
Advances in Intelligent Systems and Computing 626

Grzegorz J. Nalepa
Joachim Baumeister Editors

Synergies Between
Knowledge
Engineering and
Software Engineering

Advances in Intelligent Systems and Computing

Volume 626

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Advances in Intelligent Systems and Computing” contains publications on
theory, applications, and design methods of Intelligent Systems and Intelligent Computing.
Virtually all disciplines such as engineering, natural sciences, computer and information
science, ICT, economics, business, e-commerce, environment, healthcare, life science are
covered. The list of topics spans all the areas of modern intelligent systems and computing.
The publications within “Advances in Intelligent Systems and Computing” are primarily

textbooks and proceedings of important conferences, symposia and congresses. They cover
significant recent developments in the field, both of a foundational and applicable character.
An important characteristic feature of the series is the short publication time and world-wide
distribution. This permits a rapid and broad dissemination of research results.

Advisory Board

Chairman

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India
e-mail: nikhil@isical.ac.in

Members

Rafael Bello Perez, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
e-mail: rbellop@uclv.edu.cu

Emilio S. Corchado, University of Salamanca, Salamanca, Spain
e-mail: escorchado@usal.es

Hani Hagras, University of Essex, Colchester, UK
e-mail: hani@essex.ac.uk

László T. Kóczy, Széchenyi István University, Győr, Hungary
e-mail: koczy@sze.hu

Vladik Kreinovich, University of Texas at El Paso, El Paso, USA
e-mail: vladik@utep.edu

Chin-Teng Lin, National Chiao Tung University, Hsinchu, Taiwan
e-mail: ctlin@mail.nctu.edu.tw

Jie Lu, University of Technology, Sydney, Australia
e-mail: Jie.Lu@uts.edu.au

Patricia Melin, Tijuana Institute of Technology, Tijuana, Mexico
e-mail: epmelin@hafsamx.org

Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: nadia@eng.uerj.br

Ngoc Thanh Nguyen, Wroclaw University of Technology, Wroclaw, Poland
e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

Jun Wang, The Chinese University of Hong Kong, Shatin, Hong Kong
e-mail: jwang@mae.cuhk.edu.hk

More information about this series at http://www.springer.com/series/11156

http://www.springer.com/series/11156

Grzegorz J. Nalepa • Joachim Baumeister
Editors

Synergies Between
Knowledge Engineering
and Software Engineering

123

Editors
Grzegorz J. Nalepa
AGH University of
Science and Technology

Kraków
Poland

Joachim Baumeister
Universität Würzburg
Würzburg
Germany

ISSN 2194-5357 ISSN 2194-5365 (electronic)
Advances in Intelligent Systems and Computing
ISBN 978-3-319-64160-7 ISBN 978-3-319-64161-4 (eBook)
https://doi.org/10.1007/978-3-319-64161-4

Library of Congress Control Number: 2017947445

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To all the people involved in ten editions
of the KESE workshop

Preface

In the early beginnings, the construction of automated programs for computers was
seen as a special kind of scientific art. With the emergent use and the advent of
higher-level programming languages, the term “Software Engineering” was coined
in the late 1970s as a title of a NATO conference bringing together international
experts in that field. At that conference, the experts wanted to tackle the pressing
problems of software programming, resulting in poor stability and exceeding costs
of the software. They aimed for a complete redefinition, where the development of
software was seen as “engineering discipline”. A systematic and measurable
approach of building computer programs was the ultimate goal. Following the
principles of established engineering disciplines, the quality of developing software
should then also improve. As of today, Software Engineering (SE) distinguishes a
number of areas, related to the software life cycle, most importantly requirements
engineering, software design, quality management (including testing), construction,
and maintenance; and furthermore, software development methodologies and pro-
gramming languages.

With improved methods and practices, the quality of software clearly improved
over the decades, despite the dramatically increased complexity. Also the devel-
opment costs decreased by order of magnitudes when compared to the complexity
of the software artifacts. However, as Fred Brooks prominently said, there will be
no “silver bullet” for building software in a perfect and error-less manner.

The development of the first larger expert systems started around the 1970s as
special purpose computer programs. In the early years, the development process
was similar to the early software engineering days: The construction of expert
systems followed no systematic approach, often specialized inference engines were
programmed ad-hoc in hand with the knowledge acquisition phase. Custom tools
were developed from project to project. In consequence, the same problems
popped-up as well-known from the early software engineering days: Projects
developed unpredictable costs, the quality of the systems was not measurable, and
many systems were abandoned due to their non-maintainability. The term
“Knowledge Engineering” (KE) was born to tackle these problems. With the same
systematic approach, many established methods and practices from Software

vii

Engineering were adapted to the needs of building intelligent systems. With the
development of tailored knowledge-based methods, the Software Engineering
community realized the potential of intelligent methods for Software Engineering
and thus the intellectual loop was closed by influential methods of Knowledge
Engineering in Software Engineering. Until today, this symbiotic relationship exists
and produces fruitful results. Currently, a number of international journals and
conferences are devoted to the interrelations of Software Engineering and
Knowledge Engineering.

In recent years, this relation is even stronger, with the rise of “intelligent/smart”
software penetrating many aspects of daily lives. Smart homes, intelligent assis-
tants, chatbots, autonomous cars, and intelligent manufacturing; these all are soft-
ware systems that require knowledge to develop and employ their intelligent
behavior and operation to the end user.

This volume compiles a number of submissions originated in the KESE work-
shop series: The first workshop KESE: Knowledge Engineering and Software
Engineering was held in 2005 at the 28th German Conference on Artificial
Intelligence (KI-2005) in Koblenz, Germany. The idea of the organizers was the
realignment of the discipline Knowledge Engineering and its strong relation to
Software Engineering, as well as to the classical Artificial Intelligence
(AI) research. The practical aspects of AI systems emphasize the need for com-
bining KE and SE methods and techniques. Due to their initial success, the KESE
workshops were annually organized at the German AI conference (KI). In the years
2006–2010 KESE was held together with the KI in Bremen, Osnabruck,
Kaiserslautern, Paderborn, and Karlsruhe. In these years, the workshop gathered a
motivated and active international community. Thanks to it, in 2011 the KESE7
workshop was co-located with the Spanish AI conference CAEPIA 2011, held in
San Cristobal de la Laguna, Tenerife. Then, in 2012 KESE moved the European AI
conference, ECAI, then held in Montpellier. In 2013, it shortly moved back to the
KI, held in Koblenz again. The tenth and last edition of KESE occurred in 2014. It
was again co-located with ECAI then held in Prague. In its ten years of continuous
existence, KESE attracted a stable flow of high quality papers. In the years 2005–
2014, the following numbers of papers were presented at KESE: 8, 5, 6, 9, 7, 5, 7,
10, 8, 10, total of 75 papers. Starting from 2007, the workshop had its own pro-
ceedings published via CEUR WS website (http://ceur-ws.org), as CEUR volumes:
282, 425, 486, 636, 805, 949, 1070, and 1289. Moreover, in 2011 a Special Issue
on Knowledge and Software Engineering for Intelligent Systems of the
International Journal of Knowledge Engineering and Data Mining Vol. 1 No. 3 was
published. All the details of the history of KESE were made available on a dedi-
cated website: http://kese.ia.agh.edu.pl

The KESE community not only appreciated the scientific quality of the work-
shop, but also its important social aspects. Every year the participants held addi-
tional vibrant discussions during the so-called balcony-sessions, commonly referred
to as b-sessions.

The workshop series always encouraged submissions describing methodological
research combining Knowledge Engineering and Software Engineering but also the

viii Preface

http://ceur-ws.org
http://kese.ia.agh.edu.pl

presentation of successful applications demanding for both disciplines. In fact,
besides regular papers, starting from 2009 KESE also solicited tool presentations.
In the 10 years of annual workshops, the topics of interest varied from AI methods
in software/knowledge engineering (knowledge and experience management,
declarative, logic-based approaches, constraint programming, agent-oriented soft-
ware engineering, issues of maintenance) and knowledge/software engineering
methods in AI (collaborative engineering of the Semantic Web, database and
knowledge base management in AI systems, tools for intelligent systems, evalua-
tion of (intelligent) systems: verification, validation, assessment, process models) to
a range of topics located on the intersection of several disciplines relevant for
KESE. In the final edition these included: knowledge and software engineering for
the Semantic Web, knowledge and software engineering for Linked Data, ontolo-
gies in practical knowledge and software engineering, business systems modeling,
design and analysis using KE and SE, practical knowledge representation and
discovery techniques in software engineering, context and explanation in intelligent
systems, knowledge base management in KE systems, evaluation and verification
of KBS, practical tools for KBS engineering, process models in KE applications,
software requirements and design for KBS applications, software quality assess-
ment through formal KE models, and declarative, logic-based, including constraint
programming approaches in SE.

After 10 bright years of annual workshops, we decided it is the time summarize
the decade of works of the KESE community. Thus, we decided to prepare and edit
this ''memorial'' volume. It compiles thirteen intriguing contributions closely related
to the KESE topics with both methodological and application background grouped
in two separate parts.

The first methodological part is composed of seven chapters. Ralph
Schäfermeier and Adrian Paschke introduce an ontology development process that
is inspired by Aspect-Oriented Programming. By following the aspect-oriented
development, the complexity of the construction process can be simplified by strict
modularization. Ralph Bergmann and Gilbert Müller improve the (re-)use of
workflows in process-oriented information systems by introducing methods for the
retrieval and adaptation of (best practice) workflows applicable to new process
problems. Isabel María Del Águila and José Del Sagrado describe an approach to
building of intelligent systems using Bayesian networks. They use UML known
from Software Engineering and introduce the meta-model BayNet that supports the
development and maintenance process. How can software development be sup-
ported by Knowledge Engineering techniques? Paraskevi Smiari et al. represent
anti-patterns in software development by Bayesian networks and include this into a
knowledge-based framework. During the software development the data is acquired
and problems are identified as anti-patterns. Bayesian networks are used to assess
the anti-pattern in the concrete problem situation. The quality of intelligent systems
is considered by the contribution of Rainer Knauf: He introduces formal methods
for the validation and finally the refinement of intelligent systems. Automated
methods for test case generation and support for the human inspection are pre-
sented. The quality of intelligent systems is also discussed in the next contribution:

Preface ix

Marius Brezovan and Costin Badica present a novel method for the verification of
knowledge-based systems. They apply a mathematical language for modeling the
static and dynamic properties of the systems. Finally, in her contribution, Kerstin
Bach tackles the problem of building large (knowledge-intensive decision-support)
systems. With the industry-inspired term “Knowledge Line” a methodology for the
modularization of knowledge is presented and exemplified.

The second part is devoted to applications and is composed of six chapters. The
authors Paolo Ciancarini et al. report on the development of a mission-critical and
knowledge-intensive system. They define the process model iAgile which is based
on the successful Scrum methodology widely applied in Software Engineering.
Pascal Reuss et al. also report on construction of an intelligent system, here the
diagnosis and maintenance of civil aircrafts. A multi-agent approach is used to
organize and implement the problem domain. A practical application report from
the medical domain is given by Paulo Novais et al. A model of computer inter-
pretable guidelines is introduced by using the ontology language OWL. Together
with the language, an implementation in a clinical system is given. The web
traversals and actions of users in the web is an interesting asset for market research.
Adrian Giurca introduces the ontology Metamarket that models the user preferences
and interactions. Apache Maven is a popular and broadly used tool for supporting
the development of general software. In their contribution Adrian Paschke and
Ralph Schäfermeier extend and customize the Maven approach for the distributed
development and management of ontologies. A different approach for supporting
software development is presented by Andrea Janes: data is collected during the
software development process in a ubiquitous manner. The measurements are used
to identify knowledge in the process data and to analyze the software creation and
usage process.

In the past few years, a strong rise of interest in AI can clearly be observed in
research, IT industry, as well as the general public. Today, the development of
complex intelligent systems clearly benefits from the synergy of knowledge engi-
neering and software engineering. Let this book, be a timely and valuable contri-
bution to this goal.

Kraków, Poland Grzegorz J. Nalepa
Würzburg, Germany Joachim Baumeister
2017

x Preface

Contents

Part I Methodological Studies

Aspect-Oriented Ontology Development . 3
Ralph Schäfermeier and Adrian Paschke

Similarity-Based Retrieval and Automatic Adaptation of Semantic
Workflows . 31
Ralph Bergmann and Gilbert Müller

Development of Knowledge-Based Systems Which Use Bayesian
Networks . 55
Isabel M. del Águila and José del Sagrado

Knowledge Acquisition During Software Development: Modeling with
Anti-patterns . 75
Paraskevi Smiari, Stamatia Bibi and Ioannis Stamelos

Knowledge Engineering of System Refinement What We Learnt from
Software Engineering . 93
Rainer Knauf

Using the Event-B Formal Method and the Rodin Framework for
Verification the Knowledge Base of an Rule-Based Expert System 107
Marius Brezovan and Costin Badica

Knowledge Engineering for Distributed Case-Based Reasoning
Systems . 129
Kerstin Bach

Part II Application Studies

Agile Knowledge Engineering for Mission Critical Software
Requirements. 151
Paolo Ciancarini, Angelo Messina, Francesco Poggi and Daniel Russo

xi

Knowledge Engineering for Decision Support on Diagnosis and
Maintenance in the Aircraft Domain . 173
Pascal Reuss, Rotem Stram, Klaus-Dieter Althoff, Wolfram Henkel
and Frieder Henning

The Role of Ontologies and Decision Frameworks in Computer-
Interpretable Guideline Execution . 197
Paulo Novais, Tiago Oliveira, Ken Satoh and José Neves

Metamarket – Modelling User Actions in the Digital World 217
Adrian Giurca

OntoMaven - Maven-Based Ontology Development and Management
of Distributed Ontology Repositories . 251
Adrian Paschke and Ralph Schäfermeier

Non-distracting, Continuous Collection of Software Development
Process Data . 275
Andrea Janes

xii Contents

Contributors

Klaus-Dieter Althoff Intelligent Information Systems Lab, University of
Hildesheim, Hildesheim, Germany; Competence Center Case Based Reasoning,
German Center for Artificial Intelligence, Kaiserslautern, Germany

Kerstin Bach Department of Computer and Information Science, Norwegian
University of Science and Technology, Trondheim, Norway

Costin Badica University of Craiova, Craiova, Romania

Ralph Bergmann Business Information Systems II, University of Trier, Trier,
Germany

Stamatia Bibi Department of Informatics & Telecommunications Engineering,
University of Western Macedonia, Kozani, Greece

Marius Brezovan University of Craiova, Craiova, Romania

Paolo Ciancarini Department of Computer Science and Engineering, Consorzio
Interuniversitario Nazionale per l’Informatica (CINI), University of Bologna,
Bologna, Italy

Isabel M. del Águila University of Almería, Almería, Spain

José del Sagrado University of Almería, Almería, Spain

Adrian Giurca Brandenburg University of Technology Cottbus-Senftenberg,
Cottbus, Germany

Wolfram Henkel Airbus Operations GmbH, Hamburg, Germany

Frieder Henning Lufthansa Industry Solutions, Hamburg, Germany

Andrea Janes Free University of Bozen-Bolzano, Bozen, Italy

Rainer Knauf Ilmenau University of Technology, Ilmenau, Germany

Angelo Messina Defense and Security Software Engineers Association, Innopolis
University, Russian Federation, Rome, Italy

xiii

Gilbert Müller Business Information Systems II, University of Trier, Trier,
Germany

José Neves Department of Informatics, Algoritmi Research Centre, University of
Minho Braga, Braga, Portugal

Paulo Novais Department of Informatics, Algoritmi Research Centre, University
of Minho Braga, Braga, Portugal

Tiago Oliveira National Institute of Informatics, Sokendai University, Tokyo,
Japan

Adrian Paschke Computer Science Institute, Corporate Semantic Web Group,
Freie Universität Berlin, Berlin, Germany

Pascal Reuss Intelligent Information Systems Lab, University of Hildesheim,
Hildesheim, Germany; Competence Center Case Based Reasoning, German Center
for Artificial Intelligence, Kaiserslautern, Germany

Francesco Poggi Department of Computer Science and Engineering, University of
Bologna, Bologna, Italy

Daniel Russo Department of Computer Science and Engineering, Institute of
Cognitive Sciences and Technologies, Italian National Research Council (CNR),
Consorzio Interuniversitario Nazionale per l’Informatica (CINI), Rome, Italy

Ken Satoh National Institute of Informatics, Sokendai University, Tokyo, Japan

Ralph Schäfermeier Computer Science Institute, Corporate Semantic Web
Group, Freie Universität Berlin, Berlin, Germany

Paraskevi Smiari Department of Informatics & Telecommunications
Engineering, University of Western Macedonia, Kozani, Greece

Ioannis Stamelos Department of Computer Science, Aristotle University of
Thessaloniki, Thessaloniki, Greece

Rotem Stram Competence Center Case Based Reasoning, German Center for
Artificial Intelligence, Kaiserslautern, Germany

xiv Contributors

Part I
Methodological Studies

Aspect-Oriented Ontology Development

Ralph Schäfermeier and Adrian Paschke

Abstract Aspect-Oriented Ontology Development takes inspiration from
Aspect-Oriented Programming and provides a novel approach to the problems of
ontology modularization and metamodeling by adding support for reified axioms.
The book chapter describes the syntax and semantics of Aspect-Oriented Ontology
Development, explains its benefits and possible weaknesses as compared to other
existing modularization approaches and presents a set of application scenarios as
well as a set of supporting tools.

1 Introduction

This book chapter describes a novel approach to the problem of ontology modular-
ization and re-use by the means of aspect-orientation [1].

With Aspect-Oriented Ontology Development (AOOD) we refer to a method-
ological approach, a set of logical formalisms and accompanying tools for modular
ontology development and partial reuse of existing ontological knowledge based
on requirements and cross-cutting concerns.1 It is therefore a subfield of Ontology
Engineering and a particular approach to the problem of Ontology Modularization
and Modular Ontology Development.

Modular ontology development has proved beneficial when it comes to improve-
ment of reasoning and query result retrieval performance, scalability for ontology

1As defined by the IEEE standard 1471 of software architecture [2], “concerns are those
interests which pertain to the systems development, its operation or any other aspects that are
critical or otherwise important to one or more stakeholders”.

R. Schäfermeier (B) · A. Paschke
Freie Universität Berlin, Computer Science Institute, Corporate Semantic Web Group,
Königin-Luise-Stra?e 24/26, 14195 Berlin, Germany
e-mail: ralph.schafermeier@gmail.com

A. Paschke
e-mail: paschke@inf.fu-berlin.de

© Springer International Publishing AG 2018
G.J. Nalepa and J. Baumeister (eds.), Synergies Between Knowledge
Engineering and Software Engineering, Advances in Intelligent
Systems and Computing 626, https://doi.org/10.1007/978-3-319-64161-4_1

3

4 R. Schäfermeier and A. Paschke

evolution and maintenance, complexity management, amelioration of understand-
ability, reuse, context-awareness, and personalization [3]. A significant amount of
research work has been dedicated in the field of ontology modularization, and vari-
ous kinds of approaches tackle the problem from different perspectives. One kind of
approaches provides algorithmic solutions for the problem of modularizing existing
large and monolithic ontologies, while others provide methodological and formal
means for contsructing ontologies in a modular fashion from scratch.

Aspect-Oriented Ontology Development is inspired by the Aspect-Oriented Pro-
gramming (AOP), also known as Aspect-Oriented Software Development (AOOD)
paradigm.

2 Aspect-Oriented Programming

The main goal of Aspect-Oriented Programming is the decomposition of software
systems into concerns which cross-cut the system. A code module covering a par-
ticular concern is referred to as an aspect. Concerns may be functional concerns,
which are directly related to the system’s domain of interest and business logic and
non-functional concerns, such as security, logging/auditing and performance.

The decomposition is accomplished by introducing extensions to existing pro-
gramming languages (such as AspectJ2 for Java) that allow the decomposition of
code into modules, each of them dealing with a concern, as well as a mechanism
for recombining the modules at compile or runtime into a complete and coherent
system.

Programming languages without aspect-orientation have no means for separating
those concerns, which leads to undesired code tangling and hinders system decom-
position.

2.1 Quantification and Obliviousness

Two principal properties of Aspect-Oriented Programming are quantification and
obliviousness [4]. Obliviousness refers to the fact that all information necessary to
determine the execution points where the application should make a call into an
aspect module are contained within the aspect itself rather than in the application
code. A developer of onemodule does not, and need not, have knowledge about other
modules that might potentially be called.

This information may be provided in the form of an exhaustive list of signatures
or in terms of quantified statements over signatures, called a pointcut. Each single
matching signature is called a join point.

2https://eclipse.org/aspectj/.

https://eclipse.org/aspectj/

Aspect-Oriented Ontology Development 5

Formally, Aspect-Oriented Programming uses quantified statements of the fol-
lowing form [5]:

∀m(p1, . . . , pn) ∈ M : s(sig(m(p1, . . . , pn)))

→ (m(p1, . . . , pn) → a(p1, . . . , pn)) , (1)

where M is the set of all methods defined in the software system, s a predicate spec-
ifying a matching criterion, m(p1, . . . , pn) ∈ M a method matching the signature
sig(m(p1, . . . , pn)), and a(p1, . . . , pn) the execution of the aspect with all the para-
meters of each method, respectively. The code in the aspect, which is executed at
each joint point, is referred to as advice. In APO terminology, an aspect advices the
main code.

The idea behind Aspect-Oriented Ontology Development is to use pointcuts in
order to describe ontology modules and aspects in order to attach additional knowl-
edge (advice) to each of these modules.

3 Aspect-Oriented Ontologies

The idea behind Aspect-Oriented Ontology Development is to use pointcuts in order
to describe ontology modules and aspects in order to attach additional knowledge
(advice) to each of these modules.

The semantics of ontology aspects are defined in correspondence with the
possible-world semantics of multi-modal logics.

As in software, cross-cutting concerns can be observed in ontologies. Consider
for example Abox facts that are constrained to be valid only during a certain period
of time. Figure1 shows a concrete example of a time-constrained fact, namely the
recognition of the Kosovo as a self-governing entitiy, using concepts from the geopo-
litical ontology of the Food and Agriculture Organization of the United Nations.3

The time period is modeled using the W3C time ontology.4

The intention is to reify the first fact recognizedBy(Kosovo, United_Kingdom)
with the open time interval individual Interval_1 using a validDuring relationship.
This, however, is not permissible due to limitations in the expressivity of OWL
and the underlying Description Logics. What is instead recommended by the W3C
is to introduce a surrogate individual to represent the ternary relationship between
Kosovo, the UK and the time interval.5 The right hand side of Fig. 1 shows the
combined facts with the new introduced Recognition_1 surrogate individual. In
addition to the individual, two new object properties need to be introduced. The
existing recognizedBy property now has the new surrogate individual in its range

3http://www.fao.org/countryprofiles/geoinfo/en/.
4www.w3.org/TR/owl-time/.
5http://www.w3.org/TR/swbp-n-aryRelations/.

http://www.fao.org/countryprofiles/geoinfo/en/
www.w3.org/TR/owl-time/
http://www.w3.org/TR/swbp-n-aryRelations/

6 R. Schäfermeier and A. Paschke

"2008-02-18T00:00:00"
^^xsd:dateTime

hasBeginning

Interval_1 United_Kingdom

recognizedBy

Kosovo

Recognition_1

self_governing

rdf:type

DateTimeInterval

rdf:type

Recognition

rdf:type

recognizingEntity validity

Interval_1

"2008-02-18T00:00:00"
^^xsd:dateTime

hasBeginning

United_Kingdom

recognizedBy

Kosovo

self_governing

rdf:type

DateTimeInterval

rdf:type

Fig. 1 Axioms from the FAO and the W3C time ontology (left) and necessary refactoring of the
reused ontology in order to allow for the extension, following the W3C n-ary relations pattern
(right)

instead of the recognizing country. The two new properties connect the surrogate
with the recognizing country and the time interval, respectively.

The recommended pattern for n-ary relationships leads to a high degree of entan-
glement of different concerns (in this case different domains, namely the domain of
self-governing political entities and the domain of time), which brings the following
disadvantage: After the introduction of the surrogate individual, the representation
of the fact recognizedBy(Kosovo, United_Kingdom) as a simple binary relation is
lost. An ontology engineer, however, might be interested in reusing knowledge about
self-governing entities from this ontology but without the temporal information. Due
to the entanglement it is not trivial anymore to separate these parts from each other
and reuse them individually.

Therefore, we introduce new syntactic category Aspect, which is used in order
to establish a relationship between OWL 2 classes and axioms. Figure2 depicts the
representation of the ternary relationship from the above example using an aspect.
Note that the figure contains two ternary relationships: The one from the example and
the class assertion axiom Kosovo rdf:type self_governing which is also supposed
to be valid only during the given time interval.

It might appear awkward to represent aspects as classes. In the following subsec-
tion where we describe the semantics of aspects, we provide a justification of that
choice.

As can be seen, this way of representing the above relationships keeps the orig-
inal structure of the ontology intact. In particular, it allows to connect additional

Aspect-Oriented Ontology Development 7

Interval_1

"2008-02-18T00:00:00"
^^xsd:dateTime

hasBeginning

United_Kingdom

recognizedBy

Kosovo

self_governing

rdf:type

DateTimeInterval

rdf:type

aspect
Temporal
Aspect_1

rdf:
type

Aspect

subclassOf

Fig. 2 Representation of the ternary relationships using an aspect. Note that the pointcut relation
points to axioms, not individuals

(time) knowledge to an existing binary relation (about countries) while keeping both
domains separated from each other, allowing partial reuse and independent mainte-
nance and evolution.

3.1 Syntax

As mentioned above, we extend the OWL 2 language by a syntactic category Aspect
which is used to represent a relationship between classes and axioms.

The definition of the abstract syntax in OWL functional-style syntax is as follows:

Aspect ::= ’Aspect ’ ’ (’ Annotation∗ Advice ’) ’
AspectAssertion ::= ’AspectAssertion ’ ’ (’

AxiomAnnotationSet JoinPoint Advice ’) ’
AxiomAspectSet ::= Aspect∗
JoinPoint ::= IRI | AnonymousIndividual
Advice ::= ClassExpression
Pointcut ::=

SPARQLPointcut | ModulePointcut | DLQueryPointcut
SPARQLPointcut ::= ’SPARQLPointcut ’ ’ (’

AxiomAnnotationSet Aspect ’ " ’ ConstructQuery ’ " ’ ’) ’
ModulePointcut ::= ’ModulePointcut ’ ’ (’

AxiomAnnotationSet Aspect Signature ’) ’
DLQueryPointcut ::= ’DLQueryPointcut ’ ’ (’

AxiomAnnotationSet Aspect ClassExpression ’) ’
Signature ::= EntityIRI∗

The definitions of the categories Annotation, AxiomAnnotationSet, IRI, Anonymou-
sIndividual, ClassExpression and Axiom are provided in the OWL 2 Structural Spec-
ification.6 The defintion of ConstructQuery is provided in the SPARQL 1.1 Query
Language Specification.7

6http://www.w3.org/TR/owl2-syntax/.
7http://www.w3.org/TR/sparql11-query/#rConstructQuery.

http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/sparql11-query/#rConstructQuery

8 R. Schäfermeier and A. Paschke

An AxiomAspectSet can be added to each axiom that can contain an AxiomAnno-
tationSet, for example:

EquivalentClasses ::= ’EquivalentClasses ’ ’ (’
AxiomAnnotationSet AxiomAspectSet
ClassExpressionSet ’) ’

3.2 Semantics

We define the semantics of ontology aspects in terms of two-dimensional interpreta-
tions, with one dimension accommodating the object logic and the other dimension
accommodating the aspect meta-logic. An interpretation is a model for a sentence
if the usual conditions on the object logic apply. A model on the aspect logic level
is defined in correspondence to a Kripke model for modal logics, where a possible
world represents a context in which a sentence of the object logic is true or not and
classes of possible worlds can be used in order to define complex contexts using the
available class constructors.

3.2.1 OWL Direct Semantics

The OWL 2 direct semantics as defined by the W3C8 are compatible with the
semantics of the Description Logic SROIQ plus datatypes, also referred to as
SROIQ(D).

For the sake of simplicity, and without loss of generality, we neglect datatypes
in our definitions here and only consider SROIQ. The extension of SROIQ with
datatypes is straighforward, and we refer the interested reader to [6].

Definition 1 Let NC, NR, and NI be nonempty, pairwise disjoint sets of concept
names, role names, and individual names. Then the tripleN := (NC, NR, NI) is called
a vocabulary. The set of concepts over NC is inductively defined using concept names
A ∈ NC and the constructors in the top section of Table1, where r, s ∈ NR, a, b ∈ NI,
n ∈ N, and C, D are concepts over N. The syntax of axioms over N is shown in the
bottom section of Table1.

An RBox R over N is defined as a finite set of role inclusions, transitivity axioms,
symmetry axioms, reflexivity axioms, role chain axioms, inverse role axioms, and
disjoint role axioms over N.

A Boolean axiom formula over N is a combination of Boolean conjunctions and
disjunctions of general concept inclusions, and concept and role assertions over N.

Finally, let B be a Boolean axiom formula over N and R an RBox over N. We
then call the tuple B = (B,R) a Boolean knowledge base (BKB) over N.

Note that we adopt the above definition from [7], which derives from the classical
separation of knowledge bases into an ABoxes, TBoxes and RBoxes. This separation

8https://www.w3.org/TR/owl2-direct-semantics/.

https://www.w3.org/TR/owl2-direct-semantics/

Aspect-Oriented Ontology Development 9

Table 1 Semantics of SROIQ constructors (top) and axioms (bottom)

Syntax Semantics

Top concept � ΔI
I

Negation ¬C ΔI
I \ CI

Conjunction C � D CI ∩ DI

Existential
restriction

∃r.C {d ∈ ΔI
I | there exists an e ∈ CI with (d, e) ∈ rI}

At-most restriction ≤n r.C {d ∈ ΔI
I | #{e ∈ CI | (d, e) ∈ rI} ≤ n}

nominal {a} {aI}
General concept
inclusion

C � D CI ⊆ DI

Concept assertion C(a) aI ∈ CI

Role assertion r(a, b) (aI , bI) ∈ rI

Role inclusion r � s rI ⊆ sI

Transitivity trans(r) (d, e) ∈ rI and (e, f) ∈ rI → (d, f) ∈ rI

Symmetry sym(r) (d, e) ∈ rI → (e, d) ∈ rI

Reflexivity ref(r) (d, d) ∈ rI for all d ∈ ΔI
I

Role chain r ◦ s (d, e) ∈ rI and (e, f) ∈ sI → (d, f) ∈ (r ◦ s)I

Inverse role Inv(r, s) (d, e) ∈ rI → (e, d) ∈ sI

Disjoint roles r � s � ¬�9 rI ∩ sI ⊆ ∅

is not necessary in our work, and the generalization to Boolean knowledge bases
results in more simplicity.

Also note that the top concept � may also be inductively defined as A � ¬A with
A ∈ NC being arbitrary but fixed, where the disjunction C � D is in turn defined as
¬(¬C � D). Furthermore, universal restrictions ∀r.C may be defined as ¬∃r.¬C ,
at-least restrictions≥n r.C as¬(≤n−1 r.C) and the bottom concept⊥ as¬�. Finally,
the concept equivalence axiom C ≡ D may be expressed as the boolean conjunction
of two general concept9 inclusions C � D and D � C .

Definition 2 Let N = (NC, NR, NI) be a vocabulary, ΔI a nonempty set (called
domain), and ·I a mapping assigning a set AI ⊆ ΔI to every concept name A ∈ NC ,
a binary relation rI ⊆ ΔI × ΔI to every role name r ∈ NR, and an element of
the domain aI ∈ ΔI to every indiviual name a ∈ NC. The pair I = (ΔI, ·I) is an
interpretation over the vocabulary N or simply an N-interpretation. Moreover, ·I
may be inductively applied to concepts over N as shown in the upper section of
Table1.

We call I a model of an axiom α over N if the respective condition in the lower
section of Table1 is satisfied. I is a model of a Boolean axiom formula B over N

9The bottom concept may be constructed by negation of the top concept, so we omit the dedi-
cated bottom concept constructor in order to avoid redundancy. Likewise, we do not introduce the
equvialent concept axiom, because it may be defined inductively from general concept inclusions
and conjunction.

10 R. Schäfermeier and A. Paschke

(denoted as I |= B) if for each of the axioms that it consists of the condition in the
lower section of Table1 is satisfied. Likewise, I is model of an RBox R over N
(denoted as I |= R) if it is a model of each axiom inR.

Finally, I is a model of the Boolean knowledge base B = (B,R) over N if it a
model of B and if it is a model of R.

3.2.2 Semantics of Modal Logics

Modal logics are propositional logics extended with two additional operators �
and ♦. Depending on the type of modal logic, the operators are named differently.

For example, in basic modal logic, � is simply named box, and ♦ is named
diamond. In logics that study necessity and possibility, � is named necessarily, and
♦ is named possibly. In epistemic logics, � stands for “it is known that”, and ♦
stands for “it is believed that”. In temporal logics, � may stand for “it has always
been the case that” or “it will always be the case that”, and ♦ may stand for “it was
the case that” or “it will be the case that”, although it is common practice to use
different symbols for the different types of logics.

Modal Logics are a syntactic variant of Description Logics [8]. This makes them
easily combinable with DL based languages, since the languages’ primitives may
be mapped to either logic’s features. Yet, the semantics of Modal Logics provide a
more intuitive access to the notion of ontology aspects.

Definition 3 A Kripke frame is a tuple F = (W, Ri), where W is a set of possible
worlds, and Ri ⊆ W × W an accessibility relation between worlds.

Furthermore, a Kripke model is a tuple (W, Ri , L), with W again a set of possible
worlds, Ri an accessibility relation, and L : W → P(Prop) a labeling function,
where P is a valuation function Prop → {T, F} that maps propositional symbols
to truth values. Moreover, let �i and ♦i be modal operators.

Then, the truth value of the propositional formula φ at a possible world w :
M, w |= φ is defined in the following way:

• M, w |= T and M, w �|= ⊥
• M, w |= p iff p ∈ L(x)

• M, w |= ¬φ iff M, w �|= φ

• M, w |= φ1 ∨ φ2 iff M, w |= φ1 or M, w |= φ2

• M, w |= φ1 ∧ φ2 iff M, w |= φ1 and M, w |= φ2

• M, w |= �iφ iff ∀w‘ ∈ W : wRi w‘ → M, w‘ |= φ

• M, w |= ♦iφ iff ∃w‘ ∈ W : wRi w‘ → M, w‘ |= φ

Furthermore, by adding certain axioms it is possible to alter the behavior of the
logic and obtain a particular type of modal logic. According to the correspondence
theorem, each axiom corresponds to a particular condition which is imposed on the
frame. This in turn corresponds to the characteristic of the accessibility relation of the
frame. Table2 shows the correspondences between logic types, axioms, conditions
on frames, and characteristics of the accessibility relation.

Aspect-Oriented Ontology Development 11

Table 2 Correspondence between types of modal logic, axioms, conditions on frames, and char-
acteristics of the accessibility relation

Name Axiom Condition on frames R is…

(D) �φ → ♦φ ∃uwRu Serial

(M) �φ → φ wRw Reflexive

(4) �φ → ��φ (wRv ∧ vRu) → wRu Transitive

(B) φ → �♦φ wRv → vRw Symmetric

(5) ♦φ → �♦φ (wRv ∧ wRu) → vRu Euclidean

(C D) ♦φ → �φ (wRv ∧ wRu) → v = u Functional

(�M) �(�φ → φ) wRv → vRv Shift Reflexive

(C4) ��φ → �φ wRv → ∃u(wRu ∧ u Rv) Dense

(C) ♦�φ → �♦φ wRv ∧ wRx → ∃u(vRu ∧ x Ru) Convergent

Table 3 Correspondence between modal logics and Description Logics

Modal logics Description logics

M, w |= ¬A iff M, w �|= A ¬CI = DI \ CI

M, w |= A1 ∧ A2 iff M, w |= A1 and M, w |= A2 (C1 � C2)
I = CI

1 ∩ CI
2

M, w |= A1 ∨ A2 iff M, w |= A1 or M, w |= A2 (C1 � C2)
I = CI

1 ∪ CI
2

M, w |= �i A iff ∀w‘ ∈ W : wRi w‘ → M, w‘ |= A (∀r.C)I = {x | ∀y((x, y) ∈ rI →
y ∈ CI)}

M, w |= �i A iff ∃w‘ ∈ W : wRi w‘ → M, w‘ |= A (∃r.C)I = {x | ∃y((x, y) ∈ rI →
y ∈ CI)}

3.2.3 Correspondence Between Modal and Description Logics

Asmentioned in Sect. 3.2.2, there exists a direct correspondence betweenDescription
Logics and modal logics (see table3).

3.2.4 Semantics of Ontology Aspects Using Two-Dimensional
Interpretations

We can now define the semantics of ontology aspects. The intuition of an aspect
as laid out in Sect. 3 is to provide external context knowledge in order to specify
circumstances in which a part of the knowledge encoded in an ontology holds and
in which it does not.

We define a combined interpretation, which we call a SROIQKripke interpre-
tation. The idea is based on nested interpretations as introduced by Böhme and
Lippmann [9] with the difference that we combine two different kinds of models.

Definition 4 A SROIQKripke interpretation is a tuple J := (W, R, L , ·J ,Δ,

(·Iw)w∈W) with W being a nonempty set, called possible worlds, and L a Kripke
interpretation, assigning truth values to propositional symbols in each world w ∈ W
as described in Sect. 3.2.2.

For every A ⊆ W , IA is a DL interpretation.

12 R. Schäfermeier and A. Paschke

The semantics of an aspect of an axiom is then defined as follows:

Definition 5 Let J := (W, R, L , ·J ,Δ, (·Iw)w∈W) be a possible-world DL inter-
pretation. We interpret an aspect under which an axiom α holds as follows:

(hasAspect(α, A))J → AJ ⊆ CJ := {w ∈ W | Iw |= α}. Because of the cor-
respondence as described inSect. 3.2.3we can setW = CJ , such that on the semantic
level each individual corresponds to a possible world. Furthermore, we set L such
that L(α)J := AJ .

The intuition is to have an aspect correspond to a propositional formula that might
or might not be mapped to T rue by L in a particular possible world w.

Due to the correspondence betweenDescriptionLogics andmodal logics, a propo-
siotional formula may as well be interpreted as a concept C and the worlds in which
the formula is mapped to T rue by L as indivudials which are instances of C . The
accessibility relations may be interpreted as roles. The choice of characteristics of
the roles determines the type of modal logic and thereby the semantics of the modal
operators.

This yields the following advantages:

• Aspects correspond to sets of axioms or facts that are true in certain possible
worlds.

• Aspects are modeled as classes.
• Possible worlds are modeled as individuals.
• Accessibility relations are modeled as object properties.
• The semantics of aspects depend on the choice of conditions on frames (axioms
on accessibility properties).

The rationales behind that choice are:

• (Multi-)modal logics are a syntactic variant of and thereby semantically equivalent
to Description Logics [7, 8].

• Aspects are a sort of modality in that there is a function that determines in which
situations an aspect is active and in which it is not. That corresponds to possible
worlds in modal logics where a truth-functional valuation determines whether a
fact is valid in a possible world or not.

• The kind of modal logic is determined by conditions on Kripke frames, which (to
a certain extent) may be controlled by fixing the characteristics of the accessibility
relations. This allows the representation of e.g., temporal logic (as in our running
example), simple views, agent beliefs, etc.

• Using classes as aspects allows to use abstract class definitions using constraints
with quantifiers.

Figure3 depicts a more complex example using a temporal aspect on an Abox fact
capitalOf(Bonn, Germany), which was true between 1949 and 1990. We used the
W3C time ontology again tomodel time instances.We interpret each time instance as
a possibleworld, and after (and before) are accessibility relations, which are reflexive
and transitive. We thereby obtain the conditions on the Kripke frames for a temporal
logic:

Aspect-Oriented Ontology Development 13

capitalOf(Bonn,
Germany)

after value 1949 and
before value1990

PostWW2
WestGermany

before

after

aspect

rdf:typerdf:type

1945 1949 1969 1989 1990 2015

Fig. 3 A temporal aspect using temporal logic

• (M) : �A → A
• (4) : �A → ��A

The temporal aspect is then the class expression
after value 1949 and before value 1990,
which includes the values 1949 and 1990 due to the reflexivity of the before and
after relations.

Likewise, we can obtain a simple Logic K by just setting the accessibility relation
reflexive. We can use this logic to model simple views, which are manually assigned
to axioms.

As a third example, we can use multi standard deontic logic for modelling access
permissions over axioms for different agents by having a serial accessibility relation
ai for each agent i in order to obtain the axiom

• (D) : �i A → ♦i A

The intuition behind this is that an aspect describes a (syntactic) module in an ontol-
ogy (which technically consists of a set of axioms) and adds second-order information
to it (as for example a temporal validity restriction, as in the above example). The
purpose of this approach is to permit to extract modules depending on the outcome of
some reasoning process. We could, for example, extract a module with axioms that
are valid only during the 1950s (which would include the fact that Bonn is capital of
Germany) and at the same time are accessible to some agent.

Defining ontology aspects as meta-statements which describe possible worlds in
which an ontology axiommay be either true or false allows for a number of industrial
as well as research scenarios.

4 Application Scenarios
In the context of the Corporate Smart Content research project we implemented the
following research and industrial scenarios using aspect-oriented ontologies.

14 R. Schäfermeier and A. Paschke

4.1 Research Scenarios

• Simple views
Aspects in their simplest form provide simple context information with attach to
ontology axioms or facts.
Simple views are realized using a simple Logic K with only one condition on the
modal frames. With Logic K it is possible to express:

– named views
– provenance information
– meta-data of any type
– references to other named resources, e.g. for
· multi-faceted alignment to external taxonomies
· optional, non-normative descriptions

• Inconsistent knowledge
Logic K is an epistemic logic and relies on the fact that knowledge is consistent
across the boundaries of possible worlds. This scenario also describes cases in
which the axiomatization of a domain may change depending on an externally
provided context, but, unlike in the first scenario, inconsistencies in the knowledge
in different contexts is allowed.
An example of an inconsistency would be two contradicting axioms in the same
ontology, each of which represents the view of a particular stakeholder.
A possible way of reasoning with inconsistent knowledge is resorting to paracon-
sistent logic and consists in preventing the explosion at the cost of abandoning one
of the three principles disjunction induction (A � A ∨ B), the disjunctive syllo-
gism (A ∨ B,¬A � B) or transitivity (Γ � A; A � B ⇒ Γ � B).
With aspect-oriented ontologies this reduction is not necessary, since the mutually
contradicting axioms are contextualized. It is only necessary to keep the possible
worlds representing the contexts isolated from each other by forbidding accessi-
bility relations between them.

• Multi-agent belief using doxastic logic
A further conceivable scenario involving the deployment of semantics similar to
that of logic K is the interpretation of contexts as agents’ beliefs about axioms
and facts in a knowledge base. Doxastic Logic uses a modal operator B, which
expresses the belief of an agent in axioms and facts. By indexing the belief opera-
tors, we obtain a multi-modal logic with multiple belief operators, each represent-
ing the belief of one particular agent.

• Temporal aspects using temporal logic
While ontologies are supposed to capture universally valid knowledge, there are
situations in which an application might make use of knowledge that is contextu-
alized with time. A problem that arises in making universal statements in the form
ofA is valid during time interval T is that actual domain knowledge and contextual
(time) knowledge become tangled.

Aspect-Oriented Ontology Development 15

Using temporal aspects, each time instance is interpreted as a possible world, and
after (and before) are accessibility relations, which are reflexive and transitive.
The corresponding conditions on the Kripke frames for a temporal logic are:

– (M) : �A → A
– (4) : �A → ��A

The temporal aspect is then the class expression
after value 1949 and before value 1990,
which includes the values 1949 and 1990 due to the reflexivity of the before and
after relations.

• Access Rights using Deontic Logic
Controlling access to sensitive knowledge contained in knowledge bases is impor-
tant especially in corporate contexts. Currently, access restrictions are part of the
technological infrastructure, for example, SPARQL endpoints may be accessible
only after authentication.
With aspects it is possible to model access restrictions in a more fine-grained
manner, by providing arbitrarily many access permissions for each axiom or fact
in the knowledge base.
The problem with restricting access to parts of knowledge in a global model is
that agent who are forbidden to access certain parts of the model have to deal with
an incomplete model of the world. This may (not necessarily but possibly) lead to
inconsistent states in the local world view of such an agent.
By modeling access restrictions as aspects using deontic logic, it is possible to
model an alternative sub model for an access restricted part of the global model.
It is possible to model the “forbidden” state not as failure but rather provide an
alternative, simplified truth. Thismay be done by providing a set of “repair axioms”
that complete the world view of the agent in such a way that it becomes consistent
again.
Multi standard deontic logic for modelling access permissions over axioms for
different agents by having a serial accessibility relation ai for each agent i in order
to obtain the axiom

– (D) : �i A → ♦i A

4.2 Industrial Scenarios

• Development of Multilingual Ontologies
A recurring challenge in cross-cultural contexts is multilingualism. Examples of
situations requiring multilingual assessment of knowledge include global corpo-
rations with subsidiaries in different countries that desire to build a company-wide
body of knowledge, or business intelligence scenarios addressing international
markets. Another example are multilingual web applications with databases of

16 R. Schäfermeier and A. Paschke

goods that, depending on the country have different names but also different com-
ponents or ingredients, like for example a drug database with the same medication
having different ingredients due to different law or patent situations in the different
countries.
The challenge in this scenario goes beyond the need to attach multilingual labels
to concepts and objects. Instead, the intensional description of entire concepts or
objects may differ completely.
This scenario requires a contextualized conceptualization of the domain of interest,
where language or cultural background constitutes the context. It possibly needs to
dealwith global inconsistencies due to locally consistent but globally contradicting
world views.

• Role-Specific Views on Business Processes
This scenario is based on the conceptualization of entities relevant in a cross-
department business process model in a production environment. The process
model vocabulary includes

– 195 concepts and
– 52 properties

These may or may not be relevant in 12 contexts which represent the view of
different stakeholders as well as 3 meta contexts representing technical aspects of
the process context.
The contexts are Context, Constructor, Service, Controller, Procedure, Transport,
Component, Procedure Map, Request Checklist, Facility, Offer, Client, Documen-
tation, Inquiry, Problem, and Glossary.
These contexts can be modeled independently of the domain concepts and prop-
erties and then later combined.

• Street names in location-based search
This application scenario involves a search facility for historical information about
locations in Berlin including semantic descriptions of the localities, which are,
among others, provided by modeling streets and their names.
One problem that needs to be addressed is that street names in Berlin have under-
gone a significant amount of change during the last century due to natural growth
of the city, but also due to its dynamic history.
Since the goal of this scenario is change of concepts over time, it is a candidate
for the application of temporal aspects. As in the general scenario description for
temporal aspects, this scenario does not only include the changing of labels but
also attributes of entities (many streets kept their name after the wall was built,
but were cut in half by the wall, so that only a part of the original street kept the
original name, while the other half became a new street with a new name). Also the
conceptualization changes slightly since categories representing historical periods
(e.g. “Street in East Berlin”) which in themselves only exist during certain periods
of time are deployed.

Aspect-Oriented Ontology Development 17

• Access Rights in Corporate Wiki using Deontic Logic
Internal content may be contextualized by access restrictions to certain groups of
coworkers.
This scenario covers the above problem in the context of internal corporate wiki
systems combined with a knowledge extraction task. It integrates into the authen-
tication and access-rights management system of the wiki.
Users create content in the wiki. While doing so, they fulfill one or more roles in
the enterprise. The content they provide is access-restricted based on the enterprise
specific role model.
A knowledge extraction process creates axioms and facts representing the knowl-
edge stored in the wiki.
This scenario requires a model which aids in applying the same access restrictions
that apply to the textual content to the factual knowledge gained by the extraction
process. It is a candidate for the application of the general access rights research
scenario.

• Temporal Attribution of Facts in a Corporate Wiki
This scenario addresses a different problem in the same wiki application described
above.
Corporate knowledge is dynamic. As users add content to the wiki, knowledge
my become stale (i.e., still valid but not useful anymore) or invalid and replaced
by new, possibly contradicting knowledge. This is a use case for using temporal
aspects as described in the research scenarios.

5 Tools

Aspect-Oriented Ontology Development is facilitated by a set of tools which will
also be presented in the following. They comprise:

• Aspect-oriented OWL API: an extension to the OWL API for transparent pro-
grammatic access to aspect modules in ontologies using java annotations,

• Aspect OntoMaven: Integration of aspect-based module extraction into the ontol-
ogy lifecycle management tool OntoMaven,

• Editors: Extensions to the ontology editors Protg and WebProtg provide ontology
developers support in creating and using aspects, defining query based pointcuts,
using aspects as editing contexts, as well as extraction of modules based on aspects
and reasoning with aspects.

18 R. Schäfermeier and A. Paschke

5.1 An Annotation-Based API for Programmatic Access
to Aspect-Oriented Ontologies

Applications using ontologies come with a set of requirements. A subset of these
requirements are related to how the ontology is going to be used and what the appli-
cation developers expect to get back from the ontology. These requirements are in
fact related to the ontology itself, still they concern the application’s mode of opera-
tion. As those particular requirements affect both the application and the ontologies
in the same manner, it appears natural to have them reflected in a unified way in the
application code as opposed to have them scattered across the application. For this
reason, we have developed a software artifact that makes ontology aspects accessible
to developers of semantic web applications [10]. We have implemented it in the form
of an aspect-oriented extension to the well-known OWL API,10 a Java API for OWL
2 ontologies, using AspectJ11 as a Java aspect language and Java annotations as a
way to declaratively control ontology aspects from Java code.

Themost notable APIs for web ontologies are Apache Jena12 and the OWLAPI.13

With both being Java APIs, Jena’s scope are RDF graphs while the OWL API is
tailored to the OWL language,14 providing an object model for OWL entities and
axioms and interfaces for DL-based reasoning and explanation support. In what
follows, we describe an extension of the OWLAPI by programmatic access to OWL
aspects as defined in the previous sections.

5.1.1 Requirements

We defined the functionality of our approach in terms of functional requirements,
which can be seen in Table4.

We designed an aspect-oriented extension of the OWL API using the Java aspect
language AspectJ.15 We use Java aspects in order to intercept read/write access to
the OWL API’s Java object model of a loaded OWL ontology and advice the calls
by code responsible for extracting ontology modules affected by an OWL aspect.

With regard to requirement 2 we decided to use Java annotations as a means to
convey the selected aspects from the Java side.

10http://owlapi.sourceforge.net/.
11https://eclipse.org/aspectj/.
12http://jena.apache.org/.
13http://owlapi.sourceforge.net/.
14At the time of the writing of this report, the target language of the OWL API was OWL 2.
15https://eclipse.org/aspectj/.

http://owlapi.sourceforge.net/
https://eclipse.org/aspectj/
http://jena.apache.org/
http://owlapi.sourceforge.net/
https://eclipse.org/aspectj/

Aspect-Oriented Ontology Development 19

Table 4 Functional requirements for the OWL API extension with ontology aspects

ID Name Description

F-1 Aspects The system should allow for mapping aspects to ontology
modules.

F-1.1 Aspect
declaration

The system should permit the mapping of declarative aspect
descriptions to OWL aspects in the set of loaded ontologies.

F-1.1.1 Aspect
identification

Aspects should be ontological entities identified by IRIs, as
defined in the AspectOWL ontology.

F-1.1.2 Aspect
combination

The declarative selection of aspects should allow for a
combination of multiple aspects using logical AND/OR
operations.

F-2 Ontology change If an aspect declaration is associated with code manipulating an
ontology, then the manipulation must only affect this aspect

F-2.1 Axiom addition If an axiom is added, then it will be annotated with the aspect(s)
present in the declaration.

F-2.2 Axiom deletion If an axiom is deleted, and an aspect declaration is present in the
Java code, then only the corresponding aspect associations must
be deleted in the ontology (the axiom is only removed from this
aspect, not from the ontology).

F-3 Module
extraction

If an aspect declaration is associated with code reading from an
ontology, then only that part of the ontology is returned, which is
associated with the given aspects. The rest of the ontology is
hidden.

@OWLAspect({"http : / /www. fu−berlin .de/csw/ ontologies /aood/
ontologies /aspect123" , "http : / /www. fu−berlin .de/csw/
ontologies /aood/ ontologies /myAspect456"})

public void doSomething () {
Set<OWLAxiom> allAxioms = myOntology.getAxioms() ;
. . . }

Listing 1 Example client code using the OWL API. Note that aspect references are added
transparently and uninvasively asmethod annotations. Client code itself does not need to be changed.

The heart of the extension is a set of pointcut definitions that intercept all calls
to the OWL API that either return or manipulate OWL entities or axioms. Client
code using the OWL API can use the @OWLAspect java annotation type to spec-
ify one ore more aspect IRIs either on the method or class level. If one or more
annotations of that type are encountered, then all operations on the OWL API within
the context of the annotation will only be executed on the subset of the ontology
that corresponds to the aspect(s) specified by the annotations. For example, a call to
OWLOntology.getAxioms() from a client method with the annotations from
Listing 1 would only return those axioms that belong to the modules specified by
the two IRIs used in this example. Accordingly, write operations would also only be
performed on the subset.

20 R. Schäfermeier and A. Paschke

5.1.2 Conjunctive and Disjunctive Combination of Aspects

In order to fulfill requirement F-1.1.2, the annotation type system had to be extended
by some kind of boolean arithmetics that allows for conjunctive and/or disjunctive
combination of multiple aspects. The Java annotations system does not permit rela-
tions between single annotations in the same place, but nesting of annotations is
possible. In order to provide a syntax for boolean operations, we subclassed the
OWLAspect annotation type by OWLAspectAnd and OWLAspectOr.

Unfortunatley, nesting of annotations is restricted to non-cyclic nesting levels,
disallowing arbitrary nesting (and thereby arbitrary boolean combinations). How-
ever, using the distributivity property of boolean operations, it is possible to bring
every boolean formula into a non-nested form. As a consequence, this approach is
feasible for arbitrary boolean combinations of aspect declarations conveyed using
Java annotations.

An example of a combination would be:

@OWLAspectOr({
@OWLAspectAnd({"http : / / . . . #Aspect1" ,
"http : / / . . . #Aspect2"}) ,

@OWLAspectAnd({"http : / / . . . #Aspect2" ,
"http : / / . . . #Aspect3"})

})

5.1.3 Syntactic Verses Semantic Modules

The above approach allows for the selection of subsets of axioms, also referrred to as
syntactic modules as mentioned in the introduction. Depending on the use case, this
might be sufficient, or it might be necessary to extend the selected set of axioms to a
proper semantic module, such that the parent ontology is a conservative extension of
the module. The system we present here may extend the selected subset to a proper
module by using syntactic locality [11] as an approximation.

5.2 Aspect OntoMaven

OntoMaven16 is a Maven-based tool for ontology management based on distributed
ontology repositories [12] (see also Chap.4). The lifecycle of an ontology in a project
and its dependencies can bemanaged in a declarative way viaMaven’s Project Object
Model (POM). OntoMaven’s ontology specific functionality is provided in the form

16http://www.corporate-semantic-web.de/ontomaven.html.

http://dx.doi.org/10.1007/978-3-319-64161-4_4
http://www.corporate-semantic-web.de/ontomaven.html

Aspect-Oriented Ontology Development 21

of plug-ins to the Maven framework. It includes dependency resolution, ontology
unit testing, documentation and visualization.

The extension of OntoMavenwith aspect-oriented concepts allows the declarative
configuration and automated interweaving of ontology aspects during the build phase.

5.2.1 OntoMvnApplyAspects

This plug-in contributes to the package goal of Maven’s build lifecycle. It takes
the ontologies that are part of the OntoMaven project and selects exactly those
modules that are specified by the Maven parameter userAspects. An additional
parameter aspectsIRI allows to specify a custom OWL object or annotation
property which is used to map the aspects to the ontology modules. The parameter
ifIncludeOriginalAxioms specifies whether those axioms in the ontology
that are free of aspects (the base module) should be included in the resulting ontology
or not. This allows to either configure an ontology and enable selected aspects of it
or to merely extract a module on its own and use it in the application. An example
configuration is shown in the following POM listing:

<build> <plugins> <plugin>
<groupId>de.csw.ontomaven</groupId>
<artifactId>OntoMvnApplyAspects</artifactId>
<version>1.0-SNAPSHOT</version>
<configuration>

<userAspects>
<aspect>http://example.org/reputation#Reputation123</aspect>
<aspect>http://example.org/provenance#prov_789</aspect>

</userAspects>
<aspectsIRI>http://corporate-semantic-web.de/aspectOWL#hasAspect
</aspectsIRI>
<includeOriginalAxioms>true</includeOriginalAxioms>

</configuration>
...

5.3 Editors and Aspect Management Tools

In order to facilitate the the development and integration of aspect-oriented ontolo-
gies, two editing and management tools have been implemented.

The first one consists of an extension to the well-known Protégé editor.

5.3.1 Desktop Protégé

As described in Sect. 3, the connections between aspects and their targets may either
established by using an extensional description (by providing a complete set of
targets), or intensionally (by specifying the properties of the targets using an abstract

22 R. Schäfermeier and A. Paschke

Query based
aspect annotation

Query Manual annotation/
selected editing
context in tool

Original ontology

Ontology with
aspect annotations

Aspect-based
module selection

Aspect names
or descriptions

Ontology
module

Fig. 4 Our approach to aspect-oriented ontology modularization. Axioms of the original ontology
(left) are annotated with entities from an external aspect ontology (center). Axiom selection is based
on queries or is performed manually. Module extraction happens dynamically, as a particular part
of the ontology is requested (right). The parameters of the request are one or several aspect names.
The result is an ontology module including exactly those axioms that belong to the given aspects

query or quantification). Functionality for the first variant involves manually creating
the appropriate annotation axioms (see Fig. 4, middle).

The intensional specification by quantification is realized through a SPARQL
interface. Using SPARQL CONSTRUCT queries, the subgraph of the triple based
ontology representation that corresponds to the desired axioms is selected. The result-
ing subgraph is transformed back into an OWL 2 model, which then contains the
desired set of axioms. For each axiom in the result set, an aspect annotation axiom
is then added to the ontology, with the axiom as annotation subject and the specified
aspect as the annotation object (see Fig. 4).

Module Extraction

The extraction process involves providing a set of aspects and results in the extraction
of the corresponding ontologymodules (see Fig. 4, to the right). The provided aspects
can be the result of manual selection or of a query, e.g., by using theDL-query facility
provided by Protégé.

Aspects and Entailment

The checking for aspects of entailed axioms has been implemented in the following
way:

If an ontology contains asserted axioms that are intended to hold only under par-
ticular aspects, then the question arises under which aspects the logical consequences
of these axioms hold. In order to determine that, we can employ justifications for
entailments as defined by Horridge et al. in [13].

Definition 6 (Justification) For an ontology O and an entailment η where O |= η,
a set of axioms J is a justification for η inO if J ⊆ O, J |= η and if J ′ � J then
J ′ �|= η.

Aspect-Oriented Ontology Development 23

As also noted in [13], theremay bemultiple, potentially overlapping, justifications for
a given entailment. It is obvious that if there exists an explanation for an entailment
that only contains axioms without any associated aspects, then the entailment is also
free of aspects.

In caseswheremultiple explanations for an entailment exist, one ofwhich contains
an axiom with an aspect and another one contains an axiom with a different aspect,
then the entailment has both aspects. Algorithm 1 demonstrates the carrying over of
aspects to inferred axioms.

Algorithm 1 Carrying over aspects from asserted to inferred axioms using justifica-
tions.
Input: AnontologyO, an aspect ontologyOA an entailment ηwithO |= η and the set {J1, . . . ,Jn}

of all justifications for η.
1: A ← ∅
2: for all J ∈ {J1, . . . ,Jn} do
3: flag ← f alse
4: for all ex ∈ J do
5: for all a ∈ OA, asp(ex a), a ≤ hasAspect do
6: A.add(asp(η a))

7: flag ← true
8: end for
9: if flag == f alse then return
10: end if
11: end for
12: end for
13: O ← O ∪ A

The set A and the boolean flag are needed for determining whether there exists
a justification J containing only axioms that are free of aspects. For each J ∈
{J1, . . . ,Jn}, where any of the axiomsex is assigned to an aspecta using the property
asp, which is a sub-property of a property hasAspect, the aspect assigning axiom
is added to a set A replacing ex with η (line 6) and the flag is set to true (line
7). Once the inner loop terminates, and the flag still has the value f alse, then the
inferred axiom can safely be considered aspect free, and the algorithm can terminate
prematurely (line 9). Otherwise, all aspect assigning axioms are collected in A and
eventually added to O (line 13).

It must be noted that if aspects are used for modularization of an ontology, and it
is explicitly allowed to have contradictions in the original ontology (which are meant
to be resolved during the module selection stage), if the above algorithm is applied
to the original ontology, it needs to be assured that conflicting information is not
carried over to the selected modules later.

Given, e.g., an ontology consisting of the following axioms:

capitalOf(Rio_De_Janeiro, Brazil), capitalOf(Brasília, Brazil),
hasTemporalAspect((capitalOf(Rio_De_Janeiro, Brazil)), timeInterval1),

hasTemporalAspect((capitalOf(Brasília, Brazil)), timeInterval2),

24 R. Schäfermeier and A. Paschke

startDate(temporalAspect1, "1889-11-15T00:00:00"∧∧xsd:date
Time"),

endDate(temporalAspect1, "1960-04-21T00:00:00"∧∧xsd:date
Time"),

startDate(temporalAspect2, "1960-04-21T00:00:00"∧∧xsd:date
Time"),

InverseFunctionalObjectProperty(capitalOf).

The ontology represents the fact that the republican Brazil had different capitals
throughout its history, namely Rio de Janeiro from 1889 to 1960, and Brasília from
1960 onwards. The time intervals are represented using aspects,with the consequence
that the original ontology contains both the axioms capitalOf(Bonn, Germany) and
capitalOf(Berlin, Germany).

The additional InverseFunctionalObjectProperty(capitalOf) axiom will lead
to the unwanted entailment sameAs(Rio_De_Janeiro, Brasília). In such cases, it
is necessary to make the intended semantics explicit, e.g., as in the above example,
by adding an axiom differentFrom(Rio_De_Janeiro, Brasília).

5.4 An Aspect Weaver for Ontologies Using Structural
Ontology Design Patterns

In this section, we introduce a weaving facility for ontologies, which converts aspect-
oriented ontologies into standard-conformant OWL 2 ontologies, preserving the
information conveyed by the aspects.

In Aspect-Oriented Programming, which also requires an extension of the pro-
gramming language at hand for the representation of software aspects, a special
software utility named aspect weaver is responsible for recombining the modules
using the extra information contained in the aspect extension and generating exe-
cutable code that conforms to the standards of the programming language. We use
ontology design patterns (ODPs) in order to automate the conversion process. ODPs
are structural (e.g., logical or architectural), conceptual, or lexico-syntactic tem-
plates that abstract from typical ontology modeling problems and serve as a recipe
for ontology developers to solve the corresponding problem.

The weaver presented here uses the three patterns View Inheritance, Context
Slices, and N-ary Relation Pattern. We used an extended version of the Ontology
Pre-Processor Language (OPPL)17 for formulating the patterns and the necessary
refactoring operations. We extended OPPL by syntactical features for aspects, in
correspondence to the aspect-oriented extensions of OWL 2 described in Sect. 3.1.

The View Inheritance ODP18 is an architectural pattern that provides a way for
modelingmultifacted classification schemes ormultiple class inheritance hierarchies.

17http://oppl2.sourceforge.net.
18http://ontologydesignpatterns.org/wiki/Submissions:View_Inheritance.

http://oppl2.sourceforge.net
http://ontologydesignpatterns.org/wiki/Submissions:View_Inheritance

Aspect-Oriented Ontology Development 25

TargetDomainConcept1

Criterion2Criterion_1

C2_Class1C1_Class1

C1_C2_Class1

TargetDomainConcept1

Criterion2Criterion_1

C2_Class1C1_Class1

C1_C2_Class1

World2World1

rdf:typerdf:type

aspectaspect

Fig. 5 A transformation by the weaver of multifaceted classification using the View Inheritance
ontology design pattern. The aspect is expressed by a reflexive accessibility relation in a logic
system K. The class expression representing the aspect is attached to the subclass axioms

It does this by introducing intermediate classes which represent the different classi-
fiers, referred to as criteria. The actual target domain concepts are made subclasses
of the classes representing the classification criteria. The pattern has two disadvan-
tages, a semantic and a structural one. The semantic disadvantage consists in the
fact that the classifier classes are directly introduced into the inheritance hierarchy.
Subclasses are now subclasses of the classifier, which is not the intended meaning
but merely a way to circumvent the expressive restrictions of DL which do not allow
object relations between classes. The structural disadvantage is that once introduced,
the classifier cannot easily be eliminated from the hierarchy. A typical use case for
multifaceted classification is to specify a classifier and hide the other hierarchies
with different classifiers. Since the classifier is now part of the ontology, this is not
easily possible. In an aspect-oriented ontology, this kind of classifier is represented
as an aspect class which is attached to the owl:SubClassOf axioms that correspond
to this specific classifier. Since it expresses simple views, Logic K is the appropriate
type of modal logic, and therefore, this aspect has a reflexive accessibility relation.

Figure5 shows how the weaver transforms the aspects into an ontology by apply-
ing the pattern.

The context slices pattern19 may be used for the expression of agents’ beliefs about
Abox facts, or, more precisely, object property assertions. Each agent’s conception
of a part of the universe (i.e., the axioms valid in the part of the universe accessible
to the agent) is referred to as a context. A context is represented by an individual of
typeContext, and the subject and object of a contextualized object property assertion
are connected to this context via additional object property assertions involving an
object property hasContext with the context individual in the subject role and the
two contextualized individuals in the object role.

In an aspect-oriented ontology the belief of an agent may be expressed using
a doxastic logic with an object property believesi, representing the accessibility

19http://ontologydesignpatterns.org/wiki/Submissions:Context_Slices.

http://ontologydesignpatterns.org/wiki/Submissions:Context_Slices

26 R. Schäfermeier and A. Paschke

cs:ContextualProjection

pSubject@c1 Object@c1

c1

cs:hasContext cs:hasContext

cs:Context

Subject Object

cs:projectionOf cs:projectionOf

Agent

believes

pSubject Object

c1Agent believes

aspect

cs:Context

Fig. 6 A transformation by the weaver of a context aspect representing an agent’s belief using the
context slices pattern

relation between possible worlds. The “actual” world is represented by an individual
Agenti and may be interpreted as the agent believing the axioms associated with it.
Each possible world may be interpreted as a context. A fact in the ontology may be
associated with a context by connecting it to a class expression. A context individual
being of this type may be interpreted as the fact being true in this context. The agent
being connected to at least one context where the fact is valid means that the agent
beliefs the fact to be true.

Figure6 shows how the weaver transforms the aspects into an ontology by apply-
ing the pattern.

6 Evaluation

The research question tackled in this research is whether aspect-oriented ontology
design yields better modules in terms of potential reusability than the recommended
ontology design patterns for the modeling problems addressed in this paper.

Research in the field of quality assessment of ontology modules is relatively new.
Recent works in the field recommend reusability metrics for ontology modules [14,
15]. Since achieving better reuse of modules is the goal of our research, we use these
metrics in order to conduct a comparative evaluation with reuse as the measured
parameter.

The above works propose ontology module cohesion and ontology module cou-
pling as adequate metrics for assessing reusability of ontology modules. These met-
rics have been inspired by equally namedmetrics used in Software Engineering, used
for measuring the reusability of code modules in a software system.

Cohesion is a measure for the internal relatedness of entities in a module. The
more relations between entities in a module exist, the higher the coupling of the

Aspect-Oriented Ontology Development 27

module. The idea behind this is that a high degree of interrelatedness of concepts and
individuals reflects a high degree of semantic interdependence and thereby a high
degree of topical relatedness. Generally, the higher the coupling the better a module
is suited for being reused, since it is assumed that a highly cohesive module covers
a highly specific domain.

Coupling, in contrast, is a measure for the external, i.e. inter-modular relatedness
between entities. The more relations between entities in a module to entities in other
modules exist, the higher the coupling value. The intuition here is that strong coupling
makes it harder to reuse a module, since due to its many external dependencies, it
does not stand on its own as much as a loosely coupled module.

6.1 Experiment

We measured the quality of modules yielded by aspect-oriented ontology develop-
ment and after weaving using the ontology design patterns described in Sect. 5.4.

We used the cohesion and coupling metrics as described by Oh et al. [14].
The authors define the cohesion for an ontology module M as

coh(M) =

⎧
⎪⎨

⎪⎩

∑

ci ∈M

∑

c j ∈M

sr(ci , c j)
|M |(|M |−1)

2

if |M | > 1

1 otherwise

sr(ci , c j) =
{

1
distance(ci ,c j)

if relations exist between ci and c j

0 otherwise

Coupling of amodule M is defined as the ratio of the number of external relationships
of entities in M to othermodules to the number of all relationships (the sumof internal
and external relationships):

cpl(M) =
∑

ci ∈M

∑

c j ∈M

rel(ci , c j),

where rel(ci , c j) are either relations between classes, such as SubClassOf, Equiv-
alentClasses or DisjointClasses, relations between individuals, including object
property assertions as well as, SameIndividual, DifferentIndividuals and relations
between classes and individuals (ClassAssertion).

The authors of [14] distinguish between hierarchical and non-hierarchical cou-
pling. Since no implementation of Oh’s or Ensan’s metrics are publicly available,
we reimplemented the metrics in Java.20 We implemented both hierarchical and non-
hierarchical and the consolidated coupling value, considering both relation types.

20source code available at https://github.com/RalphBln/onto-module-metrics.

https://github.com/RalphBln/onto-module-metrics

28 R. Schäfermeier and A. Paschke

We extended the metric in order to additionally accomodate the category of
aspects. Each relation between an aspect class expression and an axiom is counted
as one relationship.

6.2 Results

Table5 shows the results of the measurements. We measured cohesion (coh), hierar-
chical coupling (cpl h), non-hierarchical coupling (cpl nh), and consolidated coupling
(cpl).

The results show that for the majority of the cases, aspect-orientation yields bet-
ter coupling and cohesion values that following the recommended ontology design
patterns.

Table 5 Cohesion and coupling values for modularizations achieved by application of design
patterns and aspect-orientation. Coupling values were calculated separately for hierarchical and
non-hierarchical relations and both combined

Module Cohesion Hierarchical
coupling

Non-hierarchical
coupling

Coupling
(combined)

Contextual projection - pattern

pattern 0.32 0.0 0.0 0.0

base 0.0 0.0 1.0 1.0

Contextual projection - aspects

aspect 0.67 0.0 0.0 0.0

base 1.0 0.0 0.5 0.5

View inheritance - patterns

pattern 0.75 0.33 0.0 0.33

base 0.33 0.67 0.0 0.67

View inheritance - aspects

aspect 0.33 0.0 0.0 0.0

base 0.75 0.0 1.0 0.33

n-ary - pattern

pattern 0.4 0.67 0.0 0.33

base 0.33 0.0 1.0 0.67

time 1.0 0.0 1.0 0.5

n-ary - aspects

aspect 0.83 0.33 0.0 0.33

base 0.67 0.0 0.5 0.33

time 1.0 0.5 0.0 0.5

Aspect-Oriented Ontology Development 29

7 Conclusion and Outlook

In this chapter, we have introduced Aspect-Oriented Ontology Development, a novel
approach of modeling context in DL-based ontology languages and to the problem
of ontology modularization.

We have defined the model theoretic semantics of our approach in the form of a
combination of DL and Kripke interpretations and use the correspondence between
DLs and modal logics in order to model aspects in terms of possible worlds in the
same language as the object domain (OWL 2).

We have described example use cases for the approach and given an overview of
tools that support the development and the use of ontology aspects and an aspect-
weaver, which uses ontology design patterns in order to transform aspect-oriented
ontologies into standard-compliant ones.

We have evaluated the approach in terms of software engineering based reuse
metrics with promising first results.

Future work will consist in the further development of the reasoning services
described in Sect. 5.3 and in an extended and comparative evaluation of the usability
of the approach and its impact on the quality of ontologies developed with it in terms
of reuse.

Acknowledgements This work has been partially supported by the InnoProfile Transfer project
“Corporate Smart Content” funded by the German Federal Ministry of Education and Research
(BMBF).

References

1. Schäfermeier, R., Paschke, A.: Aspect-oriented ontologies: dynamic modularization using
ontological metamodeling. In: Proceedings of the 8th International Conference on Formal
Ontology in Information Systems (FOIS 2014), pp. 199 – 212. IOS Press (2014)

2. Group, I.A.W.: IEEE standard 1471–2000. Recommended Practice for Architectural Descrip-
tion of Software-Intensive Systems, IEEE (2000)

3. Parent, C., Spaccapietra, S.: An Overview of Modularity. In: Stuckenschmidt, H., Parent, C.,
Spaccapietra, S.(eds.) Modular Ontologies. Lecture Notes in Computer Science, vol. 5445, pp.
5–23. Springer Berlin Heidelberg (2009)

4. Filman, R., Friedman, D.: Aspect-Oriented Programming Is Quantification and Obliviousness.
Workshop on Advanced Separation of Concerns, OOPSLA (2000)

5. Steimann, F.: Domain Models Are Aspect Free. In: Briand, L., Williams, C. (eds.) Model
Driven Engineering Languages and Systems. Lecture Notes in Computer Science, vol. 3713,
pp. 171–185. Springer, Berlin (2005)

6. Horrocks, I., Sattler, U.: Ontology reasoning in the shoq(d) description logic. In: Proceedings
of the 17th International Joint Conference on Artificial Intelligence IJCAI 2001, 199–204.
Morgan Kaufmann 2001

7. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press, New York, NY, USA (2003)

30 R. Schäfermeier and A. Paschke

8. Schild,K.:A correspondence theory for terminological logics: preliminary report. In:Mylopou-
los J., Reiter R. (eds.) Proceedings of the 12th International Joint Conference on Artificial
Intelligence. Sydney, Australia, August 24-30, 1991, pp. 466–471. Morgan Kaufmann (1991)

9. Böhme, S., Lippmann,M.: DecidableDescription Logics of Context with Rigid Roles. In: Lutz,
C., Ranise, S.(eds.) Frontiers of Combining Systems. Lecture Notes in Computer Science, vol.
9322 pp. 17–32. Springer International Publishing, Berlin (2015). doi:10.1007/978-3-319-
24246-0_2

10. Schäfermeier, R., Krus, L., Paschke, A.: An Aspect-Oriented Extension to the OWL API
- Specifying and Composing Views of OWL Ontologies using Ontology Aspects and Java
Annotations. In: Proceedings of the 7th International Joint Conference on Knowledge Discov-
ery, Knowledge Engineering and Knowledge Management, pp. 187–194 (2015). doi:10.5220/
0005591601870194

11. Del Vescovo, C., Klinov, P., Parsia, B., Sattler, U., Schneider, T., Tsarkov, D.: Syntactic vs.
Semantic Locality: How Good Is a Cheap Approximation? In: Workshop on Modular Ontolo-
gies (WoMO) 2012, pp. 40–50 (2012)

12. Paschke, A., Schäfermeier, R.: Aspect OntoMaven — Aspect-Oriented Ontology Develop-
ment and Configuration With OntoMaven. In: Abramowicz, W. (ed.) 3rd Workshop on Formal
Semantics for the Future Enterprise (FSFE 2015), Business Information Systems Workshops,
vol. 228. Springer (2015). arXiv:1507.00212

13. Horridge, M., Parsia, B., Sattler, U.: Laconic and Precise Justifications in OWL. In: Sheth,
A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K.(eds.) The
Semantic Web - ISWC 2008. Lecture Notes in Computer Science, vol. 5318, pp. 323–338.
Springer, Berlin (2008)

14. Oh, S., Yeom,H.Y., Ahn, J.: Cohesion and couplingmetrics for ontologymodules. Inf. Technol.
Manag. 12(2), 81–96 (2011)

15. Ensan, F., Du, W.: A semantic metrics suite for evaluating modular ontologies. Inf. Syst. 38(5),
745–770 (2013)

http://dx.doi.org/10.1007/978-3-319-24246-0_2
http://dx.doi.org/10.1007/978-3-319-24246-0_2
http://dx.doi.org/10.5220/0005591601870194
http://dx.doi.org/10.5220/0005591601870194
http://arxiv.org/abs/1507.00212

Similarity-Based Retrieval and Automatic
Adaptation of Semantic Workflows

Ralph Bergmann and Gilbert Müller

Abstract The increasing demand for individual and more flexible process models
and workflows asks for new intelligent process-oriented information systems. Such
systems should, among other things, support domain experts in the creation and adap-
tation of process models or workflows. For this purpose, repositories of best practice
workflows are an important means as they collect valuable experiential knowledge
that can be reused in various ways. In this chapter we present process-oriented case-
based reasoning (POCBR) as a method to support the creation and adaptation of
workflows based on such knowledge. We provide a general introduction to process-
oriented case-based reasoning and present a concise view of the POCBR methods
we developed during the past ten years. This includes graph-based representation
of semantic workflows, semantic workflow similarity, similarity-based retrieval, and
workflow adaptation based on automatically learned adaptation knowledge. Finally,
we sketch several application domains such as traditional business processes, social
workflows, and cooking workflows.

