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Systems of systems are at the root of this century’s global challenges of economy,
climate, and energy. We are accustomed to building such systems directly in the
real world, yet it is becoming increasingly too dangerous, costly, unethical, or risky
to do so. In such cases, the only workable alternative is to build and test within
virtual reality. System of systems virtual build and test can be supported by a
discrete-event systems specification (DEVS) simulation modeling formalism and a
system entity structure (SES) simulation model ontology.

This book guides the reader in the use of software tools based on DEVS and SES
to tackle a wide variety of systems of systems problems ranging from artificial
systems based on cloud information technology to living systems such as agri-
cultural food crops. Commercial and open-source DEVS Modeling and Simulation
Environments are covered in depth.

This book is the first to provide an approach to integrating both energy and
information processing requirements into system design. This approach, based on
activity concepts that are intrinsic to DEVS-based system design, allows us to
virtually build and test systems that are capable of emulating biological systems in
their ability to balance their information processing functionalities against the
energy and resource expenditure incurred in their use.

This edition adds a new chapter covering DEVS Support for Markov Modeling
and Simulation. The new chapter provides some concepts and applications for the
related facility that has been developed in MS4 Me since the first edition. The
edition also augments Chapters 8 and 16 with material intended to enhance guide
to modeling and simulation of systems of systems. We want to take the opportunity
to recognize Raphaél Duboz and Jean-Christophe Soulié as co-authors for their
authorship of Chapter 17.
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This book is about modeling and simulation in support of “virtual build and test”
for Systems of Systems (SoS), which include complex information-
technology-based business, engineering, military systems, as well as the societal
infrastructures they support. Such systems are at the root of this century’s global
challenges of interacting economic crises, world-wide crop failures, extreme effects
of climate change, and out-of-control viral epidemics. We are accustomed to
building such systems directly in the real world and letting subsequent use and
Mother Nature tell us how good they are. Increasingly, however, it is becoming too
dangerous, costly, unethical, or risky to do so. “Build and test within virtual reality”
is more often the only workable alternative—where by “virtual” we include a wide
range of representations of the eventual fielded reality either wholly within a single
computer or as networked distributed simulations, often enhanced with physically
analogous and immersive environments.

Following are a few representative examples of problems needing the systems of
systems concept. We briefly look at motivating objectives, why current approaches
are not adequate to meet these objectives, and how the SoS concept and supporting
virtual build and test environments can overcome conventional limitations.

Controlling National Health Care Costs

e Objective: coordinate the various health-related systems including hospitals,
doctors, pharmacists, and insurers, which are currently largely uncoordinated, so
as to improve patient care and greatly reduce its cost.

e Key Conventional Limitation: it is not feasible to experiment in reality with
alternative systems for coordinating the interactions of the medical, pharma-
ceutical, and insurance subsystems.

o System of Systems Approach: model the national health care system as a system
of systems formulating architectures of coordination and measures of quality for
health care delivery.

© Springer International Publishing AG 2017 3
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1 Modeling and Simulation of Systems of Systems

Virtual Build and Test: develop a family of coordinating architectures which
employ net-centric information technology and can be evaluated in a simulated
environment of providers and clients for their effectiveness in improving care
while reducing cost.

Cloud System Architectures

Objective: develop simulation models that can capture software and hardware
parts of service-oriented computing systems and their integration.

Key Conventional Limitations: understanding of cloud system architectures
using software-centric simulation approaches are inadequate. In particular,
simulation-based architectural designs with heavy emphasis on software are not
suitable for capturing cloud system dynamics.

System of Systems Approach: introduce co-design concepts commonly used in
embedded system simulation for cloud systems.

Virtual Build and Test: formulate domain-neutral software system model
abstractions that account for SOA principles (i.e., elevating component simu-
lation to simulation-as-a-service concept). Develop hardware system simulation
models that can be integrated with software system simulation models in a
systematic fashion.

Failing Agricultural Food Crops

Objective: develop crops (for example, rice is the world’s food staple) that are
robust enough to survive in the extreme and variable environments increasingly
prevalent under climate change.

Key Conventional Limitations: can’t experiment with large enough numbers of
variations of plant genetics and growing conditions to find the sought for plant
varieties.

System of Systems Approach: model plants as systems with dynamic linkages
among component traits to understand their combined impact on the whole plant
system depending on genotypes and weather and soil conditions.

Virtual Build and Test: develop a family of plant model architectures to simulate
plant growth and its regulation in a wide range of genetic and environmental
parameters, focusing on sensitivity to resource availability.

Catastrophic Forest Wild Fires

Objective: improve forest fire fighting systems to be capable of dealing with the
increasingly challenging wild fires that cause millions of dollars in destruction
of natural resources and increasingly homes and possessions.

