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Abstract The increasing demand for individual and more flexible process models
and workflows asks for new intelligent process-oriented information systems. Such
systems should, among other things, support domain experts in the creation and adap-
tation of process models or workflows. For this purpose, repositories of best practice
workflows are an important means as they collect valuable experiential knowledge
that can be reused in various ways. In this chapter we present process-oriented case-
based reasoning (POCBR) as a method to support the creation and adaptation of
workflows based on such knowledge. We provide a general introduction to process-
oriented case-based reasoning and present a concise view of the POCBR methods
we developed during the past ten years. This includes graph-based representation
of semantic workflows, semantic workflow similarity, similarity-based retrieval, and
workflow adaptation based on automatically learned adaptation knowledge. Finally,
we sketch several application domains such as traditional business processes, social
workflows, and cooking workflows.

1 Introduction

Business process management is a well-established discipline that deals with the
identification, modeling, analysis, improvement, and implementation of business
processes [1]. It is a methodology that is widely applied today to improve the oper-
ation of organizations and to align the IT development with business processes.
Workflow management is a specific area of business process management that aims
at “the automation of a business process, in whole or part, during which documents,
information or tasks are passed from one participant to another for action, according
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to a set of procedural rule” [2]. In the recent years, the use of workflows has signifi-
cantly expanded from the original domain of business processes towards new areas,
which also manifests their relevance in software engineering and development in
various ways. For example, in engineering domains, such as software development
or chip design, workflows are used to support complex collaborative and distrib-
uted development processes [3, 4]. In e-science scientific workflows are executable
descriptions of computable scientific processes (i.e. a kind of executable programs)
such as computational science simulations and data analyses [5]. Furthermore, work-
flows can be used to represent and automatically execute search [6] and information
integration processes [7] in the context of decision support systems. Even for every-
day activities such as cooking, workflows can be used as a means to represent the
cooking instructions within a recipe [8] in order to provide step-by-step guidance for
the chef.

One of the biggest challenges today arises from the fact that many companies
and organizations must be able to more quickly adapt their business according to
newly arising market opportunities and demands from the customer, due to actions
of the competitors, or due to new technological developments. Agility became an
important requirement in may domains in which workflows are applied [1, 9, 10].
Thus, instead of using a small set of standardized workflows, there is an increasing
demand for tailoring workflows in a case-specific manner according to the current
needs. This asks for intelligent, knowledge-based systems that assist domain experts
in the creation or adaptation of workflows. Such systems must be able to represent
and reason with knowledge about workflows and workflows elements, such as task,
and data items. They must include knowledge that allows to assess the utility of
workflows with respect to certain user demands, and they must possess knowledge
about appropriate ways to adapt workflows. Consequently, the development of such
knowledge-based systems involves a significant knowledge engineering effort that
asks for methods from knowledge acquisition, semantic technologies, and machine
learning.

In this chapter we present process-oriented case-based reasoning (POCBR) as a
method to support the creation and adaptation of workflows. Case-based reasoning
(CBR) is an established Artificial Intelligence methodology for experience-based
problem-solving by selecting previous problem solutions from the past and adapting
them to address a current but related problem [11]. POCBR is a specific sub-branch
of CBR that deals with knowledge about processes and workflows [12]. In our own
research within the past 10 years, we developed several POCBR methods as well as
a generic system called CAKE (Collaborative Agile Knowledge Engine) [13] that
support retrieval and adaptation of workflows. Here, experiential knowledge is stored
in a repository and consists of semantic workflows, which are best-practices work-
flows from the past that are semantically annotated using concepts from a domain
ontology in order to support their reuse. Users can query the repository with a spec-
ification of important properties of the workflow s/he wants to create in order to
retrieve potentially reusable workflows. Workflow adaptation methods can then be
applied to automatically adapt the retrieved workflow towards the user’s query.
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In the next section we provide a general introduction into POCBR. Section3
describes the technical foundations for semantic workflows. The similarity-based
retrieval of reusable workflows from a repository is described in Sect. 4, while Sect. 5
presents three different methods for knowledge-based adaptation of workflows. An
overview of the CAKE system and selected application examples are described in
Sect. 6.