1 Introduction

Business process management is a well-established discipline that deals with the
identification, modeling, analysis, improvement, and implementation of business
processes [1]. It is a methodology that is widely applied today to improve the oper-
ation of organizations and to align the IT development with business processes.
Workflow management is a specific area of business process management that aims
at “the automation of a business process, in whole or part, during which documents,
information or tasks are passed from one participant to another for action, according

R. Bergmann · G. Müller (B)
Business Information Systems II, University of Trier, 54286 Trier, Germany
e-mail: muellerg@uni-trier.de

R. Bergmann
e-mail: bergmann@uni-trier.de

© Springer International Publishing AG 2018
G.J. Nalepa and J. Baumeister (eds.), Synergies Between Knowledge
Engineering and Software Engineering, Advances in Intelligent
Systems and Computing 626, https://doi.org/10.1007/978-3-319-64161-4_2

31

32 R. Bergmann and G. Müller

to a set of procedural rule” [2]. In the recent years, the use of workflows has signifi-
cantly expanded from the original domain of business processes towards new areas,
which also manifests their relevance in software engineering and development in
various ways. For example, in engineering domains, such as software development
or chip design, workflows are used to support complex collaborative and distrib-
uted development processes [3, 4]. In e-science scientific workflows are executable
descriptions of computable scientific processes (i.e. a kind of executable programs)
such as computational science simulations and data analyses [5]. Furthermore, work-
flows can be used to represent and automatically execute search [6] and information
integration processes [7] in the context of decision support systems. Even for every-
day activities such as cooking, workflows can be used as a means to represent the
cooking instructions within a recipe [8] in order to provide step-by-step guidance for
the chef.

One of the biggest challenges today arises from the fact that many companies
and organizations must be able to more quickly adapt their business according to
newly arising market opportunities and demands from the customer, due to actions
of the competitors, or due to new technological developments. Agility became an
important requirement in may domains in which workflows are applied [1, 9, 10].
Thus, instead of using a small set of standardized workflows, there is an increasing
demand for tailoring workflows in a case-specific manner according to the current
needs. This asks for intelligent, knowledge-based systems that assist domain experts
in the creation or adaptation of workflows. Such systems must be able to represent
and reason with knowledge about workflows and workflows elements, such as task,
and data items. They must include knowledge that allows to assess the utility of
workflows with respect to certain user demands, and they must possess knowledge
about appropriate ways to adapt workflows. Consequently, the development of such
knowledge-based systems involves a significant knowledge engineering effort that
asks for methods from knowledge acquisition, semantic technologies, and machine
learning.

In this chapter we present process-oriented case-based reasoning (POCBR) as a
method to support the creation and adaptation of workflows. Case-based reasoning
(CBR) is an established Artificial Intelligence methodology for experience-based
problem-solving by selecting previous problem solutions from the past and adapting
them to address a current but related problem [11]. POCBR is a specific sub-branch
of CBR that deals with knowledge about processes and workflows [12]. In our own
research within the past 10 years, we developed several POCBR methods as well as
a generic system called CAKE (Collaborative Agile Knowledge Engine) [13] that
support retrieval and adaptation of workflows. Here, experiential knowledge is stored
in a repository and consists of semantic workflows, which are best-practices work-
flows from the past that are semantically annotated using concepts from a domain
ontology in order to support their reuse. Users can query the repository with a spec-
ification of important properties of the workflow s/he wants to create in order to
retrieve potentially reusable workflows. Workflow adaptation methods can then be
applied to automatically adapt the retrieved workflow towards the user’s query.

Similarity-Based Retrieval and Automatic Adaptation of Semantic Workflows 33

In the next section we provide a general introduction into POCBR. Section3
describes the technical foundations for semantic workflows. The similarity-based
retrieval of reusable workflows from a repository is described in Sect. 4, while Sect. 5
presents three different methods for knowledge-based adaptation of workflows. An
overview of the CAKE system and selected application examples are described in
Sect. 6.

2 Process-Oriented Case-Based Reasoning

Case-based reasoning (CBR) is a problem solving paradigm built upon a rule of
thumb suggesting that similar problems tend to have similar solutions [11, 14]. The
core of every case-based reasoning system is a case base, which is a collection of
memorized experience, called cases. The CBR cycle proposed by Aamodt and Plaza
[11] consists of four CBR phases, performed sequentially when a new problem
(also called new case or query) must be solved [15]. First, the retrieve phase selects
one or several cases from the case base with the highest similarity to the query,
where similarity is determined by an underlying similarity measure [14]. In the
subsequent reuse phase, the solutions of the retrieved cases are adapted according
to the requirements of the query. In the revise phase, the solution determined so
far is verified and possibly corrected or improved, e.g., through intervention of a
domain expert. Finally, the retain phase takes the feedback from the revise phase
and updates the knowledge of the CBR problem solver. As part of this learning
phase, cases can be added to or deleted from the case base, but also other kinds of
knowledge, such as similarity measures or adaptation knowledge can be affected.
A unified view on the knowledge contained in a CBR application was proposed by
Richter [14] through the metaphor of the four knowledge containers: the vocabulary,
the case base, the similarity measure, and the adaptation knowledge. The vocabulary
(which is typically called ontology today) is the basis of all knowledge and experience
representation inCBR. The vocabulary defines the information entities and structures
(e.g., classes, relations, attributes, data types) that can be used to represent cases,
similarity measures, and adaptation knowledge. The case base is the primary form of
knowledge inCBR, i.e., a repository of cases.A case is the representation of a specific
experience item (e.g. a problem-solution pair, a problem-solving trace, or a best-
practice procedure for performing a certain job) using the predefined vocabulary. The
notion of similarity plays a key role in CBR, since cases are selected based on their
similarity to the current problem.While earlyCBRapproacheswere usually restricted
to standard similarity measures (such as inverse Euclidean or Hamming distances),
the current view is that the similarity measure encodes important knowledge of
the domain. Several techniques for adaptation in CBR have been proposed so far
[15]. However, all adaptation methods require appropriate additional knowledge for
adaptation.Motivated by the fact that themanual acquisition of adaptation knowledge
is very difficult, several methods have been developed that exploit the knowledge
already captured in the cases as source to automatically learn adaptation knowledge

34 R. Bergmann and G. Müller

[16, 17]. As a specific approach to knowledge engineering and knowledge-based
systems design, CBR is closely related to analogical reasoning, machine learning,
information retrieval, databases, semantic web, and knowledge management.

Process-oriented CBR (POCBR) addresses the integration of CBR with process-
oriented research areas like Business Process Management and Workflow Manage-
ment (WFM) [12]. In POCBR a case is usually a workflow or process descrip-
tion expressing procedural experiential knowledge. POCBR aims at providing
experience-based support for the automatic extraction [18], design [19], execution
[20], monitoring and optimization [21, 22] of workflows. In particular, new work-
flows can be constructed by reuse of already available workflows that are adapted to
new purposes and circumstances. Thereby, the laborious development of workflows
from scratch can be avoided.

A case base (or repository) of successful workflows reflecting best-practices in
a domain is the core of a POCBR approach. Users can query the repository with a
specification of important properties of the workflow s/he wants to create in order
to retrieve potentially reusable workflows. One particular characteristic of CBR is
that it allows to find cases that do not match exactly the user’s query, but which are
at least similar in some respect. For example, the CODAW system [23] supports
the incremental modeling of workflows by similarity-based reuse of the workflow
templates. Leake andMorwick [19] evaluate the execution paths of past workflows in
order to support users in workflow modelling by proposing extensions of workflows
that are under construction. Besides the retrieval of workflows, also their automatic
adaptation is recently addressed in research [24, 25].

3 Semantic Workflows

This section provides a focused introduction to semantic workflows. In particular,
we describe our graph-based approach for representation as required for the retrieval
phase of POCBR.

3.1 Workflows

A workflow is an executable description of a work process that typically involves
several persons and/or resources. It consist of a set of activities (also called tasks)
combined with control-flow structures like sequences, parallel (AND) or alternative
(XOR) branches, as well as repeated execution (LOOPs). Tasks and control-flow
structures form the control-flow. In addition, tasks exchange certain data items, which
can also be of physical matter, depending on the workflow domain. Tasks, data
items, and relationships between the two of them form the data-flow. Today, various
workflow languages are used, depending on the kind of workflow. Languages for
business workflows (for example BPMN) have a strong focus on the control-flow,
while scientific workflow languages have a stronger focus on the data-flow.

Similarity-Based Retrieval and Automatic Adaptation of Semantic Workflows 35

Fig. 1 Examples of a business tip workflow

Figure1 shows an example of a business workflow. The workflow describes a
simple process for a business trip starting with gathering information on the trip and
ending with the final expense accounting. It consists of several activities such as
booking of the travel or requesting cash advance, which are aligned in sequences
(also referred to as control-flow). Furthermore, information is shared between those
activities, e.g., business trip data first has to be gathered and then serves as the
basics of decision-making whether a trip is approved. Based on the trip approval,
the example workflow only executes one specific branch by use of a xor-split/join
control-flow pattern.

3.2 Introduction to Semantic Workflows

Traditional workflow languages name task and data items by simple textual labels.
This makes it difficult to reason with the knowledge captured in such workflows,
as required in POCBR. To address this issue, we introduce semantic workflows as
an approach to cover relevant aspects of the meaning of workflows, including the
meaning of the task and data items that occur. Semantic workflows are based on
a specifically designed domain ontology that consist of sub-ontologies describing
the relevant properties of the task and data items that occur in the domain. A tradi-
tional workflow is turned into a semantic workflow by adding metadata annotations
from the domain ontology to the individual elements of the workflow. The semantic
annotations of workflows can then be used as basis for the similarity assessment and
adaptation.

The workflow representation in the CAKE system (see Sect. 6) uses an object-
oriented representation for ontologies (classes and relations/properties and inheri-
tance) and metadata annotation (linked instances of classes). Thus, tasks and data
items can be organized in a hierarchy of classes, in which each item contains cer-
tain properties, which can be inherited from the super class. For example, in Fig. 1,
the gather trip information task includes a property capturing the employee who is
assigned to perform this task.

36 R. Bergmann and G. Müller

3.3 Representation of Semantic Workflows

In line with previous work on graph-based workflow representation [26, 27], we
represent workflows as semantically labeled directed graphs. A semantic workflow
graph W is a quadrupleW = (N,E, S,T) where N is a set of nodes and E ⊆ N × N
is a set of edges. T : N ∪ E → Ω associates to each node and each edge a type from
Ω (see below). S : N ∪ E → Σ associates to each node and each edge a semantic
description from the domain ontology Σ . A semantic workflow graph contains the
following types of nodes (Ω): Each workflow consists of exactly oneworkflow node.
Each task in a workflow is represented by a task node. Each data item in a workflow
is represented by a data node. Each control-flow element in a workflow, such as
split/join elements for and/xor blocks, are represented as a control-flow node. In
addition, a semantic workflow graph contains the following types of edges: part-of
edges for linking the workflow node to every other node, data-flow edges which
link data nodes to task nodes or vice versa, and control-flow edges connecting two
task nodes or a task node with a control-flow node. Figure2 shows the semantic
graph representation of the workflow from Fig. 1. It contains one workflow node,
which links all elements of the workflow by part-of edges. A simplified fraction of
some semantic descriptions are shown in dashed boxes. The business trip data, for
example, could include information about the date, venue or expected expenses of
the business trip. Further, gather trip information is annotated by information such
as the assigned employee or the task’s enactment status.

A fraction of the domain ontology Σ for this example domain is illustrated in
Fig. 3. The sub-ontology for tasks is shown, which is a light-weight ontology that

Fig. 2 Semantic workflow of the previously introduced example workflow

Similarity-Based Retrieval and Automatic Adaptation of Semantic Workflows 37

Fig. 3 Example task ontology

arranges relevant tasks in a taxonomical structure. For example, settle outstanding
accounts, expense accounting and cash advance accounting are tasks descriptions
classified as general accounting tasks. Further, professional development expense
accounting or trip expense accounting are special forms of expense accounting. In
addition, each concept in the ontology may have certain properties (e.g. assigned
employee in Fig. 2). We employ this ontology for similarity assessment of tasks and
data objects (see Sect. 4).

3.4 Repository of Semantic Workflows

A repository of workflows reflecting best-practice processes in a domain is the core
of a POCBR approach. In CBR terminology, this repository is the case base that
stores the available experience. Given the semantic workflow graph representa-
tion, we represent a workflow repository as a set of semantic workflows over the
same domain ontology. Hence, a workflow repository is always tied to a particu-
lar domain and its semantic metadata representation. Thus, we define a case base
CB = {CW1, . . . ,CWn} as a set of cases CWi each of which is a semantic workflow
graph over Σ .

The acquisition of semantic workflows is an important step in the development of
a POCBR system. Usually, workflows are already available in a domain (otherwise
the use of POCBR is not advisable), but they have to be captured and formalized as
part of a knowledge engineering process. For details, see Sect. 6.3.

4 Similarity-Based Retrieval of Workflows

When using POCBR to support the construction of a new workflow, the user has to
specify a query stating the requirements on the workflow s/he is aiming at. The CBR
approach then selects the most similar semantic workflow from the repository to that
query and adapts it in order increase the similarity to the query.

38 R. Bergmann and G. Müller

4.1 User Queries

Users can query a repository of semantic workflows with a specification of important
properties of theworkflow s/hewants to create in order to retrieve potentially reusable
workflows. Previouswork onworkflow reuse and discovery has already addressed the
question how typical queries look like. For scientific workflows, Goderis et al. [28]
studied the importance of different criteria for workflow discovery. They identified
that the task and data items that occur in the workflow are relevant as well as general
characteristics of the workflow related to quality, performance, and reliability. The
workflow structure is also very important, particularly the data-flow and control-
flow as well as the used control-flow constructs. Also for business workflows, the
relevant types of queries have been identified and different query languages have
been proposed by Beeri et al. [29] and Awad [30]. Their work clearly shows that it
is useful to construct queries in the same way as workflows are constructed. Queries
can be patterns built from connected workflow elements, which are then matched
against the workflows in the repository.

In the light of these results, we focus on queries that are represented as semantic
workflow graphs [31]. Such a query specifies some workflow elements together with
the semantic description that are considered as requirements on the workflows to be
retrieved. A simple query could even consist solely of aworkflownode that contains a
semantic description specifying the class of workflow and some general properties,
such as quality requirements. More sophisticated queries may in addition contain
some unconnected data and/or task nodes that specify that these nodes should occur
in the workflow one is looking for. Structural properties related to the data and/or
control-flow can be specified by linking the nodes with control-flow and/or data-
flow links, thus forming a partial workflow (or even several unconnected partial
workflows). The aim of retrieval is then to find workflows from the repository that
match the specified partial workflows as good as possible according to a similarity
measure.

4.2 Semantic Workflow Similarity

The notion of similarity plays a key role in CBR, since cases are selected based
on their similarity to the current query. While early CBR approaches were usually
restricted to syntactic similarity measures (such as inverse Euclidean or Hamming
distances), the current view is that the similarity measure should consider as much
semantics as possible. Consequently, similarity measures must be modeled as part
of the knowledge acquisition process during CBR application development.

Similarity is formalized as a function that maps a pair of problem descriptions to
a real number, often restricted to the unit interval [0, 1], with the convention that a
high value indicates a high similarity. Further, similarity is linked with the notions
of preference and utility [32–34]: A higher degree of similarity suggests that a case
is more useful for solving the current problem and hence should be preferred.

Similarity-Based Retrieval and Automatic Adaptation of Semantic Workflows 39

As a means for practical modeling of similarity functions, the so-called local-
global principle, first proposed by Richter (for details see [15, 32, 33]) is widely
used. Modeling similarity means decomposing the similarity function according to
certain properties of the case.A local similarity function is defined for each individual
property, reflecting the utility of a case with respect to the single property only.
The local similarities are then aggregated into the global similarity by means of
an aggregation function. This function appropriately combines all local similarity
values (e.g. by a weighted average) into a single value that aims at reflecting the
utility of the case as awhole. The graph-based representation ofworkflows introduces
structural aspects into the representation and therebymakes the similarity assessment
much more complicated. Several graph algorithms have been proposed for similarity
assessment such as sub-graph isomorphism, maximal common sub-graphs, or edit-
distance measures [27, 35–38].

In our research, we have developed a new similarity model that is an enhancement
of the local-global principle [39]. The local similarity measures assess the similarity
between two nodes or two edges of the same type based on their semantic description.
The global similarity forworkflows is obtained by an aggregation function combining
the local similarity values within a graph mapping process.

In more detail, the core of the similarity model is a local similarity measure for
semantic descriptions simΣ : Σ2 → [0, 1]. In our example domain the taxonomical
structure of the data and task ontology is employed to derive a similarity value
that reflects the closeness in the ontology. It is combined with additional similarity
measures that consider relevant attributes (see [39] for more details and examples).

The similarity simN : N2 → [0, 1] of two nodes and two edges simE : E2 → [0, 1]
is then defined based on simΣ applied to their assigned semantic descriptions. The
similarity sim(QW ,CW) between a query workflow QW and a case workflow CW
is defined by means of an admissible mapping m : Nq ∪ Eq → Nc ∪ Ec, which is a
type-preserving, partial, injective mapping function of the nodes and edges of QW
to those of CW . For each query node and edge x mapped by m, the similarity to the
respective case node or edge m(x) is computed by simN (x,m(x)) and simE(x,m(x)),
respectively. The overall workflow similarity with respect to a mapping m, named
simm(QW ,CW) is computed by an aggregation function (e.g. a weighted average)
combining the previously computed similarity values. The overall workflow similar-
ity is determined by the best possible mapping m

sim(QW ,CW) = max{simm(QW ,CW) |admissible map m}.

Thus, similarity assessment is defined as an optimization problem that consists of
finding the best possible alignment of the query workflow with the case workflow. It
determines the best possible way (in terms of similarity) in which the query workflow
is covered by the caseworkflow. In particular, the similarity is 1 if the queryworkflow
is exactly included in the case workflow as a subgraph.

This similarity assessment is then used to retrieve the best matching workflow
from the repository. While similarity computation by exhaustive search guarantees
to find the optimal match, it is computationally not feasible. This is particularly true

40 R. Bergmann and G. Müller

for retrieval of the best matching workflow in large case bases, since the similarity
between the query and each case in the case base must be computed. In our research,
we developed four different approaches for an efficient retrieval of workflows, which
are briefly summarized below.

4.3 Efficient Similarity Computation by Heuristic Search

In a first step, we improved the efficiency of the similarity computation by develop-
ing an A* search algorithm, which is based on a specific well-informed admissible
heuristic function [39]. The search algorithm aims at finding an admissible map
m between the nodes and edges of the workflows to be compared. In the search
space the search nodes represent partial maps, which are incrementally extended
towards a complete admissible map. As in traditional A*-search [40], in each search
step, the search node with the best (in our case the highest) value for the function
f (node) = g(node) + h(node) is selected. Here g represents the similarity value
already achieved by search node’s mapping and h represents an admissible heuristic
function providing a good over-estimation of the additional similarity increment that
can be achieved bymapping theworkflow elements that are notmapped already.With
a memory-bound version of A* we achieved a significant speed-up (up-to several
orders of magnitude) in similarity computation over exhaustive search while only
slightly compromising the precision of the result.

4.4 Parallelized Similarity Computation

An improved version of the presented A* search algorithm results from parallelizing
the similarity computations of several (or all) cases of the case base in order to find
the k most similar cases. Therefore the search process is parallelized, maintaining
one search queue for each case. In every step, the search node from the queue with
the highest f -value from all queues is expanded. Search terminates, when at least
k searches have terminated and when the similarity of the k-best case is higher
than all f -values of the remaining queues. Since the f -values are upper bounds for
the final similarity, it is ensured that none of the remaining cases can ever exceed
the similarity of the known k-best case. Hence, completeness of k-best retrieval is
guaranteed. This approach can also be executed using parallel threads on multi-core
CPUs. In our experiments, this approach again leads to a speed-up compared to the
A* up-to an order of magnitude for case bases with a few hundred cases and values
of k < 10.

Similarity-Based Retrieval and Automatic Adaptation of Semantic Workflows 41

4.5 Two-Step Retrieval

If the size of the case base is further increased, additional approaches to speed-
up retrieval are required. For this purpose a two-level retrieval method has been
developed [41] inspired by the MAC/FAC (Many are called, but few are chosen)
model originally proposed by Gentner and Forbus [42]. The first retrieval step (MAC
phase) performs a rough and efficient pre-selection of a small subset of cases from
a large case base. Then, the second step (FAC phase) is executed to perform the
computationally expensive graph-based similarity computation on the pre-selected
cases only. This method improves the retrieval performance, if theMAC stage can be
performed efficiently and if it results in a sufficiently small number of pre-selected
cases. However, there is a risk that the MAC phases introduces retrieval errors, as it
might disregard highly similar cases due to its limited assessment of the similarity.
Hence, the retrieval approach for the MAC phase must be carefully designed such
that it is efficient and sufficiently precise in assessing the similarity. We address this
problem by proposing an additional feature-based case representation of workflows,
which simplifies the original representation while maintaining the most important
properties relevant for similarity assessment. This representation is automatically
derived from the original graph-based representation. The MAC stage then selects
cases by performing a similarity-based retrieval considering the simplified workflow
representation.

4.6 Cluster-Based Retrieval

As alternative approach to efficient retrieval we explored the idea to cluster the work-
flows using a hierarchical clustering algorithm employing the described similarity
measure for assessing the distance of two workflows [43]. Therefore, we developed
a hierarchical version of the traditional Partitioning Around Medoids (PAM) algo-
rithm [44]. It constructs a cluster-treewhere each cluster is represented by a particular
case (medoid) such that the case base is partitioned into sets of similar cases. This
cluster-tree is then used as an index structure during retrieval.

For retrieving the k most similar cases, clusters at predefined levels in the tree
are selected that are most similar to the query. Therefore the similarity between the
query and a cluster of cases is computed based on the similarity between the query
and the medoid representing the cluster. Only the cases within the selected clusters
are then considered for similarity-based retrieval. Our investigation revealed that this
approach can decrease the retrieval time without a considerable loss of retrieval qual-
ity. Furthermore, parameters enable to control the trade-off between retrieval quality
and retrieval time. A significant advantage compared to the MAC/FAC approach is
that no additional retrieval phase with a separate simplified feature representation
must be designed and thus the development and maintenance effort for retrieval is
not increased.

42 R. Bergmann and G. Müller

5 Workflow Adaptation and Learning Adaptation
Knowledge

As introduced in the previous sections, similarity-based retrieval of semantic work-
flows for a given user query is an important first step to support the reuse of best-
practice workflows from a repository. However, finding a similar workflow does
not guarantee that it perfectly matches the query. Several requirements stated in the
query (see Sect. 4.1) might not be fulfilled by the most similar workflow. Conse-
quently, more or less comprehensive modifications of the workflow are required. To
support the user in performing such modifications, an automated workflow adapta-
tion approach is desirable. The overall aim of automated adaptation is to modify the
retrieved workflow in such a way that its original similarity to the query is further
increased. Ideally, if the adaptation is able to consider all user requirements perfectly,
a similarity of 1 is achieved.

In general, adaptation methods in CBR can be roughly classified into transforma-
tional, compositional, and generative adaptation [45]. While transformational adap-
tation (e.g., [46]) relies on adaptation knowledge represented as rules or operators,
generative adaptation demands general domain knowledge appropriate for an auto-
mated from scratch problem solver. In compositional adaptation several components
from various cases are reused during adaptation, incorporating transformational or
generative adaptation methods. Also generalization of cases can be used for the
purpose of adaptation, since a single generalized case (e.g., [47, 48]) comprises
adaptation knowledge, which provides solutions for a range of problems. Thus, all
adaptation approaches require some kind of adaptation knowledge in the particular
application domain, for example, in the form of rules describing the replacement
of domain-specific tasks or data items. However, the acquisition of such adaptation
knowledge is a complex and laborious task. This results in a knowledge-acquisition
bottleneck of adaptation knowledge [49], impeding successful workflow adaptation.
Thus, various approaches have been proposed to learn adaptation knowledge auto-
matically [16, 50, 51].

In our work, we developed various adaptation approaches for POCBR in order to
support individual workflow reuse. As we aim at avoiding the acquisition bottleneck
for adaptation knowledge, for each adaptation method described in the following,
a specific approach for learning the required adaptation knowledge is presented.
This adaptation knowledge is determined prior to retrieval and adaptation from the
workflows stored in repository.

5.1 Adaptation by Generalization and Specialization

Generalization and Specialization is an adaptation approach in CBR, in which the
adaptation knowledge is learned by a generalization of the cases. The generalized
cases are then stored in the case base. Thus, for a particular problem scenario a gener-

Similarity-Based Retrieval and Automatic Adaptation of Semantic Workflows 43

Fig. 4 Example of a generalized and a corresponding specialized workflow

alized case can be retrieved from the case base and refined according to the problem at
hand. This approach can be easily applied toworkflow cases. A generalizedworkflow
[52] is a workflowwhose elements (task and data items) are described by generalized
terms from the domain ontology (see Sect. 3). Each generalized term represents mul-
tiple specific task or data objects. Thus, a generalized workflow represents several
specialized workflows.

An example is sketched in Fig. 4, illustrating a generalizedworkflow fragment and
a corresponding specialized workflow fragment. The generalized fragment can be
derived from the exampleworkflow given in Fig. 2. It describes that a request requires
the gathering of some data prior to a notification, thereby making no assumption
on the concrete request or data present. Thus, it is a generalized process fragment
that can be used for many scenarios, for example, the approval for professional
development as illustrated in the corresponding specialized workflow fragment. This
process fragment involves particular task and data items suited to the particular
professional development scenario. A specialized workflow consequently represents
the entire process for a concrete scenario. Please note that specialization usually
involves information at different levels of abstraction, i.e., professional development
data involves information on the particular course, expenses, or related employee,
while general data makes no concrete assumption on the information given. Thus,
specialization of tasks or data items may also result in a replacement of the entire
semantic description (see attached boxes).

A generalized workflow can be learned by comparing similar workflows from the
repository (see [52] for technical details). This approach is based on the assumption
that if similar workflows contain similar terms, these terms can be replaced by a
more generalized term from the ontology. This aims at learning only reasonable
generalizations in order to ensure adaptation quality. For example, the generalized
workflow data item data illustrated in Fig. 4, could result from the fact that similar
workflows contain the terms professional development data, business trip data, and
business meeting data. Then the illustrated workflow can be generalized to contain
any kind of data. Accordingly, the generalized task request represents all possible
kinds of requests.

44 R. Bergmann and G. Müller

Fig. 5 Example of two workflow streams A and B

Adaptation is supported by specializing a workflow according to the query. This
means that each generalized task or data item is replaced by a specialized node such
that the similarity between the query and the adapted workflow is maximized. For
example, if the generalized workflow contains the term data and the query defines
that business meeting data is desired, then the generalized element description is
specialized to business meeting data. If a generalized workflow covers several spe-
cialized workflows, the workflow repository size can be reduced. This simplifies the
repository management and increases the workflow retrieval performance.

5.2 Compositional Adaptation

The idea of compositional adaptation [53] is that each workflow can be decomposed
into meaningful sub-workflows. This decomposition is based on the fact that the
final workflow output is quite often achieved by producing partial outputs that are
somehow combined to create the final workflow output. Partial outputs are generated
by particular parts of the workflow (sub-graphs), which we refer to as workflow
streams. For example, the task request for approval illustrated in Fig. 2 could be
alternatively performed by theworkflow streams illustrated in Fig. 5. Theseworkflow
streams describe two alternative decision processes for tip approval. Stream A may
refer to a business domain in which a manager approval is required, while stream B
could represent a particular process in a government domain as it merely focuses on
the formal expense regulations. In general, there can be many workflow streams that
could potentially be exchanged with one another to achieve the same partial output.

The basic idea for compositional adaptation is to adapt a workflow by replacing
workflow streams in the retrieved workflow with more suitable workflow streams
from other workflows. This means that the workflow streams represent the required
adaptation knowledge for compositional adaptation. Thus, prior to adaptation, useful
workflowstreams are extracted from theworkflows stored in the repository.Workflow
streams can be identified by collecting all data-flow connected tasks1 until a new
data item is created, denoting the corresponding partial workflow output (see for
[53] details).

1if a tasks consumes a data item produced by another one, they are data-flow connected.

Similarity-Based Retrieval and Automatic Adaptation of Semantic Workflows 45

In order to adapt a workflow, a workflow stream can be replaced by a stream
learned from another workflow that produces the same partial output but in a different
manner, i.e., with other task or data items. Workflow streams can only be replaced,
if their data nodes indicate that they represent the same kind of sub-process. This
ensures that replacing an arbitrary stream does not violate the correctness of the
workflow. In the given example, workflow streams can only be replaced if they
consume a data item business trip data and produce a trip approval data item.

The overall compositional adaptation process aims at increasing the similarity
between the query and the adapted workflow by successively replacing workflow
streams. Each workflow stream is replaced by the respective stream, which max-
imizes the overall workflow similarity. The resulting adapted workflow is thus a
local optimum achieved by adapting the retrieved most similar workflow using the
available workflow streams.

5.3 Transformational Adaptation

Transformational adaptation is based on adaptation knowledge in the form of adap-
tation rules or adaptation operators [45] that specify a particular modification of the
case. Our transformational approach to workflow adaptation focuses on workflow
adaptation operators [54] which are specified in a STRIPS-like manner. An opera-
tor consists of two workflow sub-graphs we call streamlets: a DELETE-streamlet
specifies a workflow fraction to be deleted from the workflow and an ADD-streamlet
represents a workflow fraction to be added to the workflow. Thereby operators can
define the insertion, the removal, or the replacement of a particularworkflow fraction.
In contrast to compositional adaptation, not only workflow streams can be replaced,
but basically any fraction of a workflow, such as a single task or a single data item.

The example adaptation operator shown in Fig. 6 describes the transformation of
a planned business trip towards a spontaneous short time customer meeting near-by.
Thus, the booking of hotel and travel as well as the request for cash advance becomes
superfluous. Instead, just a taxi would have to be ordered. This change does not only
affect the activities but also the data items of the workflow, since here the data item
booking information is no longer required.

Fig. 6 Example of a
workflow adaptation
operator

46 R. Bergmann and G. Müller

Workflow adaptation operators can be learned from the workflow repository by
analyzing pairs of highly similar workflows (selected by using a similarity threshold).
For each pair, the difference is determined and workflow operators are generated,
whose ADD and DELETE-streamlets basically cover those differences. Roughly
speaking, the generated operators thus transform one workflow of the pair into the
other one (see [54] for a detailed description of the algorithm).

For adaptation, the learned adaptation operators are applied using a local search
algorithm, in a similar manner as in compositional adaptation. The resulting adapted
workflow is thus a local optimum achieved by adapting the retrieved most similar
workflow using the available adaptation operators.

The three described adaptation methods can also be combined to a single adap-
tation process (see [55] for details). This comprehensive adaptation, integrates and
combines all adaptation methods, thereby maximizing the opportunity to generate a
suitable workflow for the given query.

6 CAKE - An Integrated System for Process-Oriented
Case-Based Reasoning

In the following, we briefly sketch the CAKE framework, which includes the previ-
ously introduced methods and we highlight several application examples.

6.1 Achitecture

The CAKE2 architecture [13] (see Fig. 7) basically consist of data bases as well as
a client and a server component. The latter includes a storage layer which handles
persistence of all data, an interface layer for client communication and two central
engines, i.e., the agile workflow engine and the knowledge engine working together
on the same data items accessed via the storage layer. CAKE is implemented in JAVA
as Web-based system running as a Software as a Service.

The agile workflow engine is used for the enactment of agile workflows and sup-
ports their collaborative modeling. Furthermore, changes on demand can be collab-
oratively performed on workflow instances as well as workflow models at any time.
Running workflow instances delegate tasks to humans via the worklist manager and
applications may be invoked via the service connector. In this chapter, however, we
mainly focused on the knowledge engine, which supports users in finding, defining,
and adapting workflows according to their current needs. Therefore, the knowledge
engine implements the retrieval and adaptation of semantic workflows as previously
introduced. CAKE ensures that any stored resource (a workflow, a task, a docu-
ment, and any further workflow related resources) is accessible and possesses a clear

2See http://cake.wi2.uni-trier.de.

http://cake.wi2.uni-trier.de

Similarity-Based Retrieval and Automatic Adaptation of Semantic Workflows 47

Fig. 7 CAKE system architecture

ownership by means of the resource model implemented in the storage layer. This
way, workflows can be shared and reused considering particular access rights [56].
The acquisition layer handles the import of ontologies and similarity measures and
further supports the automatic extraction of workflows from text [57, 58]. CAKE
provides two client interfaces, i.e., a browser based access as well as amobile android
application, which are connected to the server component via the interface layer.

6.2 Selected Application Examples

The methods for supporting workflow reuse presented in this chapter have potential
to be useful in many application areas, some of which will be now briefly sketched.

From the traditional business perspective, the presented methods can support the
creation of business processes addressing the individual needs of customers or of a
particular business scenario. Furthermore, adaptation enables the automatic modi-
fication of workflow models, for example, to suit changed business environments.
Moreover, POCBR can be employed as a knowledge management method for cap-
turing, storing, and sharing procedural knowledge among different employees or
departments.

48 R. Bergmann and G. Müller

Social Workflows are a new research area [59, 60] which addresses the support
of processes enacted during daily life, such as, do-it-yourself car repair, moving
to another city, or organizing a trip with a group of friends. The steps in a social
workflow involve access to social networks, the activation of online services, as well
as activities performed by several people (e.g., friends or professionals). In a social
workflow management system as introduced by Görg [59, 60], the reuse capabilities
illustrated in this chapter are highly relevant since the users of social workflows are
not experienced in workflow modeling.

In the cooking domain a recipe can also be represented as a workflow describing
the instructions for cooking a particular dish [55]. While traditional recipe websites
solely regard ingredients, categories or recipe names during recipe search, CAKE
is able to consider additional knowledge such as required cooking steps, difficulty
level, costs, resource consumption, available tools, and diaries. Cooking workflows
can be selected and adapted considering particular user preferences by employing the
previously introduced POCBRmethods within the knowledge engine. Subsequently,
CAKE provides a step-by-step guidance for the preparation of the particular dish.

6.3 Required Knowledge Engineering

In order to apply POCBR (including the methods described in this chapter) in a cer-
tain domain requires a knowledge engineering process. This knowledge engineering
involves the development of the ontology (including task and data sub-ontologies),
the similarity measures, as well as the workflows for the case base. The manual
acquisition of adaptation knowledge is not required as this knowledge is obtained
by the described machine learning approaches particularly targeting the knowledge
required for the various adaptation methods.

Ontology development can be performed according to standard methodologies
(see, for example [61], Chap. 4 for an introduction). In particular, the reuse of existing
ontologies is highly recommended. In the cooking domain, for example, wemake use
of the cooking ontology developed within the Taaable project3 [62], which already
includes a huge set of ingredients and cooking steps. The sub-ontologies we currently
use consist of 156 ingredients and 55 cooking steps.

Based on the ontology, local similaritymeasures for comparing task and data items
must be developed. The knowledge engineering process for similarity measures is
well established in CBR [63] and ends-up in selecting appropriate local measures
from a similarity-measure library and selecting their parameters according to the
domain of the attributes (see, for example [33], Chap. 4).

The final knowledge-engineering steps aims at the acquisition of semantic work-
flows to populate the case base. For this purpose, different approaches are possible.

3http://wikitaaable.loria.fr.

http://wikitaaable.loria.fr

Similarity-Based Retrieval and Automatic Adaptation of Semantic Workflows 49

• Workflows can be acquired in amanual process by usingworkflowmodeling tools.
Then, appropriate semantic annotations must be added to each task and data item.
This manual process is obviously a quite laborious activity, but it ensures a high
quality of the resulting knowledge.

• Alternatively, already existing workflows represented in some standard format,
such as BPMN, can be reused. For example, existing workflow repositories col-
lected and published for research purposes can be a good starting point. Current
collections include the BPM Academic Initiative Model Collection,4 selected ref-
erence models from the IBM Academic Initiative program,5 the SAP reference
models [64], the collections used in the process model matching contests6 in 2013
and 2015 as well as the collection of the Institute for Information Systems at
the DFKI in Saarbrücken [65]. However, the models in these collections lack the
required semantic descriptions and thus also requires an additional annotation
process before being usable as cases.

• The third approach for acquiring workflows is to apply information extraction
methods on available textual descriptions of processes [57, 58, 66]. Cooking
recipes, for example, are appropriate textual descriptions. The preparation instruc-
tions for the dish included in a recipe can be analyzed and turned into a formal
workflow representation. Also in other domains, workflows are described in a tex-
tual fashion, for example procedures for technical diagnosis. However, the result-
ing workflows still need manual quality control and improvement as automatic
methods are yet unable to produce results with sufficient quality.

From our experience, the described knowledge-engineering approach is appropriate
and the effort is acceptable in many domains. As benefit from these development
efforts, POCBR comprehensively supports the creation of new workflows by reuse.
Of course, there is no guarantee that workflows that are produced as a result of
an adaptation process are always semantically correct (the syntactic correctness,
however, is guaranteed). Their correctness depends on the correctness of the learned
adaptation knowledge.As this learning process is an inductive process, its correctness
cannot be ensured. Thus, there is always a need for a humanuser to access and validate
the resulting adapted workflows.

7 Conclusions

In this chapter, we introduced process-oriented case-based reasoning as a method to
support flexible and more individual workflows. We presented an overview of differ-
ent methods from knowledge representation, knowledge engineering and machine
learning to support the representation of semantic workflows as well as their simi-

4http://bpmai.org/download/index.html.
5https://developer.ibm.com/academic.
6https://ai.wu.ac.at/emisa2015/contest.php.

http://bpmai.org/download/index.html
https://developer.ibm.com/academic
https://ai.wu.ac.at/emisa2015/contest.php

50 R. Bergmann and G. Müller

larity based retrieval and adaptation. These methods have been demonstrated using
an example from a traditional business process, involving several manual activities
typically enacted with support by some specific business application software. Thus,
those workflows are a means to coordinate the work among the involved employees
but they are also a means for application integration. As pointed out in the intro-
duction, workflows can also used in several other application contexts. Here, the
spectrum is quite large, leading applications involving a flow of activities performed
completely manual (such as in the cooking domain) up to applications in which the
workflows are executed fully automatically (e.g. scientific workflows or workflows
for information integration).

Within the scope of our work, we have extensively evaluated the proposed meth-
ods, including the quality of the adapted workflows in the cooking domain [39,
52–54]. Initial experimental evaluations in the domain of business processes [67],
and social workflows [59, 60] have been performed as well. Future work will focus
on investigating these and other new application domains in more depth. Moreover,
we will investigate interactive methods, which involve the user during search and
adaptation of workflows to further enhance the usability of the presented methods.

Acknowledgements This research was funded in part under grant BE1373/3-1 from the German
Research Foundation (DFG) and enacted in cooperation with Mirjam Minor and her group from
Goethe University Frankfurt.

References

1. van der Aalst, W.M.: Business process management: a comprehensive survey. ISRN Softw.
Eng. 2013, 1–37 (2013)

2. Workflow Management Coalition: Workflow management coalition glossary & terminology
(1999)

3. Freßmann, A., Sauer, T., Bergmann, R.: Collaboration patterns for adaptive software engi-
neering processes. In: Czap, H., Unland, R., Branki, C., Tianfield, H. (eds.) Self-Organization
and Autonomic Informatics (I), vol. 135, pp. 304–312. IOS Press, Amsterdam (2005). ISBN
1-58603-577-0

4. Minor,M., Tartakovski, A., Schmalen, D., Bergmann, R.: Agile workflow technology and case-
based change reuse for long-term processes. International Journal of Intelligent Information
Technologies 4(1), 80–98 (2008)

5. Taylor, I.J., Deelman, E., Gannon, D.B.: Workflows for e-Science. Springer, Berlin (2007)
6. Freßmann, A.: Adaptive workflow support for search processes within fire service organisa-

tions. In: Reddy, S.M. (ed.) Proceedings of the Fifteenth IEEE International Workshop on
Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 291–296. IEEE Com-
puter Society (2006)

7. Hung, P., Chiu, D.: Developing workflow-based information integration (WII) with exception
support in aweb services environment. In: Proceedings of the 37thAnnual Hawaii International
Conference on System Sciences, 2004, p. 10 (2004)

8. Minor, M., Bergmann, R., Görg, S., Walter, K.: Adaptation of cooking instructions following
the workflow paradigm. In: Marling, C. (ed.) ICCBR 2010 Workshop Proceedings (2010)

9. Fleischmann, A., Schmidt, W., Stary, C., Augl, M.: Agiles prozessmanagement mittels subjek-
torientierung. HMD Praxis der Wirtschaftsinformatik 50(2), 64–76 (2013)

Similarity-Based Retrieval and Automatic Adaptation of Semantic Workflows 51

10. Reichert, M., Weber, B.: Enabling Flexibility in Process-aware Information Systems: Chal-
lenges, Methods, Technologies. Springer Science & Business Media, Berlin (2012)

11. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological variations,
and system approaches. AI Commun. 7(1), 39–59 (1994)

12. Minor, M., Montani, S., Recio-García, J.A.: Process-oriented case-based reasoning. Inf. Syst.
40, 103–105 (2014)

13. Bergmann, R., Gessinger, S., Görg, S., Müller, G.: The collaborative agile knowledge engine
CAKE. In: Goggins, S.P., Jahnke, I., McDonald, D.W., Bjørn, P. (eds.) Proceedings of the 18th
International Conference on Supporting Group Work, Sanibel Island, FL, USA, November
09–12, 2014, pp. 281–284. ACM (2014)

14. Richter, M.M., Weber, R.O.: Case-Based Reasoning - A Textbook. Springer, Berlin (2013)
15. Lopez De Mantaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Faltings,

B., Maher, M.L., Cox, M.T., Forbus, K., Keane, M., Aamodt, A., Watson, I.: Retrieval, reuse,
revision and retention in case-based reasoning. Knowl. Eng. Rev. 20(3), 215–240 (2005)

16. Craw, S., Wiratunga, N., Rowe, R.C.: Learning adaptation knowledge to improve case-based
reasoning. Artif. Intell. 170(16), 1175–1192 (2006)

17. Badra, F., Cordier, A., Lieber, J.: Opportunistic adaptation knowledge discovery. In: McGinty,
L., Wilson, D.C. (eds.) Case-Based Reasoning Research and Development, 8th International
Conference on Case-Based Reasoning, ICCBR 2009. Lecture Notes in Computer Science, vol.
5650, pp. 60–74. Springer, Berlin (2009)

18. Dufour-Lussier, V., Ber, F.L., Lieber, J., Nauer, E.: Automatic case acquisition from texts for
process-oriented case-based reasoning. Inf. Syst. 40, 153–167 (2014)

19. Leake, D.B.,Wilson, D.C.: Combining CBRwith interactive knowledge acquisition, manipula-
tion and reuse. In: Proceedings of the Third International Conference onCase-BasedReasoning
and Development. ICCBR ’99, pp. 203–217. Springer, London (1999)

20. Bergmann, R., Freßmann, A., Maximini, K., Maximini, R., Sauer, T.: Case-based support
for collaborative business. In: Proceedings of the 8th European Conference on Advances in
Case-Based Reasoning. ECCBR’06, pp. 519–533. Springer, Berlin (2006)

21. Montani, S., Leonardi, G.: Retrieval and clustering for supporting business process adjustment
and analysis. Inf. Syst. 40, 128–141 (2014)

22. Sauer, T., Maximini, K.: Using workflow context for automated enactment state tracking. In:
Minor, M. (ed.) Workshop Proceedings: 8th European Conference on Case-Based Reason-
ing, Workshop: Case-based Reasoning and Context Awareness (CACOA 2006), pp. 300–314.
Universität Trier (2006)

23. Madhusudan, T., Zhao, J.L., Marshall, B.: A case-based reasoning framework for workflow
model management. Data Knowl. Eng. 50(1), 87–115 (2004)

24. Müller, R., Greiner, U., Rahm, E.: Agentwork: a workflow system supporting rule-based work-
flow adaptation. Data Knowl. Eng. 51(2), 223–256 (2004). doi:10.1016/j.datak.2004.03.010

25. Weber, B., Wild, W., Breu, R.: CBRFlow: enabling adaptive workflow management through
conversational case-based reasoning. In: Funk, P., González-Calero, P.A. (eds.) Advances in
Case-Based Reasoning, 7th European Conference, ECCBR 2004, Madrid, Spain, August 30 -
September 2, 2004, Proceedings. Lecture Notes in Computer Science, vol. 3155, pp. 434–448.
Springer, Berlin (2004). doi:10.1007/978-3-540-28631-8_32

26. Champin, P.A., Solnon, C.: Measuring the similarity of labeled graphs. In: Case-Based Rea-
soning Research and Development, pp. 1066–1067. Springer, Berlin (2003)

27. Dijkman, R., Dumas,M., Garcia-Banuelos, L.: Graphmatching algorithms for business process
model similarity search. In: Business Process Management, pp. 48–63 (2009)

28. Goderis, A., Li, P., Goble, C.: Workflow discovery: the problem, a case study from e-science
and a graph-based solution. Int. J. Web Serv. Res. 5(4), 2 (2008)

29. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes. In: Proceedings
of the 32nd International Conference on Very Large Data Bases, VLDB ’06, pp. 343–354.
VLDB Endowment (2006)

30. Awad, A.: BPMN-Q: a language to query business processes. In: Reichert, M., Strecker, S.,
Turowski, K. (eds.) Enterprise Modelling and Information Systems Architectures - Concepts

http://dx.doi.org/10.1016/j.datak.2004.03.010
http://dx.doi.org/10.1007/978-3-540-28631-8_32

52 R. Bergmann and G. Müller

and Applications. Proceedings of the 2nd International Workshop on Enterprise Modelling and
Information Systems Architectures (EMISA’07), St. Goar, Germany, October 8–9, 2007. LNI,
vol. 119, pp. 115–128. GI (2007)

31. Müller, G., Bergmann, R.: POQL: a new query language for process-oriented case-based rea-
soning. In: Proceedings of the LWA 2015Workshops: KDML, FGWM, IR, and FGDB. CEUR
Workshop Proceedings, vol. 1458, pp. 247–255. Trier (2015). http://www.wi2.uni-trier.de/
publications/2015_MuellerBergmannLWA.pdf

32. Richter, M.M.: Foundations of similarity and utility. In: Proceedings of the 20th Interna-
tional FloridaArtificial IntelligenceResearch SocietyConference (FLAIRS2007).AAAIPress
(2007)

33. Bergmann, R.: Experience Management - Foundations, Development Methodology, and
Internet-Based Applications. LNAI, vol. 2432. Springer, Berlin (2002)

34. Bergmann, R., Richter, M.M., Schmitt, S., Stahl, A., Vollrath, I.: Utility-oriented matching: a
new research direction for case-based reasoning. In: Schmitt, S., Vollrath, I., Reimer, U. (eds.)
9th German Workshop on Case-Based Reasoning, pp. 264–274 (2001)

35. Kapetanakis, S., Petridis, M., Knight, B., Ma, J., Bacon, L.: A case based reasoning approach
for the monitoring of business workflows. In: Bichindaritz, I., Montani, S. (eds.) Case-Based
Reasoning. Research and Development, ICCBR 2010, pp. 390–405. Springer (2010)

36. Montani, S., Leonardi, G., Lo Vetere, M.: Case retrieval and clustering for business process
monitoring. In: Proceedings of the ICCBR 2011 Workshops, pp. 77–86 (2011)

37. Goderis, A.: Workflow re-use and discovery in bioinformatics. Ph.D. thesis, University of
Manchester (2008)

38. Leake, D.B., Kendall-Morwick, J.: Towards case-based support for e-science workflow gen-
eration by mining provenance. In: Althoff, K.D., Bergmann, R., Minor, M., Hanft, A. (eds.)
Advances in CBR, pp. 269–283 (2008)

39. Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic workfows. Inf.
Syst. 40, 115–127 (2014)

40. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Englewood
Cliffs (2010)

41. Bergmann, R., Stromer, A.: MAC/FAC retrieval of semantic workflows. In: Proceedings of
the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference,
FLAIRS 2013, St. Pete Beach, Florida. May 22–24, 2013. (2013)

42. Gentner, D., Forbus, K.D.: MAC/FAC: a model of similarity-based retrieval. In: Proceedings of
the Thirteenth Annual Conference of the Cognitive Science Society. Cognitive Science Society
(1991)

43. Müller, G., Bergmann, R.: A cluster-based approach to improve similarity-based retrieval for
Process-Oriented Case-Based Reasoning. In: 20th European Conference on Artificial Intelli-
gence (ECAI 2014), pp. 639–644. IOS Press (2014)

44. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data - An Introduction to Cluster Analysis.
Wiley, New York (1990)

45. Wilke, W., Bergmann, R.: Techniques and knowledge used for adaptation during case-based
problem solving. In: Pobil, A.P.D., Mira, J., Ali, M. (eds.) 11th International Conference
on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems,
IEA/AIE-98. Lecture Notes in Computer Science, vol. 1416, pp. 497–506. Springer, Berlin
(1998)

46. Minor, M., Bergmann, R., Görg, S., Walter, K.: Towards case-based adaptation of workflows.
In: Case-Based Reasoning. Research and Development, pp. 421–435. Springer, Berlin (2010)

47. Maximini, K., Maximini, R., Bergmann, R.: An investigation of generalized cases. In: Ashley,
K.D., Bridge, D.G. (eds.) Case-Based Reasoning Research and Development, 5th International
Conference on Case-Based Reasoning, ICCBR 2003, Trondheim, Norway, June 23-26, 2003,
Proceedings. Lecture Notes in Computer Science, vol. 2689, pp. 261–275. Springer, Berlin
(2003). doi:10.1007/3-540-45006-8_22

48. Bergmann, R., Vollrath, I.: Generalized cases: representation and steps towards efficient sim-
ilarity assessment. In: Burgard, W., Christaller, T., Cremers, A.B. (eds.) KI-99: Advances in

http://www.wi2.uni-trier.de/publications/2015_MuellerBergmannLWA.pdf
http://www.wi2.uni-trier.de/publications/2015_MuellerBergmannLWA.pdf
http://dx.doi.org/10.1007/3-540-45006-8_22

Similarity-Based Retrieval and Automatic Adaptation of Semantic Workflows 53

Artificial Intelligence, 23rd Annual German Conference on Artificial Intelligence, Bonn, Ger-
many, September 13–15, 1999, Proceedings. Lecture Notes in Computer Science, vol. 1701,
pp. 195–206. Springer, Berlin (1999). doi:10.1007/3-540-48238-5_16

49. Hanney, K., Keane, M.T.: The adaption knowledge bottleneck: how to ease it by learning from
cases. In: Leake, D.B., Plaza, E. (eds.) Case-Based Reasoning Research and Development,
Second International Conference, ICCBR-97, Providence, Rhode Island, USA, July 25–27,
1997, Proceedings. Lecture Notes in Computer Science, vol. 1266, pp. 359–370. Springer,
Berlin (1997)

50. Minor, M., Görg, S.: Acquiring adaptation cases for scientific workflows. In: Case-Based Rea-
soning. Research and Development, 19th International Conference on Case-Based Reasoning,
ICCBR 2011. Lecture Notes in Computer Science, vol. 6880, pp. 166–180. Springer, Berlin
(2011)

51. Hanney,K.,Keane,M.T.: Learning adaptation rules froma case-base. In: Smith, I.F.C., Faltings,
B. (eds.) Advances in Case-Based Reasoning, Third European Workshop, EWCBR-96, Lau-
sanne, Switzerland, November 14–16, 1996, Proceedings. Lecture Notes in Computer Science,
vol. 1168, pp. 179–192. Springer, Berlin (1996)

52. Müller, G., Bergmann, R.: Generalization of workflows in process-oriented case-based reason-
ing. In: Russell, I., Eberle, W. (eds.) Proceedings of the Twenty-Eighth International Florida
Artificial Intelligence Research Society Conference, FLAIRS 2015, Hollywood, Florida, May
18–20, 2015, pp. 391–396. AAAI Press (2015)

53. Müller, G., Bergmann, R.:Workflow streams: a means for compositional adaptation in process-
oriented CBR. In: Lamontagne, L., Plaza, E. (eds.) Case-Based Reasoning Research andDevel-
opment - 22nd International Conference, ICCBR 2014, Cork, Ireland, September 29, 2014–
October 1, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8765, pp. 315–329.
Springer, Berlin (2014)

54. Müller, G., Bergmann, R.: Learning and applying adaptation operators in process-oriented
case-based reasoning. In: Hüllermeier, E., Minor, M. (eds.) Case-Based Reasoning Research
and Development, ICCBR 2015, Frankfurt am Main, Germany, September 28–30, 2015, Pro-
ceedings. LNCS, vol. 9343, pp. 259–274. Springer, Berlin (2015)

55. Müller, G., Bergmann, R.: CookingCAKE: a framework for the adaptation of cooking recipes
represented as workflows. In: Kendall-Morwick, J. (ed.) Workshop Proceedings from The
Twenty-Third International Conference on Case-Based Reasoning (ICCBR 2015), Frankfurt,
Germany, September 28–30, 2015. CEUR Workshop Proceedings, vol. 1520, pp. 221–232.
CEUR-WS.org (2015). http://ceur-ws.org/Vol-1520/paper23.pdf

56. Görg, S., Bergmann, R., Gessinger, S., Minor, M.: A resource model for cloud-based work-
flow management systems - enabling access control, collaboration and reuse. In: Desprez, F.,
Ferguson, D., Hadar, E., Leymann, F., Jarke, M., Helfert, M. (eds.) CLOSER 2013 - Proceed-
ings of the 3rd International Conference on Cloud Computing and Services Science, Aachen,
Germany, 8–10 May, 2013, pp. 263–272. SciTePress (2013)

57. Schumacher, P.: Workflow Extraction from Textual Process Descriptions. Verlag Dr. Hut,
München (2016)

58. Schumacher, P., Minor, M., Walter, K., Bergmann, R.: Extraction of procedural knowledge
from the web. In: Workshop Proceedings: WWW’12. Lyon, France (2012)

59. Görg, M.S.: Social Workflows, pp. 77–110. Springer Fachmedien Wiesbaden, Wiesbaden
(2016)

60. Görg, S., Bergmann, R.: Social workflows vision and potential study. Inf. Syst. 50, 1–19 (2015)
61. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman

and Hall/CRC Press (2010). http://www.semantic-web-book.org/
62. Cordier, A., Lieber, J., Molli, P., Nauer, E., Skaf-Molli, H., Toussaint, Y.: WIKITAAABLE: a

semantic wiki as a blackboard for a textual case-base reasoning system. In: 4th Semantic Wiki
Workshop (SemWiki 2009) at the 6th European Semantic Web Conference (ESWC 2009),
Hersonissos, Greece, June 1st, 2009. Proceedings. CEUR Workshop Proceedings, vol. 464.
CEUR-WS.org (2009). http://ceur-ws.org/Vol-464

http://dx.doi.org/10.1007/3-540-48238-5_16
http://ceur-ws.org/Vol-1520/paper23.pdf
http://www.semantic-web-book.org/
http://ceur-ws.org/Vol-464

54 R. Bergmann and G. Müller

63. Stahl, A.: Defining similarity measures: Top-down vs. bottom-up. In: Craw, S., Preece, A.D.
(eds.) Advances in Case-Based Reasoning, 6th European Conference, ECCBR 2002Aberdeen,
Scotland, UK, September 4–7, 2002, Proceedings. Lecture Notes in Computer Science, vol.
2416, pp. 406–420. Springer, Berlin (2002)

64. Curran, T.A., Ladd, A.: SAP R/3 Business Blueprint: Understanding Enterprise Supply Chain
Management. Prentice Hall International, Englewood Cliffs (1999)

65. Thaler, T., Dadashnia, S., Sonntag, A., Fettke, P., Loos, P.: The IWi process model corpus.
Technical report, Saarländische Universitäts- und Landesbibliothek, Postfach 151141, 66041
Saarbrücken (2015). http://scidok.sulb.uni-saarland.de/volltexte/2015/6267

66. Schumacher, P.,Minor,M.: Extracting control-flow from text. In: Proceedings of the 2014 IEEE
15th International Conference on Information Reuse and Integration, pp. 203–210. IEEE, San
Francisco, California, USA (2014)

67. Pfister,M., Fuchs, F., Bergmann, R.: Ähnlichkeitsbasiertes Retrieval vonBPMN-2.0-Modellen.
In: Lernen, Wissen, Daten, Analysen (LWDA 2016) (2016). http://www.wi2.uni-trier.de/
publications/2016_PfisterFuchsBergmann_LWDA.pdf

http://scidok.sulb.uni-saarland.de/volltexte/2015/6267
http://www.wi2.uni-trier.de/publications/2016_PfisterFuchsBergmann_LWDA.pdf
http://www.wi2.uni-trier.de/publications/2016_PfisterFuchsBergmann_LWDA.pdf

Development of Knowledge-Based Systems
Which Use Bayesian Networks

Isabel M. del Águila and José del Sagrado

Abstract Bayesian networks allow for a concise graphical representation of deci-
sion makers’ knowledge on an uncertain domain. However, there are no well-defined
methodologies showing how to use a Bayesian network as the core of a knowledge-
based system, even less if not all the features should be supported by the knowledge
model. That is to say, the software, that has to be released to customers, has also to
embed functionalities not based on knowledge, concerning to the information man-
agement processes closer to the world of a classical software development projects.
These components of the software application have to be built according to prac-
tices and methods of Software Engineering discipline. This chapter is conceived as
a guideline about how to manage and intertwine languages and techniques related
to Knowledge Engineering and Software Engineering in order to build a knowledge
based system supported by Bayesian networks.

Keywords Knowledge-based systems development · Bayesian networks · Model
driven software development

1 Introduction

This chapter addresses, from a practical point of view, how to manage and inter-
twine languages and techniques related to Knowledge Engineering (KE) and Soft-
ware Engineering (SE) in order to build a knowledge-based system (KBS) which
uses Bayesian networks (BNs). Within the Artificial Intelligence (AI) techniques
we focused on BNs because they allow for a concise graphical representation of the

I.M. del Águila (B) · J. del Sagrado
University of Almería, Crta de la Playa, 04120 Almería, Spain
e-mail: imaguila@ual.es

J. del Sagrado
e-mail: jsagrado@ual.es

© Springer International Publishing AG 2018
G.J. Nalepa and J. Baumeister (eds.), Synergies Between Knowledge
Engineering and Software Engineering, Advances in Intelligent
Systems and Computing 626, https://doi.org/10.1007/978-3-319-64161-4_3

55

56 I.M. del Águila and J. del Sagrado

decisionmakers knowledge on an uncertain domain [40]. However, the methodology
applied can also be extended to other KE models by defining the appropriate models
and transformations.

Computer applications assist in most of the processes and tasks performed in
our society, such as scientific research, engineering problems or decision-making
in business. Sometimes software is the keystone that keeps standing a product or
service.Nevertheless, the complexity of several domains entails the necessity of using
techniques that exceed the typical software development processes. For instance,
when heuristic techniques, non-transactional algorithms or probabilistic reasoning
are needed to solve a problem, we must use a KE methodological approach for
building the features that involve expert knowledge.

The classic KE approaches to system modeling use mostly logic-based symbolic
knowledge representation methods. These methods are specific from AI and are
usually far from the SE perspective. The development of KBS is a modelling activity
which requires a methodology that ensures well-defined knowledge-models (e.g. a
Bayesian network) that are able to manage the complexity of the symbol-level in
the construction process [44]. However, BNs haven’t been addressed in depth from
the KE point of view (i.e. with the goal of getting a software application based on a
BN), since most of the effort had focused on the study of the concepts and inference
processes of the BN itself. Nevertheless, a well-defined knowledge model does not
ensure the success of the software released to the customer, because requirements
and technology issues are usually divorced from KBS development methods. Three
sides of the software product have to be taken into account [11]: the customer role,
knowledge engineer role and software engineer role.

This scenario forces us to combine modern approaches of KE, specifically BN
modeling, and SE for their integration under the umbrella of techniques and methods
applied to both engineerings. This combined approach would allow the development
of quality software products using SE and/or KE methods, since there are many
cases in which companies must deploy software systems that transparently integrate
probabilistic knowledge-based and not-knowledge-based components [10, 15].

In KBS development the knowledge and software modeling phases are not inte-
grable effortlessly due to the different languages needed and the different steps fol-
lowed in the project. Besides, the knowledge model (i.e. BN) is described in the
knowledge level [36] (closer to the world) where we only need to specify what the
agent knows and what its goals are, whereas the software models are in the symbol
level that is closer to the system. This work focuses on bring closer these two disci-
plines by applying model-driven software development as an effective approach to
deal with the development of knowledge-based systems faster and more customized
than classical approaches [12].

First, wewill summarize the background of our proposal including an overview of
themainKEmethodologies, the theoretical probabilistic concepts and the fundamen-
tals of model driven development approach. Next, we will focus on the description of
a metamodel which contains the key concepts used in the definition of a BN-based
knowledge model. This metamodel will be the base to define a UML extension
using profiles that can bridge the gap in representation and facilitate the seamless

Development of Knowledge-Based Systems Which Use Bayesian Networks 57

incorporation of a BN-based knowledge model. In the context of knowledge-based
software development, it helps us to build a software system that needs to combine
knowledge and not knowledge based components, defining an anchor point between
KE and SE. We will also describe a case study in order to guide developers to built
a KBS which uses BN as knowledge model.

2 Knowledge Engineering: Current State

The Figure1 shows a review of the historical evolution of KE intertwining it with
the history of SE, because both had parallel and divergent evolutions but following
a similar pattern [13]. We start the timeline in 1956 because it is generally thought
that is the time where General Motors produced the first operating system. We also
describe a set of milestones that represents a convergence or divergence of devel-
opment methodologies that did not appear at the same time in SE and KE. The two
disciplines propose the development of software using engineering principles, so
should be similarities between techniques, methods, and tools applied in both fields
(see Fig. 1). However, KE and SE have ignored each other, which is against some
basic principles of any engineering such as cooperation, reuse or work partition.

The goal of KE is : “... constructing Knowledge Based System (KBS) in a sys-
tematic and controllable manner. This requires an analysis of the building and main-
tenance process itself and the development of appropriate methods, languages and
tools suitable for developing KBSs” [44]. We summarize KE evolution in Table1.

In the first stage (Mastering Intelligence (1956–1978)) Knowledge Engineering
had not yet appeared. The term Artificial Intelligence was coined those years. Pre-
viously, some authors such as Alan Turing (from 1900 to 1956) had made proposals
close to AI meaning. Most works in this period focused on the development of gen-
eral problem-solving techniques, such as the STRIPS (Stanford Research Institute
Problem Solver System) planning system [21] or GPS (General Problem Solver)
[20]. However, these techniques were not appropriated for concrete problems, since
domain knowledge were required instead of general knowledge. That is, techniques
were needed for transferring knowledge from the experts to computers. This last
point of view gave birth to the first KBSs, such as PROSPECTOR [26] and MYCIN
[42] but without the support of any development methodology.

Fig. 1 Timeline of Software Engineering and Knowledge Engineering

58 I.M. del Águila and J. del Sagrado

Table 1 Knowledge Engineering periods

Era Periods Description

Mastering Intelligence (1956–1978) General solvers

KBS Knowledge

Mastering Process (1979–1989) Process Crisis. Knowledge Eng. Shells

Specialization Domain specific applications

Mastering Complexity (1990–2000) Second
generation

KBS transfer. Knowledge industry

Reusing Tasks libraries. Know. management

Mastering Communications
(2001–2010)

Distributed Ontologies. Semantic Web

Data Mining Databases. Automatic learning

Mastering Productivity (2010–2017) Expanding Transfer to many domains

Integration Integrated approach

As there was no engineering method, the development process had to face many
problems. The KBS migration from research project to commercial products was
not successful in most cases. This was the starting point of a the second stage, Mas-
tering the process (1979–1989). Products did not meet the customers’ expectations,
time and cost estimates were not appropriated, and maintenance and testing tasks
became costly. Building a KBS was basically conceived as a process of transferring
human expert knowledge to a computer knowledge base [45]. This fact caused that
knowledge acquisition became the most important task and also the main bottle-
neck. In the same way the software crisis resulted in establishing SE as a discipline.
Early KBSs development problems forced developers to search for methodological
approaches and a better analysis of the applied process [3]: Knowledge Engineering
was born. Besides, the wide scope of applicability of Artificial Intelligence tech-
niques drove this discipline to specialization and diversification into new disciplines
such as computer vision, data mining and pattern recognition.

In the early nineties, with the purpose of overcome the knowledge acquisition
bottleneck, a new generation of methodologies redefined KE from transfer/mining
to a modeling perspective, (Mastering the Complexity (1990–2000)). This approach
is based on the knowledge level concept proposed by Nevell [36]. Starting from
this idea, a second-generation of KE methodologies came to light. They were the
first attempts to provide a complete methodology for the entire KBS development
life cycle. Moreover, the need to enhance productivity led to the empowerment of
knowledge component reuse, in the same way that classes and objects are reused in
object-oriented development. The concept of distributed software was also extended
to KBS, making it possible to apply this technology to a wider range of domains and
more complex problems, (Mastering Communications (2001–2010)). The spread
of the World Wide Web (WWW) made the ability to manage the semantics of the
data which is of paramount importance for the successful discovery, distribution and
organization of this information. Two connected disciplines emerged to help coping
these problems, Ontological Engineering [24] and Semantic Web [2].

Development of Knowledge-Based Systems Which Use Bayesian Networks 59

The last stage in KE history is mastering the Productivity (2010- —). Important
subjects that have to be taken into account are those related to make AI techniques
commercially viable and to extend them to the consumer products (such as interactive
smart toys), and those associated to their application to specific domains, such as
SE (i.e., Search Based Software Engineering) (SBSE) [25]. Moreover, the need for
software systems capable of coordinating information and of managing knowledge
in a single product was evident. The development of this kind of software should
be approached from a coordinated application of KE and SE methodologies [10,
13] taking advantage of the successful application of methods such as model driven
engineering or agilism.

Once the main milestones in KE history have been described, we will keep an eye
on how SE methods have been applied in KBS projects, focusing on model driven
approaches.

3 Software Engineering Methods for KBS: Model Driven
Development

AKBS can be defined as “software that has some knowledge or expertise about spe-
cific, narrow domain, and is implemented such that knowledge base and the control
architecture are separated. Knowledge-Based Systems have capabilities that often
include inferential processing (as opposed to algorithmic processing), explaining
rationale to users an generating non-unique results” [33]. The main role is played
by the knowledge model (i.e. knowledge base). In general, a model provides an
abstraction about reality and the knowledge models abstract the human experts’
problem solving approaches in order to be used in the development of software solu-
tions. Knowledge models usually are described in a specific purpose language. For
instance, a BN allows to represent uncertainty using probabilities. There is not a
standard language, because it heavily depends on knowledge representation mech-
anisms (e.g. rules, semantic networks, frames, BNs). Contrarily, the not knowledge
based components of the application are described using modeling languages from
the SE domain (UML is the most used standard). From a commercial point of view,
the development of a software application should focus on software features, some
of them supported by a knowledge model and others supported by some kind of
algorithmic methods. That is, several kind of languages have to be mandatory used
and combined in the same development project.

Figure2 shows how customers, software engineers and knowledge engineers per-
ceive the software development project in which they are involved. The knowledge
engineer uses KE methods to carry out the tasks, relegating to the background the
activities related to SE issues, such as reporting or interface management. The soft-
ware product that results from this process is a typical KBS. The software engineer
systematically applies its skills, tools and SE methods to develop a software product
(system), where knowledge is only another element, and usually forgets to take into

60 I.M. del Águila and J. del Sagrado

Client

Knowledge
engineer

Software
engineer

Client

Knowledge
engineer

Software
engineer

processingreport
generation

decision
making

users
management

End user’s
Software
System

Inference Engine

Bayesian Network

Client

Knowledge
engineer

Software
engineer

Fig. 2 Different perspectives of a software development project

account the different nature that the knowledge has. Finally, the customer’s view of
the project focuses on quality and the need of cooperation between the two engi-
neering and their own modeling languages [10, 11], so that the software product
to be released properly covers all her/his needs as a black box. This also means
that software components based and not based on knowledge must be transparently
interwoven.

BNs have its own algebraic notation. If we want a BN to be part of a software
solution, we must be able to express itself in the same, or at least in a compatible,
language that is commonly used to model general purpose software (i.e. UML).

The use of different modeling languages limits the applicability of one of the
software development schemes more widespread in our days, Model-Driven Archi-
tecture (MDA) [37]. Model-Driven Engineering (MDE) [41] refers to this software
development approach. It uses models as relevant entities, enabling the definition
and automatic execution of transformations between models, and from models to
code. MDE starts with the well-known and long established idea of separating the
specification of the system operation, from the details of the way that system uses
the capabilities of its platform. Similarly, KE separates the knowledge base from the
inference engine. This approach to system development, which increases the power
of models, provides a means for using models in order to direct the course of under-
standing, design, construction, deployment, operation,maintenance andmodification
of the software project.

The first type of MDE models is called a Platform Independent Model (PIM).
This is a formal specification of the structure and functions of a system that abstracts
away technical details. A Platform Specific Model (PSM) specifies the realization
of the functionality described in the PIM on a specific platform. A PIM could be
transformed into one or more PSMs, applying model-to-model (M2M) transforma-
tions. A PSM specifies the system in terms of the implementation components that
are available in a specific implementation technology. The final translation in this

Development of Knowledge-Based Systems Which Use Bayesian Networks 61

JAVA

C#

DDL

< >

PIM PSM

M2M
transforma on

M2T
transforma on

Ar fact and Code

Fig. 3 Model Driven Engineering transformation chain

development approach is to evolve the PSM into code by applying model-to-text
(M2T) transformations. Models and model transformations define a transformation
chain, as is shown in Fig. 3. Models are specified in a modeling language which is
defined by a metamodel.

This approach has as big advantage that there are supporting tools that enable the
specification and automatic execution of these transformations (e.g. fromUMLmod-
els to Java code). Once the modeling languages are selected and the transformation
chain is made up, the whole effort concentrates solely on creating and reviewing the
PIM, because is the chain starting point. A supporting MDE tool will automatically
generate the final code.

MDE has been successfully applied to many domains, such as web engineering
[34], ontology engineering [22], user interface development [27], rule based system
development [6, 7], and a variety of industrial domains [17, 39].

4 Bayesian Networks Basics

ABayesian network is a type of probabilistic graphicalmodel [31] that uses a directed
acyclic graph (DAG) to represent a set of random variables and their conditional
dependences. Variables are represented as nodes in the DAG, whereas arcs rep-
resent conditional dependences. Each node has associated a probability function,
P(Xi |pa(Xi)), that takes (as input) a particular assignment of values for the node’s
parent variables, pa(Xi), and gives (as output) the probability of the variable Xi

represented by the node. The joint probability distribution over the set of random
variables can be recovered from the set of probability functions as:

P(X1, . . . , Xn) =
n∏

i=1

P(Xi | pa(Xi)). (1)

Bayesian networks [28, 30, 40] allow us to represent graphically and concisely
knowledge about an uncertain domain. The uncertainty is represented in terms of

62 I.M. del Águila and J. del Sagrado

a probability distribution whose relations of independence are codified into a DAG
structure. Bayesian networks also offer an inference mechanism, i.e. propagation
algorithms, making possible reasoning under uncertainty. From a practical point
of view there are many software platforms for constructing and using probabilistic
graphical models. In this work we use, one of them, the Elvira system [19], which is a
Java tool to build probabilistic decision systems, because it incorporates a graphical
user interface so that BN models can be easily edited in the ASCII format also
provided.

4.1 Steps to Build a Bayesian Network

Bayesian networks can be used as knowledge models to represent expert knowledge
on an uncertain domain, but their successful application is not easy. The process
for obtaining the model can be carried out either manually, from expert knowledge
on the domain, or automatically, from databases. In the first case, the probability
elicitation constitutes a bottleneck in the BNs development [18] what is going to be
a very difficult task for those who are untrained. In the second case, mistakes can
arise due to noise, discretization methods or database errors.

Several authors have defined the process of constructingBayesian networks (BNs)
by establishing the steps to follow to build the knowledgemodel [32, 35]. These steps
are:

0. Feasibility study. A good starting point is to decide if a Bayesian network model
is the appropriate one for the type of application or problem. A Bayesian network
would not be appropriate [32] when there are no domain experts or useful data
for finding knowledge about the domain or if the problem is highly complex, has
very limited utility or can be solved by learning an explicit function.

