset e to the vertices forming the core of
the subgraph G(e) induced by e [23]. It is then called a graph abstraction operator.
Fig. 1 represents an attributed graph G, the subgraph induced by pattern a (in plain
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Fig. 1 The pattern a
subgraph is displayed with
plain lines, the corresponding
3-clique abstract subgraph is
displayed in blue lines. The
associated abstract closed
pattern is ab

Fig. 2 The DMKD,IDArev
pattern subgraph in the DBLP
co-authoring experiment. The
red vertices and edges
represent the subgraph
induced by the degree > 4
abstract extension

lines), and the 3-clique core of this subgraph, i.e., its abstract subgraph (in blue
lines). Note that all vertices of the core share attribute b. This means that ab is an
abstract closed pattern and that the abstract implication Ca — Cab holds, i.e., any
triangle in G whose vertices share a also share b.

Recent works in attributed graph mining are interested in searching for local
patterns made of a constraint on a subset of attributes together with a density
constraint on a vertex subset, and this using various notions of maximality [11, 18].
In a companion article [21], we have defined local closed patterns corresponding
to maximal attribute patterns each associated with one dense subgraph, allowing to
extract local implications, particular to specific dense groups of objects. For that
purpose Formal Concept Analysis (FCA) had to be extended in order to take into
account this notion of locality.

The simplest example is obtained by considering a subgraph made of various
connected components, and associating to each connected component a local closed
pattern, i.e., the most specific pattern shared by the vertices of this connected com-
ponent. More generally, local closed patterns may be associated with the connected
components of abstract subgraphs. The family of such connected components forms
a partial order called a cc-confluence while the corresponding local concepts have
a weaker structure called a pre-confluence. As an example, in Fig.2 we display a
pattern subgraph extracted from a DBLP co-authoring network labeled by journal
and conference names, together with its abstract subgraph (in bold and red vertices
and lines) when considering a 4-core abstraction. The abstract subgraph has two
connected components, i.e., two structural communities of scientists. Again we
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Fig. 3 The original

Friendship network of a

group of West Scotland s
pupils. The pupils and edges
forming 3-communities of
size at least 4 are displayed in

various colors %

may associate to this structure a set of implications, called local implications. In
the previous example we found a local implication [0;q — O,w stating that in the
connected component containing vertex i of the degree > 4 abstract subgraph of
pattern g, all vertices also share pattern w.

Connected components of abstract subgraphs as represented in cc-confluences
do not always completely capture the idea of communities as considered in social
network analysis. As discussed in [21], we may, however, enlarge the local closed
patterns approach by deriving a new graph Gr from G whose vertex set 7T is a set
of vertex subsets of G. Figure 3 displays a graph whose vertices represent pupils of
a school in the West of Scotland, whose edges represent friendship relations, and
whose vertex attributes concern substance use and sporting activity.! As a running
example we consider the subgraph induced by the empty pattern, i.e., the whole
graph. By applying a 3-clique graph abstraction restricted to connected components
containing at least 4 vertices,” we obtain a subgraph made of the bold and colored
edges and vertices. This abstract subgraph is made of two connected components,
therefore leading to two local concepts. However, the largest connected component
is clearly made of distinct dense parts, i.e., communities, we would like to consider
when defining local closed patterns. Fortunately, when considering k-communities
[13] we can solve this problem by applying the cc-confluence approach to a new
graph derived from the original graph. More precisely, a k-community is a vertex
subset in a graph G that corresponds to a connected component in a derived graph
Gr. The vertices of G are k-cliques in G and an edge relates two vertices whenever
the corresponding k-cliques share k — 1 vertices in G. Each colored subgraph in
Fig. 3 defines such a 3-community.

The last task is to define interestingness measures to rank abstract or local
patterns and implications. Regarding patterns, we will search for patterns whose
abstract (resp. local) subgraph is a large part of the whole pattern subgraph, i.e.,
which preserves the core (resp. communities) definitions. The corresponding mea-
sure is called specificity. Regarding the abstract and local implications, we search for

QN

Uhttp://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm.
2We further call the 3-cligue and cc->4 abstraction.


http://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm

Formal Concept Analysis of Attributed Networks 147

implications which are informative, i.e., which did not hold as standard implications
and therefore bring some new information about our data. The corresponding
measure is called Informativity. A preliminary discussion of both measures was
presented in [25]. We propose here definitions of specificity and informativity both
at the abstract and local level and experiment them on two real attributed networks.

Section 2 describes the attributed graphs used in our experiments. Section 3
presents abstract concept lattices, abstract implications, and graph abstractions
together with associated interestingness measures. Section 4 defines local concept
pre-confluences, related local implications, cc-confluences, and interestingness
measures. In Sect. 5 we show how we extract the set of 3-communities associated
with pattern subgraphs by using derived cc-confluences, and we display the local
concept ordering of the attributed network of teenage friendship displayed in Fig. 3.
In Sect. 6 we briefly discuss the implementation used in our experiments.

2 Datasets

In this section we will consider experiments with two datasets. In both cases the data
are described as a graph G = (O, E). Vertices of this graph are have labels from 2/,
where [ is a set of items, i.e., binary attributes. Since objects are not always described
by binary attributes, the binarization preprocessing is described when necessary.

2.1 Teenage Friends and Lifestyle Study

The dataset is denoted by s50-1 and is a standard attributed graph dataset. It
represents 148 friendship relations between 50 pupils of a school in the West of
Scotland, and labels concern the substances used (tobacco, cannabis, and alcohol)
and sporting activity. The values of the corresponding variables are ordered. The
binarization process consists in defining variables representing the value intervals.
T stands for Tobacco consumption and has values 1 (no smoking), 2 (occasional),
and 3 (regular). C stands for cannabis consumption and has values 1 (never tries)
to 4, D stands for alcohol consumption and has values 1 (does not drink) to 5, and
S stands for sporting activity and has two values 1 (occasional) and (2) regular.
Binary attributes represent intervals, for instance, C234 means that the value of C is
at least 2 and therefore represents the interval [2, 4]. In Table 1 we present the binary
attributes we have defined. Attribute subsets represent intersection of intervals. For
example pattern {D123, D2345} requires that the value of D lies within the interval
[1,3]N[2,5] = [2, 3]. Note that, for the sake of simplicity we do not distinguish the
two highest values of attributes T, C, and D.

Shitp://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm.
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Table 1 The binary attributes used to label the vertices in the Teenage Friendship network

Tobacco Cannabis Alcohol Sport
T1, T23 C1, Cl12,C234,C34 D1, D12, D123, D2345, D345, D45 S1,82

2.2 A DBLP Dataset

This is the DBLP dataset as described in [4]. There are 45,131 vertices, 228,188
edges, and 555 connected components. Vertices are authors that have published
at least one paper in one among 29 journals or conferences of the Database and
Datamining communities* during the 1/1990-2/2011 period. An edge links two
authors whenever they are coauthors of at least one article. The conferences are
clustered in three clusters: DB (databases), DM (data mining), and Al (artificial
intelligence) according to a conference ranking site categorization.> The binary
attributes are the journal and conference names together with the three clusters.
An attribute has value 1 if the author has published in the corresponding journal or
conference or cluster.

3 Abstract Closed Patterns in Attributed Networks

3.1 Closed Patterns

In this section we introduce the necessary definitions and terminology we use in
the article. Note that the terminology is somewhat non-standard in FCA. Indeed, as
we need to interleave interior operators with extensional and intensional operators,
the standard X” notation to represent closed elements is not so convenient, so we
rather denote, respectively, by ext and int the extensional and intensional operators.
Furthermore, in this introductory paragraph we relate FCA to closed pattern mining.

A standard pattern mining procedure consists in considering the set of occur-
rences of patterns, belonging to some pattern language L with a lattice structure,’
within an object set O (see, for instance, [5]). This language is partially ordered
following a general-to-specific ordering, and each object o is described as a

4Conferences: KDD, ICDM, ECML/PKDD, PAKDD, SIAM DM, AAAI ICML, IJCAI, IDA,
DASFAA, VLDB, CIKM, SIGMOD, PODS, ICDE, EDBT, ICDT, SAC ; Journals: IEEE TKDE,
DAMLI, IEEE Int. Sys., SIGKDD Exp., Comm. ACM, IDA J., KAIS, SADM, PVLDB, VLDB J.,
ACM TKDD.

5http://webdocs.cs.ualberta.ca/~zaiane/htmldocs/ConfRanking.html‘. DB = {VLDB, SIGMOD,
PODS, ICDE, ICDT, EDBT, DASFAA, CIKM}; DM= {SIGKDD Explorations, ICDM, PAKDD,
ECML/PKDD, SDM}; Al= {IICAIL, AAAIL ICML, ECML/PKDD}.

%We recall that in a lattice any pair of elements (x, y) has a greatest lower bound x A y (or meer)
and a least upper bound (or join) x V y.
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particular pattern d(o0). A pattern g occurs in object o whenever d(o) is more specific
(i.e., larger) than g. The set of occurrences ext(g) of a pattern ¢ is called its extension.
An intension function int(e) returns the most specific pattern associated with the
extension e. This means that we relate a pattern g to the most specific pattern with
same extension by applying the closure operator int o ext to ¢. int o ext(g) is then
called a closed pattern. The pattern language L typically is 2/ where I is a set of
binary attributes (aka items). With no loss of generality we will further use the
powerset 2/ as a pattern language while what follows also applies to wider languages
as pattern structures[10]. When L = 2! the closure operator on patterns then simply
intersects the object descriptions of the extension of the entry pattern. This means
that when considering patterns with same extension as equivalent, closed patterns
are the representatives of the equivalences classes. Such a class has therefore a
maximum but also minimal elements, called minimal generators. When the patterns
belong to 2/, the min—max basis of implications[14] is defined as follows:

m = {g — f\g | f is a closed pattern, g is a generator, f # g, ext(g) = ext(f)}

This basis represents all the implications ¢ — ¢’ that hold on O, i.e., such that
ext(t) C ext(?). This precisely means that all these implications may be derived
from the min—max basis. Obviously all non-trivial implications, i.e., implications
such that ¥ & ¢, may be inferred from an implication / — r of m where [ C t and
rulot.

Finally, note that the enumeration of closed patterns is in general restricted to
frequent patterns, i.e., patterns whose extension is larger than some threshold. In
FCA, such a constraint leads to iceberg lattices [27].

3.2 Abstract Closed Patterns

We summarize here how abstraction is applied in FCA by constraining the
extensional space. We first recall the definitions of closure operators and interior
operators, the latter being further used to restrict the pattern extensions to be
abstract extensions. In what follows all ordered sets are finite, and in particular
any topped meet-semilattice (resp. pointed join-semilattice) is a lattice.

Definition 1 Let U be an ordered set and f : U — U a self map such that for
any x,y € U, f is monotone, i.e., x < y implies f(x) < f(y) and idempotent, i.e.,

f(f(x)) = f(x), then:

— If f is extensive, i.e., f(x) > x, f is called a closure operator
— If f is intensive, i.e., f(x) < x, f is called a dual closure operator, an interior
operator, or also a projection.

In the first case, an element such that x = f(x) is called a closed element.
Ranges of interior operators on lattices are called abstractions and are character-
ized by the following Proposition:
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Proposition 1 (see [24]) A subset A of X = 29 is the range p[X] of some interior
operator p on X, if and only if for any elements x, y in A, their join xUYy also belongs
to A and A contains the empty set. The interior operator is related to its range as
follows:

P(X) = SUPgueniacd-

Let then p be the interior operator associated with some abstraction A, p(x) be the
greatest element of A contained in x. Closed pattern analysis has been recently
extended to abstract closed pattern analysis by noticing that applying an interior
operator on the extensional space 2° we obtain again a closure operator on the
pattern language 2 [15, 24]:

Proposition2 Let X = 2° and L = 2!, p be an interior operator on 2°, and
A = p[X] be the associated abstraction, we have that (int,p o ext) is a Galois
connection on (A, L), i.e.,:

f = into p oextis a closure operator on L,

The abstract extension of pattern g is defined as p o ext(g). A new equivalence
relation is then defined such that ¢ =4 w whenever p o ext(q) = p o ext(w), each
equivalence class of which corresponds to some abstract extension in A. There is
then a unique abstract support closed pattern, i.e., a most specific pattern among all
patterns sharing the same abstract extension, which is obtained as f(g) = intop o
ext(q). f(q) is then called an abstract closed pattern. This leads to the definition of
abstract concepts organized in a concept lattice:

Corollary 1 ([24]) The set of (abstract extension, abstract closed pattern) pairs
(e = ext(c), c = int(e)), ordered following A, is a lattice called an abstract concept
lattice.

Note that, as p is monotone, whenever ext(q) C ext(w), i.e., ¢ — w is valid, we
also have exts(p) = p o ext(q) C exty(w) = p o ext(w). The latter inclusion states
the validity of an abstract implication we will rewrite as (04¢q — [w.

This way we obtain abstract min—max basis with the same definition as earlier
in this section except that exts replaces ext and therefore abstract implications
relate minimal elements (i.e., A-generators) to maximal element (the abstract closed
pattern, or A-closed pattern) of the same abstract equivalence class. We have then
the following definition:

Definition 2 The abstract min—max basis my of valid abstract implications is
defined as

my = {0%¢ — O*\g | fis an A-closed pattern, g is a A-generator, f # g,
exta(g) = exta(f)}.

In the same way as in the standard min—max basis case, all implications (14¢ —
OA¢ that hold on A, i.e., such that ext4(f) C exts(¢), may be inferred from the
abstract min—max basis.
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3.3 Graph Abstractions

These ideas have been applied to attributed graphs by defining graph abstractions
[23]. The set of objects O is then the set of vertices of a graph G = (O, E), and each
vertex o is labeled by an attribute pattern d(o) € 2'.