2 Process-Oriented Case-Based Reasoning

Case-based reasoning (CBR) is a problem solving paradigm built upon a rule of
thumb suggesting that similar problems tend to have similar solutions [11, 14]. The
core of every case-based reasoning system is a case base, which is a collection of
memorized experience, called cases. The CBR cycle proposed by Aamodt and Plaza
[11] consists of four CBR phases, performed sequentially when a new problem
(also called new case or query) must be solved [15]. First, the retrieve phase selects
one or several cases from the case base with the highest similarity to the query,
where similarity is determined by an underlying similarity measure [14]. In the
subsequent reuse phase, the solutions of the retrieved cases are adapted according
to the requirements of the query. In the revise phase, the solution determined so
far is verified and possibly corrected or improved, e.g., through intervention of a
domain expert. Finally, the retain phase takes the feedback from the revise phase
and updates the knowledge of the CBR problem solver. As part of this learning
phase, cases can be added to or deleted from the case base, but also other kinds of
knowledge, such as similarity measures or adaptation knowledge can be affected.
A unified view on the knowledge contained in a CBR application was proposed by
Richter [14] through the metaphor of the four knowledge containers: the vocabulary,
the case base, the similarity measure, and the adaptation knowledge. The vocabulary
(which is typically called ontology today) is the basis of all knowledge and experience
representation inCBR. The vocabulary defines the information entities and structures
(e.g., classes, relations, attributes, data types) that can be used to represent cases,
similarity measures, and adaptation knowledge. The case base is the primary form of
knowledge inCBR, i.e., a repository of cases.A case is the representation of a specific
experience item (e.g. a problem-solution pair, a problem-solving trace, or a best-
practice procedure for performing a certain job) using the predefined vocabulary. The
notion of similarity plays a key role in CBR, since cases are selected based on their
similarity to the current problem.While earlyCBRapproacheswere usually restricted
to standard similarity measures (such as inverse Euclidean or Hamming distances),
the current view is that the similarity measure encodes important knowledge of
the domain. Several techniques for adaptation in CBR have been proposed so far
[15]. However, all adaptation methods require appropriate additional knowledge for
adaptation.Motivated by the fact that themanual acquisition of adaptation knowledge
is very difficult, several methods have been developed that exploit the knowledge
already captured in the cases as source to automatically learn adaptation knowledge
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[16, 17]. As a specific approach to knowledge engineering and knowledge-based
systems design, CBR is closely related to analogical reasoning, machine learning,
information retrieval, databases, semantic web, and knowledge management.

Process-oriented CBR (POCBR) addresses the integration of CBR with process-
oriented research areas like Business Process Management and Workflow Manage-
ment (WFM) [12]. In POCBR a case is usually a workflow or process descrip-
tion expressing procedural experiential knowledge. POCBR aims at providing
experience-based support for the automatic extraction [18], design [19], execution
[20], monitoring and optimization [21, 22] of workflows. In particular, new work-
flows can be constructed by reuse of already available workflows that are adapted to
new purposes and circumstances. Thereby, the laborious development of workflows
from scratch can be avoided.

A case base (or repository) of successful workflows reflecting best-practices in
a domain is the core of a POCBR approach. Users can query the repository with a
specification of important properties of the workflow s/he wants to create in order
to retrieve potentially reusable workflows. One particular characteristic of CBR is
that it allows to find cases that do not match exactly the user’s query, but which are
at least similar in some respect. For example, the CODAW system [23] supports
the incremental modeling of workflows by similarity-based reuse of the workflow
templates. Leake andMorwick [19] evaluate the execution paths of past workflows in
order to support users in workflow modelling by proposing extensions of workflows
that are under construction. Besides the retrieval of workflows, also their automatic
adaptation is recently addressed in research [24, 25].

3 Semantic Workflows

This section provides a focused introduction to semantic workflows. In particular,
we describe our graph-based approach for representation as required for the retrieval
phase of POCBR.

3.1 Workflows

A workflow is an executable description of a work process that typically involves
several persons and/or resources. It consist of a set of activities (also called tasks)
combined with control-flow structures like sequences, parallel (AND) or alternative
(XOR) branches, as well as repeated execution (LOOPs). Tasks and control-flow
structures form the control-flow. In addition, tasks exchange certain data items, which
can also be of physical matter, depending on the workflow domain. Tasks, data
items, and relationships between the two of them form the data-flow. Today, various
workflow languages are used, depending on the kind of workflow. Languages for
business workflows (for example BPMN) have a strong focus on the control-flow,
while scientific workflow languages have a stronger focus on the data-flow.
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Fig. 1 Examples of a business tip workflow

Figure1 shows an example of a business workflow. The workflow describes a
simple process for a business trip starting with gathering information on the trip and
ending with the final expense accounting. It consists of several activities such as
booking of the travel or requesting cash advance, which are aligned in sequences
(also referred to as control-flow). Furthermore, information is shared between those
activities, e.g., business trip data first has to be gathered and then serves as the
basics of decision-making whether a trip is approved. Based on the trip approval,
the example workflow only executes one specific branch by use of a xor-split/join
control-flow pattern.

3.2 Introduction to Semantic Workflows

Traditional workflow languages name task and data items by simple textual labels.
This makes it difficult to reason with the knowledge captured in such workflows,
as required in POCBR. To address this issue, we introduce semantic workflows as
an approach to cover relevant aspects of the meaning of workflows, including the
meaning of the task and data items that occur. Semantic workflows are based on
a specifically designed domain ontology that consist of sub-ontologies describing
the relevant properties of the task and data items that occur in the domain. A tradi-
tional workflow is turned into a semantic workflow by adding metadata annotations
from the domain ontology to the individual elements of the workflow. The semantic
annotations of workflows can then be used as basis for the similarity assessment and
adaptation.