1. Variable identification. At this stage, some modelling decisions have to be made
about how to represent the knowledge domain and what is going to be represented
in the Bayesian network. The variables involved in the problem, and their possible
values or states have to be identified. When the Bayesian network model is being
organised, it must not be forgotten that its purpose is to estimate certainties for
unobservable (or observable at an unacceptable cost) events [28]. These events
are called hypothesis events, and once they are detected, they are grouped into
sets of mutually exclusive and exhaustive events to form hypothesis variables.
Variable identification can be accomplished either by means of expert elicitation,
or applying unsupervised classification (see, for example, [29]).

2. Structure elicitation. The topology of the network must capture relationships
between variables (i.e. two variables should be connected by an arc if one affects
the other). In general, any independence suggested by a lack of an arc should
correspond to real independence in the knowledge domain. However, in the real
world, such links cannot be expected to be accomplished easily. Causal relations
are not always obvious.When there are data available, we can use structural learn-

Development of Knowledge-Based Systems Which Use Bayesian Networks 63

ing approaches, such as the work of [43] based on the detection of independences,
and that of [9], based on applying search plus score techniques, instead of relying
completely on the expert’s opinion.

3. Parameter elicitation. This step deals with the acquisition of the numbers nec-
essary to estimate the conditional probabilities for the Bayesian network model.
Statistical methods for learning parameters in Bayesian networks can be found in
[4, 8]. It is worth to note that structure and parameter elicitation are intrinsically
related. In order to estimate the conditional probabilities, the graphic structure
have to be known, and some probabilistic independence test will have to be per-
formed to determine this structure and to help establishing the links direction
between variables. When enough data are available, structure identification and
parameter elicitation can also be done automatically by automatic learning meth-
ods [35].

4. Validation and testing. Checks if the model meets the criteria for use and its
suitability for the job it is designed to do. In order to validate and understand
how to make the best of the network, the process tries to give an answer to
questions such as [32]: Does the structure reflect the fundamental independence
relationships of the problem? What is the level of predictive accuracy acquired?
And, is the network sensitive to changes? Besides, it is important do not forget to
measure the usability and performance to find out whether the Bayesian network
model meets customer use criteria [32].

Once the BNmodel is built (i.e. we know the variables and the relationships between
them), it can be used to answer probabilistic queries about the variables.

4.2 Reasoning with Bayesian Networks

Reasoning with BNs consists in performing probabilistic inference using the Bayes’
theorem to update the knowledge of the state of a subset of variables (of interest)
when other variables (the evidence variables) are observed. This process computes
the posterior distribution of the unobserved variables given the evidence (i.e. the
observed ones). In this way BNs can be used in diagnostic. For this, some variables
that represent effects receive evidence and the posterior distribution of the cause
variable is computed.Also,BNs can be used inprediction. Simply one of the variables
is considered as the class and the other variables as features predicting that describe
the object that has to be classified. Then, posterior probability of the class is computed
given the features observed. The value assigned to the class is that it reaches the
highest posterior probability value. A predictor based on a BN model provides more
benefits, in terms of decision support, than traditional predictors, because it can
perform powerful what-if problem analyses.

64 I.M. del Águila and J. del Sagrado

BN
Java
classes

PIM

Java CodePSM

Elvira
model

Class
models

Java
APP

BN
model

UML
model M2M

M2M M2C

M2C

Fig. 4 MDA for BN-based KBS

5 Embedding BNs in MDE Chain

According to MDE notation, a BN is a PIM, Elvira [19] is the platform model
selected into which a BN has to be translated in order to get the final PSM (M2M
translation). This software platform also offers Java support for the BN, through its
application programming interface (API). That is to say, it provides the last link of
theMDE approach (i.e. the code) using aM2T transformation (see Fig. 3). Regularly,
compatible representations of PSMand PIM are neededwhen deploying applications
that transparently integrate BN-based and not-knowledge-based components. This
fact forces developers to manage models that have different nature and notation.

The translationmodel proposed is shown in Fig. 4. Both, the not knowledge-based
PSM and BN PSM need to be expressed in terms of object-oriented design languages
coming from SE (i.e. UML) and their translation into code have already been solved
by means of a M2C translations. This feature is actually included in many modeling
tools, such as Visual Paradigm, Microsoft Visual Studio or Enterprise Architect.
This M2C translation for BN models can be achieved by means of the Java API
provided by Elvira platform. Nonetheless, BNs lack amodeling language compatible
with UML that allows the full application of MDE, contrary to the case of some
other representations for knowledge models such as production rules [1, 7]. Thus,
expressing in a compatible way the BN and UML models facilitates the inclusion
of the single extended PIM in the MDE chain (i.e. the shadow arrow M2M in Fig. 4
has to be defined, as well). A unified language allows a great level of abstraction and
makes easy the implementation process. For instance, in case of rules-based models
the translation of the rules of PIM models into rules-based web-systems is solved by
combining Java Server Faces with Jess rule engine [6].

This integration starts by defining the metamodel for the platform and the domain
of the application that is going to be modeled. In our case, this corresponds to the
BN metamodel, which has been called BayNet. It allows us to specify how BN
concepts are related to and represented in standard UML. A metamodel includes
domain entities, restrictions between them and limitations on the use of entities and
relationships.

Development of Knowledge-Based Systems Which Use Bayesian Networks 65

Fig. 5 BayNet metamodel basic structure

5.1 Bayesian Network Metamodel

The BayNet metamodel showed in Fig. 5, due to BN complexity, has been split in
packages in order to facilitate the evolution of the proposal. The metamodel core (see
Fig. 6) consists of BayNet structure (as we need to define the BNmodel) and BayNet
reasoning (as we need to reasoning with a BN) packages. The BayNet structure
package represents the basic components of a BN (Bnet class): its qualitative (i.e.
DAG) and quantitative (i.e. set of probability distributions) parts. The qualitative part
is represented by the classVariable and its self-association.AnAssignment consists in
assigning a State to a Variablemodifying, accordingly, its marginal probability. The
quantitative part is represented by means of the classes Configuration and Relation.
For each given child-father association (Configuration) in the directed acyclic graph
is assigned a conditional probability value (Relation). That is, we assign a probability
value to each combination of values of a variable Xi and its parents pa(Xi) in the
graph, to define the conditional probability distribution P(Xi |pa(Xi)).

In BayNet reasoning, an inference can be viewed as a process (I_Process), a
class able to carry out inferences (I_Entity) or an operation inside a class (I_Task).
These three views allow to model different levels of abstraction in the decision
tasks associated to a BN-based KBS. An Inference is an aggregation of the observed
variables (Evidence) together with the execution of the operations needed to compute
the posterior probability distributions of the variables of interest (Propagation).

5.2 UBN Profile

Once the metamodel is built we have to extend UML to manage the unified PIM
model, creating a UML-compatible modeling language for BNs. We can extend
UML without changing its semantics by only particularizing some concepts using a
series of mechanisms offered by the language itself: the profiles [23].

66 I.M. del Águila and J. del Sagrado

Fig. 6 BayNet metamodel

The BayNet metamodel is the basis that will provide a specific and intuitive nota-
tion for modeling BN-based KBS and including it in a UML project. UML profiles
are UML packages with the stereotype <<profile>>. A profile can extend a meta-
model or another profile while preserving the syntax and semantic of existing UML
elements. The aim of UML Bayesian network profile (UBN) is to define a language
for designing, visualizing, specifying, analyzing, constructing and documenting a
BN KBS.

The UBN is defined mapping the BayNet metamodel to UML metaclasses, mak-
ing the necessary extensions at semantic level. Most of concepts are mapped to
stereotypes on a selected UML metaclass, such as class, use case, association or
operation. Also we have defined icons for the stereotypes. Icons allow modelers to
use intuitive symbols instead of UML shapes. The package UBN in Fig. 7 shows the
actual mapping with UML metaclasses.

Development of Knowledge-Based Systems Which Use Bayesian Networks 67

Fig. 7 Modeling packages for Bayesian network KBS development

Once the profile is defined, it can be used in the software development of a
particular application by defining a stereotyped dependency (<<applyProfile>>)
between the UBN package an the package that is being under development for the
application, as Fig. 7 shows. A partial view of the class model of Elvira is included
as it is needed in order to define the M2M translation between PIM and PSM (see
Fig. 4).

5.3 BNs KBS Process Model Using UBN

The three main steps in the development of software systems that embed functionali-
ties based and not based on knowledge, concerning the decision support process and
the information management processes, are: Requirement modeling (RM), Expert
modeling (EM) and Specification of the software solution (SSS) [11]. The first two
are in charge of the definition on the PIM model according MDE (see Fig. 4), and
here is where UBN gets its value, because we can use only UML in order to execute
RM and EM, an unified language.

The first activity consists of collecting, structuring and organizing all the relevant
data for a concise and accurate definition of the problem to be solved by the software
system covering user’s needs, either based or non-based on knowledge. User require-
ments are modeled with UML use cases whereas data managed by the application
are modeled using class diagrams. Some of the modeling elements are stereotyped
usingUBN if they involve some kind of knowledge. For instance, some classes of the
class diagram are stereotyped as candidates variables in a BN (i.e. <<Variable>>

stereotype), which correspond variable identification step in the process to build a

68 I.M. del Águila and J. del Sagrado

Fig. 8 Model for a BN-inference execution using stereotypes

BN. Relationships between variables (i.e. structure elicitation step) are included in
the PIM as stereotyped associations of type <<father>>. Once the BN structure
has been established, the probabilities are estimated (i.e. parameter elicitation step)
creating instances of Configuration.

Each inference process has to bemodeled as an I_Process, which is an extension
of use cases, that is, it represents an interaction that uses a BN (i.e. an<<BNet>>).
This kind of use case has also to manage a class that encapsulates all the methods
relate to the inference, << I_Enti t y >>. When developers are building the PIM
model of the software application, they must stereotype some of the identified use
cases as << I_Process >> in case these interactions were based on knowledge.
Besides, several new classes have to be defined in order to control the inference tasks.
Figure8 shows, using a informal sequence diagram, the pattern of themessages chain
that have to be followed to perform a reasoning task using a BNet .

Once the BN and the reasoning processes have been modeled, the PIM model
is ready to be translated to code. At the end of MDE chain, the specification of the
software solution (SSS) represents a M2M translation that produces the PSM. Based
on the PSM obtained, a M2C translation can be used to obtain a BN-based KBS (see
Fig. 4).

6 Case Study: A Pest Control BN-Based KBS

This section shows how to apply UBN in an specific KBS development project by
applying an architectural model for agrarian software [16]. Let us begin with a brief
description of the project to assist decision making in an agricultural domain. Our

Development of Knowledge-Based Systems Which Use Bayesian Networks 69

Fig. 9 Use cases for the pest
control case study

problem is related to pest control in a given crop under the regulation of Integrated
Production. The Integrated Production Quality standard is adopted by a group of
growers in order to achieve a quality production certification. The adoption of this
standard forces growers to be disciplined in growing which involves intervention by
technicians, marketing controls, and periodical inspection by the standard certifica-
tion agencies.

The typical processes in an integrated production problem are shown in Fig. 9.
All tasks related to information required for quality management standards, without
need an knowledge based approach, are: Market Production, Act in Crop, Certify
Crop Quality, and Finish Growing. All tasks related to pest control are performed
by growers and agronomists inside the Monitor crop process and represents the
inference tasks. That is, Monitor crop needs to manage expert knowledge that can
be modeled using a KE representation, a previous work models it using rules [5,
14], but we propose to model it by means of a BN. This expert modeling approach
has been successfully applied to determine the need of applying a treatment for the
olives’ fly (dacus olae) [38].

The decision process when monitoring a crop is made at two levels. First, a
decision is made on whether crop control action is necessary by sampling pests and
estimating risk of attack. Then, if it is decided that crop control action is required,
the product (chemical or biological) to be applied has to be selected. The treatment
advised has to respect natural enemies and other biological products previously used.

Monitor crop use case can be described as the following informal scenario: Each
week, the grower or an agronomist samples the crop conditions andmakes an estimate
of the risk of pest attack. Crop sampling consists of direct observations and count
of harmful agents in randomly selected plants. Where an imbalance is detected, the

70 I.M. del Águila and J. del Sagrado

Fig. 10 Partial view of the PIM for the BN-based KBS

expert advises a treatment that meets the integrated production standard. It is the only
integrated production process that involve the use of knowledge, so it is stereotyped
as an << I_Process >>.

A first version of the PIM is shown in Fig. 10. A crop is a complex system consist-
ing of a plot of land, plants, a set of diseases and pests, and natural enemies that may
be able to control them. The problem is to decide what treatment to apply, in order
to maintain a balanced system. Figure10, shows the UML class diagram obtained.
Some of the classes in the model are variables of the Bayesian network (EM). When
an agronomist visits a greenhouse, he writes down the date of the visit and samples
the crop, including information about the crop phenology, fauna, weather (wind, rain,
etc.), environment (weeds) and the number of harmful agents in plants.

Some of the classes are stereotyped as<<Variable>>. Some of them have direct
connection with attributes of a class, for instance crop-condition is measured in
terms of its phenology. The crop-condition, along with the intensity of pest attack
(represented by the variable fauna-condition) determines the need for applying a plant
health treatment or not. This last variable is related to the number of winged-forms
of the pathogen that increases the infestation risk, and also the number of parasited
pathogens that reduces the infestation problem. Both variables are extracted from
class Count. The periodic sampling inspections are performed weekly.

At this point we have identified the structure of the BN and what are the processes
that use the network (i.e. monitor crop). The BN construction using UBN concludes
with the estimation of probabilities from local government database of cases creating
the appropriate instances of Configuration.

Development of Knowledge-Based Systems Which Use Bayesian Networks 71

7 Conclusions

In this work we present a proposal that allows to manage a domain-specific language
for BN without conflicts with UML semantics. This can be viewed as a general
framework to apply MDE, extending it to the BN-based KBS development. We have
presented a metamodel (BayNet) and an UML profile (UBN) for BN-based KBS
modeling. Developing a profile is a difficult task that implies to perform many steps,
so that we have split the metamodel in packages in order to facilitate the evolution
of the proposal. This metamodel covers several important aspects for achieving the
seamless inclusion of BN models into a final software solution for an organizational
environment. We have included a case study showing the applicability of our MDE
chain, which correspond to a simplified version of a real world problem: integrated
production in agriculture.

The next steps of this research will focus on validating the profile using a CASE
tool, integrating this MDE solution with the rules of MDE solutions approaches
previously done, and also testing it in a real-life development project that includes
knowledge-based features.

Acknowledgements This research has been financed by the Spanish Ministry of Economy and
Competitiveness under project TIN2013-46638-C3-1-P andpartially supported byData,Knowledge
and Software Engineering (DKSE) research group (TIC-181) of the University of Almería.

References

1. Abdullah, M., Benest, I., Paige, R., Kimble, C.: Using Unified Modeling Language for Con-
ceptual Modelling of Knowledge-Based Systems. In: Parent, C., Schewe, K.-D., Storey, V.,
Thalheim, B. (eds.) Conceptual Modeling - ER 2007. Lecture Notes in Computer Science, vol.
4801, pp. 438–453. Springer, Heidelberg (2007)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 28–37 (2001)
3. Buchanan, B.G., Barstow, D., Bechtal, R., Bennett, J., Clancey, W., Kulikowski, C., Mitchell,

T., Waterman, D.A.: Constructing an expert system. Build. Expert Syst. 50, 127–167 (1983)
4. Buntine, W.L.: A guide to the literature on learning probabilistic networks from data. Knowl-

edge and data engineering. IEEE Trans. Knowl. Data Eng. 8(2), 195–210 (1996)
5. Cañadas, J., del Águila, I.M., Palma, J.: Development of a web tool for action threshold eval-

uation in table grape pest management. Precis. Agric. 1–23 (to appear) (2016)
6. Cañadas, J., Palma, J., Túnez, S.: A tool for MDD of rule-based web applications based on

OWL and SWRL. In: Nalepa, G.J., Baumeister, J. (eds.) Proceedings of the 6th Workshop
on Knowledge Engineering and Software Engineering, vol. 636. http://CEUR-WS.org
(2010)

7. Cañadas, J., Palma, J., Túnez, S.:Defining the semantics of rule-basedWeb applications through
model-driven development. Appl. Math. Comput. Sci. 21(1), 41–55 (2011)

8. Cestnik, B.: Estimating probabilities: a crucial task in machine learning. In: Proceedings of the
European Conference on Artificial Inteligence (ECAI’90), pp. 147–149 (1990)

9. Cooper, G.F., Herskovits, E.: A bayesian method for the induction of probabilistic networks
from data. Mach. Learn. 9, 309–347 (1992)

http://CEUR-WS.org

72 I.M. del Águila and J. del Sagrado

10. del Águila, I.M., Cañadas, J., Palma, J., Túnez, S.: Towards a methodology for hybrid systems
software development. In: Proceedings of the Eighteenth International Conference on Software
Engineering & Knowledge Engineering (SEKE’2006), pp. 188–193. San Francisco (2006)

11. del Águila, I.M., del Sagrado, J., Túnez, S., Orellana, F.J.: Seamless software development
for systems based on bayesian networks - an agricultural pest control system example. In:
Moinhos-Cordeiro, J.A., Virvou,M., Shishkov, B. (eds.) ICSOFT 2010 Proceedings of the Fifth
International Conference on Software and Data Technologies, Vol. 2, pp. 456–461. SciTePress
(2010)

12. del Águila, I.M., del Sagrado, J.:Metamodeling of Bayesian networks for decision-support sys-
tems development. In: Nalepa, G.J., Cañadas, J. Baumeister, J. (eds.) KESE 2012 Proceedings
of 8th Workshop on Knowledge Engineering and Software Engineering at the 20th Biennial
European Conference on Artificial Intelligence (ECAI 2012), CEUR Workshop proceedings,
vol. 949, pp. 12–19 (2010)

13. del Águila, I.M., Palma, J., Túnez, S.: Milestones in software engineering and knowledge
engineering history: a comparative review. Sci. World J. (2014)

14. del Águila, I.M., Cañadas, J., Túnez, S.: Decision making models embedded into a web-based
tool for assessing pest infestation risk. Biosyst. Eng. 133, 102–115 (2015)

15. del Sagrado, J., del Águila, I.M., Orellana, F.J.: Architecture for the use of synergies between
knowledge engineering and requirements engineering. In: Lozano, J.A., Gámez, J.A., Moreno,
J.A. (eds.) Advances in Artificial Intelligence, vol. 7023, pp. 213–222. Springer, Heidelberg
(2011)

16. del Sagrado, J., Túnez, S., del Águila, I.M., Orellana, F.J.: Architectural model for agrarian
softwaremanagement with decision support features. Adv. Sci. Lett. 19(10), 2958–2961 (2013)

17. Drapeau, S., Madiot, F., Brazeau, J.F., Dugré, P.L.: SmartEA: Una herramienta de arquitectura
empresarial basada en las técnicas MDE. Novática 228, 21–28 (2014)

18. Druzdzel, M.J., Roger, R.F.: Decision support systems. In: Broy, A.K. (ed.) Encyclopedia of
Library and Information Science, pp. 120–133. Marcel Dekker, New York (2000)

19. Elvira Consortium: Elvira: an environment for creating and using probabilistic graphical mod-
els. In: Gámez, J.A., Salmerón, A. (eds.) Proceedings of the First European Workshop on
Probabilistic Graphical Models (PGM-02), pp. 223–230 (2002)

20. Ernst, G.W., Newell, A.: GPS: A Case Study in Generality and Problem Solving. Academic
Press, Cambridge (1969)

21. Fikes, R.E., Nilsson, N.J.: STRIPS: a new approach to the application of theorem proving to
problem solving. Artif. Intell. 2(3–4), 189–208 (1971)

22. Gašević, D., Djurić, D., Devedžić, V.: Model Driven Architecture and Ontology Development.
Springer, New York (2006)

23. Giachetti, G., Valverde, F., Pastor, O.: Improving automatic UML2 profile generation for MDA
industrial development. In: Song, I.Y., et al. (eds.) Advances in Conceptual Modeling - Chal-
lenges and Opportunities, ER 2008Workshops. Lecture Notes in Computer Science, vol. 5232,
pp. 113–122. Springer, Heidelberg (2008)

24. Gómez-Pérez, A., Fernández-López,M., Corcho, O.: Ontological Engineering:With Examples
From the Areas of Knowledge Management. E-Commerce and the Semantic Web. Springer,
Heidelberg (2006)

25. Harman,M.,Mansouri, S.A., Zhang, Y.: Search-based software engineering: trends, techniques
and applications. ACM Comput. Surv. 45(1), A1–64 (2012)

26. Hart, P.E., Duda, R.O., Einaudi, M.T.: PROSPECTOR a computer-based consultation system
for mineral exploration. Math. Geol. 10(5), 589–610 (1978)

27. Hussmann, H., Meixner, G., Zuehlke, D.: Model-Driven Development of Advanced User Inter-
faces. Springer, New York (2011)

28. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs. Springer, New York
(2007)

29. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis.
Wiley, New York (2005)

Development of Knowledge-Based Systems Which Use Bayesian Networks 73

30. Kjaerulff, U.B., Madsen, A.L.: Bayesian Networks and Influence Diagrams: A Guide to Con-
struction and Analysis. Springer, New York (2008)

31. Koller, D., Friedman, N.: Probabilistic GraphicalModels: Principles and Techniques - Adaptive
Computation and Machine Learning. The MIT Press, Cambridge (2009)

32. Korb, K.B., Nicholson, A.E.: Bayesian Artificial Intelligence. CRC Press, Boca Raton (2010)
33. Maher, M.L., Allen, R.H.: Expert System Components. In: Maher, M.L. (ed.) Expert Sys-

tems for Civil Engineers: Technology and Application, pp. 3–13. American Society of Civil
Engineering (1987)

34. Moreno, N., Romero, J.R., Vallecillo, A.: An overview of model-driven web engineering and
theMDA. In: Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.)Web Engineering: Modelling
and Implementing Web Applications, pp. 353–382. Springer, London (2008)

35. Neapolitan, R.E.: Learning Bayesian Networks. Prentice-Hall, New Jersey (2004)
36. Newell, A.: The knowledge level. Artif. Intell. 18(1), 87–127 (1982)
37. Object Management Group.: MDA Guide Version 1.0.1. OMG document: omg/2003-06-01

(2003)
38. Orellana, F.J., del Sagrado, J., del Águila, I.M.: SAIFA: a web-based system for integrated

production of olive cultivation. Comput. Electron. Agric. 78(2), 231–237 (2011)
39. Papajorgji, P.J., Pardalos, P.M.: Software Engineering Techniques Applied to Agricultural Sys-

tems: An Object-Oriented and UML Approach. Springer, New York (2014)
40. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann Publishers Inc., San Francisco (1988)
41. Schmidt, D.C.: Guest editor’s introduction: model-driven engineering. Computer 39(2), 25–31

(2006)
42. Shortliffe, E.H.: MYCIN: Computer-BasedMedical Consultations. Elsevier, New York (1976)
43. Spirtes, P., Glymour, C., Scheines, R.: An algorithm for fast recovery of sparse causal graphs.

Soc. Sci. Comput. Rev. 9, 62–72 (1991)
44. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and methods. Data

Knowl. Eng. 25(1), 161–197 (1998)
45. Studer, R., Fensel, D., Decker, S., Benjamins, V.R.: Knowledge engineering: survey and future

directions. In: German Conference on Knowledge-Based Systems, pp. 1–23. Springer (1999)

Knowledge Acquisition During Software
Development: Modeling with Anti-patterns

Paraskevi Smiari, Stamatia Bibi and Ioannis Stamelos

Abstract Knowledge is a strategic resource; that should be timely acquired and
exploited to manage and control software development. Software development is
a knowledge intensive process characterized by increased uncertainty, presenting
large variations among different development environments. Project uncertainty and
volatility confounds the traditional knowledge-based processes since at any time tra-
ditional software project management techniques and patternsmay be considered out
of scope. In this chapter a dynamic and constantly adaptive knowledge encapsulation
framework is presented. This framework analytically describes (a) metric collection
methods along with metrics that attribute to knowledge creation regarding successful
software development (b) representation mechanisms of the knowledge created in
the form of anti-patterns (c) Bayesian Network analysis technique for converting the
data to knowledge allowing inference mechanisms for testing the applicability of the
anti-pattern. The presented approach is demonstrated into a case study showing both
its feasibility and applicability.

1 Introduction

Software development is a cross-disciplinary cognitive activity requiring knowledge
from several different domains [23]. Human knowledge-creating activities and
past experience should contribute to the constantly evolving software development

P. Smiari (B) · S. Bibi
Department of Informatics & Telecommunications Engineering, University of Western
Macedonia, Kozani, Greece
e-mail: psmiari@uowm.gr

S. Bibi
e-mail: sbibi@uowm.gr

I. Stamelos
Department of Computer Science, Aristotle University of Thessaloniki,
Thessaloniki, Greece
e-mail: stamelos@csd.auth.gr

© Springer International Publishing AG 2018
G.J. Nalepa and J. Baumeister (eds.), Synergies Between Knowledge
Engineering and Software Engineering, Advances in Intelligent
Systems and Computing 626, https://doi.org/10.1007/978-3-319-64161-4_4

75

76 P. Smiari et al.

knowledge base according to Davenport et al. [8]. The key to systematic software
development and process improvement is the decent management of knowledge
and experience. Many techniques [16, 19] have been applied to manage knowledge
regarding software development in order to improve aspects of the whole process
such as, cost estimation and project management, fault identification and quality
of the outcome. These aspects are compound by vulnerabilities such as changing
requirements, team dynamics and high staff turnover [1].

Capturing and representing software project management knowledge while cater-
ing for its evaluation are some of the mechanisms of great importance. This book
chapter provides a framework for effectively capturing the knowledge created during
software development. This framework consists of three distinct phases:

• The first phase includes the data collection process that could attribute to knowl-
edge creation. Adopting the appropriate qualitative and quantitative data collection
approaches is of major importance for capturing the relevant information.

• The second phase is related to transforming the information and data collected
from the previous step in the form of anti-patterns. Each anti-pattern represents
a management problem and will be described as a set of symptoms, suggested
solutions and identification factors.

• The final phase includes the representation of the anti-patterns created in the form
of a Bayesian Network (BN) in order to be able to proceed to the validation process
of the derived knowledge.

The final output of this framework will be an anti-pattern knowledge base in the
form of Bayesian Networks available to managers and developers that can serve as
a management toolkit.

Software project management anti-patterns propose frequently occurring solu-
tions [5] to problems that have to do with flawed behavior of managers or extensive
management practices that prevent a software project fromsuccessful [15] implemen-
tation. Nonetheless, the documentation of anti-patterns is conducted using informal
or semi-formal [9] structures that do not readily encourage the reusability and shar-
ing of knowledge. In addition, the number of defined anti-patterns and the number
of printed documentation is expanding to the point that it becomes difficult for it to
be effectively used. Thus better structured anti-pattern representations are required
in order for them to become a widespread practice.

By applying the BN [18] representation formalism to anti-patterns we can gain
useful insight about the knowledge created during software development and also
perform post mortem analysis. The BN model offers a convenient mechanism to
model and disseminate knowledge regarding software management anti-patterns
which incorporates uncertainty. Re-factorings proposed by the anti-patterns can be
tested to view their reflection to the process. The suggested model can be used by
project managers to illustrate the effect of an anti-pattern solution in the process.

In order to reinforce the applicability of the proposed framework a case study
is presented that exemplifies the process of creating the anti-pattern BN models. In
particular, we use as a pilot the “BENEFIT” project, an ambitious, highly innovative

Knowledge Acquisition During Software Development … 77

cross disciplinary crowd-sourcing platform for tourism marketing, where the “tech-
aware” anti-pattern was actually formulated and assessed. In brief the problem that
BENEFIT project was faced from the early stages of implementation was that there
weremany technical conflicts and disagreements that inhibited project progress. Four
new metrics were introduced that described better the development status namely:
team synthesis, organizational structure, project integration and product innovation.
The “tech-aware” anti-pattern was then formulated to test the impact of changing the
organizational structure in order to better monitor technical conflicts.

This paper is organized as follows: Sect. 2 describes analytically the three steps of
the knowledge based framework providing guidelines for acquiring andmodeling the
knowledge in the form of BN anti-pattern models. Section3 presents the BENEFIT
case study were the three steps of knowledge acquisition and assessment are exem-
plified. Finally, in Sect. 4, we conclude the chapter and summarize the knowledge
acquisition framework.

2 The Knowledge Acquisition Framework

In this section, we present the framework that is suggested for guiding the process
of acquiring knowledge during software development. The framework consists of
three distinct phases (a) collecting data during development (b) modeling the data
in the form of anti-patterns (c) representing the anti-pattern with the appropriate
BN model and assessing its applicability. Therefore, in Sect. 2.1 possible methods
for collecting data along with the relevant metrics that can be valuable in assessing
a software process are presented, in Sect. 2.2 the representation formalism of anti-
patterns is described and in Sect. 2.3 the Bayesian Networks method is presented.

2.1 Collecting the Relevant Data

In this section we describe the methods that can be used to acquire the relevant
data that can help us realistically capture the software development status quo of a
team. Additionally possible sources of data and metrics are recorded in order to offer
practitioners a library of metrics that can help in acquiring knowledge relevant to
software development processes.

2.1.1 Data Collection Methods

In this section two complementary types of data collection methods will be presented
namely qualitative and quantitative methods [10]. Both of these methods can be
used to record primary data, data coming directly from the source (respondents,
activities logged, crowd sourcing, etc.) or secondary data, historical data that come
from experiments, aggregations and measurements.

78 P. Smiari et al.

Data collection approaches for qualitative research usually involve direct interac-
tion and contact of the observer with the key individuals or groups whose opinion is
considered valuable. Among the qualitative methods we can find (a) interviews (b)
participant observation (c) focus groups (d) questionnaires/testing.

Interviews, which can be structured, semi-structured or unstructured are used
to collect experience, opinion and emotions of the interviewee. A software project
manager, formally or informally, “interviews” the members of the development team
and holds the behavioral aspects of the responses. It should be mentioned that from
the interviews large amount of data can be derived that can provide the “beat” of
the development team. These data are rich, provide a wealth of information coming
from the primary actors of the development process but due to their intangible nature
remain often unrecorded and therefore unexploited. Focus groups method actually
is a form of observation of a group of people that can interact and exchange opinions
letting us gain useful insight regarding the participants’ behavior and attitude. On the
other hand modern paradigms of this method include data coming from online social
networking platforms such as company blogs, employees’ facebook, collaborative
development tools, etc. Participant observation involves the intensive involvement
of the observer with the software development team. Finally questionnaires, is
among the most common methods to collect data that records the opinion of the
respondents in the form of answers that can be unstructured or calibrated in a certain
scale. In the case of software development process we shouldmention that interviews
in the form of discussions, focus groups as blogs and collaborative tools and short
questionnaire completion during and after the development of a project could provide
a valuable source of data.

Quantitative methods on the other hand are less personalized and more unbiased.
Among quantitative methods we can find (a) surveys/polls (b) automatic collection
of data. Surveys are like questionnaires but they are completed anonymously, usually
without personal contact and usually involve a large sample. In the case of project
development teams that would mean that a survey could be an anonymous evaluation
of certain aspects of the process during or after the completion of the project. Auto-
matic methodsmay include direct data coming from systems that monitor or aid the
development process and record information regarding the development progress
(log files, nof active members, number of teleconference held etc.). Quantitative
methods are more accurate and present greater objectivity compared to qualitative
methods. Still both types of data collection methods are required since both human
perceptions and numerical descriptions are necessary for fully recording the status
of a software development process.

2.1.2 Software Development Metrics

Since software development process can present significant deviations compared to
the traditionalmodels found in literature [7] being able to identify the relevantmetrics
that will help us monitor, assess, update and finally improve a process is very crucial.

Knowledge Acquisition During Software Development … 79

Table 1 People drivers

People drivers Driver Metric

Experience Analysts capabilities 1–5 Scale

Programmers experience 1–5 Scale

Familiarity with the problem domain 1–5 Scale

Cultural issues Reward mechanisms 1–5 Scale

Collaboration 1–5 Scale

Capable leadership 1–5 Scale

Stakeholders participation Customer participation 1–5 Scale

End-user involvement 1–5 Scale

The classical 4Ps in software project management, people, product, process and
project [10] can help us identify the relevant metrics that can better describe the
software process.

Metrics regarding the stakeholders of a software development project are neces-
sary to address the coordination and cooperation efficiency of the team. Among the
groups of people that affect the team efficiency are the senior manager, the project
manager, the development team with all discrete roles (analyst, programmer, tester),
the customer and the end-users. Metrics that can describe the efficacy of each role
are presented in Table1. Typical examples of metrics describing the people involved
in software development are those expressing the experience of the team (analysts’
capabilities, familiarity with the application domain). Cultural characteristics also
affect the performance of a team as well organized teams whose leadership encour-
age communication and knowledge exchange offering rewards are more productive
compared to impersonal teams. User and customer involvement is also appointed by
recent studies as a critical success factor of software projects. Therefore, customer
participation and end user involvement are among the parameters that need to be
quantified.

Measurement of process attributes is important for establishing a baseline for
assessing improvements and identifying possible process flaws. All methods, tech-
niques, tools and supplements that may be used to support the development process
should be quantified and recorded in order to be able to measure the efficiency of
the development process. Among these attributes the use of CASE (Computer Aided
Software Engineering) tools, the utilization of models, techniques and standards are
the main aspects that define the level of support and observation of the development
procedure. Following awell-defined and guided process customized to each company
needs is crucial for delivering quality software within time and budget constraints.
To achieve this target the process should be constantly measured and improved to
reach the quality goals of the company. Table2 presents process drivers.

Project attributes related to a software project include relevant variables that
describe the type and the size of the project. The aggregation of project variables
offers an indicator of the complexity of the project preparing the management for the
risks and difficulties that may appear. Project attributes can be descriptive variables

80 P. Smiari et al.

Table 2 Process drivers

Process drivers Driver Metric

Use of case tools Versioning tools % of usage

Analysis & design tools % of usage

Testing tools % of usage

Management process Use of lifecycle models Yes or No

Managed development schedule 1–5 Scale

Methodologies Existence of best practices 1–5 Scale

Software reuse % of the total LOC

Table 3 Project drivers

Project drivers Driver Metric

Type of project Application type ERP, Telecom, Logistics, etc.

Business type Medical, Public Sector, Transports, Media, etc.

Development type New development, Re-development, Enhance

User type Level of usage Amateur, Professional, Casual

Number of users 1–50, 50–200, 200–1000, >1000

Size Source code lines Lines of code (LOC)

Function points Number of function points

Table 4 Product drivers

Product drivers Drivers Metric

Technical attributes Distributed databases 1–5 Scale

On-line processing 1–5 Scale

Data communications 1–5 Scale

Back-ups 1–5 Scale

Memory constraints 1–5 Scale

Use of new, immature technologies 1–5 Scale

Non-functional requirements Reliability 1–5 Scale

Performance 1–5 Scale

Installation ease 1–5 Scale

Usability 1–5 Scale

Security 1–5 Scale

referring to the development type of the project, the application type and the user
type of the application. Size attributes can be an initial assessment of functional
requirementsmeasured in function points or at later stages in the development process
measured as Lines of Code [4]. Table3 summarizes project drivers.

Product attributes are constraints imposed on the software by the hardware plat-
formand the utilization environment. Such constraints include run-timeperformance,
memory utilization, performance standards and transaction rates. Table4 summarizes
product metrics.

Knowledge Acquisition During Software Development … 81

2.2 Forming the Anti-pattern

A project manager needs to ensure that the management of the 4Ps as described
earlier is carried out effectively without any arising issues. In the occurrence of these
issues, anti-patterns play a significant role due to their ability to describe commonly
occurring solutions to the problems that lead to undesired results [5, 21]. Anti-
patterns propose re-factored solutions that can combat problems with reference to
flawed behavior of managers or pervasive management practices that constrain a
software project from being successful [15]. Any reader who is not acquainted with
anti-patterns can start with [5, 15] as introductions to the matter.

One way, to identify potential problems and provide a refactored solution in a
practical and reusable manner, is by capturing and representing tacit knowledge in
the form of an anti-pattern template. An anti-pattern template [15] is an informal
presentation of the anti-pattern that depicts the management dysfunction and the
remedies for all those engaged. The anti-pattern template carries out insight into the
causes, symptoms, consequences and identification of the problem suggesting band-
aids and refactoring. For example in Table5 the encoding of the problems related
with choosing the optimal agile team size is done by the “Is Five the Optimal Team
Size?” anti-pattern [12] (Table6). The anti-pattern is described by a central concept,
the dysfunction that it presents, a short explanation of the causes of the problem,
a band-aid that suggests a short-term solution strategy, self-repair mechanisms for
selecting the appropriate solutions, re factoring solutions and finally identification
questions that will help a manager verify whether his team is suffering from the
particular anti-pattern.

Table 5 Pattern “Is Five the Optimal Team Size” central concept

Name “Is Five the Optimal Team Size?”

Central concept It is agreed by most Agilists that smaller teams can be more
functional and productive in comparison to larger teams. The
definition of the optimal team size is, however, still a challenge. In
order to produce more code, large teams are still being used.
Nonetheless, a team size of 5 [12] seems to satisfy all the
conditions related to Scrum recommendations, Parkinson’s Law,
natural limit of short term memory and favorable communication
channels. Software managers neglect to comprehend the influence
of organizational and environmental matters on choosing the ideal
team size

Dysfunction This anti-pattern is available to the board of managers or the
software project manager, who picked the amount of an agile team
without taking into account the characteristics of the organization
and/or the software project

Explanation The purpose of this anti-pattern is the decision that the optimal team
size is a team of 5 or a large team in order to produce more code

82 P. Smiari et al.

Table 6 “Is Five the Optimal Team Size” anti-pattern refactoring

Band aid No band aid exists for this anti-pattern. No short term management strategy
can be used to handle this problem

Self repair Project managers need to consider the environmental and organizational
concerns that influence the ideal team size. They should start by identifying
key issues that influence the success of a software project given the chosen
team size

Refactoring It is important that before determining the size of an agile team. Software
project managers should first determine the concerns that influence the optimal
team size and how these concerns affect the progress of the project. Software
managers have to accept that there is no generic team size that can be used for
all agile projects and that each project has exclusive characteristics that need
to be taken into account. Management needs to look out for the team location
(collocated or not), the organization size, iteration length, and the existence of
offshoring teams. Past project data can be used to detect how different team
sizes behave in the same company. This will grant managers help to calculate
the impact of the chosen team size on the success of the project

Identification The following questions should be answered with a “Yes” or “No”
• Has the organization used the same agile team size repeatedly?
• Does the agile project manager always use a team size of 5?
• Does the agile project manager always use a large team size?
If you responded “Yes” to one or more of these statements, your organization
is probably suffering from “Is Five the Optimal Team Size?”

2.3 Modeling the Anti-patterns with Bayesian Networks

In this section we present the Bayesian NetworkModels background theory [13] and
provide a short example coming from the project management domain. Bayesian
Network models known also as Bayesian Belief Networks are casual networks that
form a graphical structure. These graphical structures consist of nodes and links
between those nodes without, however, forming a cycle with each other. This is the
reason why they belong in the Directed Acyclic Graphs (DAGs) family and these
graphical structures are popular in the fields of statistics, machine learning, artificial
intelligence and are used to handle uncertainty in software development application
domains as process modeling [2, 3, 11], defect prediction [17] and cost estimation
[14, 22]. Specifically, each node represents a random variable that has a finite set
of mutually exclusive states. Furthermore, each link represents probabilistic cause-
effect relations between the linked variables.

This type of network is used to track how a change of certainty in one variable
can cause an effect on the certainty of other variables. The relation that links the two
nodes can be seen on Bayes’ rule:

P(A|B) = P(B|A)P(A)
P(B)

Knowledge Acquisition During Software Development … 83

Fig. 1 A BN example for
modeling “Development
Time”

For each node A with parents B1, B2,…,Bn there is attached an NxM Node Prob-
ability Table (NPT), where N is the number of node states and M is the product of
its cause-nodes states. In this table, each column represents a conditional probability
distribution and its values sum up to 1.

Example

In Fig. 1 we present a simple BN model were two nodes “Mixed Personality” and
“Design Correctness” affect the node “Development Time”. Mixed Personality is an
indicator of heterogeneous developer personality and its states are Yes or No. The
Design Correctness measures the points in 1–10 scale, obtained by each pair for all
the tasks and is divided in two categories, False for points below 5.4 and True for
points above 5.4. The Development Time indicates the total time that took the pair
to complete the tasks and it is divided in two categories, Low for total time below
90min and High for total time above 90min.

The BN model contains 3 variables and 2 connecting links. We have one con-
verging variable connection. In a converging connection if nothing is known about
Development Time except what may be inferred from knowledge of its influencing
variables (parents) Mixed Personality and Design Correctness, then the parents are
independent. This means that evidence on one of them has no influence on the cer-
tainty of the others. If Development Time changes certainty, it allows communication
between its parents.

Specifically, ifMixedPersonality isYes andDesignCorrectness is True, then there
is a 20% probability that the Development Time will be Low and 80% probability
that it will be High (Table7).

3 The Case Study

This section exemplifies the framework of Sect. 2 by presenting an actual case where
the knowledge acquired during software development were modeled in the form of
anti-pattern to be diffused and assimilated into new projects. In this section we will

84 P. Smiari et al.

Table 7 Node probability table for the BN model of Fig. 1.

Mixed
personality

Yes No

Design
correctness

True False True False

Development
time

Low 0.2 0.7 0.8 0.4

High 0.8 0.3 0.2 0.6

describe analytically the software development project under study. In Sect. 3.2 we
will present the data that were collected during development, in Sect. 3.3 the new
anti-pattern model and in Sect. 3.4 the knowledge-based models representing the
proposed anti-pattern.

3.1 CASE STUDY: The BENEFIT Platform

The BENEFIT Platform was designed to provide a solution catering to arise brand
marketing, awareness and advertising capability of the tourism sector by providing an
on-line company platform that will offer (a) specialized marketing toolkits available
to the wider public, (b) advanced crowdsourcing tools to process tourism experience
and review data in order to extract and present collective knowledge, (c) advanced
forecasting models exploiting the tourismmarket sentiment to identify market trends
and threats, (d) novel personalized recommendation systems to support marketing
decisions according to the company’s profile.

The project was funded by a Greek local tourism association in order to promote
the tourism marketing of the area and arise awareness of the local tourism business
sector regarding the arising trends of crowd- sourced tourism innovations. BENEFIT
was an ambitious project and involved the participation of 5 partners with different
backgrounds, the first partner (Partner 1) was a university department specializing in
the area ofMarketing andBusinessAdministration, the secondpartner (Partner 2)was
a university department specializing in Informatics, the third partner (Partner 3) was a
WebCompany specialized in crowd sourcing applications, the fourth partner (Partner
4) was an on-line marketing company and Partner 5 was the Greek local tourism
association. Partner’s 1 role was to suggest marketing and socioeconomic models to
predictmarket trends based on the data provided by the crowdsourcing tools, Partners
2 and 3 were responsible for designing and implementing the BENEFIT platform.
Partner 4 and Partner 5 would pilot the platform and perform usability tests. All
partners were responsible for providing initially the requirements of the BENEFIT
platform and defining user stories to be implemented.

Knowledge Acquisition During Software Development … 85

For the development of the project three distinct Committees were defined that
would manage the development of the BENEFIT platform (a) the Project Coordina-
tion Committee (b) the Work packages committees and (c) The Quality Assurance
Management Committee. The Project Coordination Committee, consisting of repre-
sentatives of all partners, was the principal management authority of the BENEFIT
project having the final steering and controlling commitment to the project, making
decisions on contractual, administrative and technical matters attempting to ensure
timeliness and cost effectiveness. The Work Packages Committees was one for each
work package and consisted of representatives from partners participating in each
work package and were responsible for the monitoring the progress of eachWP. The
Quality Assurance Management Committee, including representatives from all part-
ners, were responsible for providing internal quality assurance guidance to the BEN-
EFIT project, outlining the policies, the purpose, the organization, the procedures
and the responsibilities related to ensuring high quality performance of all activities
and also collecting metrics for measuring and improving the process development.

3.2 Data Collection

The Quality Assurance Committee (QAC) due to the fact that the same partners
had a long series of projects in which they cooperated was determined to collect
data and metrics that would help in the direction of improving the development and
implementation process. Therefore from this project and on they decided to create
a repository of anti-patterns coming from the “lessons-learned” during each project
development [20] summarizing the knowledge created by past projects into the form
of anti-patterns and adding also new knowledge created during the development of
the BENEFIT implementation.

The QAC team decided that extra metrics would be important to better describe
the complexity and specialty of BENEFIT project. Several additional metrics were
recorded as the team synthesis, the structural organization, the tools integration com-
plexity and the product innovation. These parameters are analytically described in
Table8 and provided the key to form the anti-pattern presented in Sect. 3.3.

3.3 The “Tech- Aware Manager” Anti-pattern

Due to the technical problems the QAC decided to form a Technical Management
Committee who would be responsible for the overall technical management of the
project, monitoring the advances performed, ensuring effective coordination of work
packages and timely knowledge exchange. The QAC team formed the “tech-aware”
antipattern as presented in Tables9 and 10 to depict the necessity of the Technical
Management Committee.

86 P. Smiari et al.

Table 8 The new metrics collected for the BENEFIT project

Metric Type Explanation Possible values

Team synthesis People This metric depicts the
appropriateness of the team
synthesis. Complementary
teams consist of members
with complementary skills
that can work towards a
certain direction,
heterogeneous teams
consist of members that
have diverse orientation and
homogeneous teams consist
of members possessing the
skills on the same domain

Complementary teams
Heterogeneous teams
Homogeneous teams

Structure organization Process Represents the
organizational structure of
the team emphasizing on
whether the leader-ship is
performed by a
management committee, a
technical committee or a
combination of the two

Management Committee
(M) Technical Committee
(T) Combination (M+T)

Project integration Project The cost of integrating
different tools in a single
application

Low Average High values
(depending on the
integration complexity and
time required)

Product innovation Product Product innovation
expresses the difficulty to
perform to meet the
requirements of an
innovative application in
our case is the importance
of producing accurate
estimation results
forecasting behaviors on the
tourism domain

Low Average High values
(depending on the level of
innovation required)

The TMC assesses at first-level progress reports, resolve any internal technical
conflicts between work packages and plans resources re-allocation if required. The
TMC members maintain a constant communication via audio/video conferencing,
emails and schedule regular meetings every 3–4months. The TMC consisted of the
Project Coordinator and the Work Package Technical representatives and is chaired
by the Technical Manager. The Technical Manager was a senior technical member
of the team and was enrolled to lead the technical activities of the project, organize
the TMC meetings, prepare the agenda, keep and share the minutes.

Knowledge Acquisition During Software Development … 87

Table 9 Pattern “tech- aware” central concept

Name “tech-aware”

Central concept The manager of a software development project should possess leadership
competencies and abilities to motivate, inspire and encourage the development
team, regardless whether he possess technical competencies or not. That is true
still that depends on the technical complexity of the project under development.
On the other hand is a technical manager enough to lead a complex software
application development? May be only in projects with small development
teams?

Dysfunction This anti-pattern is attributable to the project management board that cannot
solve technical problems. Symptoms are:

1. Disagreements regarding technical issues

2. Conflicts in the allocation of resources

3. Difficulty in system integration

4. Limited knowledge dissemination between work packages

Explanation The cause of this anti pattern is the fact that no technical experts have been
formally appointed to monitor development progress and solve technical
conflicts

Table 10 The “tech- aware” anti-pattern refactoring

Band-Aid Form a technical management committee that will contain representatives that
possess technical knowledge from all conflicting stakeholders. Appoint a
technical manager responsible for taking decisions

Self-Repair Project managers should examine technical complexity of a project and its size
during the early stages of development. If they feel that their technical
background is limited within the scope of the project severity they need to form
a technical committee

Refactoring It is essential that before deciding on the organizational structure and
management of a project to assess the unique characteristics of the application
under development. Software project managers should first identify among
others the technical issues that may jeopardize the success of the project, the
team competencies, the technological risks, the integration costs. Based on all
the special attributes of the project the organizational structure may include a
technical committee, a quality assurance team or in more complex projects, an
external advisory board. On the other hand in small agile projects the project
manager can also be a technician. Software managers need to understand that
there is no generic team organizational structure that can be used for all
development projects

Identification The following questions should be answered with a “Yes” or “No”
• Does the project depend on immature technology?
• Does the project require increased integration efforts?
• Is the development team heterogeneous with different back-grounds?
• Is the development team disagreeing usually when taking technical decisions?
• Is the project relatively complex compared to the other ones that the team has
developed?
If the answer is yes to at least two of these questions then the development team
is suffering from this anti-pattern

88 P. Smiari et al.

After this change in the project organizational structure the development of BEN-
EFIT proceeded without conflicts and internal disagreements as the TMCmonitored
the development progress and mitigated any technical risks that occurred.

3.4 Knowledge-Based Models of the “Tech-Aware”
Anti-pattern

In this section we model the anti-pattern presented in the previous section with
the help of Bayesian Networks representation formalism in order to investigate the
relationship between the identification factors that help us diagnose the problematic
situations and test the impact of the refactored solution on the project progress. The
proposed BN model presented in Fig. 2 consists of a set of nodes that represent
People, Process, Project and Product drivers (P variables from now and on). Each
one of these nodes is affected by the standard metrics described in Tables1, 2, 3 and
4 whose values are represented cumulatively in the first affecting node (for People
we have the node Team Competencies, for Process the node Process Organization,
for the Project the node Project Complexity and for the Product the node Product
Complexity).

In order to test the influence of the anti-pattern we need to insert in the BN
model the new metrics identified in Table8 as nodes that describe the “tech-aware”
anti-pattern and affect the relevant P variables. As a consequence four new nodes
are inserted in the model: Team synthesis now affects People node, Organizational

Fig. 2 The BN model of the “tech-aware” anti-pattern

Knowledge Acquisition During Software Development … 89

Fig. 3 The BN belief model for the BENEFIT team based on historical data

structure affects Process node, Project Integration affects Project node and Product
Innovation affects Product node. At this point the standard drivers that affect appli-
cation development success are now co-influencing along with the tech-aware anti-
pattern nodes the application development success.

Figure2 represents the Bayesian Network as it is formed after the representations
mentioned previously. In this study the values of the Node probability tables were
defined based on the historical data collected at phase 1 and on the experience and
the knowledge gained during the development of past projects from experts (QAC
team) that participated in the BENEFIT team and had in the past a long series of co-
operations. The tools used to construct the network and create the node probability
tables can be found in [6].

Figure3 presents the initial belief status of the network based on the node proba-
bility tables defined by the experts. For example this network provides the following
information regarding the development of projects from the BENEFIT team: In 50%
of the projects the teamorganizationwas considered to be highwhile 70% the projects
where leaded solely by a manager and in totally the people driver was considered
in 46% of the cases to be high meaning that the development team and was well
organized and structured. The rest of the information provided by the network is
interpreted accordingly.

This Bayes Network can then be useful for applying inference. Certain inferences
can be made to show how the change in the values of a metric can affect the values of

90 P. Smiari et al.

Fig. 4 The BN belief model of the BENEFIT project testing the “tech-aware” anti-pattern

another metric and, finally, reach some conclusions regarding good and bad practices
in software project planning that lead to development success.

In order to apply inference, the answers to the identification questions of Tables9
and 10 are now expressed as values that initialize the anti-pattern nodes to a certain
state that can more accurately and objectively describe current status of a project.
Figure3 shows an instance of the Bayes Network when it is instantiated with data
coming from the BENEFIT project. We tested the BN model with the actual values
of the metrics that represented the BENEFIT project and the Bayesian Network was
updated to the one of Fig. 4. The BENEFIT platformwas a highly innovative product,
incorporating the need of integration of various tools and was developed by a team
possessing complementary skills led both by a project management committee and
a technical management committee. Changing the values of the relevant nodes we
observe that the probabilities of the affected nodes also changed. The refactored
solution to the “tech-aware” anti-pattern has a positive impact on the Application
Success. On the other hand it would be interesting to test such a change in projects
with low innovation, low project complexity and homogeneous development teams.
In such cases the probabilities depict that the appointment of technical management
committee would be of no value.

Knowledge Acquisition During Software Development … 91

4 Conclusions

In this paper we proposed a Knowledgebased framework for acquiring knowledge
during software project development and model it in the form of anti-patterns repre-
sented by Bayesian Networks. The framework consists of the following phases (a)
acquire data during development (b) identify problems and model them in the form
of anti-patterns (c) represent and assess the anti-pattern in the form of a Bayesian
Network Model. BNmodeling is particularly useful and well suited to the domain of
anti-patterns because it provides a solid graphical representation of the probabilistic
relationships among the set of variables. This approach offers the underlying reason-
ing engine to support project management decisions providing a formal model that
can be used by project managers to illustrate the effects of uncertainty on a software
project management anti-pattern.

The suggested approach takes into consideration the characteristics and the needs
of the individual software organization under assessment and does not demand a large
amount of resources and investment costs. The method provides a generic Bayesian
Network that models application development, which can be tailored to the needs
of the development environment, applied. Bayesian analysis can make measurable
each concept represented in the 4Ps of project management, People, Process, Project,
Product. Bayesian Networks is an easily applied and comprehensible statistical tool
that can provide very useful information to software managers. On the other hand
the representation form of anti-patterns is a very descriptive and helpful tool in the
hands of managers that can help them identify problems and provide easy and quick
to launch re-factored solutions.

Acquiring a richer set of data from empirical investigations would be more help-
ful in creating knowledge from software development. A web-based community of
software project management anti-pattern contributors would help in the direction
of establishing a freely available, online knowledge base that could provide the tools
to evaluate the impact of management decisions and decision support to software
project managers worldwide.

References

1. Aurum,A., Jeffery,R.,Wohlin,C.,Handzic,M. (eds.):ManagingSoftwareEngineeringKnowl-
edge. Springer, Berlin (2003)

2. Bibi, S., Stamelos, I.: Software process modeling with bayesian belief networks. In: Online
Proceedings of 10th International Software Metrics Symposium. Metrics (2004)

3. Bibi, S., Gerogiannis, V., Kakarontzas, G., Stamelos, I.: Ontology based Bayesian software
process improvenent. ICSOFT EA 2014, 568–575 (2014)

4. Boehm, B.W.: Software Engineering Economics, 1st edn. Prentice Hall PTR, NJ (1981)
5. Brown, W., McCormick, H., Thomas, S.: AntiPatterns in Project Management. Wiley, New

York (2000)
6. Cheng, J.: Power constructor system. (1998). http://www.cs.ualberta.ca/jcheng/bnpc.htm
7. Dalcher, D., Thorbergsson, H., Benediktsson, O.: Comparison of software development life

cycles: a multi project experiment. IEE Proc. Softw. Inst. Eng. Technol. 154(3), 87–101 (2006)

http://www.cs.ualberta.ca/jcheng/bnpc.htm

92 P. Smiari et al.

8. Davenport, T., Prusak, L.: Working Knowledge How organizations Manage What They Know.
Harvard Business School Press, Boston (2000)

9. Eloranta,V.-P., Koskimies,K.,Mikkonen, T.: Exploring ScrumBut-an empirical study of Scrum
anti-patterns. Inf. Softw. Technol. 74, 194–203 (2016)

10. Fenton, N., Bieman, J.: Software Metrics: A Rigorous and Practical Approach. CRC press,
Boca Raton (2014)

11. Fenton, N., Marsh, W., Neil, M., Cates, P., Forey, S., Tailor, M.: Making resource decisions for
software projects. In: Proceedings of the 26th International Conference on Software Engineer-
ing (ICSE’04). pp. 397–406. (2004)

12. Hazrati, V.: Is five the optimal team size? (2009). http://www.infoq.com/news/2009/04/agile-
optimal-team-size

13. Jensen, F.: Bayesian Networks and Decision Graphs. Springer, New York (2001)
14. Khodakarami, V., Abdi, A.: Project cost risk analysis: a Bayesian networks approach for mod-

eling dependencies between cost items. Int. J. Proj. Manag. 32(7), 1233–1245 (2014)
15. Laplante, P., Neil, C.: Antipatterns: Identification, Refactoring and Management. Tay-

lor&Francis, Boca Raton (2006)
16. Lucia, D.A., Pompella, E., Stefanucci, S.: Assessing effort estimation models for corrective

softwaremaintenance through empirical studies. Inf. Softw.Technol. Elsevier 47(1), 5–6 (2005)
17. Okutan, A., Yildiz, O.: Software defect prediction using Bayesian networks. Empir. Softw.

Eng. 19(1), 154–181 (2014)
18. Settas, D., Bibi, S., Sfetsos, P., Stamelos, I., Gerogiannis, V.: Using bayesian belief networks

to model software project management antipatterns. In: 4th ACIS International Conference on
Software Engineering Research, Management and Applications (SERA 2006). pp. 117–124.
(2006)

19. Shepperd, M., Schofield, C., Kitchenham, B.: Effort estimation using analogy. In: 18th Inter-
national Conference on Software Engineering (ICSE’ 96). ACM (1996)

20. Silva, P., Moreno, A.M., Peters, L.: Software project management: learning from our mistakes
[voice of evidence]. IEEE Softw. 32(3), 40–43 (2015)

21. Stamelos, Ioannis: Software project management anti-patterns. J. Syst. Softw. 83(1), 52–59
(2010)

22. Stamelos, I., Angelis, L., Dimou, P., Sakellaris, P.: On the use of bayesian belief networks for
the prediction of software productivity. Inf. Softw. Technol. 45(1), 51–60 (2003)

23. Terry, F., Wayne, S.: The effect of decision style on the use of a project management tool: an
empirical laboratory study. DATA BASE Adv. Inf. Syst. 36(2), 28–42 (2005)

http://www.infoq.com/news/2009/04/agile-optimal-team-size
http://www.infoq.com/news/2009/04/agile-optimal-team-size

Knowledge Engineering of System
Refinement What We Learnt
from Software Engineering

Rainer Knauf

Abstract Formal methods are a usual means to avoid errors or bugs in the
development, adjustment and maintenance of both software and knowledge bases.
This chapter provides a formal method to refine a knowledge base based on insides
about its correctness derived from its use in practice. The objective of this refine-
ment technique is to overcome particular invalidities revealed by the application of
a case-oriented validation technology, i.e. it is some kind of “learning by examples”.
Approaches fromAI or DataMining to solve such problems are often not useful for a
system refinement that aims at is an appropriate modeling of the domain knowledge
in way humans would express that, too. Moreover, they often lead to a knowledge
base which is difficult to interpret, because it is too far from a natural way to express
domain knowledge. The refinement process presented here is characterized by (1)
using human expertise that also is a product of the validation technique and (2) keep-
ing as much as possible of the original humanmade knowledge base. At least the
second principle is pretty much adopted from Software Engineering. This chapter
provides a brief introduction to AI rule base refinement approaches so far as well as
an introduction to a validation and refinement framework for rulebased systems. It
also states some basic principles for system refinement, which are adopted from Soft-
ware Engineering. The next section introduces a refinement approach based on these
principles. Moreover, it considers this approach from the perspective of the prin-
ciples. Finally, some more general conclusions for the development, employment,
and refinement of complex systems are drawn. The developed technology covers
five steps: (1) test case generation, (2) test case experimentation, (3) evaluation, (4)
validity assessment, and (5) system refinement. These steps can be performed itera-
tively, where the process can be conducted again after the improvements have been
made.

R. Knauf (B)
Ilmenau University of Technology, PO Box 10056, 98684 Ilmenau, Germany
e-mail: rainer.knauf@tu-ilmenau.de

© Springer International Publishing AG 2018
G.J. Nalepa and J. Baumeister (eds.), Synergies Between Knowledge
Engineering and Software Engineering, Advances in Intelligent
Systems and Computing 626, https://doi.org/10.1007/978-3-319-64161-4_5

93

94 R. Knauf

1 Introduction

At a first glance, system validation aims at deriving some validity statements or a
(lat or structured) metrics that says something about the degree of validity. However,
validity statements that describe the particular weaknesses of a system may also
serve as a launch pad for system refinement. So the final objectives of any validation
technology is both (1) deriving indications for the system employment or rejection
for the intended application and (2) refining the system towards overcoming the
revealed invalidities.

Like Knowledge Acquisition, system refinement is a challenge to Knowledge
Engineering. A typical way to face such problems is looking at approaches so far,
but also at the way other (than AI) communities solved similar problems.

Here, a brief introduction to AI rule base refinement approaches so far is provided
(Sect. 2) as well as an introduction to a validation and refinement framework for
rule based systems (Sect. 3). This section also states some basic principles for sys-
tem refinement, which are adopted from Software Engineering. Section4 introduces
a refinement approach based on these principles. After that, Sect. 5 considers this
approach from the perspective of the principles.

Finally, in Sect. 6 some more general conclusions for the development, employ-
ment, and refinement of complex systems are drawn, which looks somewhat similar
to principles applied in software engineering.

2 Refinement Approaches

The central purpose of refinement approaches is to adjust a system in a way that it
overcomes revealed invalidities. In particular, they aim at a minimal refinement so
that the falsified inputoutput behavior or the falsified trace through the system are
fixed. There is a history of attempts to face this problem for rule based systems.

The classical rule refinement system is Teiresias [4]. It interactively guides a
human validator through a faulty rule trace for the processed case knowledge. How-
ever, it is not able to determine the impact of refinements on other cases of the
examined case base. To overcome this drawback, multiple case analysis systems like
Seek/Seek2 [6, 9] have been developed. It gathers statistical performance informa-
tion about all rules of the validated rule base in order to suggest the domain expert
appropriate refinements. However, it does not validate the correctness of the refined
intermediate reasoning traces. Ginsberg also published an approach called Reduced
Theory Learning System (Rtls) [8]. Here, the term reduction means that a deep
rule base is to be transformed into a flat one, whereas the reverse process is called
retranslation. However, there is no exact retranslation procedure is known yet [8].
Interestingly, [7] claims that besides the retranslation problem his approach is only
suitable for medium size rule bases. Moreover, according [12] not every rule base
can be reduced. The performed retranslation step can not ensure that the refined rules

Knowledge Engineering of System Refinement … 95

are acceptable from the semantic point of view. Furthermore, structural anomalies
can be introduced by this relaxed retranslation procedure [15]. Indeed, remaining
anomalies are a strong indication for topical incorrectness with respect to the rules’
interpretation. As a result, a rule base refined by such a technology is difficult to read
and to interpret.

A relevant development is the tool Krust [14]. The refinement approach of this
tool applies a hillclimbing search of an optimal refinement. It first generates several
refined rule bases, which fix each incorrect example. After that, it chooses the refined
rule base with the highest accuracy on the training examples. However, hill climbing
procedures bag the risk to miss a real maximum and to end up with a local maximum
instead. As a result, even after this refinement, there might be many cases, which are
still processed in an invalid manner by the system.

Besides particular individual drawbacks, these approaches share the property that
they cannot produce a rule basewhich is 100%correct.1 Furthermore, theymay cover
some inherent anomalies and may not be interpretable by topical human experts. [5]
introduces an interactive method, which consists in two steps that are performed in a
loop until there is no further inconsistency found. It first checks the consistency and
the completeness of and than, in second step, it performs the refinement interactively
by involving human experts. This seems to be a reasonable idea, but it suffers from
the need of human workload and from the fact that human experts may not able to
analyze the consequences suggested changes on all the inference paths effected by it.

Also, [3] proposed an incremental way to refine knowledge bases. However, it
aims at a step by step construction of a knowledge base than detecting and fixing
inconsistencies in an existing knowledge base.

3 A Framework for Validation and Refinement

The developed technology covers five steps (see Fig. 1): (1) test case generation,
(2) test case experimentation, (3) evaluation, (4) validity assessment, and (5) sys-
tem refinement. These steps can be performed iteratively, where the process can be
conducted again after the improvements have been made.

Here, the refinement step is focused. The preceding validity assessment step pro-
vides different validity measures according to their purpose: validities associated
with outputs, rules, and test data as well as a global system’s validity.

Based on these validities, the system refinement leads to a restructured rule base
that maps the test case set exactly to the solution that obtained the best rating from
the expert panel. Thus, the more the test case set is representative for the domain,
the more the system refinement technology leads to a correct model of reality.

System refinement based on example cases has to be considered in the context
of learning by examples. There are plenty of formal learning approaches that solve

1Correctness, in this context, means correctness w.r.t. a set of test cases.

96 R. Knauf

system
refinement

validity
assessment evaluation

knowledge
base

rules,
outputs

rules test case
generation

solutions

criteria

test data test case ex-
perimentation

validators

results
(protocol)

reportvalidity
statements

system users
knowledge engineers

knowledge
base

Fig. 1 Steps in the proposed validation process

tasks like this. Usually, they aim at developing rules that map test data with known
solutions (examples) to their correct solution. They do not claim that all other cases
are mapped correctly.

Unfortunately, some of the mentioned AI technologies to learn by examples gen-
erate rules that might reflect reality fairly well, but are not “readable” (or rather,
interpretable) by domain experts. Even worse, they might construct rules that reflect
the examples correctly, but are wrong with respect to the causal connection they
express.

To avoid this drawback, system refinement techniques should be based upon two
fundamental assumptions, which are well known from the way of considering the
validation issue by the Software Engineering community [1, 2]:

1. It is assumed that the initial rule base was written with the intention of being
correct, and if it is not correct, then a close variant of it is.

2. It is assumed that each component of the rule base appears there for some reason.
Therefore, if a rule is invalid, it cannot just be removed. Rather, we have either

a. to find out its reason for being in the rule base, and one (or several) alternative
rule(s) that will satisfy that reason after the incorrect rule has been discarded
or

b. to develop ideas how to modify the rule with the objective of improvement.

Software engineers refer to these assumptions as the so called competent programmer
assumption. In adoption of these principles, the present rule refinement technique
tries to change the rule base as little as possible and to provide a close substitute for
each piece of the knowledge base that will be removed.

The main idea of the refinement technique developed here is to find rules that are
“guilty” in the system’s invalidity and to replace them by rules, which map at least
the example cases to their best rated solutions.

Knowledge Engineering of System Refinement … 97

4 The Developed Refinement Strategy

The main idea of the technique is that the test case experimentation step revealed
valuable knowledge about cases, for which the system failed: the human experts’
solutions. Since these solutions are also a subject of the rating process (besides the
system’s solution), a humanmade solution might come out as being the very best
one, the so called optimal solution.

The refinement strategy provided here is based on the following facts:

1. There is a knowledge base, which performs a mapping S from the input set I to
the output set O: S : I → O .

2. There are test data (input parts of the so calledReasonable Set of TestCases ReST)
�inp(ReST) with both (2a) a system solution and (2b) a solution which is most
heavily supported by the validation panel for each test data t j ∈ �inp(ReST).

If the “human made” solution (2b) is different from the system’s one (2a), the system
needs to be fixed.

Of course, system refinement has to be set into the context of learning by exam-
ples. Classical approaches like the Iterative Dichotomizer ID3 [13] for computing
a classification rule set or concepts based on Anti-Unification [10] for computing a
best inductive conclusion are not usable here. The basic difference is that we don’t
have just examples (test cases with solutions, which got “good marks” by experts)
and look for rules, which explain them consistently. What we have is a (generally
trustworthy) knowledge base and some “counter examples” that are mapped to a
“bad solution” by it.

It is certainly the wrong way to construct a completely new knowledge base by
means of the experimentation results. Of course, such a knowledge base maps all the
performed cases to their best rated solution. On the other hand, (1) valuable former
knowledge of the knowledge base would be wasted and (2) the computed knowledge
base would be difficult to interpret for domain experts.

An invalidity occurs as a wrong system’s output. Therefore, the technology begins
with so called “last rules”, i.e. rules that infer a final system’s output. The procedure
aims at the construction of one or more substitute(s) for this rule which infer the best
rated output(s). In the first instance, the developed if -part(s) contain(s) just expres-
sions about the system’s input data. The following re-compiling mechanism utilizes
the precompiled knowledge in the knowledge base by systematically substituting
the expressions of the if -part by then-parts of other rules. The proposed technique
consists of the following steps:

1. First, those rules that are guilty in the system’s invalid behavior are discovered.
Since the validation assessment step provides validity statements associated with
(final) system’s outputs, “guilty rules” are identified by considering rules that have
final outputs as their then-parts. This is performed by an analysis of the ratings
for the test cases, which used that rule. This step includes the identification of a
so called “optimal solution” to each test data, i.e. a solution, which enjoys the
best rating by the expert panel.

98 R. Knauf

2. Next, the simple situation is considered that all test cases using a guilty rule
have the same optimal solution. Here, the refinement consists in substituting this
invalid then-part by this optimal solution.

3. Next, guilty rules with various optimal solutions for the test cases using the rule
are considered. Here, a formal reduction system systematically constructs one or
some new rule(s) as a substitute for the guilty rule.

4. The resulting new rules are “flat” i.e. they infer directly from system’s inputs
to system’s outputs. To utilize the pre-compiled knowledge of the knowledge
base, which occurs as rules with an intermediate hypothesis as their then- parts,
the new rule(s) are re-compiled. Furthermore, the resulting knowledge base will
be inspected for rules, which can never be used, because their then-part is an
intermediate hypothesis, which is not needed after the rule base refinement. These
rules are removed.

The last step does not change anything in the inputoutput behavior of the resulting
rule base. However, it makes it more compact and easier to interpret by domain
experts.

4.1 Finding “Guilty Rules”

All rules rl , which infer a final solution solk , are the subject of the considerations.
Based on the results of the previous steps of the validation framework, the following
considerations apply:

1. Each rl received an associated validity degree v(rl) = 1
|Tl |

∑

[t j ,solk]∈Tl
vsys(t j). Here,

Tl is the subset of test cases that used the rule rl , vsys(t j) is a validity degree of the
system for a test case t j as computed in a previous step. vsys(t j) is a number that
ranges between 0 (totally invalid) and 1 (totally valid) in the eyes of the validation
panel.

2. There is a set T ∗
l containing all test cases with test data parts occurring in Tl and

all solution parts, which came up in the experimentation, regardless of whether
the solution is given by an expert or the system: T ∗

l = Tl ∪ {[t j , sol(ei , t j)] :
∃[t j , solk] ∈ Tl}.

3. Next, the set T ∗
l is split (partitioned) according to the different solution parts

sol1, . . . , solm of the test cases in T ∗
l . This leads to m disjoint subsets T ∗

li ⊆ T ∗
l

T ∗
l1, . . . , T

∗
lm Oneof the subsets is the one collecting the test caseswith the system’s

solution solk .
4. Analogously to the computation of the system solution’s validity vsys(solk), a

validity v(rl , solp) (1 ≤ p ≤ m) of each solution solp can be computed:

v(rl, solp) = 1

|T ∗
lp|

∑

[t j ,solp]∈T ∗
lp

1
n∑

i=1

(
cpt (ei , t j) · ci jq

) ·
n∑

i=1

(
cpt (ei , t j) · ci jq · ri jq

)

Knowledge Engineering of System Refinement … 99

Here, the ci and ri are the certainties and ratings provided by the experts during
the experimentation session and cpt (ei , t j) is the estimated competence of the
expert ei for a test case t j as proposed in [11].

5. There is an “optimal validity” of rule rl , which is the maximum of all v(rl , solp)
among all solutions solp occurring in T ∗

l . The solution, to which this maxi-
mum is associated, is called the optimal solution solopt for rl : vopt (rl, solopt) =
max({v(rl , sol1), . . . , v(rl , solm)}. vopt (rl) can be considered an upper limit of
the reachable rule–associated validity for rule rl .
There is a criteria based strategy [11] to identify the optimal validity in case several
solutions received the same (and maximal) validity vopt . In case vopt (rl, solopt) >

v(rl) there is at least one solution within T ∗
l , which obtained better marks by the

experts than the system’s solution. In this case rl is guilty and has to be modified:
vopt (rl, solopt) > v(rl) ⇒ rl is guilty.

As a result of applying this technology to each rule that concludes a final system’s
output, the guilty rules will be identified.

4.2 Simple Refinement by Conclusion Replacement

If for all test cases t j ∈ Tl , for which the system used rl , sols is the solution that
met the maximum experts’ approval, in rule rl the conclusion part is substituted
by sols and the rule rl is exonerated: ∀[t j , solk] ∈ Tl : sols is “optimal solution” for
[t j , solk] ⇒ rl : (i f -part → solk) ↪→ (i f -part → sols).

4.3 Replacing the If-Part of the Remaining Guilty Rules

The remaining guilty rules are used by a set of test cases, which have different optimal
solutions. The subsets with the same optimal solution are considered separately:

1. Tl of the rule rl is split into subsets T s
l (1 ≤ s ≤ n) according to the solu-

tion sols for each t j that obtained the highest validity v(rl , sols). The new if -
part(s) of the new rule(s) instead of rl are expressions ei ∈ E of a set of p new
alternative rules r1l , r

2
l , . . . , r

p
l for each T s

l and will be noted as a set of sets
Ps
l = {{e11, . . . , e1p1}, . . . , {ep1 , ldots, eppp }}. The corresponding rule set of Ps

l is
r1l : ∧p1

i=1 e
1
i → sols, . . . , r

p
l : ∧

i = 1pp epi → sols .
2. Pos is the set of Positions (dimensions of the input space), at which the input data

t j ∈ �inp(T s
l) of the test cases t j ∈ T s

l are not identical. The generation of the
if -parts Ps

l is managed by a formal reduction system, which is applied to Triples
[T s

l , Pos, Ps
l] until Pos becomes the empty set ∅.

3. The initial situation before applying the reduction rules is [T s
l , Pos, Ps

l] with
Ps
l = {{(s1 = sident1), . . . , (sq = sidentq)}}. s1, . . . , sq are those positions where all

100 R. Knauf

test data t j ∈ �inp(T s
l) have the same (identical) value sidenti and again, Pos is

the set of the remaining positions.
4. The reduction terminates, if the situation [T s

l , ∅, Ps
l] is reached.

The reduction rules that are applied to these Triples are shown in Table1.
Depending on what kind of dimension the next position pos ∈ Pos is, one of the

rules R1 or R2 can be applied:

• R1 handles the case that the considered position pos refers to dimension spos ,
which is enumerable, has a finite set of values, and there is no domain-related
ordering relation between its values, and

Table 1 Reduction rules to construct better rules systematically

Reduction rules
R1 • pos ∈ Pos, spos has a finite value set with no well-defined ≤ relation

• {s1pos , . . . , smpos} are the values of spos occurring in T s
l ⇒

[T s
l , Pos, {p1, . . . , pn}] ↪→

1. [T s,1
l \ {[t j , sols] ∈ T s

l : spos �= s1pos}, Pos \ {pos},
n⋃

i=1

pi ∪ {(spos = s1pos)}]

2. [T s,2
l \ {[t j , sols] ∈ T s

l : spos �= s2pos}, Pos \ {pos},
n⋃

i=1

pi ∪ {(spos = s2pos)}]
• • •
m. [T s,m

l \ {[t j , sols] ∈ T s
l : spos �= smpos}, Pos \ {pos},

n⋃

i=1

pi ∪ {(spos = smpos)}]

Continue with each T s,i
l (1 ≤ i ≤ m) separately.