A graph abstraction is an abstraction of 2%defined through a characteristic
property P such that P(x, e) expresses some minimal connectivity requirement of
the vertex x within the subgraph G, induced by some vertex subset e.

Proposition 3 Let P be such that

e P(x,e) implies x € e and
e ¢ C ¢ and P(x,e) implies P(x, ),

and let q be a mapping defined by q(e) = {x € e|P(x,e)}, then the mapping p
defined by p(e) = fixedpoint(q, ) is an interior operator on 2°.

Consider a subgraph G,, where p(e) represents the greatest vertex subset of e
inducing a subgraph whose vertices all satisfy the associated characteristic property.
This subgraph G, will be further called the abstract subgraph of G,. We give
hereunder examples of graph abstractions, defined through their characteristic
property and exemplified in Fig. 4.

1. degree > k. The degree > k-abstract subgraph of a graph is its k-core [17].

2. k-club > s: x has to belong to at least one k-club of size at least s in G,. This
is a relaxation of the notion of clique[1]: a k-club is a subset ¢ of vertices such
that there is a path of length < k between any pair of vertices in G,. A triangle,
a 3-clique, is a 1-club of size 3 (Fig. 4a). Figure 4b represents a 2-club of size 6
and therefore a 2-club> 6 abstract group.

3. nearStar(k, d): x has to have degree at least k or there must be a path of length at
most d between x and some y with degree at least k. For instance, the simplest
nearStar(8, 1) abstract group is a central node connected with eight nodes. Such
an abstraction is useful when we want the abstraction to preserve hubs [2] (i.e.,
high degree vertices) together with their (low degree) neighbors (see Fig. 4c).

4. cc > s: x has to belong to a connected component of size at least s in G, (see
Fig. 4d).

M T

(a) (b)

Fig. 4 Graph abstractions corresponding to various vertex characteristic properties. In each graph
plain circles and plain lines form the abstract subgraph, crosses and dotted lines represent the
vertices and edges out of the abstract subgraph. (a) x has to belong to a 3-clique, (b) x has to
belong to a 2-club of size at least 6, (c) x has to be connected to a vertex y such that the degree of y
is at least 6, i.e., to a nearstar(6,1), (d) x has to belong to a connected component whose size is at
least 3
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Finally, it is interesting to note that we can combine two (or more) abstractions A
and A, in two ways, defining a new composite abstraction either stronger or weaker
than both A; and A,. For instance, we may want to consider an abstract subgraph
where vertices both have a degree larger than some k and belong to a connected
component exceeding a minimal size s. On the contrary, we may want an abstract
subgraph such that at least one of the two characteristic properties is satisfied by all
the vertices. This would be the case, for instance, if we want to keep both vertices
that have a degree larger than, say 10, and vertices in a star, i.e., connected to a
hub which degree is at least 50. The following proposition states that we can freely
combine abstractions in both directions.

Proposition 4 Let Py and P, two characteristic properties of abstractions defined
on the same object set O, and let Py N\ P, and P v P, be defined as follows:

* Py APy(x,e) = Pi(x,e) A Pa(x, e)
* PiVPx.e) =Pi(x,e) VParxe)

Both Py A Py and Py v P, are characteristic properties of abstractions.

3.4 Interestingness Measures on Abstract Patterns
and Implications

3.4.1 Specificity of Abstract Patterns

We are now interested in measuring knowledge brought by abstract closed patterns
and abstract implications [25]. For that purpose we first generalize hereunder
the structural correlation measure introduced by A. Silva and co-authors [19],
originally introduced to relate a subgraph to its content in terms of quasi-cliques
and rename it as specificity.

Definition 3 Let g be a pattern, A an abstraction of some powerset of objects O, the
specificity of g with respect to A is defined as:

| exta(q) |

4D = i) |

Consider, for instance, a 3-clique abstraction. Whenever S4(g) is close to 1, the
pattern g subgraph is mainly made of triangles. To the contrary, whenever S4(g) is
close to 0, the pattern g subgraph almost displays no triangles, which means quite
isolated vertices. We relate this way a pattern g to the measure of how selecting
vertices satisfying this pattern preserves the topological property associated with
the abstraction.

Example 1 Figure 1 displays a graph each vertex of which is described by an
itemset. We observe then that:



Formal Concept Analysis of Attributed Networks 153

e ext(a) =e={1,2,3,4,5,7} induces the subgraph G(e) (blue+black).
o exty(a) = {1,2,3} as 4,5,7 do not belong to any 3-clique in G(e).

e intoexty(a) = abNab N ab = ab is an abstract closed pattern.

e Sa(a) = 1/2,84(ab) = 3/4.

Note that among the patterns of some equivalence class of =, the abstract closed
pattern ¢ has maximal specificity:
For any ¢, if ext4 () = exts(c) then Sy(c) > Sa(t)

3.4.2 Informativity of Abstract Implications

Apart from measuring through specificity what is specific to the pattern in its
abstract view, we are also interested when considering abstract implications in how
informative they are. For that purpose we consider abstract implications whose left
and right patterns are equivalent in the abstract space A, i.e., have same abstract
extension, as in the min—max abstract implication basis defined above. Whenever
these patterns are also equivalent in the original space 27 intuitively the implication
is uninformative. Assume, for instance, that @ — abc is valid, then validity of
the abstract implication with same left and right members does not bring any new
information. On the contrary, assume that [04a — [%abc is valid while a — abc
has only confidence 0.5, i.e., ext(abc) = 0.5 * ext(a), then clearly the abstract
implication brings some information.

Definition 4 Let g be a pattern, A an abstraction of 29, the informativity of the valid
implication r : [0*g — 04 is defined as:

| ext(gw) |

L) =1 T @]

Informativity has a range between 0 and 1 and estimates the probability of not
having w whenever we have ¢ in graph G. This quantity has value 0 whenever g —
w holds and has limit 1 whenever | ext(qw) | approaches 0, i.e., restricting the
extension of patterns to elements of A concentrates the extension of g to the very
few sharing also w.

Intuitively, the informativity of an abstract implication measures what we
discovered when we observed that g and gw share the same abstract support.

Example 2 Following Example 1 illustrated in Fig. 1 consider the abstract impli-
cation r : Oa — Oab. This abstract implication has the following semantics:
“a 3-clique of G whose vertices share pattern a also share pattern b,” and its
informativity is therefore I4(r) = 1 —1/2 = 0.5.

Note that implications of the abstract min—max basis which relate minimal
elements g of an abstract equivalence class to the corresponding abstract closed
pattern ¢ have maximal informativity:

Let g =4 t =4 ' =4 cthen I,(O%g — O4) > I, (O — O47).



154 H. Soldano et al.

Table 2 Top-1 5 abstract N° | OAc lext* ()| | lext(c)] | Sa(c)

closed patterns in the Teenage o

Friendship network ranked ! AD45-C34 > 7 0.714

according to their 3-clique 2 t*ci2 27 42 0.643

and cc>4 specificity 3 |04 32 50 0.64
4 O4C12-T1 21 36 0.583
5 O4D45 9 17 0.529
6 04D345 15 29 0.517
7 |OACI-TI 17 33 0.515
8 |O*D123-C12-T1 |15 30 0.5
9 O4D345-C12 10 21 0.476
10 | 04D2345 21 45 0.467
11 | OAC12-S2 15 33 0.455
12 |O4D45-C12-S2 | 4 9 0.444
13 | 04D2345-C12 16 37 0.432
14 | OAS2 16 37 0.432
15 |O04DI123-CI1-T1 |11 27 0.407

3.5 Experiments

Some experiments on the two datasets described in Sect. 2 have been performed and
discussed in [23]. We discuss hereunder new experiments in particular regarding the
interestingness measures.

We firs consider the Teenage Friendship network s50. Among the 50 pupils
38 belong to triangles (i.e., 3-cliques). As there are no isolated triangles, the
abstract subgraph when considering only connected components with size at least
4 is reduced to 32 pupils. The corresponding abstraction is therefore 3-clique and
cc > 4.

Table 2 displays the top 15 patterns according to the corresponding specificity.
We observe that specificity is clearly non-monotonic with respect to abstract
extension size and that among top patterns we find both small (and therefore general)
and large patterns. We further discuss the pattern with highest specificity D45-C34,
which corresponds to pupils with high alcohol and cannabis consumption, in Sect. 5
where we search for communities.

Table 3 displays the top 15 abstract implications according to the 3-clique and
cc > 4 abstract informativity. Again, informativity is clearly nonmonotonic with
respect to extension size. The first and third implications have the same abstract
pattern as their rightmost member: it concerns the same abstract subgraph, whose
pupils have in common the behavior D45-C12-S2, but is obtained either by reducing
the pattern D345-S2 subgraph or the pattern D45-S2 subgraph. Obviously the
former subgraph corresponds to a higher informativity as it includes the latter
subgraph. As a matter of fact, the third implication is redundant with the first one
and could be removed with no information loss. This leads to reduce the abstract
min-max basis by eliminating all such redundant rules. We will apply such an idea
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Table 3 Top-15 abstract implications in the Teenage Friendship network ranked according to their
3-clique and cc>4 informativity

N° g — ¢ lext(c)| lext(g)| Ly(r)

1 04D345-S2 — [04D45-C12-S2 9 22 0.591
2 04C234 — 04D45-C34 7 14 0.5

3 [04D45-S2 — [04D45-C12-S2 9 13 0.308
4 04T1-D345 — [04D345-C1-T1 14 18 0.222
5 04D23 — O4D23-C1-T1 23 28 0.179
6 04C1-D345 — [14D345-C1-T1 14 17 0.176
7 04C34 — O4D45-C34 7 8 0.125
8 04D2345-S2 — [14D2345-C12-S2 29 33 0.121
9 04T1-D2345 — O04D2345-C1-T1 29 33 0.121
10 04C1-D2345-S2 — [14D2345-C1-S2-T1 22 25 0.12
11 04C1-S2- — O4C1-S2-T1 25 28 0.107
12 04C12-D45 — [04D45-C12-S2 9 10 0.1

13 D12 — OADI12-C1-T1 19 21 0.0952
14 04C1-D2345 — [14D2345-C1-T1 29 32 0.0938
15 0“D123 — O4D123-C12-T1 30 33 0.0909

when defining a basis for local implications in Sect.4.2. The second implication
in this ranking concerns pattern D45-C34, mentioned as the highest specificity
pattern. The implication states that the 3-clique and cc > 4 subgraph of pupils that
have pattern C234, which corresponds to a medium-to-high cannabis consumption
behavior, selects pupils with the D45-C34 pattern, i.e., those who have both high
alcohol and cannabis consumption behavior. When applying no abstraction, the
implication only holds on 7 among the 14 pupils that have pattern C234, which
results in informativity 1 —7/14 = 0.5.

We discuss now some new details on experiments performed on the DBLP
dataset. The experiment consisted in applying a degree > k abstraction with
increasing k-values and we focused in abstract patterns obtained with k =
16, which corresponds to a very strong abstraction: in an abstract extension
each author is required to have 16 co-authors within the abstract extension. We
obtained few abstract closed patterns and in particular the abstract closed pattern
VLDBJ, ICDE, SIGMOD, VLDB and the related abstract implication 0 VLDBJ
— O ICDE, SIGMOD, VLDB. Both the abstract closed pattern and its abstract
minimal generator VLDBJ have an abstract extension of 38 among the 1276 VLDBJ
authors in the dataset. The implication states that a dense group of co-authors that
have published in the Very Large Database Journal also have published in several
database conferences. In Fig. 5 we present the corresponding subgraph. Such a very
dense co-authoring subgraph within the VLDBJ subgraph is somewhat unexpected.
Its abstract specificity 38/1276 ~ 0.085 is low, but still higher than the 0 value
we could expect from such a high abstraction level. The abstract implication has a
high informativity about ~ 0.65 coming from the fact that among the 1276 authors
who published in VLDBJ journal only 441 did publish in all the conferences ICDE,
SIGMOD, and VLDB.
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Fig. 5 The subgraph obtained when applying the degree > 16 abstraction to the VLDBJ subgraph
in the DBLP co-authoring experiment

[i56] O @ Serge Abiteboul, Rakesh Agrawal, Philip A. Bernstein, Michael J.
Carey, Stefano Ceri, W. Bruce Croft, David J. DeWitt, Michael J.
Franklin, Hector Garcia-Molina, Dieter Gawlick, Jim Gray, Laura M.
Haas, Alon Y. Halevy, Joseph M. Hellerstein, Yannis E. loannidis,

Martin L. Kersten, Michael J. Pazzani, Michael Lesk, David Maier,
Jerey F. Naughton, Hans-Jorg Schek , Timos K. Sellis, Avi

Silberschatz, Michael Stonebraker, Richard T. Snodgrass, Jeffrey D.
Ullman, Gerhard Weikum, Jennifer Widom, Stanley B. Zdonik:

The Lowell database research self-assessment.Commun. ACM
48(5): 111-118 (2005)

Fig. 6 An example of reference with many authors that leads to a high degree subnetwork

We made then some investigations in the DBLP repository, focussing of the 38
authors of the abstract extension, and found an article whose reference is given in
Fig. 6 and whose abstract begins as follows:

A group of senior database researchers gathers every few years to assess the state of database
research ...

In some sense the explanation of the pattern we discovered is straightforward.
However, the whole purpose of pattern mining is to find unexpected patterns, hidden
within large datasets, and interpret them in order to acquire some new knowledge.
It is exactly what happens here: we were not aware of these regular meetings of
senior database researchers, and we learned something new, though, of course, this
knowledge is clearly widely known within the database community.