The workflow representation in the CAKE system (see Sect. 6) uses an object-
oriented representation for ontologies (classes and relations/properties and inheri-
tance) and metadata annotation (linked instances of classes). Thus, tasks and data
items can be organized in a hierarchy of classes, in which each item contains cer-
tain properties, which can be inherited from the super class. For example, in Fig. 1,
the gather trip information task includes a property capturing the employee who is
assigned to perform this task.
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3.3 Representation of Semantic Workflows

In line with previous work on graph-based workflow representation [26, 27], we
represent workflows as semantically labeled directed graphs. A semantic workflow
graph W is a quadrupleW = (N,E, S,T) where N is a set of nodes and E ⊆ N × N
is a set of edges. T : N ∪ E → Ω associates to each node and each edge a type from
Ω (see below). S : N ∪ E → Σ associates to each node and each edge a semantic
description from the domain ontology Σ . A semantic workflow graph contains the
following types of nodes (Ω): Each workflow consists of exactly oneworkflow node.
Each task in a workflow is represented by a task node. Each data item in a workflow
is represented by a data node. Each control-flow element in a workflow, such as
split/join elements for and/xor blocks, are represented as a control-flow node. In
addition, a semantic workflow graph contains the following types of edges: part-of
edges for linking the workflow node to every other node, data-flow edges which
link data nodes to task nodes or vice versa, and control-flow edges connecting two
task nodes or a task node with a control-flow node. Figure2 shows the semantic
graph representation of the workflow from Fig. 1. It contains one workflow node,
which links all elements of the workflow by part-of edges. A simplified fraction of
some semantic descriptions are shown in dashed boxes. The business trip data, for
example, could include information about the date, venue or expected expenses of
the business trip. Further, gather trip information is annotated by information such
as the assigned employee or the task’s enactment status.

A fraction of the domain ontology Σ for this example domain is illustrated in
Fig. 3. The sub-ontology for tasks is shown, which is a light-weight ontology that

Fig. 2 Semantic workflow of the previously introduced example workflow
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Fig. 3 Example task ontology

arranges relevant tasks in a taxonomical structure. For example, settle outstanding
accounts, expense accounting and cash advance accounting are tasks descriptions
classified as general accounting tasks. Further, professional development expense
accounting or trip expense accounting are special forms of expense accounting. In
addition, each concept in the ontology may have certain properties (e.g. assigned
employee in Fig. 2). We employ this ontology for similarity assessment of tasks and
data objects (see Sect. 4).

3.4 Repository of Semantic Workflows

A repository of workflows reflecting best-practice processes in a domain is the core
of a POCBR approach. In CBR terminology, this repository is the case base that
stores the available experience. Given the semantic workflow graph representa-
tion, we represent a workflow repository as a set of semantic workflows over the
same domain ontology. Hence, a workflow repository is always tied to a particu-
lar domain and its semantic metadata representation. Thus, we define a case base
CB = {CW1, . . . ,CWn} as a set of cases CWi each of which is a semantic workflow
graph over Σ .

The acquisition of semantic workflows is an important step in the development of
a POCBR system. Usually, workflows are already available in a domain (otherwise
the use of POCBR is not advisable), but they have to be captured and formalized as
part of a knowledge engineering process. For details, see Sect. 6.3.

4 Similarity-Based Retrieval of Workflows

When using POCBR to support the construction of a new workflow, the user has to
specify a query stating the requirements on the workflow s/he is aiming at. The CBR
approach then selects the most similar semantic workflow from the repository to that
query and adapts it in order increase the similarity to the query.
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4.1 User Queries

Users can query a repository of semantic workflows with a specification of important
properties of theworkflow s/hewants to create in order to retrieve potentially reusable
workflows. Previouswork onworkflow reuse and discovery has already addressed the
question how typical queries look like. For scientific workflows, Goderis et al. [28]
studied the importance of different criteria for workflow discovery. They identified
that the task and data items that occur in the workflow are relevant as well as general
characteristics of the workflow related to quality, performance, and reliability. The
workflow structure is also very important, particularly the data-flow and control-
flow as well as the used control-flow constructs. Also for business workflows, the
relevant types of queries have been identified and different query languages have
been proposed by Beeri et al. [29] and Awad [30]. Their work clearly shows that it
is useful to construct queries in the same way as workflows are constructed. Queries
can be patterns built from connected workflow elements, which are then matched
against the workflows in the repository.

In the light of these results, we focus on queries that are represented as semantic
workflow graphs [31]. Such a query specifies some workflow elements together with
the semantic description that are considered as requirements on the workflows to be
retrieved. A simple query could even consist solely of aworkflownode that contains a
semantic description specifying the class of workflow and some general properties,
such as quality requirements. More sophisticated queries may in addition contain
some unconnected data and/or task nodes that specify that these nodes should occur
in the workflow one is looking for. Structural properties related to the data and/or
control-flow can be specified by linking the nodes with control-flow and/or data-
flow links, thus forming a partial workflow (or even several unconnected partial
workflows). The aim of retrieval is then to find workflows from the repository that
match the specified partial workflows as good as possible according to a similarity
measure.