R2 • pos ∈ Pos, spos has a value set with a well-defined ≤-relation

• smin
pos is the smallest value of spos within T s

l

• smax
pos is the largest value of spos within T s

l ⇒
[T s

l , Pos, {p1, . . . , pn}] ↪→

[T s
l , Pos \ {pos},

n⋃

i=1

pi ∪ {(spos ≥ smin
pos), (spos ≤ smax

pos)} ∪ Sexcl]

Sexcl is the set of excluded values for spos , which have to mapped to a solution different from
sols because of belonging to some other T v

u with v �= s:

Sexcl = { (spos �= s jpos) : ∃[t j , sols] ∈ T s
l ∃[tm , solv] ∈ T v

u (v �= s) with

∀p �= pos ((s jp = smp) and (smin
pos < smpos < smax

pos)) }

Knowledge Engineering of System Refinement … 101

• R2 handles the case that the considered position pos refers to dimension spos ,
which is numerical respectively it has a (finite or infinite) set of values, and there
is a domain-related ordering relation ≤ between its values.

The binary case is a special case of the first one, inwhich spos has exactly two different
values. Here, {s1pos, s2pos} are the values of spos occurring in T s

l with s1pos = true
and s2pos = f alse.

If R1 is applicable, the reconstruction system produces m new triple [T s,i
l , Pos \

{pos}, Ps,i
l] (i = 1, . . . ,m) from [T s

l , Pos, {p1, . . . , pn}], one for each value sipos
occurring at the position pos in the test data in T s

l . Each of the new triples differs
from the original triple in (1) a test case set T s,i

l ⊆ T s
l , which only contains the test

cases with the considered value sipos at position pos and (2) a set Ps,i
l ⊇ Ps

l , which
is enlarged by the expression (spos = sipos). Furthermore, (3) the position pos is
removed from the set of remaining positions.

If R2 is applicable, each element Ps
l has to be extended by a condition, which

describes the range of spos within the set of cases in T s
l . This range is put up by

its minimum value smin
pos and its maximum value smax

pos within T s
l . However, it may

happen that this range is not “homogeneous” with respect to the optimal solution,
i.e. there are counterexamples in some other T v

u , which have (1) at position pos a
value between smin

pos and smax
pos , (2) at all the other positions values described by the

rest of the actually extended pi ∈ Ps
l , i.e. by the future if -part of the upcoming rule

for solution solk , and (3) have to be mapped to a different final solution solv, i.e.
k �= v. These counter-examples have to be excluded by expanding each pi with a
corresponding exclusion set Sexcl . In Sexcl the negation of each value of any si is
described.

The case that a counterexample belongs to a T s
u (i.e. to a different rule ru for the

same solution solk) does not have to be considered individually. It does not matter,
which way, i.e. by using which rules, the future knowledge base comes up with the
better solution. It is just important that it finds the better solution after refinement. In
the latter case, we produce a non-determinism in the knowledge base with the same
final end, i.e. a situation, where two different rules are applicable, but both end up in
the same system’s solution.

The entire reduction system is applied in both (1) recursive loops (by using rule
R1) and (2) iterative loops (by using rule R1 or R2, because the entire rule system
is applied as long as Pos �= ∅)just like a system of production rules. Within each
cycle (1) the applicable rule is identified (exactly one), (2) the rule is applied, which
leads to a larger set Ps

l and a smaller set Pos, and (3) the same business starts again
until each position is considered, i.e. Pos = ∅. It is quite obvious that the reduction
system is terminating, complete, and correct.

However, for cases other than the test cases, this technique can’t guarantee cor-
rectness, of course. This is due to the nature of all test case approaches. But for
typical AI application fields there is no other reasonable way of validation than using
“good” test cases and examining them as objective as possible. More can’t be done.

102 R. Knauf

4.4 Recompiling the New Rules and Removing
the Unused Rules

The new rules generated so far are “one-shot-rules”, i.e. they infer directly from a
system’s input to a system’s output. These rules might be difficult to read, because
they may have very long if parts, and difficult to interpret by subject matter experts.
This problem can be defused by introducing the intermediate hypotheses into the
computed new rules. Here, we consider two cases:

1. First, if the if -part of a new rule contains a subset of expressions that is the
complete if -part of another rule having an intermediate solution as its then-part,
this subset is replaced by the corresponding intermediate solution:

∃ri : (i f − part1 → int1)∃r j : (i f − part1 ∧ i f − part2 → int − or −
sol) ⇒
(i f − part1 ∧ i f − part2 → int − or − sol) ↪→ (int1 ∧ i f − part2 →
int − or − sol)

2. Second, we remove rules that having an intermediate hypothesis as its then-part,
which is not used in any if -part of any rule:
∃ri : (i f − part1 → int1)¬∃r j : (int1 ∧ i f − part2 → int − or − sol) ⇒
ri : (i f − part1 → int1) ↪→ ∅

5 The Technique in the Context of the Assumptions

The technique as described in the previous chapter follows the ideas of Ackermann
et al. [1] andAdrion et al. [2] that are originally developed for use in classical software
validation and mentioned here as an introduction.

Whenever a rule is indicated as “guilty” in some invalid system behavior, it will
be changed as slightly as it can be to map the examples consistently. The basic idea
behind the approach is to keep this rule and change it in a manner that the counterex-
amples, i.e. the test cases that have been solved incorrectly by the considered rule,
will be excluded from using this rule.

To handle these counterexamples, some extra rules will be computed, which map
these test cases to their correct solution. In the context of validation, we can define
“correct” just by “There is no different manmade solution that obtained better marks
by the validation panel.”. More can’t be done.

Since the only hint about the present kind of invalidity is some better final solution
to the examined test cases, the rule reconstructing technique focuses on rules that
have final solutions as their conclusion parts.

In a first setting, the upcoming new rules infer directly from the system’s inputs to
the system’s outputs, i.e. they are “one shot” rules. On one hand, these rules secure a
correct inputoutput behavior of the system. On the other hand, such rules tend to be

Knowledge Engineering of System Refinement … 103

nonreadable and noninterpretable in the context of the rest of the knowledge base.
Usually, they tend to have many expressions in their condition parts, i.e. they are
very long.

To avoid this drawback and to minimize the number of rules by utilizing existing
rules as precompiled knowledge, the computed rules are adapted to fit in the context
of the rest of the rule base by using their conclusionparts within the condition part
of the upcoming rules.

In particular, if there is at least one test case that is performed correctly by this
rule, a very close variant of the original rule remains in the system. This variant is
characterized by having the same conclusion part and a slightly changed (usually
longer) condition part. These changes are due to the fact that the counter-examples
have to be excluded.

All the remaining knowledge (besides the rules that handle these counter- exam-
ples) is not touched at all by the rule reconstruction technique. Even the invalid rules
are only changed as less as possible. The only objective of the refinement strategy
is to handle the counter-examples in a way that is indicated to be more valid by
the validation technology. The other examples, which have been handled in a valid
manner by this “guilty” rule will still by mapped to the same solution as before. The
basic message behind is:

If you do not know anything better by practical experience, believe in the knowledge provided
so far and don’t touch this knowledge.

Since the knowledge base so far is a product of human’s experience (either the
authors’ original knowledge or an improved version of it by applying this technol-
ogy), there is even a more general message behind:

If you do not know anything better by practical experience, believe in the knowledge provided
by other humans, i.e. inherit their experience.

To summarize, the presented technique keeps as much as it can from each rule. This
is performed by

1. reconstructing the rules in a manner such that they handle the counter-examples
(and only them) differently from the original rule base2 and

2. using as much as it can from the original rule base by “compiling” the new rules
together with the original ones in the knowledge base.

The latter issue utilizes correlations between the former (human-made) and the
upcoming pieces of knowledge, which are artificially computed, but based on human
insights within the validation process.

The author truly believes that this is the right thing to do, because it sets the new
knowledge in the context with the original one. This way, the modified rule base
should be more easily to be interpreted by human experts (who provided the original
knowledge) and additionally, the knowledge base will be optimal with respect to its
size, i.e. both the number of rules and their complexity.

2Without effecting the basic message of the present paper, the author should “admit”, that this is a
simplified description of the truth. Especially in case of non-discrete input data the situation occurs
slightly more complicated. For details, see [11].

104 R. Knauf

6 Conclusion

The author feels that the presented technique is a general way to refine AI systems in
particular, and technical systems that contain knowledge in general. Engineers who
develop and refine any technical system often say “Never change a running system.”.
Here, we extend this point of view by postulating the following three general issues:

1. Don’t change a system that works well.
2. Do change a system that works almost well as slightly as you can. Keep as much

as you can to avoid the risk making things worse and just change those parts that
handle the particular invalidities.

3. Do not try to rene a system that is invalid for many cases or for extraordinary
important cases (safety critical ones, for example). Here, some thought to rebuild
either the system or even the general approach should be invested.

The refinement strategy presented here falls into the second class, i.e. it provides
a formal method to “repair” a working system with the aim of handling singular
invalid (test) cases correct in future and to keep the former input/output behavior for
all other cases.

Since the test cases can be considered as examples, i.e. as input/output pairs with
a known correct output,3 the strategy should also be considered in the context of
“learning by examples”. Classical AI technologies to perform tasks like these (ID3
[13], for example) aim at producing a rule set that classifies the examples correctly.
On the one hand, they enjoy consistency with the examples, but on the other hand,
they suffer from being somehow “artificially constructed” and are not interpretable
by domain experts.

Moreover, the risk that such rules reflect the reality wrong is much higher than by
using techniques such as the one presented here. This is because the “non-examples”
(i.e. all test data that can occur in practice but are not a member of the example set
respectively the test case set, in our approach) are used to optimize the upcoming rule
set. The inputs that are not mentioned in any example (that are not a test case, in our
setting) are mapped to any output that is “useful” with respect to some optimization
issue (the number or the length of the constructed rules, for example).

The presented technique, on the other hand, is based on the assumption, that
all “non-examples” are handled correctly by the former knowledge base. It doesn’t
change the behavior for cases that have not been examined as test cases within the
validation technology. Since the historic knowledge base is a product of human
thought, the probability that these “non-examples” are handled correctly is much
higher.

To sum up, the well known competent programmer assumption in Software Engi-
neering has been adopted in Knowledge Engineering as a competent Knowledge
Engineer assumption when refining AI systems.

3Again, correctness here means validity and is nothing more and nothing less than a behavior that
obtained “good marks” by some (human) validation panel.

Knowledge Engineering of System Refinement … 105

References

1. Ackermann, A.F., Fowler, P.J., Ebenau, R.G.: SoftwareValidation. Elsevier, Amsterdam (1984)
2. Adrion, W., Branstadt, M., Cherniavsky, J.: Validation, verification and testing of computer

software. ACM Computing Surveys, pp. 159–182 (1982)
3. Cao, T.M., Compton, P.: A consistency-based approach to knowledge base refinement. In: Pro-

ceedings of the 18th International Florida Artificial Intelligence Research Society Conference,
pp. 221–225 (2005)

4. Davis, R., Lenat, D.B.: Knowledge Based Systems in Artificial Intelligence. McGraw Hill Int.
Book Company, New York (1982)

5. Djelouah, R., Duval, B., Loiseau, S.: Interactive refinement of a knowledge base. In: Proceed-
ings of the Seventeenth International Florida Artificial Intelligence Research Society Confer-
ence, pp. 325–330 (2004)

6. Ginsberg, A.: Automatic Refinement of Expert System Knowledge Bases. Pitman Publishing,
London (1988)

7. Ginsberg, A.: Theory revision via prior operationalization. In: Proceedings of the 7th National
Conference on Articial Intelligence (AAAI-88), pp. 590–595 (1988)

8. Ginsberg, A.: Theory reduction, theory revision, and retranslation. In: Proceedings of the 9th
National Conference on Artificial Intelligence (AAAI-90), Boston, MA, pp. 777–782 (1990)

9. Ginsberg,A.,Weiss, S.M., Politakis, P.:Automatic knowledge base refinement for classification
systems. Artif. Intell. 35, 197–226 (1988)

10. Knauf, R.: Inferenzmethoden. Script and slights to a course on Inference Methods, available
(in German). http://www.tu-ilmenau.de/ki/lehre/

11. Knauf, R.: Validating rule-based systems. A complete methodology. Aachen: Shaker, Berichte
aus der Informatik, Ilmenau, Technische Universitt, Habilitationsschrift (Habilitation Thesis,
in German) (2000). ISBN 3-8265-8293-4

12. Liang, C.X.F., Valtorta, M.: Refinement of uncertain rule bases via reduction. Int. J. Approx.
Reason. 13, 95–126 (1995)

13. Quinlan, J.: Learning effcient classification procedures and their application to chess end games.
Michalsky et al. (eds.): Machine Learning: An Artificial Intelligence Approach, Palo Alto, CA
Tioga Publishing Corp. (1983)

14. Wiratunga, N., Susan Craw, S.: Incorporating backtracking in knowledge refinement. In: Ver-
mesan / Coenen (eds): Validation and Verification of Knowledge Based Systems - Theory,
Tools and Practice. Proceedings of the 5th European Conference on Validation and Verication
(EUROVAV 99), Boston, MA Kluwer Academic Publishers, pp. 193–205 (1999)

15. Zlatareva, N.P., Preece, A.D.: State of the art in automated validation of knowledge based
systems. Expert Syst. Appl. 7, 151–167 (1994)

http://www.tu-ilmenau.de/ki/lehre/

Using the Event-B Formal Method
and the Rodin Framework
for Verification the Knowledge Base
of an Rule-Based Expert System

Marius Brezovan and Costin Badica

Abstract Verification and validation of a knowledge base of an expert systems are
distinct activities that allow to increase the quality and reliability of these systems.
While validation ensures the compliance of a developed knowledge base with the
initial requirements, the verification ensures that the knowledge base is logically
consistent. Our work is focused on the verification activity, which is a difficult task
that mainly consists in determination of potential structural errors of the knowledge
base. More exactly, we aimed to study the consistency of knowledge bases of rule-
based expert systems that use the forward chaining inference, a very important aspect
in the verification activity, among others, such as completeness and correctness. We
use Event-B as a modelling language because it has a mathematical background that
allows to model a dynamic system by specifying its static and dynamic properties. In
additionwe use theRodin platform, a support tool for Event-B,which allows to verify
the correctness of the specified systems and its properties. For a better understanding
of our method, an example written in the CLIPS language is presented in the paper.

1 Introduction

Rule-based expert systems represent computer programs that are designated to solve
problems specific to a certain domain in a manner similar to an human expert in
that domain. The knowledge base (KB) of such as expert system (ES) is represented
by a set of production rules, each production rule can be described syntactically as
follows:

If〈premise〉Then〈conclusion〉,

M. Brezovan (B) · C. Badica
University of Craiova, Craiova, Romania
e-mail: mbrezovan@software.ucv.ro

C. Badica
e-mail: cbadica@software.ucv.ro

© Springer International Publishing AG 2018
G.J. Nalepa and J. Baumeister (eds.), Synergies Between Knowledge
Engineering and Software Engineering, Advances in Intelligent
Systems and Computing 626, https://doi.org/10.1007/978-3-319-64161-4_6

107

108 M. Brezovan and C. Badica

where 〈premise〉 is a sequence of logical conditions, while 〈conclusion〉 represents
a sequence of some predefined actions.

Because of their efficiency, the market of rule-based expert systems has grown
starting to 1985, when many expert systems have been developed. Unfortunately in
the last two decades this market has diminished. In addition, today there is a gap
between the production of rule-based expert systems and the research in this area:
only a few companies still develop rule-based expert systems, although the research
related to knowledge engineering is still active. This phenomenon is difficult to be
investigated, and it is outside of the goal of the paper. However, in our opinion, one
important reason for this trend is the significant amount of time for assembling and
validating a knowledge base, which increases the cost of a such rule-based expert
system.

While the assembling phase of a knowledge base is a relative standard activity,
which is proven in terms of technology and procedures, the validation phase of a
knowledge base has some drawbacks: (a) it is a time-consuming activity, and, more
important, (b) there are not standard methodologies used in this activity. Moreover,
the validation of a knowledge base is still a subject in the research area of rule-based
expert systems.

1.1 Knowledge Engineering Versus Software Engineering

Because validation is a term used in two different and somewhat similar domains,
Knowledge engineering (KE) and Software engineering (SE), it is important to high-
light the similarities and the differences between the main terms from these domains.
Both of these notions represent engineering disciplines that are concerned in all
aspects of: (a) software production, in the case of SE, or (b) knowledge base devel-
opment, in the case of KE. As a remark, the notion of KE has changed slightly in
recent years, because today knowledge is related not only to knowledge-based sys-
tems, but also to web-based systems, and other information systems.We use however
the above notion, because our concern in this paper are knowledge-based systems.
In the following we refer the term of knowledge base engineering (KBE) instead of
KE.

In the context of SE, software validation is defined as, determination of the cor-
rectness of a program with respect to the user needs and requirements [1]. Because
of differences between building expert systems (ES) and conventional software pro-
grams, some authors consider that ES validation, and in particular KB validation,
is somehow different from conventional software validation. We agree to Meseguer
opinion [2], which claims that the definition of validation in the context of SE is also
applicable in the context of KBE for ES and KB validation.

However, in the domain ofKBvalidation terms like validation, verification, testing
or evaluation are very frequently used, while their exact definitions are still unclear.
According to [3], we consider validation as a global term that includes all others
terms as specific aspects. More specific, the validation activity can be considered a
composition of two different and complementary tasks:

Using the Event-B Formal Method and the Rodin Framework … 109

• verification, which represents those activities that intend to verify the structural
correctness of the KB content,

• evaluation, which represents those activities that intend to demonstrate the KB
ability to generate correct conclusions.

While the meaning of evaluation is similar in SE and KBE, there is a difference
regarding validation methods in these domains, because of the impossibility of a
complete translation of user requirements into specifications [4].Methods used in the
evaluation tasks from KBE are very similar to the corresponding methods from SE,
where the main activities are related to testing methodology. On contrary, methods
used in the verification tasks from KBE are different to the corresponding methods
from SE. Basically, these methods are based on the transformation of a KB into some
specific information structures and then on the using of appropriate procedures for
checking the structural correctness of the KB.

One of the techniques used both in SE and KBE in several phases of software
development and knowledge base construction is related to formal methods. Formal
methods are mathematically-based approaches to define a formal model, and this
model can be then formally analyzed and used as a basis for a formal system speci-
fication, development and validation [5]. A review of using formal methods in KBE
is presented in [6]. However, while in present there exists many formal methods, in
KBE these methods are used more in the validation phase than in other phases of
KBE, such as specification, model construction, or KB creation. Moreover, even in
the validation phase there are few approaches of using formal methods to verify user
requirements [7].

1.2 Related Work

KB validation means to determine whether or not the content of the KB accurately
represents the knowledge of the human experts that supplied it. Despite the fact that
for KB validation, a number of techniques similar to those of the SE domain are
available, in this paper we are not concerned with this task.

KB verification determines whether KBs are flawed or not from the structural
correctness point of view, requiring to check several knowledge properties, such as
correctness, consistency and completeness [8]. This task is difficult to be performed
in practice because of the large number of KB objects that can interact during the
ES execution. In addition, while validation can be subjective, verification is mainly
an objective test, because there exists several measures of the correctness of a KB.

In this paper we focus on the verification process because the verification process
is more complex than validation process, and it is crucial for a correct functionality
of rule-based systems. More precisely we approach the problem of consistency of
rule bases of expert systems.

For detecting inconsistencies in knowledge bases, several methods have been
proposed, most of them before 2000:

110 M. Brezovan and C. Badica

• Petri Nets-based methods that transform a rule base into a Petri net [9–11] and then
use appropriate techniques for analysing Petri nets for detecting inconsistencies
in KBs. Each production rule from a KB is translated to a transition in the resulted
Petri net, input places representing conditions of the rule antecedent, and output
places the actions of the rule consequent. However, themajority of Petri nets-based
approaches are related to KBs that do not contain variables inside rules. Only
few approaches (e.g. [11]) treat the case of rules containing variables. However,
there exists an inconvenient in all these approaches, which increase the time for
performing the verification task: all the possible initial states must be tested in
order to assure the absence of inconsistencies.

• Graph-based methods that represent conceptual dependencies between rules and
provide analysis techniques to study some rule properties, such as connectivity
or reachability [12, 13]. Similar to the case of Petri nets-base approaches, graph-
based approaches have the same inconvenient, because all possible values for the
initial fact base must be tested in order to assure the absence of inconsistencies.

• Algebraic methods, where a knowledge base is first transformed into an alge-
braic structure, and then appropriate techniques are applied for the verification
of the properties of the knowledge base [14, 15]. However there are few alge-
braic approaches for detecting inconsistencies in KBs. These approaches have a
disadvantage similar to the disadvantage of Petri nets-based approaches: they can
be applied only to KBs that do not contain variables inside rules. There are no
approaches that treat the case of rules containing variables.

• Declarative approaches are new approaches that are used in KBs containing both
rules and ontologies, when the knowledge base is transformed in Datalog facts
and rules, and then programs for implementing the anomaly checkers are devel-
oped [16, 17].

1.3 Our Approach

According to [8], the main properties used for structural verification of a KB include
consistency, completeness, and correctness. Our method treats only the problem of
consistency of KBs of rule-based expert systems.

Our proposal uses a formal method for the verification of a rule base (RB) of an
ES based on forward chaining inference, which contains variables inside rules. We
use both the Event-B formal language [18] and its tool support called Rodin [18] for
performing this task. As in other proposals, our method mainly consists in two steps:

• Themodelling phase that translate the knowledge base using theEvent-B language
into an equivalent Event-B specification,

• The verification phase that uses the semantics of Event-B, and the ProB plug-in
for the Rodin platform [19] for performing two different sub-tasks:

– the model-checking, which is automated performed by the ProB plug-in,

Using the Event-B Formal Method and the Rodin Framework … 111

– checking the consistency of the translated Event-B model by using the provers
of ProB on the selected proof obligations.

Because each Event-B model consists of two parts:

• a static part, represented by one ore more contexts, where the data part of the
model is specified,

• a dynamic part, represented by one or moremachines, where the system evolution
is described,

our method presents some patterns for translating the KB of a rule-based ES into an
equivalent Event-B model:

• the fact base is used for generating the static part of the model,
• the rule base is used for generating the dynamic part of the model, where rules are
translated to events of the corresponding machine.

There are several advantages of our method over other approaches:

• The Event-B method allows an easy modeling of a KB, as in the case of Petri nets
approaches. Each rule from a RB can be easily modeled as an event in the machine
of the translated Event-B model. In addition, the facts from the fact base, can be
modeled as global variables in the same Event-B machine. Moreover, the Event-B
language allows to model KBs that contain variables inside rules.

• In contrast to other approaches, a part of checking the consistency of a KB can
be automatically realized by using the ProB for the Rodin platform, which is
an animator and model checker for Event-B. In this way, the time used for the
verification of a KB can be shortened, which is a goal for the development of
rule-based systems.

• Using the refinement action of the Event-B method, the development of a KB can
be done incrementally, in a similar way to the agile development process form the
domain of software engineering.

In addition, by using the Event-B language, the inference engine of a rule-based
expert system can be also easy modeled. In this way, an entire rule-based expert
system can be modeled and tested before its implementation, not only its KB part.
This is another way to shorten the time for the development of a rule-based expert
system.

1.4 Overview of the Paper

The rest of this paper is organized as follows. Section2 presents the elements of the
Event-B language and its associated open framework Rodin. Section3 presents the
first step of our method that translates a KB into an equivalent Event-B model. In this
Section there are presented some patterns that can be used in this translation, as well
an example of translating aKBwritten in the CLIPS language into an Event-Bmodel.

112 M. Brezovan and C. Badica

Section4 presents the second step of themethod: verification of the consistency of the
translated Event-B model. Methods for verifying both static and dynamic properties
related to the consistency of the model are presented. Conclusions and future work
are presented in Sect. 5.

2 Event-B and Rodin

A wide range of formal specification languages have been proposed that can be
used in different system and software development phases. Based on their mathe-
matical background, these languages can be classified as: (a) Predicate logic-based
languages, such as Z [20], Object-Z [21], VDM [22], B [23], and Event-B [24], (b)
Temporal logic-based languages, such as CTL (Computational Tree Logic) [25] and
TLA (Temporal Logic of Actions) [26], (c) Process algebras, such as CSP (Commu-
nicating Sequential Processes) [27] and CCS (Calculus of Communicating Systems)
[28], and (d) Algebraic Specifications, such as CASL [29] and OBJ [30].

2.1 Event-B

Event-B [24] is a is a state-based formal method used for modeling discrete state
transition systems, which uses states and transitions for defining the state of a mod-
elled system and its evolution. States of a system are defined by variables and state
changes are defined by events. Event-B has evolved from the classicalBmethod [23].

However, the B Method is related more to the software development that can be
used in the software engineering domain, while Event-B is related to the system
development, and it can be used in a more general domain of system engineering.

An Event-B model contains two basic components:

• The static part of the model represented by one ore more contexts. Each context
may contain carrier sets, s, which are names of data types used by the model,
constants c, which correspond to simple mathematical objects, such as sets, binary
relations, functions, numbers, etc., axioms, A(c, s), which define the semantics of
the carrier sets, and theorems, TC(c, s), which specify some properties related
to constants and carrier sets. During the development of a system, a context can
extend one or more contexts by declaring additional carrier sets, constants, axioms
or theorems.

• The dynamic part of the model, represented by machines, which describe the
system evolution. Each machine may contain variables, v, whose current values
define the current state of the system, invariants, I (c, s, v), which define the valid
states of the system, theorems, TM(c, s, v), which specify some properties related
to variables, carrier sets and constants, and a set of events, E , each event describing
a transition of the system between two states.

Using the Event-B Formal Method and the Rodin Framework … 113

An event, e, is an atomic specialized B operation that describes a state change:

e =̂ any p where G(p, c, s, v) then S(p, c, s, v) end,

where p represents the sequenceof parameters for the event e,G(p, c, s, v) represents
its enabling condition called guard, which is a conjunction of one or more predicates,
and S(p, c, s, v) is the action associated to the event that can change the value of
variables v. The guard G(p, c, s, v) specifies the necessary condition for occurring
the event, and the action S(p, c, s, v) describes the modification of the state variables
when the event occurs. Denoting by v the state of the system before the occurrence
of the event v, and by v′ the state after its occurrence, the action S can be viewed
as a before-after predicate that defines a relation between these states. It can be
also described as S(p, c, s, v, v′). If several events are simultaneously enabled, then
at most one of them can be executed. The choice of event to be executed is non-
deterministic.

The set E of events contains Initialisation as a special event, RI (c, s, v′), which
describes the initial state of the system, by computing initial values of the variables.

Remark For simplicity, when possible, the constants c and carrier sets s from the
static part of a model are not specified in the above predicates.

Event-B defines several proof obligations, mathematical formulas borrowed from
the CSP language [27], which must be proved to show that a formal model fulfil its
specifiedproperties. The proof obligations are then discharged using certain inference
rules.

Refinement is the only operation that can be applied to amachine,which represents
a mechanism for introducing details about the dynamic properties of a model. If a
machine N refines another machine M , then M is called the abstract machine, while
N is a concrete machine.

2.2 Rodin

Rodin [18] is a software tool support for Event-B, which represents an open frame-
work developed on the top of the Eclipse platform. This framework was developed as
part of three successive European Union ICT Projects: RODIN (from 2004 to 2007)
[18], DEPLOY (from 2008 to 2012) [31], and ADVANCE [32] (from 2011 to 2014).

The Rodin tool chain allows development and verification of Event-B models,
ant it consists of three major components: the static checker, the proof obligation
generator, and the proof obligation manager. The static checker performs syntacti-
cal verification of Event-B models, the proof obligation generator generates proof
obligations needed to be proven in order to verify the correctness of the modelled
system, while the goal of the proof obligation manager is to maintain the proof status
and the proofs associated with the obligations.

The Rodin open platform is different from others formal methods tools, because
it allows multiple parties to integrate their tools as plug-ins to support a rigorous
development of Event-B models. Among other plug-ins developed for Rodin, ProB

114 M. Brezovan and C. Badica

and Theory are two important plug-ins that complement the existing modelling and
proof functionality of both the core Rodin platform and the Event-B mathematical
language.

ProB [19, 33] is an animator and model-checker for both B and Event-Bmethods.
The main goal of ProB is to check the consistency of a B (or Event-B) model.
Checking the consistency of a model means to check whether the invariant of a B
(or Event-B) machine is satisfied in all initial states, and whether its invariant is
preserved by the operations (or events) of the machine. This task is performed by
computing the state space of the model and then by performing an exhaustive search.
ProB can also be used as an animator of a B (or Event-B) model. So, this plug-in
represents not only a verification tool, but also a sophisticated debugging and testing
tool.

Classical models in Event-B are specified by using two types of components:
contexts and machines. The newer releases of Rodin define a new component called
theory [34]. A theory is a way by which the Event-B mathematical language and its
automated provers can be extended, independent of any particular model. Language
extensions are added to the Event-B mathematical language in the form of datatypes,
operators, and axiomatic definitions. Proof extensions are added to the Rodin core
platform in the form of rewrite rules, inference rules, and polymorphic theorems.
The theory component has been introduced in the DEPLOY ICT project [31].

3 Translatintg the Knowledge Base to an Event-B Model

One of the main advantages of our approach over other approaches is the fact that it
allows to verify rule-based systems that use variables. As a consequence we model
separately the two components of a knowledge base: the fact base, and the rule base.

3.1 A Specification Language for a Rule-Bases Expert
System

For the sake of generality, we use a simple and generic language for describing rule-
based system, which is close to the CLIPS [35] and Jess [36] languages. Because
in a rule-based system, knowledge is represented by a set of rules and by a set of
facts about the current situation, the generic rule-based language contains distinct
syntactic constructions for these elements.

Facts are represented by a sequence of constants, where the first constant is a
symbolic constant specifying the name of the fact, followed by a sequence of ordered
pairs, each pair representing the name of an attribute, and its corresponding value:

〈 f act〉 ::= ′(′ 〈fact−name〉 (〈attribute〉 〈value〉)+ ′)′.

Using the Event-B Formal Method and the Rodin Framework … 115

The syntax of facts is similar to the syntax of ordered facts from CLIPS and Jess, but
its meaning is closer to the unordered facts. A value can be a single-value, which is a
constant from an appropriate set, or a multi-value, which is a sequence of constants
from a given set. For example, a complex number specified by its real and imaginary
parts, can be represented as (complex re 7.2 im 3.5), while a fact representing a list
of numbers can be represented as (list elems 2 1 3 4 3).

For specifying attributes of a fact and their associated values, our generic language
allows to define a template for each category of facts:

〈fact−template〉 ::= ′(′ 〈fact−name〉 ′(′(〈attr−name〉 〈attr−type〉 〈elem−type〉′)′)+ ′)′
〈attr−type〉 ::= [univalue] | multivalue,

where univalue is an optional element, such that only multi-valued constants are
mandatory to be specified. For example the template defining the class of complex
numbers can be defined as (complex (re real) (im real)), while the template defining
the class of lists having integer elements can be defied as follows:

(list (elems multivalue integer)).

The template definition of all classes of facts represents the first part of the knowledge
base of a rule-based expert system.

A rule represents a triplet specified by its unique names, its antecedent and its
consequent:

〈rule〉 ::= 〈name〉 if 〈antecedent〉 then 〈consequent〉 end
〈antecedent〉 ::= 〈condition〉 {and 〈condition〉}∗
〈condition〉 ::= 〈predicate〉 ′(′〈pattern〉′)′
〈predicate〉 ::= Same | NotSame | LessThan | . . .
〈consequent〉 ::= 〈action〉 {and 〈action〉}∗
〈action〉 ::= Add′(′〈pattern〉′)′ | Del′(′〈pattern〉′)′,

where the syntactic definition of 〈pattern〉 is similar to the definition of 〈fact〉, with
the difference that constants can be replaced with variables:

〈variable〉 ::= ?〈ident〉 | !〈ident〉,

The syntactic construction ?〈ident〉 represents a uni-valued variable, whose value
can be a single constant, while !〈ident〉 represents a multi-valued variable, whose
value can be a sequence of constants from a give data type.

The predicate Same returns true if there is a matching between its associated
pattern, and a fact from the fact base, whileNotSame returns true if is not found any
matching between its pattern and a fact from the fact base. Other predicates from the
definition of a condition are usual logical predicates. Actions Add and Del add and
delete facts to/from the fact base.

116 M. Brezovan and C. Badica

3.2 Translating the Template Facts

In the generic rule-based language presented in Sect. 5, facts are considered as a
sequence of pairs (attribute value) having an associated name. When translating to
Event-B, facts can be modelled by a tuple of constants, each constant belonging to
a certain set, which is related to the corresponding attribute. For example, the fact
(complex re 7.1 im 5.3) can be translated to the sequence 〈7.1, 5.4〉, which is a value
of the cartesian product complex = real × real.

A fact having only attributes with uni-valued values,

(ftype attr1 val1 attr2 val2 . . . attrn valn), (1)

having the template

(ftype (attr1 attr−type1 type1) . . . (attrn attr−typen typen)), (2)

can be translated to a tuple 〈val1, val2, . . . , valn〉, member of the set

type(ftype) = type1 × type2 × · · · × typen. (3)

Uni-valued constants are members of some appropriate sets, so Eqs. 1–3 are cor-
rect defined only for those facts having only attributes with uni-valued values. In the
case ofmulti-valued constantswehave to use sequences insteadof sets.Unfortunately
the mathematical language Event-B does not contain the definition of sequences.
However sequences of values and their operators can be defined using the Theory
plug-in [34]. We use the theory Seq from the standard library of the Theory plug-in.

Denoting by T a global data-type parameter, the Seq theory contains only poly-
morphic operators on type T . The main operator of the Seq theory is the seq operator,
which has a parameter s representing a subset of T . seq defines the set of all sequences
whose members are in s [34].

operator seq
expression prefix
arguments s : P(T)
direct definition
mset(f, n · f ∈ (1..n) → s | f }

In addition the Seq theory defines several operator and predicates, such as seqSize,
seqIsEmpty, seqHead, seqTail, seqAppend, or seqPrepend, as well as several theo-
rems and inference rules.

In order to translate the template facts from a KB to an Event-B model, we denote
with S the family of basic sets representing the data types associated to the constants
of all attributes from all template facts,

Using the Event-B Formal Method and the Rodin Framework … 117

S = {S1, S2, . . . , Sn}. (4)

Starting to S we can define two families of sets: the family, U, related to uni-valued
attributes, and the family,M, related to multi-valued attributes. The family,

U = {Si1 , Si2 , . . . , Siu }, (5)

is a subset of S, containing those 〈elem−type〉 for which:

〈attr−type〉(〈fact−name〉, 〈attr−name〉) = univalue.

In the case of multi-valued constants we use the Seq theory. Let M be the family
related to multi-valued attributes,M = {Sj1 , Sj2 , . . . , Sjm }, which is also a subset of
S containing those 〈elem−type〉 for which:

〈attr−type〉(〈fact−name〉, 〈attr−name〉) = multivalue.

Based on M, let Seq(M) be the family of all sequences whose members are in the
sets of the familyM:

Seq(M) = {seq(Sj1), . . . , seq(Sjm)}. (6)

Now, the type type(ftype) as specified in Eq.3 of the fact ftype specified in Eq.1, can
be generally defined as follows: for all i ∈ {1, . . . , n},

elem−typei = univalue ⇒ t ypei = attr−typei ,
elem−typei = multivalue ⇒ t ypei = seq(attr−typei).

Having the above family of sets and sequences constructed, we can construct a final
family, V,

V = S ∪ Seq(M) = {V1, V2, . . . , Vp}, (7)

representing all possible data types associated to the attributes of all facts.
Based on the family V, we can now construct the data types associated to the

template facts, which represents the system of data types of all possible facts:

D = CP(V) = {D1, D2, . . . , Dk}, (8)

where, each set Di is a cartesian product verifying the following condition:

∀Di ∈ D ⇒ ∃i1, i2, . . . , il ∈ {1, 2, . . . , p} · Di = Vi1 × Vi2 × · · · × Vil . (9)

We denote by RD the reunion of all these sets, RD = ⋃

1≤i≤k Di . In the translated
model, the fact base of a rule-based system will be represented by a global variable

118 M. Brezovan and C. Badica

that contains all current facts of the system. This constraint says that each fact from
the fact base has a type defined in the system of data types U:

∀ f ∈ f b ⇒ ∃D ∈ RD · f ∈ D. (10)

3.3 Translating the Rule Base

Each rule from a RB will be translated as a different event in the corresponding
Event-B model. The event INITIALIZATION will add all initial facts of the ES in
the fact base represented by the global variable f b, as defined in Eq.10.

We can define a first pattern when translating a RB into an Event-B model. A
condition Same of the form,

Same(ftype attr1 ?x1 attr2 ?x2 . . . attrn ?xn), (11)

from a rule R, related to a fact template defined as in Eq.2, can be translated to
Event-B, in the any and where parts of the associated event, as follows:

Event R =̂
any

x1, x1, . . . , xn
…

where
x1 ∈ t ype1 ∧ . . . ∧ xn ∈ t ypen ∧ x1 �→ x2 �→ . . . �→ xn ∈ f b
…

then
…

end

END

where, for each i , typei is defined as in Eq.5.
There is no difference between uni-valued and multi-valued variables in the pro-

cess of translation. The only restriction is that the data type of a multi-valued variable
have to be a sequence of values.

The second pattern when translating a RB into an Event-B model refers to condi-
tionNotSame, which also launches the patternmatching process, but it has a different
meaning,

NotSame(ftype attr1 ?x1 attr2 ?x2 . . . attrn ?xn), (12)

related to a fact template defined also as in Eq.2. The conditionNotSame, can be the
translated to an Event-B model, also in the any and where parts of the associated
event, as follow:

Using the Event-B Formal Method and the Rodin Framework … 119

Event R =̂
any

x1, x1, . . . , xn
…

where
x1 ∈ t ype1 ∧ . . . ∧ xn ∈ t ypen ∧ x1 �→ x2 �→ . . . �→ xn /∈ f b
…

then
…

end

END

Because other conditions from the antecedent of a rule are only logical predicates,
the third pattern says that for each logical predicate, an appropriate guard in the
associated event can be written. For example, in the rule AddSquare, the condition
Equal(?x ?y) has been translated as a simple guard, x = y.

Actions Add and Del can be translated into the then part of the associated event.
The fourth pattern refers to the Add action. Let us consider that a rule R contains
the action:

Add(ftype attr1 ?x1 attr2 ?x2 . . . attrn ?xn),

related to a fact template defined also as inEq.2. The actionAdd, can be the translated
to an Event-B model, in the then part of the associated event, as follow:

Event R =̂
any

x1, x1, . . . , xn
y1, y1, . . . , ym
…

where
…

then
f b′ = f b ∪ {x1 �→ x2 �→ . . . �→ xn}
…

end

END

The fifth pattern refers to the Del action, which is similar to the previous pattern.
The only difference consists in the set operation performed on the f b variable. The
action

Del(ftype attr1 ?y1 attr2 ?y2 . . . attrn ?yn),

can be translated into a then part of the associated event as follows:

Event R =̂
any

x1, x1, . . . , xn
y1, y1, . . . , ym
…

120 M. Brezovan and C. Badica

where
…

then
f b′ = f b \ {y1 �→ y2 �→ . . . �→ ym}
…

end

END

Remark Because Add and Del actions perform set operations on the same global
variable, f b, these actions can be combined into a single action.

3.4 A Modelling Example

As an example we translate a simple CLIPS program to an Event-B model. The
following CLIPS program determines if an initial string is palindrome.

(deffacts facts (string symbols 1 0 1))

(defrule empty-string

?c <- (string symbols)

=>

(retract ?c)

(printout t "The initial string is palindrome" crlf))

(defrule singleton-string

?c <- (string symbols ?)

=>

(retract ?c)

(printout t "The initial string is palindrome" crlf))

(defrule equal-symbols

?c <- (string symbols ?symbol $?middle ?symbol)

=>

(retract ?c)

(assert (string symbols $?middle)))

(defrule different-symbols

?c <- (string symbols ?symbol1 $? ?symbol2)

(test (<> ?symbol1 ?symbol2))

=>

(retract ?c)

(printout t "The initial string is not palindrome" crlf))

Using the Event-B Formal Method and the Rodin Framework … 121

The first step is to rewrite the above RB in the language presented in the Sect. 3.1.
There are only two finite sets used in this knowledge:

symb = {0, 1}, res = {OK,NOK,NULL}.

We have two fact patterns,

(string (symbols multivalue symb))
(result (type res))

and the following rule base:

empty : If Same(string symbols)
then Del(string symbols) and Add(result type OK) End

singleton : If Same(string symbols ?s)
then Add(result type OK) End

equal : If Same(string symbols ?s !middle ?s)
then Del(string symbols ?s !middle ?s)

and Add(string symbols !middle) End

different : If Same(string symbols ?s1 !middle ?s2)
and NotEqual(?s1 ?s2)

then Del(string symbols ?s1 !middle ?s2)
and Add(result type NOK) End

According to the Sect. 3.2, the following sets are constructed:

S = {symb, res}, U = {res}, M = {symb}, V = {res, Seq(symb)}.

The translated Event-B model of the previous knowledge base contains a context,

CONTEXT Palindrom_C
CONSTANTS

0, 1
OK, NOK, NULL

SETS

SYMB, RES

AXIOMS

partition(SYMB, {0}, {1})
partition(RES, { OK }, { NOK }, { NULL })

END

and a machine,

MACHINE Palindrom_M

122 M. Brezovan and C. Badica

SEES Palindrom_C
VARIABLES

f b sq r

INVARIANTS

f b ∈ RES ∧ f b ∈ seq(SYMB) ∧ sq ∈ seq(SYMB) ∧ r ∈ RES

EVENTS
Initialisation

begin
f b := ∅
sq := empySeq
sq := seqAppend(seqAppend(seqAppend(sq, 1), 0), 1)
r := NULL
f b := f b ∪ {sq}

end

Event empty =̂
when

sq ∈ f b ∧ seq I sEmpty(sq)
then

r := OK
f b := f b ∪ {r} \ {sq}

end

Event singleton =̂
when

(sq ∈ f b) ∧ (seqSi ze(sq) = 1)
then

r := OK
f b := f b ∪ {r} \ {sq}

end

Event equal =̂
any

s1, middle, s2
where

s1 ∈ SYMB ∧ s2 ∈ SYMB ∧ s1 = s2 ∧ middle ∈ seq(SYMB)
sq = seqAppend(seqPrepend(middle, s1), s2)

then
f b := f b ∪ {middle} \ {sq}

end

Event different =̂
any

s1, middle, s1
where

s1 ∈ SYMB ∧ s2 ∈ SYMB ∧ s1 �= s2 ∧ middle ∈ seq(SYMB)
sq = seqAppend(seqPrepend(middle, s1), s2)

then
r := NOK
f b := f b ∪ {r} \ {sq}

end

END

Using the Event-B Formal Method and the Rodin Framework … 123

4 Verifying the Knowledge Base of an Rule-Based System

We study the verification of a RB of an ES by using the translated Event-B model, as
presented in Sect. 3. Two steps are performed when verifying a knowledge base: (a)
checking the model consistency of the translated knowledge base, by using the ProB
plugin, and (b) checking the main properties related to the verification task, by using
both the ProB plug-in, and the mathematical language of the Event-B language.

Model checking is a term from the SE domain [37], which represents an automatic
approach to formal verification of a model based on state exploration. In the case of
Event-B and its associated tool, Rodin, there are twomain model checking activities:
consistency checking, which allows to verify if the operations of a machine preserve
its invariant, and refinement checking, which allows to verify if a concrete machine
is a valid refinement of its related abstract machine. Because we do not use the
refinement action in the translated Event-B model, in our case we will use only
consistency checking of an Event-B model.

Model consistency is checked in Event-B and Rodin by verifying two conditions:
a feasibility condition, and an invariant preservation condition. Let M be a machine
having the invariant I (v), v its sequence of variables, and an event, evm defined as:

evm =̂ any pm where Gm(v) then Sm(v, v′) end.
The two conditions verified in a model checking action can be described as follows:

• The feasibility condition, which ensures that sm provides an after state whenever
Gm holds,

• The invariant preservation condition, which allows invariants to hold whenever
variable values change.

Similar conditions are necessary to the initialisation event.
The first step of the RB verification, model consistency verification, can be auto-

mated performed by using the ProB plug-in on the translated Event-B model. For
the example presented in Sect. 3.2, all these proof obligations for machine consis-
tency are generated and discarded automatically by the ProB plug-in. So, for the
model-checking point of view, the example presented in Sect. 3.2 is consistent.

The second step in the checking for consistency of a RB task performs the verifi-
cation of some important properties, such as [38]:

1. Redundant rules. Two rules are redundant if they succeed having the same con-
dition and the same conclusion.

2. Subsumed rules. One rule is subsumed by another if the two rules have the same
conclusions, but one of them contains additional conditions.

3. Conflicting rules. Two rules are in conflict if they succeed in the same condition
but have conflicting conclusions.

4. Circular rules. A set of rules is circular if the chaining of these rules form a cycle.

These properties are called static properties because the research in the domain of
RB verification has been oriented only on rule-based systems that not use variables,
and in this case the above properties check the structure and interconnection of the

124 M. Brezovan and C. Badica

information in the RB. In the case of rule-based systems that use variables not all
above properties can be statically checked, because the basic element of a RB that
can fire is not a rule, but a rule instance. As a consequence, verifying the structure
of a RB is not enough for some properties. In fact, a sound theory for checking
consistency of a RB that uses variables is not developed until now.

In the following we will adapt the above four properties for rule-based systems
that use variables and forward inference chaining. The first two properties can be also
statically and syntactically checked in our approach, because they verify structural
properties. Let evi and ev j the events translated from the rules ri and r j . In this case:

(a) The rules ri and r j are redundant if Gi (v) = G j (v) and Si (v, v′) = Sj (v, v′),
(b) The rule r j is subsumed by ri if Gi (v) ⇒ G j (v) and Si (v, v′) = Sj (v, v′).

The third property represents also a static property, but it can not always be
syntactically verified. With the above notations we can formalize this property as
follows:

(c) The rules ri and r j are in conflict if Gi (v) = G j (v) and Conflict(Si (v, v′), Sj

(v, v′)),

where Conflict(Si (v, v′), Sj (v, v′))means that some actions in Si (v, v′) and Sj (v, v′)
are in conflict.

Because there are only two possible actions, Add(f) and Del(f), there can be
two types of conflicts. Denoting by f b the variable of the translated Event-B model
representing the fact-base, by evi and ev j two events, and by f1 and f2 respectively,
the Event-B variables representing the facts (for simplicity, with the same name) f1
and f2, the possible conflicts are: (i) there are at least two opposite actions in Si and
Sj , that is adding and deleting the same fact, or (ii) there are at least two actions in
Si and Sj that add two facts, f1 and f2, that are incompatible.

The first conflict can be also syntactically checked, and it can be formalized as
follows:

(c1) There exists f b′ = b f ∪ { f } ∈ Si , and f b′ = b f \ { f } ∈ Sj , where f is the
same fact in the two actions.

Unfortunately the second conflict cannot be formalized due to lack of semantic
component of the description language presented in Sect. 2.1. For example, the fol-
lowing facts, (f ather−of f ather John son J im) and (f ather−of f ather J im
son Jhon) may be in conflict if their meaning say that “John is the father of Jim”
and “Jim is the father of John” respectively. Because the generic language presented
in Sect. 2.1 is inspired from the CLIPS and Jess languages, where facts are ordered
sequences of constants, such type of conflict cannot be detected. Except this conflict,
the above three properties can be statically verified for the example presented in
Sect. 3.2.

The last property (circular rules) cannot be statically checked for rule-based expert
systems that use variables. For modeling the dynamic evolution of a systemmodeled
by Event-B language we need to represent the sequence of successive states and their

Using the Event-B Formal Method and the Rodin Framework … 125

corresponding events. We use the notion of event traces, which can model the system
behaviour, as in well-known from process algebra, especially CSP. Although event
traces are not part of the standard semantic definitions in Event-B, the ProB animator
plug-in can be viewed as computing possible traces of an Event-B machine [33].

ProB uses the notion of rechablable states. The first state, vinit results after the
initialisation event, ini t . If in a state v, the guard Gi (v) of an event ei is true, and if
after performing its related actions Si (v, v′), the new state of the model is v′: v ei→ v′.
If in this new state, another event, e j has a true guard, G j (v′), the system can reach a

new state, v′′, v ei−→ v′ e j−→ v′′, such that Sj (v′, v′′) is true. In this case we have both
a trace of events 〈ei , e j 〉, and a trace of states 〈v, v′, v′′〉.

Thus, a trace of events is a sequence 〈ei0 , ei1 , ei2 , . . . , ein , . . .〉 that correspond to
a trace of states 〈vi1 , vi2 , . . . , vin , vin+1 , . . .〉, where ei0 = ini t , and for each j > 1,

vi j−1

ei j−→ vi j
ei j+1−→ vi j+1 . The two types of traces are not independent. Having a reach-

able state, v, and a sub-trace of events te = 〈ek1 , ek2 , . . . , ekm 〉, the corresponding
sub-trace of states is ts = Im(v, te) = 〈vk2 , vk3 , . . . , vkm+1〉, such that:

v
ek1−→ vk2 , (13)

vk j

ek j+1−→ vk j+1 ,∀ j ∈ {1, 2, . . . ,m}.

Now we can formalize the condition of circular rules. Let t = svi1vi2 . . . vik u a trace
of states, where s and u represent sequences of states, t ′ = 〈ei2 , ei3 , . . . , eik 〉 a sub-
trace of events, such that t ′ = Im(vi1 , 〈vi2 , vi3 , . . . , vik+1〉). The rule base contains
circular rules if the following condition hold:

(vi1 = vik−1) ∧ (ei2 = eik), (14)

Circular rules can be detected in the ProB animator, when the same event appear
twice in the same state. For the example presented in Sect. 3.2 there are not circular
rules.

5 Conclusion

The research of this paper is related to the study of the consistency in knowledge base
of a rule-based expert system that uses variables and forward chaining inference. We
propose to use the Event-B method to model the knowledge base and its associated
Rodin platform. We used two plug-ins of Rodin: (a) the Theory plug-in for the
construction of data types needed to translate the knowledge base to an Event-B
model and (b) the ProB plug-in for model checking and for checking the consistency
of the translated Event-B model. We use some SE methods in order to perform
specific KBE tasks, related to verification of KBs.

126 M. Brezovan and C. Badica

Our approach is different from other proposals because (a) it allows to verify rule
bases containing variables, and (b) it uses a formal method, Event-B, and its support-
ing tool, Rodin, in order to perform automatically the most part of the verification
process.

Our future research is twofold: (a) to extend this model to include an inference
engine for a forward chaining algorithm, allowing to simulate a rule-based system
before its implementation phase, and (b) to extend the research to verify the consis-
tency of the fact base of an rule-based system.

References

1. Adrion, W., Branstad, M., Cherniavsky, J.: Validation, verification and testing of computer
software. Comput. Surv. 14(2), 159–192 (1982)

2. Meseguer, P.: Towards a conceptual framework for expert system validation. AI Commun. 5(3),
119–135 (1992)

3. Laurent, J.P.H.: Proposals for a valid terminology in KBS validation. In: Proceedings of the
European Conference on Artificial Intelligence - ECAI, pp. 829–834. Wiley, Vienna, Austria
(1992)

4. Hoppe, T., Meseguer, P.: On the terminology of VVT: a proposal. IEEE Expert 93, 48–55
(1993)

5. Sommerville, I.: Software Engineering. Addison-Wesley, USA (2011)
6. Meseguer, P., Preece, A.: Verification and validation of knowledge-based systems with formal

specifications. Knowl. Eng. Rev. 10(4), 331–343 (1995)
7. Preece,A.: Evaluating verification and validationmethods in knowledge engineering. Industrial

Knowledge Management, pp. 91–104. Springer, London (2001)
8. O’Keefe, R.M., O’Leary, D.E.: Expert system verification and validation: a survey and tutorial.

Artif. Intell. Rev. 7(1), 3–42 (1993)
9. Meseguer, P.: A new method to checking rule bases for inconsistency: a petri net approach. In:

Proceedings of ECAI 90, pp. 437–442. Espoo, Finland (1990)
10. He, X., Yang, W.C.H., Yang, S.: A new approach to verify rule-based systems using petri nets.

In: Proceedings of 23thAnnual International Computer Software andApplications Conference,
pp. 462–467. Los Alamitos, CA, USA (1999)

11. Wu, C.H., Lee, S.J.: Enhanced high-level petri nets with multiple colors for knowledge verifi-
cation/validation of rule-based expert systems. IEEE Trans. Syst. Man Cybern. Part B: Cybern.
27(5), 760–773 (1997)

12. Ramaswamy, M., Sarkar, S., Sho, C.Y.: Using directed hypergraphs to verify rule-based expert
systems. IEEE Trans. Knowl. Data Eng. 9(2), 221–237 (1997)

13. Gursaran, G., Kanungo, S., Sinha, A.: Rule-base content verification using a digraph-based
modelling approach. Artif. Intell. Eng. 13(3), 321–336 (1999)

14. Laita, L., Roanes-Lozano, E., de Ledesma, L., Alonso, J.: A computer algebra approach to
verification and deduction in many valued knowledge systems. Soft Comput. 3(1), 7–19 (1999)

15. Pierret-Golbreich, C., Talon, X.: TFL: an algebraic language to specify the dynamic behaviour
of knowledge-based systems. Knowl. Eng. Rev. 11, 253–280 (1996)

16. Baumeister, J., Seipel, D.: Anomalies in ontologies with rules. Web Semant. Sci. Serv. Agents
World Wide Web 8(1), 55–68 (2010)

17. Krotzsch, M., Rudolph, S., Hitzler, P.: ELP: tractable rules for OWL. In: Proceedings of the
7th International Semantic Web Conference - ISVC, pp. 649–664. Springer (2008)

18. Event-B, the Rodin Platform. http://www.event-b.org/
19. ProB. http://www.stups.uni-duesseldorf.de/ProB/index.php5/ProB_

for_Rodin

http://www.event-b.org/
http://www.stups.uni-duesseldorf.de/ProB/index.php5/ProB_for_Rodin
http://www.stups.uni-duesseldorf.de/ProB/index.php5/ProB_for_Rodin

Using the Event-B Formal Method and the Rodin Framework … 127

20. Woodcock, J., Davies, J.: Using Z: Specification, Refinement and Proof. Prentice Hall, London
(1996)

21. Smith, G.: The Object-Z Specification Language. Springer, US (2000)
22. Jones, C.: Systematic Software Development Using VDM. Prentice-Hall International, Engle-

wood Cliffs (1986)
23. Abrial, J.R.: The B Book: Assigning Programs to Meanings. Cambridge University Press,

Cambridge (1996)
24. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University

Press, Cambridge (2010)
25. Kropf, T.: Introduction to Formal Hardware Verification. Springer, Berlin (1998)
26. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst. 16(3), 872–923

(1994)
27. Hoare,C.:CommunicatingSequential Processes. Prentice-Hall International, EnglewoodCliffs

(1985)
28. Milner, R.: Communication and Concurrency. Prentice-Hall International, New York (1989)
29. Bidoit, M., Mosses, P.: CASH User Manual: Introduction to Using the Common Algebraic

Specification. Lecture Notes in Computer Science, vol. 2900. Springer, Berlin (2004)
30. Goguen, J., Malcolm, G.: Algebraic Semantics of Imperative Programs.MIT Press, Cambridge

(1996)
31. Deploy. http://www.deploy-project.eu/
32. Advance. http://www.advance-ict.eu/
33. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method. Int. J. Softw.

Tools Technol. Transf. 10(2), 185–203 (2008)
34. Butler, M., Maamria, I.: Practical theory extension in event-B. Theories of Programming and

Formal Methods. Lecture Notes in Computer Science, vol. 8051, pp. 67–81. Springer, Berlin
(2013)

35. CLIPS. http://clipsrules.sourceforge.net/
36. Jess. http://herzberg.ca.sandia.gov/jess/
37. Chan, W., Anderson, R.J., Beame, P., Burns, S., Modugno, F., Notkin, D., Reese, J.D.: Model

checking large software specifications. IEEE Trans. Softw. Eng. 24(7), 498–520 (1998)
38. Nguyen, T., Perkins, W., Pecora, D.: Knowledge base verification. AI Mag. 8(2), 69–75 (1987)

http://www.deploy-project.eu/
http://www.advance-ict.eu/
http://clipsrules.sourceforge.net/
http://herzberg.ca.sandia.gov/jess/

Knowledge Engineering for Distributed
Case-Based Reasoning Systems

Kerstin Bach

Abstract This chapter describes how to identify and collect human knowledge and
transform it into machine readable and actionable knowledge. We will focus on the
knowledge acquisition for distributed case-based reasoning systems. Case-based rea-
soning (CBR) is a well-known methodology for implementing knowledge-intensive
decision support systems (Aamodt, Plaza, Artif Intell Commun, 7(1):39–59, 1994)
[1] and has been applied in a broad range of applications. It captures experiences in
the form of problem and solution pairs, which are recalled when similar problems
reoccur. In order to create a CBR system the initial knowledge has to be identified
and captured. In this chapter, we will summarise the knowledge acquisition method
presented by Bach, Knowledge acquisition for case-based reasoning systems. Ph.D.
thesis, University of Hildesheim, München (2012) [2] and give an running example
within the travel medicine domain utilising the open source tool for developing CBR
systems, myCBR.

Keywords Case-based reasoning · Knowledge acquisition · Knowledge-based
systems · Knowledge engineering · Distributed knowledge acquisition

1 Introduction and Motivation

Following our approach of Collaborative Multi-Expert Systems [3] the knowledge
sources, which are used to store and provide knowledge, are mostly distributed.
When dealing with complex application domains it is easier to maintain a number
of heterogeneous knowledge sources than one monolithic knowledge source. There-
fore we propose a Knowledge Line that holds a map of topics, which split rather
complex knowledge in smaller, reusable units (knowledge sources). Moreover, the

K. Bach (B)
Department of Computer and Information Science, Norwegian University of Science
and Technology, Trondheim, Norway
e-mail: kerstin.bach@ntnu.no
URL: http://www.idi.ntnu.no

© Springer International Publishing AG 2018
G.J. Nalepa and J. Baumeister (eds.), Synergies Between Knowledge
Engineering and Software Engineering, Advances in Intelligent
Systems and Computing 626, https://doi.org/10.1007/978-3-319-64161-4_7

129

130 K. Bach

knowledge sources contain different kinds of information as well as there can also be
multiple knowledge sources for the same purpose. Therefore each source has to be
described in order to be integrated in a retrieval process which uses a various number
of knowledge sources. In the following we describe how multiple CBR system hold-
ing case of different topics, but aggregate their results eventually, can be built. This
knowledge acquisition method is targeted for capturing heterogeneous knowledge
sources and build a distributed CBR system that maintains its knowledge in homo-
geneous containers that are queries on demand. Therewith it fits in the requirements
of knowledge acquisition for the SEASALT architecture [4] as well as the CoMES
approach [3].

The goal of the knowledge modularization is building as independent modules as
possible in order to reduce the complexity of each individual CBR system. Modules
can be described as task specific program parts as they are described in [5]. The
knowledge modularization in SEASALT aims are minimizing dependencies between
Topic Agents by identifying modules that are coherent within themselves. Modules,
further on, can be combined as required within a Knowledge Line. The result of
a problem solving system which is based on SEASALT is always a solution that
consists of partial solutions, which originate in heterogeneous partial domains.

For generating a solution within a Knowledge Line a Knowledge Engineer must
define the overall contexts for ensure the composition of an overall result. For that
reason the Knowledge Modularization is a basis of the Knowledge Composition.

Crucial for the effective application of such knowledge intensive systems is the
organization of knowledge. For that reason the conceptional (development) phase
requires special attention, because after that phase the development of the CBR
systems can be carried out individually. The Knowledge Line contains on the one
hand the Knowledge Map for organizing information about each module (Topic
Agent) that is required for combining the snippets, which are the partial solutions of
which the final result consists of.

2 Background and Related Work

Two related methodologies to the work presented here are DISER [6] and INRECA
[7]. While both, DISER and INRECA are methodologies for creating single CBR
systems, the process of building a knowledge line instead describes the systematic
development of decentralized, CBR systems.

DISER describes a methodology for developing experience-based systems in gen-
eral. It especially focuses on the integration of the CBR system in an enterprise rather
than providing information from Web 2.0 sources to laymen. Furthermore, the knowl-
edge line requires knowledge engineers to execute key tasks while in [6] enterprise
executives are addressed with the goal to integrate the system in existing socio-
technical processes. With SEASALT instantiations, we are focusing more on the
technical realization rather than the social interaction between stakeholders. When
recalling DISER’s development aspects, then a Knowledge Line can be positioned in

Knowledge Engineering for Distributed Case-Based Reasoning Systems 131

the vision to pilot phases. The presented methodologies addresses also maintenance
aspects, but has not a particular phase, because novel information is constantly fed
into the systems due to the stream-like data in web forums.

INRECA on the other hand was particularly focused on developing CBR systems
and provides experiences for the development itself on various abstraction levels.
Because of the specialization to CBR, common experiences derived from the devel-
opment of various CBR systems, can be generalized and shared. INRECA does not
cover any experiences for developing distributed systems such as the previously
described snippet descriptions. Eventually a Knowledge Line can be seen as an
addition to the INRECA recipes since it presents an approach for distributed CBR
systems, which is has not been covered before.

On INRECAs Common Generic Level contains more abstract processes for the
development of any kind of CBR system. The herewith introduced methodology
focuses on a subset of systems that are based on heterogeneous CBR systems. For
that reason, only the abstract process presented in Fig. 3 would fit that generic level. It
can for instance be applied for distinguishing whether a distributed system is required
to fit the expectations or not. The Specific Project Level is not directly addressed with
the work previously present, but the experiences made during the instantiation of an
application such as docQuery could provide extensions to that level.

3 Knowledge Modularization

In this section we are introducing a process model for the knowledge modularization
within a Knowledge Line. This process model, describes the goal-oriented devel-
opment of decentralized, heterogeneous case bases and supports the Knowledge
Engineer with a structured approach for modularizing knowledge based on available
data. The approach presented in this work does not aim at distributing knowledge for
performance reasons, instead we specifically extract information for the respective
knowledge sources from Internet communities or to have experts or Knowledge Engi-
neers maintaining one knowledge base. Hence, we are creating knowledge sources,
especially Case-Based Reasoning systems, that are accessed dynamically accord-
ing to the utility and accessibility to answer a given question. Each retrieval result
of a query is a part of the combined information as it is described in the CoMES
approach. The representation of the knowledge modularization is the Knowledge
Map, which will be described in the following subsection. The successive subsec-
tion will introduce the Knowledge Line process model and describe the containing
sub-processes.

3.1 Knowledge Map

TheKnowledgeMap organizes all available knowledge sources that can be accessed
by a Coordination Agent that creates individual requests and combines information.

132 K. Bach

Fig. 1 Knowledge Map containing topic agents and knowledge bases

The term Knowledge Map has been introduced by [8] describing working knowledge
in an organization. In the aforementioned book they describe a knowledge map from
the organizational point of view in which human experts are mapped to topics or
expertise fields in order to ensure that everybody in a company knows who is an
expert in a certain domain. We transfer this concept in an intelligent agent framework
that coordinates different knowledge sources.

A Knowledge Map (KM) consists of a number of Topic Agents TA that are
depending on each other and each consist of a software agent A on top of a knowledge
base KB. Thus it can be defined as follows:

KM = {TA1, TA2, TA3, . . . , TAn} with TA = (KB, A) (1)

A Topic Agent is a knowledge-based system itself and the software agent queries it.
The Topic Agent collaborates with the Coordination Agent that navigates through the
Knowledge Map and asks subsequent questions to the individual Topic agents thus
creating an individual path through the map. There are dependencies Depconstraint
between the Topic Agents which define that sequence and influence the retrieval
executed by one of the subsequent Topic Agents. A dependency exists if one agent’s
output serves as another agent’s input and thus enforces a subsequent query. Since
the dependencies between Topic Agents can take any form, we decided to implement
the Knowledge Map as a graph where each Topic Agent is represented by a node
and directed edges denote the dependencies.

Figure 1 shows a Knowledge Map containing the knowledge bases and software
agents as well as an example for a possible path through the knowledge sources.

3.2 Pre-processing

Based on a customers requirement for a target system, the Knowledge Engineer
defines the systems functionalities as well we the overall goal. We assume that the

Knowledge Engineering for Distributed Case-Based Reasoning Systems 133

overall goal of the knowledge-based system is the composition of results retrieved
from multiple, heterogeneous case bases. Examples for this are the menu creation
in the cooking domain [9, 10] or the travel medicine domain as it will be used as an
example further on.

Within docQuery, we require to use information of various CBR systems such
as regional information, information on diseases, information on vaccinations and
medications or activities. There are dependencies between each case base, but each
one covers its own domain: For instance the case base disease contains information
about infectious diseases that work outside of docquery, i.e. in a medical information
system, as well. The dependencies or links between case bases are necessary to
compile first a retrieval graph over the knowledge map and eventually compose the
solution integrating all retrieved cases.

3.2.1 Knowledge Source Sounding

After identifying the scope of each individual case base, existing and available knowl-
edge sources have to be investigated whether they can provide the required data and
quality. The major goal of this first step is getting an overview of

• What kind of knowledge already exists?
• What has to be reviewed?
• What has to be acquired in order to fit the given requirements?

Knowledge sources are mainly data collections, but also cover experts for certain
domains.

For the docQuery use case we looked at what type of knowledge is naturally
available. This led us to the CBR systems Region, Disease, Medicament, Hospital and
Activity. It is obvious that these information can be plugged in any other application
as well. For example, the Region case base can provide information in a travel
agency scenario. Based on the discussions with domain experts we further identified
the need of the case bases Chronic Illnesses and Associated Condition. Chronic
Illnesses and Disease are separated because of their handling in a knowledge map and
the information provided about them. While chronic illnesses are information to be
specified by the user, docQuery provides prevention of diseases. Further, explanations
on chronic illnesses are focused on how to travel with that handicap, while the disease
are potentially unknown and we try to avoid the user with an infection. Therefore
disease and vectors have to be explained, while chronic illnesses are known to that
particular person. The associated condition case base mainly contains prevention
information for any kind of occasion. These information can be linked to most of
the other case bases and therefore this case base has to be queried towards the end
of the querying process.

This example shows that the identification is at least a 2-step-process in order
to define the scope of each CBR system. However, for defining attributes and links
usually more iterations are necessary. These discussion are led by the Knowledge
Engineer, which increases his/her awareness of the domain. Common sources that

134 K. Bach

should be initially considered and were used within the development of docQuery
are DBpedia1 or Google Knowledge Graph.2

3.2.2 Identification and Representation of Snippets

The modularization of the required knowledge is carried out based on the knowledge
engineer’s understanding of the domain aiming at fitting the given requirements. The
main task is the identification and definition of homogeneous and independent mod-
ules that keep their semantic even when they are seen as singletons (independence).
Each module has to be combinable in order to complement another module (compat-
ibility) and requires rules or constraints ensuring a valid combination of the modules
(validity). The requirements independence and compatibility are focusing on the
information sources while validity aims at procedural knowledge applied combining
the results.

Within SEASALT the previously described modules are called snippets since the
concept is similar to [11]. After their identification, the knowledge sources providing
data for the snippet cases have to be determined. Mainly the Knowledge Engineer
has to decide which information from sources are included. For the composition of
information that prevent travelers from diseases. Since our modularization happens
with respect to different sub-domains, the individual case bases that are the result of
this modularization are not absolutely independent of each other. Instead they have
a net of dependencies between them that indicates what other case bases are affected
by changes in one individual case base. These dependencies also affect some of
the aforementioned maintenance tasks and split them into two different kinds: those
which have to take other case bases into consideration and those which do not. A
case factory agent that performs the task of maintaining a case base’s uniqueness,
minimality, incoherence or consistency can do this without knowing about other case
bases. An agent that inserts new cases or adds new data to existing cases is a different
matter. For instance if a new case is inserted into the diseases case base, or an existing
disease breaks out in a new region, the inserting agent has to check, whether every
risk region indicated in the respective disease’s regions attribute is actually included
in the country case base’s underlying knowledge model, otherwise this diseases case
will never be retrieved. Another example of such dependencies would be, if one of
the regions can not be associated, a domain expert will have to be contacted and asked
for specifications, since we assume that in this case there is either a simple typing
error, a synonymous name for a region, or the new region will have to be added to
the ontology by a domain expert. The same is true for new data being added to the
medicament case base. Here the area of application has to yield at least one result in
the disease case base, otherwise the new data have again to be passed to a domain
expert for a review. Although this approach is rather maintenance-intensive, our
medical application scenario requires this very conservative case addition strategy in

1http://dbpedia.org/.
2https://developers.google.com/knowledge-graph/.

http://dbpedia.org/
https://developers.google.com/knowledge-graph/

Knowledge Engineering for Distributed Case-Based Reasoning Systems 135

order to preserve the system’s overall accuracy and the case factory approach allows
us to realize this strategy and also adapt to new dependencies, should they arise [3].

As an example, travel medical data contain information about countries, dis-
eases, medications, vaccinations as well as descriptions, guidelines, and experiences.
Therefore the knowledge in docQuery will be provided in case bases and each case
base will contain one specific topic with its own domain model and maintenance
agents/jobs. However, following the modularized structure of knowledge in doc-
Query, CBR agents will be used for each individual topic agent providing informa-
tion. Aiming at higher accuracy each case base will serve its own topic and the case
format will exactly fit for the type of knowledge. Furthermore the case bases will
contain similarity measures, adaptation knowledge and the vocabulary to represent
and retrieve cases. In travel medicine it can be dangerous to use CBR for the whole set
of information, because the combination of medications, vaccinations, side effects,
contraindications, etc. regarding the traveler’s health history have to be correct, with-
out any contradicting information. Instead of that we will apply CBR for each topic
and do the combination of the responses afterwards using the constraints given in
the response sets. Each issue handled in a case base will be provided using CBR
methods and the strength of CBR, finding similar information on a given topic, will
ensure a higher quality of information provision.

Now we will exemplify four docQuery case bases that are each representing one
topic and explain the dependencies between them. The selected case bases are exam-
ples to explain our approach and for the implementation of docQuery there will be at
least six more case bases. The case base country will contain specific country infor-
mation a traveler has to consider planning a journey. Furthermore the information
will be separated in the sections a traveler has to pay attention to before, during, and
after the journey. The country information also includes the required vaccinations
and additional information, for example guidelines for a healthy journey. The case
base disease holds more than 100 diseases considered in a travel medical consulta-
tion. It concentrates on diseases that might affect a traveler on a journey, for instance
Malaria, Avian Influenza, or Dengue. A disease in this case base is characterized
by general information on the disease, how to avoid the disease, how to behave
if one has had the disease before, and how to protect oneself. The third case base
we will introduce is medicament with details about medicaments and their area of
application (diseases, vaccinations, age, etc.). Basically it contains information about
active pharmaceutical ingredients, effectiveness, therapeutic field, contraindication,
inter-dependencies, and the countries in which those medicaments are approved. In
diseases we do not store information on chronic illnesses, be-cause they will be mod-
eled in their own case base. Instead we focus on diseases which can affect travelers
during their journey. The fourth case base will hold activities which are used within
docQuery to provide safety advice for intended activities when planning a journey.
For travelers, activities are the major part of their journey, but may involve certain
risks for which safety advice is needed and furthermore while asking for their plans
they usually describe their activities which we can use to provide better guidance.
Examples of such activities are diving, hill-climbing or even swimming.

136 K. Bach

Fig. 2 Case representations for four case bases that provide knowledge for the topic agents

Complete travel medical information will contain knowledge of all four case bases
enhanced with descriptions, guidelines, and previous experiences. The combination
of the information retrieved from each case base will be done by a Coordination Agent
as it can be seen in the SEASALT architecture (Fig. 2). The coordination agent will
request each agent and based on the agents’ response and the given information by
the traveler the next request containing all constraints to another topic agent will be
created and send.

4 Knowledge Modularization Methodology

In Sect. 3 we described how to implement the knowledge modularization for the
travel medicine domain. In this showcase we explained how to proceed in order
to develop CBR systems which will be deployed in the SEASALT architecture. In
this section we will discuss a general methodology how to modularize a domain for
setting up a knowledge line.

For the development of CBR systems within SEASALT we use snippet descrip-
tions3 for describing pivotal factors (or knowledge) as topic agents. Like in traditional
CBR systems each snippet description requires its own representation including their
knowledge containers. With regard to decentralization and distribution of the content
(i.e. the snippets) the Knowledge Engineer has to define the topics, the CBR system’s
specifications and the linkage between topics. Further on it has to be ensured that a
composition of several snippets, which are still meaningful, can be achieved.

The goal of this section is not to describe how to design a CBR system, it presents
a methodology for the development of distributed CBR systems, which are based on
the SEASALT architecture. In contrast to INRECA and DISER we are not aiming at

3In the remaining parts of this work we will differentiate between snippet descriptions and snip-
pet. Snippet descriptions are the conceptual representation of knowledge and are equivalent to a
case representation. Snippets on the other hand are instances of snippet descriptions and therewith
equivalent to cases.

Knowledge Engineering for Distributed Case-Based Reasoning Systems 137

Fig. 3 Abstract knowledge modularization process

providing a complete methodology that can directly be implemented in an enterprise.
More precisely we show how to analyze an application domain and identify topics
and snippet descriptions.

The overall process can be segmented in subprocesses, which is a sequence of its
own, will also be discussed in detail. Depending on the application domain and the
available information, each subprocesses can be revisited if necessary. The overall
process is pictured in Fig. 3. For the representation of the processes, we used the
specification language BPMN,4 which has been modified in order to fit our purpose.

The development process starts with the identification of the expectations the
stakeholders have in order to derive key aspects that have to be covered by
the software system. Based on the available knowledge and the insights obtained, the
domain has to be separated to determine the snippet descriptions and their associated
knowledge sources (from which the snippets/cases are generated). Once the snippet
descriptions, snippet sources and interactions are designed, the CBR system can be
implemented, evaluated, and, if necessary, incrementally improved.

4.1 Requirement Specification

This introductory phase of the system development is activated by the demand of
creating a new knowledge-based system (e.g. by a customer). Furthermore, this step
will be the basis for all further developments. The tasks that have to be fulfilled

4http://www.bpmn.org/.

http://www.bpmn.org/

138 K. Bach

Fig. 4 Requirement specification process

are the determination of the requirements from which the topics for the knowledge
distribution can be derived in order to define the required knowledge (see Fig. 4).

The Knowledge Engineer should carry out a goal-oriented development and there-
fore a thoroughly requirements acquisition has to be carried out. Together with stake-
holders, first goals should be identified, and based on them the requirements are
iteratively refined. Relevant aspects in this phase are demanded and desired func-
tionalities. Further, also standard factors such as numbers of expected users or the
expected access.

In the end of this phase a common concepts describing the system should be
available. This must contain the specification of a query and the expected prototyp-
ical result as well as information from which topic agent each sub-result should be
retrieved. The latter briefly defines the required snippet descriptions, which will be
recalled later.