When considering a weaker abstraction, namely here a degree > 4 abstraction,
we obtain more abstract closed patterns sometimes made of several connected
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components. Figure 2 in Sect. 1 represents the DMKD, IDArev pattern subgraph
together with the subgraph induced by the abstract extension of the pattern. This
abstract subgraph is made of two connected components, the one in the right part
of the figure is made of ten vertices and we are then interested in knowing whether
there is some more specific pattern than the abstract closed pattern DMKD, IDArev,
which would be shared by this connected component. Answering such questions
means mining at a local level the attributed graph, and this is the subject of the next
section.

4 Local Closed Patterns in Attributed Networks

Given some attribute pattern, we are now interested in extracting local support
closed patterns, i.e., maximal attribute patterns each associated with one dense
subgraph, so allowing to extract local implications particular to specific dense
groups of objects. Recently FCA has been extended to local closed patterns: they
are obtained by applying a set of local closure operators [22]. In the graph case, this
means that from the extension of some (closed) pattern c, various dense extensions,
called local extensions are extracted each associated with a local closed pattern, i.e.,
the most specific pattern / common to the elements of the local extension. Again we
obtain a set of local implications corresponding to inclusion of local extensions, but
now such an implication is only valid in the vicinity of some dense group of vertices.

In [21] we introduced locality in the closure framework with the main motivation
of investigating local patterns in attributed graphs. For that purpose we have first to
define pre-confluences and confluences which are structures weaker than lattices
that have been investigated in FCA [21, 23]. Confluences, in particular, are close to
but different from confluent families as defined in [5]. We further denote by E* the
up sets {y € E|y > x} of an ordered set E, by E, its down sets {y € E|y < x}, and by
min(E) the set of its minimal elements.

First note that ordered sets we consider are all finite. We define a pre-confluence
as a finite ordered structure that generalizes the (finite) lattice structure:

Definition 5 A finite ordered set F is a pre-confluence if and only if for any m €
min(F), F" = {x € F | x > m} is a lattice.

A consequence of this definition is that a (finite) lattice is a pre-confluence with
a minimum. The structure has a partial join operator:

Proposition 5 For any m € min(F) and any x,y € F™ their least upper bound is
the least element of F* N FY we further denote by x Vg y.

This means that a pre-confluence is a union of lattices in which joins coincide. A
particular case is which of a pre-confluence included in a host lattice and which is
join preserving:

Definition 6 Let T be a lattice and F € T be a pre-confluence with as join Vg =
Vv, F is called a confluence of T.
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An abstraction of T, as defined above is a confluence of T with 17 as minimum. We
have then the following property when considering 29 as the host lattice:

Proposition 6 Let X = 29 be a lattice, F C X is a confluence of X if and only if for
any x,y € F™ with m € min(F), we have that x U y belongs to F.
A confluence is then associated with a set of interior operators:

Proposition 7 Let F be a confluence of a lattice X, and m € min(F),

* pm i X" — X", such that p,(x) = Vepnnx,q, is an interior operator and
pulX"] = F".

We are concerned here with extensional confluences, i.e., confluences of X =
29 [21] that generalize extensional abstractions as graph abstractions. In this case,
let x be an element of X greater than or equal to some minimal element m of F, then
Pm(x) returns the greatest subset of x in F that includes m. We now define graph
confluences, which are the original motivation for defining confluences:

Definition 7 Let G = (O, E) be a graph, and F be the family of vertex subsets
inducing connected subgraphs of G. F is a confluence of 2¢ called the graph
confluence of G.

Proof By definition, any singleton {s} induces a connected subgraph of G. Further-
more, the union of two connected vertex subsets that each includes a given vertex
singleton {s} also is a connected vertex subset. Following Proposition 6, F is then a
confluence of 29.

The elements of F are simply called the connected vertex subsets of O. By abuse
of notation we write p, and F* rather than py, and F {s} The interior operator p;
projects then any vertex subset e containing vertex s on the connected component
of the subgraph G, induced by e that contains s. The up set F* is then the set of
connected vertex subsets containing s, and the union of all these F* represents the
whole set of connected subgraphs of G.

Example 3 Let G = (O, E) be a graph (displayed at the bottom of Fig.7) whose
vertex setis O = {1,2,3,4}. Let F C 29 be the set of connected vertex subsets of
G. F is a confluence whose set of minimal elements is min(F) = {{1}, {2}, {3}, {4}}.
The subset F'™3 = F! U F3 representing connected vertex subsets containing
vertices 1 or 3 is also a confluence. Figure 7 displays the diagram of F'*3. O

The extension e of a pattern ¢ may then be projected through interior operators
on various smaller local extensions {e;} corresponding to the connected components
of the pattern subgraph. These interior operators are associated with local closure
operators [21]:

Proposition 8 Let F be a confluence of X = 29, m a minimal element of F, and
Linigmy be the down set of the pattern lattice L whose elements q are such that q >
int(m), then

Jfm = into p,, o ext is a closure operator on Liyym)
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Fig. 7 A square graph (in the
bottom of the figure) and the
Hasse diagram of the
confluence F'13 of
connected vertex subsets that
contain vertices 1 or 3

In a graph confluence, let ¢ = ext(q), then ps(e) is the connected component of
the pattern subgraph G, to which the vertex s belongs. Obviously, p;(¢) = p,(e)
for any vertex v in the same connected component. Therefore f;(g) is a local closed
pattern w.r.t. any vertex in this connected component, i.e., the most specific pattern
shared by the vertices in the connected component.

Now a general result is that the set of local extensions is a pre-confluence:

Theorem 1 The mapping h : F — F : h(e) = p,, oextoint(e) form < e

is a closure operator on F and E = h[F] is a pre-confluence.

h(e) is therefore the local extension of int(e) that contains m < e and A[F] is a
pre-confluence isomorphic to the set P of local concept pairs defined as follows:

Definition 8 The set of local concept pairs P = {(e,]) | e = p, o ext(l),l =
int(e), m < e} is called a local concept pre-confluence.

To summarize we have defined local concepts as (local extension, local closed
patterns) pairs and we have shown that they are organized in a structure with
possibly several minimal elements, therefore generalizing the concept lattice defi-
nition. In the graph confluence exemplified above the local extensions simply are
the connected components of the pattern subgraphs. We will now extend graph
confluences by intersecting graph confluences with abstractions.

4.1 Cc-Confluences

We remark now that we can freely intersect confluences:

Proposition 9 Let F| and F, be confluences of X, then Fy N F5 is a confluence.

Since abstractions of X are confluences of X with the bottom element of X as
their unique minimal element, the above proposition means we can freely intersect
abstractions with confluences to build smaller confluences. Many confluences can
then be derived from a graph confluence by intersecting it with some abstractions.
We call this family of confluences the cc-confluences.
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Definition 9 Let F be the graph confluence of some graph G and A be a graph
abstraction of G, then the confluence F N A is called the cc-confluence of G
associated with A.

For instance, considering A as the k-clique abstraction, we obtain the cc-
confluence of connected subgraphs of G made of k-cliques. Note that cc-confluences
have an important property: rather than considering the minimal elements m of
F when defining local closure operators we can consider vertices as in the graph
confluence F. This is because, given any abstract subgraph and any m included in
its vertex set, all vertices v of m belong to the same connected component and
therefore to the same local extension. This is computationally important as this
means that when considering local extensions we only need to consider each vertex
in the extension and associate it to the connected component to which it belongs.

4.2 Local Implications

Inclusion of local extensions defines validity of local implications (04 ¢ — OAw,
where m is a minimal element of F, in the extension of g. Note that, as the
local extension of pattern ¢ is obtained by applying an interior operator, which is
monotone, to the support set of g, we have that, whenever (04¢g — [1*w is valid and
m C exty(w), we also have that D;‘}lq — Dfnw is valid, i.e., we may infer the latter
local implication from the former abstract implication.

Example 4 Consider the graph displayed in Fig. 8. The 3-clique cc-confluence has
as minimal elements {123, 567, 678} and rewrites as Fy = {123,567,678,5678}.
The extension of pattern b is equal to its abstract extension 123, 678, and the abstract
closed pattern is also b. However, the corresponding abstract subgraph displays two
connected components 123 and 678. The vertices of the latter share bc which is
consequently its local closed pattern. This leads to a local implication:

* Ogrsb — Ogrsbe

In a cc-confluence the local implication may be indexed with respect to any
vertex of the corresponding connected component: a triangle in the same connected

Fig. 8 The pattern b 3-clique abstract subgraph displays two connected components. The blue
one, on the left, is also the pattern b abstract subgraph of motif a leading to the local implication
O4ya = Ofyzab
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component as 6, when considering the pattern b abstract subgraph, also has ¢, which
rewrites as 004 — [2bc. We will simply say that “a triangle containing 6 and
which has b also has ¢.”

We search now for a basis Bf, of valid local implications from which we may
infer any local implications. We will consider a basis By, for a given minimal element
m of F and obtain the whole basis Br, = UB,, by joining these bases. Consider a
given abstract closed pattern ¢ whose abstract extension has a connected component
that contains m, and let [ = f,,(c) be the corresponding local closed pattern, with
respect to the cc-confluence F4. This means that the implication OJ,,c — O,,/ holds.
We select then a basis B, of informative (I # c) and irredundant (there is no other
implication O,,¢’ — O,,l with ¢’ less specific than ¢ in the implication set) ones.
From B,, we may infer all local implications associated with m by applying standard
axioms in the same way as in the case of the min—max basis in the standard closed or
abstract framework. The basis By, = UB,, represents the local knowledge deriving
from the reduction of the extensional space from abstraction A to cc-confluence Fj:

Definition 10 The Local Min—max Basis B, associated with the cc-confluence F4
is defined as:

Br, = {04 — OAl | where c Aclosed ,locally closed ,c # [,exti(c) =
ext? (1),

and for all ¢’ C ¢ we have ext? (/) # extd (c)}

4.3 Interestingness Measures on Local Patterns
and Implications

As in the abstract case, we may measure novelty brought locally [25]. We first
extend the specificity measure to local patterns. If the ratio of a local extension to the
abstract extension is high this means that the corresponding connected component
is the largest part of the abstract subgraph.

Definition 11 Let g be a pattern, F be a cc-confluence and m € F be such that
m C exty(q), the specificity of g near m is defined by

_ lexty(9) |

M i)

We then define the informativity of a local implication by observing that in a
valid local implication the left and right parts have same local extensions, while
their abstract extensions are different. Therefore, as in the abstract knowledge case,
we define the local informativity as the probability, at the abstract level, not to have
the right part when the left one is true:
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Definition 12 The local informativity of valid local implication r : 04 g — O%4qw
is defined by

Jextalgw) |

) = @]

When local informativity is close to 1, it means that the probability to observe w
when we have g at the abstract level is low: to be able to deduce w from g is specific
of the graph region where m lies.

Example 5 We carry on Example 4 displayed in Fig. 8. The local specificity near
678 of pattern bc is Sp(bc,678) = 3 + 3 = 1: it does not appear elsewhere in
the bc abstract subgraph. Informativity of local implication Of,eb — O4,¢bc is
1 — (2 + 6) = 0,5: the abstract support of b is 6, but only three vertices share
the local closed pattern bc. Regarding the local closed pattern ab, it also has local
specificity 1 as ab is only found in the connected component 123, and it leads to a
new local implication 07,6 — [4,;ab whose informativity is 0, 5. What we see
here is that we obtain new knowledge regarding pattern b which depends on the
region of the graph we consider.

Now, when considering the Teenage Friends attributed graph displayed in Fig. 3,
clearly the friendship relations are organized in 3-cliques, therefore any stronger
abstraction will be poorly informative. However, as mentioned in Sect. 1, when
considering the 3-clique abstract graph associated with the empty pattern the unique
connected component could be separated in several (overlapping) communities
(displayed in Fig. 3 in various colors). We discuss and exemplify in the next section
how to apply the local closure strategy to discover such sub-communities in an
attributed graph.

S5 Local Concepts from a Derived Graph

In what follows, we will consider a family 77 C 20 of vertex subsets, and
consider T as the vertex set of a graph Gy = (T, Er) derived from G. The simple
graph confluence F of 27 is then the new extensional space and we will search
for the corresponding local closed patterns. The local extensions are afterwards
transformed into extensions in 2°. Let u : 27 — 29 be such that u(er) = Ureert.
u(er) is called the flattening of er. We consider then the two maps exty and inty
defined as follows:

o exty : L — 27 with extr(q) = {t|t C ext(q)}
* inty : 2T — L with inty(er) = int o u(er)

extr(q) represents the extension of ¢ in T when considering that ¢ occurs in ¢
whenever g occurs in all elements of ¢ (seen as a subset of O). Conversely intr(er)
represents the greatest pattern in L whose extension in 7 includes er, i.e., whose
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extension in O contains, as subsets, the elements of er. Now, consider as T the
family of k-cliques of G and that (#,, ;) € Er whenever #; and #, share k— 1 vertices
in G. A k-community in G [13] is a vertex subset that results from the flattening (in
the sense defined above) of some connected component of Gr. The local closed
patterns w.r.t. F are then most specific patterns occurring in k-communities of
pattern subgraphs of G. This way we obtain local concepts and associated local
implications, whose local extensions are these k-communities. Note that, in the
derived case, the local concepts do not form a pre-confluence: technically we obtain
a pre-confluence of 27, but two different local extensions in 27 may result in the
same flattening, corresponding to one 3-community. As a consequence, the local
concept order is no more a pre-confluence.