Key Conventional Limitation: too dangerous and costly to create artificial fires
of the magnitude and intensity needed to understand dynamics of spread and
develop effective containment methods.
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o System of Systems Approach: model forest topography, weather, and fuel
characteristics with embedded sensor networks, connected prediction and
decision-making components, and agent models of human and robotic fire
fighters.

e Virtual Build and Test: develop a family of model architectures to simulate
forest fire spread and its suppression by a range of tactics and strategies
involving prediction of spread and allocation of human and artificial resources.

Lagging Drug Development

e Objective: Develop new effective drugs for wide spread diseases and chronic
illnesses that reduce the enormous cost of treatment.

e Key Conventional Limitations: high capital investment required to develop new
drugs in current laboratory environments and numerous sources of error due to
poor understanding of the biology of drug action.

o System of Systems Approach: model the biology of drug action at the molecular
level with reusable components and their interactions.

e Virtual Build and Test: develop a virtual environment that allows simulating the
effects of drugs on disease analogs thereby moving the search for drugs from the
wet laboratory to a higher speed and more flexible equivalent.

1.1 Virtual Build and Test

Addressing challenges such as the ones just enumerated requires taking a System of
Systems approach supported by Virtual Build and Test methodology. Discrete-
Event Systems Specification (DEVS) is a simulation modeling formalism that
provides the basis for simulating systems of systems in a virtual environment.
DEVS has both system theoretic and information theoretical roots. Just as arith-
metic underlies addition, multiplication, and other calculation, so DEVS underlies
simulation of discrete-event models. DEVS Simulation is performed by an engine
that implements a technology-agnostic Abstract DEVS Simulator algorithm. In
addition, System Entity Structure (SES) is a high level ontology framework targeted
to modeling, simulation, systems design, and engineering. An SES is a formal
structure governed by a small number of axioms that provide clarity and rigor to its
models. The structure supports hierarchical and modular compositions allowing
large complex structures to be built in stepwise fashion from smaller, simpler ones.

Simulation models typically employ different formalisms for state and time
advance, depending on whether discrete or continuous mechanisms are used. DEVS
provides a common programming model of the simulation process that allows a
composition of heterogeneous models to dynamically evolve on a common time
base in a distributed simulation environment. In such a dynamic composition, each
component model generates outputs and consumes inputs produced by others in the
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proper temporal relationship. This book discusses DEVS-based interoperation
through standardizing data distribution and time-management functionalities,
implemented over data distribution services middleware such as Web services.

1.2 Modeling and Simulation Intrinsic to Virtual Build
and Test

Before homing in on the details of the modeling and simulation process itself, we
will look at the virtual built and test system development process in more detail. As
illustrated in Fig. 1.1, the process typically starts with a phase in which the re-
quirements are developed for the system to be built. However, in the SoS context,
this system will not be built from scratch but will be a combination of already
existing components and new ones to be constructed. Thus, the end goal must be
addressed to both implementing new components and integrating them with
existing components to meet the desired functional and performance requirements.

The relative portion of new-to-existing components offers a way to distinguish
different types of SoS problems. For example, designing energy efficient buildings
represents a high new-to-existing component ratio where components are manu-
factured from raw materials and assembled into new structures. On the other hand,
designing policies to achieve greater crop yields is characterized by the fact that the
new components implementing the policies constitute a relatively small part of the
overall agricultural system. Nevertheless, the full range of interventions on reality,
from limited management to full scale engineering, are included in the concept of
virtual build and test. Most importantly, in all cases there is a need for valid
computer representation of the reality in terms of simulation models to support the
integration with new components that will enable testing the alternatives before
actual implementation and fielding.

Fig. 1.1 Centrality of
modeling and simulation Implement
within system of systems the New
development Components
Design/
Develop | Model/
Requirements Simulate
SoS Integrate with
the Existing
Components
Redesign/

Enhance
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In a conventional approach, once we are done designing, modeling, and simu-
lating the proposed system we would then construct the new components and
integrate them with the existing ones. This follow on phase is like taking a blue
print or abstract system specification and implementing it with actual hardware and
software. However, this kind of separation between design and implementation
does not make full use of the models that have developed in the simulation phase.
So there is likely to be a lot of duplicated effort and error that creeps into the
implementation. Instead, the modeling and simulation (M&S) environment should
help to transfer the models as smoothly as possible from their simulation guises to
forms in which they change as little as possible but only the engine in which they
are executed changes. Similarly, the integration of new components with existing
components should be initially addressed within the simulation phase in a way that
does not require starting from scratch later in the implementation phase. This
requirement is attainable to the extent that the middleware platform for integrating
the components is also the compatible with the engine for executing the new
components. The DEVS environment to be discussed in this book offers a solution
to meet this requirement by allowing the models developed for simulation to be
executed by a real-time engine and interfaced through data distribution middleware
to other existing components. In this DEVS-based approach, the new components
are designed, developed, and tested as DEVS models within a virtual environment
while existing components are represented by stubs or abstractions that provide
sufficient fidelity to enable adequate simulation-based testing of the new system.
Then the same DEVS models are transferred to the DEVS-based distributed sim-
ulation environment with extensions in their message structures to allow them to
exchange information in, as well as being time-managed by, the distributed envi-
ronment. Interfacing to the existing components also occurs by means of the
middleware where these real components replace the stubs in the system compo-
sition as it was represented in the simulation.