In parallel information sources already available have to be identified and tested
whether they can be included in the new system. Within an enterprise often databases
or data warehouses can be accessed. If this is possible, the Knowledge Engineer has
to ensure that the service will be available, required information is accessible and the
provenance of information can be trusted (as well as the stakeholders trust them).
For relevant information sources that will potentially feed data in a system, it has to
be specified how they are structured and stored. The result of this task is a picture of
the complete available knowledge.

Based on the available knowledge topics have to be identified in order to make use
of the advantages of the decentralized CBR systems defined in the Knowledge Line.
Each case base covers a heterogeneous topic. The definition of topics represents the
main thematic areas and are directly related to the information/expectation about the
system provided by stakeholders or initiators.

For each topic the required knowledge has to be estimated, in order to fulfill its
task within the Knowledge Line. This estimation focuses on semantic estimations
rather than the volume. This might lead to a constellation that topics have to be
covered, where only little information is available. This will lead into a status of
increased knowledge demand for this particular topic. On the other hand, if sufficient
information is available, this knowledge demand can also be classified as covered.

Knowledge Engineering for Distributed Case-Based Reasoning Systems 139

Fig. 5 Evaluation of available knowledge

4.2 Knowledge Evaluation and Acquisition

Following the initial phase of collecting system requirements and elaborating avail-
able knowledge, in this phase an evaluation of that knowledge is carried out. The
result of the evaluation will lead into further processes of more goal oriented knowl-
edge acquisition for certain topics. After adding new knowledge (bases) this phase
has to be carried out again in order to either identify the need of further investigation
or carrying on to the next phase. The repetition of this phase is carried out until
sufficient knowledge is available. Afterwards the snippet descriptions are defined.

The knowledge evaluation task (see Fig. 5) is carried out as testing and validat-
ing of the available knowledge until the previously defined goals are met. In the
subsequent runs of this phase, only the newly added knowledge, which originates
from the knowledge acquisition, has to be evaluated and existing knowledge does
not necessarily have to be evaluated twice. More importantly, it has to be ensure by
the evaluation that the newly added knowledge extends the existing knowledge and
whether the required knowledge is now available.

During the evaluation it has to be ensured that the containing knowledge covers the
topic adequately as well as the content is correct and up-to-date (Content-Properties).
Furthermore access possibilities and restrictions as well as the used data represen-
tations have to be captured (Meta-Properties). If the evaluation results in the fact
that the newly included knowledge does not fit for the topic, it has to be decided
whether the new knowledge sources can/should be discarded or the knowledge has
to be enhanced.

The evaluation ends with the decision whether the knowledge demand for the
overall system is covered by the available knowledge sources. If there is still a lack
of knowledge, the next step has to be the knowledge acquisition (see Fig. 6). If
everything required is covered, it is proceeded with the identification and definition
of Snippet Descriptions (see Sect. 4.3).

140 K. Bach

Fig. 6 Knowledge acquisition

While the knowledge evaluation basically only reviews the knowledge in order
to detect knowledge lacks, the knowledge acquisition identifies in which topic what
kind of knowledge is missing. After that identification the according expert – if
available – has to be consulted. If such an expert is not available s/he has to be found
or the topic can not be covered as area of expertise. In this case it is still possible to
include the available information, but marked with less confidence.

If an expert has been identified, the expert will be in charge to define the lack
of knowledge. During this discussion, knowledge can be directly acquired. This
can be procedural or contextual knowledge that clarifies relations and enables the
knowledge engineer to enrich the existing knowledge. Furthermore this discussion
with the expert can lead to novel knowledge sources. Usually it is not expected that
an expert will formalize and insert the required knowledge. Within SEASALT, we
would expect the Knowledge Engineer to carry out this task and have an expert
reviewing the knowledge as well as the final results.

The result of this subprocess is accumulated expert knowledge and knowledge
sources, which will enrich the existing knowledge containers. After this step this
knowledge is re-evaluated in the overall context in order to ensure that the knowledge
still matches the scope of the overall system and the interaction between topic agents
will be still possible.

4.3 Identification and Definition of Snippet Descriptions

Once the previous cyclic processes of knowledge evaluation and acquisition end up
with the fact that the available knowledge is sufficient to represent the identified
topics, relevant snippet descriptions are defined. For each snippet its representation
has to be determined and based on that its correctness.

The identification of snippet description (Fig. 7) can be differentiated between
descriptions derived explicitly from the system requirements and descriptions implic-
itly described in the available domain knowledge. Snippet descriptions which are

Knowledge Engineering for Distributed Case-Based Reasoning Systems 141

Fig. 7 Identification snippet descriptions

based on the system requirements usually cover desired functionalities or topics.
These functionalities are incomplete and focus only on particular aspects that, from
our experience, match the expert’s area of work/expertise. Especially when topics are
combined and the combination possibilities are discussed, more topics arise. How-
ever, each topic that comes up does not necessarily need to be represented as such
in the knowledge line. The knowledge engineer has to decide whether this aspect
is relevant (and therewith becomes an additional topic), it can be merged into an
existing topic, or has to be withdrawn. In the end there will be a set of relevant
snippet descriptions, which will the be classified as relevant for the domain or addi-
tional information. This process can therewith change the demands of knowledge for
each topic, but also helps to reduce the effort, if topics are identified, which are not
that relevant or can be covered differently. On the other hand, this process can also
be applied if an extension of the functionalities is necessary, because it defines the
demand of knowledge and the knowledge acquisition is later on carried out by the
standardized process.

For each of the included snippet descriptions, the level of abstraction has to be
defined. According to [12], there are three levels of abstraction for cases: Concrete
Cases represent the real cases with very less loss of information and therewith are
the lowest level of abstraction. Abstract Cases are reduced in their complexity. For
abstract cases the loss of information is immanent and the degree of abstraction can
vary as well as concrete cases and abstract cases can create a hierarchy. Generalized
Cases represent a collection of cases with common features. Based on the level of
abstraction, the kind of case representation will be defined.

After finding appropriate level of abstraction and case representation, the correct-
ness of the therewith defined snippet descriptions has to be ensured. Each snippet
descriptions has to fulfill the following domain-dependent criteria: independence,
interoperability and validity.

The independence criterion requires that each snippet description is an individ-
ual, semantically coherent unit. This means each snippet description should cover a
topic that would also work for itself and therewith each snippet also provides a logic
piece of information and does not necessarily need the complete set of snippets to be
semantically understandable. Further on, the interoperability ensures that snippets
can be combined with others while the links or dependencies describe the kind of

142 K. Bach

combination [3]. It is obligatory that each snippet description has to be linked at least
once to another description in order to be included in the knowledge line. The inter-
operability herewith describes the semantic relationships between topics. The final
criterion, validity, eventually monitors that snippets are technically combinable – it
checks common representations, identifiers and constraints. To satisfy this criterion
it has to be ensures that combination procedures are available and well defined.

In case one of the three above mentioned criteria is not met, either the miss-
ing information has to be added or the snippet description has to be redefined.
If all requirements are satisfied, the definition of snippet descriptions is finished
and the collection of valid snippet descriptions is available for the next phase - the
implementation.

4.4 System Implementation

This phase first defines how the future system is populated with the acquired knowl-
edge, before the CBR system itself is implemented (Fig. 8).

For each of the previously defined snippet descriptions one or more knowledge
sources have to be assigned for the case base population. Depending on the domain,
the available snippets, the Knowledge Engineer has to decide how many sources are
assigned to which snippet description and how much overlap of snippets is allowed.
Furthermore, in order to be able to combine information, it is necessary to include
certain information in more than one snippet description - the deployment of these
information is also defined and implemented within this phase.

Next, the technical procedures for the population have to be defined. This also
specifies whether the knowledge to be included is stored locally in the CBR systems or
queried on demand. This highly depends on the given infrastructure and availability
of knowledge sources in the particular domain.

The technical procedures closely relate to the properties of a knowledge source,
which have been determined in the knowledge evaluation phase. These properties
define whether and automated population is possible and how data updates are fea-

Fig. 8 Knowledge container population

Knowledge Engineering for Distributed Case-Based Reasoning Systems 143

Fig. 9 Implementation of the CBR system

sible. Since each snippet description is independent this has to be specified for each
individual snippet description and includes access mechanisms and protocols.

After the technical specifications have been defined, the content-based selection
has to follow. Not all usable information of the knowledge sources are usually relevant
for a snippet. Therewith, the goal is to determine that the content of a particular snippet
description fits the expectations and can be applied.

Once all relevant sources are known, accessible and the target representations are
linked the implementation and population of the CBR system can start (Fig. 9). In
the beginning the attribute descriptions for each snippet have to be identified in order
to create a case representation. Based on the system requirements, the knowledge
engineer has to decide which are the required attribute descriptions. This decision
should be based on the independence criteria described in Sect. 4.3 and aim at only
including necessary attributes.

After all relevant attribute descriptions are sorted out, the knowledge engineer has
to analyze whether the case description is sufficient for its purpose within the appli-
cation. The analysis ensures that the attribute descriptions as modular as possible and
required and furthermore the attribute values can be combined during the knowledge
composition. In this process, also the data types and value ranges are defined as well
as the local similarity measure(s).

We assume that we have amalgamation functions to describe the global similarity.
Therefore the relevance of each attribute description for the case (or snippet) has to
be determined and assigned. In the final step optional adaptation mechanisms are
defined. In general, the previously mentioned steps describe the process of building
a CBR system once all required information is known and available.

The closing step of this process is the evaluation of the created CBR system
regarding the requirements. If the demands set for the system are met, the modular-
izing phase is completed. If there are mismatches between the expectations and the
performance, the system has to be revised.

There are various rescue points where the revision can start. First the type of mis-
match has to be identified, before the process can move to the according task. If there

144 K. Bach

are general drawbacks regarding the incoming data, the knowledge evaluation and
acquisition has to be refined (see Sect. 4.2). Alternatively, decisions made regarding
the design of snippet descriptions and population processes can be revised which can
influence the type of information produced by the overall system. Eventually, also
the technical implementation can cause mismatches to the expectations and there-
with the implementation might has to be revised as well. A detailed study of the
Knowledge Line modularization methodology in a different domain can be found
in [13].

5 Software Engineering of the Knowledge Line

While the Knowledge Line describes a process of how to collect and organize knowl-
edge, it requires tools to capture and implement it in order to use it within an intelligent
system. For the entire process we have successfully used myCBR [14, 15], which
allows to model the knowledge as well as to test the case-based retrieval.

Figure 10 shows the myCBR view that is used to create the knowledge model
for case bases. The tool supports the creation of various concepts of which each
of them can hold individual case bases. Therewith it is possible to visualize the
included knowledge structure along with the similarity measures during discussions
with experts. Further on, the tool also allows to carry out the similarity based retrieval
for each concept and therewith directly evaluate how changes made to the knowledge

Fig. 10 myCBR model view showing the different case bases on the upper left, the similarity
measures for one attribute on the lower left and on example taxonomy in the main screen

Knowledge Engineering for Distributed Case-Based Reasoning Systems 145

Fig. 11 myCBR-based architecture of a Knowledge Line implementation in the travel medicine
domain

model and especially similarity measures affect the retrieval result. Also various case
bases can be created and kept in parallel, which allows different testing scopes.

Once the CBR system is designed, the resulting project can be integrated in any
kind of Java application. The myCBR back end comes as a jar file and together with
the project file the entire CBR system can be run independently from the workbench.

Figure 11 shows a possible architecture of a myCBR-powered Knowledge Line
application. We assume that we have one project that contains all knowledge models
and case bases, each topic agent can individually be instantiated and represented by a
topic agent. Numerous topic agents are coordinated by a multi-agent system (MAS)
that collaboratively compose a solution. The dependencies that guide the knowledge
composition process are implemented as an MAS and JADE (see [16] for details).

On top of the MAS, we suggest a query interface that receives and organizes the
query process. The query interface typically has knowledge of the case represen-
tations within the MAS and can therewith provide queries for the CBR system in
the right structure, while the MAS manages the internal case base dependencies.
The query interface can be implemented using the Spring framework5 which sends
queries to the MAS and exposes a RESTful web API which can be used by various
types of front ends.

Further on, the population of case bases for each topic can be implemented individ-
ually, so each case base creation can follow a customized process of accessing external
knowledge sources, apply information extraction and natural language processing,
if necessary, for feeding in knowledge snippets.

5https://spring.io/.

https://spring.io/

146 K. Bach

6 Summary

In this chapter we present an knowledge engineering approach that describes how a
complex domain with heterogeneous knowledge components can be systematically
transferred into a distributed CBR system. The resulting CBR system is a multi-
agent system that utilizes several homogeneous CBR engines to hold and provide
knowledge on demand. We describe the conceptual process of identifying, organizing
and implementing such a knowledge-based system.

Eventually we give an overview how the concept can be implemented using exist-
ing open source tools and frameworks. To illustrate the entire process we use the
travel medicine domain and discuss the challenges it provides.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations,
and system approaches. Artif. Intell. Commun. 7(1), 39–59 (1994)

2. Bach, K.: Knowledge acquisition for case-based reasoning systems. Ph.D. thesis, University
of Hildesheim, München (2012). ISBN 978-3-8439-1357

3. Althoff, K.D., Reichle, M., Bach, K., Hanft, A., Newo, R.: Agent based maintenance for
modularised case bases in collaborative multi-expert systems. In: Proceedings of AI2007, 12th
UK Workshop on Case-Based Reasoning, pp. 7–18 (2007)

4. Reichle, M., Bach, K., Althoff, K.D.: Knowledge Engineering within the Application Inde-
pendent Architecture SEASALT. In: Baumeister, J., Nalepa, G.J. (eds.) International Journal
of Knowledge Engineering and Data Mining, pp. 202–215. Inderscience Publishers (2011)

5. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Commun. ACM
15, 1053–1058 (1972)

6. Tautz, C.: Customizing software engineering experience management systems to organizational
needs. Ph.D. thesis, Universität Kaiserslautern (2000)

7. Bergmann, R., Althoff, K.D., Breen, S., Göker, M.H., Manago, M., Traphöner, R., Wess, S.:
Selected applications of the structural case-based reasoning approach. Developing Industrial
Case-Based Reasoning Applications: The INRECA-Methodology,LNCS, vol. 1612, pp. 35–70.
Springer (2003)

8. Davenport, T.H., Prusak, L.: Working Knowledge: How Organizations Manage What they
Know. Harvard Business School Press (2000)

9. Bach, K., Reuss, P., Althoff, K.D.: Case-based menu creation as an example of individualized
experience management. In: Maier, R., Kohlegger, M. (eds.) Professional Knowledge Manage-
ment. Conference on Professional Knowledge Management (WM-2011), From Knowledge to
Action, pp. 194–203. LNI 182, Köllen Druck & Verlag GmbH, Bonn (2011)

10. Ihle, N., Newo, R., Hanft, A., Bach, K., Reichle, M.: CookIIS - A Case-Based Recipe Advisor.
In: Delany, S.J. (ed.) Workshop Proceedings of the 8th International Conference on Case-Based
Reasoning, pp. 269–278. Seattle, WA, USA (2009)

11. Redmond, M.: Distributed Cases for Case-Based Reasoning: Facilitating use of multiple cases.
In: AAAI, pp. 304–309 (1990)

12. Bergmann, R.: Experience Management: Foundations, Development Methodology, and
Internet-Based Applications. Lecture Notes in Computer Science, vol. 2432. Springer (2002)

13. Marter, S.: Case-Based Coordination Agents - Knowledge Modularization and Knowledge
Composition (Fallbasierte Koordinationsagenten – Wissensmodularisierung und Wissenskom-
position für dezentrale, heterogene Fallbasen). Master’s thesis, Institute of Computer Science,
University of Hildesheim (2011)

Knowledge Engineering for Distributed Case-Based Reasoning Systems 147

14. Bach, K., Althoff, K.D., Newo, R., Stahl, A.: A case-based reasoning approach for providing
machine diagnosis from service reports. In: Ram, A., Wiratunga, N. (eds.) Proceedings of the
19th Intl. Conference on Case-Based Reasoning (ICCBR-2011), London, UK, LNCS, vol.
6880, pp. 363–377. Springer, Heidelberg (2011)

15. Stahl, A., Roth-Berghofer, T.R.: Rapid prototyping of cbr applications with the open source
tool mycbr. In: ECCBR ’08: Proceedings of the 9th European conference on Advances in
Case-Based Reasoning, pp. 615–629. Springer, Berlin, Heidelberg (2008)

16. Reuss, P.: Concept and Implementation of Knowledge Line Retrieval Strategies for Modu-
larized, Homogeneous Topic Agents within a Multi-Agent-System (Konzept und Implemen-
tierung einer Knowledge line – Retrievalstrategien für modularisierte, homogene Topicagenten
innerhalb eines Multi-Agenten-Systems). Hildesheim: Stiftung Universität Hildesheim, Institut
für Informatik, Bereich Intelligente Informationssysteme, Master thesis (2012)

Part II
Application Studies

Agile Knowledge Engineering for Mission
Critical Software Requirements

Paolo Ciancarini, Angelo Messina, Francesco Poggi and Daniel Russo

Abstract This chapter explains how a mission critical Knowledge-Based System
(KBS) has been designed and implemented within a real case study of a governa-
mental organization. Moreover, the KBS has been developed using a novel agile
software development methodology. Due to fast changing operational scenarios and
volatile requirements, traditional procedural development methodologies perform
poorly. Thus, an Agile-like methodology has been exploited, called iAgile. The KBS
is based on an ontology used to merge different mental models of users and develop-
ers.Moreover, the ontology of the system is useful for interoperability and knowledge
representation.Mission critical functionalities have been developed in 5-week cycles,
along with the ontology. So, the KBS serves for three main activities: (i) requirement
disambiguation, (ii) interoperability with other legacy systems, and (iii) information
retrieval and display of different informative sources.

P. Ciancarini (B)
Department of Computer Science and Engineering,
Consorzio Interuniversitario Nazionale per l’Informatica (CINI), University of Bologna,
Mura Anteo Zamboni, 7, 40126 Bologna, Italy
e-mail: paolo.ciancarini@unibo.it

A. Messina
Defense and Security Software Engineers Association,
Innopolis University, Russian Federation,
Via A. Bertoloni, 1/E – Pal.B, 00197 Rome, Italy
e-mail: segreteria@dssea.eu

F. Poggi
Department of Computer Science and Engineering, University of Bologna,
Mura Anteo Zamboni, 7, 40126 Bologna, Italy
e-mail: francesco.poggi5@unibo.it

D. Russo
Department of Computer Science and Engineering,
Institute of Cognitive Sciences and Technologies, Italian National Research Council (CNR),
Consorzio Interuniversitario Nazionale per l’Informatica (CINI),
Mura Anteo Zamboni, 7, 40126 Bologna, Italy
e-mail: daniel.russo@unibo.it

© Springer International Publishing AG 2018
G.J. Nalepa and J. Baumeister (eds.), Synergies Between Knowledge
Engineering and Software Engineering, Advances in Intelligent
Systems and Computing 626, https://doi.org/10.1007/978-3-319-64161-4_8

151

152 P. Ciancarini et al.

1 Introduction

The most critical phase in system design is the one related to the full analysis and
understanding of “User Requirements”. Difficulties arise especially where the ambi-
guity on the functions to implement is a continuous challenge. Due to the volatility
of the user needs, changing of scenarios, and the intrinsic complexity of software
products, requirement engineering benefits from an Agile approach in terms of (i)
attainment with user’s contingent needs, (ii) velocity, and (iii) cost reduction.

Formal methods for requirement engineering have primarily been conceived to
drive efficiently the link between customers and developers [1]. They focus on reduc-
ing the management risk connected with the initial software production phase. The
results achieved by these strategies are controversial and not always cost effective
[2]. The diffusion of the use of Agile practices in the software production process
is putting the human factor as the key asset to capture and understand the user
needs [3].

We experienced an extensive use of methodologies to identify the “unexpressed
dimension” of the user requirements and to surface the “implicit” knowledge of users
within a real case study of an Italian governmental Agency.

The underlying principle is the methodological formalization of the non-linear
human thinking into requirements in the form of agile “User Stories”. Such an
approach was successfully implemented within a mission critical organization to
develop critical software applications. User stories are sentences written in natural
language and have a very simple structure. The vocabulary used to write a user story
depends on which user describes her need, thus is some sense it depends on the
mental model the user has of her needs [4]. Capturing the essence of the users mental
models [5] and overcoming the intrinsic ambiguity of the natural language are the
two main goals of our study. Multiple dimensions to build a dynamic representation
of requirements are the core innovative aspect of this work.

We give a problem definition of how to structure the description of user stories
following Agile principles. The lessons we learned and some considerations about
the importance of ontology based solutions for Knowledge Based Systems (KBS) in
this context are discussed. The proposed approach is useful not only for requirement
engineering but also to structure a highly interoperable knowledge representation
architecture which enables a fast and flexible use in mission critical contexts.

This chapter is organized as follows. In Sect. 2 we review the most critical aspects
of the use of KBS in mission critical systems; we also recall the basics of the iAgile
process. Section3 shows how we manage requirements using an ontology. The use
of KBS technologies by the sponsoring organization is explained in Sect. 4. Finally,
we draw our conclusions, summing up our findings in Sect. 5.

Agile Knowledge Engineering for Mission Critical Software Requirements 153

2 Complex Software Systems Specification

In mission critical domains, the velocity of release delivery is often considered as
one of the most valuable assets. A release will usually be a partial version of the
final product, but the important issue is that it already works usefully for its users.
An on-field command view of a military operation (i.e., user view of a Command
and Control system) typically is: “I want the right information at the right time,
disseminated and displayed in the right way, so that Commanders can do the right
things at the right time in the right way” [6].

Important functionalities may be developed or refined in the first few sprints, due
to the continuous interaction between users and developers. The primary objective
of this constant dialogue within the development team is the rise of the implicit
and unexpressed knowledge, which will be translated by developers into software
artifacts.

One typical example in mission critical contexts is the “situational awareness”. It
may be described as: “The processes that concern the knowledge and understanding
of the environment that are critical to those who need to make decisions within the
complex mission space” [6].

Such a sentence contains a huge quantity of implicit knowledge. For example,
the interpretation of “those who need to make decisions” has to be clarified. More
generally, in a typical agile user story words like “situational awareness” would be
written as “as the one who needs to make decisions, I want to achieve the knowledge
and understanding of the environment that are critical to accomplish my mission”.
This statement is, of course, still overloaded with implicit knowledge.

In our case study, this issue was overcome through a careful composition of
the team including domain experts. Continuous face to face and on-line interactions
allowed tominimize information asymmetry [7] and align the differentmentalmodels
[5]. The main shared target was to deliver effective software to end users in a fast
way.

To understand better the main use cases, consider that a military C2 Informa-
tion System (IS) for mission critical purposes is essentially built on the exercise of
authority and direction by a properly designated commander over assigned forces in
the accomplishment of the mission [8].

In order to deliver this capability several integrations have to be taken into account,
i.e., hardware, software, personnel, facilities, and procedures/routines. Moreover,
such a system is supposed to coordinate and implement processes, like information
collection, personal and forces management, intelligence, logistics, communication,
etc. These functions need to be displayed properly, in order to effectively support
command and control actions [9].

The IS we are reporting on has been based upon the development of mission
specific services, called Functional Area Services (FAS), which represent sequences
of end-to-end activities and events, to execute System of Systems (SoS) capabilities.
Thesemission oriented services are set up as a framework for developing users’ needs
for new systems. Furthermore, mission services are characterized by geographical or

154 P. Ciancarini et al.

climate variables, as cultural, social and operative variables, which represent func-
tional areas or special organization issues. Mission services of the C2 system have
been developed according to the NATO–ISAF CONOPS (Concept of Operations),
as required by management of the governmental agency we cooperate with:

• Battle Space Management (BSM)
• Joint Intelligence, Surveillance, Reconnaissance (JISR)
• Targeting Joint Fires (TJF)
• Military Engineering - Counter Improvised Explosive Devices (ME-CIED)
• Medical Evacuation (MEDEVAC)
• Freedom of Movement (FM)
• Force protection (FP)
• Service Management (SM)

Thus a C2 system is made of a set of functional areas which in turn respond to a
number of user stories.

2.1 Evolution of a Mission Critical Information System
Through Agile

The mission critical information system we have studied is a Command and Control
system which was capable to support on-field missions according to the NATO–
ISAF’s framework. The initial ideawas to develop aNetworkCentricWarfare system
(NCW) [10]. This system supports many of the operational functions defined in the
contest of the NCW, according to the requirement documentation. The system has
been employed in many exercises and operations and went through several tests.
Today the system is serving mission critical purposes in NATO–ISAF operations
e.g., the Afghanistan Mission Network.

However, several difficulties and limitations arose. The acquisitions were done
according to Waterfall procedures, started in the early 2000s and went on until
recently. The obsolescence of the components and related functionalities, along with
the maintenance and follow-up costs connected to the Waterfall software life cycle
are a big issue. Several problems are related to the impossibility to develop quickly
new functionalities required by on-field personnel in a fast-changing mission criti-
cal scenario e.g., a modern asymmetric warfare. This led the use of agile software
development paradigms which are supposed to overcome this crucial constraints.

Therefore, since 2014 a new “Main Command and Control System” (Main C2)
to support the former system (Tactical Command and Control System or Tactical
C2) has been developed. It was urgent to support the evolution of the Command
and Control system, assuring a higher customer satisfaction in a volatile requirement
situation. Moreover, due to budget cuts, the new system had to perform better with
less resources. Costs related to both development and maintenance had to shrink
rapidly.

Agile Knowledge Engineering for Mission Critical Software Requirements 155

Functional Area Services (FAS) areweb-based serviceswith a client–server archi-
tecture. Any FAS software component can be separately modified to respond to spe-
cific mission needs, as defined by users. The Main C2 has been validated in NATO
exercise for the first time atCWIX2015,1 with positive results. Core services are build
to maximize interoperability with all the relevant NATO software packages available
and COTS product. Therefore, Main C2 is both flexible to implement rapidly user
needs, with high interoperability of already existing systems, like the Tactical C2.

To develop it, a new methodology was implemented, applying the principles of
the “Agile Manifesto” [3] to both increase the customer satisfaction and reduce
software cost. After the Agency’s top management decided to go Agile, there was
some discussion about the method to use. There was the need to exploit Agile’s
values and capability but within a mission-critical environment.

Scrumwas found as themost suited, since it allows a high degree of accountability
[11]. This methodology is very successful in commercial environments and the most
widespread Agile methodology [12]. Moreover, it was the methodology which was
the best known within the Agency. Therefore, other methodologies were not really
taken into consideration, even though they might have given similar results.

The teams are mixed: they include developers from the defense industry and
governmental officials, based at the Agency’s Headquarter in Rome. The initial pro-
duction phase was extremely successful and even the start up “Sprint” (production
cycle of five weeks) was able to deliver valuable software [13].

What happenedwas that the expectation of theAgency’s stakeholder grew rapidly.
From 2014 to 2016, the methodology was refined, to respond to mission and security
critical needs of the operations domain. Thus, an ad hoc Scrum-like methodology
was developed with the name of iAgile, and tested for the development of the main
C2 system [14].

This methodology, depicted in Fig. 1, has been developed for critical applications,
where requirements change already during the first specification and after delivering
the first release. The adaptation of Scrum for the special needs of C2 software systems
has also been proposed in [16].

A well known approach to analyzing ephemeral requirements consists of for-
malizing and prototyping the requirement specification using a suitable language,
like for instance Prolog [17]. The Humphrey’s Requirements Uncertainty Principle
remins us that, for a new software system, the requirement (the user story) will not
be completely known until after the users have used it [8]. Thus, within iAgile, Ziv’s
Uncertainty Principle in software engineering is applied, considering that uncertainty
is inherent and inevitable in software development processes and product.

The incremental development approach enables easily any change of requirements
even in the later development iterations. In our case study, due to the close interaction
between the “requirement chain” i.e., from the customer to the development team,
FAS were delivered with a high degree of the customer satisfaction.

The Scrum methodology developed within the Agency fully supports the change
of requirements according to contingent mission needs. The traditional command

1www.act.nato.int/cwix.

www.act.nato.int/cwix

156 P. Ciancarini et al.

Fig. 1 Sprint representation, inspired by [15]

chain was adapted to the development needs. Both structured and horizontal char-
acteristics of Scrum are particular effective in a critical environment. These two
characteristics are embedded in the model.

Mission critical organizations need to complywith a vertical organizational chain,
to empower different stakeholders to their duties. In the field where we had this
experience, a hierarchy enforces clear responsibility and accountability within the
command chain. So, the customer becomes the accountable official for the mission
needed requirement. However, to develop different mission critical requirements,
it is crucial to have a straightforward and direct communication and collaboration
with final users, according to the Agile Manifesto. Therefore, in the methodology,
some user representative becomes part of the development team, allowing a better
understanding of the needs and a faster development of the feature.

One of the key strengths of the methodology is its flexibility. The process is
defined only at a high level, to be adapted in any theater of operation. It defines
values, principles, and practices focused on close collaboration, knowledge sharing,
fast feedback, and tasks automation.

Themain stakeholder is theProductOwner (PO),whogives to the developing team
the first inputwhich is a product’s vision. It is a high level definition to address the task
that will be refined during the development cycle through the Backlog Grooming.

The Backlog Grooming is a key activity which lasts over the whole development
process. It focuses the problem definition, refining redundant and obsolete require-
ments. Moreover, it prioritizes requirements according to contingent mission needs.
The acceptance criteria and the scenario definition are set by the PO in the user
stories.

The developing team used by the Agency is composed as follows (such team com-
position is an adaptation of standard Scrum roles within a mission critical context).

Agile Knowledge Engineering for Mission Critical Software Requirements 157

• The Product Owner is the governmental official in charge of a specific mission
critical function which has to be developed. He provides the general vision of the
final functionalities to the whole team i.e., what the system has to do. It may be that
PO delegates its role to another official of his team. In this case, the PO becomes
a team of people that has to decided about the systems functionalities and discuss
them within the development team. Ideally, the PO team has to be representative
of the final user, thus it should be made also of real users.
This crucial role is pivotal for the positive outcome of the sprint. De facto, the
shortening of the “requirement chain” through the involvement of end users and
the constant feedbacks of the PO during the sprint is a key success factor.
In our case study the stakeholders were initially barely aware about the develop-
ment process. Due to a constant involvement within the iterations, the stakehold-
ers became aware of the development methodology and aligned their expectations
increasing their satisfaction. Through this involvement, there is an alignment of
both interests and expectations that raises the quality of the final artifact. So, the
final product may not be fancy but down to earth with a high degree of immediate
usability by a final user. Therefore, the degree of user involvement is of highest
importance since it has a direct impact on the development itself and a ground
for building a sense of ownership of the final product which is essential for the
acceptation of the final product.

• The Scrum Master (SM) is a domain expert and is supposed to lead the devel-
opment team and the Product Backlog management. The SM shapes the process
according to mission’s needs, leading continuous improvement like in any Agile
team. He has to shield the development team from any external interferences as
also to remove any hinder which may occur. What typically happens in mission
critical organization is that information is shared only through very structured
processes. So, there could be a loss of productivity, due the waste of time to obtain
relevant information for the development process. The SM knows how to gain
such information and is in charge of sharing it when needed, with no waste of time
from the development side.
According to the critical domain, he is accountable for the team’s output. So, he
is a facilitator but he takes the control of the team, considering also the differ-
ent backgrounds of the members. Both PO and SM collaborate closely to refine
requirements and get early feedbacks. Furthermore, his role is to build and sustain
effective communications with customer’s key staff involved in the development.
Finally, he is in charge of the overall progress and take responsibility for the
methodology used within the development cycles. So, he may do some correc-
tions within the team to deliver the expected output.

• The Development Team composed by both military and civil contractors is in
charge of the effective development. The team members are collectively respon-
sible for the development of the whole product. Within the team there are no
specialized figures (e.g., architects, developers, testers), and it is the team that
organizes itself internally and takes responsibility over the entire product.
The self organization empowers the team for the execution of the Sprint Backlog,
i.e., the developed Product Backlog within the sprint, based on the prioritization

158 P. Ciancarini et al.

by the PO. The team members are lead by the SM who is mainly a problem solver
and interfaces with the organization which needed the mission critical product.
The number of team members is between three and five highly skilled software
developers. The absence of a specialization is due the fact that any member is sup-
posed to have a good knowledge about the system developed with a clear vision
on the final artifact. Finally, they are also involved in the testing phase, which is
carried out by an independent audit commission.

• The Coach is an employee of the civilian main contractor and is in charge of the
management of contractual issues. Since the typical contractual form for devel-
oping contractors is body rental, the Coach facilitates organizational issues which
may occur during the development cycles. Her role is to smoothen problem which
may rise, to get the team oriented to the development of the artifact.

After each sprint a deployable release of the system is delivered. In order to assure
security standards of mission critical applications extra testing is pursued. This activ-
ity is carried out before the deploymentwithin themission critical network. So, before
deployment three steps are carried out as follows:

1. The development team runs a first test in the development environment and then
in a specific testing environment (stage), having the same characteristics of the
deployment environment.

2. Afterwards, testing activities are performed by Agency’s personnel involved in
test bed based activities, in limited environments to validate the actual effective-
ness of the developed systems in training and real operating scenarios (Integrated
Test Bed Environment).

3. Finally, testing activities on the field performed to verify the compliance of the
developed systems to the national and international standards and gather opera-
tional feedback to improve the system’s performance and usability.

Only after the positive check of these three steps the functionality is deployed. At the
end and beginning of a new Sprint, all interested stakeholders discuss about positive
and negative aspects, to improve the next iteration. Therefore, it is an incremental
process, which changes with the operational scenario. It is not a frozen methodology,
but it evolves along with Agency’s needs.

Finally, a quite important outcome of this approach is the cost reduction in all the
system’s lifecycle. A first assessment of the product cost per “line of code equiva-
lent” with respect to other comparable internally-produced software showed a cost
reduction by 50%. To consider those costs we computed a comparable software by
dimension (LOC) and functional area (command and control). We considered all rel-
ative cost of personnel, documentation andmaintenance costs and fix cost for office’s
utilities. The assessment after two years showed more significant cost reduction.

Generally speaking, we know from past experiences that, on average, cost per
ELOC in similar C2 domains is about 145 dollars; with regard to ground operation the
cost is about 90 dollars [18]. This study, in particular, was carried out forWaterfall in
a procedural context. Based onReifer’s study,we carried out our evaluation regarding

Agile Knowledge Engineering for Mission Critical Software Requirements 159

iAgile cost. It was quite surprising to realize that the software we measured had an
average cost of 10 dollars per ELOC.

This was possible cutting maintenance and documentation costs, which represent
the most relevant part of software development costs [19]. The cost reduction came
mainly from the minor rework due to requirement misunderstanding (project risk
reduction) connected to the short delivery cycle and to the integration of subject
matter experts into the agile teams (asymmetric pair programming typical of iAgile).
Moreover, the reduction of non-developing personnel played also an important role.

Since project management responsibilities were in charge of the Agency, the
use of internal personnel reduced the cost of hiring industry’s senior figures. Also
the increase of teams’ effectiveness from sprint to sprint led to cost cuts. Due to
the incremental domain knowledge acquisition gained through domain experts and
user’s feedbacks developers were able to produce artifacts which were attained to
customer’s expectation, decreasing sensibly rework.

3 Requirements Engineering, Management and Tracking

Agile software methodologies like Scrum put the development team at the center of
the development process removing themajor part of the procedural steps of the legacy
methods and the connected “milestone evidence” mainly consisting of documents
and CASE artifacts [20]. Agility is supposed to increase the production effectiveness
and, at the same time, to improve the quality of the product.

However, in order to go Agile, a Waterfall-like static requirement documentation
can not be replaced simply with a product backlog. The old-fashioned Waterfall
frozen requirement document is no longer effective to capture the user needs in
quickly changing mission critical environments. Replacing structured and consoli-
dated text with volatile lists of simple sentences may result, in the case of complex
systems, in a sensible loss of knowledge. Traceability of how the solutions are found
and both the user and the developer growth may become “implicit and unexpressed
knowledge” which are key elements within a high quality software development
process.

Several studies suggest to overcome requirements misunderstanding as soon as
possible, in order to improve the project results and to decrease development and
maintenance costs within its life cycle [21]. This is one of the reason why the Agency
started to develop somemission critical software in anAgile way, in order to “shorten
the requirement chain”, fostering software quality and cost reduction.

The ambiguity concerning the functions to implement is an everyday challenge.
Due to the volatility of the user needs, changing of scenarios, and the intrinsic com-
plexity of software products, a dynamic requirement engineering worked very well
in an Agile environment [22]. However, the most challenging task is to identify the
“tacit dimension” of the user requirements and to surface the “implicit” knowledge
of users [23].

160 P. Ciancarini et al.

In most agile approaches requirements are given in the form of “User Stories”,
which are short sentences in natural language usually describing some value to be
computed in some scenario in favor of some typical class of users. Such formal-
ization drives non-linear human thinking in a standardized form where users have
to explain how they imagine the system. This approach has been implemented for
mission critical applications. Capturing users requirements and overcome the intrin-
sic ambiguity of the natural language are two of the main goals of this effort. Fully
refined requirement specification documents are no longer meaningful; instead they
should incorporate some guidelines to help the developers to effectively measure the
quality of the features so that these can be improved. The result is a novel proposal
based on an evolution of the “Scrum type” Product Backlog, here represented:

• User Story. A structured sentence which summarizes the functionality. Example:
As <role>
I want to <functionality description>
in order to <goal to pursue>.

• Business Value. Describes the business value of the desired functionality.
• User Story Elaboration. It is an extended user story and it details how the func-
tionality has to be implemented.

• Acceptance Criteria. Non functional requirements are given, necessary to accept
the functionality (e.g., security, compliance to standards, interoperability issues).
Moreover, also functional requirements have to be verified, to accept the developed
software. Tests are typically focused on these functionalities.

• Definition of Done. It is when the story can be considered fully implemented. The
Definition of Done includes the Acceptance Criteria and anything that the PO
believes is necessary that the team does on the code before it can be released.

• Expected Output. It is a list of expected outputs from the functionality, once imple-
mented.

Software development methodologies should be inspired by their organization’s
needs and not by programming concepts. Well aware of Conway’s principle [24]
it is the mission need that shapes the information system. Not the structure of the
organization, which in our case is highly hierarchic and in its communication flows
reflects theWaterfall paradigm. Due to the constant iteration between the users’ com-
munity, through the Product Owner, and the development team, required applications
attains users’ expectations. Our experience has shown the effectiveness to overcome
the limitations of existing alternatives of a Waterfall like requirement engineering,
which is ineffective for complex user requirements, especially in the mission critical
domain.

If continuous interaction, typical of Agile, is crucial to overcome structural infor-
mation asymmetry, which is present in any human interaction [7], experience showed
that it is not enough. Any software project, especially Agile, involves different peo-
ple, with different backgrounds and experiences. In other terms, we all have our
“mental models” [25], which are the source of this information asymmetry. Mental
models are psychological representations of real, hypothetical, or imaginary situ-
ations, identified by Kenneth Craik [26]. They are mental constructs of the world

Agile Knowledge Engineering for Mission Critical Software Requirements 161

around us. A mental model is a representation of the world around us and shapes our
behavior and approach to problem solving. Like a pattern, once we experimented
that the solution works, we tend to replicate it. It helps us to not restart from zero any
time we have to face a problem. Thus, it is a simplification. So, it is a mind construct
of “small-scale models” of the reality, to anticipate events, to reason, and to underlie
explanation [26].

To give an example of the difference between the semantic meaning of a nominal
identical concept (i.e., difference in mental models) let us consider the notion of
“battle-space geometry”. Starting fromauser story, a POmaywrite: “as a commander
Iwant to be able to represent the forward line ofmy sector on amap to see the deployed
materials”.

The user has inmind a “line” whose geometrical elements (waypoints, start, finish
and type) are decided by a superior command post that is given to him as part of
a formatted order packet which he expects to appear on the map by a single click
of his mouse and to be updated as the tactical situation changes. The developer’s
first comprehension will be “drawing” tools able to produce a line by simply calling
some graphic libraries. The focus is on how to implement it writing the least possible
quantity of new code. This is just an example but it qualifies the differences between
the two worlds very well.

For the user the image on the video is just a representation of the real world, for
instance a real portion of land where the operation is taking place. Instead, for the
developer the same object is the result of a series of interactions showing a map on
a video where he has to provide a design tool. As trivial as they may seem these
differences are at the root of the software requirement specification problem that in
the past has been tackled by freezing the requirement text and operating a certain
number of translations into formal representations without reconciliation of the two
different mental models.

Some concepts developed in conceptual semantics explain how the representation
of the world expressed in natural language is the result of a mediation between
the speaker’s perception of the world and the current setup of his own mind (i.e.,
mental models). This poses the question on what we really do communicate about
requirements when we use natural language. In [27] this problem is studied, and a
solution based on feature maps is proposed.

In our case what emerged is a common ontology used by both users and devel-
opers. We found out that working on the ontology in the initial production process
(i.e., Product Backlog) improved the effectiveness of the Agile approach. In fact, the
development of a Command and Control ontology, useful as knowledge representa-
tion tool as described in the next section, is also effective to merge different mental
models and to support requirements traceability [28].

162 P. Ciancarini et al.

4 Use of KBS and OBS Within iAgile

The use of Ontology-Based Systems (OBS) for managing requirements and user
stories when applying Agile methods has been explored many times, but it is still an
unresolved issue [29, 30]. Some literature suggests that ontology driven development
should be the norm, both in general and specifically in the Agile arena [31].

The use of OBS is of paramount importance in a mission critical context. We have
experienced it in peace-keeping operations, where rapid information flows coming
from different actors (e.g. military, NGOs, citizens, press.) have to be processed.
The different needs, contexts, and objectives of these actors are often reflected into a
wide range of viewpoints and assumptions, producing different, overlapping and/or
mismatched concepts and structures that essentially concern the same subject matter.

Different “organizational routines” [23] lead to different communication stan-
dards, along with “tacit knowledge” [32]. Thus, there is the need to organize the
different “mental models” [5] around the development process. Ontologies are a
powerful tool to overcome this lack of a shared understanding, providing an unify-
ing framework for the different viewpoints and mental models that coexist in vast
and heterogeneous contexts.

As described in [28], this shared understanding provides many practical benefits,
such as serving as the basis for human communication (reducing conceptual and ter-
minological confusion), improving the interoperability among systemswith different
modelingmethods, paradigms, languages and software tools, and supporting themain
system engineering principles (such as reusability, reliability, requirements identifi-
cation, system specification, etc.). The adoption of ontologies as a core components
of software architectures [33] in conjunction with Agile methodology development
principles has proven its effectiveness in changing and variable contexts.

An overall idea of the main elements of the development process is depicted
in Fig. 2. Both KBS and OBS are build on users’ mental models. This means that
requirements and the ontology represent user’s view and needs. So, the user stories
collected are the core elements. Following Agile methodologies principles, such
artifacts are fundamentals to distill both information about the system to develop,
and knowledge on the domain in which such system is expected to operate. User
stories have been used to extract the requirements of the C2 system, and to develop
an ontology for representing the main concepts of the mission critical domain.

So, the backlog grooming (i.e., the refinement of the user stories) becomes the
instant where users stories split. Requirements are defined and the ontology is devel-
oped. This split is not straightforward. Considering that ontology’s entities definition
is very helpful to define better user’s expectations, requirements documents are devel-
oped separately from the ontology. While requirements are developed manually by
the development team, the ontology is developed by Protégé2 [34]. As shown in
Fig. 3, developers already exposed to semantic technologies use this standard tool to
develop the domain specific ontology.

2http://protege.stanford.edu.

http://protege.stanford.edu

Agile Knowledge Engineering for Mission Critical Software Requirements 163

Fig. 2 The ontology of the
application domain and the
system requirements are
derived from user stories

4.1 An Ontology-Based Architecture for C2 Systems

One of the main challenges in the mission critical domain is the ability of manag-
ing in a precise and accurate way the complexity, variability and heterogeneity of
information. In particular, the ability of integrating different sources of information,
extracting the most relevant elements and putting them into the context is of para-
mount importance for supporting the tasks of control and decision making. In our
approach, ontologies and related technologies are the main tools for facing both the
methodological and technological aspects of such context.

Similarly to other scenarios, also in the mission critical domain people, organiza-
tions, and information systems must communicate effectively. However, the various
needs, contexts and objectives are often reflected into a wide range of viewpoints
and assumptions, producing different, overlapping and/or mismatched concepts and
structures that essentially concerns the same subjectmatter. Ontologies are often used
to overcome this lack of a shared understanding, providing an unifying framework
for the different viewpoints that coexist in vast and complex C2 systems.

As described in [28], this shared understanding provides many practical bene-
fits, such as serving as the basis for human communication (reducing conceptual
and terminological confusion), improving the interoperability among systems with

164 P. Ciancarini et al.

Fig. 3 A snapshot of the C2 ontology during its development with Protege. The class and property
hierarchies are shown on the left, while other contextual information (e.g. annotations, instances
and relevant properties) are shown on the right

different modeling methods, paradigms, languages and software tools, and support-
ing the main system engineering principles (such as reusability, reliability, require-
ments identification, system specification).

The central role played by ontologies is summarized by Fig. 4, which depicts the
overall architecture of the C2 system. The ontology we have developed describes the
data model contained in a Knowledge Base (KB), which contains all the information
needed by the C2 system. The KB is populated by ad hoc software components
(i.e. adapters), that extract information from all the different sources (e.g. legacy
tactile systems, news or ONG CMS, etc.), and convert it in semantic statements
that conforms to the ontology. The frequency of the KB populating processes varies
from sources to sources. Where possible, triggering mechanisms have been used to
identify modifications in the sources and activating the data extraction. Otherwise,
adapters performs the data extraction at fixed (and configurable) intervals. Of course,
high data quality is a major issue here [35].

The KB contains provenance information defining:

• the origin of the data;
• the agent (usually a software component) responsible for the data extraction;
• other useful metadata (e.g. time information, type - such as insertion, deletion,
update - of the KB modification, etc.).

Agile Knowledge Engineering for Mission Critical Software Requirements 165

Fig. 4 The C2 system is modeled around the star architecture pattern. The domain ontology is the
center of such architecture, and is used to integrate different resources and systems

The main advantages of having such information are the ability to discern among
different authority levels, the capability of performing comparisons and advanced
filters, just to cite a few. Moreover, from a technical point of view, provenance
information are of paramount importance to have full control over the KB state
during the whole system lifecycle (from the inception and development phases to
the final operating period).

The Main C2 system is depicted at the upper vertex of the star architecture. It
implements all the functionalities required by the users and described in the collected
user stories. All the data required to expose such functionalities to the users are
retrieved from the KB by means of standard semantic queries. The same mechanism
is used for adding new information in the KB (e.g. for keeping track of the output of
the system users’ analysis and decision processes).

4.2 Developing Domain Ontologies from User Stories
with iAgile

Ontologies play a crucial role in the development of the framework. The primary
objective is to develop an ontology that is capable of modeling the complexity of
mission critical domains. The starting point and primary source of information for
this task is the set of 600 user stories collected from the system final users and domain

166 P. Ciancarini et al.

Fig. 5 User stories collected with iAgile are used to develop the system domain ontology

Agile Knowledge Engineering for Mission Critical Software Requirements 167

Fig. 6 A fragment of the developed domain ontology. Three general concepts are represented (i.e.
logistic item, location and convoy), and the trajectory pattern has been used to model positional
information

experts. User stories have been grouped in small buckets (having between 5 and 10
user stories each). The process started by considering a first bucket, that has been
used to develop an initial model. Finally, the ontology has been developed iteratively,
by adding a new user story bucket to the set of already considered ones at each cycle.

At the end of each cycle, a small dataset (test dataset) is created according to the
current ontology and considering the user stories under examination. Such a dataset
is used to perform a quality check on the current ontology. In practice, tests are a
series of queries that are derived by analyzing the functionalities described in the
user stories. A query test must be executed on the test dataset to check the ontology
validity after themodifications performed in the last cycle. In case of a positive result,
a new user story bucket is considered and another development cycle is performed.
Otherwise, the ontology is refactored andmodified until the quality check is satisfied.

In order to clarify the ontology development process, we present in Fig. 5 a bucket
composed by eight real user stories collected for the C2 system.

Each user story is identified by a unique identifier. User stories have a common
fixed structure, where users’ roles, objectives and user story specifications are eas-
ily identifiable. During a further step of analysis, the concepts that are the main
candidates for becoming classes in the domain ontology have been underlined.

An excerpt of the ontology developed starting from the eight user stories is
depicted in Fig. 6. Three general concepts are modeled: logistic item, location and
convoy. Well known ontology engineering principles and best practices described in
[36] have been used throughout the whole process. As shown in the ontology frag-
ment, for example, the trajectory pattern [37] has been used tomodel objects positions
and movements. This is an elegant solution for attaching trajectories composed of
segment with a geographical or physical extents to any object of the domain.

The process of ontologicallymodeling the domain hasmany practical benefits. For
example, we successfully converted requirements and constraints to the datamodel in
semantic assertions. Such restrictions can be automatically checked by using popular
semantic tools (e.g. reasoners). For instance, we can imagine to add an assertions that
states the segments of a trajectory should not be in overlap with respect of both the
time and space dimensions. In another words, we can impose that an object should

168 P. Ciancarini et al.

not have two different positions at the same time. All the cases that do not respect
such limitations in the data are automatically identified as inconsistencies stated by
the semantic reasoners.

5 Conclusions

Knowledge Based Systems and Ontology Based Systems are key elements for the
development of software-intensive mission critical systems.We reported about a real
case study concerning a mission critical system developed for an Italian governmen-
tal Agency. Volatile requirements and fast changing operational scenarios led to the
choice of a new development process model, transitioning from Waterfall to Agile.
However, Agile is not a panacea per se but needs to be adapted for complex mis-
sion critical purposes. We customized Scrum into iAgile, developing a flexible but
structured paradigm. Ad hoc steps were designed to comply with both velocity and
security. Moreover, we found that such methodology led to an important saving of
development and maintenance costs.

The role of the KBS we have used is double: to disambiguate requirements and to
build an ontology for interoperability and knowledge representation. The ontology
was designed using semantic tools during the requirement specification. Moreover,
at the same time, the user story elaboration is carried out for the functionality devel-
opment. This process allowed to align the different mental models of users and
developers. Therefore, after the first formalization of entities, it supported the next
Sprint backlogs with a high relevance to users’ expectations.

The big advantage of the use of an ontology derives from the interoperability
with other legacy systems. In a real-world operational scenario, the mission critical
information system is fed by information of different provenance. As shown, also
non-governmental actors may deliver useful elements for an up to date situational
awareness. So, from different sources it is possible gather data in a flexible and
incremental way improving the information completeness, necessary to take mission
critical decisions. Moreover, through the relationship between ontologies of other
governmental or intergovernmental agencies both interoperability or replacement of
such system is highly simplified. Since the Agency is supposed to offer security
services in multilateral and multinational operations, interoperability is of strategic
importance. Therefore, the presented approach is an important driver for a smooth
and effective system deployment in a mission critical environment.

Future research will go in several directions.
A comprehensive approach to OBS, based on the acquired experience, will be

implemented within the Agency with the aid of knowledge-based tools. Moreover,
a Machine Learning approach in which requirements are automatically processed to
assist the continuous development with Scrum [38] has also to be developed. Also,
the use of concurrent development methodologies to support velocity and reliability
has to be improved [39], along with a flexible system’s architecture. Especially, the
reliability in terms of systems “antifragility” of mission critical applications needs

Agile Knowledge Engineering for Mission Critical Software Requirements 169

further investigation [40, 41]. Although we are aware of the relationship between the
software quality dimension and its architecture [42], still efforts need to be pursue to
figure out how Agency’s business goals (e.g., velocity, cost reduction) impact on the
system. Finally, also issues related to software reuse have to be explored [43, 44],
since the cloning practices, also in critical systems, is quite common.

Acknowledgements The Authors wish to thank the Consorzio Interuniversitario Nazionale per
l’Informatica (CINI) for the partial support in the context of the AMINSEP project. We also thank
CNR for supporting the authors Ciancarini and Russo.

References

1. Easterbrook, S., Lutz, R., Covington, R., Kelly, J., Ampo, Y., Hamilton, D.: Experiences using
lightweight formal methods for requirements modeling. IEEE Trans. Softw. Eng. 24(1), 4–14
(1998)

2. Lucassen, G., Dalpiaz, F., van der Werf, J., Brinkkemper, S.: Improving agile requirements:
the quality user story framework and tool. Requir. Eng. 21(3), 383–403 (2016)

3. Alliance, A.: Agile manifesto 6(1) (2001). http://www.agilemanifesto.org
4. Thamrongchote, C., Vatanawood, W.: Business process ontology for defining user story. In:

IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), pp.
1–4. Japan (2016)

5. Porac, J.F., Thomas, H.: Taxonomic mental models in competitor definition. Acad. Manag.
Rev. 15(2), 224–240 (1990)

6. Bearden, J.B.: Command and control enabling the expeditionary aerospace force. Technical
report, DTIC Document (2000)

7. Akerlof, G.: The market for lemons: quality uncertainty and the market mechanism. Essential
Readings in Economics, pp. 175–188. Springer, Berlin (1995)

8. Sutherland, J.: Agile can scale: inventing and reinventing scrum in five companies. Cut. IT J.
14(12), 5–11 (2001)

9. Staff, C.: Interoperability and supportability of information technology and national security
systems. Technical report, CJCSI 6212.01E,Department ofDefence (United States ofAmerica)
(2008)

10. Alberts, D.S., Garstka, J.J., Stein, F.P.: Network centric warfare: developing and leveraging
information superiority. Technical report, DTIC Document (2000)

11. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Redmond (2004)
12. VersionOne: 11th annual state of agile survey (2016). http://stateofagile.versionone.com/
13. Cotugno, F.R., Messina, A.: Adapting scrum to the Italian army: methods and (open) tools. In:

IFIP International Conference on Open Source Systems, pp. 61–69. Springer, Berlin (2014)
14. Messina, A., Fiore, F., Ruggiero, M., Ciancarini, P., Russo, D.: A new agile paradigm for

mission-critical software development. J. Def. Softw. Eng. (CrossTalk) 6, 25–30 (2016)
15. Rubin, K.S.: Essential scrum: a practical guide to the most popular agile process. Addison-

Wesley, Upper Saddle River (2012)
16. Harvie, D., Agah, A.: Targeted scrum: applying mission command to agile software develop-

ment. IEEE Trans. Softw. Eng. 42(5), 476–489 (2016)
17. Sterling, L., Ciancarini, P., Turnidge, T.: On the animation of not executable specifications by

prolog. Int. J. Softw. Eng. Knowl. Eng. 6(1), 63–87 (1996)
18. Reifer, D.: Industry software cost, quality and productivity benchmarks. DoD SoftwareTech

News 7(2), 3–19 (2004)
19. Pressman, R.S.: Software Engineering: A Practitioner’s Approach. Palgrave Macmillan, New

York (2005)

http://www.agilemanifesto.org
http://stateofagile.versionone.com/

170 P. Ciancarini et al.

20. Benedicenti, L., Cotugno, F., Ciancarini, P., Messina, A., Pedrycz, W., Sillitti, A., Succi, G.:
Applying scrum to the army: a case study. In: Proceedings of the 38th International Conference
on Software Engineering Companion, pp. 725–727. ACM (2016)

21. Boehm, B., Basili, V.R.: Software defect reduction top 10 list. Computer 34(1), 135–137 (2001)
22. Gazzerro, S., Marsura, R., Messina, A., Rizzo, S.: Capturing user needs for agile software

development. In: Proceedings of 4th International Conference in Software Engineering for
Defence Applications, pp. 307–319. Springer, Berlin (2016)

23. Nelson, R.R., Winter, S.G.: An Evolutionary Theory of Economic Change. Harvard University
Press, Harvard (2009)

24. Conway, M.: How do committees invent. Datamation 14(4), 28–31 (1968)
25. Johnson-Laird, P.N.: Mental Models: Towards a Cognitive Science of Language, Inference,

and Consciousness, vol. 6. Harvard University Press, Harvard (1983)
26. Craik, K.: The nature of exploration (1943)
27. Itzik, N., Reinhartz-Berger, I., Wand, Y.: Variability analysis of requirements: considering

behavioral differences and reflecting stakeholders. IEEE Trans. Softw. Eng. 42(7), 687–706
(2016)

28. Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications. Knowl. Eng.
Rev. 11(02), 93–136 (1996)

29. Kumar, M., Ajmeri, N., Ghaisas, S.: Towards knowledge assisted agile requirements evolution.
In: Proceedings of the 2nd International Workshop on Recommendation Systems for Software
Engineering, RSSE’10, pp. 16–20. ACM, New York (2010)

30. Machado, J., Isotani, S., Barbosa, A., Bandeira, J., Alcantara, W., Bittencourt, I., Barbosa,
E.: Ontosoft process: towards an agile process for ontology-based software. In: 49th Hawaii
International Conference on System Sciences (HICSS), pp. 5813–5822. IEEE (2016)

31. Knublauch, H.: Ramblings on agile methodologies and ontology-driven software development.
In: Workshop on Semantic Web Enabled Software Engineering (SWESE), Galway, Ireland
(2005)

32. Polanyi, M.: The tacit dimension (1966)
33. Ciancarini, P., Presutti, V.: Towards ontology driven software design. Radical Innovations of

Software and Systems Engineering in the Future, pp. 122–136. Springer, Berlin (2004)
34. Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The protégé OWL plugin: an open

development environment for semantic web applications. In: International SemanticWeb Con-
ference, pp. 229–243. Springer, Berlin (2004)

35. Ciancarini, P., Poggi, F., Russo, D.: Big data quality: a roadmap for open data. In: 2nd IEEE
International Conference on Big Data Service (BigDataService), pp. 210–215. IEEE (2016)

36. Gomez-Perez, A., Fernández-López,M., Corcho, O.: Ontological Engineering:With Examples
from the Areas of Knowledge Management, e-commerce and the Semantic Web. Springer
Science & Business Media, New York (2006)

37. Hu, Y., Janowicz, K., Carral, D., Scheider, S., Kuhn, W., Berg-Cross, G., Hitzler, P., Dean, M.,
Kolas, D.: A geo-ontology design pattern for semantic trajectories. In: International Conference
on Spatial Information Theory, pp. 438–456. Springer, Berlin (2013)

38. Russo, D., Lomonaco, V., Ciancarini, P.: A machine learning approach for continuous devel-
opment. In: Proceedings of 5th International Conference in Software Engineering for Defence
Applications. Springer, Advances in Intelligent Systems and Computing (2017)

39. Russo, D.: Benefits of open source software in defense environments. In: Proceedings of 4th
International Conference in Software Engineering forDefenceApplications. Advances in Intel-
ligent Systems and Computing, vol. 422, pp. 123–131. Springer, Berlin (2016)

40. Russo, D., Ciancarini, P.: A proposal for an antifragile software manifesto. Procedia computer
science. In: The 7th International Conference onAmbient Systems,Networks andTechnologies
(ANT 2016), vol. 83, pp. 982–987 (2016)

41. Russo, D., Ciancarini, P.: Towards Antifragile Architectures. Procedia Computer Science. In:
The 8th International Conference on Ambient Systems, Networks and Technologies (ANT
2017), vol. 109, pp. 929–934 (2017)

Agile Knowledge Engineering for Mission Critical Software Requirements 171

42. Russo, D., Ciancarini, P., Falasconi, T., Tomasi, M.: A software quality concerns in the Italian
bank sector: the emergence of a meta-quality dimension. In: Proceedings of the 39th Interna-
tional Conference on Software Engineering: Software Engineering in Practice Track (ICSE-
SEIP), pp. 63–72, IEEE (2017)

43. Ciancarini, P., Russo, D., Sillitti, A., Succi, G.: Reverse engineering: a European IPR per-
spective. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing, pp.
1498–1503. ACM (2016)

44. Ciancarini, P., Russo, D., Sillitti, A., Succi, G.: A guided tour of the legal implications of
software cloning. In: Proceedings of the 38th InternationalConference onSoftwareEngineering
Companion, (ICSE-SEIS), pp. 563–572. ACM (2016)

Knowledge Engineering for Decision Support
on Diagnosis and Maintenance in the Aircraft
Domain

Pascal Reuss, Rotem Stram, Klaus-Dieter Althoff, Wolfram Henkel
and Frieder Henning

1 Introduction

Thediagnosis ofmachines belonging to technical domains demands careful attention:
dozens of relations between individual parts have to be considered and operational
or environmental conditions can effect measurable symptoms and diagnoses. An
aircraft is one of the most complex machines built by humans and therefore the
diagnosis and maintenance of aircrafts requires intelligent and efficient solutions.

Finding the root cause for an occurred fault is sometimes difficult to reproduce
or isolate, because a single part, the interaction between parts, the communication
infrastructure, or even environment characteristics like temperature or pressure may
cause a fault. For example, if a monitor does not display the status of a system, the
monitor could be broken, one or more parts of the system sending ambiguous or no
information, or the communication cable to the monitor may be broken. In addition,
low temperature may cause a freeze to a cable or relay, which then may cause the
defect. Therefore, the use of experience from past faults can be very helpful to get
a quick and precise diagnosis and reducing the time for finding and repairing the

P. Reuss (B) · K.-D. Althoff
Intelligent Information Systems Lab, University of Hildesheim, Hildesheim, Germany
e-mail: reusspa@uni-hildesheim.de

K.-D. Althoff
e-mail: klaus-dieter.althoff@dfki.uni-kl.de

P. Reuss · R. Stram · K.-D. Althoff
Competence Center Case Based Reasoning, German Center for Artificial Intelligence,
Kaiserslautern, Germany

W. Henkel
Airbus Operations GmbH, Kreetslag 10, 21129 Hamburg, Germany

F. Henning
Lufthansa Industry Solutions, Hamburg, Germany

© Springer International Publishing AG 2018
G.J. Nalepa and J. Baumeister (eds.), Synergies Between Knowledge
Engineering and Software Engineering, Advances in Intelligent
Systems and Computing 626, https://doi.org/10.1007/978-3-319-64161-4_9

173

174 P. Reuss et al.

root cause. While designing and developing such a diagnosis system, software engi-
neering and knowledge engineering are closely related to each other. Requirements
engineering and quality testing are used to design and test the software agents and
processes, while knowledge engineering is required to model the CBR systems.

In this chapter, we describe a decision support system for the diagnosis and main-
tenance in the aircraft domain that integrates experience into the existing diagnosis
approach. In the next sectionwe give an overview of the aircraft domain and the exist-
ing diagnosis approach. Section2 describes related research and Sect. 3 describes the
OMAHA research project, the multi agent system and our framework for free text
processing in detail. Section4 gives an overview of the current implementation and
test runs as well as the planned evaluation. The last section gives a summary and an
outlook to future work.

1.1 Aircraft Domain

The aircraft domain is a very complex technical domain. An aircraft consists of hun-
dreds of components (e.g., Communication and Ventilation Control), which consist
of dozens of systems (e.g., Cabin Intercommunication System and Air Condition-
ing), that in turn contain dozens of individual parts (e.g., Flight Attendant Panel and
Cabin Air Filter) called Line Replaceable Units (LRU). Not all of these components
need to be monitored. For an A380 around a hundred systems are monitored with
60.000 possible faults. These systems and LRUs are interacting with and rely on
each other. Therefore, it is challenging to identify the root cause of an occurred fault,
because it can either be found within a single LRU, within the interaction of several
components of a system, within the interaction of LRUs of different systems, or even
within the communication infrastructure of different LRUs. Finding cross-system
root causes is a very difficult and resource expensive task.

The existing diagnosis system onboard an aircraft can track root causes based on
causal rules defined for the LRUs. These rules are not always unambiguous, because
the diagnosis approach is effect-driven. Based on a comprehensible effect (visible,
audible, or smellable) in the cockpit, the cabin, or the cargo bay, the diagnosis system
tries to determine the system behavior that belongs to the effect and traces the root
cause back through the defined rules. Based on the error messages and the identified
root causes, so-called PFR items are created. A Post Flight Report (PFR) contains
an average of six error messages (PFR items) for an A380, that may have several
possible root causes. The PFR items are subdivided into four classes: cockpit effect,
cabin effect, maintenance effect, and faults without effect. Faults within the fourth
class have not to be repaired immediately, but may have an impact on future faults or
scheduled maintenance. For each error messages up to three LRUs could be accused.
The LRUs are ranked by their fault probability. The line mechanic replaces the
accused LRUs until the fault disappears. But the LRU ranked on the first position
is not always responsible for the fault. LRUs that are replaced, but working correct,
cause unnecessary costs. In the worst case none of the accused LRUs are responsible

Knowledge Engineering for Decision Support on Diagnosis … 175

for the fault. In this case the repair task will get difficult and consumes resource
and time. The challenge is to find and repair the fault during the turn around time
between the landing and passenger release and the boarding of new passengers. The
more faults in this unscheduled maintenance have to be repaired, the greater is the
risk to cause a delay of the aircraft or even an aircraft swap.

With this in mind, we are developing a decision support system based on multiple
software agents and CBR systems. Within the OMAHA project the MAS will be
used within a demonstrator that simulates faults in an aircraft and generates an PFR.
For each item in the PFR a request to our MAS will be sent. Another use case is
the customer service for Airbus. The MAS could be used to find similar cases to
customer requests, reduce the response time for a solution and increase the precision
of a diagnosis.

2 Related Work

Decision support for diagnosis and maintenance is an interesting and diverse field.
Several paradigms were used in the past, including CBR, to create assisting systems
in many fields. In Jackson et al. a fault diagnosis and prognosis system, DAME, is
described, where grid computing was used [1]. A hybrid approach of model-based
reasoning and CBR has also been described by Feret et al. [2].

Our approach combines multi-agent systems (MAS) with CBR, in order to
improve the cost-benefit ratio. The MAS allows to distribute actions among the
agents, including several CBR agents, in order to reduce computation time and effort.
Corchado et al. describe their approach for using MAS in their architecture for an
ambient intelligent environment named FUSION@ [3]. This work differs from our
approach in domain and structure. While the SEASALT architecture defines dis-
tinct agents and their tasks, FUSION@ is more liberal in what tasks the agents can
perform. Zouhair et al. describe a dynamic CBR system in the learning assistance
domain that uses MAS and learns from traces left by the users [4]. Our system,
however, uses technical knowledge instead of traces.

The data sources that are used in the OMAHA project are mainly structured, and
this is why we chose the structural CBR approach. However, many times the most
important information may be presented in the fault description and log book entries,
which constitutes of one or two sentences of free text. Many systems that deal with
textual data sources adopt the textual CBR approach, including [5–7]. We decided
to use a hybrid approach of structural CBR and NLP techniques in order to best
represent the technical knowledge at our disposal.

There are several tools and frameworks for NLP, such as Stanford CoreNLP [8],
Apache Lucene [9], GATE [10], DARE [11], and most recently SyntaxNet [12].
These tools cover several algorithms, tasks, and goals in NLP, and some of them are
even used in our system. Our framework combines them along with techniques from
association rule mining and CBR, while extending them with in-house developed
techniques that can be used directly in CBR systems.

176 P. Reuss et al.

A similar case to ours is Sizov et al. who created a CBR system to analyze aircraft
accidents from investigation reports [13]. Here their main objective was to give an
explanation of the causes of the accident, rather than produce a diagnosis. They
transformed their textual data into text reasoning graphs for further analysis. Our
system’s main objective is to diagnose a fault and assist in finding a solution. Also,
due to our choice in structural CBR, we attempt to extract attribute-value type of
information from our data.

Another very similar work is Bach et al., who described a CBR fault diagnosis
system in the automobile domain [14]. Here the same SEASALT architecture was
used, along with a structural CBR approach. However, when faced with the problem
of extracting information from text, even though using similar extraction methods
to ours, all the terms were evaluated by experts, and the local similarity measure for
symbolic attributes was manually organized into taxonomies and similarity tables.
The importance for each attribute in the global similarity measure was manually
assigned by experts as well. In our system, although we rely heavily on experts, we
supplement the information they provide us with an automated concept extraction
and similarity assignment. The importance of the attributes in the global similarity
measure is completely automated in our system by using sensitivity analysis.

The progression and development of our approach has been well documented.
The MAS, as thoroughly described in [15, 16], uses the SEASALT architecture,
and defines specific roles for each agent type. This allows an integration of several
services, most notably the CBR systems. The modeling and extraction of knowledge
in the OMAHA project is done with the help of a workflow, described in [17] and
later developed into the framework FEATURE-TAK [18]. It supports the automatic
transformation of structured and semi-structured feature information into knowledge.
The framework part regarding the attribute importance learningmethod has also been
detail in [19].

3 Knowledge Engineering for Decision Support
in Diagnosis and Maintenance

This section describes the multi-agent system for decision support in diagnosis and
maintenance realized within the OMAHA project. We will describe the use cases,
the concepts of the diagnosis and knowledge engineering workflow, as well as the
knowledge modeling of the CBR systems and the implementation of the software
agents.

3.1 Use Case and Problem Description

The current diagnosis approach for Airbus aircraft is effect-driven. A Central Main-
tenance System (CMS) correlates failure messages from LRUs to effects like red

Knowledge Engineering for Decision Support on Diagnosis … 177

blinking lamps or a displayed message by using causal rules and time data. The
failure messages are created by the Built-In Test Equipment (BITE). For every fail-
ure message a fault item is generated. The CMS correlates new failure messages
and effects to open fault items. This correlation is based on the timestamp of an
occurring fault, the class of the failure message and the ATA (Air Transport Asso-
ciation) chapter of the accused LRUs and the ATA chapter of the emitting LRU.
The ATA chapter identifies the aircraft system a LRU belongs to and is defined by
the Air Transport Association, an umbrella organization for American airlines. If a
failure message can not be correlated to an existing fault item, a new fault item is
created. For each fault item, a root cause is determined. But the rules can determine
several different root causes for a given fault item. This way a fault item can have
up to ten root causes and for every root cause up to three LRUs can be accused. In
the worst case thirty possible cases have to be considered when repairing the fault.
The maintenance technician uses his experience to filter the list of root causes and
LRUs to identify the most probable starting point. Because not every technician has
the same experience, the use of CBR to store and share experience and enhance
the diagnosis with this experience could be a viable way to improve diagnosis and
maintenance with a decision support system. Several use cases of the decision sup-
port system were discussed in context of the OMAHA project: application in daily
operations in the Operations Control Center for diagnosis during flight, application
in the Maintenance Control Center to support unscheduled maintenance tasks, and
application at Line Maintenance at the aircraft to support the maintenance techni-
cian directly. Two use cases were chosen to be addressed with our decision support
system.

Use case 1 is the Airbus Maintenance Control Center. Before landing aircrafts
send a PFR and their operational parameters during the flight to the Maintenance
Control Center (MCC). The operators in the MCC check the PFR and instruct the
maintenance technicians for their preparations. In the MCC the decision support
system can be used to retrieve similar cases for every item on the PFR. This way
it will be possible to confirm the solution from the rule-based diagnosis, change
the ranking of the possible root causes or even provide a list of corrective LRUs,
if the accused LRUs from the PFR differ from the list in the cases. If the MCC of
an airline has a request for an advice, the MCC of Airbus can provide the results
of the decision support system to the respective airline. Figure1 illustrates the use
case.

Use case 2 is the Airbus Customer Service Support. An airline calls the Cus-
tomer Service and requests support for an fault, that could not be resolved with
the knowledge of the airline alone. The Customer Service operator request the data
sources for solutions from successfully solved faults and provides several possi-
ble solutions to the airline. The solutions from the data sources are not ranked.
Almost 70 percent of the requests from airlines can be solved by the Customer
service within 30 to 60min. The other 30 percent have to be passed to the Airbus
engineering and require more effort in time and resources to solve. The decision
support system will be added to the data sources of the Customer service opera-
tor and provides similar cases to the given fault. This way the Customer service

178 P. Reuss et al.

Fig. 1 Use case maintenance control center at airbus

Fig. 2 Use case customer support service at airbus

operator will get a list of ranked cases with successful solutions to similar faults.
The goal of this use case is to enable the operator to solve requests from airlines
faster and solve faults, that have to be passed to the Airbus engineering in the past
(Fig. 2).

Knowledge Engineering for Decision Support on Diagnosis … 179

In both use cases, the decision support system will not replace the existing rule-
based diagnosis, but will enhance it with experience knowledge to identify a root
cause and the responsible LRU quicker and more precisely.

3.2 OMAHA Project

The OMAHA project is supported by the Federal Ministry of Economy and Tech-
nology in the context of the fifth civilian aeronautics research program [20]. The
high-level goal of the OMAHA project is to develop an integrated overall architec-
ture for health management of civilian aircraft. The project covers several topics like
diagnosis and prognosis of flight control systems, innovative maintenance concepts
and effective methods of data processing and transmission. A special challenge of
the OMAHA project is to outreach the aircraft and its subsystems and integrating
systems and processes in the ground segment like manufacturers, maintenance facil-
ities, and service partners. Several enterprises and academic and industrial research
institutes take part in the OMAHA project: the aircraft manufacturer Airbus (Airbus
Operations, Airbus Defense and Space, Airbus Group Innovations), the system and
equipment manufacturers Diehl Aerospace and Nord-Micro, the aviation software
solutions provider Linova and IT service provider Lufthansa Systems as well as
the German Research Center for Artificial Intelligence and the German Center for
Aviation and Space. In addition, several universities are included as subcontractors.

The OMAHA project has several different sub-projects. Our work focuses on a
sub-project to develop a cross-system integrated system health monitoring (ISHM).
The main goal is to improve the existing diagnostic approach with a MAS with
several case-based agents to integrate experience into the diagnostic process and
provide more precise diagnoses and maintenance suggestions.

3.3 Multi-agent System for Decision Support

Our multi-agent system is based on the SEASALT architecture. The SEASALT
(Shared Experience using an Agent-based System Architecture Layout) architec-
ture is a domain-independent architecture for extracting, analyzing, sharing, and
providing experiences. The architecture is based on the Collaborative Multi-Expert-
System approach [21, 22] and combines several software engineering and artificial
intelligence technologies to identify relevant information, process the experience
and provide them via an user interface. The knowledge modularization allows the
compilation of comprehensive solutions and offers the ability of reusing partial case
information in form of snippets [23].

The SEASALT architecture consists of five components: the knowledge sources,
the knowledge formalization, the knowledge provision, the knowledge representation,
and the individualized knowledge. The knowledge sources component is responsible

180 P. Reuss et al.

for extracting knowledge from external knowledge sources like databases or web
pages and especially Web 2.0 platforms, like forums and social media platforms.
The knowledge formalization component is responsible for formalizing the extracted
knowledge into a modular, structural representation. The knowledge provision com-
ponent contains the so called Knowledge Line. The basic idea is a modularization
of knowledge analogous to the modularization of software in product lines. The
modularization is done among the individual topics that are represented within the
knowledge domain. If CBRsystem is used as knowledge source, the SEASALTarchi-
tecture provides a Case Factory for the individual knowledge maintenance [23, 24].
The knowledge representation component contains the underlying knowledge mod-
els of the different agents and knowledge sources. The synchronization andmatching
of the individualized knowledge models improves the knowledge maintenance and
the interoperability between the components. The individualized knowledge compo-
nent contains the web-based user interfaces to enter a query and present the solution
to the user [23]. For more details on the SEASALT architecture see [23] and for
details about the Case Factory approach see [25, 26].