5.1 Experiments on a Derived Graph

Coming back to our Teenage Friendship attributed graph, we have applied this
strategy and built the derived graph Gr, where T is the set of 3-cliques of the original
attributed graph. In Figs. 9 and 10 we display the ordered set of 3-communities with
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Fig. 9 The ordered set of size > 4 3-communities of the Teenage Friendship network (part-I). The
3-communities are displayed in red and bold lines from the larger ones on the fop to the smaller
one on the bottom.The abstract subgraphs are displayed in plain lines. On the right at the bottom
we have a 3-community displayed twice as it is built from two different abstract closed patterns
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Fig. 10 The ordered set of size > 4 3-communities of the Teenage Friendship network (part-II)

size at least 4. The minimal 3-communities are the lowest ones on both figures.
Each element of the pre-confluence represents a (3-community, local closed pattern)
pair but may be associated with several non-redundant local implications. This
happens for one 3-community displayed on the right at the bottom of Fig.9 and
associated with two local implications each represented in a square. Each square
displays in red the 3-community, and in red+green+blue the abstract extension of
the abstract closed pattern forming the left part of the implication. In Fig. 10 we have
a unique maximal 3-community on the top, and a hierarchy of sub-communities.
We now investigate interestingness of local patterns and local implications. Note
that the definitions given in Sect. 4.3 have to be adapted since we have to replace
local extensions as defined in Sect.4 by 3-communities, i.e., flattening of local
extensions in the derived graph Gr. Table 4 displays the local closed patterns ranked
according to their specificities. Each local closed pattern is indexed by the first
triangle, in the lexicographic ordering, leading to the corresponding 3-community.
Consider, for instance, the first two local patterns /; = D45-C12-S2 and [, = D45-
C34 which have both specificity 1. This means that the set of pupils triangle having

"Formally, this means that we also apply an abstraction to the derived graph to avoid connected
components corresponding to 3-communities smaller than four members.
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Table 4 Top 15 local closed patterns ranked according to their specificity in the Teenage
Friendship network

N° 0aAl lext? (D] lextA ()] Sr(l,m)

1 00555, 3,D2345-C1-S2-T1 5 5 |
2 004 51 ,C1-S2-T1 6 6 |

3 07, 19,4D23-C1-T1 4 4 |

4 00450 30D123-C12-S2-T1 4 4 |

5 005, 555, D345-C1-T1 4 4 |

6 Oo.11,15D45-C12-S2 4 2 1

7 D96 44.7D45-C34 5 5 |

9 8040 45.46D12-C1-T1 4 6 0.667
10 0,102:C1-T1 11 17 0.647
11 05, 55,3, D2345-C1-T1 6 10 06
12 0% ,,.1,D345-C12 6 10 06
13 0, 15.19D2345-C1-T1 5 10 05
14 6 48.40D12-C1-T1 3 6 035
15 0%, 19,4D123-C1-T1 5 1 0455

D45-C12-S2 (respectively, D45-C34) forms a (unique) 3-community we further
refer to as Community 1 (respectively, Community 2). Communities 1 and 2 have in
common high alcohol consumption behavior (D45), but differ in that the members
of Community 1 do not smoke cannabis (C12) and have a regular sporting activity
(S2), while the members of Community 2 have regular cannabis consumption (C34).

Consider now the implications of the local min—max basis, ranked according to
their informativities, displayed in Table 5. We have here some implications with
high informativity. As an example, the fifth (/5) and ninth (/9) local implications
concern Community 1 while the second (/;) concerns Community 2.

As an illustration we consider Community 1 and its two related local implications
Is and Iy. As associated with the same community their rightmost member is
the same local closed pattern D45-C12-S2. However, as they are extracted from
different abstract subgraphs corresponding, respectively, to abstract closed patterns
S2 and D45, they have different informativities. /5 has informativity 0.75, while Iy
has informativity ~ 0.56. In Fig. 11 we display Community 1 together with the
necessary information to compute the local informativity of Is.

The high informativity value of /s means that what the pupils in this community
have in common, i.e., high alcohol consumption, no cannabis consumption and
regular sporting activity (D45-C12-S2) is unfrequent among pupils in triangles with
regular sporting activity outside of the community.
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Table 5 Top 15 local implications of the min—max basis ranked according to their informativity
int the Teenage Friendship network

N° | Odc— OAI lext* (D] | lext*(c)] | Ir(r)
1 04 59 30C12 — 0%, 54 5,D123-C12-S2-T1 4 27 0.852
2| O340 —> 54,,D45-C34 5 32 0.844
3 45408 = i 45.49D12-C1-T1 6 32 0.813
4 040 45469 = D% 454sD12-C1-T1 6 32 0.813
5 090111552 — Oy ,.15D45-C12-S2 4 16 075
6 0%, 25310345 — 09, 2531 D345-C1-T1 4 15 0.733
7 Dfl‘,n 149 — l:|f1x4|1,14D345‘C12 10 32 0.688
8 05, 31,3252 = 03, 31.32C1-S2-T1 6 16 0.625
9 Ol 1115045 = D?o.u 15D45-C12-82 4 9 0.556
10 | 04, 555, D2345 — 03, 555, D2345-C1-T1 10 21 0.524
11 04, 15 1oD2345 — O, ¢ ,D2345-C1-T1 10 21 0.524
12 010308 = D?1,19.3OS2 16 32 0.5
13 D?7 19049 = D?7 1924C1-T1 17 32 0.469
14| O 130C12 = O, 105,C12-S2 15 27 0.444
15 | 00555,3,D2345-C12-S2 — [0y 5, 3,D2345-C1-S2-T1 |5 9 0.444
)
(<]
[} 1 ()
&-* O . ®
[¢] .
‘\.\ @ o )
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Fig. 11 Community 1 (represented as bold dots joined by bold lines) composed of five pupils with
high alcohol consumption, no cannabis consumption C12 and regular sporting activity (D45-C12-
S2). The community has size 4 and is one of the communities of the S2 abstract subgraph which
is represented with gray plain lines joining 16 vertices. The Informativity of the local implication
I5 associated with community 1, which has S2 as its leftmost member and D45-C12-S2 as its
rightmost member, is therefore 1 — 4/16 = 0.75. Note also the three black dots representing
vertices which have the S2 pattern but do not belong to its abstract subgraph
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6 Implementation

In our experiments we first used the CORON software [28] to compute frequent
closed patterns, according to some frequency threshold, then apply a set of
PYTHON functions as a post-processing® to compute abstract and local patterns
and implications. More recently we have implemented an efficient algorithm using
a divide and conquer strategy similar to that proposed in [S] and implemented
in [12]. This allows in particular to directly apply the frequency constraints at
the abstract and local levels. A first version, named ParaminerLLC, is experimented
in [26] and was designed to handle the 3-communities local knowledge extraction
problem. The selection of the implications belonging to the local min—-max local
basis is performed as a post-processing. Our current implementation in progress is a
versatile program enumerating abstract and local frequent closed patterns and local
implications with various definition of abstraction and locality.

7 Conclusion

In this article we have addressed problems in which the extensional space, made of
the vertex subsets of an attributed network, is constrained according to connectivity
properties. We have first considered abstract vertex subsets in which a constraint
has to be satisfied by each vertex in the subgraph they induce, as, for instance,
a minimum degree constraint. The extensional space is in this case a particular
lattice called an abstraction. We have then shown, benefiting from previous work
in FCA, how abstract support closed patterns, i.e., maximal patterns among those
sharing the same abstract extension, could be obtained using a closure operator.
This has resulted in defining a wide class of abstract concept lattices, whose
elements are (abstract extension, abstract closed pattern) pairs, each corresponding
to a particular abstraction. This way we obtain a global information on how the
graph topology is related to the pattern extensions. We have then considered a way
to extract local knowledge from an attributed network. For that purpose, using
a recent extension of FCA to local extensional spaces, called confluences, we
have related each pattern to various local extensions, corresponding to connected
components in subgraphs induced by abstract vertex subsets. We obtain this way a
set of local concepts, organized in a generalization of the lattice structure called a
pre-confluence. Furthermore we have defined both abstract implications and local
implications representing knowledge which is valid at the abstract and local levels,
i.e., regarding the latter, in the vicinity of particular vertices. For both abstract and
local patterns and implications we have proposed proper interestingness measures,
namely specificity which measures to what extent the original extensions of patterns

8The corresponding software is to be found in https://lipn.univ-paris13.fr/~santini/data/ProjClos.
tgz.


https://lipn.univ-paris13.fr/~santini/data/ProjClos.tgz
https://lipn.univ-paris13.fr/~santini/data/ProjClos.tgz

168 H. Soldano et al.

are preserved in abstract and local concepts, and informativity, which measures
novelty brought by abstract and local implications. Finally we have applied these
ideas to enumerate 3-communities in a network. These 3-communities are in fact
sub-communities as each is a 3-community in some subnetwork induced by an
attribute pattern.

Overall, what we propose here is a new way, brought by recent developments
in Formal Concept Analysis, to explore social and complex networks as attributed
graphs. As an application, we are currently involved in the ADALAB project
which aims at helping the robot scientist EVE [30] to design experiments.” In this
context, we use our methodology to explore a co-regulation network labeled with
information regarding gene expression. Future works concerns, on the extensional
side, applying these ideas to attributed directed graphs or multiplex networks. We
also consider to use abstract and local extensional constraints while extending
the pattern language to a wider class of pattern languages. First, as in [7, 9, 15]
by building a meet-semilattice adapted to the mining problem and using interior
operators to reduce it to a tractable language. This has been in particular successfully
applied to graph mining [10]. Then, as in [5, 20] by considering confluent languages
allowing to treat connectivity within the pattern language.

Acknowledgements This work was partially supported by CHIST-ERA grant (AdaLab, ANR 14-
CHR2-0001-01).
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A Formal Concept Analysis Look at the Analysis
of Affiliation Networks

Francisco J. Valverde-Albacete and Carmen Pelaez-Moreno

1 Motivation and Introduction

Consider a weighted bipartite graph,' or bipartite network or two-mode network,
(GUM,R), where R € K@M is a relation with values in an algebra K . This is a
pervasive abstraction in Graph Theory [1] and Social Network Analysis (SNA) [2]
where they are also known as affiliation or membership networks.

The direct or dual-projection approach is one of two competing methodologies
for the analysis of two-mode networks, the other being the conversion approach [2].
In the latter, the data are first projected into a one-mode network and analysed with
the tools of (weighted) graph analysis, that is (standard) network analysis. This
raises evident and justified concerns of information loss [3].

In the dual-conversion approach, however, the analysis problem is transformed
into two one-mode projection networks and analysed separately, with the projections
on the rows Pg and the columns Py, being the matrices:

Pc=R®R" Py=R"®R. (1)

The dual-projection approach postulates that we can provide measures of
centrality, core vs. periphery and structural equivalence for each of the projection
networks with limited loss of global information, in terms of the Singular Value
Decomposition (SVD) [4]. This is a set of results about the decomposition of real- or

'We will consider all graphs in this paper as directed graphs unless otherwise stated.
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complex-valued rectangular matrices [5, 6] with applications in data processing,
signal theory, machine learning and computer science at large [7], the most
important of which is the following:

Theorem 1 (The Singular Value Decomposition Theorem) Given a matrix M €
Myxn(H) where K is a field, there is a factorization M = UXV*—where -*
stands for conjugation—given in terms of three matrices

* U € Myxm(J) is a unitary matrix of left singular vectors.

o X € Muyxn(K) is a diagonal matrix of non-negative real values called the
singular values.

oV € Myxn(K) is a unitary matrix of right singular vectors.

Often the singular values of a matrix are listed in descending order—and the left and
right singular vectors are re-ordered accordingly—as a prelude to any of a number of
reconstruction theorems aimed at re-building the original matrix M from the triples
of singular value, left and right vectors (o}, u;, v;) [see 5, 6, for details]. This is
particularly interesting for model building.

1.1 The Analysis of Bipartite Networks with Formal Concept
Analysis

Formal Concept Analysis (FCA) can be conceived as a data-driven unsupervised
learning technique for Boolean data. Its main results can be summarized as
follows [8].

Theorem 2 (Basic Theorem of FCA, Extended’) Let G be a set of objetcs, M
a set of attributes and (G, M, 1) be a formal context with I € G x M and polar
operators -1 : 26 — 2M gnd doM 5 96,

Al ={meM|VgeA, gim} BY ={geG|VmeB, glm}
and call formal concepts the pairs with AY =B & A = BY ordered as
(A1,B1) < (A2,B)) & A1 CAy & B 2B

Then:

1. The set of formal concepts B(G, M, I) with the hierarchical order is a complete
lattice called the concept lattice of (G, M, ) in which infima and suprema are
given by:

2In [9] this is called “a fundamental pattern for the occurrence of lattices in general”; in [8] it is
the “Basic Theorem of Concept Lattices”, and in Chap. 3 of [10] it is “the fundamental theorem of
concept lattices”.
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teT teT teT teT teT teT

N@A.B) = ﬁA,,(UB,)T \/4.B) = (UA;){HB,
(@)

2. Conversely, a complete lattice V' = (V, <) is isomorphic to B(G,M, 1) if and
only if there are mappings y : G — V and &t : M — V such that y(G) is
supremum-dense in V', (M) is infimum-dense in ¥ and glm is equivalent to
v(g) < w(m) forall g € G and all m € M. In particular, ¥V = B(V,V, <).

The ability to analyse bipartite digraphs (that is Boolean bipartite networks)
comes from the existence of a “cryptomorphism” [11, pp. 155-156]—which we
take to mean “unexpected isomorphisms”*—with formal contexts, possibly first
identified in [13]. We adhere here to the advantages of using cryptomorphisms for
the description of apparently different objects laid out in [14], namely reaching a
better understanding of the tools being analysed.

The Cryptomorphism of Bipartite Digraphs and Formal Contexts When X is
the Boolean set, consider the two following definitions:

¢ In Graph Theory, let G and M be two disjoint sets and consider the graph (V, E)
with V.= GUM and E € 2"*V such that for every ordered pair e = (g.,m,) € E
its endpoints belong to different subsets of V, g, € G and m, € M. Then (V,E)
is a bipartite graph.