4.2 Semantic Workflow Similarity

The notion of similarity plays a key role in CBR, since cases are selected based
on their similarity to the current query. While early CBR approaches were usually
restricted to syntactic similarity measures (such as inverse Euclidean or Hamming
distances), the current view is that the similarity measure should consider as much
semantics as possible. Consequently, similarity measures must be modeled as part
of the knowledge acquisition process during CBR application development.

Similarity is formalized as a function that maps a pair of problem descriptions to
a real number, often restricted to the unit interval [0, 1], with the convention that a
high value indicates a high similarity. Further, similarity is linked with the notions
of preference and utility [32–34]: A higher degree of similarity suggests that a case
is more useful for solving the current problem and hence should be preferred.
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As a means for practical modeling of similarity functions, the so-called local-
global principle, first proposed by Richter (for details see [15, 32, 33]) is widely
used. Modeling similarity means decomposing the similarity function according to
certain properties of the case.A local similarity function is defined for each individual
property, reflecting the utility of a case with respect to the single property only.
The local similarities are then aggregated into the global similarity by means of
an aggregation function. This function appropriately combines all local similarity
values (e.g. by a weighted average) into a single value that aims at reflecting the
utility of the case as awhole. The graph-based representation ofworkflows introduces
structural aspects into the representation and therebymakes the similarity assessment
much more complicated. Several graph algorithms have been proposed for similarity
assessment such as sub-graph isomorphism, maximal common sub-graphs, or edit-
distance measures [27, 35–38].

In our research, we have developed a new similarity model that is an enhancement
of the local-global principle [39]. The local similarity measures assess the similarity
between two nodes or two edges of the same type based on their semantic description.
The global similarity forworkflows is obtained by an aggregation function combining
the local similarity values within a graph mapping process.

In more detail, the core of the similarity model is a local similarity measure for
semantic descriptions simΣ : Σ2 → [0, 1]. In our example domain the taxonomical
structure of the data and task ontology is employed to derive a similarity value
that reflects the closeness in the ontology. It is combined with additional similarity
measures that consider relevant attributes (see [39] for more details and examples).

The similarity simN : N2 → [0, 1] of two nodes and two edges simE : E2 → [0, 1]
is then defined based on simΣ applied to their assigned semantic descriptions. The
similarity sim(QW ,CW) between a query workflow QW and a case workflow CW
is defined by means of an admissible mapping m : Nq ∪ Eq → Nc ∪ Ec, which is a
type-preserving, partial, injective mapping function of the nodes and edges of QW
to those of CW . For each query node and edge x mapped by m, the similarity to the
respective case node or edge m(x) is computed by simN (x,m(x)) and simE(x,m(x)),
respectively. The overall workflow similarity with respect to a mapping m, named
simm(QW ,CW) is computed by an aggregation function (e.g. a weighted average)
combining the previously computed similarity values. The overall workflow similar-
ity is determined by the best possible mapping m

sim(QW ,CW) = max{simm(QW ,CW) |admissible map m}.

Thus, similarity assessment is defined as an optimization problem that consists of
finding the best possible alignment of the query workflow with the case workflow. It
determines the best possible way (in terms of similarity) in which the query workflow
is covered by the caseworkflow. In particular, the similarity is 1 if the queryworkflow
is exactly included in the case workflow as a subgraph.

This similarity assessment is then used to retrieve the best matching workflow
from the repository. While similarity computation by exhaustive search guarantees
to find the optimal match, it is computationally not feasible. This is particularly true
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for retrieval of the best matching workflow in large case bases, since the similarity
between the query and each case in the case base must be computed. In our research,
we developed four different approaches for an efficient retrieval of workflows, which
are briefly summarized below.

4.3 Efficient Similarity Computation by Heuristic Search

In a first step, we improved the efficiency of the similarity computation by develop-
ing an A* search algorithm, which is based on a specific well-informed admissible
heuristic function [39]. The search algorithm aims at finding an admissible map
m between the nodes and edges of the workflows to be compared. In the search
space the search nodes represent partial maps, which are incrementally extended
towards a complete admissible map. As in traditional A*-search [40], in each search
step, the search node with the best (in our case the highest) value for the function
f (node) = g(node) + h(node) is selected. Here g represents the similarity value
already achieved by search node’s mapping and h represents an admissible heuristic
function providing a good over-estimation of the additional similarity increment that
can be achieved bymapping theworkflow elements that are notmapped already.With
a memory-bound version of A* we achieved a significant speed-up (up-to several
orders of magnitude) in similarity computation over exhaustive search while only
slightly compromising the precision of the result.