Our multi-agent decision support system is an instantiation of the SEASALT
architecture. The central component of our system is the knowledge provision, where
the Knowledge Line is located. The Knowledge Line is responsible for retrieving
similar problems for a given fault situation and providing a diagnosis and the per-
formed maintenance actions. Therefore, several software agents are used to receive
a query and retrieve a solution. A communication agent receives the input from a
user and sends it to the coordination agent. The coordination agent is responsible for
distributing the query to the relevant topic agents. Each topic agent has access to a
CBR system, performs a retrieval, and delivers the found cases to the coordination
agent. The knowledge is distributed among the CBR systems of the topic agents
and is divided using aircraft types (e.g., A320, A350, or A380) and aircraft systems
(cabin, ventilation control, hydraulic) as distinctions. Each system is identified by
the so-called ATA chapter, a number of four or six digits. This way, one CBR system
contains cases for A320 cabin faults, another CBR system contains cases for A380
ventilation control faults.

The approach of having individual agents for each aircraft type and ATA chapter
is based on the idea to distribute the knowledge among CBR systems to decrease the
modeling, retrieval, and maintenance effort for each CBR system. The coordination
agent decides which topic agents are required to find a solution for the query. This
decision is based on the aircraft type and the ATA chapter. Nevertheless, the cases
in the other case bases may contain useful information as well. Especially when the
primary topic agents cannot provide a sufficient solution. Therefore the query can
be distributed to the other topic agents as well, because faults and their maintenance
recommendations may be similar in different aircraft types.

The last agent in the knowledge provision is the so-called query analyzer agent.
This agent is responsible for analyzing the query and identifying new concepts, which
are not part of the vocabulary of the CBR systems and identifying new similarity
information. If any new concepts or similarity information are found, a maintenance
request is sent to a Case Factory. The Case Factory derives appropriate maintenance

Knowledge Engineering for Decision Support on Diagnosis … 181

actions andnotifies a knowledge engineer about the changes. To analyze the query and
performing the derived changes, parts of a workflow for knowledge transformation
are used. These tasks combine natural language processing techniques and CBR
mechanisms to identify new knowledge and transform it to be used by the CBR
systems.

The user interface is located in the individualized knowledge component. It is a
web interface, which provides options to send a query, perform a retrieval, present
the solutions, enter new cases, and browse the case bases. Another interface in the
component links to a data warehouse, where fault information is stored, which can
be used as input for our decision support system. Via the interface, a query can be
received and the solutions sent back to the data warehouse.

The knowledge formalization component transforms structured, semi-structured,
and unstructured data into a modular, structural knowledge representation used by
all CBR systems. This way the knowledge is represented in the same way all over the
MAS. The complete version of the workflow for knowledge transformation and for-
malization is used by a so-called case base input analyzer. The workflow consists of
several steps: preprocessing of the input data, collocation extraction, keyword extrac-
tion, synonym identification, vocabulary extension, association rule mining, cluster-
ing and case generation and sensitivity analysis. The individual steps are described
in more detail in Sect. 3.4.

In the knowledge sources component a collector agent is responsible for finding
new data in the data warehouse, via web services or in existing knowledge sources
from Airbus. New data can be new configurations or operational parameters, new
synonyms or hypernyms, or complete new cases.

The knowledge representation component contains the generated vocabulary, sim-
ilarity measures and taxonomies, completion rules, and constraints provided for all
agents and CBR systems (Fig. 3).

3.4 FEATURE-TAK

This section describes FEATURE-TAK, an agent-based Framework for Extraction,
Analysis, and Transformation of UnstructeREd Textual Aircraft Knowledge. We
will describe the idea, the agent-based architecture and the individual tasks of the
framework. Details of the framework can be found in [18] and we will focus in
this chapter on the changes and additions to the framework. The description will be
supported with a running example to show the input data and results of the individual
tasks.

Airbus has collected a lot of data in the last years about maintenance problems
and their solutions. These data sets are based on Airbus internal problems or on
problemswith Airbus aircraft in use by different airlines.More than 500.000 datasets
are stored in Airbus databases and they contain information about aircraft type and
model, occurred problems, accused LRUs, preferred maintenance actions, executed
maintenance actions, comments, and documentation references. These information

182 P. Reuss et al.

Fig. 3 Instantiation of the SEASALT architecture within the OMAHA project

can be accessed with two tools. One is called One-Search-For-All (OSFA) and the
other World-InService-Experience (WISE). Both tools support full text search and a
simple similarity based search based on synonyms, but they do not rank the results.
Therefore, it can be a time consuming process to find helpful datasets, because the
most helpful information is not always shown on the first three pages of the result
list.

Knowledge Engineering for Decision Support on Diagnosis … 183

To use this information within our case-based diagnosis system, they have to be
analyzed to find relevant pieces of information to be transformed into knowledge for
CBR systems. The data sets from Airbus contain different data structures. Technical
information can mostly be found in attribute-value pairs, while logbook entries,
maintenance, and feedback are stored in form of free text articles. Based on manual
data analysis of several hundred data sets, we choose a structural approach for our
CBR systems. Information like fault codes, aircraft type and model, ATA chapter
and fault emitter are important information and can easily be used within a structural
approach. During the development process it turned out, that the information in the
free texts are very important to identify a problem. Therefore, we have to use the
structured information as well as the free text. To transform the relevant information
in the free texts into useful knowledge for our structural CBR system, we had to adapt
and combine techniques from NLP and CBR. The idea is to develop a framework
to combine several techniques and automatize the knowledge transformation. This
framework could beused for knowledge acquisition andmaintenance forCBRsystem
in the development phase or for existing CBR systems. It could be embedded into the
knowledge formalization layer of the SEASALT architecture or used as a standalone
application.

The framework consists of five components: data layer, agent layer, CBR layer,
NLP layer and interface layer. The data layer is responsible for storing the raw
data and the processed data for each task. In addition, domain specific information
like abbreviations and technical phrases are stored in this layer to be accessible
for the other components. The agent layer contains several software agents. For
every task an individual agent is responsible. All task agents communicate with a
central supervising agent. This supervising agent coordinates the workflow. Some
tasks could be processed in parallel, while others could be deactivated by the users
configuration. For visualization and communication purposes for the user, this layer
also contains an interface agent. For each task an agent is spawned when starting
the framework, but additional agents can be spawned to support the initial agents
while processing huge data sets or handling parallel queries. The NLP layer contains
algorithms and methods like part of speech tagging, lemmatization, abbreviation
replacement and association rule mining. These algorithms are used by the agents to
execute their assigned tasks. The algorithms could either be third party libraries or
own implementations. The fourth layer is the CBR layer and is responsible for the
communication with a CBR tool like myCBR or jColibri. It contains methods to add
keywords to the vocabulary, extend similarity measures and generate cases from the
input data sets. The last layer contains the graphical user interface of the framework.
This user interface can be used to configure the framework, select input data, and
start the workflow. In addition, the user interface presents the results of each task to
the user and shows the status of the software agents.

In the followingwewill give an short overviewof the framework tasks anddescribe
the additions and changes that were made since the last publication [18]. These tasks
and their interaction are defined based on the existing input data and the required data
structure for our CBR systems. Based on our initial idea, the experience from the
input data analysis and the feedback from test with Airbus and Lufthansa experts, we

184 P. Reuss et al.

Fig. 4 Tasks processed by FEATURE-TAK and knowledge engineer

had to regroup and extend the tasks and define a new task for preprocessing the data
sets. As input for the framework a data set with free text components, for example a
CSV file, or a pure free text document like PDF is possible. In addition to the data
sets, a file with mapping information, an abbreviations file, and files with domain
specific white and black lists are used. The data sets are first transformed into an
internal representation of our case structure based on the information in the mapping
file. It is not required to have information for every attribute in the data set or to use
all information in the data set. The complete case structure for our use case consists
of 68 attributes with different data types and value ranges and the mapping process
adapts dynamically to the input information. The complete workflow with all tasks
and possible parallelization is show in Fig. 4.

As an example for the tasks we assume the following text as input data: “after to
the leftside engine reported an err that lead to immediate ret to the airport.”

Preprocessing

The preprocessing task is a new task, which is responsible for performing all function
on the input data that are required to do the following tasks. It is called task zero. This
tasks covers currently part-of-speech (POS) tagging and abbreviation identification.
POS tagging is the first step of this task to identify the word classes in a given
text and enabling the abbreviation identification and all later tasks. The abbreviation
identification is a required, because the domain specific abbreviation contain some
abbreviations that are identical with words in common english language, like “and”,
“of”, “at”, “in” or “to”. For example is “of” the short form for “overfrequency” and
“to” for “takeoff”. It is important to identify whether this words are abbreviations

Knowledge Engineering for Decision Support on Diagnosis … 185

or not, because a wrong replacement could lead to a different sense of a sentence
and therefore different extraction results. Therefore, a probability is computed to
decide whether a word is an abbreviation or a preposition or stopword. The basic
probability for a word is 0.5. Based on the surrounding words and the determined
type dependency of the POS tagging, the probability is increased or decreased. If the
probability is greater than 0.6 it is treated as a preposition, if the probability is smaller
than 0.4 it is treated as an abbreviation. In our example three times the word “to”
exists. Only the first occurrence is an abbreviation, the other words are prepositions.
The probability for the prepositions is 0.7 and the probability for the abbreviation
is 0.2. The result of this task is a sentence with an replaced first “to” with “takeoff”
and annotated words.

Collocation Extraction

The first task is the identification and extraction of phrases from the free text com-
ponents of the input data. The idea is to find recurring combinations of words based
on standard english grammar and domain-specific terms. This task has two steps:
multi-word abbreviation identification andphrase extraction. First,multi-word abbre-
viations are identified, because the longform of these abbreviations counts as phrases
too. The second step is to identify phrases based on the tagging information and the
word position in a sentence.

Unfortunately, many free text components do not follow a coherent grammatical
structure, and therefore are ineligible for POS tagging. To solve this problem, the
text corpus may be manually inspected for patterns. In the OMAHA project a dataset
of fault description was provided by Airbus, and patterns were manually created
with the help of regular expressions to fit the language and expressions used by the
experts. With the help of these patterns keywords and phrases are extracted.

To give an example of what the patterns might look like, we look into fault
descriptions of up to three words and try to distinguish between a system and its fault
status. Let’s say we have a pre-existing list of statuses, STATUS is a term from that
list, and w is a word, then:

• w STATUS w is the system, e.g. “apu shutdown”
• noun phrase STATUS the noun phrase is the system, e.g. “selcal lights flashing”
• w is STATUS w is the system, e.g. “tcas is inop”

In this example the keywords and phrases which were extracted are “apu”, “selcal
lights”, and “tcas”, and labeled as system. Other labels include the location of the
fault, and t ime, describing when the fault happened. In a similar vein, patterns were
written for fault descriptions with 4 words, and for 5–6 words. Longer description
tended to be less coherent and so no patterns were produced for them. The result
of this tasks is a modified free text, reduced by multi-word abbreviations and found
phrases. Based on the example no multi-word abbreviations are found, but a phrase
was identified: “leftside engine”.

186 P. Reuss et al.

Keyword Extraction

The second task of the framework is the extraction of keywords from the remaining
text, and consists of three steps: stopword elimination, lemmatization, and single-
word abbreviation replacement. As input for this task, the modified text from task
one is used. The stopword elimination is based on common english and a white
list of words that should not be eliminated. In the second step, for all words the
lemmata are determined. The third step identifies abbreviations in the remaining
words and replaces them with their longform. The result of the complete task is a
list of keywords, reduced to their base form. Based on the example the following
keywords were extracted: after, report, error, lead, immediate, return, airport.

Synonyms and Hypernyms

The third task is responsible for identifying synonyms and hypernyms for the
extracted keywords and phrases. Therefore, the input for this task is a list of phrases
from the first task and list of keywords from the second task. One challenge in this
task, is to consider the context and word sense of a keyword to identify the right
synonyms. Therefore, we are using the part of speech information and a blacklist
of words, that should not be used as synonyms. The second step is to identify the
hypernyms for all keywords. The result of this task is a list of phrases and keywords
and their synonyms and hypernyms. For our example the following synonyms could
be identified:

• after: behind, afterwards, later
• report: inform, notify
• error: failure, fault, faux pas
• airport: terminal, airfield

The synonym faux pas for error is filtered by the blacklist, because it is an inappro-
priate synonym.

Vocabulary Extension

This task consists of adding the extracted keywords, phrases, synonyms, and hyper-
nyms to the vocabulary of the CBR systems. The first step is to remove duplicate
words and phrases to avoid redundant knowledge. The second step is to check the list
of keywords against the list of phrases to identify keywords which occur as phrases.
We want to slow down the growth of the vocabulary and therefore we identify key-
words that only occur as part of a collocation. These keywords are not added to the
vocabulary. If a keyword occurs without the context of a collocation, it will be added.

Similarity Assessment

After extracting the keywords and phrases and extending the vocabulary in the pre-
vious tasks, we turn to determine how similar the items in the vocabulary are to each
other. This is important for the retrieval task, as a global similarity between cases
needs to be established, and to this end a proper local similarity measure is needed.

One basic but effective similarity measure is taxonomies. They allow to model
the semantic relationship between keywords in the vocabulary, while determining

Knowledge Engineering for Decision Support on Diagnosis … 187

their similarity. One way to obtain the taxonomies is manually with experts, as
they provide initial information about major concepts in the dataset. Once the basic
ideas are there, another way to create taxonomies is with the help of synonyms and
hypernyms. As mentioned before, synonyms and hypernyms are extracted from the
existing keywords and added to the vocabulary, while extending existing taxonomies
or generating new ones.

Unfortunately, when processing natural language text written by different contrib-
utors, there are many concepts and terms that appear in very few cases. This creates
a long tail of infrequent but important terms that experts cannot possibly manually
model in taxonomies, and have not been found to be synonyms or hypernyms of
other concepts. In order to include these terms we regard the relationship between
concepts and cases as a bipartite social network, where a concept is linked to a cluster
of cases (as describe in 3.4) if it appeared in at least one case in that cluster. With the
help of social network analysis (SNA) methods, namely weighted one-mode projec-
tion (OMP) a similarity between the concepts can be estimated [27]. This is done
by performing the weighted OMP over the concepts, calculating the weight between
them, and then using them as the local similarity value.

This method results in an asymmetrical similarity function that maps each two
concepts to the similarity value between them. It is fully automated and takes into
account the influence of each concept on each cluster, and the cooccurrence of the
concepts.

Association Rule Mining

In the aircraft domainmany causal dependencies between systems, status, context and
functions exist. Association rule mining (ARM) can help identify this dependencies
in an automated way to avoid the high effort from manually analyzing the data
sets. This task is used to analyze the keywords and phrases and find associations
between the occurrence of these words within a data set as well as across data
sets. We try to identify reoccurring associations to determine completion rules for
our CBR systems to enrich the query. An association between keywords or phrases
exists, when the combined occurrence exceeds a given threshold. For example, a
combination between two keywords that occurs in more than 80% of all analyzed
documents, may be used as a completion rule with an appropriate certainty factor.
Completions rules could lead to more information in a query and therefore additional
cases could be retrieved. Because the ARM algorithms are very time consuming with
huge datasets, we decided to add a benchmark to this task. The benchmark processes
either the input data sets or all cases in all case bases and determines the interval of
possible support and confidence values. This way we could display to the user for
which support and confidence values rules could be extracted. Based on the results,
the user can decide to perform the ARM with the Apriori [28] or the FPGrowth
[29] algorithm, if the interval contains the desired support and confidence values.
Another addition to this task is to consider the lift value for association rules. The
lift determines the usefulness of a rule and is the ratio between the confidence value
of the rule and the expected confidence value [30]. Using the lift and determining an
threshold reduces the generated rules and ensures a minimum information gain.

188 P. Reuss et al.

Case Generation and Clustering

This task is responsible for generating a case from each input data set and storing
it in a case base. To avoid a large case base with hundreds of thousands of cases,
we cluster the incoming cases and distribute them to several smaller case bases.
Generating an abstract case for each case base, a given query can be compared to the
abstract cases and this way a preselection of the required case bases is possible. For
each aircraft type (A320, A330, A340, etc.) a set of case bases will be created and
each set will be separated by the ATA chapter.

Sensitivity Analysis

The idea behind the sensitivity analysis is that different attributes of a case are
differently important for the global similarity in each case base. For example, the
location attribute of a fault related to defected seat belts may not be as important
as it would be when the fault is related to eliminating bad odors. As mentioned
before, there are several case bases divided by aircraft type and ATA chapter. During
a retrieval the topic agents are comparing the query to the different case bases, and
each case base has its own set of attribute weights.

There are twomain stages for the sensitivity analysis, namely the statistical analy-
sis and the learning stage. The statistical analysis phase finds the diversity of the
attribute values, and their impact on the attribute in each case base. The results of
this phase are then used as a starting point for the optimization performed in the
learning phase. Here supervised learning is used. For each retrieval only retrieved
cases with a similarity value above a certain threshold are observed. A retrieved
case is relevant if it was extracted from the correct case base (i.e. it was diagnosed
correctly), and is considered a false positive if its similarity was above the thresh-
old but it came from the wrong case base. The error in this situation would then be
error = sim − threshold. The weights belonging to the irrelevant case base are
updated by their relative contribution to the error. This optimization is performed in
the course of a predefined number of epochs for computational complexity reasons
and for each one the F-measure is calculated. The values that produced the highest
F-measure score are then used.

The output of the sensitivity analysis is a relevance matrix where each row repre-
sents a different case base, the columns represent the attributes, and the cell values
are the weight of the given attribute in the given case base. A schema of the matrix
can be seen in Table1. These weights are then used when the local similarities are
amalgamated to find global similarities [19].

Table 1 The relevance
matrix. The rows represent
case bases, while the columns
represent attributes

a1 … am

CB1 w11 … w1m

.

.

.
.
.
.

. . .
.
.
.

CBs ws1 … wsm

Knowledge Engineering for Decision Support on Diagnosis … 189

3.5 Knowledge Modeling

Based on our initial data analysis at the beginning of theOMAHAproject, we decided
to use the structured CBR approach and represent the knowledge as attribute-value
pairs. Much knowledge is stored in databases or CSV files and has a unique column-
value correlation, and it can easily be transformed into attribute-value pairs. However,
during the progress of the project knowledge in form of free text became more
and more important, because these free texts contain many relevant experience. A
pure textual CBR approach is not viable, because the structured information is also
important for a diagnosis. Therefore an approach was required that considers the
structured information as well as the free texts. Because the knowledge from the
cases in our CBR systems should be stored in the data warehouse as well, we decided
to stay at the structured CBR approach and try to transform the information of the
free text into a structured representation. To transform the unstructured knowledge
we use the FEATURE-TAK framework.

The knowledgemodeling was donemanually and automated. Themodeling of the
case structure, the initial vocabulary and similaritymeasures weremodeledmanually
with the help of experts from Airbus and Lufthansa. After the initial implementation
ofFEATURE-TAKtheknowledgemodelingwas alsodone automated, but has always
manually tested and enhanced, if necessary. As initial data sources several databases,
document collections, articles and reports were given. We used Service Information
Letters (SIL), In-Service Reports (ISR), PFRs, articles from OSFA and WISE, and
operational parameters. SIL contain information about exception handling during the
maintenance process. ISR are reports from the Airbus customer service and contain
help requests from airlines with the corresponding solution. PFR contain failure
items generated during the flight of an aircraft. The articles from OSFA and WISE
contain also information about maintenance incidents, but usually have additional
information and references to other documents. The operational parameters contain
outside temperature during different flight phases, outside air pressure, flight height,
and start and destination airport.

Several challenges were faced during the knowledge modeling process. The first
challenge was to identify the relevant information that could be used in the CBR
systems.We had to analyze the data sources and discuss with the experts which infor-
mation could be used to describe the problem and which information are required as
the corresponding solution. Another challenge was to model initial similarity mea-
sures. While aircrafts like the A380 and A350 have some similar systems, they have
also great differences in engines, cabin systems and cockpits. In addition they have
a different maintenance concept, which leads to different failure messages or effects
for the same fault and the ATA chapter is not fully compatible between aircrafts. The
same system in A380 and A350 are dedicated to different ATA chapters. Therefore,
modeling similarity measures cross aircraft compatible is very challenging. Also
challenging was the problem, that one data set or document can contain information
about more than one fault or the same fault was described in different ways. Espe-

190 P. Reuss et al.

cially the logbook information from pilots or the cabin crew have to be analyzed
carefully to identify the faults and additional relevant information.

From the different data sources we derived a case structure with 71 attributes.
These attributes are distributed among problem description, solution, quality infor-
mation and additional information. The problem description consists of 21 attributes.
The knowledge modeling process focused on these attributes, because the problem
description is relevant to identify similar cases and therefore possible similar solu-
tions. In the problem description the following information are modeled:

• aircraft type: type of an aircraft, e.g. A380, A350, A320
• aircraft model: specific model of an aircraft, e.g. 320–200, 350–1041
• ATA chapter: ATA chapter of the accused LRUs, e.g. 230056
• emitter: system that has emitted the failure message, e.g. air conditioning
• faultcode: faultcode of the fault, e.g. 4411F170
• engine type: type of engine, e.g. cfm56-5a1
• delay duration: delay duration that was caused by the fault in minutes
• displayed message:message displayed in the cockpit or cabin
• fault system: systems that are mentioned in the problem description
• fault location: locations that are mentioned in the problem description
• fault status: systems status that are mentioned in the problem description
• fault function: functions of the systems that are mentioned in the problem descrip-
tion

• fault time amount:time amount mentioned in the problem description
• fault time unit: time unit, e.g. hour, minutes
• fault time information: additional time information, e.g. after start, during takeoff
• affected LRU 1–3: LRU accused by the BITE failure message, e.g. handset, vent,
relay

• affected LRU 1–3 PN: partnumber of the accused LRUs, for direct identification

For each affected LRU 1–3 and the corresponding part number an own attribute
is modeled in the case structure. The information extracted from free texts by
FEATURE-TAK are stored in the attributes: fault system, fault status, fault function,
fault location, fault time amount, fault time unit and fault time information. Dis-
tributing the information from free text over several attributes reduce the modeling
and maintenance effort for each attribute, especially the taxonomy-based similarity
measures. Figure5 shows sample values for these attributes.

The solution contains 8 attributes with information about performed work, rec-
ommendation, corrective LRU 1–3, comments, documentation references, and the
complete problem description. For the knowledge modeling only the attributes for
corrective LRUs are considered. The other attributes contain only free text directly
from the data sources. The complete free text problem description is also modeled
as part of the solution to allow the users of the system a comparison between the full
text problem description of a retrieved case and the query.

As quality information the amount of correct and false retrievals of a case are
stored. This information is used to adapt the similarity of the retrieved cases to the
query. If the case was successful in its assistance in previous requests, the similarity

Knowledge Engineering for Decision Support on Diagnosis … 191

Fig. 5 Excerpt from the case structure with sample values

value may shift upwards by up to 1
3 (1− sim), but if it was more unhelpful than

helpful its similarity value will decrease by up to 1
3 sim.

The other 40 attributes contain additional information that may be useful to the
operators or technicians or are meta-information like case id, creation date, depar-
ture airport, flight date, delay times and maintenance time, flight phase, and special
incidents. The discussion with Airbus and Lufthansa experts whether several of these
attributes should be integrated into the problem description is not finished. Attributes
that contain information about operational parameters or special incidents could be
part of the problem description to have a more precise retrieval.

The similarity measures for the problem description are based on taxonomies
and similarity matrices. Only the attribute delay duration has an numeric interval
value range and its similarity measure is based on a symmetric polynomial function.
The other attributes have a so-called symbolic data type. For each attribute a set of
allowed values is defined. The number of values in these sets is between 18 values
for the aircraft type and more than 4000 values for the fault system attribute. The
similaritymeasures for the problemdescription attributes aremodeled as taxonomies,
because the values have an hierarchical structure, that could be represented by the
taxonomies. In addition, it is less effort to model similarity values for 5–40 layers in
a taxonomy, than for an 4000× 4000 matrix. For the ATA chapter attribute several
different similarity measures are required to compare systems of different aircraft
types. Therefore, a similarity function for each pair of comparable aircraft types
is modeled. These similarity functions only contain similarity values between ATA
chapters that differ in the chosen aircraft types. Otherwise the standard similarity
measure is used.

Overall the vocabulary contains more than 40.000 values distributed among the
attributes, most of them extracted by FEATURE-TAK.

192 P. Reuss et al.

4 Implementation and Test Runs

The current version of the decision support system is implemented in two parts: a
diagnosis system with several CBR systems and a standalone version of FEATURE-
TAK. An interface was implemented to load the results from the workflow into the
decision support system. The stand-alone version is used for extensive testing by our
project partners and therefore not fully integrated into the decision support system.
The automated tasks of FEATURE-TAK itself are fully implemented, but the single
tasks should be improved. TheMAS contains eleven software agents and seven CBR
systems. The MAS and the workflow are implemented with JADE [31] and the CBR
systems with myCBR [32]. Over all CBR systems we currently have more than 500
cases, some based on manual input, but the most generated with FEATRUE-TAK
based on given data sets.

The demonstrator for the decision support systems contains several functions:
retrieval of cases, adding new cases, editing existing case, browsing all case bases
and storing feedback for cases. For each CBR system a topic agent is implemented to
perform the retrieval. The web-based gui can be used to enter a query with structured
and unstructured text. The given problem description is then mapped to the case
structure. If the query containswords not knownby the vocabulary, the query analyzer
logs thiswords. Thesewords canbe addedmanually to the vocabulary by aknowledge
engineer. A query is primarily send to theCBR systemwith the corresponding aircraft
type. If the retrieval does not deliver similar cases or not the requested amount of
similar cases, the other CBR systems are requested, too. The retrieved cases of one
or more CBR systems are displayed to the user. The user can give feedback for each
case, if it was helpful or not. These information are stored for each case and are used
by future retrievals to rank a case up or down. Helpful cases get a bonus to similarity,
while the similarity for unhelpful case is reduced.

For the implementation of FEATURE-TAK several third party tools and libraries
are used, as well as own implementations of algorithms. The framework is also agent-
based and could be integrated into the demonstrator. This integration process is not
finished. In its current implementation, the framework contains eleven agents: super-
vising agent, gui agent, preprocessing agent, collocation agent, keyword agent, syn-
onym agent, vocabulary agent, similarity agent, ARMagent, cluster agent, sensitivity
agent. The gui agent controls the user interface, gets the input file and is responsible
for displaying the results of each tasks as well as the overall results of the workflow.
In addition, status information about the workflow are shown. The supervising agent
is the central agent of the framework. He receives the input file from the gui agent
and routes the communication between the task agents. The preprocessing agent is
implemented using the POS tagger from the Stanford Core NLP library [33] and an
own java implementation for the algorithm to identify abbreviations. The colloca-
tion agent also uses the Stanford Core NLP library and an own implementation for
the pattern recognition algorithm and the abbreviation replacement. The keyword
agent is implemented using Apache Lucene [34] and the Stanford Core NLP library
for stopword elimination and lemmatization, while the abbreviation replacement is

Knowledge Engineering for Decision Support on Diagnosis … 193

also an own implementation. For the abbreviation replacement in both agents, a list
of domain-specific abbreviations is used that contains 4937 abbreviations. The syn-
onym agent has access to a Wordnet [35] instance with common english synonyms
and hypernyms. In addition, the agent uses white and blacklists to reduce or extend
the list of synonyms. The vocabulary agent uses the myCBRAPI to add the extracted
phrases, keywords, synonyms and hypernyms to the vocabulary of the CBR systems.
The similarity agent also uses the myCBR API to extend the similarity measures.
He adds new concepts to existing taxonomies and is able to create a new taxon-
omy if necessary. The ARM agent has access to an implementation of the Apriori
and the FPGrowth algorithm. In addition, he contains an own implementation of the
benchmark. The benchmark determines the support and confidence values which can
produce results and displays these results in a scatter plot. The cluster agent generates
cases for all input data sets and distributes them among the existing case bases. He
uses the myCBR API to generate the cases and the clustering algorithm is an own
implementation. The algorithm distributed the cases based on the aircraft type and
the ATA chapter. If an additional case base is required, the cluster agent is able to
generate a new case base. The last agent is the sensitivity agent. This agent performs
a sensitivity analysis on the existing case for all case bases. The relevance matrix is
used to adapt the attribute weights for the global similarity function. The algorithm
for the sensitivity analysis is an own implementation.

During the development process several test were run on FEATURE-TAK and the
diagnosis system. Airbus and Lufthansa experts tested both prototypes with small
sets of data (100–200 data sets) to identify required improvements. These tests were
part of an argumentative evaluation to show the feasibility of the decision support
system and FEATURE-TAK for different project milestones. The evaluation results
can be seen in [17, 18].

4.1 Future Evaluation

Currently, the decision support system is integrated into the overall demonstrator
of the OMAHA project. This overall demonstrator provides a simulator, which is
capable of simulating a complete fleet of aircraft, injecting faults into a specific
aircraft and simulate a maintenance planning. The decision support system will be
tested with several injected faults and evaluated from Airbus and Lufthansa experts.
In addition, the decision support system will be tested by Customer Service opera-
tors from Airbus with real data from In-Service reports. This way the performance
and benefit of the decision support system will be evaluated. The FEATURE-TAK
framework will be tested with a data set of more than 65.000 In-Service reports to
evaluate the quality and performance of the single tasks.

194 P. Reuss et al.

5 Summary and Outlook

In this chapter we described out approach for an multi agent decision support system
for diagnosis and maintenance in the aircraft domain. We give an overview of the
SEASALT instantiation, the diagnosis workflow and our framework FEATURE-
TAK for analyzing free texts and extracting knowledge from them. Currently, the
diagnosis system and FEATURE-TAK are integrated into a single demonstration
system, that will be integrated into the overall demonstrator for evaluation purposes.
Additional futurework is the implementation ofCase Factories for everyCBRsystem
for knowledge maintenance and extending the learning capabilities of the system.

References

1. Jackson, T., Austin, J., Fletcher, M., Jessop, M.: Delivering a grid enabled distributed aircraft
maintenance environment (DAME). Technical Report, University of York (2003)

2. Feret, M., Glasgow, J.: Combining case-based and model-based reasoning for the diagnosis of
complex devices. Appl. Intell. 7, 57–78 (1997)

3. Corchado, J.M., Tapia, D.I., Bajo, J.: A multi-agent architecture for distributed services and
applications. Int. J. Innov. Comput. 8, 2453–2476 (2012)

4. Zouhair, A., En-Naimi, E.M., Amami, B., Boukachour, H., Person, P., Bertelle, C.: Incremental
dynamic case based reasoning and multi-agent systems (idcbr-mas) for intelligent touring
system. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3, 48–56 (2013)

5. Ceausu, V., Desprès, S.: A semantic case-based reasoning framework for text categorization.
In: The Semantic Web, pp. 736–749. Springer, Berlin (2007)

6. Rodrigues, L., Antunes, B.,Gomes, P., Santos,A., Barbeira, J., Carvalho, R.:Using textual CBR
for e-learning content categorization and retrieval. In: Proceedings of International Conference
on Case-Based Reasoning (2007)

7. Weber,R.,Aha,D.W., Sandhu,N.,Munoz-Abila,H.:A textual case-based reasoning framework
for knowledge management applications. In: Proceedings of the 9th German Workshop on
Case-Based Reasoning, pp. 244–253. Shaker Verlag (2001)

8. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The stanford
coreNLP natural language processing toolkit. In: ACL (System Demonstrations), pp. 55–60
(2014)

9. McCandless, M., Hatcher, E., Gospodnetic, O.: Lucene in Action: Covers Apache Lucene 3.0.
Manning Publications Co. (2010)

10. Cunningham, H., Maynard, D., Bontcheva, K.: Text processing with gate. Gateway Press CA
(2011)

11. Xu, F., Uszkoreit, H., Li, H., Adolphs, P., Cheng, X.: Domain-adaptive relation extraction for
the semantic web. In: Towards the Internet of Services: The THESEUS Research Program, pp.
289–297. Springer International Publishing (2014)

12. Petrov, S.: Announcing syntaxnet: The worlds most accurate parser goes open
source (2016). https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.
html. Google research blog

13. Sizov, G.V., Ozturk, P., Styrak, J.: Acquisition and reuse of reasoning knowledge from textual
cases for automated analysis. In: Lecture Notes in Computer Science, pp. 465–479. Springer
International Publishing, Berlin (2009)

14. Bach, K., Althoff, K.D., Newo, R., Stahl, A.: A case-based reasoning approach for providing
machine diagnosis from service reports. In: Case-BasedReasoningResearch andDevelopment.
International Conference on Case-Based Reasoning (ICCBR 2011), pp. 363–377 (2011)

https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html
https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

Knowledge Engineering for Decision Support on Diagnosis … 195

15. Reuss, P., Althoff, K.D., Henkel, W., Pfeiffer, M.: Case-based agents within the OMAHA
project. In: Case-based Agents. ICCBR Workshop on Case-Based Agents (ICCBR-CBR-14)
(2014)

16. Reuss, P., Althoff, K.D., Hundt, A., Henkel, W., Pfeiffer, M.: Multi-agent case-based diagno-
sis in the aircraft domain. In: Case-based Agents. ICCBR Workshop on Case-based Agents
(ICCBR-CBA-15) (2015)

17. Reuss, P., Althoff, K.D., Henkel, W., Pfeiffer, M., Hankel, O., Pick, R.: Semi-automatic knowl-
edge extraction from semi-structured and unstructured data within the OMAHA project. In:
Proceedings of the 23rd International Conference on Case-Based Reasoning (2015)

18. Reuss, P., Stram, R., Juckenack, C., Althoff, K.D., Henkel,W., Fischer, D.: Feature-tak - frame-
work for extraction, analysis, and transformation of unstructured textual aircraft knowledge.
In: Proceedings of the 25th International Conference on Case-based Reasoning, ICCBR 2016
(2016)

19. Stram, R., Reuss, P., Althoff, K.D., Henkel, W., Fischer, D.: Relevance matrix generation
using sensitivity analysis in a case-based reasoning environment. In: Proceedings of the 25th
International Conference on Case-Based Reasoning, ICCBR 2016. Springer, Berlin (2016)

20. BMWI: Luftfahrtforschungsprogramms v (2013). http://www.bmwi.de/BMWi/Redaktion/
PDF/B/bekanntmachung-luftfahrtforschungsprogramm-5,property=pdf,bereich=bmwi2012,
sprache=de,rwb=true.pdf

21. Althoff, K.D.: Collaborative multi-expert-systems. In: Proceedings of the 16th UK Workshop
on Case-Based Reasoning (UKCBR-2012), Located at SGAI International Conference on
Artificial Intelligence, December 13, Cambridge, United Kingdom, pp. 1–1 (2012)

22. Althoff, K.D., Bach, K., Deutsch, J.O., Hanft, A., Mänz, J., Müller, T., Newo, R., Reichle, M.,
Schaaf, M., Weis, K.H.: Collaborative multi-expert-systems – realizing knowledge-product-
lines with case factories and distributed learning systems. In: Baumeister, J., Seipel, D. (eds.)
KESE @ KI 2007. Osnabrück (2007)

23. Bach, K.: Knowledge acquisition for case-based reasoning systems. Ph.D. thesis, University
of Hildesheim (2013). Dr. Hut Verlag München

24. Althoff, K.D., Reichle, M., Bach, K., Hanft, A., Newo, R.: Agent based maintenance for
modularised case bases in collaborative multi-expert systems. In: Proceedings of AI2007, 12th
UK Workshop on Case-Based Reasoning, pp. 7–18 (2007)

25. Reuss, P., Althoff, K.D.: Explanation-aware maintenance of distributed case-based reasoning
systems. In: LWA 2013. Learning, Knowledge, Adaptation. Workshop Proceedings, pp. 231–
325 (2013)

26. Reuss, P., Althoff, K.D.: Maintenance of distributed case-based reasoning systems in a multi-
agent system. In: Seidl, T., Beeks, C., Hassani,M. (eds.) LWA2014 - Lernen,Wissen, Adaption
- Workshop Proceedings. GI-Workshop-Tage “Lernen, Wissen, Adaption” (LWA-2014), Sep-
tember 8–10, Aachen, Germany, pp. 20–30. Aachen University of Technology, Aachen (2014)

27. Zhou, T., Ren, J., Medo, M., Zhang, Y.C.: Bipartite network projection and personal recom-
mendation. Phys. Rev. E 76, 4 (2007)

28. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In:
Proceedings of the 20th International Conference on Very Large Data Bases, VLDB ’94, pp.
487–499. Morgan Kaufmann Publishers Inc., San Francisco (1994). http://dl.acm.org/citation.
cfm?id=645920.672836

29. Borgelt, C.: An implementation of the FP-growth algorithm. In: Proceedings of the 1st Inter-
national Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations,
OSDM ’05, pp. 1–5. ACM, New York (2005). doi:10.1145/1133905.1133907

30. McNicholas, P.D., Murphy, T.B., O’Regan, M.: Standardising the lift of an association rule.
Comput. Stat. Data Anal. 52(10), 4712–4721 (2008)

31. Bellifemine, F., Caire, G., Greenwood, D.: DevelopingMulti-agent Systemswith JADE.Wiley,
New York (2007)

32. Bach, K., Sauer, C., Althoff, K.D., Roth-Berghofer, T.: Knowledge modeling with the open
source tool myCBR. In: Nalepa, G.J., Baumeister, J., Kaczor, K. (eds.) Proceedings of the 10th
Workshop on Knowledge Engineering and Software Engineering (KESE10). Workshop on

http://www.bmwi.de/BMWi/Redaktion/PDF/B/bekanntmachung-luftfahrtforschungsprogramm-5,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf
http://www.bmwi.de/BMWi/Redaktion/PDF/B/bekanntmachung-luftfahrtforschungsprogramm-5,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf
http://www.bmwi.de/BMWi/Redaktion/PDF/B/bekanntmachung-luftfahrtforschungsprogramm-5,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf
http://dl.acm.org/citation.cfm?id=645920.672836
http://dl.acm.org/citation.cfm?id=645920.672836
http://dx.doi.org/10.1145/1133905.1133907

196 P. Reuss et al.

Knowledge Engineering and Software Engineering (KESE-2014), Located at 21st European
Conference on Artificial Intelligence, August 19, Prague, Czech Republic. CEUR Workshop
Proceedings (2014). http://ceur-ws.org/

33. Manning, C.D., Mihai, S., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The stanford
coreNLP natural language processing toolkit. In: Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)

34. McCandless, M., Hatcher, E., Gospodnetic, O.: Lucene in Action, 2nd edn. Manning Publica-
tions Co., Greenwich (2010)

35. Feinerer, I., Hornik, K.: Wordnet: WordNet Interface (2016). https://CRAN.R-project.org/
package=wordnet (R package version 0.1-11)

http://ceur-ws.org/
https://CRAN.R-project.org/package=wordnet
https://CRAN.R-project.org/package=wordnet

The Role of Ontologies and Decision
Frameworks in Computer-Interpretable
Guideline Execution

Paulo Novais, Tiago Oliveira, Ken Satoh and José Neves

Abstract Computer-Interpretable Guidelines (CIGs) are machine readable
representations of Clinical Practice Guidelines (CPGs) that serve as the knowledge
base in many knowledge-based systems oriented towards clinical decision support.
Herein we disclose a comprehensive CIG representation model based onWeb Ontol-
ogy Language (OWL) along with its main components. Additionally, we present
results revealing the expressiveness of the model regarding a selected set of CPGs.
The CIG model then serves as the basis of an architecture for an execution system
that is able to manage incomplete information regarding the state of a patient through
Speculative Computation. The architecture allows for the generation of clinical sce-
narios when there is missing information for clinical parameters.

1 Introduction

Knowledge-based systems draw a clear separation of their control processes, which
determine what a system should do, from their global database, which defines what a
system knows [1, 2]. This separation can be translated into their basic architecture: a
knowledge base where knowledge is represented explicitly rather than in procedural
code, and an inference engine that runs that knowledge against information about the
state of theworld. These systems have a number of desirable features such as:making

P. Novais (B) · J. Neves
Department of Informatics, Algoritmi Research Centre, University of Minho Braga, Braga,
Portugal
e-mail: pjon@di.uminho.pt

J. Neves
e-mail: jneves@di.uminho.pt

T. Oliveira · K. Satoh
National Institute of Informatics, Sokendai University, Tokyo, Japan
e-mail: toliveira@nii.ac.jp

K. Satoh
e-mail: ksatoh@nii.ac.jp

© Springer International Publishing AG 2018
G.J. Nalepa and J. Baumeister (eds.), Synergies Between Knowledge
Engineering and Software Engineering, Advances in Intelligent
Systems and Computing 626, https://doi.org/10.1007/978-3-319-64161-4_10

197

198 P. Novais et al.

the information required to solve a decision problem explicit, their maintenance is
faster and easier with the separation of domain knowledge and code, and the ability
to explain the outputs they produce. In clinical decision support these features play an
important role given the need for well-founded and consistent advice [3]. However,
one of the most difficult parts in developing knowledge-based Clinical Decision
Support Systems (CDSSs) is obtaining the necessary domain knowledge. Experts
have a limited schedule, their attention is highly demanded throughout their daily
activities, in multiple situations. Since computer-based clinical decision support is
not a priority, the task of developing these systems is often overlooked in favour of
tasks that are more urgent and impactful in the short term. Despite that, there are
vehicles for clinical knowledge that can be used as a support for the development
of CDSSs. Such is the case of Clinical Practice Guidelines (CPGs) [4, 5], which
are systematically developed statements, based on medical evidence, that provide
advice for specific patient states. CPGs cover a wide variety of clinical categories
and medical specialities, from diagnosis to management, from family practice to
surgery. They aim to promote the standardization of medical practice as a way to
prevent deviations responsible for the occurrence of adverse events or medical errors
[6]. Additionally, they are an important tool in combating over-expenditure resulting
from defensive medicine [7].

The versions of CPGs in machine-readable formats are called Computer-
Interpretable Guidelines (CIGs) [8–10]. The advantages of adopting these machine-
readable versions over their document counterparts are related with the increased
availability of guidelines at the point and moment of care and reduced ambiguity
[11]. CIGs also help reduce the vagueness in clinical documents, namely that which
stems from the use of fuzzy terms to describe events or recommendations whose
reach is difficult to determine [11]. Furthermore, the existence of structured formats
allows for the development of automated mechanisms for the interpretation of clin-
ical knowledge, resulting in knowledge-based systems that help physicians make
better decisions.

Research in CIG systems started in the late 1980’s and took off in the late 1990’s
and early 2000’s [8].Currently, there are a number ofCIGmodels focused ondifferent
aspects of CPG representation. These aspects are related with the basic requirements
for building CIG models, namely the representation of [12]:

• Workflows of recommendations, enabling the definition of sequences of recom-
mendations, alternative recommendations, and parallel recommendations;

• Conditions about the state of the patient that restrain the application of clinical
recommendations;

• Decision points for the inference of new patient states; and
• Temporal restrictions such as durations, waiting times and periodicities.

When developing aCIGmodel and corresponding execution engine, these are aspects
thatmust be taken into account. They establish the foundations for the development of
higher level functions inCIG execution engines [13]. One of such high level functions
is the management of uncertainty, which is a pervasive problem in health care. There

The Role of Ontologies and Decision Frameworks … 199

are multiple meanings and varieties of uncertainty in health care, which are not
often distinguished [14–17]. According to [17], where a taxonomy for uncertainty
in health care is proposed, this concept can be defined as the perception of not
having knowledge about some aspect of the real world. The form it takes depends
on many factors such as the source of uncertainty and how it manifests. The kind of
uncertainty addressed throughout this chapter falls within the category of incomplete
information, discussed in [14], and it can be described as the lack of knowledge about
the correct values for the parameters of a model, in this case, about the data regarding
the state of a patient, necessary for CIG execution. Given this initial presentation,
the objectives of this book chapter are the following:

• To highlight the advantages of using an already established ontology language to
develop a CIG representation model;

• To demonstrate how the procedural and domain knowledge of a CPG can be rep-
resented in an ontology and to enumerate the necessary representation primitives
to do so;

• Showcase an architecture for a CIG execution environment based on the developed
ontology that not only provides the necessary elements for CIG execution, but also
a module for the management of incomplete information;

• Propose a method for handling incomplete information regarding data entry points
in CIGs in order to produce clinical scenarios of guideline executions.

In order to fulfil the above-mentioned objectives, the chapter is organized as fol-
lows. In Sect. 2 we briefly present the current state of the art in CIG research and
identify limitations thatmay pose as research opportunities.We describe aCIG repre-
sentation model based on Web Ontology Language (OWL) in Sect. 3. In this section
we also specify how the model fulfils the basic requirements for the representation
of CIGs. Additionally we show and discuss the results of an evaluation performed on
the expressiveness of the model. In Sect. 4 we propose a CIG architecture for the exe-
cution of guidelines and management of incomplete information. We describe each
element and focus mainly on a module based on speculative computation. Finally,
in Sect. 5 we draw conclusions from the presented work and make considerations
about development perspectives.

2 Modelling and Executing Computer-Interpretable
Guidelines

The initial step towards the modelling of clinical recommendations from CPGs in
CDSSs was the development of the HELP system [18]. Despite its success, the
development of CDSSs based onCIGmodels only continued in the late 1980s. Arden
Syntax [19] was one of the early approaches to CIG modelling. It represents CPGs
as sets of independent modules, each one called amedical logical module (MLM). A
MLMhas a structure organized in layers. Thefirst is the knowledge layer and contains

200 P. Novais et al.

the clinical knowledge in the form of if-then-else rules whose premises are related to
the state of the patient. The administrative information layer provides information
such as authoring and purpose of the guideline. As for information regarding updates
and version, they are kept under the maintenance layer. This type of representation
handles only a single decision in a CPG and it views guidelines as independent
building blocks in the clinical process. However, in reality, the relationships between
these knowledge blocks is considerably more complex than this. As such, the most
substantial limitation of Arden Syntax is that it is not the most appropriate format
for developing complete electronic guideline applications. This model is one of the
standards from Health Level 7 (HL7) for medical knowledge.

Another approach to CIGmodelling is the Guideline Interchange Format (GLIF3)
[20, 21]. It is an approach that organizes CPGs in steps, the basic building blocks
of the model. The different types of steps are decision, patient state, action, syn-
chronization and branch. A decision step encodes a decision moment in the CIG
workflow, it is used to infer new information based on the state of the patient. The
enactment of clinical procedures is encoded in action steps, whereas the retrieval
of patient information is performed through patient state steps. The branching of
clinical pathways and their further synchronization is achieved with the branch and
synchronization steps respectively. GLIF3 is an extended formalism that empha-
sizes the sharing of CIGs across institutions and focuses heavily on the integration
of medical knowledge with medical terminologies. However, it relies on subsets of
other CIG languages in order to express elements such as temporal constraints on
the execution of steps, which may be viewed as a disadvantage.

Temporal constraints are the main focus of the Asbru [22, 23] model for CIGs.
Clinical recommendations are represented as decomposable planswith complex tem-
poral patterns and annotations. A plan is a collection of items called knowledge roles,
which can assume different forms, namely: preferences, plan intentions, conditions,
and effects. These items define which actions to perform, what is intended with them,
what conditions should be gathered to perform them, and what is expected to happen
after they are applied. Additionally, Asbru defines a comprehensive set of temporal
constructs to represent time. These temporal constructs include constraints on the
starting time and ending time of tasks (such as earliest possible start and earliest pos-
sible ending), maximal and minimal durations, and cyclical time points (e.g., every
morning, every day, etc.). The downside to this is some criticism regarding the com-
plexity of temporal annotations, which seem to be unable to match the knowledge
elements in CPGs, particularly those that concern cyclical executions of procedures.

The GuideLine Acquisition, Representation and Execution (GLARE) [24] is a
model consisting of atomic and composite actions. The action is its basic unit, fea-
turing different types such as work action, query action, decision and conclusion.
The basic building blocks of GLARE follow the structure and meaning of the other
models that were already presented. The difference here is the conclusion action,
which represents the explicit output of a process. GLARE has a comprehensive set
of temporal constructs, especially when it comes to cyclical tasks. However, this
model is limited in the representation of temporal constraints involving the evolution
of the state of a patient.

The Role of Ontologies and Decision Frameworks … 201

The Standards Active Guideline Environment (SAGE) [25] is a CIG project that
aims to establish a framework for acquiring and sharing guidelines in multiple health
care systems. SAGE applies the EONmodel for the machine-readable formalization
of CPGs. Within the model, a CPG consists of recommendation sets, represented as
a graph of context nodes. Each node is an instance of one of three classes: action,
decision and routing. SAGE uses standard terminologies, such as SNOMED-CT [26]
and LOINC [27], to provide unequivocal meaning to clinical terms.

All of the above-mentioned modelling approaches have hardly transitioned from
the research phase to wide real world implementations, with the most prominent
exceptions being Arden Syntax and SAGE. In [28] it is possible to consult an inclu-
sive summary of CIG usage and applications. Moreover, most CIG models require
proficiency in programming languages to express logical rules or temporal con-
straints, which is impractical for health care professionals. With this description of
CIG models we intend to show different modelling perspectives, driven by different
goals. Whether the focus is placed on decision points, the accurate representation
of workflows of procedures, or temporal constraints, there are common features to
all models, which we show in the next section. There are other relevant approaches
such as PROforma [29] or GUIDE [30]. For an insight on these models and a more
detailed overview of CIGs, we urge the reader to consult the works in [8, 9].

In order to properly run CIGs against patient data and obtain clinical recommen-
dations, it is necessary to develop an algorithm, often referred to as execution engine,
that analyses the CIG elements given the context provided by the state of the patient.
Surrounding the execution engine, there should be a proper system that manages all
the workflow from user inputs to the production of recommendations and automatic
inferences. Such a system should facilitate the inclusion of CIG advice in different
settings [31]. Guideline execution engines such as GLEE [32] for GLIF3, the Spock
Engine [33] for Asbru or the GLARE Execution Engine [24] were specifically devel-
oped for running CIGs in health care settings. Most of them, including the mentioned
examples, exist in the form of client-server applications, with the execution engine
placed on the client side. Furthermore, these applications are mostly available as
desktop applications, which is an obstacle to their reach and ease of deployment. An
extensive review on the computer-based execution of clinical guidelines can be found
in [34]. These execution engines could take a better advantage of their knowledge
base, i.e., the way in which CIGs are represented and of their knowledge elements,
as well as of their patient case base in order to address situations outside of the
constraints defined in the guideline workflow. A common example of this is the
existence of missing or incomplete information for a data entry point in a guideline,
which renders the execution engine unable to produce a clinical recommendation.

3 A CIG Model Based on an Ontology Language

Web Ontology Language (OWL) is an ontology standard developed by the World
Wide Web Consortium (W3C) [35]. The second version of OWL (OWL 2) has
increased expressiveness and it is built upon formats such as XML, RDF and

202 P. Novais et al.

RDF-schema. The description logics version of OWL (OWLDL) provides additional
vocabulary and its components allow for an easy and expressive representation of
the knowledge elements in CIGs. The components that make this possible are:

• Classes: sets that contain individuals described using formal (mathematical)
descriptions that state precisely the requirements for membership of the class;

• Individuals: objects of the domain and instances of classes; and
• Properties: binary relations on individuals that may be used to link two individuals
(object properties) or an individual to a data element (data properties).

The advantages of this ontology language in the representation of CIGs are related
with the internal structure of an ontology in OWL DL. These components are orga-
nized in a graph database that is unlike the more common relational and hierarchical
databases (nodes and tables). This makes the connection between knowledge com-
ponents easier and clear. The relationships in OWL assume a greater importance and
are the carriers of the semantic content of individuals. Moreover, it is possible to
describe or restrain class membership using these relationships and thus accurately
delimit their scope.

There are essentially two ways of developing a CIG model. One is consult-
ing domain experts in order to specify the representation primitives. The other is
researching different CPGs and determine the information needs of clinical recom-
mendations. Themethod followed in thisworkwas hybrid in the sense that it included
opinions from a health care professional and the observation of guidelines collected
from the National Guideline Clearinghouse (NGC).1 The developed ontology for
CPGs was called CompGuide. In it, complex information elements are represented
as individuals with multiple object properties connecting them to other individuals,
and simple information elements that cannot be further decomposed are represented
using data properties. However, simple information that is reusable and will most
likely be needed across different points of a CPG is represented as class individuals
as well. In this regard the representation is similar to a linked list of procedures. As
such, a CPG is represented as an instance of the ClinicalPracticeGuideline class.
Individuals from this class have a set of data and object properties that enable the
representation of descriptive and administrative guideline information such as the
name of the guideline, its general description, date of creation, date of last update,
version, clinical speciality, category, intended users, and target population.

The CompGuide model was initially presented in [36], where a more detailed
description of the model can be found. In the following sections we will present
the CompGuide CIG model under the basic requirements for building CIG models
defined in Sect. 1.

1Available at https://www.guideline.gov/.

https://www.guideline.gov/

The Role of Ontologies and Decision Frameworks … 203

3.1 Definition of Workflows of Recommendations

Like other CIG models, CompGuide follows a task network model (TNM) in which
all the knowledge elements of CPGs are represented as different tasks. The classes
that enable this are:

• Plan: a composite task that hosts any number of instances of other tasks, including
other plans. An individual of ClinicalPracticeGuideline representing a CPG has
exactly one globalPlanwithinwhich are hosted all of its tasks. APlan is connected
to its first task with the hasFirstTask object property;

• Action: an activity that should be carried out by a health care professional. It is
possible to define subtypes ofAction via an object property connecting the individ-
ual of Action to an individual belonging to Exam, MedicationRecommendation,
NonMedicationRecommendation and Procedure, which specify different types of
actions;

• Question: a task to obtain information about the health condition of a patient, more
specifically about the clinical parameters necessary to follow the guideline. The
source of this information can be a human input or an existing database. This class
is associated with data properties to define the clinical parameter to be retrieved
and the units in which it should be expressed;

• Decision: a task representing an inference made in the clinical workflow regarding
the state of the patient, based on a set of clinical parameters that act as premises.
A common example of this situation would be a diagnosis.

These different classes of tasks, along with the classes used to encode conditions
regarding the state of a patient, enclose the domain knowledge of a CPG. The pro-
cedural knowledge is defined by the connections that exist between the individuals
of these classes. In order to connect individuals belonging to the classes of tasks
there is a set of object properties that establish the relative order between them. The
definition of sequential tasks is possible with the nextTask property. For cases in
which, at a splitting point in the clinical workflow, it is necessary to execute one of
multiple alternative tasks, the current task is connected to the alternatives with the
hasAlternativeTask object property. Another situation is when there is a set of tasks
that should be executed simultaneously. In this case, the current task is connected
to the following tasks with the hasParallelTask object property. For both alternative
tasks and parallel tasks there are synchronization taskswhere theworkflow converges
to a single execution path.

Although this work draws some inspiration from pre-existing models, such as
Arden Syntax, PROforma, GLIF3, Asbru or SAGE, it also introduces different views
on the definition of a clinical workflow using the native elements of an ontology
language, in this case of OWL.

204 P. Novais et al.

3.2 Conditions About the State of a Patient and Decision
Points

In CompGuide, conditions about the state of a patient are associated with the tasks at
which they are verified. In this regard, there are three types of conditions represented
by the following classes:

• TriggerCondition: this is a condition regarding the clinical parameters of a patient
that is used to select an alternative task in the clinical workflow. An alternative
task, such as the ones mentioned in Sect. 3.1, has associated trigger conditions,
which, when validated, dictate the selection of the task. Trigger conditions can be
defined for any type of task;

• PreCondition: this condition is used for all types of task to express the requirements
of the patient state that must be met before the execution. For instance, when
administering some pharmacological agent it should be known that the patient is
not allergic to it;

• Outcome: this condition puts a restriction to a Plan or an Action representing the
result in terms of the evolution of the state of a patient to be achieved with the task.
A typical use for this Condition is the specification of therapy goals in an Action.

Each of the above-mentioned conditions is connected to an individual of the class
Condition, which actually allows for the specification of the clinical parameter in
question and the value (or range of values) that fulfil the constraint, along with
the units in which the parameter is expressed. This class is also important in the
definition of the Decision class, which consists of a set of individuals of the Option
class, each one connected to an individual of the Condition class. An individual
of Option specifies a possible conclusion for the Decision task, and, in turn it is
connected to the Condition that supports the option.

Given this exposition about the types of constraints placed on tasks, it is possible
to identify four different types of decision points in CompGuide, namely: (i) the
selection of an option in a Decision task, (ii) the selection of an alternative task
based on a TriggerCondition, (iii) determining whether a task should be executed or
not based on the verification of a PreCondition, and (iv) determining if a task was
effective based on the verification of an Outcome.

3.3 Temporal Constraints on the Execution of Tasks

Time is a crucial dimension in the representation of clinical procedures. This is
denoted by the number of CIG representation models that are temporally ori-
ented [22–24]. The temporal constraints in CPGs are used to express a variety
of elements that need to be controlled in order to ensure the correct application
of recommendations and the proper management of patients. In [37] the temporal
aspects of CompGuide are explored and the main classes for temporal representation

The Role of Ontologies and Decision Frameworks … 205

Fig. 1 Main classes for the representation of a clinical tasks and b temporal patterns

are described. These classes aim to represent the patterns featured in clinical proce-
dures, namely durations, repetitions, periodicities andwaiting times. This representa-
tion is achieved with subclasses of TemporalElement shown in Fig. 1b. The meaning
of each one is the following:

• Duration: an individual of the class Duration allows for the specification of how
long an Action or a Plan should last, since these are the only tasks that may unfold
over time. The object property hasDuration connects the tasks to the respective
Duration. This Duration can have an exact value or be defined with maximal and
minimal values;

• WaitingTime: this class stands for a delay in a task used, for instance, to observe
an effect on a patient of a previous task. This pattern can be used in any type of
task with the hasWaitingTime object property;

• Periodicity: the class is used to define a cycle of execution for any task. It is
possible to define the frequency with which the task is executed and a duration
(through the reuse of the Duration class) to specify for how long the cycle should
last. Alternatively it is also possible to specify the number of repetitions or a stop
condition for the task. An individual of Periodicity is connected to a task through
the hasPeriodicity object property;

• CyclePartPeriodicity: this class represents a temporal pattern in which there is a
nested periodicity, i.e., each cycle of the cyclical task has, itself, a periodicity. Has
such, whenever needed, an individual of CyclePartPeriodicity is connected to an
individual of Periodicity with the hasCyclePartPeriodicity object property.

Each temporal pattern, which is the same to say each class, has an associated temporal
unit. This is achieved with TemporalUnit, an enumerated class that consists of the
individuals second, minute, hour, day, week, month, and year.

This model offers a comprehensive representation of temporal patterns, at the
level of GLARE and more complete than models such as Asbru, GLIF3 and

206 P. Novais et al.

PROforma [37]. At execution time, the CIG execution engine builds a map of guide-
line execution for the tasks that have temporal constraints and, then, it performs a
series of verifications on the actual starting and ending times of each one.

3.4 Expressiveness of the Representation Model

In order to assess the expressiveness of the ontology elements presented in Sects. 3.1,
3.2, and 3.3 a study was conducted with 14 students from the fourth year of the Inte-
grated Masters in Biomedical Engineering, branch in Medical Informatics, from
the University of Minho, in Portugal. The students were familiar with both the
CompGuide ontology and the Protégé ontology editor. The study consisted in ask-
ing the students to represent a set of CPGs extracted from the NGC. Each student
had to represent one CPG using the ontology. After the assignment they were asked
to provide feedback in the form of answers to a questionnaire and short comments
regarding the expressiveness of the ontology, namely on whether it was possible to
completely represent the CPGs using it. The list of CPGs used in the study is showed
in Table1. Amuch as possible, there was an effort to include CPGs with multiple cat-
egories, namely diagnosis, evaluation, treatment, and management. The statements
used in the questionnaire complete the general statement: “TheCompGuide ontology
allowed the representation of:”. The answers were provided in a five point Likert rat-
ing scale [38] (1-strongly disagree, 2-disagree, 3-neutral, 4-agree, 5-strongly agree).
The statements can be seen in Fig. 2, along with the results. The diverging stacked
bar presents the total percentage of agreement (calculated as agree + strongly agree),
the total percentage of disagreement (calculated as disagree + strongly disagree),
and the percentage of participants who were neutral (equal to the percentage of the
neutral category), for each statement.

The statements are related with the basic requirements defined for the representa-
tion of CIGs. Items 1–9 can be placed in the definition of workflows of recommen-
dations. Here the level of agreement was at least equal to or above 50%. Indeed, the
item about medication prescriptions (item 1) is the one that has the lowest agree-
ment, the highest percentage in the neutral category (43%), and the only one that
has percentage in the strongly disagree category (7%), which is indicative that the
corresponding representation primitive for this action may not address all the cases
featured in the CPGs. Despite this, both items 2 and 3, which correspond to the
representation of other types of actions, seem to correspond to the requirements of
guideline representation as they have high percentages of agreement. However, item
4, directly related with the definition of a Question is the one that has the highest
percentage of disagreement (14%). In the comments provided along with the ques-
tionnaire it was mentioned that the Question lacked a data property where it would
be possible to provide an extended detailed description of the clinical parameters
that the task aims to obtain, besides the actual definition of the parameter and units.
It is possible to consider that the ontology allows the representation of series of tasks
and its internal organization mimics that of the clinical workflows in CPGs. This is

The Role of Ontologies and Decision Frameworks … 207

Table 1 List of the guidelines that were used in the study, featuring their name, organization and
the number of people assigned to their representation

Clinical practice guideline Organization People assigned

Clinical practice guidelines in
Oncology - Colon cancer

National comprehensive cancer
network

2

Clinical practice guidelines in
Oncology - Rectal cancer

National comprehensive cancer
network

2

Clinical pratice guidelines in
Oncology - Distress

National comprehensive cancer
network

2

Clinical practice guidelines in
Oncology - Palliative care

National comprehensive cancer
network

2

Detection, evaluation, and treatment of
high blood cholesterol in adults

national heart lung and blood
institute

1

Diagnosing and managing asthma National heart lung and blood
institute

1

Diagnosis, evaluation and
management of von willebrand disease

National heart lung and blood
Institute

1

Diagnosis and treatment of respiratory
illness in children and adults

Institute for clinical systems
improvement

1

Diagnosis and management of diabetes Institute for clinical systems
improvement

1

Diagnosis and treatment of ischemic
stroke

Institute for clinical systems
improvement

1

evident in the high levels of agreement of items 5–9. Overall, the organization of the
procedural logic of the guideline and the grouping of tasks in plans was considered
to be advantageous, mainly because this helps the delimitation of different diagnoses
and treatments. The item that refers to this grouping of tasks, item 6, has an agree-
ment of 100%. Despite this, in the submitted comments concerns were expressed
regarding the range of the available subtypes of actions. CPGs also have knowl-
edge encoded as index tables in order to calculate health indexes that are later used
in decision making. This type of knowledge could not be represented, which is an
aspect to improve. A positive feedback was that, by following the design pattern of
the ontology, the participants were able to find redundant elements in the guideline
workflows, which did not trigger any kind of event or have any consequences further
ahead in the clinical process.

In terms of conditions about the state of a patient, the levels of agreement of items
10, 11, and 12, referring to trigger conditions, pre-conditions, and outcomes was
fairly high, which means that these constraints fulfilled, for the most part, their role.
The items referring to decision points (items 5, 10, 11, 12) all had high agreement
rates, which indicates that they are sufficiently expressive to model decision making
in CPGs.

208 P. Novais et al.

Fig. 2 Diverging stacked bar chart showing the results of the questionnaire to assess the expres-
siveness of the CompGuide ontology

In the selected guidelines there were no cases of complex temporal patterns.
In fact the most common patterns were durations and periodicities. As such, the
questionnaire only covers these two temporal elements, alongwith repetitions, which
were also present. The items referring to temporal restrictions, namely items 13–15,
have low agreement when compared to the majority of the other items in the chart.
Actually, they are among the items that have the highest percentage in the neutral
category. It is possible to understand this through the comments of the participants,
in which it was pointed out that, although it was possible to represent the temporal
patterns in the CPGs, it was necessary to adapt the statements in the guidelines to fit
the available constructs.

Given the difficulty and time-consuming nature of the task proposed to the par-
ticipants, it would be impractical to repeat the study in a larger scale and have access
to an entire statistical population of interest. Be as it may, the study provided hints as
to what improvements should be made, namely in: the representation of medication
prescriptions, the tasks used to retrieve information from the patient, the diversity of
actions offered by the ontology, and temporal constraints as a whole. Overall, it is
possible to consider that the guidelines used in the surveywere accurately represented
in the ontology, despite the need for certain adaptations.

The Role of Ontologies and Decision Frameworks … 209

4 A CIG Architecture for the Execution of Guidelines
and Management of Incomplete Information

As previously stated, a CIG-based CDSS is a knowledge-based system that uses
machine-readable versions of CPGs to provide clinical recommendations. As such,
the basic elements in the architecture of these systems are a knowledge base contain-
ing the CPG recommendations and an execution engine that interprets them. This is
a common setting among CIG systems [34]. However, from our point of view, CIG
systems should take more advantage of the expressiveness of their CIG models in
order to provide additional functionalities that help health care professionals. The
architecture that we present herein aims to provide such a functionality, namely one
that addresses the problem of incomplete information in decision points such as the
ones presented in Sect. 3.2. This problem may arise due to delays in complementary
means of diagnosis or the simple impossibility to know the information regarding the
clinical parameters. In the following sectionswe present a description of the elements
in the architecture and provide details regarding the knowledge flow throughout the
components. Additionally, we present a speculative module in charge of managing
incomplete information.

4.1 Elements of the Architecture

The proposed architecture can be seen in Fig. 3. Its components are the following:

• CIG repository: this component is the knowledge base of the system. It contains
owl files, each one representing a different CPG.

• CIG engine: this component is responsible for interpreting clinical guideline
instructions contained in an owl file. It identifies different execution situations
when analysing the knowledge in the CPG such as the identification of the next
task from the control structures in place (sequential tasks, alternative tasks, and
parallel tasks), the need to retrieve information from an external source (through
Question tasks), and the use of that information for automatic inference in decision
points;

• local repository: a database containing information of other patients retrieved for
the data entry points in a CPG.

The problem that theCIG engine has to solve is the choice of the next clinical task and
infer new information about the state of the patient. The information it uses is obtained
from external information sources, which can be health care information systems or
simply human agents providing inputs. When choosing the next clinical task from a
set of alternatives based on their trigger conditions, when verifying pre-conditions
before recommending a task or checking the outcome of an Action or Plan, such
information sources may not be able to provide the necessary information, rendering
the CIG engine unable to produce a decision. In these cases, a speculative module

210 P. Novais et al.

Fig. 3 Architecture for the execution of CIGs and management of incomplete information

takes action and compensates for these information gaps. It is based on Speculative
Computation with Default Revision (SCDR) [37], a logic programming theory that
uses default reasoning. As such, this module intervenes when there is aDecision task,
in the selection of an alternative task based on a TriggerCondition, in determining
whether a task should be executed or not based on the verification of a PreCondition,
and in determining if a task was effective based on the verification of an Outcome.

4.2 Speculative Module

The speculative module has two components. The first is the generation of defaults
and the second is speculative computation. The generation of defaults assumes a sup-
portive role and its function is to produce default values to fill in missing information
regarding clinical parameters used in decision points. The speculative module then
takes these default values and produces clinical scenarios in the form of tentative
clinical recommendations and tentative inferences regarding the state of a patient.
The speculative module does not ignore the general method for dealing with uncer-
tainty in health care, which is to use past experiences in order to fill in the missing
pieces, but it is, instead, a form of using these past experiences in amore flexible way,
fitter for CIG-based CDSSs than, for instance, Case-based Reasoning (CBR). The
reason for this assumption is that the speculative computation used in the module
offers mechanisms to manage information that are not as rigid as the complete CBR
cycle. In the work [39] featuring speculative computation, fixed default beliefs are
used in speculative computation. However, when applied to a real setting, the default
beliefs are highly dependent on the context. The same is to say they depend on the
set of circumstances and facts that surround a problem and change over time.

The Role of Ontologies and Decision Frameworks … 211

4.2.1 Generation of Defaults

The generation of defaults is a set of procedures that seek to acquire the most likely
values for the clinical parameters involved in decision points, based on past exe-
cutions of the same CPG for other patients. In order to take into account possible
dependence relationships between the clinical parameters of a decision point, there
has to be a default model capable of conveying these relationships in a direct and
straightforward way. Bayesian Networks (BNs), for their set of characteristics [40,
41], provide an ideal support for such a task.

The generation of defaults is depicted in Fig. 3. It comprises five sequential proce-
dures. The first is the identification of askable atoms, in which the clinical parameters
for the decision are identified and isolated.This requires the analysis of the individuals
ofCondition attached to an individual ofDecision, Trigger Condition, PreCondition,
or Outcome in order to extract the parameters whose values are the premises to infer
a patient state or a new task in the workflow. Next, the module retrieves relevant data
about previous guideline executions regarding the isolated parameters from the local
repository. In the following procedure, different BN learning algorithms are used in
cross-validation. The objective is to select the one that best conveys the relationships
between the parameters. It is possible to do this with a measure of the likelihood of
data given the produced model such as the log likelihood loss (logl). After the best
performing algorithm is selected, a BN is generated. Through a maximum a posteri-
ori estimate (MAP) it is possible to provide the most likely values for the parameters,
given the evidence, along with a probability value for the whole distribution [42]. If
no evidence is known, i.e., if no value for the set of clinical parameters is available,
a MAP can be submitted without evidence, in which case a set of default values is
generated for each clinical parameter.

The advantage of using BNs and the MAP estimate to produce defaults is that
it is possible to adjust the default values throughout the computation of a clinical
recommendation. In fact, that is the principle of SCDR. At the beginning of the
decision making process, when no information is available, it is possible to use the
BN to generate defaults for all the parameters. However, if suddenly information
arrives from the external information sources, it is possible to recalculate the default
values by submitting a newMAP query, this timewith the value of the known clinical
parameter as evidence, thus obtaining default values for the remaining unknown
parameters that depend on the piece of information that is actually known at the
moment.

4.2.2 Speculative Computation

SCDR acts as the decision framework for the decision points in a CPG. The elements
defined in this framework and its operational semantics enable the management
of situations of completely unknown information, partially known information and
completely known information. The framework is defined as the tuple 〈Σ, E,Δ,P〉,
where [37]:

212 P. Novais et al.

• Σ is a finite set of constants, each one representing an external information source
responsible for providing information on clinical parameters;

• E is a set containing the decision criteria, i.e., the clinical parameters used as
premises in the decision points;

• Δ is the default answer set, consisting of default values for the clinical parameters
in E , obtained from the generation of defaults;

• P is a logic program of the form: H ← C ‖ B1, B2, . . . , Bn ., where H is a
positive ordinary literal called a head of rule R; C is a set of constraints; and
each B1, B2, . . . , Bn is an ordinary literal, or an askable literal. P results from
the mapping of the procedural logic and domain knowledge of the decision point
leading to the recommendation of a clinical task or to the inference of a patient
state.

SCDR starts with a top goal. The notion of goal is central for it represents what is
necessary to achieve in the computation, or, in other words, it is the outcome of the
decision. The initial set of beliefs about the state of the patient that the framework
uses, if there are no known values, is Δ. Goals and the product of, their reduction,
i.e., their matching with rules in P , are kept in processes. They are structures that
represent the different alternative computations in the framework. In this regard, there
are two types of processes: active and suspended. Active processes are those whose
constraints are consistent with the current set of beliefs of the framework. They are
regarded as the valid clinical scenarios. Processes that do not fulfil this condition are
suspended.

SCDR has a total of three phases: the process reduction phase, the fact arrival
phase, and the default revision phase.

Process reduction corresponds to the normal reduction of goals within active
processes. It implies the matching of goals with the head of rules in P and their
replacement in the process with the body of the rules they are matched with. If the
goal corresponds to one of the clinical parameters, they are reduced with the belief
that the framework has about the parameter. If the process is consistent with that,
it remains active, otherwise it is suspended. This belief can be either a default or
a known value. Process reduction continues until an active process with an empty
goal is obtained, in which case it is possible to advance a conclusion as an answer to
the initial query. If the process is obtained based on default values, it is considered a
clinical scenario.

In the fact arrival phase there is information about the real value of a clinical
parameter that arrives at the CIG engine and is passed on to the speculative module.
This information is handled in the following way. The beliefs of the framework are
updated and the default value for the clinical parameter is replaced with the real
value. It can be the case that the real value is the same as the default. As a result,
all the processes, both active and suspended, are revised. Those that are consistent
with the real value stay or become active and those that are inconsistent are discarded
because the new information is considered to bee definitive and, thus, cannot possibly
be revised again. Following this phase there is always a round of process reduction.

The Role of Ontologies and Decision Frameworks … 213

The default revision phase results from the verification of changes that the newly
arrived information may cause in the default values of the other clinical parameters.
As such, a new MAP query is submitted having the known information as evidence.
If the retrieved values for the remaining clinical parameters are different from the
previous defaults, then they replace the old defaults in the beliefs of the framework.
Both the active and the suspended processes are revised and only the processes that
are consistent with the new defaults remain or become active, the rest is suspended.
This default revision phase ensures that the active processes move progressively
to the actual true recommendation, since the framework is able to respond to the
arrival of information by adjusting the other defaults to values that are closer to the
respective real values, according to the probability distribution of the underlying BN.
After default revision, another round of process reduction occurs.

4.3 Generation of Clinical Scenarios

Although in the presented architecture there is a clear separation between the
knowledge base of the system and its execution engine, the design of the CompGuide
ontology determines to a great extent the procedures of the execution engine. The
ontology defines a set of decision points that are identified by the CIG engine and
then mapped to the SCDR framework, which structures the reasoning process and
endows the system with dynamic belief revision capabilities. This is seen when the
active processes, standing for clinical scenarios, resulting from the different phases of
SCDR are changed and updated into new active processes and, thus, new scenarios.
In situations where the results of clinical exams may take some time to be known or
may turn out to be inconclusive the effect of speculative computation yields tentative
answers that enhance the capacity of health care professionals to make decisions.

If one considers the complexity of a guideline such as the Clinical Practice Guide-
lines in Oncology Colon Cancer [43] (which was one of the CPGs used in the study),
with multiple data entry points in the form of individuals of Question, followed by
decision points consisting in the choice of alternative tasks (such as the clinical work-
flow showed in Fig. 4), it is possible to use the speculative module on each one and,
through it, present the most likely execution threads by summing the computation of
these choices. Figure4 shows an example of how this could be applied to a clinical
workflow represented in CompGuide. For every decision point in the algorithm the
speculative module runs on top of the procedural knowledge provided by the ontol-
ogy. Assuming that information is missing in each Question task, the speculative
module formulates a probable choice for the next task at Question1, Question2, and
Question3. Then, by grouping the proposals, it is possible to build a tentative execu-
tion path, which is shown by the dashed lines in the figure. This would be useful for a
practitioner as it would provide him amap of the potential evolution of a patient, thus
giving him time to devise countermeasures if it shows that the treatment is following
an undesirable direction.