» InFCA, let G be a set of objects and M be a set of attributes, and I € 2°%¥ be an
incidence relation between them. Then (G, M, I) is a formal context.

Clearly, they define cryptomorphic entities whereby [ is the restriction of E to G x
M [15, Sect. 3.1].

Hence the capabilities of FCA for representing bipartite digraphs follow from
the universal representation capabilities of concept lattices expressed in the Basic
Theorem. This promises that many fundamental abstractions in each domain will
have an important role in the other. Crucially, formal concepts are cryptomorphic to
bicliques maximal with respect to inclusion [15, Proposition 1]. This was probably
first suggested in [16], clearly stated in [13], an later taken up by a number of
researchers [17, 18]. Note that these techniques and concerns pre-date the apparition
of multi-valued extensions to FCA and therefore concentrate in Boolean data.

Some of the advantages of using FCA for modelling bipartite networks stem
from the hierarchical, non-partitional (overlapping) clustering of both domains G
and M [19]. This approach is contextualized and summarized in the wider context

3Birkhoff actually coined “crypto-isomorphism”, but the term seems to have been forced to
evolve [12]. We point out that the “surprise” must come from finding concepts of different subfields
to be the same. Of course cryptomorphisms boil down to plain isomorphisms as soon as the surprise
fades away, so it is a mathematical concept more of an educational or sociological than a formal
nature.
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of Social Network Visualization in [20], whose most harrying problem is the
visual clutter. For concept lattices this is mostly addressed by means of algebraic
information reduction techniques [21] or heuristic pruning [19].

For our present purposes [22] has already noted that formal concepts define
optimal factors for the reconstruction of Boolean matrices—whether incidences or
adjacencies—and this is a result that strongly hints that FCA is related to the SVD.

SVD Leads to Non-Boolean Contexts The previous argumentation would seem
to imply that the SVD, as a technique to analyse weighted bipartite digraphs, is also
important for the analysis of formal contexts and concept lattices. Alas, although
the SVD is cursorily applied to bipartite digraphs whose entries belong to {0, 1},
it is actually a procedure developed for matrices with entries in the complex field
C. To draw a parallel with the nice situation in the previous section would call
for the consideration of an isomorphism between bipartite digraphs whose edge
weights belong to an algebra and multi-valued formal contexts with incidences in
said algebra.

Unfortunately, the theory of concept lattices issuing from such multi-valued
contexts is not as complete as (standard) FCA: for instance, when the context
takes values in a fuzzy-semiring the universal representation capabilities in the
Main Theorem [23, Theorem 5.3] have not been cast in terms of (fuzzy) bipartite
networks, to the best of our knowledge, and the Main Theorem of . -FCA [24,
Theorem 2.14], where %" is a complete idempotent semifield (see below) has as
yet unexplored representation capabilities. We note that, despite these limitations,
a number of results on the reconstruction of matrices specifically based on fuzzy-
formal concepts are available [25].

1.2 The Study of Networks Using HITS and the SVD

In this chapter we are interested in laying out the relationship between Formal
Concept Analysis [8] and the dual-projection approach to the analysis of bipartite
networks. At the beginning of this section we have argued that the SVD must figure
prominently in this picture, so we will detour slightly to show yet one more instance
of the pervasiveness of it in the analysis of networks: its relation to one of the first
well-known approaches to link analysis on the Web, the HITS algorithm.

The Hubs and Authorities algorithm or Hyperlink-Induced Topic Search
(HITS) [26, 27] was designed to solve the problem of ranking the nodes of
a dynamic, directed 1-mode network of nodes obtained from a query against
a search engine. It postulates the existence of two qualities in nodes: their
authoritativeness—their quality of being authorities with respect to a pervasive
topic in the nodes—and their hubness—their quality of being good pointers to
authorities. These are now cursorily available in software for analysing network
data, e.g. [28].
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Consider a network, that is, a weighted directed graph, N = (V, E, w) where
V = {vi}i_, isaset of nodes E C V x Vis a set of edges, and w : E — [0,1] a
weight function on the edges w(v;, vj) > 0, (v;, v;) € E and w(v;, v;) = 0 otherwise.
It can alternatively be defined by an adjacency matrix Ty with [0, 1]-weights for
its edges, (Ty); = w(v;, v;) . The notation tries to suggest that Ty is a stochastic
transition matrix rather than a generic adjacency.*

HITS is solved in terms of the left and right eigenvectors of this matrix Ty, where
the vertices and edges of the digraph model the nodes and links in any (social)
network. HITS finds an authority score a(v;) and a hub score i(v;) for each node
aggregated as vectors, based on the following iterative procedure:

o Start with initial vector estimates 2<% and ¢<*>

» Upgrade the scores with’:

of the hub and authority scores.

h < Ta a<~T"h 3)
so that in general, for k > 1:

h<k> — (TTT)kh<O> a<k> — (TTT)ka<O>
h<k> — (TTT)k—lTa<O> Cl<k> — (TTT)k—lTTh<O> (4)

+ Since matrix T is non-negative, in general the sequences {4#<*>}; and {a<*>};
would diverge, so the next step is to prove that the limits:

<k> a<k>

lim =K~ lim =a~* 5)
k—>o0 ¢ koo dk

exist, in which case they are eigenvectors of their respective matrices for
seemingly arbitrary ¢ and d,

(TTT)h<*> — ch<*> (TTT)a<*> — da<*> . (6)

* As long as the initial estimates do not inhabit the null space of these matrices—
making them orthogonal to A<*> and a<*>, respectively—the iterative process
will end up finding the principal eigenvectors. The proof of this fact entails that
the initial estimates /<> and a<°> should be non-negative.

It is easy to prove the following:

Lemma 1 HITS is a specialized version of the SVD.

“This procedure will be extended in Sect. 2.3.
3To lessen the visual clutter, we drop the graph index from the matrix.



176 EJ. Valverde-Albacete and C. Peldez-Moreno

Proof Since we want to emphasize the mutual dependence of hubness and authori-
tativeness scores, so after [29] we write (3) in matrix form

h | T ® h
a T - a
where we have substituted zero matrices for dots, as customary.
The arrows are used to suggest that we are interested in the fixpoint of the

iterative update of this matrix equation. But we know that a fixpoint of it is the
analytical solution of the following eigenproblem in the variable z = [x"y"]",

A®z=z®o©[}j1®r}=B}®a )
T" - y

for eigenvalue o = 1.

To see that the solutions to this problem are of the form w = [h"a"]" that is, pairs
of hub and authority vectors, we expand the system (7) into two equations—called
by Lanczos the “shifted eigenvalue problem” [29]—

TRa=hQ®o T"®h=a®o0 €3]

Equation (8) is the proof that HITS is actually trying to solve the singular value-

singular vector problem [5, 29], where h has the role of a left singular vector, a that

of a right singular vector, and o = 1 is the singular value. O
Note that:

* Under the conditions laid out in the original HITS setting, the singular value is
not important.

* The projectors appear in the solution of (7) by pre-multiplying both sides of the
equation with A and then we would obtain decoupled solutions that can be re-
coupled with (8).

A2®z=z®02®[T.TTTT'T]@)[;C]:B}@oz )

In light of this, we can see how HITS, which in principle is available for 1-mode
networks, that is, it is a conversion approach procedure is actually using a direct or
dual-projection approach in considering both vector spaces associated with T.

In light of this, we can see how HITS is actually using a direct or dual-projection
approach—in considering both vector spaces associated with T—in spite of being
actually available for 1-mode networks, that is, being a conversion approach.
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1.3 The Problem and Reading Guide

In this paper we develop a similar tool as the SVD for bipartite networks with
non-Boolean edge weights, but we develop it as if it were an instance of the better
understood, HITS problem.

1. First, as suggested by the form of (4), we consider two sets G and M, because
we want to study the quality of being a hub and being an authority separately.
This implies passing from directed bipartite graphs to networks, also known as
weighted (directed) bipartite graphs.

2. Second, the matrix algorithm HITS requires a “positive” algebra with addition,
multiplication and scalar division—in the case of the original HITS, this
semifield is R, the positive reals. Hence we consider edge weights R € K& in
anaturally ordered semiring with division or positive semifield ¢ (cfr. Sect.2.1).
Then % -formal contexts, denoted as (G, M, R), are a natural encoding for this
type of weighted bipartite digraphs.

Note that the original HITS setting can be recovered by using V := G = M and
T := R and working in the semifield of positive reals Rg‘ with R;; = 1if (v;,v)) € E
and R; = 0 otherwise. Similarly, the original dual-projection approach deals only
with the case where R is actually binary but is considered to be embedded in the
complex numbers.

To develop our program we first introduce in Sect.2.1 some definitions and
notation about semirings in general, and about positive semifields in particular. In
Sect. 2.2 we introduce the eigenproblem over dioids as a step to solving the singular
value problem in dioids, and in Sects.2.3 and 2.4 a very general technique to do
so. Section 3 presents the weight of our results, including a short Example and a
Discussion. We finish with a Summary and Conclusions.

2 Theory and Methods

2.1 Semiring and Semimodules over Semirings

A semiring is an algebra . = (S, @, ®, €, e) whose additive structure, (S, @, €),is a
commutative monoid and whose multiplicative structure, (S\{€}, ®, ¢), is a monoid
with multiplication distributing over addition from right and left and an additive
neutral element absorbing for ®, i.e. Va € S, € ® a = €. A semiring is:

* Commutative, if its multiplication is commutative.

e Zerosumfree, if it does not have non-null additive factors of zero,a & b = € =
a=candb =¢€¢,Va,beS.

e Entire,ifa®@b=¢ =>a=corb=¢,Va,bes.

e Idempotent, if its addition is.
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* A selective semiring, if the arguments attaining the value of the additive operation
can be identified.

* Radicable, if the equation a’ = ¢ can be solved for a.

e Complete, [30] if for every (possibly infinite) family of elements {a;};c; C S we
can define an element ) _,, a; € S such that

1.ifI =@, then) ,,,a; =€ ,

2.ifI={1...n},then ) ,;a;=a1 ®...Da, ,

3.ifbeS, thenb® (Y a) =Y b®a;iand (Y, a) b =Y, ;ai Qb
and

4. if {Ij}jes is a partition of 7, then } _,c,a; = ) ., (Zie[,- a,-) .

Entire zerosumfree semirings are called sometimes information algebras and have
abundant applications [31]. Their importance stems from the fact that they model
positive quantities.

Crucially, every commutative semiring accepts a canonical preorder, as a < b if
and only if there exists ¢ € S with a @ ¢ = b which is compatible with addition. A
dioid is a commutative semiring where this relation is actually an order. Dioids are
zerosumfree. A dioid that is also entire—that is, when a ® b = € then either a = ¢
or b = € or both—is a positive dioid.

If I is countable in the definitions above, then . is countably complete and
already zerosumfree [32, Proposition 22.28]. The importance for us is that in
complete semirings, the existence of the transitive closures is guaranteed (see
Sect. 2.3). Commutative complete dioids are already complete residuated lattices.

A semiring whose commutative multiplicative structure is a group will be called
a semiﬁeld.(’ Semifields are all entire, and we will use .7 to refer to them. Therefore
semifield which is also a dioid is both entire and naturally ordered. These are
sometimes called positive semifields, examples of which are the positive rationals,
the positive reals or the max-plus and min-plus semifields. Semifields are all
incomplete except for the Booleans, but they can be completed as % [24], and
we will not differentiate between complete or completed structures.

A semimodule (over a semiring) is an analogue of a vector space over a
field. Semimodules inherit from their defining semirings the qualities of being
zerosumfree, complete or having a natural order. In fact, semimodules over complete
commutative dioids are also complete lattices. Rectangular matrices over a semiring
form a semimodule .#,,x,(.¥), and in particular, row- and column-spaces . '*" and
™1 The set of square matrices .#,(.7) is also a semiring (but non-commutative
unless n = 1).

This term is not standard: for instance, [33] prefer to use “semiring with a multiplicative group
structure”, but we prefer semifield to shorten out statements.
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2.2 The Eigenvalue Problem over Dioids

Given (6), understanding the HITS iteration is easier once understood the eigenvalue
problem in a semiring. So let .#,(.”) be the semiring of square matrices over
a semiring . with the usual operations. Given A € .#,(.) the right (left)
eigenproblem is the task of finding the right eigenvectors v € S$™' and right
eigenvalues p € S (respectively, left eigenvectors u € S"" and left eigenvalues
A € §) satisfying:

URA=AQu AQu=vQ®p (10)

The left and right eigenspaces and spectra are the sets of these solutions:

AA) = (A €S| U(A) # L")} P(A) = {p € S| V,(A) # ("}

UA) =ueS™ " uA=10u} 7,A)={vesS*|ARv=v®p}

7= |J m® 7)) = | %@ (11)
AEA(A) pEP(A)

Since A(A) = P(A™) and % (A) = 73 (AT), from now on we will omit references to
left eigenvalues, eigenvectors and spectra, unless we want to emphasize differences.
In order to solve (7) in dioids we have to use the following theorem [33, 34]:

Theorem 3 (Gondran and Minoux [34, Theorem 1]) Let A € /™", IfA* exists,
the following two conditions are equivalent:

1. AT ® u = A* @ uforsomeie€{l...n}, and u € S.
2. A_'}' ® w (and A% ® ) is an eigenvector of A for e , Aj.“ ® 1€ Y. (A) .

where we define the transitive closure AT = Y ;2| A and the transitive reflexive
closure A* =Y 72 A of A (also called Kleene’s plus and star operators).