4.4 Parallelized Similarity Computation

An improved version of the presented A* search algorithm results from parallelizing
the similarity computations of several (or all) cases of the case base in order to find
the k most similar cases. Therefore the search process is parallelized, maintaining
one search queue for each case. In every step, the search node from the queue with
the highest f -value from all queues is expanded. Search terminates, when at least
k searches have terminated and when the similarity of the k-best case is higher
than all f -values of the remaining queues. Since the f -values are upper bounds for
the final similarity, it is ensured that none of the remaining cases can ever exceed
the similarity of the known k-best case. Hence, completeness of k-best retrieval is
guaranteed. This approach can also be executed using parallel threads on multi-core
CPUs. In our experiments, this approach again leads to a speed-up compared to the
A* up-to an order of magnitude for case bases with a few hundred cases and values
of k < 10.
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4.5 Two-Step Retrieval

If the size of the case base is further increased, additional approaches to speed-
up retrieval are required. For this purpose a two-level retrieval method has been
developed [41] inspired by the MAC/FAC (Many are called, but few are chosen)
model originally proposed by Gentner and Forbus [42]. The first retrieval step (MAC
phase) performs a rough and efficient pre-selection of a small subset of cases from
a large case base. Then, the second step (FAC phase) is executed to perform the
computationally expensive graph-based similarity computation on the pre-selected
cases only. This method improves the retrieval performance, if theMAC stage can be
performed efficiently and if it results in a sufficiently small number of pre-selected
cases. However, there is a risk that the MAC phases introduces retrieval errors, as it
might disregard highly similar cases due to its limited assessment of the similarity.
Hence, the retrieval approach for the MAC phase must be carefully designed such
that it is efficient and sufficiently precise in assessing the similarity. We address this
problem by proposing an additional feature-based case representation of workflows,
which simplifies the original representation while maintaining the most important
properties relevant for similarity assessment. This representation is automatically
derived from the original graph-based representation. The MAC stage then selects
cases by performing a similarity-based retrieval considering the simplified workflow
representation.

4.6 Cluster-Based Retrieval

As alternative approach to efficient retrieval we explored the idea to cluster the work-
flows using a hierarchical clustering algorithm employing the described similarity
measure for assessing the distance of two workflows [43]. Therefore, we developed
a hierarchical version of the traditional Partitioning Around Medoids (PAM) algo-
rithm [44]. It constructs a cluster-treewhere each cluster is represented by a particular
case (medoid) such that the case base is partitioned into sets of similar cases. This
cluster-tree is then used as an index structure during retrieval.

For retrieving the k most similar cases, clusters at predefined levels in the tree
are selected that are most similar to the query. Therefore the similarity between the
query and a cluster of cases is computed based on the similarity between the query
and the medoid representing the cluster. Only the cases within the selected clusters
are then considered for similarity-based retrieval. Our investigation revealed that this
approach can decrease the retrieval time without a considerable loss of retrieval qual-
ity. Furthermore, parameters enable to control the trade-off between retrieval quality
and retrieval time. A significant advantage compared to the MAC/FAC approach is
that no additional retrieval phase with a separate simplified feature representation
must be designed and thus the development and maintenance effort for retrieval is
not increased.
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5 Workflow Adaptation and Learning Adaptation
Knowledge

As introduced in the previous sections, similarity-based retrieval of semantic work-
flows for a given user query is an important first step to support the reuse of best-
practice workflows from a repository. However, finding a similar workflow does
not guarantee that it perfectly matches the query. Several requirements stated in the
query (see Sect. 4.1) might not be fulfilled by the most similar workflow. Conse-
quently, more or less comprehensive modifications of the workflow are required. To
support the user in performing such modifications, an automated workflow adapta-
tion approach is desirable. The overall aim of automated adaptation is to modify the
retrieved workflow in such a way that its original similarity to the query is further
increased. Ideally, if the adaptation is able to consider all user requirements perfectly,
a similarity of 1 is achieved.

In general, adaptation methods in CBR can be roughly classified into transforma-
tional, compositional, and generative adaptation [45]. While transformational adap-
tation (e.g., [46]) relies on adaptation knowledge represented as rules or operators,
generative adaptation demands general domain knowledge appropriate for an auto-
mated from scratch problem solver. In compositional adaptation several components
from various cases are reused during adaptation, incorporating transformational or
generative adaptation methods. Also generalization of cases can be used for the
purpose of adaptation, since a single generalized case (e.g., [47, 48]) comprises
adaptation knowledge, which provides solutions for a range of problems. Thus, all
adaptation approaches require some kind of adaptation knowledge in the particular
application domain, for example, in the form of rules describing the replacement
of domain-specific tasks or data items. However, the acquisition of such adaptation
knowledge is a complex and laborious task. This results in a knowledge-acquisition
bottleneck of adaptation knowledge [49], impeding successful workflow adaptation.
Thus, various approaches have been proposed to learn adaptation knowledge auto-
matically [16, 50, 51].