As a consequence of this DEVS-based approach, there is an added benefit to the
redesign and enhancement that inevitably occurs within the system’s life cycle.
Whenever such a modification of the SoS is needed, it can first be expressed and tested
within the original simulation environment and then transferred to actual operation in
the same way that original implementation was performed. There would be no need to
start from scratch to develop a simulation model of the existing system to support the
design, development, and testing of the modifications before fielding them.

1.3 Multi-disciplinary Collaboration Using
Multi-formalism Modeling

A characteristic property of SoS is that the component systems are typically
associated with different disciplines and are constructed by expert developers
trained in these disciplines. As a consequence, model components reflect diverse
world views and heterogeneous formalisms that must be integrated together in the
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composite model of the SoS. As a universal computational basis for systems theory,
DEVS offers a single common framework for accommodating a limitless variety of
domain-specific modeling formalisms. A DEVS-based environment offers a prac-
tical means of supporting interdisciplinary team or community-developed libraries
of heterogeneous model components that can be integrated together to construct the
virtual models. Moreover, the System Entity Structure offers a structured means of
organizing such model repositories to help compose the right combinations of
alternatives to satisfy the particular objectives of the moment.

In a truthful disclaimer, the vision of a DEVS-based environment with all the
functionality just depicted is still on the way toward full realization. Nevertheless,
progress has been made and environments exist that show the feasibility of the
approach and suggest where further research and development is needed in more
specifics.

We discuss three DEVS modeling and simulation environments for SoS virtual
build and test in this book.

MS4 Me™ is a modeling and simulation environment developed as the first in a
commercial line of DEVS products (http://ms4systems.com). MS4 Me is aimed at a
variety of users such as students, managers, modelers, developers, and program-
mers enabling them to work at the level for which they are most comfortable and
productive. MS4 Me employs a DEVS simplification, Finite Deterministic DEVS
(FDDEVS), as the basis for a simplified syntax/content assisted language that
beginners and non-programmers can employ to quickly and easily construct basic
DEVS models. These models of component systems can then be coupled together
to create a simulation with a few natural language statements for the System Entity
Structure. Once the basic outlines of the model have been established, the envi-
ronment features a structured approach for DEVS experts and Java programmers to
enhance the FDDEVS descriptions with the depth needed to actually simulate real
systems of systems. A notable feature intended to accelerate such a development
process is the Sequence Designer tool which automatically creates both FDDEVS
models and an SES to couple them together from a simple sequential diagram input.
Chapters 2 through 12 of the book are devoted to DEVS concepts as implemented
in MS4 Me with the remaining chapters devoted to expositions of how these
concepts apply to SoS. The following DEVS modeling environments are discussed
in depth to illustrate their powerful features in this regard.

Component-Based System Modeler and Simulator (CoSMoS) offers an inte-
grated platform for developing component-based, modular, hierarchical families of
models. It is grounded in a unified logical, visual, and persistent perspective on
models. It supports specifying families of parallel DEVS, Cellular Automata, and
XML Schema models. Its unique features are storing models in relational databases,
model complexity metrics, and separating simulatable and non-simulatable models
from one another. Systems of systems may be modeled as separate software and
hardware systems which can be then used together to model alternative system
architectures. The CoSMoS lifecycle process affords basic capabilities starting from
model conceptualization and ending with simulation execution. It integrates DEVS-
Suite simulator, which supports developing and execution of hierarchical parallel
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DEVS models. The simulator is built using DEVSJAVA and DEVS Tracking
Environment with configurable synchronized control for simulation execution and
viewing. It supports automating design of experiments in combination with ani-
mation of simulation execution, viewing time-based data trajectories at run-time,
and storing simulation data for post-processing. Model libraries for Semiconductor
Supply-Chain Manufacturing, Service-Oriented Computing, MIPS32 Processors,
Network-on-a-chip, Swarm Net, UML design patterns, and Household Agents have
been developed. The simulator is in use in academic institutions in many countries
and several research centers in government agencies and commercial entities.
CoSMoS and DEVS-Suite are featured in Chaps. 14 through 16.