In [35-37] Gondran and Minoux’ theorem was made more specific in two
directions: on the one hand, by focusing on particular types of completed idempotent
semirings—semirings with a natural order where infinite additions of elements exist,
so transitive closures are guaranteed to exist and sets of generators can be found for
the eigenspaces—and, on the other hand, by considering more easily visualizable
subsemimodules than the whole eigenspace—a better choice for exploratory data
analysis.

2.3 Graphs, Matrices and Closures over Dioids

From Theorem 3 it is clear that we need efficient methods to obtain the closures in
order to solve the eigenvalue-eigenvector problem—and hence HITS and SVD—
in the general setting of semirings. For this purpose, it is interesting to extend
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the cryptomorphism between weighted graphs and square matrices of Sect. 1.2
explicitly:

¢ For a matrix A € .#,(%”), the network or weighted digraph induced by A, Ny =
(Va, Ea, wa), consists of a set of vertices Vy4, a set of arcs , Ey = {(i,)) | Aj #
€sy, and a weight wy : Vy x V4 — S, (i,)) = wa(i,)) = ay.

» For a weighted directed graph, N = (V,E,w) where V = {v;}/_, is a set of
nodes E C V x Vis aset of edges, and w : E — S a weight function on the edges
w(v;, vj) > 0, (vi, v5) € E and w(v;, v;) = 0 otherwise, the matrix Ay € .#,(%)
is defined as (Ay); = w(v;, v)).

This allows us intuitively to apply all notions from networks to matrices and vice
versa, like the underlying graph G4 = (Va, E4) disregarding the weights, the set of
paths I1 :’ (i,j) between nodes i and j or the set of cycles C;f. The following account
is a summary of results in this respect, and we refer the reader to [35, 36] for proofs.

Lemma 2 Let A € .#,(S) be a square matrix over a commutative semiring .. A*
exists if and only if AT exists and then:

AT=AQA*=A"®A A*=1@AT

But since in incomplete semirings the existence of the closures is not warranted, our
natural environment should be that of complete semirings.
On the other hands, in dioids the following lemma holds:

Lemma 3 Let A € #,(S) be a square matrix over a dioid .. For partition n =
o U B call PER (A) = Ag,AL,Aag D Apg. Then

Ao Aup\ _ (A, © AL AwPER (A)*Ap AL, A% AusPER (A)"
Ay Agp PER (A)*Ag, A%, PER (A)"

Proof Adapted from [38, Lemma 4.101] O
Notice that closures and simultaneous row and column permutations commute:

Lemmad Let A,B € #,() and let P be a permutation such that B = PTAP.
Then BT = PTAYP and B* = PTA*P.

A square matrix is irreducible if it cannot be simultaneously permuted into a
triangular upper (or lower) form. Otherwise we say it is reducible. Irreducibility
expresses itself as a graph property on the induced digraph D, of Sect. 1.2.

Lemma 5 IfA € .#,(S) is irreducible, then:

* The induced digraph D4 has a single strongly connected component.
* All nodes in its induced digraph D, are connected by cycles.
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The irreducible case is used as a basic case in the recursive building of the closure
of any possible matrix next. In it, the condensation digraph is built using the classes
of the reachability relation in D, as the vertices (the strongly connected components
of D,) and their connections as edges:

Lemma 6 (Recursive Upper Frobenius Normal Form, UFNF) Let A € .#,(S)
be a matrix over a semiring and Gy its condensation digraph. Then,

1. (UFNF3) If A has zero lines it can be transformed by a simultaneous row and
column permutation of V4 into the following form:

é"“ . . .
: éootoz Aaﬁ Agw
App Ao

SEvw

PIQAQP; = (12)

where either Ayg or Ay, or both are non-zero, and either Ay, or Ag, or both
are non-zero. Furthermore, P is obtained concatenating permutations for the
indices of simultaneously zero columns and rows V,, the indices of zero columns
but non-zero rows V,, the indices of zero rows but non-zero columns V,, and the
rest Vg as P3 = P(V,)P(V,)P(Vg)P(V,,).

2. (UFNF,) If A has no zero lines it can be transformed by a simultaneous row and
column permutation P, = P(A}) ... P(Ay) into block diagonal UFNF:

A - oL
Ay -
Py®A®Py=| . | (13)
. Ag
where {Ak}kK:1 . K > 1 are the matrices of connected components of Gy.

3. (UFNF,) If A is reducible with no zero lines and a single connected component
it can be simultaneously row- and column-permuted by P to

A A oo+ A
) © Ay - Asg
- Arg

where A,, are the matrices associated with each of its R strongly connected
components (sorted in a topological ordering), and Py = P(A1y) ... P(Agr).

Note that irreducible blocks are the base case of UFNF;, so we sometimes refer to
irreducible matrices as being in UFNF,.

Note that as a result of this Section, we know how to calculate algorithmically
the transitive closure for any type of matrix A in any complete semiring.
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2.4 Eigenvalues and Eigenvectors of Matrices
over Complete Dioids

By the reasoning in previous sections and the cryptomorphism above, eigenvectors
of the projection matrices in the dual-projection approach are vectors describing
some qualities of the nodes in the weighted bipartite graph, e.g. authoritativeness or
hubness in HITS. This is the reason why we need to characterize such vectors better.

2.4.1 Orthogonality of Eigenvectors

In spectral decomposition, orthogonality of the eigenvectors plays an important role.
In zerosumfree semimodules orthogonality cannot be as prevalent as in standard
vector spaces. To see this, first call the support of a vector, the set of indices of
non-null coordinates supp(v) = {i € n1|v; # €}, and consider a simple lemma:

Lemma 7 In semimodules over entire, zerosumfree semirings, only vectors with
empty intersection of supports are orthogonal.

Proof Suppose v_Lu, then Z?:l v; ® u; = €. If any v; = € or u; = € then their
product is null, so we need only consider a non-empty supp(v) N supp(u) . In this
case, VT @ u = Ziesupp(v)ﬂsupp(u) v; ® u;. But if . is zerosumfree, for the sum to be
null every factor has to be null. And for a factor to be null, since .¥ is entire, either
v; is null, or u; is null, and then i would not belong to the common support. O

2.4.2 The Null Eigenspaces

If any, the eigenvectors of the null eigenvalue are interesting in that they define the
null eigenspace. Also, the particular eigenvalue L can only appear in UFNF;. The
following proposition describes the null eigenvalue and eigenspace:

Proposition 1 Let .7 be a semiring and A € #,(.%). Then:

1. If the i-th column is zero then the characteristic vector e; is a fundamental
eigenvector of € for A and € € P*(A).

2. Non-collinear eigenvectors of € are orthogonal, so the order of multiplicity of

L € PX(A) is the number of empty columns of A.

If . is entire, then G, has no cycles if and only if P'(A) = {e}.

4. If % is entire and zerosumfree, the null eigenspace if generated by the funda-
mental eigenvectors of € for A, Yc(A) = (FEV (€) A).

w

Proof See [35, 3.6 and 3.7]. Claim 2 is a consequence of claim 1 and Lemma 7. O
Note that these are important in as much as they generate L coordinates in the
eigenvectors, that is, in the hubs and authorities vectors.
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2.4.3 Eigenvalues and Eigenvectors of Matrices over Positive Semifields

When . has more structure we can improve on the results in the previous section.
The first proposition advises us to concentrate on the irreducible blocks:

Proposition 2 [f 27 is a positive semifield, A € #,( %) is irreducible, and v €
V,(A) then p > € and Vi € n,v; > €.
Proof See [33, Lemma 4.1.2]. O

Note that these results apply to R(J{ , but not to R4 «, the reals, or to C4 x, the
complex numbers, since the latter are not dioids.

For a finite p € K in a semifield, let (’;\7’)+ = (p~! ®A)+ be the normalized
transitive closure of A. The lemma below allows us to change the focus from the
transitive closures to the circuit structure of G4 and vice versa.

Lemma 8 If ¥ is a semifield and A € M,(X), then if (0~' ® A)* exists and

if either Y e, w(c) ® (e H) @e = Y cec, w(©) ® (p~1)!) where C; denotes

the set of circuits in CX containing node v;, or (p~! (X)A)if = (p! (X)A):r then

(P '® A),t is an eigenvector of A for eigenvalue p .

Proof See [33, Chapter 6, Corollary 2.4]. O
When ¢ is a radicable semifield, the mean of cycle c is g (c) = "Yw(c), If

the semifield is (additively) idempotent the aggregate cycle mean of A is ug(A) =

S{uglc) | ¢ € Cj}. If the semiring is idempotent and selective, the nodes in
the circuits that attain this mean are called the critical nodes of A, V§ = {i € c |

He(c) = ne(A)}. Then the critical nodes are Vi = {i € V4 | (XJF): =e}.
We define the set of (right) fundamental eigenvectors of A for p as those indexed
by the critical nodes.

FEV(4) = {A)] i€ Vi ={A)] | ) =e}.

The basic building block is the spectrum of irreducible matrices:

The(ﬁm 4 ((Right) Spectral Theory for Irreducible Matrices [35]) Let A €
My(K) be an irreducible matrix over a complete commutative selective radicable
semifield. Then:

1. The right spectrum of the matrix includes the whole semiring but the zero:
P(A) = 7 \ {1}

2. The right proper spectrum only comprises the aggregate cycle mean:
PiA) = {1e(A)}

3. If an eigenvalue is improper p € P(A) \ PY(A), then its eigenspace (and
eigenlattice) is reduced to the two vectors:
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Vp(A) = {L", T"} = Z,(A)

4. The eigenspace for a finite proper eigenvalue p = ug(A) < T is generated from
its fundamental eigenvectors over the whole semifield, while the eigenlattice is
generated by the semifield ¢ = ({L,e, T}, D, ®, L,e, T).

7,(A) = (FEV(A))5 D Z,(A) = (FEV(A) e

Note how this theorem introduces the notion of eigenlattices to finitely represent
an eigenspace over an idempotent semifield. Refer to [35] for further details.

We will see in our results that the only other UFNF type we need be concerned
about is UFNF,: Let the partition of V4 generating the permutation that renders
A in UFNF,, block diagonal form, be V4 = {V;}&_ , and write A = W, AL,
A = A(Vi, Vp).

Lemma9 Let A = L-Iij=1Ak € My(Y) be a matrix in UFNF,, over a semiring,
and YV, (Ar) (%.(Ar)) a right (left) eigenspace of Ay for p (A). Then,

K K
U (A) = k>_<1 U (Ar) Vp(A) = k>_<1 Vp(Ap). (15)
Proof See [36] Lemma 3.12. a

Note that this procedure is constructive and how the combinatorial nature of the
proof in [36] makes the claim hold in any semiring. Clearly, if p € P*(Ay) for any &,
then p € P(A). Since P*(A;) = A"(A;) for matrices admitting an UFNF,, PY(4;) =
ATAY = Uiz PTAD).

Corollary 1 Let A € #,() be a matrix in UFNF, over a semiring. Then the
(left) right eigenspace of A for p € P(A) is the product of the (left) right eigenspaces
for the blocks, %,(A) = X _, %.(Ac) and ¥,(A) = X;_, 75(Ar).

In complete semirings, looking for generators for the eigenspaces with &; (k) = e
and &, (i) = L for k # i, we define the right fundamental eigenvectors as

K

FEVZ(A4) = | J [‘Kl 8 (i) @FEV:)(A,-)} . (16)
k=157

Lemma 9 proves that FEVf) (A) C 7,(A), but we also have the following:

Lemma 10 Let A € #,(2) be a matrix in UFNF, over a complete idempotent
semiring with p € P(A). Then,

1. If p € PXA), then FEVX"(A) = Upppepins) [Xf‘zl 5:(i) ® FEV};F(A,-)].

2. If p € P(A) \ P(A) then FEV(A) = FEV>T(A).

3. If p € PYA) then FEV (A) = FEV>"(A) UFEV>T(A) \ T @ FEV>"(A).
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2,T, _ 2
4. FEV*T(A) = T @ FEV2(A).

So call FEV>T(A) the saturated fundamental eigenvectors of A, and define the
(right) saturated eigenspace as ¥ 1(A) = (FEVZ'T(A))@

Corollary 2 Let A € #,() be a matrix in UFNF, over a complete selective
radicable idempotent semifield. Then

1. For p € PY(A), 7,(A) 2 ¥ (A).
2. For p € P(A) \ P(A), 7,(A) = ¥ (A).

Notice that the very general proposition below is for all complete dioids.

Proposition 3 Let A € .#,(2) be a matrix in UFNF, over a complete dioid.
Then,

1. For p € P(A) \ P(4),
% T(A) = (FEVZT(A")), 7 T(A) = (FEV>T(A)) .
2. Forp e P’A), p< T,
%.(A) = (FEV,(A"))5 ¥,(A) = (FEV,(A))7.
To better represent eigenspaces, we define the spectral lattices of A,

Zi(A4) = (FEV, (A7) ) Zp(A) = (FEV;(A)):e.

involving the product of the component lattices, .Z,(4) = XkK=1 Z,(Ap).

3 Results

3.1 HITS over Idempotent Semifields: iHITS

Let # = (K, ®, ®, L) be a complete dioid, in general, and let (G, M, R) be a ¢ -
formal context. Then the space of hub scores is 2~ = K¢ and that of authorities is
% = KM and they get mutually transformed by the actions of two linear functions:

RR® :K°%— KM R® : K" — K¢
x> R ®x y—R®y (17)

To relate this problem back to the original one, we rewrite (7) in the new spaces,
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A®z=z®o©['TR]®[x}=[x}®o (18)
R - y y

we premultiply (18) by the new symmetric A to obtain
RORH®h=hQo®? R"®R)®a=a®c®? (19)

expressing the solution in terms of the projectors on both modes of (1). This
proves that in order to solve the HITS problem in a dioid we have to solve the
Singular Value Problem (18) which amounts to solving both decoupled Eigenvalue
Problems (19).