In our work, we developed various adaptation approaches for POCBR in order to
support individual workflow reuse. As we aim at avoiding the acquisition bottleneck
for adaptation knowledge, for each adaptation method described in the following,
a specific approach for learning the required adaptation knowledge is presented.
This adaptation knowledge is determined prior to retrieval and adaptation from the
workflows stored in repository.

5.1 Adaptation by Generalization and Specialization

Generalization and Specialization is an adaptation approach in CBR, in which the
adaptation knowledge is learned by a generalization of the cases. The generalized
cases are then stored in the case base. Thus, for a particular problem scenario a gener-
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Fig. 4 Example of a generalized and a corresponding specialized workflow

alized case can be retrieved from the case base and refined according to the problem at
hand. This approach can be easily applied toworkflow cases. A generalizedworkflow
[52] is a workflowwhose elements (task and data items) are described by generalized
terms from the domain ontology (see Sect. 3). Each generalized term represents mul-
tiple specific task or data objects. Thus, a generalized workflow represents several
specialized workflows.

An example is sketched in Fig. 4, illustrating a generalizedworkflow fragment and
a corresponding specialized workflow fragment. The generalized fragment can be
derived from the exampleworkflow given in Fig. 2. It describes that a request requires
the gathering of some data prior to a notification, thereby making no assumption
on the concrete request or data present. Thus, it is a generalized process fragment
that can be used for many scenarios, for example, the approval for professional
development as illustrated in the corresponding specialized workflow fragment. This
process fragment involves particular task and data items suited to the particular
professional development scenario. A specialized workflow consequently represents
the entire process for a concrete scenario. Please note that specialization usually
involves information at different levels of abstraction, i.e., professional development
data involves information on the particular course, expenses, or related employee,
while general data makes no concrete assumption on the information given. Thus,
specialization of tasks or data items may also result in a replacement of the entire
semantic description (see attached boxes).

A generalized workflow can be learned by comparing similar workflows from the
repository (see [52] for technical details). This approach is based on the assumption
that if similar workflows contain similar terms, these terms can be replaced by a
more generalized term from the ontology. This aims at learning only reasonable
generalizations in order to ensure adaptation quality. For example, the generalized
workflow data item data illustrated in Fig. 4, could result from the fact that similar
workflows contain the terms professional development data, business trip data, and
business meeting data. Then the illustrated workflow can be generalized to contain
any kind of data. Accordingly, the generalized task request represents all possible
kinds of requests.
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Fig. 5 Example of two workflow streams A and B

Adaptation is supported by specializing a workflow according to the query. This
means that each generalized task or data item is replaced by a specialized node such
that the similarity between the query and the adapted workflow is maximized. For
example, if the generalized workflow contains the term data and the query defines
that business meeting data is desired, then the generalized element description is
specialized to business meeting data. If a generalized workflow covers several spe-
cialized workflows, the workflow repository size can be reduced. This simplifies the
repository management and increases the workflow retrieval performance.

5.2 Compositional Adaptation

The idea of compositional adaptation [53] is that each workflow can be decomposed
into meaningful sub-workflows. This decomposition is based on the fact that the
final workflow output is quite often achieved by producing partial outputs that are
somehow combined to create the final workflow output. Partial outputs are generated
by particular parts of the workflow (sub-graphs), which we refer to as workflow
streams. For example, the task request for approval illustrated in Fig. 2 could be
alternatively performed by theworkflow streams illustrated in Fig. 5. Theseworkflow
streams describe two alternative decision processes for tip approval. Stream A may
refer to a business domain in which a manager approval is required, while stream B
could represent a particular process in a government domain as it merely focuses on
the formal expense regulations. In general, there can be many workflow streams that
could potentially be exchanged with one another to achieve the same partial output.

The basic idea for compositional adaptation is to adapt a workflow by replacing
workflow streams in the retrieved workflow with more suitable workflow streams
from other workflows. This means that the workflow streams represent the required
adaptation knowledge for compositional adaptation. Thus, prior to adaptation, useful
workflowstreams are extracted from theworkflows stored in the repository.Workflow
streams can be identified by collecting all data-flow connected tasks1 until a new
data item is created, denoting the corresponding partial workflow output (see for
[53] details).

1if a tasks consumes a data item produced by another one, they are data-flow connected.
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In order to adapt a workflow, a workflow stream can be replaced by a stream
learned from another workflow that produces the same partial output but in a different
manner, i.e., with other task or data items. Workflow streams can only be replaced,
if their data nodes indicate that they represent the same kind of sub-process. This
ensures that replacing an arbitrary stream does not violate the correctness of the
workflow. In the given example, workflow streams can only be replaced if they
consume a data item business trip data and produce a trip approval data item.

The overall compositional adaptation process aims at increasing the similarity
between the query and the adapted workflow by successively replacing workflow
streams. Each workflow stream is replaced by the respective stream, which max-
imizes the overall workflow similarity. The resulting adapted workflow is thus a
local optimum achieved by adapting the retrieved most similar workflow using the
available workflow streams.