214 P. Novais et al.

Fig. 4 Stages of the NCCNGuideline for Colon Cancer showing a symbolic representation of tasks
as questions and actions throughout the clinical process: clinical presentation, workup, findings,
surgery, pathological staging and adjuvant therapy. The dashed trace shows an execution path
obtained from the speculative module

5 Conclusions and Development Perspectives

It was established that the CompGuide representation model was able to provide
enough expressiveness for a set of CPGs that included multiple categories and spe-
cialties, in terms of the basic requirements for a CIG model. The CompGuide ontol-
ogy enables the creation of modular knowledge components and thus their reuse
in different points of a CPG. By analysing and identifying the decision points in a
CPG represented according to CompGuide, it is possible to map the procedural and
domain knowledge of these points into a speculative computation framework that
manages incomplete information. This is the basis of a speculative module, respon-
sible for building clinical scenarios, based on default values retrieved from BNs.
The use of probabilities, and more specifically BNs, is motivated by the notion that
the knowledge we have about the world is imperfect and that, through a Bayesian
approach, it is possible to get a degree of belief that something may be the case.
The inclusion of the speculative module is a differentiating factor from other CIG
execution engines such as GLARE, GLEE and SAGE [34], which only execute their
encoded rules, without additional functionalities.

There are, however, aspects to improve in the ontology in terms of knowledge
representation, namely in the definition of action tasks and temporal constraints.
Additionally, the utility of the clinical scenarios is not considered in the SCDR
framework, but it is an important dimension since it useful for the health care profes-
sionals to know how reliable a scenario is. As such, the extension of the framework
to accommodate the computation of utilities based on the probabilities provided by
the BN model is a development perspective that we will follow.

Acknowledgements This work has been supported by COMPETE: POCI-01-0145-FEDER-0070
43 and FCT Fundação para a Ciência e Tecnologia within the Project Scope UID/CEC/00319/2013.
The work of Tiago Oliveira is supported by a FCT grant with the reference SFRH/BD/85291/

The Role of Ontologies and Decision Frameworks … 215

2012. This work was partially developed during an internship program of the National Institute of
Informatics (NII) of Japan by Tiago Oliveira.

References

1. Engelmore, R.S.: Artificial intelligence and knowledge based systems: origins, methods and
opportunities for NDE. In: Review of Progress in Quantitative Nondestructive Evaluation, vol.
6 A, pp. 1–20 (1987)

2. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and methods. Data
Knowl. Eng. 25(1–2), 161–197 (1998)

3. Kalogeropoulos, D.A., Carson, E.R., Collinson, P.O.: Towards knowledge-based systems in
clinical practice: development of an integrated clinical information andknowledgemanagement
support system. Comput. Methods Programs Biomed. 72(1), 65–80 (2003)

4. Miller,M.,Kearney,N.:Guidelines for clinical practice: development, dissemination and imple-
mentation. Int. J. Nurs. Stud. 41(7), 813–821 (2004)

5. Silberstein, S.: Clinical practice guidelines. J. Neurosurg. Pediatr. 25(10), 765–766 (2005)
6. Woolf, S.H., Grol, R., Hutchinson, A., Eccles, M., Grimshaw, J.: Potential benefits, limitations,

and harms of clinical guidelines. BMJ Br. Med. J. 318(7182), 527–530 (1999)
7. Toker, A., Shvarts, S., Perry, Z.H., Doron, Y., Reuveni, H.: Clinical guidelines, defensive

medicine, and the physician between the two. Am. J. Otolaryngol. Head Neck Med. Surg.
25(4), 245–250 (2004)

8. Peleg, M.: Computer-interpretable clinical guidelines: a methodological review. J. Biomed.
Inform. 46(4), 744–763 (2013)

9. Oliveira, T., Novais, P., Neves, J.: Development and implementation of clinical guidelines: an
artificial intelligence perspective. Artif. Intell. Rev. 999–1027 (2014)

10. Latoszek-Berendsen, A., Tange, H., van den Herik, H.J., Hasman, A.: From clinical prac-
tice guidelines to computer-interpretable guidelines. A literature overview. Methods Inf. Med.
49(6), 550–570 (2010)

11. Codish, S., Shiffman, R.N.: A model of ambiguity and vagueness in clinical practice guideline
recommendations. In: AMIA Annual Symposium Proceedings, vol. 2005, p. 146 (2005)

12. de Clercq, P.A., Blom, J.A., Korsten, H.H.M., Hasman, A.: Approaches for creating computer-
interpretable guidelines that facilitate decision support. Artif. Intell. Med. 31(1), 1–27 (2004)

13. Novais, P., Oliveira, T., Neves, J.: Moving towards a new paradigm of creation, dissemination,
and application of computer-interpretable medical knowledge. Prog. Artif. Intell. 1–7 (2016)

14. Lipshitz, R., Strauss, O.: Coping with uncertainty: a naturalistic decision-making analysis.
Organ. Behav. Hum. Decis. Process. 69(2), 149–163 (1997)

15. Babrow, A., Kasch, C., Ford, L.: The many meanings of uncertainty in illness: toward a sys-
tematic accounting. Health Commun. 10(1), 1–23 (1998)

16. Mishel, M.H.: The measurement of uncertainty in illness. Nurs. Res. 30(5), 258–263 (1981)
17. Han, P.K.J., Klein, W.M.P., Arora, N.K.: Varieties of uncertainty in health care: a conceptual

taxonomy. Med. Decis. Mak. Int. J. Soc. Med. Decis. Mak. 31(6), 828–38 (2011)
18. Gardner, R.M., Pryor, T., Warner, H.R.: The HELP hospital information system: update 1998.

Int. J. Med. Inform. 54(3), 169–182 (1999)
19. Samwald, M., Fehre, K., de Bruin, J., Adlassnig, K.P.: The Arden Syntax standard for clinical

decision support: experiences and directions. J. Biomed. Inform. (2012)
20. Peleg, M., Boxwala, A.A., Bernstam, E., Tu, S., Greenes, R.A., Shortliffe, E.H.: Sharable

representation of clinical guidelines in GLIF: relationship to the Arden Syntax. J. Biomed.
Inform. 34(3), 170–181 (2001)

21. Boxwala, A.A., Peleg, M., Tu, S., Ogunyemi, O., Zeng, Q.T., Wang, D., Patel, V.L., Greenes,
R.A., Shortliffe, E.H.: GLIF3: a representation format for sharable computer-interpretable
clinical practice guidelines. J. Biomed. Inform. 37(3), 147–161 (2004)

216 P. Novais et al.

22. Shahar, Y., Miksch, S., Johnson, P.: The Asgaard project: a task-specific framework for the
application and critiquing of time-oriented clinical guidelines. Artif. Intell. Med. 14(1–2),
29–51 (1998)

23. Seyfang, A., Miksch, S., Marcos, M.: Combining diagnosis and treatment using ASBRU. Int.
J. Med. Inform. 68(1–3), 49–57 (2002)

24. Terenziani, P., Montani, S., Bottrighi, A., Torchio, M., Molino, G., Correndo, G.: The GLARE
approach to clinical guidelines: main features. Stud. Health Technol. Inform. 101(3), 162–166
(2004)

25. Tu, S.W., Campbell, J.R., Glasgow, J., Nyman, M.A., McClure, R., McClay, J., Parker, C.,
Hrabak, K.M., Berg, D., Weida, T., Mansfield, J.G., Musen, M.A., Abarbanel, R.M.: The
SAGE guideline model: achievements and overview. J. Am. Med. Inform. Assoc. 14(5), 589–
598 (2007)

26. Cornet, R., Schulz, S.: Relationship groups in SNOMED CT. Stud. Health Technol. Inform.
150, 223–227 (2009)

27. Dugas, M., Thun, S., Frankewitsch, T., Heitmann, K.U.: LOINC(R) codes for hospital infor-
mation systems documents: a case study. J. Am. Med. Inform. Assoc. 16(3), 400–403 (2009)

28. Open Clinical: Methods and tools for representing computerised clinical guidelines. http://
www.openclinical.org/gmmsummaries.html (2013)

29. Fox, J., Ma, R.T.: Decision support for health care: the PROforma evidence base. Inform. Prim.
Care 14(1), 49–54 (2006)

30. Ciccarese, P., Kumar, A., Quaglini, S.: NEW-GUIDE: a new approach to representing clinical
practice guidelines. In: Advances in Clinical Knowledge Management (Figure 1), pp. 15–18
(2002)

31. Costa, R., Neves, J., Novais, P., Machado, J., Lima, L., Alberto, C.: Intelligent Mixed Reality
for the Creation of Ambient Assisted Living, pp. 323–331. Springer, Berlin (2007)

32. Wang, D., Peleg, M., Tu, S.W., Boxwala, A.A., Ogunyemi, O., Zeng, Q., Greenes, R.A., Patel,
V.L., Shortliffe, E.H.: Design and implementation of the GLIF3 guideline execution engine. J.
Biomed. Inform. 37(5), 305–318 (2004)

33. Young, O., Shahar, Y.: The spock system: developing a runtime application engine for hybrid-
asbru guidelines. Artif. Intell. Rev. 3581(1), 166–170 (2005)

34. Isern, D., Moreno, A.: Computer-based execution of clinical guidelines: a review. Int. J. Med.
Inform. 77(12), 787–808 (2008)

35. McGuinness, D.L., Van Harmelen, F.: OWLWeb Ontology Language Overview. https://www.
w3.org/TR/owl-features/ (2004)

36. Oliveira, T., Novais, P., Neves, J.: Representation of clinical practice guideline components in
OWL. In: Pérez, J.B., Hermoso, R., Moreno, M.N., Rodríguez, J.M.C., Hirsch, B., Mathieu,
P., Campbell, A., Suarez-Figueroa, M.C., Ortega, A., Adam, E., Navarro, E. (eds.) Advances
in Intelligent Systems and Computing, vol. 221, pp. 77–85. Springer International Publishing,
Berlin (2013)

37. Oliveira, T., Satoh,K., Novais, P., Neves, J., Hosobe,H.: A dynamic default revisionmechanism
for speculative computation. Auton. Agents Multi-Agent Syst. 1–40 (2016)

38. Jamieson, S.: Likert scales: how to (ab)use them. Med. Edu. 38(12), 1217–1218 (2004)
39. Hosobe, H., Satoh, K., Codognet, P.: Agent-based speculative constraint processing. IEICE

Trans. Inf. Syst. E90–D(9), 1354–1362 (2007)
40. Visscher, S., Lucas, P.J.F., Schurink, C.A.M., Bonten, M.J.M.: Modelling treatment effects

in a clinical Bayesian network using Boolean threshold functions. Artif. Intell. Med. 46(3),
251–266 (2009)

41. Van der Heijden, M., Lucas, P.J.F.: Describing disease processes using a probabilistic logic of
qualitative time. Artif. Intell. Med. 59(3), 143–155 (2013)

42. Korb, K., Nicholson, A.: Bayesian Artificial Intelligence, 2nd edn. CRC Press, London (2003)
43. Benson, A., Bekaii-Saab, T., Chan, E., Chen, Y.J., Choti, M., Cooper, H., Engstrom, P.: NCCN

Clinical Practice Guideline in Oncology Rectal Cancer. Techical report, National Compre-
hensive Cancer Network. http://www.nccn.org/professionals/physician_gls/f_guidelines.asp
(2013)

http://www.openclinical.org/gmmsummaries.html
http://www.openclinical.org/gmmsummaries.html
https://www.w3.org/TR/owl-features/
https://www.w3.org/TR/owl-features/
http://www.nccn.org/professionals/physician_gls/f_guidelines.asp

Metamarket – Modelling User Actions
in the Digital World

Adrian Giurca

Abstract We present Metamarket (http://metamarket.info), an ontology
of user actions on the Web as a foundation for understanding user preferences from
Web activities and its relations with the state of the art. Metamarket is implemented
using the Web Ontology Language (OWL) and is the base of a platform offering
Linked Data access for the purpose of market research allowing intelligent appli-
cations to enhance local business sales and make new business insights possible.
Particularly, the use of user generated content, i.e., digital works in which data from
one or more sources is combined and presented in innovative ways, is a great way
to expose this value. Although there are many approaches to publishing and using
consumer data, we believe Linked Data is a key solution of many of the challenges
and can lower the cost and complexity of developing these applications. In addition,
Metamarket can be used to develop intelligent UX applications, responsive to user
needs, and it can be extended towards modeling emotions.

1 Introduction

eCommerce helps businesses to contact a large number of potential customers but
nowadays, customers are active onmany communication channels. Enabling flexible
eCommerce requires complex processes that combine web design and development,
online publishing, search engine optimization, behavioral advertising, reputation
management, social media management and other avenues to create a long-term
positive presence for a person, organization, or product in the digital world.

This work was supported by the Chair of Soil Protection and Recultivation of Brandenburg
University of Technology Cottbus-Senftenberg and Binarypark UG.

A. Giurca (B)
Brandenburg University of Technology Cottbus-Senftenberg,
Konrad-Wachsmann-Allee 6, 03046 Cottbus, Germany
e-mail: giurca@b-tu.de

© Springer International Publishing AG 2018
G.J. Nalepa and J. Baumeister (eds.), Synergies Between Knowledge
Engineering and Software Engineering, Advances in Intelligent
Systems and Computing 626, https://doi.org/10.1007/978-3-319-64161-4_11

217

http://metamarket.info

218 A. Giurca

Understanding consumer preferences is typically done by economics quantitative
research solutions typically based on consumer surveys. However, the Social Web
is dominated by rating systems such as the ones of Facebook (“Like”, “Love”, “Ha
ha”, “Wow”, “Sad”, “Angry”), YouTube (“Like”, “Dislike”) or the Amazon product
review 5-star rating [1]. All these systems try to pool the preferences of different
agents so as to best reflect the wishes of an agent and the population as a whole. The
main assumption derives from the theory of social choice i.e., agents have prefer-
ences, and do not try to camouflage them in order to manipulate the outcome to their
personal advantage.

In the main stream, ontologies were developed to facilitate knowledge sharing
and reuse. They are so popular due to what they promise: a common understanding
of a domain that can be communicated between application systems. They are formal
specification of conceptualizations that provide a shared and common understanding
of a domain, an understanding that can be communicated across application systems.

We introduce Metamarket an usable activity ontology to create a conceptual for
inferring user preferences related to the online content. After investigating a number
of available activity ontologies the main finding was that the word “activity” is multi-
semantic thereforemany of the developed ontological resourceswere not copingwith
our needs. Metamarket aims to stay interoperable with the Schema.org1 vocabulary
(Fig. 1).

Our goal is to provide a simple and extensible conceptual framework and tools
for understanding user preferences on the web. In a nutshell, to understand user
preferences it is necessary to

1. Design and implement activity models in a way that allows software sys-
tems/agents to conduct reasoning and manipulation. This is Metamarket.

2. Provide tools to monitor and capture the consumer behavior along with the state
of the environment.

3. Provide tools to process the perceived information towards generating a high-level
abstraction of context or situation.

4. Use tools that carry out preference recognition to perform recommendations.

Unfortunately, we were not able to adapt any of the investigated ontologies such as
such as DnS [2], NeOn [3], context modeling [4], AMOn [5], WAP [6], Date [7],
Activities of Daily Living (ADL) [8], ODP [9], ICA [10], LODE [11], OWL-ACT
[12], SNAP [13] to our goals. The difficulty of reusing was either because they were
already too complex for our goal or they were defining classes and properties not
necessary in our use case. Therefore we decided to model Metamarket.

1Schema.org (sponsored by Google, Microsoft, Yahoo and Yandex) is a collaborative, commu-
nity activity with a mission to create, maintain, and promote schemas for structured data on the
Internet. The vocabulary, covering entities, relationships between entities and actions, is developed
by an open community process and can be used with many different encodings, including RDFa,
Microdata and JSON-LD. Many applications from Google, Microsoft, Pinterest, Yandex and others
already use these vocabularies to power rich, extensible experiences.Binarypark provideshttp://
getschema.org a mediawiki website with a lot of examples and best practices on how to use
this vocabulary.

http://getschema.org
http://getschema.org

Metamarket – Modelling User Actions in the Digital World 219

Fig. 1 UML diagram of the metamarket ontology

The rest of the chapter is organized as follows:
Section2, A Brief Overview of Activity Ontologies describes existing work on

Activity Ontology and their relationshipwith our case.We provide information about
the core ontology classes and properties, their intended usage and meaning as well
as relationships between them.

Section3, the core of the chapter, presents Metamarket an ontology of atomic
actions performed by actors on digital communication channels. Metamarket aims to
provide a conceptual foundation towards understanding consumer preferences from
his digital activities. In a nutshell, Metamarket defines 46 classes and 28 properties.
20 classes define agent actions, 7 classes define entities published on online presence
channels, but an application layermay extend all these accordingwith supplementary
requirements.

Conclusions are provided in Sect. 4, Final Remarks.

220 A. Giurca

2 An Overview of Events and Activity Ontologies

Context-Aware Health Promotion Application [4], is a top level activity ontology
providing classes aiming at recognition of user activities in the context of usage of
health applications. This ontology started to conceptualize a framework of context
sensors such as phone-embedded sensors, body sensors, and other environmental
sensors, towards providing the foundation for inferring persuasive user recommen-
dations with the main goal to increase motivation in doing health related activities.
While their use case is very closed to our goals, we found very difficult to use their
findings because of two main issues: (1) the to high level of abstraction of their
concepts and (2) unavailability of this ontology in a standard Semantic Web format
such as OWL and/or RDFS (Fig. 2).

Dementia Ambient Care (DnS) [2], is an ontology designed to detect activities
of daily living (ADL) for improving the healthcare support for elderly population,
particularly to detect potentially dangerous behaviours. Apart of the conceptual mod-
eling they employed a physical sensor system such as contact sensors, cameras,
microphones to collect data from different ambient sources.

The Activity Model ONtology (AMOn) [5], provides OWL representation of the
concepts from the activity model. It is a multi-layered and modular ontology aiming
for modeling of many real world activities. The ontology includes essential aspects
of interpersonal communication activities, focusing on a specific activity (such as
job interview, body language). AMOn provides the following modules

• AbstractActivityModel,
• BootstrappedBuddyMentoringActivityModel,
• BootstrappedJobInterviewActivityModel,
• DyadicInterpersonalCommunicationActivityModel,
• InterpersonalCommunicationActivityModel.

Fig. 2 Context health classes [4]

Metamarket – Modelling User Actions in the Digital World 221

The follow up Amon+ enrich the initial version to conceptualize cultural variations
in interpersonal communication. This version has 70 classes, 16 object properties.
However, AMOn is not suitable for understanding activities on theWeb as the defined
concepts are more related to psychological intercultural communication acts.

The NeOn toolkit [3], is a state-of-the-art ontology engineering environment pro-
viding support for the ontology engineering life-cycle. The ontology covers a vari-
ety of ontology engineering activities, such as Annotation, Documentation,
Development, Human-Ontology Interaction, Knowledge Acquisition,
Management, Modularization, Matching, Reasoning, and Reuse.
NeOn defines a comprehensive set of activities (over 50 activities) to be used in
engineering tasks, including ontology engineering their main goal, but we cannot
use them to achieve user activity recognition.

WAP [6] is devoted to discovery of workflow activity patterns. The authors goal
was to provide a discovery framework to be used in a wide range of business pro-
cesses towards detecting specific patterns (called activities). The main reason of their
effort was automation of this process because the expert-based, human discovery of
workflow activity patterns in business processes is not a trivial task, mostly because
the purpose and use of any given activity can be subject of different interpretations.
However, the work was not suitable for our purpose as the ontology defines four
main concepts Activity, Message, Signal, and Pattern.

Activity Ontologies for Intelligent Calendar Applications (ICA) [10] is a sig-
nificant work as calendar applications are frequently used by millions of people
world-wide. ICA is built on traditional electronic calendars, by empowering them
with efficient scheduling techniques. Obviuosly they needed a much more detailed
description of events beyond existing XML based formats to describe events, such
as iCalendar, which do not provide enough context to describe a rich event. ICA
has been designed to describe events, their temporal aspects, as well as the users
constraints and preferences about these events. ICA defines (Fig. 3):

• 114 OWL classes, including Meeting, Calendar, TimeProgramOrganizer, DateIn-
terval, Interval, ComboInterval,

• 127 subclass relations,
• 16 equivalent classes,
• 12 object properties,
• 3 data properties, and
• 207 named individual objects.

and use resources from other ontologies such as FOAF [14] (used to represent user
related information, like names, addresses, contact info), OWL-Time ontology [15]
(to define time related information, such as duration, dates, intervals), Geo OWL
ontology [16] (to describe spatial information, such as the latitude or the longitude
of a specific location).

Linking Events with Media (LODE) [11, 17] defines a minimal model of most
useful properties for describing events. The goal of this ontology is to enable inter-
operability from the perspective of what happened (lode:Event), where did it

222 A. Giurca

Fig. 3 Class hierarchy for
the WAP ontology [6]

happen (lode:atPlace,lode:inSpace),whendid it happen (lode:atTime,
lode:circa), and who was involved (lode:involvedAgent).2

It is worth to mention a very similar model proposed by Van Hage et al. [18], a
simple RDF model for describing any event based on its type (what), its location
(where), its participants (who) and its temporal information (when), allowing for a
large category of questions to be answered using simple SPARQL queries (Fig. 4).

Date [7] is a formal ontology to define time dates on theWeb as the representation
of dates and their relationship to time and duration has long been recognized as an
important problem in commonsense reasoning. Although this formalism introduced
a complete approach of duration, time and date it is far limited for our goal.

Activities of Daily Living (ADL) [8] aims to provide an overview addressing the
state-of-the-art in the area of activity recognition, in particular, in the area of object-
based activity recognition.However, theirwork is focusingon real life activitymodels
such as MakeHotDrink or MakeMeal as such there is little chance to be usable
for consumer activity recognition on the web (Fig. 5).

DESO [19] and the follow upABDES [20] are significant work on complex events
modeling and agent-based simulation. DESO is a top level ontology for discrete event
system modeling derived from the foundational ontology UFO. The main purpose
of DESO is to provide a basis for evaluating discrete event simulation languages.
DESO is divided into the run-time ontology DESO-I defining the necessary events
an event simulator may deal with, and design-time ontology DESO-U describing the

2See http://linkedevents.org/ontology/ for the latest specification.

http://linkedevents.org/ontology/

Metamarket – Modelling User Actions in the Digital World 223

Fig. 4 The radiohead Haiti relief concert described with LODE [11]

Fig. 5 Activities of daily living [8]

entity types. This distinction comes from the MDA approach and it is very useful
from the perspective of software engineering, offering the developer the complete
framework to design and implement a discrete event simulator. A very important
feature is the ontologies are modeled with UML as such making them easy familiar
with the developers (Fig. 6).

Both ontologies are top level or foundational while our goal was to consider an
immediate usable one along with a tight requirement to stay aligned with concepts
of Schema.org. However, their approach is very relevant for software engineers and
it is worth to research on Metamarket aligned with DESO.

ODP [9] has been formally encoded3 using the Web Ontology Language (OWL)
which is a great achievement as makes it available for reasoning on theWeb. The core
relationships are temporal and somehow cope with our development of Metamar-
ket. Spatiotemporal relations are captured through the properties takesPlaceAt
(indicates the place where an activity happens), hasStart, hasEnd (the time
an activity starts/ends) as well as hasDuration (the time period that an activ-

3See http://descartes-core.org/ontologies/activities/1.0/
ActivityPattern.owl.

http://descartes-core.org/ontologies/activities/1.0/ActivityPattern.owl
http://descartes-core.org/ontologies/activities/1.0/ActivityPattern.owl

224 A. Giurca

Fig. 6 Individuals and universals in discrete event simulation [19]

Fig. 7 A schematic view of the activity ODP [9]

ity lasts. Obviously duration equals the difference between the start and end time)
(Figs. 7, 8, 9).

Although Metamarket is more comprehensive and equally more narrow on Web
activities we found Activity ODP a great source of inspiration. In addition we would
like to point out http://ontologydesignpatterns.org where the reader
can find a great source of professionally designed Ontology Patterns.

OWL-ACT [12] defines an Activity ontology similar with ICA [10] There
is a top level Activity class and a taxonomy of different sub-activities based
on specific constraints applicable to that kind of activity, e.g., the number of
participants (SocialActivity), or distinct properties of such subtypes (e.g.
CarnivalParty). However, their total work focuses on identifying indoor com-

http://ontologydesignpatterns.org

Metamarket – Modelling User Actions in the Digital World 225

Fig. 8 OWL 2 activity ontology: core classes and properties [12]

Fig. 9 Social activities [12]

226 A. Giurca

plex human activities, from data provided by smart home sensors it is quite difficult
to apply in the Web context.

SNAP [13] is an e-commerce ontology developed for automated recommendation
systems for the domains of banking, insurance, and telephony. SNAP stands for
Situations, Needs, Actions, and Products.

TO DO Obviously there is much more research on modeling Web objects and
their interactions than we provided here.

3 Metamarket

Metamarket4 is an ontology of activities on digital communication channels provid-
ing a conceptual foundation towards understanding consumer preference from his
digital activities.

Schema.org does not offer up to date OWL description of its resources and is
beyond the scope of this work to discuss this issue. However, using http://
schema.org/docs/schemaorg.owl the reader will get a historical OWL ver-
sion. Despite that the OWL description it is quite intuitive following Schema.org
website.

3.1 Metamarket Entities

Metamarket features only a limited number of entities, particularly those interesting
for our case but it can be easily extended with many more according with other
applications needs.

Metamarket uses the following prefixes:

@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@PREFIX s: <http://schema.org/>

@PREFIX b: <http://metamarket.info/>

@PREFIX xs: <http://www.w3.org/2001/XMLSchema/>

Metamarket defines the following entities:

• Organization – describes an organization from the perspective of its location
members and digital channels it manages.

• Place – a class used for describing a location.
• Persona – a class to represent a visitor of an online presence channel.
• Contributor – a person which is content creator in the ecosystem
• OnlinePresence (with subclasses Website, SocialMedia and App) –
defines the digital channels. An organization can publish content on one or more

4 See http://metamarket.info.

http://schema.org/docs/schemaorg.owl
http://schema.org/docs/schemaorg.owl
http://metamarket.info

Metamarket – Modelling User Actions in the Digital World 227

channels, can monitor all online presence channels and can reply on people’s
reactions on a particular channel.

• Content (with subclasses Article, Event, Offer, Coupon) – classes
describing various kinds of content that can pe published on the online presence
management channels.

All Metamarket content is subclass of the abstract class Content. This class
defines the domain of property profile. The value of this property is of type
DocumentProfile. A document profile is a derived class that can be computed
from the document content. Usually is subject of a summarization and classification
algorithm. Metamarket let the users of the ontology to define this class according
with their own requirements. Usually, Consumer/Document profile is characterized
by a set of properties, each property with a range of values. Metamarket does not
impose any definition of such profile. Example of properties are (see also [1]):

• Categorical Properties:

– nominal properties, such as gender with a discrete range of 3 values. The
range is discrete and there is no order between the values.

– ordinal properties such as ratingwith possible range values 1star - 5star. The
range is discrete and the range values are ordered.

• Numerical Properties:

– discrete properties such as noLikes. The range is usually infinite usually an
infinite subset of integers (distinct and separated values).

– continuous properties such as visitLength. The range is usually infinite
usually occupying an interval of real numbers.

3.1.1 Organization, Place

The class Organization describes an organization from the perspective of its
location members and digital channels it manages. Obvious properties such as name
or image are part of its description too. In Metamarket organizations are owners of
digital content (see the abstract class Content). The organizationmembers (Contribu-
tor) are content creators. Particularly to Metamarket, organizations are in the domain
of the property channels featuring the online presence marketing channels an
organization manages (Fig. 10).

Example 1 (Organization)

<http://metamarket.info/org/12345> [

rdf:type <http://schema.org/Organization>;

b:websites <http://metamarket.info/domains/12345>;

b:websites <...>;

228 A. Giurca

Fig. 10 Metamarket organization model

b:individualApps <http://metamarket.info/apps/12345>;

b:individualApps <...>;

b:communityApps <http://metamarket.info/apps/12346>;

b:communityApps <...>;

b:tag "Restaurant"@de;

b:tag "...";

s:location <http://metamarket.info/place/c30726a4>;

s:founder <http://metamarket.info/person/c212dc21>

]

Place is a class used for describing a location. This is class is part of the domain
of various location related properties such as address or geo. In Metamarket
Place is also in the domain of openingHoursSpecification as described
in the below example.

Example 2 (Place)

<http://metamarket.info/place/24309384> [

rdf:type <http://schema.org/Place>;

s:address [

s:type <http://schema.org/PostalAddress>;

s:streetAddress "Berliner Platz 6";

s:postalCode "03046";

s:addressLocality "Cottbus";

s:addressCountry "Germany";

];

s:geo [

Metamarket – Modelling User Actions in the Digital World 229

rdf:type <http://schema.org/GeoCoordinates>;

s:elevation "100.23"ˆˆxs:float; // actually not set

s:latitude "50.23442"ˆˆxs:float;

s:longitude "45.0000"ˆˆxs:float;

];

s:openingHoursSpecification [

s:type <http://schema.org/OpeningHoursSpecification>;

s:closes "19:00:00"ˆˆxs:time;

s:opens "09:00:00"ˆˆxs:time;

s:dayOfWeek "Monday";

];

s:openingHoursSpecification [

s:type <http://schema.org/OpeningHoursSpecification>;

s:closes "19:00:00"ˆˆxs:time;

s:opens "09:00:00"ˆˆxs:time;

s:dayOfWeek "Tuesday";

];

].

3.1.2 Persona

Metamarket employs a consumer-centered design. The classPersona describes the
fictional visitors representing different user types that use one ormore online presence
channels to interactwith the content provided by organizations.Metamarket personas
are described by properties such as ageGropup, gender and interest. Due
to the open and modular character of the Metamarket ontology, Persona can be
extended with other kinds of properties according with users use cases (Fig. 11).

Metamarket Persona is suppose to build on user sharing of data and as well as
inferences based on users activities. We consider certainty factors model to infer
personas from behavioral patterns.

The current persona profile is based on the below properties.

Fig. 11 Metamarket persona model

230 A. Giurca

• ageGroup is a propertywith 7 possible values:13-20,21-30,31-40,41-50,
51-60, 61-70, and >71. Minimum 1 value is required (cannot be empty)

• interest is a property with at most 5 values (keywords).Min 1 value is required
(cannot be empty)

• gender is a property with 3 possible values. Min 1 value is required (cannot be
empty)

• cf is the confidence factor. cf="1.0"8s:float means complete confidence.
If cf is missing then the default value is 1.

Example 3 (Persona)

<http://metamarket.info/person/3465754667> [

rdf:type <http://schema.org/Person>;

s:url "http://facebook..."ˆˆxs:anyURI; // private.

b:informs _:b39220121x61717;

b:profile [

rdf:type <http://metamarket.info/Persona>;

b:platform "Android";

b:version "4.1.2";

b:gender : [

rdf:type <http://metamarket.info/GenderType>;

b:suggestedGender": "male";

b:cf "0.6"ˆˆxs:float;

];

b:ageGroup [

rdf:type <http://metamarket.info/AgeGroup>;

b:suggestedMinAge "31"ˆˆxs:positiveInteger;

b:suggestedMaxAge "40"ˆˆxs:positiveInteger;

];

b:interest [

rdf:type <http://metamarket.info/Interest>;

b:valueName "education"@en;

b:cf "0.6ˆˆxs:float

];

b:interest [

rdf:type <http://metamarket.info/Interest>;

b:valueName "lifestyle"@en;

b:cf "0.4ˆˆxs:float

];

];

]

Metamarket – Modelling User Actions in the Digital World 231

3.1.3 Online Presence

Online Presence is the sum of all digital platforms that can be used by an individual
or a company to present and draw attention on services and products they provide.
Nowadays the most important online communication channels where you can meet
prospects and customers are:

1. The Mobile Channel: the organization mobile application, community mobile
apps etc.

2. The Social Media Channel: Facebook, Twitter, LinkedIn, Xing, Instagram,
Google+, private social networks.

3. The Web Channel: the organization website - world wide accessible, multi lan-
guage, indexed by search engines.

Example 4 (Online Presence)

<http://metamarket.info/domain/c212dc21> [

rdf:type <http://schema.org/WebPage>;

b:id "c212dc21-4670-4206-a569-a0e43b7e6990"; // private

s:name "some.domain.de"; // private

].

<http://metamarket.info/app/c212dc22> [

rdf:type <http://schema.org/MobileApplication>;

s:name "App name"; // private

b:appType "individual"; // "community"

b:playStoreUrl "https://..."ˆˆxs:anyURI; // private

b:appStoreUrl "https://..."ˆˆxs:anyURI; // private

//...

].

3.1.4 Article and Subclasses

Following the development of Schema.org creative content, Metamarket introduces
a basic set of news content:

1. Article – content general interest or of a specific topic.
2. BlogPosting – news content usually with relatively short life time. An

announcement the organization is doing to its followers.
3. Poster – a meaningful and representative picture of an organization. It may

feature a product an achievement, a landscape and so on.
4. Video – a video of an organization published on online presence channels.

Usually it had a title and a description and a media object encoding the video

232 A. Giurca

Fig. 12 Metamarket article model

content. In addition the creator may provide other information such as language
information and keywords (Fig. 12).

Example 5 (Article)

<http://metamarket.info/post/3842852384> [

rdf:type <http://schema.org/BlogPosting>;

b:hasPhoto "true"ˆˆxs:boolean;

b:hasVideo "false"ˆˆxs:boolean;

s:url "http://..."ˆˆxs:anyURI; //private

s:name "Release of Deliberation RuleML 1.01"; //private

s:headline "The specification ..."; //private

s:inLanguage "en-GB";

s:dateCreated "2014-07-30T00:54:25+02:00"ˆˆxs:dateTime;

s:author <http://metamarket.info/org/73201e52>;

s:publisher <http://metamarket.info/org/73201e52>;

s:keywords "Version Release";

s:keywords "Deliberation RuleML";

b:offers <http://metamarket.info/offer/464564687>;

b:profile [

rdf:type <http:http://metamarket.info/DocumentProfile>;

...

];

].

Metamarket – Modelling User Actions in the Digital World 233

Fig. 13 Metamarket event model

3.1.5 Event

The class Event is defined to describe various real life events such as festivals, an
artist performing on stage, media events created for advertising, party, sport events
such as championship and so on. All of these share a temporal availability encoded
by properties such as startDate endDate, duration.

Metamarket events may also feature offers such as ticket sales or brand object
sales. Obviously an applicationmay reason on the temporal properties – an eventmay
happen in the future, close to actual time, happening right now or expired (happened
in the past) (Fig. 13).

Example 6 (Event)

<http://metamarket.info/event/8289247> [

rdf:type <http://schema.org/Event>;

s:url "http://..."ˆˆxs:anyURI;//private

s:organizer <http://metamarket.info/org/23227327>;

s:dateCreated "2012-10-01T14:00:00+01:00"ˆˆxs:dateTime;

s:startDate "2012-11-06T00:00:00+01:00"ˆˆxs:dateTime;

s:endDate "2012-11-11T23:59:59+01:00"ˆˆxs:dateTime;

s:duration "P5D"ˆˆxs:duration;

s:location <http://metamarket.info/place/24309384>;

s:offers <http://metamarket.info/offer/464564687>;

s:offers <http://metamarket.info/offer/464535456>;

b:hasPhoto "true"ˆˆxs:boolean;

b:hasVideo "true"ˆˆxs:boolean;

234 A. Giurca

b:inLanguage "de-DE";

b:summary "..."; //private

b:profile [

rdf:type <http:http://metamarket.info/DocumentProfile>;

...

];

].

3.1.6 Offer

The class Offer describes an organization product or service offered to the potential
customers at a specific price and during a limited amount of time (validFrom,
validThrough). Additional properties such as seller, eligibleRegion,
as well as language information can be provided (Fig. 14).

Example 7 (Offer)

<http://metamarket.info/offer/464564687> [

rdf:type <http://schema.org/Offer>;

s:url "http://..."ˆˆxs:anyURI; //private

s:seller <http://metamarket.info/org/9a303878>;

s:description "The offer description"; //private

s:validFrom "2012-11-01T23:59:59+01:00"ˆˆxs:dateTime;

s:validThrough "2012-11-02T23:59:59+01:00"ˆˆxs:dateTime;

s:price "49.00"ˆˆxs:float;

s:priceCurrency "EUR";

s:category "film";

s:category "other";

s:eligibleRegion "Lausitz";

s:offers <http://metamarket.info/offer/464535459>;

b:inLanguage "de-DE";

b:dateCreated "2014-05-07T10:45:17+02:00"ˆˆxs:dateTime;

b:hasPhoto "true"ˆˆxs:boolean;

b:hasVideo "false"ˆˆxs:boolean;

b:profile [

rdf:type <http:http://metamarket.info/DocumentProfile>;

...

];

].

Metamarket – Modelling User Actions in the Digital World 235

Fig. 14 Metamarket offer model

3.1.7 Coupon

MetamakretCoupon features a special kind of offer particularly from the perspective
of price formation and availability. A coupon can be issued at a fixed price, limited
quantity (inventoryLevel) or the price can evolve according with the seller
auction rules (priceAuction), or any consistent combination of these properties
(Fig. 15).

Example 8 (Coupon)

<http://metamarket.info/coupon/454664687> [

rdf:type <http://metamarket.info/Coupon>;

b:id "564687464"; //private

s:name "FestPass"; //private

s:url "http://..."ˆˆxs:anyURI; //private

s:description "some description"; // private

s:image ""http://..."ˆˆxs:anyURI"//private.

s:seller <http://metamarket.info/org/9a303878>;

b:dateCreated "2016-07-07T10:45:17+02:00"ˆˆxs:dateTime;

s:validFrom "2012-11-01T23:59:59+01:00"ˆˆxs:dateTime;

s:validThrough "2012-11-02T23:59:59+01:00"ˆˆxs:dateTime;

s:price "49.00"ˆˆxs:float; // may have a price

s:priceCurrency "EUR";

s:inventoryLevel [

236 A. Giurca

rdf:type <http://schema.org/QuantitativeValue>;

s:value "101"ˆˆxs:positiveInteger;

];

b:priceAuction [

rdf:type <http://metamarket.info/PriceAuction>;

b:priceAuctionSpecification

<http://metamarket.info/PriceAuction/1234sli45ys4687>

];

b:priceAuction [

rdf:type <http://metamarket.info/PriceAuction>;

b:priceAuctionSpecification

<http://metamarket.info/PriceAuction/1234sli45ys4688>

];

s:category "pants";

s:eligibleRegion "Berlin";

b:inLanguage "de-DE";

b:hasPhoto "true"ˆˆxs:boolean;

b:hasVideo "true"ˆˆxs:boolean;

b:profile [

rdf:type <http:http://metamarket.info/DocumentProfile>;

...

];

].

Fig. 15 Metamarket coupon model

Metamarket – Modelling User Actions in the Digital World 237

Fig. 16 Metamarket ReadAction, WatchAction model

3.2 Metamarket Actions

Metamarket actions are events produced by an actor (Persona) using a specific
channel (instrument) on a specific content (see Content). Some of the actions
are duration events i.e., they define startTime, endTime and duration values.
Apart of the ontological definition a Metamarket application may define supplemen-
tary properties such as referrer to be used to better understand the user behavior
when navigating on organization pages.

3.2.1 ReadAction, WatchAction

A ReadAction is a duration event and happens when a visitor reads the content
produced by an organization on a specific online presence channel. For example, a
visitor reading a blog post published in a mobile application, on a Facebook page or
on a website. ReadAction is the act of consuming written content (Fig. 16).

A WatchAction is a duration event happening when a visitor watch visual
content published by an organization. The visual content can be placed in any of
the specialized kinds of content (Article, BlogPosting, Poster, Video,
Event, Offer, Coupon). WatchAction is the act of consuming visual content.

Example 9 (ReadAction)

<http://metamarket.info/action/1s2ffgvb4309fe4> [

rdf:type <http://schema.org/ReadAction>;

s:agent <http://metamarket.info/person/24309384>;

s:object <http://metamarket.info/article/26967ca6>;

s:instrument [

rdf:type <http://schema.org/MobileApplication>

b:id "UUID"// private

];

238 A. Giurca

s:startTime "2012-10-01T14:00:00+01:00"ˆˆxs:dateTime;

s:endTime "2012-10-01T14:05:00+01:00"ˆˆxs:dateTime;

b:duration "P00Y00M00DT00H05M00S"ˆˆxs:duration;

b:referrer "http://..."ˆˆxs:anyURI; // private

].

3.2.2 CommunicateAction, SMSAction

A CommunicateAction happens when a persona have a phone call with an orga-
nization using one of the online presence channels. Frequently this happens using a
mobile application (the instrument type is "http://schema.org/Mobile
Application") and typically this action is recorded when the user intends to start
the call. As such, the CommunicateAction while defines a startTime does
not define a an endTime and, by consequence a duration (Fig. 17).

A SMSAction is very similar with CommunicateAction but encodes the
fact that the communication act is not voice but text.

Example 10 (CommunicateAction)

<http://metamarket.info/action/1s2ffgvb4309384> [

rdf:type <http://schema.org/CommunicateAction>;

s:agent <http://metamarket.info/person/24309384>;

s:object <http://metamarket.info/place/20894weer0031>;

s:instrument [

rdf:type <http://schema.org/MobileApplication>

b:id "UUID"

];

s:startTime "2012-10-01T14:00:00+01:00"ˆˆxs:dateTime;

].

<http://metamarket.info/action/1s2ffgvb4309aa4> [

rdf:type <http://schema.org/CommunicateAction/SMSAction>;

...

].

3.2.3 MoveAction

A MoveAction happens when an agent uses a specific instrument to (virtually)
navigate to a specified location. Apart of the usual agent, and instrument

Metamarket – Modelling User Actions in the Digital World 239

Fig. 17 Metamarket CommunicateAction, SMSAction model

Fig. 18 Metamarket MoveAction model

such action defines the property toLocation (with range Place) meaning the
encoding of the location were the agent intends to relocate (Fig. 18).

Example 11 (MoveAction)

<http://metamarket.info/action/2a2fae23b4309aa4> [

rdf:type <http://schema.org/MoveAction>;

s:agent <http://metamarket.info/person/24309384>;

s:toLocation <http://metamarket.info/place/20894weer0031>;

s:instrument [

rdf:type <http://schema.org/WebApplication>

s:url "http://..."ˆˆxs:anyURI //private

];

s:startTime "2012-10-01T14:00:00+01:00"ˆˆxs:dateTime;

].

3.2.4 OrganizeAction

Schema.org defines such action as “The act of manipulating, administering, super-
vising or controlling one or more objects.”. Metamarket uses OrganizeAction
to record the event of an agent saving an organization business card into his business
cards list (Fig. 19).

240 A. Giurca

Fig. 19 Metamarket OrganizeAction model

Example 12 (OrganizeAction)

<http://metamarket.info/action/2a2fsd2234357aae> [

rdf:type <http://schema.org/OrganizeAction>;

s:agent <http://metamarket.info/person/24309384>;

s:object <http://metamarket.info/org/1335466097>;

s:instrument [

rdf:type <http://schema.org/MobileApplication>

b:id "UUID" // private

];

s:startTime "2012-10-01T14:00:00+01:00"ˆˆxs:dateTime;

].

3.2.5 ScheduleAction, JoinAction

A ScheduleAction happens when a persona intends to schedule one or more
tasks. Particularly this can be an “add to calendar” action i.e. the act of a person
saving to his own calendar a specific event (Fig. 20).

A JoinAction happens when an agent express its intent to join a specific event
published by an organization on a specific channel.

Fig. 20 Metamarket ScheduleAction, JoinAction models

Metamarket – Modelling User Actions in the Digital World 241

Both actions does not have duration as they are modeled as intents and therefore
not monitored.

Example 13 (Schedule, Join)

<http://metamarket.info/action/2a2fsd2234aer47e> [

rdf:type <http://schema.org/ScheduleAction>;

s:agent <http://metamarket.info/person/24309384>;

s:object <http://metamarket.info/event/208940031>;

s:instrument [

rdf:type <http://schema.org/WebApplication>

s:url "http://..."ˆˆxs:anyURI //private

];

s:startTime "2012-10-01T14:00:00+01:00"ˆˆxs:dateTime;

].

<http://metamarket.info/action/2a2fsd791e3f7baf> [

rdf:type <http://schema.org/JoinAction>;

...

].

3.2.6 ConsumeAction

A ConsumeAction happens when an actor claim an Offer or consume a
Coupon. As for the other defined actions,Metamarket does notmake any assumption
of the application layer workflow implementation. Each application using Metamar-
ket should provide its own workflow implementation (Fig. 21).

Example 14 (ConsumeAction)

<http://metamarket.info/action/asr45nd7d58cfn58> [

rdf:type <http://schema.org/ConsumeAction>;

s:agent <http://metamarket.info/person/24309384>;

s:object <http://metamarket.info/offer/178a1a1f>;

s:instrument [

rdf:type <http://schema.org/MobileApplication>

b:id "UUID"

];

s:startTime "2012-10-01T14:00:00+01:00"ˆˆxs:dateTime;

].

242 A. Giurca

Fig. 21 Metamarket ConsumeAction model

Fig. 22 Metamarket ChooseAction model

3.2.7 ChooseAction

A ChooseAction occurs when a actor agree to set values for its Persona profile. As
in the below example, there may be many objects produced by this action such as
one for age group profiling or about user’s interests (Fig. 22).

Example 15 (ChooseAction)

<http://metamarket.info/action/a3sh45dsj74gt5> [
rdf:type <http://schema.org/ChooseAction>;
s:agent <http://metamarket.info/person/24309384>;
s:object [

rdf:type <http://schema.org/PeopleAudience>;
s:name "31-40"; //private
s:suggestedMinAge 31;
s:suggestedMaxAge 40;
s:suggestedGender "male"@en;

];
s:object [

rdf:type <http://schema.org/Intangible/PropertyValueSpecification>;
s:multipleValues <http://schema.org/True>;
s:name "Interest"@en; //private
s:valueName "education"@en;
s:valueName "lifestyle"@en;

Metamarket – Modelling User Actions in the Digital World 243

];
s:instrument [

rdf:type <http://schema.org/MobileApplication>
b:id "UUID"

];
s:startTime "2012-10-01T14:00:00+01:00"ˆˆxs:dateTime;

].

3.2.8 TrackAction

A TrackAction occurs when a consumer request content available only for a
specific location. So, is not the application requesting the user location. Location is
delivered either the request comes from amobile presence or from aweb application.
The action also encodes the requestmethod: either anusual text searchor by consumer
providing his own location. A radius related to the center of the location can be
provided too (Fig. 23).

Example 16 (TrackAction)

<http://metamarket.info/action/a5dkf74nf3> [
rdf:type <http://schema.org/TrackAction>;
s:agent <http://metamarket.info/person/24309384>;
s:instrument [

rdf:type <http://schema.org/WebApplication>
s:url "http://binarypark.org"ˆˆxs:anyURI

];
s:deliveryMethod

<http://metamarket.info/deliveryMethod/textSearch> ;
// <http://metamarket.info/deliveryMethod/geoLocation>

s:startTime "2015-10-01T14:00:00+01:00"ˆˆxs:dateTime;
s:result [

rdf:type <http://schema.org/GeoCircle>
s:geoMidpoint [

rdf:type <http://schema.org/GeoCoordinates> ;
s:latitude "40.75";
s:longitude "73.98";
s:address [

rdf:type <https://schema.org/PostalAddress> ;
s:addressCountry "de";
s:addressLocality "Berlin";
s:addressRegion "Brandenburg";

]
];
s:geoRadius <http://metamarket.info/radius/km25> // km50, km100

]
].

244 A. Giurca

Fig. 23 Metamarket TrackAction model

3.2.9 CommentAction

The CommentAction records the act of generating a comment about a pub-
lished content. OnlinePresence channels such as Website, App, Facebook,
Twitter, LinkedIn, Xing, Google+ allows readers to react to the content in
the form of comments (Fig. 24).

Example 17 (CommentAction)

<http://metamarket.info/action/t4llo56dndd64> [

rdf:type <http://schema.org/CommentAction>;

s:agent <http://metamarket.info/person/24309384>;

s:object <http://metamarket.info/article/26967ca6>;

s:instrument [

rdf:type <http://schema.org/MobileApplication>

// <http://schema.org/WebApplication>

b:id "UUID"

// s:url "http://binarypark.org"ˆˆxs:anyURI

];

s:startTime "2012-10-01T14:00:00+01:00"ˆˆxs:dateTime;

].

Fig. 24 Metamarket CommentAction model

Metamarket – Modelling User Actions in the Digital World 245

Fig. 25 Metamarket BookmarkAction model

3.2.10 BookmarkAction

TheBookmarkAction is the action of an agent tomark a specific content published
by an organization on one of its online presence channels. For example on Facebook
an user can “Save a post”, on an e-commerce website an user can add a product to
the wishlist and so on (Fig. 25).

Example 18 (BookmarkAction)

<http://metamarket.info/action/ag57dk6h73> [

rdf:type <http://schema.org/BookmarkAction>;

s:agent <http://metamarket.info/person/24309384>;

s:object <http://metamarket.info/event/133546335460973354>;

s:instrument [

rdf:type <http://schema.org/MobileApplication>

b:id "UUID"

];

s:startTime "2012-10-01T14:00:00+01:00"ˆˆxs:dateTime;

].

3.2.11 VoteAction

The VoteAction is the action of an agent to rate specific content published by an
organization on one of its online presence channels.On concrete channels rating takes
various forms. By defaultMetamarket uses a five star rating scale (rating values from
1 to 5) but an application may define another object as result of this action (Fig. 26).

Votingmay be used by a third party application to asses consumer preferences [1].

Example 19 (VoteAction)

<http://metamarket.info/action/2r456dnt65> [

rdf:type <http://schema.org/VoteAction>;

s:agent <http://metamarket.info/person/24309384>;

s:object <http://metamarket.info/article/26967ca6-01928>;

s:instrument [

rdf:type <http://schema.org/WebApplication>

s:url "http://binarypark.org"ˆˆxs:anyURI

246 A. Giurca

];

s:startTime "2012-10-01T14:00:00+01:00"ˆˆxs:dateTime;

s:option [

rdf:type <http://schema.org/Rating>;

s:ratingValue "4"

];

].

3.2.12 LikeAction, DislikeAction, ShareAction

The LikeAction (DislikeAction) encodes the agent sentiment against the
content published on a specific online channel such as Facebook or Twitter, but, of
course it can be implemented on websites and apps too. Like and dislike may be
used, together with voting to asses consumer preferences [1] (Figs. 27, 28).

The ShareAction is the act of distribution content to other people. It includes
email and typical sharing on social media.

Example 20 (LikeAction)

<http://metamarket.info/action/asd4g56b90> [

rdf:type <http://schema.org/LikeAction>;

// <http://schema.org/DislikeAction>;

// <http://schema.org/ShareAction>;

s:agent <http://metamarket.info/person/24309384>;

s:object <http://metamarket.info/offer/464564687>;

s:instrument [

rdf:type <http://schema.org/MobileApplication>

b:id "UUID"

];

s:startTime "2012-10-01T14:00:00+01:00"ˆˆxs:dateTime;

].

Fig. 26 Metamarket VoteAction model

Metamarket – Modelling User Actions in the Digital World 247

Fig. 27 Metamarket LikeAction, DislikeAction, ShareAction models

3.2.13 RegisterAction, UnRegisterAction, ViewAction

Example 21 (RegisterAction)

<http://metamarket.info/action/ar3n35dnd53> [

rdf:type <http://schema.org/RegisterAction>;

s:agent <http://metamarket.info/person/24309384>;

s:object <http://metamarket.info/org/208940031>;

s:instrument [

rdf:type <http://schema.org/MobileApplication>

// <http://schema.org/WebApplication>

b:id "UUID"

// s:url "http://binarypark.org"ˆˆxs:anyURI

];

s:startTime "2014-10-01T14:00:00+01:00"ˆˆxs:dateTime;

].

4 Final Remarks

Ontologies are becoming a recognized vehicle for knowledge reuse, knowledge shar-
ing, and modeling. In this chapter we presented Metamarket, a practical ontology of
actions for the description of user interactions on the digital world. The relevance of

248 A. Giurca

Fig. 28 Metamarket RegisterAction, UnRegisterAction, ViewAction models

this work is motivated by the difficulty that data analyzers have in determining which
vocabularies to use to describe user interactions with the digital content. The main
results described in this chapter include: (1) a state of the art on research on activ-
ity ontologies, (2) the complete UML model of the Metamarket ontology including
examples for each of the significant concepts and (3) availability of this ontology
at http://www.metamerket.info ready to be used by other practitioners.
The ontology is implemented using the Web Ontology Language (OWL) standard.
Metamarket can be used to develop intelligent UX applications, responsive to user
needs. Other interesting future work refers to extendMetamarket towards describing
and inferring emotions. The first step should concern the description of user affec-
tive states. Metamarket can be easily aligned with Schema.org vocabulary, and give
the user the complete freedom with respect of extensibility. In addition, enterprise
applications would have great benefits using Metamarket particularly in areas such
as content generation related to the user activities.

Acknowledgements We would like to express our very great appreciation to Prof. Daniel Baier
from Universität Bayreuth for his valuable and constructive suggestions during the planning of this
research work. Particularly, his technical suggestions with respect of marketing research require-
ments for deriving preferences are very much appreciated. We also want to express our gratitude to
Matthias Tylkowski and Martin Müller from Binarypark, the company hosting and maintaining all
our running services.

References

1. Giurca, A., Baier, D., Schmitt, I.: What is in a like? Preference aggregation on the social
web. Data Science, Learning by Latent Structures, and Knowledge Discovery, pp. 435–444.
Springer, Berlin (2015)

2. Meditskos, G., Dasiopoulou, S., Efstathiou, V., Kompatsiaris, I.: Ontology patterns for complex
activity modelling. In: International Workshop on Rules and Rule Markup Languages for the
Semantic Web, pp. 144–157. Springer, Berlin (2013)

http://www.metamerket.info

Metamarket – Modelling User Actions in the Digital World 249

3. Suarez-Figueroa,M.C., Gomez-Perez, A.: Towards a glossary of activities in the ontology engi-
neering field. In: Proceedings of the Sixth International Language Resources and Evaluation
(LREC’08), Marrakech, Morocco, 28–30 May 2008

4. Dewabharata, A., Wen, D.M.H., Chou, S.Y.: An activity ontology for context-aware health
promotion application. In: 2013 IEEE 37th Annual Computer Software and Applications Con-
ference Workshops (COMPSACW), pp. 421–426. IEEE (2013)

5. Thakker, D., Denaux, R., Dimitrova, V.: Activity model ONtology (AMOn) (2011). http://
imash.leeds.ac.uk/ontology/amon/

6. Ferreira, D.R., Alves, S., Thom, L.H.: Ontology-based discovery of workflow activity patterns.
In: International Conference on Business Process Management, pp. 314–325. Springer, Berlin
(2011)

7. Gruninger, M., Katsumi, M.: An activity-based ontology for dates. In: 2015 AAAI Spring
Symposium Series (2015)

8. Chen, L., Nugent, C.: Ontology-based activity recognition in intelligent pervasive environ-
ments. Int. J. Web Inf. Syst. 5(4), 410–430 (2009)

9. Abdalla, A., Hu, Y., Carral, D., Li, N., Janowicz, K.: An ontology design pattern for activity
reasoning. In: Proceedings of the 5th International Conference on Ontology and SemanticWeb
Patterns, vol. 1302, pp. 78–81 (2014). http://CEUR-WS.org

10. Konstantinos, A., Ioannis, R.: Activity ontologies for intelligent calendar applications. In:
Proceedings of the 7th Balkan Conference on Informatics Conference, p. 17. ACM (2015)

11. Troncy, R., Malocha, B., Fialho, A.T.: Linking events with media. In: Proceedings of the 6th
International Conference on Semantic Systems, p. 42. ACM (2010). Ontology available at
http://linkedevents.org/ontology/

12. Riboni, D., Bettini, C.: OWL 2 modeling and reasoning with complex human activities. Per-
vasive Mob. Comput. 7(3), 379–395 (2011)

13. Morgenstern, L., Riecken, D.: SNAP: an action-based ontology for e-commerce reasoning.
In: Formal Ontologies Meet Industry, Proceedings of the 1st International Workshop FOMI
(2005). http://www-formal.stanford.edu/leora/snap9z.pdf. Accessed 15
Aug 2015

14. Brickley, D., Miller, L.: FOAF vocabulary specification 0.99. Namespace document (2012).
http://xmlns.com/foaf/spec/

15. Hobbs, J.R., Pan, F.: An ontology of time for the semantic web. ACM Trans. Asian Lang. Inf.
Proces. (TALIP) 3(1), 66–85 (2004)

16. Lieberman, J., Singh, R., Goad, C.: W3C geospatial vocabulary. W3C Incubator Group Report
(2007)

17. Shaw, R., Troncy, R., Hardman, L.: LODE: linking open descriptions of events. In: 4th Asian
Semantic Web Conference (ASWC’09) (2009)

18. Van Hage, W.R., Malaise, V., Segers, R., Hollink, L., Schreiber, G.: Design and use of the
simple event model (SEM). Web Sem.: Sci. Serv. Agents World Wide Web 9(2), 128–136
(2011)

19. Guizzardi, G., Wagner, G.: Towards an ontological foundation of discrete event simulation.
In: Johansson, B., Jain, S., Montoya-Torres, J., Hugan, J., Yücesan, E. (eds.) Proceedings of
Winter Simulation Conference, pp. 652–664. IEEE, Baltimore (2010)

20. Guizzardi, G., Wagner, G.: Towards an ontological foundation of agent-based simulation. In:
Jain, S., Creasey, R.R., Himmelspach, J., White, K.P., Fu, M. (eds.) Proceedings of Winter
Simulation Conference. IEEE, Phoenix (2011)

21. Knox, S., Coyle, L., Dobson, S.: Using ontologies in case-based activity recognition. In: Pro-
ceedings of the Twenty-Third International Florida Artificial Intelligence Research Society
Conference (FLAIRS’10), Daytona Beach, Florida, 19–21 May 2010

22. Snell, J., Prodromou, E.: Activity vocabulary W3C working draft 31 May 2016. https://
www.w3.org/TR/activitystreams-vocabulary/

http://imash.leeds.ac.uk/ontology/amon/
http://imash.leeds.ac.uk/ontology/amon/
http://CEUR-WS.org
http://linkedevents.org/ontology/
http://www-formal.stanford.edu/leora/snap9z.pdf
http://xmlns.com/foaf/spec/
https://www.w3.org/TR/activitystreams-vocabulary/
https://www.w3.org/TR/activitystreams-vocabulary/

OntoMaven - Maven-Based Ontology
Development and Management
of Distributed Ontology Repositories

Adrian Paschke and Ralph Schäfermeier

Abstract In collaborative agile ontology development projects support for modular
reuse of ontologies from large existing remote repositories, ontology project life
cycle management, and transitive dependencymanagement are important needs. The
ApacheMaven approach has proven its success in distributed collaborative Software
Engineering by its widespread adoption. The contribution of this paper is a new
design artifact called OntoMaven. OntoMaven adopts theMaven-based development
methodology and adapts its concepts to knowledge engineering for Maven-based
ontology development and management of ontology artifacts in distributed ontology
repositories.

1 Introduction

Sharing and reusing knowledge in ontology-based applications is one of the main
aims in the Corporate Semantic Web1 as well as the Pragmatic Web2 [1–3], which
requires the support of distributed ontology management, documentation, valida-
tion and testing. As pointed out in [4, 5] such ontology development life cycles
have a similar structural and logic complexity as distributed software development
projects. Agile ontology life cycle management methodologies, such as COLM3 [6],
require the collaboration of knowledge engineers and domain experts. Ontologies are
developed andmaintained in an iterative and distributed way, which requires the sup-
port of versioning [7, 8] and modularization [9, 10]. Moreover, new aspect-oriented

1http://www.corporate-semantic-web.de.
2http://www.pragmaticweb.info.
3http://www.corporate-semantic-web.de/colm.html.

A. Paschke (B) · R. Schäfermeier
Computer Science Institute, Corporate Semantic Web Group,
Freie Universität Berlin, Königin-Luise-Str. 24/26, 14195 Berlin, Germany
e-mail: paschke@inf.fu-berlin.de

R. Schäfermeier
e-mail: ralph.schafermeier@gmail.com

© Springer International Publishing AG 2018
G.J. Nalepa and J. Baumeister (eds.), Synergies Between Knowledge
Engineering and Software Engineering, Advances in Intelligent
Systems and Computing 626, https://doi.org/10.1007/978-3-319-64161-4_12

251

http://www.corporate-semantic-web.de
http://www.pragmaticweb.info
http://www.corporate-semantic-web.de/colm.html

252 A. Paschke and R. Schäfermeier

ontology development approaches [11] enable weaving of cross-cutting knowledge
concerns into the main ontology model, which requires meta-level descriptions of
ontology aspects and management of distributed knowledge models.

In this work we adapt a highly successful method and tool in distributed soft-
ware engineering projectmanagement, namelyApacheMaven,4 for theMaven-based
management of distributed ontology repositories. Maven is a tool for the (distrib-
uted) project management and quality assurance in software engineering projects.
The goal of Maven is to automate recurring tasks in software development projects
such as management of software artifact in distributed remote and local reposito-
ries, versioning, dependency management, documentation, testing, packaging and
deployment.

We follow a Design Science research methodology and develop a novel design
artifact, called OntoMaven,5 as a relevant and original contribution in distributed
ontology engineering. The approach is grounded in the rigorous methods of Maven’s
engineering approach, which has already proven its value and success in software
engineering. The OntoMaven approach supports ontology engineering in the follow-
ing ways:

• OntoMaven remote repositories enable distributed publication of ontologies as
ontology development artifacts on the Web, including their metadata informa-
tion about life cycle management, versioning, authorship, provenance, licensing,
knowledge aspects, dependencies, etc.

• OntoMaven local repositories enable the reuse of existing ontology artifacts in the
users’ local ontology development projects.

• OntoMaven’s support for the different development phases from the design, devel-
opment to testing, deployment and maintenance provides a flexible life cycle man-
agement enabling iterative agile ontology development methods, such as COLM
[6], with support for collaborative development by, e.g., OntoMaven’s dependency
management, versionmanagement, documentation and testing functionalities, etc.

• OntoMave plug-ins provide a flexible and light-weight way to extended the
OntoMaven tool with existing functionalities and tools, such as semantic version
management (e.g., SVont - Subversion for Ontologies [7, 8]), semantic docu-
mentation (e.g., SpecGen Concept Grouping [10]), dependency management of
aspect-oriented ontology artifacts (e.g., [11]), automated testing (e.g., with the
W3C OWL test cases and external reasoners such as Pellet), etc.

• Maven’s API allows easy integration of OntoMaven into other ontology engineer-
ing tools and their integrated development environments (IDE).

The further paper is structured as follows: Sect. 2 describes relatedwork. Section3
describes the design of OntoMaven based on Maven’s remote and local repositories,
the Project Object Model (POM), plug-ins, and important functional concepts of
the solution approach for OntoMaven ontology development. Section4 proves the

4http://maven.apache.org/.
5http://www.corporate-semantic-web.de/ontomaven.html.

http://maven.apache.org/
http://www.corporate-semantic-web.de/ontomaven.html

OntoMaven - Maven-Based Ontology Development … 253

feasibility of the proposed concepts with a proof-of-concept implementation of the
OntoMaven design artifact. Section5 compares the OntoMaven functionalities to
the tool support of the major existing ontology engineering tools, namely Protege,6

Swoop,7 and Top Braid Composer.8 This highlights the strengths of OntoMaven with
the open approach to model, manage, and reuse ontology (modules) as ontology
development artifacts including their metadata descriptions in the POM, depen-
dency management, versioning, documentation, etc. Finally, Sect. 6 summarizes the
current OntoMaven work and discusses future research.

2 Related Work

There are many existing ontology engineering methodologies and ontology editors
available.With itsMaven-based approach for structuring the development phases into
different goals providing different functionalities during the development project’s
life cycle, OntoMaven supports in particular agile ontology development methods,
such as RapidOWL [12] and COLM [6], as well as development methods which are
inherently based on modularization such as aspect-oriented ontology development
[11] (see also chapter “Aspect-Oriented Ontology Development”).

RapidOWL provides a light-weight framework consisting of values (e.g., trans-
parency and simplicity), principles (such as incremental, organic, uniform, observ-
able, WYSIWYM, and rapid feedback), and best practices (e.g., short releases, joint
ontology design, adherence to modeling standards, and testing in the form of con-
sistency checking), which are inspired by agile software development. In contrast
to other approaches, RapidOWL does not define an ontology lifecycle model. The
principles defined by RapidOWL have been deliberately designed to be independent
of any application context, with the aim to maximize flexibility.

The Corporate Ontology Lifecycle Methodology (COLM) defines an agile ontol-
ogy lifecycle model with strictly defined cyclic phases. COLM interprets the devel-
opment cycle as an ongoing evolution of the ontology.A dedicated initial requirement
analysis phase is not defined. Instead, it is integrated into the development cycle.

COLM provides for the elicitation of requirements in the form of user feed-
back, which is gathered during the use phases of the ontology. In this sense, COLM
defines two cycles, namely a development or engineering cycle with the phases selec-
tion/integration/development, validation, and evaluation, and a usage cycle, including
the phases deployment, population, feedback tracking, and reporting. In contrast to
RapidOWL, COLM directly incorporates the application context of the ontology.

According to [13] the most popular ontology editors supporting the Semantic
Web ontology languages (RDF, RDFS, OWL, SWRL) are Protege, Swoop and

6http://protege.stanford.edu/.
7http://www.mindswap.org/2004/SWOOP/.
8http://www.topquadrant.com/products/TB_Composer.html.

http://protege.stanford.edu/
http://www.mindswap.org/2004/SWOOP/
http://www.topquadrant.com/products/TB_Composer.html

254 A. Paschke and R. Schäfermeier

Top Braid Composer. Other editors support, e.g., visual ontology modeling such
as Thematix Visual Ontology Modeler (VOM),9 which enables UML-based ontol-
ogy modeling based on the OMG Ontology Definition Metamodel (OMG ODM10),
or lightweight domain specific vocabulary development, such as Leone11 [8]. While
the focus of OntoMaven is on supporting the backend-functionalities in ontology
development projects, the focus of these editors is on the support of ontology model-
ing/representation with a user interface. Non of them is based directly on the Apache
Maven concepts and its methods. While all of the editors also provide support for
ontology repositories and reuse of existing ontologies by imports,OntoMavenmainly
differs in the approach how it manages and declaratively describes the develop-
ment phases, goals, and artifacts in a Maven Project Object Model (POM). Further
implementation-specific and plug-in-specific differences are in the underlying details
of the provided functionalities of OntoMaven such as POM-based dependency man-
agement, semantic versioning, semantic documentation etc. For a comparison see
the evaluation Sect. 5.

The W3C Wiki lists several existing ontology repositories.12 Further ontol-
ogy repositories are, e.g., COLORE13 for ontologies written in the ISO Common
Logic (CL) ontology languages and Ontohub14 which maintains a set of heteroge-
nous ontologies. The current focus of these projects is on collection and listing of
existing ontologies. Apart from simple search functionalities there is no support
for repository-based ontology development which is the focus of OntoMaven and
OntoMaven repositories.

New standardization efforts such as OMG Application Programming Interfaces
for Knowledge Bases (OMG API4KB)15 and OMG OntoIOP aim at the accessibil-
ity and interoperability of heterogenous ontologies via standardized interfaces and
semantic transformations defined on the meta-level of the ontology models, e.g., by
the Distributed Ontology Language (DOL) [14]. These approaches do not address
ontology engineering directly, but can provide a standardized repository back-end
for OntoMaven ontology development projects.

3 OntoMaven’s Design and Concept

This section describes the approach and the concepts of the new design artifact, called
OntoMaven, which adapts Apache Maven for the Maven-based ontology develop-
ment and management of distributed OntoMaven ontology repositories. Maven is

9http://thematix.com/tools/vom/.
10http://www.omg.org/spec/ODM/.
11Leone - http://www.corporate-semantic-web.de/leone.html.
12http://www.w3.org/wiki/Ontology_repositories.
13http://stl.mie.utoronto.ca/colore/.
14http://ontohub.org/.
15www.omgwiki.org/API4KB/.

http://thematix.com/tools/vom/
http://www.omg.org/spec/ODM/
http://www.corporate-semantic-web.de/leone.html
http://www.w3.org/wiki/Ontology_repositories
http://stl.mie.utoronto.ca/colore/
http://ontohub.org/
www.omgwiki.org/API4KB/

OntoMaven - Maven-Based Ontology Development … 255

not just an automated build tool but also supports software artifact management and
quality assurance in software projects. The main required functionalities provided
by Maven are:

• source code compilation
• dependency management
• testing with test suites
• automated documentation and reporting
• installation and deployment of generated code.

The main design concepts of Maven are:

• The Project Object Model (POM) is the main declarative XML description for
managing a project and its development artifacts. Based on the instructions in a
POMfileMaven automates the different project goals in the life cycle of a software
development project.

• Maven plug-ins implement the functionality of the different Maven goals and lead
to a modular and extensible architecture of Maven. The plug-ins are executed
by Maven using the descriptions in the POM file. Maven has three predefined
life cycles, namely the Clean life cycle, which cleans the project, the Default
life cycle, which processes, builds, tests and installs locally or deploys remotely,
and the Site life cycle, which reports, documents and deploys the created HTML
documentation, e.g., on a Web server.

• Maven local and remote repositoriesmanage the used plug-ins and artifacts includ-
ing support for versioning and dependency management. The general approach
is that libraries of existing software frameworks and Maven plug-ins which are
required in a software development project are downloaded from distributed
remote repositories to the local Maven repository so that Maven can work with
these artifacts locally during the development. This distributed approach supports
sharing and reuse of existing software artifacts. The information about the used
artifacts and their remote addresses (typically a URL) as well as dependency infor-
mation are described in the POM file of a project. The downloaded artifacts have
their own POM files in order to support e.g., transitive dependencies.

In the following subsectionswe adapt themain concepts ofMaven, so that they can be
used in ontology development and ontology life cycle management. In particular, we
focus on the (distributed) management of knowledge artifacts (ontologies/ontology
modules) and their versioning, import and dependencymanagement, documentation,
and testing.

3.1 Management and Versioning of Ontology Artifacts

One of the design patterns in ontology engineering is the reuse of existing ontolo-
gies and ontology modules. Finding ontologies on the Web is supported, e.g., by

256 A. Paschke and R. Schäfermeier

specialized ontology search engines such as Swoogle16 and Watson.17 Since such
found ontologies typically cannot be used directly, but need to modularized, refac-
tored and enhanced, before they can be reused in an ontology development project,
there is need for versioning and life cycle management of such ontologies. Further-
more, combinations with other existing ontologies (by ontology matchmaking and
alignment) might lead to transitive dependencies which need to be described and
managed. OntoMaven therefore adopts Maven’s artifact concept. It describes and
manages ontologies as ontology artifacts in a Maven Project Object Model (POM).
The typical steps to add an ontology (module) as an OntoMaven artifact to a POM
are:

1. Find ontology module(s)
2. Select the right module and version
3. Analyse and resolve dependencies of the modules
4. Declaratively describe the ontology artifact in a POM

Many ontology languages support imports or integration of distributed ontologies.
For instance, the W3C Web Ontology Language (OWL) therefore has a specialized
owl:import statement and the ISOCommonLogic standard supportsmodularized
imports by a segregation semantics which distinguishes the universe of discourse of
themain ontology from the segregated universe of discourse of the imported ontology.

Typical recurring tasks which are automated by OntoMaven are in such modular
import and reuse scenarios are,

• check the existence of the imported ontology (module) referenced by the defined
URI in the import statement (and find alternative URLs from pre-configured repos-
itories if the ontology does is not found at the import URI).

• management of ontologies/ontologymodules as ontology artifacts inMaven repos-
itories including their metadata descriptions such as versioning information.

• download of ontology artifacts from remote repositories (including transitive
imports) to a local development repository in order to support offline develop-
ment of ontologies.

Another important aspect in the agile and collaborative development of ontologies is
the support for version management. Typical requirements are maintaining consis-
tency and integrity, as well as provenance data management (e.g., authorship infor-
mation) throughout the version history. Compared to version management solutions
in software engineering which just maintain syntactic versions on the level of code
line differences, the difficulty in knowledge engineering is that the versions and their
differences need to be managed on a semantic level. Different syntactic versions
of an ontology knowledge model might still have the same semantic interpretation.
That is, a semantic version management system needs to compute the semantic dif-
ference, e.g., to detect and resolve version conflicts. The approach in OntoMaven is

16http://swoogle.umbc.edu/.
17http://kmi-web05.open.ac.uk/WatsonWUI/.

http://swoogle.umbc.edu/
http://kmi-web05.open.ac.uk/WatsonWUI/

OntoMaven - Maven-Based Ontology Development … 257

based on the ontology versioning tool SVont,18 which is an extensions of the version
management tool Subversion. [7, 8].

3.2 Import and Dependency Management

OntoMaven adopts the dependency management of Maven by describing the depen-
dencies in an ontology development project from existing ontology artifacts in a
POM. This is illustrated in the following listing from a POM example:

<project>

...

<dependencies>

<dependency>

<groupId>de.onto.maven</groupId>

<artifactId>TimeOntologie</artifactId>

<version>1.0</version>

</dependency>

...

</dependencies>

</project

The listing describes a dependency of an ontology artifact identified by the ID
TimeOntologie version 1.0 which belongs to the group de.onto.maven.

It is possible to define multiple repositories in which OntoMaven will look for
dependent ontology artifacts. If the defined ontology artifact is not found in the
repository, users will be informed. They can start a search with the ontology name
and URI defined in the artifact description in configured ontology search engines.
OntoMaven supports Swoogle and Watson. The found ontologies can be added as
new ontology artifacts to an OntoMaven repository.

3.3 Documentation

Despite first automated ontology matching and alignment approaches developing
high quality ontologies still remains a manual knowledge modeling effort, where
domain experts work together with knowledge engineers. Documentation is an
important step which facilitates this work and in particular makes maintenance and
reuse easier. The typical distinction is into user documentation and technical docu-
mentation. While the former supports the users of an ontology, e.g., in their task to

18http://www.corporate-semantic-web.de/svont.html.

http://www.corporate-semantic-web.de/svont.html

258 A. Paschke and R. Schäfermeier

populate the ontology with instance data, the latter, technical documentation, sup-
ports the ontology developer.