However, these manipulations have overlooked the fact that to obtain the
original HITS an idempotent semifield—not a dioid—was needed. In the interest
of generality, we will develop the calculations below in terms of dioids, but the
reader is warned that after a certain point we must suppose that . is a semifield
to reach a solution, and in particular an idempotent semifield. In this way we obtain
the analog of HITS over idempotent semifields which we call iHITS.

3.2 The Eigenproblem in Symmetric Matrices

Since A is symmetric, we no longer have to worry about the distinction between the
left and right eigenproblem:

Lemma 11 If A is symmetric then AY(A;) = PY(Ay) and (%p(A))T = 7,(A).
We can also refine the results in Proposition 1:

Proposition 4 Let . be a semiring and a symmetric A € #,(.7). Then:

1. The multiplicity of L € PY(A) is the number of empty rows/columns of A.
2. If . is entire, PX(A) = {€} ifand only if A = &),.

Proof First, if A = AT, then the number of empty rows and empty columns is the
same, and Proposition 1.2 provides the result. Second, after Proposition 1.3 P(A) =
{€} means G4 has no cycles. But if A;; # € then ¢ = i — j — i1is a cycle with
non-null weight w(c) = A;; ® A;; # €, which is a contradiction. |
Note that empty rows of R generate left eigenvalues while empty columns generate
right eigenvalues, so the multiplicity of the null singular value may change from left
to right.
To use Lemma 8 and Theorem 4, we need the maximum cycle mean:

Proposition 5 Let Z be a complete idempotent semifield and let A € .#,(K) be
symmetric. Then jg(c) = sup;; A;;, where the sup, taken in the natural order of the
semifield is attained.

Proof Since A is symmetric, ¢ = i — j — iis a cycle whenever A; = A; # L.
Then pg(c) = Aj;. Consider one ¢’ such that g(c’) = sup;;A; = max;;A;;
in the order of the semiring. This must exist since i, are finite. If we can extend
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any of these critical cycles with another node k such that ¢ = i — j — k —

i then w(c”) = A;j ® Ay ® Ay < A?j = ug(c)“), so in the aggregate mean

He () ® ug(c”) = ue(c). So we induce on the length of any cycle that is an

extension of ¢’ that Zcecj = pe(c’) = sup;;A;;. |
To find the cycle means easily, we use the UFNF form.

3.3 UFNF Forms of Symmetric Matrices and Their Closures

For symmetric reducible matrices, the feasible UFNF types are simplified:
Proposition 6 Let . be a dioid, and a symmetric A € #,, (). Then:

* (UFNF3) A admits a proper symmetric UFNF5 form if it has zero lines, and, in
that case, the set of zero lines and zero rows are the same.

Pl®AQP; = [Aﬁﬁ @@} (20)
. N

* (UFNF,) If a A has no zero lines it can be transformed by a simultaneous row
and column permutation P, = P(Ay)...P(Ay) into symmetric block diagonal
UFNF:

Ay
K
. - Ayl
PieAP,=| . |=|HaA 1)
Tonote k=1
. Ak

where {Ak}kK:1 ,K > 1 are the symmetric matrices of connected components of
Ga.
e (no UFNF) A cannot be permuted into a proper UFNF form.

Proof A simple matrix conformation procedure on Lemma 6 when the matrix is
symmetric. O
We will see that this is almost the only structure we need to consider to find the
eigenvectors. Consider R € .#+(S), the bipartite network matrix, for instance, of
the form:

R= [Rl Rlz} (22)
Ry Ry

If Ry» and Ry are null, then we can find a permutation P so that
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2P Co @3)

PPRAQP=P" o
®A® ®R{--- - - - Ry

Now, if Ry, = &g,um, 18 null, then (23) is in UFNF; with &, = &(G,4m)(Ga+M) »
while if R; and R, are both full, then (23) is in UFN, with blocks A; and A,,
respectively. Note that other blocked forms of R simply generate an irreducible A,
since the UFNF; form is not possible.

So we can suppose that A can be simultaneously row and column permuted into
a diagonal block form

Ay --

S K )
PPeA@P=|" " " |=|lHA|we, Ak=[TRk} (24)
- Ag - =1 Ry -
éu

with the empty lines and rows permuted to the beginning &, and irreducible blocks
Ag. Recall that closures and permutations commute, whence the closures of the
matrices in the forms above are really simple: the closure of (24) is straightforward
in terms of the closures of the blocks:

A?_
PPoAteP=|: (25)
. AT
K
8w

The solution of this base case is highly dependent in the dioid in which the

problem is stated. Since we will be solving the problem in idempotent semifields,
for the irreducible base case we need only be concerned about matrix:

~ . Ri@A) . B
(4) — —
= gy ™| ] =

where we are using the shorthand B = R1®@A (o account for the normalization with
the cycle means that we need to use to find the eigenvectors. To find the closures of
such irreducible matrices apply Lemma 3 to (26):

~ew\T _ [ B®B)" B®[B"®B)"
(AM@ ) _[BT®(B®BT)* B"®B)" 27)

where we have used that (B ® B)*  B" = B" ® (B® B")"*.
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3.4 Pairs of Singular Vectors of Symmetric Matrices over
Idempotent Semifields

To extract the eigenvectors corresponding to left singular vectors i € G (respectively,
right singular vectors j € M) we need to check Theorem 3 against each block in its
diagonal:

o * —~ +
ieG, (Auea(A)> = (Auea(A)) & (B® BT)j =B® BT)AJ[r

1 L

— (ZM@(A)) *
J

jeM, (ZM@W)_] & (B"®B); = (B'®B),

. + . . .
So the existence of (X"@(A)) requires the existence of the transitive closures

(B" ® B)" and (B ® B")" as we could have expected from (19). Note that after
(6), the hub and authority scores are those columns such that:

(B®B") = (B® B (B"®B)[ = (B"®B);

but, importantly, (27) gives us the form of the authority score related to a particular
hub score and vice versa, which is a kind of formal-concept property:

hi=(B®B"); ¢ a=B® BB, (28)
4= (B"®B) & h=B® (B ®B);

This solves completely the description of the left and right singular vectors. To find
the singular values, we note from (19) that they are the square roots of the cycle
means of the independent blocks or, equally, the proper eigenvalues of A,

2 ={J/plp=nel . A=aA}={J/p|p=PA}

This would include the bottom if and only if one of the blocks is empty.

3.5 Relationship to FCA

In order to interpret the results above in the light of FCA, we have to use the proper
multi-valued extension of it. For such purpose, .# -Formal Concept Analysis is an
extension of FCA for formal contexts with entries in an idempotent semifield [24]
which has been used for the analysis of confusion matrices and other data with the
appropriate characteristics [39—41].
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Regarding the glimpse of a formal concept-like property of (28), a cursory analy-
sis with the techniques in [24] shows that the analogue of the polars in FCA declared
in (17) actually comes from two different generalized Galois connections:

* R®-: KM — KO is the right adjunct of a left (Galois) adjunction, while
* R"®-:KY%— KM is the left adjunct in a right (Galois) adjunction.

It is well known that the iteration of these operators in the Boolean case is
not concept-forming. Nevertheless, they do lead to closures. For instance, in [15]
a discussion of the issue leads to operators achieving transitive closures for
endorelations—that is, binary relations with identical domain and codomain—and
the finding of strongly connected components in the one-mode projection graphs
these endorelations define. This agrees with a technical condition often imposed
on graphs prior to their study through HITS: that their adjacency matrices be irre-
ducible, which translates into a graph with a single strongly connected component.
Note also that the transitive closure of the matrix also figures prominently in this
application.

Yet, in this chapter the isomorphism between the ranges of the operators in (17)
defining the duality between hubs and authorities is clear and attested in a more
generic context than HITS was initially conceived. Specifically, we consider graphs
with any number of strongly connected components, even with none (see Sect. 3.3).

In parallel work, also, we suggest that the “standard” take on what a formal
concept of a % -context is should be enlarged to include not only closures, but also
the interior of (multi-valued) sets of objects and attributes [42]. It may be the case
that the hub and authority score vectors in the idempotent version of HITS belong
to these systems of interiors. In any case, it would seem that there is not a single
SVD for matrices with values in an idempotent semifield, and this issue needs to be
explored further.

3.6 Example

In this section we present a HITS analysis for a weighted two-mode network both
using standard HITS and HITS over the max-min-plus idempotent semifield. The
data being analysed is the example in [43, p. 31], the worries data, which is a
two-mode network of the type of worry declared as most prevalent by 1554 adult
Israeli depending on their living countries—and sometimes those of their parents.
The graph of the network is depicted in Fig. 1a.

To be amenable for max-min-plus processing the original counts in the contin-
gency matrix were transformed into a joint probability function Pyp with marginals
Py over worries and Pp over procedence. The idempotent SVD was carried out on
the pointwise mutual information matrix

Pwp(i.])

QD) = 5 PG
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b 1.00 c 1.00
0.75 0.75

algorithm algorithm

£ 050 HITS 8 050 HITS

8 iHITS 3 iHITS
0.25 0.25
0.00 0.00

ECO ENR MIL MTO OTH PER POL SAB ASF EUAM IFAA IFEA IFI
Type of worry Procedence

Fig. 1 Weighted, directed graph of the worries data [43, p. 31] and its weighted idempotent and
standard “‘authority” (worry) and “hub” (procedence) scores. There are clear differences in both
approaches. (a) Worries weighted bipartite network. (b) Principal worry scores. (¢) Procedence
scores

The “authority” and “hub” scores are differentiated for each of the modes: they
return “type of worry” and “procedence” scores, respectively. We can see that
HITS and iHITS produce somehow different results: the actual meaning of these
differences is data dependent and a matter for future, more specialized analyses. The
idempotent primitives were developed in-house and are available from the authors
upon request.

3.7 Discussion

Extensions to Other Semirings Note that the original HITS problem was set in a
positive semifield that is not idempotent; hence, our method of solution does not
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apply yet to that case, but does apply to the max-min-plus and max-min-times
semifields, examples of which are given in terms of their normalized closures. In
the case of the Ry the Perron-Frobenius theorem is usually invoked to solve HITS
iteratively by means of the power method [44].

A reviewer of this paper requested a consideration of the solution of the HITS
problem for the rest of dioids which are not semifields. The problem with further
generalization of our scheme is the base case for the recursion of Frobenius
normal forms. In the idempotent semifield case, the cycle means of Proposition 5
provide the eigenvalues needed for the normalization of the matrices that allow
the calculation of the closures in the irreducible case. But in the generic positive
semifield case the cycle means and the possibility of choosing the critical circuits to
select the eigenvectors in the closures are not granted. Also, in inclines—and in the
fuzzy semirings included in them—the base, irreducible case is completely different
to that of semifields [33]. But since the generic development on dioids for UFNF1
and UFNF?2 is based on combinatorial considerations, we believe that a solution for
the base case for other dioids could be plugged into this UFNF recursion to obtain
analogous results to those presented here. These extensions will be considered in
future work.

On the Orthogonality of Solutions On another note, the SVD in standard algebra
makes a strong case about the orthogonality of the left and right singular vectors
belonging to different singular values in order to guarantee certain properties of
the bases of singular vectors in the reconstruction. But in entire zerosumfree
semirings, and in entire dioids or positive semifields a fortiori, orthogonality is a
rare phenomenon, after Lemma 7.

Indeed, irreducible matrices do not have any orthogonal, but rather collinear left
or right singular vectors. Regarding reducible matrices, note that (24) factors in all
the possible orthogonality between eigenvectors. In fact we have,

Corollary 3 Let (G,M,R) be an ./-formal context over a dioid ., and A €

My(7) as in (27). Then two of the eigenvectors for A or (left, right) singular vectors

for R can only be orthogonal if they arise from different blocks.

and Proposition 3 proves that even in that case they might not be orthogonal.
However, after the work in [22, 25] orthogonality may not be needed in

the case of dioids: the use of join- and meet-irreducible may guarantee perfect

reconstruction.

On the Effectiveness of the Dual-Projection Approach for 2-Mode Network
Analysis Yet another reviewer raised the concern that the work in [3] proves the
dual-projection approach hopeless. This work of Latapy and colleagues propounds
a more “direct” approach to the study of bipartite networks by means of collecting
and creating measures designed specifically for them, as opposed to those adapted
from 1-mode networks. They develop to some extent a criticism of the projection
approach and, indirectly, of the dual-projection approach on Boolean networks.
However, they suggest that theirs and the projection approach are, in general,
complementary. And in particular, that none of the criticism for Boolean projection
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approaches applies to projection approaches on weighted affiliation networks. On
these grounds and the present work, the criticism of [3] notwithstanding, we believe
the dual-projection approach is adequate for the study of 2-mode networks and can
bring many insights about their behaviour.

4 Summary and Conclusions

In this paper, we related the HITS algorithms to the SVD of the adjacency matrix
of a weighted 2-mode network and argued that this supports the dual-projection
approach to SNA.

To make evident the relationship of these techniques to .# -Formal Concept
Analysis, we generalized the HITS algorithms for semirings, then instantiated it in
dioids, semifields (including the original semifield where it was defined) and finally
in idempotent semifields, which are the algebras used by .2 -FCA.

We showed that the projection operators are related to Galois adjunctions, rather
than to the polars in Galois connections, and that this approach to weighted graph
analysis has affinities to finding strongly connected components in Boolean graphs.
What the connected components of weighted graphs might mean is subject for
further work.

We have also provided an example of how to use the new calculations to obtain
idempotent authority and hubness scores for a weighted bipartite graph, although the
interpretation of such scores vis-a-vis the original ones needs further investigation.

Acknowledgements The authors have been partially supported by the Spanish Government-
MinECo projects TEC2014-53390-P and TEC2014-61729-EXP for this work.