5.3 Transformational Adaptation

Transformational adaptation is based on adaptation knowledge in the form of adap-
tation rules or adaptation operators [45] that specify a particular modification of the
case. Our transformational approach to workflow adaptation focuses on workflow
adaptation operators [54] which are specified in a STRIPS-like manner. An opera-
tor consists of two workflow sub-graphs we call streamlets: a DELETE-streamlet
specifies a workflow fraction to be deleted from the workflow and an ADD-streamlet
represents a workflow fraction to be added to the workflow. Thereby operators can
define the insertion, the removal, or the replacement of a particularworkflow fraction.
In contrast to compositional adaptation, not only workflow streams can be replaced,
but basically any fraction of a workflow, such as a single task or a single data item.

The example adaptation operator shown in Fig. 6 describes the transformation of
a planned business trip towards a spontaneous short time customer meeting near-by.
Thus, the booking of hotel and travel as well as the request for cash advance becomes
superfluous. Instead, just a taxi would have to be ordered. This change does not only
affect the activities but also the data items of the workflow, since here the data item
booking information is no longer required.

Fig. 6 Example of a
workflow adaptation
operator
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Workflow adaptation operators can be learned from the workflow repository by
analyzing pairs of highly similar workflows (selected by using a similarity threshold).
For each pair, the difference is determined and workflow operators are generated,
whose ADD and DELETE-streamlets basically cover those differences. Roughly
speaking, the generated operators thus transform one workflow of the pair into the
other one (see [54] for a detailed description of the algorithm).

For adaptation, the learned adaptation operators are applied using a local search
algorithm, in a similar manner as in compositional adaptation. The resulting adapted
workflow is thus a local optimum achieved by adapting the retrieved most similar
workflow using the available adaptation operators.

The three described adaptation methods can also be combined to a single adap-
tation process (see [55] for details). This comprehensive adaptation, integrates and
combines all adaptation methods, thereby maximizing the opportunity to generate a
suitable workflow for the given query.

6 CAKE - An Integrated System for Process-Oriented
Case-Based Reasoning

In the following, we briefly sketch the CAKE framework, which includes the previ-
ously introduced methods and we highlight several application examples.

6.1 Achitecture

The CAKE2 architecture [13] (see Fig. 7) basically consist of data bases as well as
a client and a server component. The latter includes a storage layer which handles
persistence of all data, an interface layer for client communication and two central
engines, i.e., the agile workflow engine and the knowledge engine working together
on the same data items accessed via the storage layer. CAKE is implemented in JAVA
as Web-based system running as a Software as a Service.

The agile workflow engine is used for the enactment of agile workflows and sup-
ports their collaborative modeling. Furthermore, changes on demand can be collab-
oratively performed on workflow instances as well as workflow models at any time.
Running workflow instances delegate tasks to humans via the worklist manager and
applications may be invoked via the service connector. In this chapter, however, we
mainly focused on the knowledge engine, which supports users in finding, defining,
and adapting workflows according to their current needs. Therefore, the knowledge
engine implements the retrieval and adaptation of semantic workflows as previously
introduced. CAKE ensures that any stored resource (a workflow, a task, a docu-
ment, and any further workflow related resources) is accessible and possesses a clear

2See http://cake.wi2.uni-trier.de.

http://cake.wi2.uni-trier.de


Similarity-Based Retrieval and Automatic Adaptation of Semantic Workflows 47

Fig. 7 CAKE system architecture

ownership by means of the resource model implemented in the storage layer. This
way, workflows can be shared and reused considering particular access rights [56].
The acquisition layer handles the import of ontologies and similarity measures and
further supports the automatic extraction of workflows from text [57, 58]. CAKE
provides two client interfaces, i.e., a browser based access as well as amobile android
application, which are connected to the server component via the interface layer.

6.2 Selected Application Examples

The methods for supporting workflow reuse presented in this chapter have potential
to be useful in many application areas, some of which will be now briefly sketched.

From the traditional business perspective, the presented methods can support the
creation of business processes addressing the individual needs of customers or of a
particular business scenario. Furthermore, adaptation enables the automatic modi-
fication of workflow models, for example, to suit changed business environments.
Moreover, POCBR can be employed as a knowledge management method for cap-
turing, storing, and sharing procedural knowledge among different employees or
departments.
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Social Workflows are a new research area [59, 60] which addresses the support
of processes enacted during daily life, such as, do-it-yourself car repair, moving
to another city, or organizing a trip with a group of friends. The steps in a social
workflow involve access to social networks, the activation of online services, as well
as activities performed by several people (e.g., friends or professionals). In a social
workflow management system as introduced by Görg [59, 60], the reuse capabilities
illustrated in this chapter are highly relevant since the users of social workflows are
not experienced in workflow modeling.