There exist several ontology documentation tools such as OWLDoc,19 VocDoc,20

or SpecGen,21 which document ontologies on a technical level (much like tools such
as JavaDoc in Java programming). Unfortunately, the lack of good documentation in
the published ontologies on the Web makes reuse difficult, because the analysis and
decision process on the applicability of a candidate ontology becomes very time-
consuming. Therefore, additional automated support needs to be provided, e.g., for
analysing larger ontologies on an abstract level by creating concept groupings which
reduce the complexity of the ontology model. This groupings and summarizations of
concepts provides the reader with an easier way to understand the ontology vocabu-
lary. Typically such concept groups are additionally presented in easy to understand
visualization formats, e.g., by tools such as OWLViz,22 OntoGraf,23 Sonivis OWL
plugin,24 SOVA,25 TGVizTab,26 or as UML models, e.g., by VOM.27 Such concept
grouping and visualisations can be used in the user documentation of an ontology.
[10].

Maven supports the documentation phase and provides goals for creating and pub-
lishing automated reports. In OntoMaven we make use of SpecGen and the SpecGen
extension28 for automated concept grouping, in order to create the technical and
user documentation in an OntoMaven plugin which is executed by the mvn site
command.

3.4 Testing

Testing is an important phase in the ontology life cycle. In particular, in agile iterative
development processes testing allows detecting inconsistencies, anomalies, improper
design, as well as validation against, e.g., the intended results of domain experts’
competency questions which are represented as ontology test cases. Maven supports
a testing phase in which automated tests are executed and the results are reported by
the Maven command mvn test.

19http://docpp.sourceforge.net/.
20http://kantenwerk.org/vocdoc/.
21https://github.com/specgen/specgen.
22http://www.co-ode.org/downloads/owlviz/.
23http://protegewiki.stanford.edu/wiki/OntoGraf.
24http://www.corporate-semantic-web.de/ontology-modularization-framework.html.
25http://protegewiki.stanford.edu/wiki/SOVA.
26http://users.ecs.soton.ac.uk/ha/TGVizTab/.
27http://thematix.com/tools/vom/.
28http://www.corporate-semantic-web.de/concept-grouping.html.

http://docpp.sourceforge.net/
http://kantenwerk.org/vocdoc/
https://github.com/specgen/specgen
http://www.co-ode.org/downloads/owlviz/
http://protegewiki.stanford.edu/wiki/OntoGraf
http://www.corporate-semantic-web.de/ontology-modularization-framework.html
http://protegewiki.stanford.edu/wiki/SOVA
http://users.ecs.soton.ac.uk/ha/TGVizTab/
http://thematix.com/tools/vom/
http://www.corporate-semantic-web.de/concept-grouping.html

OntoMaven - Maven-Based Ontology Development … 259

The W3C OWL recommendation29 defines a collection of test cases with differ-
ent test types and tests. As standard test types OntoMaven by default supports the
W3C OWL test cases syntax checker, consistency checker, and entailment test. The
produced test results are compliant to the W3C recommendation and the created test
reports show if the ontology model is consistent, inconsistent or if the
result is unknown. Further test types can be implemented as Maven plug-ins and
added to the OntoMaven projects test suites by the user.

4 Proof-of-Concept Implementation - OntoMaven PlugIns

The implementation ofOntoMaven extends and adaptsMaven [15], so that it supports
the management of ontology modules in Maven repositories. This section describes
how the OntoMaven approach and the above described concepts are implemented
using Maven repositories and the Maven plug-in extension mechanism. A Maven
plug-in is a collection of one or more goals. For instance, the plug-in archetype
implements the goals create and generate which create a Maven project. The
implementation of a Maven plug-in is done in an Maven Plain Old Java Object
(MOJO). Maven supports the automated generation of a Mojo project with the goal
generate in the Maven plugin Archetype:

Mvn archetype:generate -DinteractiveMode=false
-DarchetypeArtifactId=maven-archetype-mojo -DgroupId=[] -DartifactId=[]

By defining the groupId and the artifactID the command creates a Mojo
project with a Mojo class which is used for the plug-in implementation.
In the OntoMaven approach, the phases and goals, which the plug-in implements, are
defined by JavaDoc annotations in the source code of the Mojo class. For instance,
the following annotations define that the implemented plug-in is used in the phase
test and that is has a goal called test-syntax:

@phase test //plug-in used in test phase

@goal test-syntax // goal with the name "test-syntax"

Parameters are used to configure the plug-in execution. For instance, the following
code snippet defines a required parameter compliancemodewith the default value
strict:

*@parameter expression = compliancemode

*default-value="strict"

*@required

29http://www.w3.org/TR/owl-test/.

http://www.w3.org/TR/owl-test/

260 A. Paschke and R. Schäfermeier

Such plug-in parameters can be configured in a POM.xml file or directlywhen calling
a goal, e.g.,mvn ... -Dcompliancemode=strict. An implemented plug-in
can be installed usingMaven mvn install and the plug-in goals can be integrated
into the POM.xml of an OntoMaven project, as the following example listing shows
for the plug-in SVontPlugin and the goal semantic-diff:

<build>

<plugins>

<plugin>

<groupId>de.csw.ontomaven</groupId>

<artifactId>SVontPlugin</artifactId>

<version>1.0-SNAPSHOT </version>

<executions>

<execution>

<goals>

<goal>semantic-diff</goal>

</goals>

</execution>

</executions>

</plugin>

</plugins>

</build>

The following subsections provide further details about the proof-of-concept imple-
mentations of the main plug-ins in OntoMaven. We first describe the OntoMaven
repositories which are the persistence and back-end layer for storing and managing
ontologies.

4.1 OntoMaven Repositories

OntoMaven can use all Maven compliant repositories. One of the strengths ofMaven
is that is uses a folder structure following a standard folder layout for its repositories;
sources are in $basedir/src/main/java, resources in $basedir/src/
main/resource, tests in $basedir/src/test, classes in $basedir/
target/classes, and packaged libraries in $basedir/target/.

For the OntoMaven proof-of-concept implementation we adapted the Apache
Archiva Build Artifact Repository Manager30 as a managing tool providing a
user interface for the OntoMaven repositories. It supports finding and managing
OntoMaven artifacts. Figure1 shows the upload user interface.

30http://archiva.apache.org/.

http://archiva.apache.org/

OntoMaven - Maven-Based Ontology Development … 261

Fig. 1 Archiva user interface - ontology artifact upload

Fig. 2 Archiva user interface - management of ontology artifact

Via this form an ontology can be uploaded to an OntoMaven repository together
with its POM file. The artifact’s metadata contains information about the group id,
artifact id, version, packaging and optional additional classifier information. The
POM provides all necessary information about the artifact and its dependencies. In
OntoMaven these dependencies are used to describe (transitive) imports from an
ontology, which are resolved by the OntoMvnImport plug-in (see Sect. 4.2) and are
defined in the ontology’s POM file.

Figure2 gives an example of the Archiva user interface showing the management
information of an ontology artifact called Camera OWL Ontology. Under the
interface menu link Dependencies the dependencies of this ontology can be
found.

262 A. Paschke and R. Schäfermeier

Once managed in an online OntoMaven repository, an ontology artifact can be
used in anyOntoMaven ontology development project. The following listing gives an
example how a remote repository can be configured and a dependency to an ontology
artifact (here the Camera-OWL-Ontology) can be defined in the POM.xml document
of a project.

<profiles>
<profile>

<id>2</id>
<activation>

<activeByDefault>true</activeByDefault>
</activation>
<repositories>

<repository>
<snapshots>

<enabled>true</enabled>
</snapshots>
<id>snapshots</id>
<name>OntoMaven Snapshot Repository</name>
<url>www.corporate-semantic-web.de/repository/snapshots/</url>

</repository>
</repositories>

</profile>
</profiles>

<dependencies>
<dependency>

<groupId>xfront.com.owl.ontologies</groupId>
<artifactId>Camera-OWL-Ontology</artifactId>
<version>1.0-SNAPSHOT</version>
<type>owl</type>

</dependency>
</dependencies>

4.2 OntoMvnImport

This plug-in implements the imports of ontologies into the Maven repositories. It
is also checks if the import statements in the ontology including transitive imports
can be resolved. Therefore, it maintains an updated list of reference URIs to the
ontology resources loaded to the repository. This list follows theOASISXMLCatalog
standard which also specifies a technique for the automated replacement of external
references in XML documents. An XML parser validates if defined replacement
rules in an XMLCatalog apply to the references in the validated XML document
and in case they apply, it replaces these references with the references defined in
the XMLCatalog. In OntoMaven we use this automated replacement technology to
replace the URI references to imported external ontologies with references to the
internal ontology artifacts, which are locally managed in an OntoMaven repository
after they have been loaded by the plug-in. This replacement approach avoids the
continuous import and use of external ontologies during an OntoMaven development
project. As an example the following catalog entry defines that the original reference

OntoMaven - Maven-Based Ontology Development … 263

to the imported ontology example.owl can be replaced by the URI referencing
the stored ontology artifact in the local repository.

<?xml version="1.0" encoding="UTF-8"?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">

<system systemId="www.example.com/example.owl" uri="src/resource/owl"/>
</catalog>

After the first loading of an ontology as repository artifact, including all transi-
tive imports which are resolved and stored as dependent ontology artifacts, by the
OntoMvnImport plug-in, the plug-in always checks if there is an ontology artifact
listed in the XMLCatalog. If there is an existing reference to an ontology artifact, it
will use it instead of any externally referenced ontology. A special situation is, if the
import statement cannot be resolved, e.g., because the ontology is no longer existent
under the given reference. In this case the plug-in notifies the user.

The following listing shows how the plug-in can be used in a OntoMaven POM. In
the configuration it defines the input ontology and sets the local parameter
to true, indicating that the ontology should be loaded to the local repository and that
the local version of the ontology should be used.

<build> <plugins> <plugin>

<groupId>de.csw.ontomaven</groupId>

<artifactId>OntoMvnImport</artifactId>

<version>1.0-SNAPSHOT</version>

<configuration>

<owlfile>src/resource/reputation.owl</owlfile>

<local>true</local>

</configuration>

<executions>

<execution>

<goals>

<goal>owlimport</goal>

</goals>

</execution>

</executions>

</plugin> </plugins> </build>

4.3 OntoMvnSvn

The OntoMvnSvn plug-in provides ontology versioning support for OntoMaven.
As discussed in Sect. 3.1 standard (code) versioning tools such as Concurrent Version
System (CVS) and Subversion cannot be directly used, because version differences

264 A. Paschke and R. Schäfermeier

are only computed syntactically, but not semantically, as it is required for versioning
interpreted knowledge models such as ontologies.

We therefore implemented an extension to Subversion called SVont31 [7] which
can compute semantic differences32 and which can version ontologies. SVont sup-
ports typical Subversion commands such as checkout, status, diff, commit,
and info. In the following the implementation of the commandsstatus and diff
are described in more detail.

For the status command the OntoMvnSvn plug-in first does a repository checkout
of the ontology to a temporal folder and then compares the repository version with
the currently developed working version. The possible status results are identical
and changed. This status information is used by the plug-in to either report ontology
changed or ontology is up-to-date.

The diff command first does a checkout of the committed repository version.
It then computes the semantic difference to the working version. Therefore, the
OntoMaven implementation is using the semantic difference computation imple-
mented by Svont. The OntoMvnSvn plug-in goal diff additionally performs a
dependency analysis. It lists all dependencies, e.g., dependencies by domain and
range properties and subclass relations as the following example shows:

-------------------------- DIFF INFORMATION --------------------
Ontology File : ...\...\...\...\...\camera.owl
================== ACTUAL CHANGES ==========================
Axioms were added to the repository, or deleted from the working
copy.
SubClassOf(<www.xfront.com/owl/ontologies/camera/#Money>
owl:Thing)
Declaration(Class(<www.xfront.com/owl/ontologies/camera/#Money>))
===
--------- MORE INFO --------------------------------
The above changes of the OWL classes are dependent on the following
axiom.
currency <------ DataProperty (Domain)
cost <------ ObjectProperty (Range)
--

4.4 OntoMvnReport

The plug-in is implemented asMaven report plug-in.33 The goal site of this plug-in
creates four different documentations about the ontology - a general project documen-
tation, an ontology report summary, a technical report, and an ontology visualization.

31http://www.corporate-semantic-web.de/svont.html.
32For the description logic EL.
33http://docs.codehaus.org/display/MAVENUSER/Write+your+own+report+plugin.

http://www.corporate-semantic-web.de/svont.html
http://docs.codehaus.org/display/MAVENUSER/Write+your+own+report+plugin

OntoMaven - Maven-Based Ontology Development … 265

Fig. 3 Simplified diagram for the report rendering in the OntoMvnReport Plug-In

Fig. 4 OntoMaven project
and ontology documentation
menu

For rendering the ontology information into an HTML documentation it uses the
Sink API34 as illustrated in Fig. 3.

With the Maven Site Descriptor35 the layout and content menus in OntoMaven
reports can be adapted.

The general ontology project documentation is created from the description of the
ontology artifact in the POM file, which includes project metadata about, e.g., the
project, project team, dependencies, the plug-ins, issues, source repositories, licenses,
ontology developers and their roles, etc. The following listing gives an example of
typical project’s metadata in a POM which is used in the project documentation
which can be selected from the report menu (see Fig. 4):

34http://maven.apache.org/doxia/doxia/doxia-sink-api/.
35http://maven.apache.org/plugins/maven-site-plugin/examples/sitedescriptor.html.

http://maven.apache.org/doxia/doxia/doxia-sink-api/
http://maven.apache.org/plugins/maven-site-plugin/examples/sitedescriptor.html

266 A. Paschke and R. Schäfermeier

<description>here’s the descripton of an ontology </description>
<organization>

<name>Corporate Semantic Web, Freie Universitt Berlin</name>
<url>www.corporate-semantic-web.de</url>

</organization>
<inceptionYear>2013</inceptionYear>
<licenses>

<license>
<name>LGPL-3.0</name>
<url>www.gnu.org/licenses/lgpl.txt</url>

</license>
</licenses>
<developers>

<developer>
<name>Adrian Paschke</name>
<email>paschke@inf.fu-berlin.d</email>
<organization>Corporate Semantic Web</organization>
<organizationUrl>www.corporate-semantic-web.de/
</organizationUrl>
<roles>

<role>developer</role>
</roles>

</developer>
</developers>

The ontology report summary is created by the goalontologyreport. Figure5
shows an example ontology summarization which gives an overview about the gen-
eral description, the format, the semantic profile, imported ontologies and a summary
about the ontology’s statistics (number of classes, datatype properties, object prop-
erties, etc.).

Fig. 5 OntoMaven ontology report summary

OntoMaven - Maven-Based Ontology Development … 267

Fig. 6 OntoMaven technical report

For the documentation of the ontology, the plug-in uses existing automated ontol-
ogy documentation tools. We have integrated the SpecGen ontology documentation
tool which creates a HTML page containing detailed information about the classes
and the properties. We further extended SpecGen with various algorithms for creat-
ing structure based concept groupings. [10, 16] These groupings are used as basis for
a visual documentation of the ontology. To support this process of creating such con-
cept groups for the documentation of ontologies we extended the SpecGen tool with
an automatic concept grouping functionality36 and embedded it for the OntoMaven
documentation.

Amore detailed insight is given by the technical ontology report, which is created
by the goal technicalreport. This goal produces a listing of classes and prop-
erties as shown in Fig. 6. By clicking on a particular class or property the technical
details about it are shown.

The goal visualizer produces a network visualization of the ontology con-
cepts (classes) and its relations using different graph visualizations.37 Figure7 gives
a visualization example.

The following listing shows how to use the OntoMvnReport plugin in a project
POM.xml

36http://www.corporate-semantic-web.de/concept-grouping.html.
37http://www.corporate-semantic-web.de/ontology-modularization-framework.html.

http://www.corporate-semantic-web.de/concept-grouping.html
http://www.corporate-semantic-web.de/ontology-modularization-framework.html

268 A. Paschke and R. Schäfermeier

Fig. 7 OntoMaven ontology visual report

<reporting><plugins><plugin>

<groupId>de.nbi.MvnOnt</groupId>

<artifactId>MvnOwlReport</artifactId>

<version>1.0-SNAPSHOT</version>

<reportSets>

<reportSet>

<configuration></configuration>

<reports>

<report>ontologyreport</report>

<report>technicalreport</report>

<report>visualizer</report>

</reports>

</reportSet>

</reportSets></plugin></plugins></reporting>

The produced reports can be found in the Maven folder target/site.

4.5 OntoMvnTest

The OntoMvnTest plug-in implements functionalities for the test phase. The plug-
in executes the configured test using the goal test. It is also used internally in
other phases such as the package goal. The plug-in implementation uses the Pellet
reasoner38 to execute the ontology test cases.

38http://clarkparsia.com/pellet/.

http://clarkparsia.com/pellet/

OntoMaven - Maven-Based Ontology Development … 269

As default test suites the plug-in supports the W3C OWL Test Cases.39 This
test collection contain different types of test cases, such as a test that determines
and returns the OWL sublanguage, tests for inconsistency checks, and entailment
tests, which test if the intended conclusions (represented by an output ontology) are
entailed in the input ontology model. For instance, the intended entailment test result
values are Entailment (positive test result) or NoEntailment (negative test
result). The following listing shows how the plug-in can be used in a POM.xml.

<build>

<plugins>

<plugin>

<groupId>de.csw.MvnOnt</groupId>

<artifactId>MvnOwlTest</artifactId>

<version>1.0-SNAPSHOT</version>

<configuration>

<owlfile>owl/1a.owl</owlfile>

</configuration>

<executions>

<execution>

<goals>

<goal>owltest</goal>

</goals>

</execution>

</executions>

</plugin>

<plugin>

<groupId>de.csw.MvnOnt</groupId>

<artifactId>MvnOwlEntailment</artifactId>

<version>1.0-SNAPSHOT</version>

<configuration>

<premise_file>owl/1a.owl</premise_file>

<conclusion_file>owl/1aconclusion.

owl</conclusion_file>

</configuration>

<executions>

<execution>

<goals>

<goal>owlentailment</goal>

</goals>

</execution>

</executions>

</plugin></plugins></build>

39http://www.w3.org/TR/owl-test/.

http://www.w3.org/TR/owl-test/

270 A. Paschke and R. Schäfermeier

Table 1 Functional comparison of OntoMaven with ontology development tools

OntoMaven Protege Swoop Top Braid
Composer

Repositories Yes (local and
remote)

Yes (local and
remote)

No Yes (by Allegro
Graph 4 PlugIn)

Reuse (Import) Yes (dependency
management)

Yes Yes Yes

Collaboration
Support
(Versioning)

Yes (semantic
diff)

No No No

Documentation Yes (text and
visual)

Yes (text and
visual)

Yes (only text) Yes (text and
visual in Maestro
version)

Testing Yes Yes Yes Yes

Extensibility Yes Yes (many
existing plugins)

Yes Yes (commercial)

WebOnto OilEd OntoSaurus WebODE

Repositories No (central
server)

No No No

Reuse (Import) No Yes No Yes

Collaboration
Support
(Versioning)

Yes (web-based,
support for
discussion-based
collaboration)

No No Yes

Documentation No Yes (HTML
export)

No Yes

Testing No No Yes (simple
consistency
maintenance)

No

Extensibility No (server, Java
applet)

No No Yes (extensible
workbench)

OntoEdit Neon Toolkit

Repositories No (but database
adaptors)

No

Reuse (Import) Yes Yes

Collaboration
Support
(Versioning)

Yes Yes

Documentation No Yes

Testing No Yes

Extensibility Yes (plugins) Yes (plugins)

OntoMaven - Maven-Based Ontology Development … 271

5 Evaluation

OntoMaven is not a full ontology development tool as e.g., Protege, Swoop and Top
Braid Composer, which provide a development user interface. Instead OntoMaven’s
has its strength in themanagement of distributed ontologymodules including support
for reuse (transitive imports), dependency management and collaboration (semantic
versioning).

Table1 compares OntoMaven to the most used ontology development tools by its
functional support in typical ontology engineering life cycles.

6 Conclusion

Apache Maven is a widespread and highly successful tool in Software Engineering
for build automation and development project life cycle management. This paper
has adapted the Maven approach and concepts for Knowledge Engineering in (agile)
ontology development. The contribution is a new design artifact called OntoMaven
which has been implemented as a proof-of-concept implementation.

OntoMaven uses a ProjectObjectModel (POM)XMLfile to describe the ontology
project being developed, its dependencies on other external ontology modules, the
development life cycle order, directories, and required plug-ins. It comes with pre-
defined targets for performing certain well-defined tasks in typical agile ontology
development phases.

OntoMaven dynamically downloads distributed ontologies and Maven plug-ins
from one or more OntoMaven remote repositories and stores them in a local cache,
the local repository. This local cache of downloaded artifacts can be further updated
with ontology artifacts created by local projects as well as developed artifacts can be
uploaded to remote OntoMaven repositories, so that they can be shared and reused.

OntoMaven is built usingMaven’s plugin-based architecture that allows it tomake
use of any application controllable through standard input. The proof-of-concept of
OntoMaven implements several useful plugins which interface with existing ontol-
ogy development tools and functionalities such as the plug-ins OntoMvnImport,
OntoMvnSVN, OntoMvnReport, and OntoMvnTest.

In future research we plan to study the benefits of the OntoMaven support for
ontology engineers in real agile ontology development projects and compare it with
other development approaches. We plan to quantify the results on the basis of ontol-
ogy development costs (in person months) and compare them against the estimated
cost models (based on our work on Agile ONTOCOM 240 [17]).

In our aspect-oriented ontology development research [11] we plan tomake use of
OntoMaven for the distributed management of ontology modules and their descrip-
tion as aspect-oriented ontology artifacts in the POM.

40http://www.corporate-semantic-web.de/corporate-ontology-engineering.html.

http://www.corporate-semantic-web.de/corporate-ontology-engineering.html

272 A. Paschke and R. Schäfermeier

Acknowledgements This work has been partially supported by the InnoProfile project “Corpo-
rate Semantic Web” and “Corporate Smart Content” funded by the German Federal Ministry of
Education and Research (BMBF).

References

1. Weigand, H., Paschke, A.: The pragmatic web: putting rules in context. In: RuleML, pp. 182–
192 (2012)

2. Paschke, A., Boley, H.: Rule responder: rule-based agents for the semantic-pragmatic web. Int.
J. Artif. Intell. Tools 20(6), 1043–1081 (2011)

3. Paschke, A., Boley, H., Kozlenkov, A., Craig, B.L.: Rule responder: ruleml-based agents for
distributed collaboration on the pragmatic web. In: ICPW, pp. 17–28 (2007)

4. De Nicola, A., Missikoff, M., Navigli, R.: A software engineering approach to ontology build-
ing. Inf. Syst. 34(2), 258–275 (2009). doi:10.1016/j.is.2008.07.002

5. Paschke, A., Coskun, G., Heese, R., Luczak-Rsch, M., Oldakowski, R., Schfermeier, R.,
Streibel, O.: Corporate semantic web: towards the deployment of semantic technologies in
enterprises. In: Du, W., Ensan, F. (eds.) Canadian Semantic Web, pp. 105–131. Springer, US
(2010). doi:10.1007/978-1-4419-7335-1_5

6. Luczak-Rsch,M., Heese, R.:Managing ontology lifecycles in corporate settings. In: Pellegrini,
T., Auer, S., Tochtermann, K., Schaffert, S. (eds.) Networked Knowledge - Networked Media.
Studies in Computational Intelligence, vol. 221, pp. 235–248. Springer, Berlin (2009). doi:10.
1007/978-3-642-02184-8_16

7. Luczak-Rsch, M., Coskun, G., Paschke, A., Rothe, M., Tolksdorf, R.: Svont - version control
of owl ontologies on the concept level. In: Fhnrich, K.P., Franczyk, B. (eds.) GI Jahrestagung
(2), LNI, vol. 176, pp. 79–84. GI (2010). http://dblp.uni-trier.de/db/conf/gi/gi2010-2.html#
Luczak-RoschCPRT10

8. Paschke, A., Coskun, G., Hartrampf, D., Heese, R., Luczak-Rösch,M., Rothe,M., Oldakowski,
R., Schäfermeier, R., Streibel, O.: Realizing the corporate semantic web: prototypical
implementationsTR-B-10-05, 1–49 (2010). http://edocs.fu-berlin.de/docs/receive/FUDOCS_
document_000000005563

9. Coskun, G., Luczak-Rösch, M., Heese, R., Paschke, A.: Applying ontology modularization for
corporate ontology engineering. In: Proceedings of the Intl. Conference on Semantic Systems
(I-SEMANTICS 2009), pp. 669–674. Graz, Austria (2009). http://www.i-semantics.at/2009/
papers/applying_ontology_modularization.pdf

10. Coskun, G., Rothe, M., Paschke, A.: Ontology content “at a glance”. In: Donnelly, M., Guiz-
zardi, G. (eds.) Proceedings of the 7th International Conference on Formal Ontology in Infor-
mation Systems, pp. 147–159. IOS Press, Graz, Austria (2012). doi:10.3233/978-1-61499-
084-0-147

11. Schäfermeier, R., Paschke, A.: Towards a unified approach to modular ontology development
using the aspect-oriented paradigm. In: 7th International Workshop on Modular Ontologies
(WoMO 2013) (2013)

12. Auer, S.: The rapidowl methodology–towards agile knowledge engineering. In: WETICE, pp.
352–357 (2006)

13. Khondoker, M.R., Mueller, P.: Comparing ontology development tools based on an online
survey. In: Proceedings of the World Congress on Engineering 2010 (WCE 2010) (2010)

14. Lange, C., Kutz, O., Mossakowski, T., Grüninger, M.: The distributed ontology language (dol):
ontology integration and interoperability applied to mathematical formalization. In: CoRR
(2012). arXiv:abs/1204.5093

15. Kilic, O.: Erweiterung von maven zur toolbasierten verwaltung von ontologiemodulen (2013)
16. Coskun, G., Rothe, M., Teymourian, K., Paschke, A.: Applying community detection algo-

rithms on ontologies for identifying concept groups. In: WoMO, pp. 12–24 (2011)

http://dx.doi.org/10.1016/j.is.2008.07.002
http://dx.doi.org/10.1007/978-1-4419-7335-1_5
http://dx.doi.org/10.1007/978-3-642-02184-8_16
http://dx.doi.org/10.1007/978-3-642-02184-8_16
http://dblp.uni-trier.de/db/conf/gi/gi2010-2.html#Luczak-RoschCPRT10
http://dblp.uni-trier.de/db/conf/gi/gi2010-2.html#Luczak-RoschCPRT10
http://edocs.fu-berlin.de/docs/receive/FUDOCS_document_000000005563
http://edocs.fu-berlin.de/docs/receive/FUDOCS_document_000000005563
http://www.i-semantics.at/2009/papers/applying_ontology_modularization.pdf
http://www.i-semantics.at/2009/papers/applying_ontology_modularization.pdf
http://dx.doi.org/10.3233/978-1-61499-084-0-147
http://dx.doi.org/10.3233/978-1-61499-084-0-147
http://arxiv.org/abs/abs/1204.5093

OntoMaven - Maven-Based Ontology Development … 273

17. Paschke, A., Coskun, G., Marko, H., Heese, R., Oldakowski, R., Schäfermeier, R., Streibel,
O., Teymourian, K., Todor, A.: Corporate semantic web report vi: Validation and evalua-
tion TR-B-13-01, 1–64 (2013). http://edocs.fu-berlin.de/docs/receive/FUDOCS_document_
000000018374

http://edocs.fu-berlin.de/docs/receive/FUDOCS_document_000000018374
http://edocs.fu-berlin.de/docs/receive/FUDOCS_document_000000018374

Non-distracting, Continuous Collection
of Software Development Process Data

Andrea Janes

Abstract Knowledge management initiatives often fail when companies lack time
and resources to focus on the meaning, implications, capturing and sharing of orga-
nizational knowledge management. This problem becomes even more severe when
dealing with software development companies: software is invisible, which makes it
difficult to reason and to communicate about it. It is hard to understand status, e.g.,
what the current state of the project is, which difficulties exist, and which problems
might be in front of us. This is why we need measurement to obtain data about
software, how it is created, and how it is used. This chapter presents non-distracting,
automaticmeasurement, which is based on the extension of code editors or the instru-
mentation of source code of products, to log how developers or users are interacting
with the software. We present two examples how data was collected, analyzed and
interpreted. The here discussed methods describe our experiences in developing sys-
tems that support software development teams to collect and organize knowledge
about their software development process based on non-disturbing, automatic data
collection technologies, dashboards, and the Goal-Question-Metric approach.

1 Introduction

Fred Brooks states in his seminal paper “No Silver Bullet—Essence and Accident in
Software Engineering” [1] that “building software will always be hard”. Two reasons
that Brooks mentions are the complexity and invisibility of software. According to
Brooks, complexity and invisibility are essential properties, not accidental ones. They
are essential because they are inherent to the nature of the software and not just and
accident, i.e., a difficulty that we have today in software production, but that we can
overcome in the future with better tools.

A. Janes (B)
Free University of Bozen-Bolzano, Universitätsplatz 1, 39100 Bozen, Italy
e-mail: ajanes@unibz.it

© Springer International Publishing AG 2018
G.J. Nalepa and J. Baumeister (eds.), Synergies Between Knowledge
Engineering and Software Engineering, Advances in Intelligent
Systems and Computing 626, https://doi.org/10.1007/978-3-319-64161-4_13

275

276 A. Janes

Complexity and invisibility make it difficult to reason and to communicate about
it. It is hard to understand status, e.g., what the current state of the project is, which
difficulties exist, and which problems might be in front of us. It is also difficult to
understand progress: the lack of a tangible product “means that it is very easy for
the project to proceed for a considerable time before problems become apparent, and
without it being possible to verify that the passing of time and expenditure of money
correlate with progression of the project in the desired direction [2].”

Another consequence of the invisibility of software is that it can produce a per-
ception “that anything and everything is possible” [2]: there seem to be no real
constraints, which can lead to unrealistic expectations and over-ambitious projects.

To overcome the mentioned difficulties, it is important to measure software pro-
duction and execution: measurement is the first step to describe and visualize what
is invisible, to be able reason and communicate about complex software.

In this chapter, we adopt the terminology coined by Milan Zeleny, who distin-
guishes data, information, knowledge, and wisdom [3]. Each one of these terms
represents a higher level of understanding [4] and is often depicted as a pyramid, as
in Fig. 1.

The term “data” refers to symbols or signs. Examples of data are “9425277”,
“mountain”, or “sensor 2”. Data alone are of no use, therefore Zeleny calls data
“know-nothing”.

Information adds context to data so that they become useful. If we add context to
the examples of data above and e.g., know that we want to bake bread, we understand
that we are looking at a list of ingredients: water, flour, salt, spices, etc. This level
of understanding is also called “know-what”. It also includes the recipe for making
bread that describes a number of steps to do with the ingredients.

Knowledge is described as “know-how”, it refers “to observer’s distinction of
‘objects’ (wholes, unities) through which he brings forth from the background of
experience a coherent and self-consistent set of coordinated actions [3].” Knowl-
edge connects data and information into a network of relations. In the bread baking
example, knowledge describes the state that one knows several recipes, understands
the functions that the different ingredients have in the recipe and understands what
happens if he forgets to add one ingredient.

Fig. 1 The data,
information, knowledge,
wisdom pyramid [3]

Wisdom

Knowledge

Information

Data

Know-why

Know-how

Know-what

Know-nothing

Non-distracting, Continuous Collection of Software … 277

Wisdom goes again one step further and links knowledge with a goal. In our tax-
onomy, wisdom is described as “know-why”: we know why the different ingredients
work and why we are using them. In our example this would mean that we know
why we are using water, flour, salt, spices to make bread and not croissants.

According to Ackoff, data, information, and knowledge are past-oriented, while
wisdom is future oriented [4].

The goal of this chapter is to present an non-distracting approach to contin-
uously discover information, knowledge, and wisdom in software engineering
processes.

The focus lies on “non-distracting”, thatmeans thatwe concentrate on an approach
that does not involve asking programmers, users, project managers, etc. but to mea-
sure their interactions with various software systems to infer software engineering
information, knowledge, and wisdom.

Asking about (or requiring to manually document) software development or soft-
ware usage activities forces programmers or users to switch between the task they
want to accomplish and the task of collecting data [5].

Task switching requires time and leads to a performance cost [6–10]. It cre-
ates costs because workers need time to “reorient” [11–13]. Stephen Jenkins [14]
defines “deliberately planned, chronic interruptions” even as “worst-case scenario”
and advices to “never let people work on more than one thing at once.”

This means that there is a trade-off between asking often (highly distracting but
obtaining data that the interviewed person still remembers precisely) or asking rarely
(less distracting but risking that the reported cannot be remembered precisely any-
more).

Using Zeleny’s terminology, measurement helps to obtain data and information
that is precise, but requires analysis to infer knowledge and wisdom. For example,
instead of asking a programmer: “Why did you not test this function?” (know-why),
we can collect data about all not tested functions (know-what) to infer that only
certain components are not tested or that nobody writes tests before the end of
release deadlines.

The rest of this chapter is structured as follows: Sect. 2 illustrates themain concepts
used in this chapter as well as the technological choices we made to collect data.
Section3 illustrates examples how we use the collected data to discover information,
knowledge, andwisdomwithin software engineering. Section4 discusses advantages
and disadvantages of the applied method, Sect. 5 concludes this chapter with final
remarks.

2 Measurement

Using measurement we are able to collect the “know-what”: for example, that a
programmer wrote a new method or that a user clicked on a button. The goal is to
infer “know-how” and “know-why”, which we describe in the next section. This
section describes the adopted approaches for to collect the necessary data.

278 A. Janes

The goal of this chapter is to present an non-distracting approach to continuously
discover information, knowledge, and wisdom in software engineering processes.

Before we describe how data are collected, we need to define which data we need.
Not having the right data at hand is costly: decisions have to be taken based on
experience and gut feeling instead of facts. But the opposite, collecting all data, is
also costly: one has to spend time developing tools to collect it, to store it, (hopefully)
read, and use it for decision making. Therefore, it is important to collect only the
data that are needed and with the needed precision.

One tool that can be used for this purpose is the Goal-Question-Metric
approach [15]. In this approach, data collection is defined at three levels [5]:

1. Conceptual level (goal): defines what and why we study. What is studied is the
“object of study”, the specific products, processes, and resources.Why something
is studied identifies the reason, the different aspect taken into consideration, the
considered point of views, and the environment.

2. Operational level (question): here there are the questions that define (a) what
parts of the object of study are relevant, and (b) what properties of such parts are
used to characterize the assessment or achievement of a related goal. Altogether,
the questions specify which specific aspect of the object of study are observed to
understand if the goal is achieved or not. Questions are measurable entities that
establish a link between the object of study and the focus. For example, if the
object of study is a car and the focus is its environmental impact, a question could
be: “How high are the carbon dioxide emissions of the car?”.

3. Quantitative level (metric): defines the set of software measurements needed to
answer the questions in an objective (quantitative) way.

The definition of the first level, the goal level, is critical to the successful application
of the GQM approach [5]. Every measurement goal has to be described stating the
purpose of the measurement (what and why it is measured), the perspective (what
specifically is observed, the focus, and from which point of view the observation is
made), and the environment (in which context the measurement takes place).

To ease the definition of measurement goals, the GQM supplies a template how
to define a goal. The GQM goal template suggests to formulate a goal using the
following sentence [16]: “Analyze (the object of study) to (the purpose) with respect
to (the focus) from the point of view of (the viewpoint), in the following context (the
environment).” The elements to replace in the template are explained in Table1.

In Fig. 2, we provide an example of a GQM-model to measure the usability of a
web site. The goal is defined according to the GQM goal template. We derived three
questions from this goal: how efficiently the web site can be used, how intuitive the
design is, and how satisfied the users are in general. The metrics connected to the
questions are the time needed to accomplish pre-defined tasks (we assume one could
define some standard tasks and experiment with test users how long they take to
accomplish the tasks), the time until an average users can work without asking for
help, and a personal evaluation of the overall satisfaction with the web site.

Non-distracting, Continuous Collection of Software … 279

Table 1 GQM goal template elements (adapted from [16])

Object of the study The object that we want to measure

Purpose The reason why the object is measured, e.g., to characterize, evaluate,
predict, motivate, control, improve, etc

Focus Which particular aspect of the object of study, which we study, e.g.,
cost, correctness, defect removal, changes, reliability, user friendliness,
etc

Viewpoint From which point of view we measure, e.g., the user, customer,
manager, developer, corporation, etc

Environment Which particular aspects of the environment influence the
measurement, e.g., problem factors, people factors, resource factors,
process factors, etc

Goal

Question Question

Analyze
a web site (object)
for the purpose of evaluation (purpose)
with respect to the usability (focus)
from the point of view of an office worker (viewpoint)
in the context of a small company (environment)

Measurement

Time in days
until an average
user can work
independently

Measurement

Time needed to
accomplish
pre-defined
tasks

Question

Measurement

Number of
crashes per
session

How efficiently
can the web site
be used?

How intuitive
is the design
of the web
site?

How stable
is the web
site?

Fig. 2 A GQM-model to measure the usability of a web site

Once we defined which measurements we need (the quantitative level of the
GQM), we can proceed with the data collection. In this paper we focus on software
development process data, specifically, the software creation and the software usage
process. We present the adopted approaches separately in the following two sub-
sections.

280 A. Janes

Table 2 Examples of data collected to measure the software creation process

Timestamp Subject Predicate Object

1472392020000 Developer 1 created Test case “testA()” in class
“com.company.tests.Tests”

1472478420000 Developer 4 deleted Method “void write()” in class
“com.company.Export”

1472489220000 Tester 2 executed Test case “testB()” in class
“com.company.tests.Tests”

2.1 Measuring the Software Creation Process

The goal of this step is to describe the software creation process so that is provides
the required level of insight specified by the business objectives of the organization,
i.e., what was defined in the GQMmeasurement goals. The goal of the measurement
step is to obtain data that describes how source code is created, modified, and deleted.
The data format is in subject-predicate-object triples, some examples are reported in
Table2.

Such data can be used to answer a variety of process related questions, e.g.:

• How much time are we investing in writing test cases?
• How much time are we wasting fixing defective code?
• How much time are we spending developing new features?
• How much time are we spending updating old features?
• How much do our developers collaborate in writing code? Is it one that develops
each feature alone or is code modified by more people before it is released?

• Which source code was not modified since years?

Such questions represent the “know-how” of Zeleny’s taxonomy, i.e., information.
To obtain the “know-why”, i.e., wisdom, one has to study information and discover
or infer causalities. For example, a question could be: “Why are we slower than
the competition in the development of new features?” Such a question can only be
answeredmeasuringwhat costs time during the development of features and to assess
whether the duration of themeasured activities are considered adequate or not. Those
activities that take longer than the competition answer the “why” part of the question
before.

To collect the data listed in Table1, we implemented plugins for the editors, the
programmers were using, e.g., Microsoft Visual Studio1 or Eclipse.2 These plugins
track the time a developer is spending on a specific method, class, or file and send
this data to a central server.

The mentioned editors provide events that are invoked whenever the developer
changes his cursor position. Whenever we detect that the current method, class, file,

1Microsoft Visual Studio, https://www.visualstudio.com/.
2Eclipse IDE, https://eclipse.org/.

https://www.visualstudio.com/
https://eclipse.org/

Non-distracting, Continuous Collection of Software … 281

etc. changed, we log this change to a log file together with the timestamp. This
approach limits the type and amount of data that can be collected: the data collection
process should not decrease the perceived performance of the editor, otherwise the
developer will not accept having such a tool installed on his or her machine.

The difficulty to implement such plugins depends from the programmability of
the used editors and the quality of their documentation. One challenge is to transfer
all the data to a central location, where it can be analyzed. If developers work on
laptops, the data transfer component has to be able to store the data until a working
Internet connection is established.

2.2 Measuring the Software Usage Process

The goal of this step is to describe the software usage process so that is provides the
required level of insight specified by the business objectives of the organization, i.e.,
what was defined in the GQMmeasurement goals. The goal of the measurement step
is to obtain data that describes how source code is used by the user. Some examples
of data collected in this step are reported in Table3.

Such data can be used to answer a variety of process related questions, e.g.:

• How many steps does it take on average for the user to perform a task?
• Which steps does the user perform to achieve typical tasks?
• Which steps may be merged because the user executes them very often?
• Which features are used very rarely or sporadically?
• Which features are hard to reach (i.e., the user needs to execute many steps to
perform a specific action)?

Moreover, there are questions that can only be answered combining data about the
software creation process with data about the software usage process, e.g., if it was
worth to invest to develop a specific feature (comparing the development costs with
the usage intensity).

The technologies used to collect this data depend on the type of user interface
and the possibilities offered by the libraries used for programming the user interface.
Some examples are:

Table 3 Examples of data collected to measure the software usage process

Timestamp Subject Predicate Object

1472392020000 User 1 Clicked on Button “Login”

1472478420000 User 2 Opened File “/data/documents/cv.rtf”

1472489220000 User 3 Entered Text “ajanes”

282 A. Janes

• InMicrosoft .NET,3 using theMicrosoftWindows specific graphical subsystem for
rendering user interfaces Windows Presentation Foundation (WPF), it is possible
to define “behaviours”, i.e., reusable components that can be attached to user
interface elements of a given type.

• Using Aspect Oriented Programming [17] it is also possible to define “aspects”,
i.e., reusable components (so called “cross-cutting concerns”) that canbe “inserted”
into various source code elements using predefined rules (the Aspect Oriented Pro-
gramming community calls this step “aspect weaving”).

• In web programming, monitoring is an established method to determine the per-
formance of the currently running application and to identify failures [18, 19]. To
be able to detect how software behaves on the client side, the shipped software
contains a monitoring component that logs every action the user performs and
records how the software reacts [19]. The client-server model of the web makes it
straightforward to setup a monitoring component on the server side and to observe
when, how frequent, with which parameters, fromwhich location, etc. services are
called. Nowadays, also approaches based on JavaScript injection or installing an
agent on the client side are used to monitor how users interact with web sites [18].

• A relatively new approach tomonitor software usagewithoutmodifying the source
code of stand alone applications is to exploit the accessibility API now present in
every modern operating system: operating systems like Windows, Mac OS, and
Linux provide an accessibility API (e.g., [20, 21]), which allows a program to
detect over which button the user positions the mouse cursor, which window he
opens, which tab she selects, and so on. The original purpose of this API was to
support the creation of software that helps blind users or users with bad eyesight to
operate a computer. Typically, such software reads the currently focused element
aloud using text-to-speech technologies. In our case, we use this API to construct
a tool that—without any modification to the original source code—is able to log
every user interaction with the monitored software.

Also in this case, as mentioned in Sect. 2.1, the instrumented software should not be
particularly slowed down by the presence of the measurement component.

The outcome of themeasurement step is data. These data have to be used to justify
the costs of their collection. We report some examples of analyzing such data in the
next section.

3 Analysis

In part, the choice of how to analyze the collected data was already done in defining
the GQM models: the collected data serves to answer the GQM-questions.

A first approach to use the collected data is to inform all team members of the
outcome of the measurement. To help all team members to focus on the information

3Microsoft .NET Framework, https://www.microsoft.com/net.

https://www.microsoft.com/net

Non-distracting, Continuous Collection of Software … 283

they need, we visualize the collected data in form of dashboards, which are visualized
on large monitors in the rooms where developers work. Developers interested in the
details behind the dashboard, can download a detailed report from the server.

The idea to place the dashboard in a prominent place originates from an Agile
practice, the “informative workplace”, which recommends to arrange the work space
in a way that an “interested observer is able to walk into the team space and get a
general idea of how the project is going in fifteen seconds” [22]. Together with other
tools, e.g., a Kanban board that shows which tasks are scheduled, which are currently
in progress, and which are done, we also show a dashboard, visualizing metrics that
help the team to keep an eye on key aspects of the development.

To design the dashboards, we follow the guidelines by Stephen Few [23], i.e.,
to use dashboards as “visual displays of the most information needed to achieve
one or more objectives which fits entirely on a single computer screen so it can be
monitored at a glance.” Since we use GQM models to define which data we want
to collect and why we collect it, we design the dashboards after the defined GQM
models. An example of such a dashboard is shown in Fig. 3.

Such a dashboard visualizes the obtained values for the chosen measurements in
form of bar charts, if the obtained value has to be considered “good”, “average”, or
“poor” within the bar chart, using different background shadings, and the trend of
the value of the past using sparklines, i.e., small line charts that visualize the general
shape of the variation over time. This, because sometimes the exact value of a metric
is not important but the trend is. For example, it can be relatively unimportant to
know that the number of open defects is 57, while it is important to know that it
increased by 100% from yesterday.

If an obtained value has to be considered “good”, “average”, or “poor” is defined
through rules, that state between which ranges values fall into each category. These
rules can be either obtained from the literature, estimated, or based on past data.

Metric 8:

Goal 1
Question 1 Question 2
Metric 1:

Metric 2: Metric 4:

Metric 5:

Metric 3:

Goal 2
Question 3
Metric 6:

Metric 7:

Goal 3

Metric 4:
Question 4

Fig. 3 An example dashboard to visualize metrics structured according to GQM models

284 A. Janes

The different metrics are organized according to the questions their answer and
the goals to which the questions belong. The so visualized data becomes information,
because we show its context, using the GQM-approach.

In the following two sub-sections we describe two examples that go beyond the
mere visualization of the collected information: the generation of wisdom, i.e., the
analysis of the “know-why” of Zeleny’s taxonomy. We describe two cases, one
studying the software creation process, one studying the software usage process.

3.1 Analyzing the Software Creation Process

In the first case, we studied how a software development team is investing its time
within small software company. The company management felt that there is a trade-
off between two aspects: exploration or exploitation [5]:

• Exploitation:with exploitation the companymanagement understood the improve-
ment of existing features of their software. This includes the fixing of defects as
well as the enhancement of existing features. Exploitation, in this case, helps to
maintain the existing customer base, but, as the competition is constantly improv-
ing their products, on the long run is not enough to ensure that the company remains
profitable.

• Exploration: with this term the company management understood the innovation
of their products, the implementation of new features to address new require-
ments by existing customers but particularly potential customers that could not be
acquired so far because of missing features.

Exploitation and exploration are both important: exploitation is needed to keep exist-
ing customers (which generates yearly maintenance fees), exploration is needed to
gain new customers. Too much exploitation (also called “gold-plating” a product)
is not useful to acquire new customers in new markets, too much exploration dis-
appoints existing customers since their products are not maintained and motivates
them to switch to the competition.

The goal for the management of the company was to study the software creation
process, precisely, to measure exploitation and exploration.

The GQM developed for this measurement project was as follows:

• Goal: Analyze the software development process for the purpose to balance with
respect to the time developers spend writing code from the point of view of the
software developer in the context of a software development project

• Questions:

1. Which artifacts are developers working at?
2. How much time do they work at the different artifacts?

Non-distracting, Continuous Collection of Software … 285

Table 4 Examples of data collected to measure the amount of exploration and exploitation

Timestamp Duration
(minutes)

Subject Predicate Object

1472392020000 10 Developer 1 Created Method “testA()” in class
“com.company.tests.Tests"in
file “Tests.java”

1472478420000 2 Developer 4 Edited Method “void write()” in class
“com.company.Export” in file
“Export.java”

1472489220000 7 Tester 2 Edited Method “testB()” in class
“com.company.tests.Tests” in
file “Tests.java”

• Metrics:

1. For question 1 we extract properties useful to identify the artifact:
– the file name of the focused artifact,
– the package name of the focused artifact,
– the class name of the focused artifact, and
– the method signature of the focused artifact.

2. For question 2:
– the time spent working on the focused artifact.

The outcome of the measurement is data similar to the one described in Sect. 2.1,
shown in Table4.

Once the time spent on each source code part was logged, the next step was
to classify it as “exploitation” or “innovation”. We decided to—instead of asking
the developer—infer it based on the creation date of the file in which the source
code was modified. The justification for this heuristics was that the architecture of
the application was such that the various features were coded as separate files. New
featureswould be coded in newfiles to keep themaintainability of the entire code base
high. Older features are contained in files created longer time ago and exploitation
means that the developers have to edit files that exist in the repository already for
some time.

Therefore, to calculate the amount of exploration (innovation), we are interested
in how much time was spend on new files. The newer the file, the more likely it is
that the modification was an implementation of something new. Following the same
logic, if the file is old, we do not want to count the editing time as much as for new
files.

To achieve this, we multiply all editing times with γ
β

exploration , where γexploration is
between 0 and 1 and is the attenuation factor for exploration, a number that expresses
how much we want to reduce the time if the file is old and β a number that expresses
the age of the file. Therefore, the degree of exploration of a developer d that edited
n files is given by:

286 A. Janes

dexploration =
n∑

f=0

effortd(f) × γ
age(f)
exploration,

where the function effortd(f) returns the time a user spent editing the file f and
age(f) returns the age the file f . In our case we calculated the effort of a file in
minutes, the age of a file in months, and chose γ = 0.5.

Accordingly, the degree of exploitation is calculated as follows:

dexploi tation =
n∑

f=0

effortd(f) × γ
age(f)
exploi tation,

where 0 < γexploration < 1 is the attenuation factor for exploitation. By choosing
γexploi tation = (1− γexploration), the sum dexploration + dexploi tation corresponds to the
actual effort the user spent editing source code files and the values of dexploration and
dexploi tation correspond to a distribution of the effort collected by our measurement
probes, weighted by the age of the files that were edited.

The resulting values for dexploration and dexploi tation are estimates that help the
company to understand howmuch importance is given to exploration or exploitation.

Setting up a system as the one described here is not straightforward. Some of the
issues we encountered are discussed in Sect. 4.

3.2 Analyzing the Software Usage Process

In the second case, we studied how users use a software product within a small
company to better understand how users interact with software to learn how the user
interface could be improved [24].

The objective of this study was to observe users that interact with an internally
developed software. The goal for the management of the company was to improve
the user interface: based on the activities the users perform, frequently used features
(or feature combinations) can be simplified ormerged to increase the efficiency of the
user. Less frequently used features can be removed or the user can be reminded that
those features exist. Unexpected interactions can help to identify missing features,
e.g., we observed that some users used the field “birth place” to store data for which
no field existed in the software.

The GQM developed for this measurement project was as follows:

• Goal: Analyze the internally developed software for the purpose to evaluate the
usability from the point of view of the user in the context of a small company.

• Questions:

1. How many steps does it take on average for the user to perform a task?
2. Which steps does the user perform to carry out typical tasks?

Non-distracting, Continuous Collection of Software … 287

Table 5 Examples of data collected to measure the usability of a software product

Timestamp Subject Predicate Object

1472392020000 User 1 Opened Application

1472478420000 User 1 Opened Window “Orders”

1472489220000 User 1 Clicked on Order “2016/125”

1472489220000 User 1 Clicked on Button “Print”

1472489220000 User 1 Closed Window “Order 2016/125”

1472489220000 User 1 Clicked on Order “2016/187”

3. Which steps may be merged because the user executes them very often?
4. Which features are used very rare or sporadically?
5. Which features are hard to reach (i.e., the user needs to execute many steps to

perform a specific action)?

• Metrics:

1. To answer all questions we log every interaction with user interface elements
the users perform, e.g., clicks on buttons, text editing in text boxes, etc.

The outcome of the measurement is data similar to the one described in Sect. 2.2,
shown in Table5.

Sincewewanted to study the sequence of steps a user typically executes to accom-
plish typical tasks, we decided to use process mining to extract sequences of events
from the collected data.

The term “process mining” describes a set of techniques that aim to study
processes by extracting knowledge from process traces, i.e., logs that document
events that happened because a process was executed [25].

In a first step, a process model is generated using the event log (this step is
called “process discovery”). The so “discovered” or “mined” process model can be
used to compare it with an ideal process model (this activity is called “conformance
checking”) or/and to support process improvement, i.e., to study processes to find
bottlenecks, unexpected delays, observe the distribution of work, etc.

In our case, we used the generated process model to answer the questions stated
in the GQM-model.

Our initial idea to use process mining was to discover the underlying process
that users are using in interacting with the software. In doing this, we faced process
mining-specific difficulty: process mining algorithms expect to get a set of cases as
input, not just a set of events. This means that the flow of events has to be divided
into “chunks”, i.e., “cases” that have a fundamental impact on the outcome of the
algorithm: process mining algorithms look for similarities and differences between
cases. In many situations—as in ours—deciding when a case begins and when it
ends is not a trivial decision.

288 A. Janes

Table 6 Examples of data collected to measure the usability of a software product, including a
case-ID

Timestamp Case ID Subject Predicate Object

1472392020000 1 User 1 Opened Application

1472478420000 1 User 1 Opened Window “Orders”

1472489220000 1 User 1 Clicked on Order “2016/125”

1472489220000 1 User 1 Clicked on Button “Print”

1472489220000 1 User 1 Closed Window “Order 2016/125”

1472489220000 2 User 1 Clicked on Order “2016/187”

1472489220000 2 User 1 Clicked on Button “Edit”

1472489220000 2 User 1 Modified Textbox “Delivery date”

We considered the following possibilities:

1. One day corresponds to one case. This means that we set a new case ID per user
and per day. With this assignment of the case ID, a case has many events and we
can observe the interaction of a user throughout the day.

2. We assign a new case ID every time a user starts the application or comes back to
the main form. In this way we obtain shorter and more repetitive cases that reflect
how a user navigates through the software.

3. We assign a new case ID every time a user selects some specific item (e.g., an
order, a customer, a product) in the software. Such a perspective allows to observe
how users work when they deal with a specific item.

For this study we choose option two, since we wanted to understand how the user
interactswith the programduring typical usage scenarios,which typically start select-
ing a record in the main form and to operate on the selected record in subsequent,
nested windows. Whenever the user went back to the main form, it was to select
another record and to perform a different action.

This choice led to the data as shown in Table6. Whenever the user comes back to
the main window “Orders”, we increase the case ID by one.

We visualizing this log using the process mining software Disco,4 which uses
the Fuzzy Mining algorithm [26]. The resulting process models depict how users
typically navigate through the software. The extracted, simplified, process model
is shown in Fig. 4. To reduce the complexity of the extracted process model, Fig. 4
shows only 5% of the paths and only 10% of the activities. This is why some paths
are depicted in gray, this means that there are hidden activities behind the the path,
and some are depicted in black, which means that there are no hidden activities.

We then used the obtained process models to answer the questions stated in the
GQM.

To determine how many steps it takes on average for the user to perform a
task, we need to define what wemean by a task. In our case carrying out a taskmeans

4Disco, https://fluxicon.com/disco/.

https://fluxicon.com/disco/

Non-distracting, Continuous Collection of Software … 289

7

4,135

2,234

1,208

1,315

1,208

2,758

4,282

5,995

7,514

5,995

240

5,424

4,620 2,763

1,372

2,997

5,995

12,395

173

10,053

Navigate to HubPage
12,518

Navigate to ArticleDetailView
16,619

Navigate to WarehousingView
2,827

Navigate Back to HubPage
10,249

Navigate to OrderSearcherView
7,129

Navigate to OrderListView
9,282

Order: Search
15,818

Article: open
4,786

Navigate to ArticleStockChangeView
5,077

Fig. 4 Process model extracted from the logged user interactions (visualizing 10% of the activities
and 5% of the paths)

290 A. Janes

to use the program and come back to the main screen. To answer this question we
can define interesting events in the process model, e.g., “START EDIT Article”, and
count the steps needed to reach this functionality.

To answer the questionwhich steps the user performs to carry out typical tasks
we can also use the process map to see which specific steps a user performs.

The same process map can also be used to answer the question which steps may
be merged because the user executes them very often. In the example shown in
Fig. 4, the program flow currently forces the user to open the order form (“START
OrderAdministration”) to see order details. Users then typically just close the order
form (they invoked “CANCEL OrderAdministration” in 232 from 292 cases). A
possible improvement would be to allow the user to see some order details (e.g., the
delivery date) in the previous window, the order list.

To find the features that are used very rarely or sporadically we can define a
filter so that the process map is constructed only for events that occur below a defined
threshold.

To identify features that are hard to reach (i.e., where the user needs to execute
many steps to perform a specific action)we can also use the processmap to identify
tasks with many events.

In this sub-section we studied how users interact with software, while in the
previous sub-section we looked at how programmers create software. Through the
combination of both aspects, interesting questions about software development can
be answered, e.g., looking at howmuch a certain feature took to develop we canmea-
sure if it is used by the users, and how often it is used. In this way we can estimate
the benefit for the users and how much the investment paid off for the company.

Nevertheless, one has to be careful in this consideration: it is not necessarily so
that frequently used features are themost important for the user and vice versa that the
less used feature are the least important. It might be that a feature is used frequently
because there is no other way to obtain a certain result.

4 Discussion

In the previous sections, we described the motivation for developing systems that
help to collect data, information, knowledge and wisdom about software.

Itwas our priority tomeasurewithout distraction,which has the several advantages
but also drawbacks, that we discuss in this section.

Non-distracting, automatic, data collection has the advantage that those that are
measured can focus on their main task, that the data can be collected continuously,
and that data is more precise than when collected manually.

On the other hand, usually nobody wants that data is collected in the background
without knowing exactly which data are collected, who will receive that data, and
how that data will be used. Without trust, the described data collection method can
have strong negative effects: there is the risk that constant observation is perceived

Non-distracting, Continuous Collection of Software … 291

as intimidating, felt as a permanent stress factor, and lead to an overall lower perfor-
mance [27].

Being constantly observed can be seen as a decrease in autonomy, i.e., that the
available alternatives for taking action that one has [28, 29] diminish. A decrease
in autonomy, i.e., feeling that one has not the freedom to choose what is best for
him, has a negative impact on the motivation, which furthermore can have negative
consequences in the productivity of the single employee [30, 31].

Productivity in software development is highly correlated on the motivation of
the involved people. People that have a personal interest in what they are doing are
far more productive than those that are not [32]. Therefore, companies are interested
to keep their motivated programmers, not to scare them away, and to help them to
stay productive.

Therefore, we distinguish two possible uses of measurement: to enhance under-
standing or to control. If an input to the developers is experienced as an information,
it enhances their autonomy, whereas if it is experienced as controlling it diminishes
autonomy [29].

To use measurement to enhance understanding and autonomy, the collected data
has to be used with the clear goal to improve the overall performance of the team,
not to identify who is guilty of particular problems. The defined GQM-models can
help in this context to communicate to everybody what will be collected, why it will
be collected, and how the data will be interpreted.

Moreover, we suggest that the collected data can be visualized,modified or deleted
manually after it was sent to the server by everybody. This has several advantages:
first, it anticipates trust among those that aremeasured and those that use the collected
data, second, those that are measured do not need to fear that data is collected that
disclose something that they do not want to disclose, and third, if the collected data
does not reflect the reality, e.g., data was lost because of a hardware failure, one can
correct the mistake manually.

The derived conclusions on how to improve the software development process
or how to design a new version of the analyzed application have to be validated
with developers and users to ensure that the collected data were not misinterpreted.
Possible conclusions that can be drawn from the collected data about the software
development process are:

• Based on the collected data about how the development team spends its time, the
team might decide that it needs more training to perform certain activities or that
it needs to invest in automating laborious tasks that do not provide value if carried
out manually.

• Based on the collected data about the frequency and type of modifications on
source code, the teammight decide that certain source codemight be discontinued,
refactored, or extended.

• Based on the collected data about the amount of rework and the time spent on fixing
defective code, the team might decide to change the requirement engineering
process, e.g., investing in techniques that allow the user to better envision the
final solution, or the team might also decide to change the software development

292 A. Janes

approach modularizing the created software in a different way, e.g., using micro-
services, to increase the modifiability of the created solution.

Possible conclusions that can be drawn from the collected data about the software
usage process are:

• Based on the steps users need to take to perform a given task, the teammight decide
to simplify the application, splitting it into two applications: one to accomplish
day-to-day tasks, and one to configure more complex aspects of the software.

• Based on the frequency features are used, the teammight decide to remove, merge,
or improve features. Particularly features that are heavily used are indicators of
functionality that the user values: according to [33], the perceived value is closely
related to usage and the consequences of usage. In the case of software, this means
that parts of the software that are used more often are indicators of value. The
frequency of use of a particular feature can be used by the software development
team to prioritize the testing effort: features that are extensively used should be
extensively tested.

• Based on the changes in the usage of features over time or in combination with
other software, the team can understand if the user is experiencing problems and
can react on such changes timely.

As can be seen by these examples, using logged data to infer knowledge and wisdom
has the advantage that the collected data reflects traces that real events left behind,
i.e., it is an indication of the events that really (not ideally) happened. A drawback
is that instead of having the possibility to ask directly how or why somebody did
something, we have to laboriously collect data about occurred events and often use
heuristics or assumptions to guess or infer how or why an artifact has been created,
modified, or deleted.

5 Conclusion

This chapter presented a practical approach to obtain data, information, knowledge,
and wisdom (using Zeleny’s terminology) within software engineering. “Practical”
since knowledge management initiatives often fail when companies “lack time and
resources to focus on the meaning, implications, capturing and sharing of organiza-
tional knowledge management [34].”

An approach that does not distract the most valuable resources (developers and
users) lowers the costs of collecting data but not the costs of studying and using
it. Through the public display of dashboards, the GQM-approach, and the open
availability and changeability of the collected data within the software development
team, we promote the open discussion within all stakeholders whether the displayed
information is useful, how it should be used, if it should be changed, or removed.

Non-distracting, Continuous Collection of Software … 293

References

1. Brooks Jr., F.P.: No silver bullet essence and accidents of software engineering. Computer
20(4), 10–19 (1987)

2. Royal Academy of Engineering and British Computer Society: The Challenges of Complex
IT Projects: The Report of a Working Group from the Royal Academy of Engineering and the
British Computer Society. The Royal Academy of Engineering (2004), accessed 30 Sept 2016.
http://www.bcs.org/upload/pdf/complexity.pdf

3. Zeleny,M.:Management support systems: towards integrated knowledgemanagement. Human
Syst. Manag. 7(1), 59–70 (1987)

4. Ackoff, R.L.: From data to wisdom. J. Appl. Syst. Anal. 16, 3–9 (1989)
5. Janes, A., Succi, G.: Lean Software Development in Action. Springer, Berlin (2014)
6. Meiran, N.: Reconfiguration of processing mode prior to task performance. J. Exp. Psychol.:

Learn. Memory Cognit. 22(6), 1423–1442 (1996)
7. Monsell, S., Yeung, N., Azuma, R.: Reconfiguration of task-set: is it easier to switch to the

weaker task? Psychol. Res. 63, 250–264 (2000)
8. Rogers, R.D., Monsell, S.: Costs of a predictable switch between simple cognitive tasks. J.

Exp. Psychol.: General 124, 207–231 (1995)
9. Rubinstein, J.S., Meyer, D.E., Evans, J.E.: Executive control of cognitive processes in task

switching. J. Exp. Psychol. Hum. Percept. Perform. 27(4), 763–797 (2001)
10. Johnson, P.M., Kou, H., Agustin, J., Chan, C., Moore, C., Miglani, J., Zhen, S., Doane, W.E.J.:

Beyond the personal software process: metrics collection and analysis for the differently disci-
plined. In: Proceedings of the International Conference on Software Engineering (ICSE). IEEE
Computer Society, Portland, Oregon (2003)

11. Ikonen, M.: Leadership in kanban software development projects: A quasi-controlled exper-
iment. In: Abrahamsson, P., Oza, N.V. (eds.) Proceedings of the International Conference
on Lean Enterprise Software and Systems (LESS). Lecture Notes in Business Information
Processing, vol. 65. Springer, Helsinki, Finland (2010)

12. Czerwinski, M., Horvitz, E., Wilhite, S.: A diary study of task switching and interruptions.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI).
ACM, Vienna, Austria (2004)

13. van Solingen, R., Berghout, E., van Latum, F.: Interrupts: just a minute never is. IEEE Softw.
15(5), 97–103 (1998)

14. Jenkins, S.: Concerning interruptions. IEEE Comput. 39(11) (2006)
15. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach. In: Marciniak,

J.J. (ed.) Encyclopedia of Software Engineering, vol. 1. Wiley (1994)
16. Basili,V.R., Trendowicz,A.,Kowalczyk,M.,Heidrich, J., Seaman,C.,Münch, J., Rombach,D.:

Aligning Organizations Through Measurement: The GQM+Strategies Approach. The Fraun-
hofer IESE Series on Software and Systems Engineering. Springer International Publishing,
Berlin (2014)

17. Kiczales, G.: Aspect-oriented programming. ACM Comput. Surv. 28(4es), 148 (1996)
18. Croll, A., Power, S.: Complete Web Monitoring: Watching your Visitors, Performance, Com-

munities, and Competitors. O’Reilly Media, Sebastopol (2009)
19. Thalheim, B., Schewe, K., Prinz, A., Buchberger, B.: Correct Software in Web Applications

and Web Services. Texts & Monographs in Symbolic Computation. Springer International
Publishing, Berlin (2015)

20. Microsoft: .NET Framework Development Guide, UI Automation Overview (2016). https://
msdn.microsoft.com/en-us/library/ms747327(v=vs.110).aspx

21. Apple: Accessibility Programming Guide for OS X (2016). https://developer.apple.com/
library/mac/documentation/Accessibility/Conceptual/AccessibilityMacOSX/

22. Beck, K.: Extreme Programming Explained: Embrace Change, 2nd edn. Addison-Wesley,
Boston (2004)

23. Few, S.: Information Dashboard Design: The Effective Visual Communication of Data. Oreilly
Series. O’Reilly Media, Sebastopol (2006)

http://www.bcs.org/upload/pdf/complexity.pdf
https://msdn.microsoft.com/en-us/library/ms747327(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms747327(v=vs.110).aspx
https://developer.apple.com/library/mac/documentation/Accessibility/Conceptual/AccessibilityMacOSX/
https://developer.apple.com/library/mac/documentation/Accessibility/Conceptual/AccessibilityMacOSX/

294 A. Janes

24. Astromskis, S., Janes, A., Mairegger, M.: A process mining approach to measure how users
interact with software: an industrial case study. In: Proceedings of the 2015 International
Conference on Software and System Process, ICSSP 2015, pp. 137–141. ACM, New York,
NY, USA (2015)

25. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business
Processes. Springer, Berlin (2011)

26. Günther, C.W., Aalst, W.M.P.v.d.: Fuzzy Mining — Adaptive Process Simplification Based
on Multi-perspective Metrics. In: Business Process Management, Lecture Notes in Computer
Science, vol. 4714. Springer (2007)

27. Brödner, P., Knuth, M.: Nachhaltige Arbeitsgestaltung: Trendreports zur Entwicklung und
Nutzung von Humanressourcen. Bilanzierung innovativer Arbeitsgestaltung, Hampp (2002)

28. Mikl-Horke, G.: Industrie- und Arbeitssoziologie, 3 edn. Oldenbourg Wissenschaftsverlag
(1995)

29. Deci, E.L., Connell, J.P., Ryan, R.M.: Self-determination in a work organization. J. Appl.
Psychol. 74(4), 580 (1989)

30. Deci, E.L., Ryan, R.M.: The “what” and “why” of goal pursuits: Human needs and the self-
determination of behavior. Psychol. Inquiry 11(4), 227–268 (2000)

31. Deci, E.L., Ryan, R.M., Gagne, M., Leone, D., Usunov, J., Kornazheva, B.: Need satisfaction,
motivation, and well-being in the work organizations of a former eastern bloc country a cross-
cultural study of self-determination. Personal. Soc. Psychol. Bull. 27(8), 930–942 (2001)

32. Herzberg, F.: Decoding the dna of the toyota production system. Harv. Bus. Rev. 46(1) (1968)
33. Woodruff, R.B.: Customer value: The next source for competitive advantage. J. Acad. Market.

Sci. 25(2), 239–153 (1997)
34. Chan, I., Chao, C.K.: Knowledge management in small and medium-sized enterprises. Com-

mun. ACM 51(4), 83–88 (2008)

	Preface
	Contents
	Contributors
	Part I Methodological Studies
	Aspect-Oriented Ontology Development
	1 Introduction
	2 Aspect-Oriented Programming
	2.1 Quantification and Obliviousness

	3 Aspect-Oriented Ontologies
	3.1 Syntax
	3.2 Semantics

	4 Application Scenarios
	4.1 Research Scenarios
	4.2 Industrial Scenarios

	5 Tools
	5.1 An Annotation-Based API for Programmatic Access to Aspect-Oriented Ontologies
	5.2 Aspect OntoMaven
	5.3 Editors and Aspect Management Tools
	5.4 An Aspect Weaver for Ontologies Using Structural Ontology Design Patterns

	6 Evaluation
	6.1 Experiment
	6.2 Results

	7 Conclusion and Outlook
	References

	Similarity-Based Retrieval and Automatic Adaptation of Semantic Workflows
	1 Introduction
	2 Process-Oriented Case-Based Reasoning
	3 Semantic Workflows
	3.1 Workflows
	3.2 Introduction to Semantic Workflows
	3.3 Representation of Semantic Workflows
	3.4 Repository of Semantic Workflows

	4 Similarity-Based Retrieval of Workflows
	4.1 User Queries
	4.2 Semantic Workflow Similarity
	4.3 Efficient Similarity Computation by Heuristic Search
	4.4 Parallelized Similarity Computation
	4.5 Two-Step Retrieval
	4.6 Cluster-Based Retrieval

	5 Workflow Adaptation and Learning Adaptation Knowledge
	5.1 Adaptation by Generalization and Specialization
	5.2 Compositional Adaptation
	5.3 Transformational Adaptation

	6 CAKE - An Integrated System for Process-Oriented Case-Based Reasoning
	6.1 Achitecture
	6.2 Selected Application Examples
	6.3 Required Knowledge Engineering

	7 Conclusions
	References

	Development of Knowledge-Based Systems Which Use Bayesian Networks
	1 Introduction
	2 Knowledge Engineering: Current State
	3 Software Engineering Methods for KBS: Model Driven Development
	4 Bayesian Networks Basics
	4.1 Steps to Build a Bayesian Network
	4.2 Reasoning with Bayesian Networks

	5 Embedding BNs in MDE Chain
	5.1 Bayesian Network Metamodel
	5.2 UBN Profile
	5.3 BNs KBS Process Model Using UBN

	6 Case Study: A Pest Control BN-Based KBS
	7 Conclusions
	References

	Knowledge Acquisition During Software Development: Modeling with Anti-patterns
	1 Introduction
	2 The Knowledge Acquisition Framework
	2.1 Collecting the Relevant Data
	2.2 Forming the Anti-pattern
	2.3 Modeling the Anti-patterns with Bayesian Networks

	3 The Case Study
	3.1 CASE STUDY: The BENEFIT Platform
	3.2 Data Collection
	3.3 The ``Tech- Aware Manager'' Anti-pattern
	3.4 Knowledge-Based Models of the ``Tech-Aware'' Anti-pattern

	4 Conclusions
	References

	Knowledge Engineering of System Refinement What We Learnt from Software Engineering
	1 Introduction
	2 Refinement Approaches
	3 A Framework for Validation and Refinement
	4 The Developed Refinement Strategy
	4.1 Finding ``Guilty Rules''
	4.2 Simple Refinement by Conclusion Replacement
	4.3 Replacing the If-Part of the Remaining Guilty Rules
	4.4 Recompiling the New Rules and Removing the Unused Rules

	5 The Technique in the Context of the Assumptions
	6 Conclusion
	References

	Using the Event-B Formal Method and the Rodin Framework for Verification the Knowledge Base of an Rule-Based Expert System
	1 Introduction
	1.1 Knowledge Engineering Versus Software Engineering
	1.2 Related Work
	1.3 Our Approach
	1.4 Overview of the Paper

	2 Event-B and Rodin
	2.1 Event-B
	2.2 Rodin

	3 Translatintg the Knowledge Base to an Event-B Model
	3.1 A Specification Language for a Rule-Bases Expert System
	3.2 Translating the Template Facts
	3.3 Translating the Rule Base
	3.4 A Modelling Example

	4 Verifying the Knowledge Base of an Rule-Based System
	5 Conclusion
	References

	Knowledge Engineering for Distributed Case-Based Reasoning Systems
	1 Introduction and Motivation
	2 Background and Related Work
	3 Knowledge Modularization
	3.1 Knowledge Map
	3.2 Pre-processing

	4 Knowledge Modularization Methodology
	4.1 Requirement Specification
	4.2 Knowledge Evaluation and Acquisition
	4.3 Identification and Definition of Snippet Descriptions
	4.4 System Implementation

	5 Software Engineering of the Knowledge Line
	6 Summary
	References

	Part II Application Studies
	Agile Knowledge Engineering for Mission Critical Software Requirements
	1 Introduction
	2 Complex Software Systems Specification
	2.1 Evolution of a Mission Critical Information System Through Agile

	3 Requirements Engineering, Management and Tracking
	4 Use of KBS and OBS Within iAgile
	4.1 An Ontology-Based Architecture for C2 Systems
	4.2 Developing Domain Ontologies from User Stories with iAgile

	5 Conclusions
	References

	Knowledge Engineering for Decision Support on Diagnosis and Maintenance in the Aircraft Domain
	1 Introduction
	1.1 Aircraft Domain

	2 Related Work
	3 Knowledge Engineering for Decision Support in Diagnosis and Maintenance
	3.1 Use Case and Problem Description
	3.2 OMAHA Project
	3.3 Multi-agent System for Decision Support
	3.4 FEATURE-TAK
	3.5 Knowledge Modeling

	4 Implementation and Test Runs
	4.1 Future Evaluation

	5 Summary and Outlook
	References

	The Role of Ontologies and Decision Frameworks in Computer-Interpretable Guideline Execution
	1 Introduction
	2 Modelling and Executing Computer-Interpretable Guidelines
	3 A CIG Model Based on an Ontology Language
	3.1 Definition of Workflows of Recommendations
	3.2 Conditions About the State of a Patient and Decision Points
	3.3 Temporal Constraints on the Execution of Tasks
	3.4 Expressiveness of the Representation Model

	4 A CIG Architecture for the Execution of Guidelines and Management of Incomplete Information
	4.1 Elements of the Architecture
	4.2 Speculative Module
	4.3 Generation of Clinical Scenarios

	5 Conclusions and Development Perspectives
	References

	Metamarket -- Modelling User Actions in the Digital World
	1 Introduction
	2 An Overview of Events and Activity Ontologies
	3 Metamarket
	3.1 Metamarket Entities
	3.2 Metamarket Actions

	4 Final Remarks
	References

	OntoMaven - Maven-Based Ontology Development and Management of Distributed Ontology Repositories
	1 Introduction
	2 Related Work
	3 OntoMaven's Design and Concept
	3.1 Management and Versioning of Ontology Artifacts
	3.2 Import and Dependency Management
	3.3 Documentation
	3.4 Testing

	4 Proof-of-Concept Implementation - OntoMaven PlugIns
	4.1 OntoMaven Repositories
	4.2 OntoMvnImport
	4.3 OntoMvnSvn
	4.4 OntoMvnReport
	4.5 OntoMvnTest

	5 Evaluation
	6 Conclusion
	References

	Non-distracting, Continuous Collection of Software Development Process Data
	1 Introduction
	2 Measurement
	2.1 Measuring the Software Creation Process
	2.2 Measuring the Software Usage Process

	3 Analysis
	3.1 Analyzing the Software Creation Process
	3.2 Analyzing the Software Usage Process

	4 Discussion
	5 Conclusion
	References