We would like to thank the reviewers of earlier versions of this paper for their help in
improving it.

References

1. Bang-Jensen, J., Gutin, G.: Digraphs. Theory, Algorithms, and Applications, 3rd edn. Springer,
Heidelberg (2001)

2. Agneessens, F., Everett, M.G.: Introduction to the special issue on advances in two-mode social
networks. Soc. Netw. 35, 145-147 (2013)

3. Latapy, M., Magnien, C., Vecchio, N.D.: Basic notions for the analysis of large two-mode
networks. Soc. Netw. 30, 31-48 (2008)

4. Everett, M.G., Borgatti, S.P.: The dual-projection approach for two-mode networks. Soc. Netw.

35,204-210 (2013)
. Strang, G.: The fundamental theorem of linear algebra. Am. Math. Mon. 100, 848-855 (1993)
6. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. JHU Press, Baltimore (2012)

V)]



194 EJ. Valverde-Albacete and C. Peldez-Moreno

7. Landauer, T.K., McNamara, D.S., Dennis, S., Kintsch, W.: Handbook of Latent Semantic
Analysis. Lawrence Erlbaum Associates, Mahwah (2007)

8. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer,
Berlin/Heidelberg (1999)

9. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In:
Ordered Sets (Banff, Alta., 1981), pp. 445-470. Reidel, Boston (1982)

10. Davey, B., Priestley, H.: Introduction to Lattices and Order, 2nd edn. Cambridge University
Press, Cambridge (2002)

11. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence (1967)

12. Rota, G.C.: Indiscrete Thoughts. Springer, Boston, MA (2009)

13. Freeman, L.C., White, D.R.: Using Galois lattices to represent network data. Sociol. Methodol.
23, 127-146 (1993)

14. Domenach, F.: CryptoLat - a pedagogical software on lattice cryptomorphisms and lattice
properties. In: Ojeda-Aciego, M., Outrata, J. (eds.) 10th International Conference on Concept
Lattices and Their Applications (2013)

15. Gaume, B., Navarro, E., Prade, H.: A parallel between extended formal concept analysis
and bipartite graphs analysis. In: IPMU’10: Proceedings of the Computational Intelligence
for Knowledge-Based Systems Design, and 13th International Conference on Information
Processing and Management of Uncertainty, Universite Paul Sabatier Toulouse III. Springer,
Heidelberg (2010)

16. Kuznetsov, S.O.: Interpretation on graphs and complexity characteristics of a search for specific
patterns. Nauchno-Tekhnicheskaya Informatsiya Seriya - Informationnye i sistemy 1, 23-27
(1989)

17. Falzon, L.: Determining groups from the clique structure in large social networks. Soc. Netw.
22, 159-172 (2000)

18. Ali, S.S., Bentayeb, F., Missaoui, R., Boussaid, O.: An efficient method for community
detection based on formal concept analysis. In: Foundations of Intelligent Systems, pp. 61—
72. Springer, New York (2014)

19. Roth, C., Bourgine, P.: Epistemic communities: description and hierarchic categorization.
Math. Popul. Stud. 12 107-130 (2005)

20. Freeman, L.C.: Methods of social network visualization. In: Meyers, R.A. (ed.) Encyclopedia
of Complexity and Systems Science, Entry 25, pp. 1-19. Springer, New York (2008)

21. Duquenne, V.: On lattice approximations: syntactic aspects. Soc. Netw. 18, 189-199 (1996)

22. Bélohlavek, R., Vychodil, V.: Formal concepts as optimal factors in Boolean factor analysis:
implications and experiments. In: Proceedings of the 5th International Conference on Concept
Lattices and Their Applications, (CLAO07), Montpellier, 24—-26 October 2007

23. Bélohlavek, R.: Fuzzy Relational Systems. Foundations and Principles. IFSR International
Series on Systems Science and Engineering, vol. 20. Kluwer Academic, Norwell (2002)

24. Valverde-Albacete, F.J., Peldez-Moreno, C.: Extending conceptualisation modes for gener-
alised Formal Concept Analysis. Inf. Sci. 181, 1888-1909 (2011)

25. Bélohlavek, R.: Optimal decompositions of matrices with entries from residuated lattices. J.
Log. Comput. 22 (2012) 1405-1425

26. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46 (1999)
604-632

27. Easley, D.A., Kleinberg, J.M.: Networks, Crowds, and Markets - Reasoning About a Highly
Connected World. Cambridge University Press, Cambridge (2010)

28. Kolaczyk, E.D., Csardi, G.: Statistical Analysis of Network Data with R. Use R!, vol. 65.
Springer, New York, NY (2014)

29. Lanczos, C.: Linear Differential Operators. Dover, New York (1997)

30. Golan, J.S.: Power Algebras over Semirings. With Applications in Mathematics and Computer
Science. Mathematics and Its applications, vol. 488. Kluwer Academic, Dordrecht (1999)



A Formal Concept Analysis Look at the Analysis of Affiliation Networks 195

31.

32.
33.
34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Pouly, M., Kohlas, J.: Generic Inference. A Unifying Theory for Automated Reasoning. Wiley,
Hoboken (2012)

Golan, J.S.: Semirings and Their Applications. Kluwer Academic, Dordrecht (1999)
Gondran, M., Minoux, M.: Graphs, Dioids and Semirings. New Models and Algorithms.
Operations Research/Computer Science Interfaces. Springer, New York (2008)

Gondran, M., Minoux, M.: Valeurs propres et vecteurs propres dans les dioides et leur
interprétation en théorie des graphes. EDF, Bulletin de la Direction des Etudes et Recherches,
Serie C, Mathématiques Informatique 2, 25-41 (1977)

Valverde-Albacete, F.J., Peldez-Moreno, C.: The spectra of irreducible matrices over completed
idempotent semifields. Fuzzy Sets Syst. 271, 46-69 (2015)

Valverde-Albacete, F.J., Peldez-Moreno, C.: The spectra of reducible matrices over complete
commutative idempotent semifields and their spectral lattices. Int. J. Gen. Syst. 45, 86-115
(2016)

Valverde-Albacete, F.J., Peldez-Moreno, C.: Spectral lattices of reducible matrices over
completed idempotent semifields. In: Ojeda-Aciego, M., Outrata, J., (eds.) Concept Lattices
and Applications (CLA 2013), pp. 211-224. Université de la Rochelle, Laboratory L.31, La
Rochelle (2013)

Cohen, G., Gaubert, S., Quadrat, J.P.: Duality and separation theorems in idempotent semimo-
dules. Linear Algebra Appl. 379, 395-422 (2004)

Peldez-Moreno, C., Garcia-Moral, A.l., Valverde-Albacete, F.J.: Analyzing phonetic confu-
sions using Formal Concept Analysis. J. Acoust. Soc. Am. 128, 1377-1390 (2010)
Valverde-Albacete, F.J., Gonzalez-Calabozo, J.M., Pefas, A., Pelaez-Moreno, C.: Supporting
scientific knowledge discovery with extended, generalized formal concept analysis. Expert
Syst. Appl. 44, 198-216 (2016)

Gonzilez-Calabozo, J.M., Valverde-Albacete, FJ., Peldez-Moreno, C.: Interactive knowledge
discovery and data mining on genomic expression data with numeric formal concept analysis.
BMC Bioinf. 17, 374 (2016)

Valverde-Albacete, F.J., Peldez-Moreno, C.: The linear algebra in extended formal concept
analysis over idempotent semifields. In: Bertet, K., Borchmann, D. (eds.) Formal Concept
Analysis, Springer Berlin Heidelberg, 211-227 (2017)

Mirkin, B.: Mathematical Classification and Clustering. Nonconvex Optimization and Its
Applications, vol. 11. Kluwer Academic, Dordrecht (1996)

Akian, M., Gaubert, S., Ninove, L.: Multiple equilibria of nonhomogeneous Markov chains
and self-validating web rankings. arXiv:0712.0469 (2007)



	Foreword
	Preface
	Introduction

	Contents
	Contributors
	Knowledge Communities and Socio-Cognitive Taxonomies
	1 Introduction
	2 Communities in Interaction Networks
	2.1 Explicit vs. Procedural Methods
	2.2 Structural Properties of Groups

	3 Reuniting Structure and Content
	3.1 Affiliation Networks, Social Circles, and FCA
	3.2 Formal Concepts as Epistemic Communities

	4 Applications
	4.1 Datasets
	4.2 Socio-Cognitive Taxonomies

	5 Concluding Remarks
	References

	Individuality in Social Networks
	1 Introduction
	2 Related Work
	3 Social Networks as Formal Contexts
	4 Individuality of Social Networks
	5 Experimental Results
	5.1 Data and Modeling
	5.1.1 Club Membership Network (CM) konect:2016:brunsonclub-membership
	5.1.2 Facebook-Like Forum Network (FB) opsahl2009clustering
	5.1.3 Lange Nacht der Musik (LNM) Schaller2014a
	5.1.4 Norwegian Board Members (NB) norwegianBoarddataset
	5.1.5 Southern Women (SW) wasserman1994

	5.2 Small World Network Properties
	5.2.1 Average Shortest Path
	5.2.2 Average Local Clustering Coefficient
	5.2.3 Summary

	5.3 Group Individuality
	5.4 Individuality Distribution
	5.5 Average Millieu Size
	5.6 Discussion and Interpretation

	6 Conclusions and Outlook
	References

	Descriptive Community Detection
	1 Introduction
	2 Subgroup Discovery
	2.1 Patterns and Subgroups
	2.2 Interestingness of a Pattern
	2.3 Community Detection
	2.3.1 Basics of Community Detection
	2.3.2 Detecting Overlapping Communities

	2.4 Exceptional Model Mining

	3 Community Detection and Description
	4 Community Detection Using Exceptional Model Mining
	4.1 COMODO: Description-Oriented Community Detection
	4.1.1 Algorithmic Overview
	4.1.2 Illustrative Evaluation Results

	4.2 Sequential Pattern Analysis: Detecting Exceptional Link Trails
	4.2.1 Modeling
	4.2.2 Results


	5 Conclusions
	References

	Multimodal Clustering for Community Detection
	1 Introduction
	2 Basic Definitions
	2.1 Formal Concept Analysis

	3 Higher-Order Extensions of FCA and Multimodal Clustering
	3.1 Triadic and Polyadic FCA
	3.2 Biclustering
	3.3 OAC-Triclustering and Prime-Based n-Clustering

	4 Quality Measures for Multimodal Clustering
	4.1 Connection Between ρ and Local Clustering Coefficient
	4.2 Connection Between ρ and Modularity
	4.3 Least Square Optimal n-Clusters
	4.4 Weak Bicluster Communities and Graph Cuts
	4.5 Stability of OA-Biclusters
	4.6 Coverage and Diversity

	5 Data
	6 Experiments
	6.1 Two-Mode Networks
	6.2 Folksonomies as Three-Mode Networks
	6.3 MovieLens Data as Four-Mode Network
	6.4 One-Mode Networks as Two-Mode Ones

	7 Related Work
	8 Conclusions
	Appendix: Experiments with One-Mode Networks
	References

	Acquisition of Terminological Knowledge from Social Networks in Description Logic
	1 Introduction and Problem Description
	2 Social Networks and Social Graphs
	3 The Web Ontology Language (OWL)
	4 The Description Logic MH
	5 The Lattice of M-Concept Descriptions
	6 Formal Concept Analysis
	7 The Galois Connection of an Interpretation
	8 Computation of Role-Depth-Bounded Model-Based Most Specific Concept Descriptions
	9 Concept Lattices of Interpretations
	10 Induced Formal Contexts
	11 Knowledge Bases of Interpretations
	12 Other Description Logics
	13 Conclusion
	References

	Formal Concept Analysis of Attributed Networks
	1 Introduction
	2 Datasets
	2.1  Teenage Friends and Lifestyle Study
	2.2  A DBLP Dataset

	3 Abstract Closed Patterns in Attributed Networks
	3.1 Closed Patterns
	3.2 Abstract Closed Patterns
	3.3 Graph Abstractions
	3.4 Interestingness Measures on Abstract Patterns and Implications
	3.4.1 Specificity of Abstract Patterns
	3.4.2 Informativity of Abstract Implications

	3.5 Experiments

	4 Local Closed Patterns in Attributed Networks
	4.1 Cc-Confluences
	4.2 Local Implications
	4.3 Interestingness Measures on Local Patterns and Implications

	5  Local Concepts from a Derived Graph
	5.1 Experiments on a Derived Graph

	6 Implementation
	7 Conclusion
	References

	A Formal Concept Analysis Look at the Analysis of AffiliationNetworks
	1 Motivation and Introduction
	1.1 The Analysis of Bipartite Networks with Formal Concept Analysis
	1.2 The Study of Networks Using HITS and the SVD
	1.3 The Problem and Reading Guide

	2 Theory and Methods
	2.1 Semiring and Semimodules over Semirings
	2.2 The Eigenvalue Problem over Dioids
	2.3 Graphs, Matrices and Closures over Dioids
	2.4 Eigenvalues and Eigenvectors of Matrices over Complete Dioids
	2.4.1 Orthogonality of Eigenvectors 
	2.4.2 The Null Eigenspaces
	2.4.3 Eigenvalues and Eigenvectors of Matrices over Positive Semifields 


	3 Results
	3.1 HITS over Idempotent Semifields: iHITS
	3.2 The Eigenproblem in Symmetric Matrices
	3.3 UFNF Forms of Symmetric Matrices and Their Closures
	3.4 Pairs of Singular Vectors of Symmetric Matrices over Idempotent Semifields
	3.5 Relationship to FCA
	3.6 Example
	3.7 Discussion

	4 Summary and Conclusions
	References