In the cooking domain a recipe can also be represented as a workflow describing
the instructions for cooking a particular dish [55]. While traditional recipe websites
solely regard ingredients, categories or recipe names during recipe search, CAKE
is able to consider additional knowledge such as required cooking steps, difficulty
level, costs, resource consumption, available tools, and diaries. Cooking workflows
can be selected and adapted considering particular user preferences by employing the
previously introduced POCBRmethods within the knowledge engine. Subsequently,
CAKE provides a step-by-step guidance for the preparation of the particular dish.

6.3 Required Knowledge Engineering

In order to apply POCBR (including the methods described in this chapter) in a cer-
tain domain requires a knowledge engineering process. This knowledge engineering
involves the development of the ontology (including task and data sub-ontologies),
the similarity measures, as well as the workflows for the case base. The manual
acquisition of adaptation knowledge is not required as this knowledge is obtained
by the described machine learning approaches particularly targeting the knowledge
required for the various adaptation methods.

Ontology development can be performed according to standard methodologies
(see, for example [61], Chap. 4 for an introduction). In particular, the reuse of existing
ontologies is highly recommended. In the cooking domain, for example, wemake use
of the cooking ontology developed within the Taaable project3 [62], which already
includes a huge set of ingredients and cooking steps. The sub-ontologies we currently
use consist of 156 ingredients and 55 cooking steps.

Based on the ontology, local similaritymeasures for comparing task and data items
must be developed. The knowledge engineering process for similarity measures is
well established in CBR [63] and ends-up in selecting appropriate local measures
from a similarity-measure library and selecting their parameters according to the
domain of the attributes (see, for example [33], Chap. 4).

The final knowledge-engineering steps aims at the acquisition of semantic work-
flows to populate the case base. For this purpose, different approaches are possible.

3http://wikitaaable.loria.fr.

http://wikitaaable.loria.fr
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• Workflows can be acquired in amanual process by usingworkflowmodeling tools.
Then, appropriate semantic annotations must be added to each task and data item.
This manual process is obviously a quite laborious activity, but it ensures a high
quality of the resulting knowledge.

• Alternatively, already existing workflows represented in some standard format,
such as BPMN, can be reused. For example, existing workflow repositories col-
lected and published for research purposes can be a good starting point. Current
collections include the BPM Academic Initiative Model Collection,4 selected ref-
erence models from the IBM Academic Initiative program,5 the SAP reference
models [64], the collections used in the process model matching contests6 in 2013
and 2015 as well as the collection of the Institute for Information Systems at
the DFKI in Saarbrücken [65]. However, the models in these collections lack the
required semantic descriptions and thus also requires an additional annotation
process before being usable as cases.

• The third approach for acquiring workflows is to apply information extraction
methods on available textual descriptions of processes [57, 58, 66]. Cooking
recipes, for example, are appropriate textual descriptions. The preparation instruc-
tions for the dish included in a recipe can be analyzed and turned into a formal
workflow representation. Also in other domains, workflows are described in a tex-
tual fashion, for example procedures for technical diagnosis. However, the result-
ing workflows still need manual quality control and improvement as automatic
methods are yet unable to produce results with sufficient quality.

From our experience, the described knowledge-engineering approach is appropriate
and the effort is acceptable in many domains. As benefit from these development
efforts, POCBR comprehensively supports the creation of new workflows by reuse.
Of course, there is no guarantee that workflows that are produced as a result of
an adaptation process are always semantically correct (the syntactic correctness,
however, is guaranteed). Their correctness depends on the correctness of the learned
adaptation knowledge.As this learning process is an inductive process, its correctness
cannot be ensured. Thus, there is always a need for a humanuser to access and validate
the resulting adapted workflows.

7 Conclusions

In this chapter, we introduced process-oriented case-based reasoning as a method to
support flexible and more individual workflows. We presented an overview of differ-
ent methods from knowledge representation, knowledge engineering and machine
learning to support the representation of semantic workflows as well as their simi-

4http://bpmai.org/download/index.html.
5https://developer.ibm.com/academic.
6https://ai.wu.ac.at/emisa2015/contest.php.

http://bpmai.org/download/index.html
https://developer.ibm.com/academic
https://ai.wu.ac.at/emisa2015/contest.php
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larity based retrieval and adaptation. These methods have been demonstrated using
an example from a traditional business process, involving several manual activities
typically enacted with support by some specific business application software. Thus,
those workflows are a means to coordinate the work among the involved employees
but they are also a means for application integration. As pointed out in the intro-
duction, workflows can also used in several other application contexts. Here, the
spectrum is quite large, leading applications involving a flow of activities performed
completely manual (such as in the cooking domain) up to applications in which the
workflows are executed fully automatically (e.g. scientific workflows or workflows
for information integration).

Within the scope of our work, we have extensively evaluated the proposed meth-
ods, including the quality of the adapted workflows in the cooking domain [39,
52–54]. Initial experimental evaluations in the domain of business processes [67],
and social workflows [59, 60] have been performed as well. Future work will focus
on investigating these and other new application domains in more depth. Moreover,
we will investigate interactive methods, which involve the user during search and
adaptation of workflows to further enhance the usability of the presented methods.
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