Virtual Laboratory Environment (VLE) is aimed at collaborative development
of simulation models for Living Systems of Systems. The environment employs
DEVS to combine traditional continuous models with discrete-event and other
modern formalisms to encourage collaborative development, validation, replication,
and experimentation within a virtual laboratory context. The goal is to support
decision making in SoS applications such as control of epidemic outbreaks among
animals (remember the avian flu?) and reengineering of rice varieties to withstand
loss of viability. The French National Institute for Agricultural Research (INRA),
one of the world’s elite agricultural institutes, chose VLE to integrate its stock of
existing agriculture models and to develop new simulation capabilities using
DEVS. As discussed in Chap. 17, the RECORD project documented why INRA
chose DEVS and VLE to support model reuse and collaboration among its model
developers. The DEVS/VLE combination was preferred among many commercial
and academic contenders based on VLE’s implementation of DEVS’s formal
support for coupling and integration of models in the diverse formalisms being
employed in the agricultural domain.

1.4 Background in the Literature

Since the appearance of one of the author’s (Zeigler) “Theory of Modeling and
Simulation” in 1976, the DEVS approach to modeling and simulation it introduced
has taken root in academia and is emerging into common research and industrial
use. Since it is aimed at more of a guide to the use of DEVS concepts and tools, this
book cannot replicate the background theory in full within the space available.
Thus, we refer you, the reader, to consider acquiring the background from some of
the following books:

e Systems of Systems—Innovations for the 21st Century, Edited by Mo Jamshidi,
Wiley, 2008.

e Object Oriented Simulation with Hierarchical, Modular Models: Intelligent
Agents and Endomorphic Agents, by Bernard P. Zeigler, Academic Press,
Orlando, 1990.
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e Multifaceted Modeling and Discrete-Event Simulation, by Bernard P. Zeigler,
Academic Press, London, 1984.

e Theory of Modeling and Simulation: Integrating Discrete-Event and Continuous
Complex Dynamic Systems, by Bernard P. Zeigler, Herbert Prachofer, and Tag
Gon Kim, 2nd Edition, By, Academic Press, NY, 2000.

e Modeling and Simulation-Based Data Engineering: Introducing Pragmatics into
Ontologies for Net-Centric Information Exchange, by Bernard P. Zeigler and
Phillip E. Hammonds, Academic Press, NY, 2007.

¢ Discrete-Event Modeling and Simulation Technologies: A Tapestry of Systems
and Al-Based Theories and Methodologies, Editors: Hessam S. Sarjoughian and
Francois E. Cellier Springer-Verlag Publishers, 2001.

e Discrete-Event Modeling and Simulation: A Practitioner’s Approach (Compu-
tational Analysis, Synthesis, and Design of Dynamic Systems) by Gabriel A.
Wainer, CRC Press, 2009.

e Discrete-Event Modeling and Simulation: Theory and Applications (Computa-
tional Analysis, Synthesis, and Design of Dynamic Systems), Editors:
Gabriel A. Wainer, Pieter J. Mosterman, CRC Press, 2010.

e Building Simulation Software: Theory, Algorithms, and Applications, by James
Nutaro, Wiley Publishers, NY, 2010.

e DEVS Net-Centric System of Systems Engineering with DEVS Unified Process.
CRC-Taylor & Francis Series on System of Systems Engineering, by Saurabh
Mittal and José L. Risco-Martin (to appear).

e Agent-Directed Simulation and Systems Engineering Editors: Levent Yilmaz
and Tuncer Oren, Wiley, 2009.

1.5 Guide to Modeling and Simulation of Systems
of Systems

The present book builds upon the material in the earlier books but goes beyond
them in several critical ways. It centers on the unifying theme of “virtual build and
test” as a means of integrating and providing context to the various technical
concepts and tools discussed. In doing so, it provides an inclusive exposition of the
many aspects of DEVS-based concepts and tools, all relating back to the “virtual
build and test” theme. In particular, Chaps. 2—8 offer a step-by-step introduction to
DEVS concepts and corresponding MS4 Me features that enable you to gain
hands-on experience with the concepts to build sophisticated SoS models. A User
Reference to the features of MS4 Me accompanies this book and is also sold by the
publisher. The software itself is available from MS4 Systems (http://ms4systems.
com). Chapters 9—12 develop more advanced concepts for modeling and simulation
of SoS and illustrate them with MS4 Me features developed earlier. Chapters 13—18
discuss applications of the concepts to virtual build and test for a variety of SoS
application domains using the capabilities of CoSMoS/DEVS-Suite and VLE as
well as MS4 Me. The software packages are available at http://acims.asu.edu
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(CoSMoS/DEVS-Suite) and http://vle-project.org (VLE). Exercises to reinforce the
concepts, to encourage using the three sets of tools, and to compare their capa-
bilities are provided throughout the book.

The primary target for this book is both practitioners and academics (professors
and students). Practitioners include simulation software developers supporting
system development, systems engineers designing and architecting systems, and
managers of such projects. The technical level targeted at first-or-second year
graduate students is augmented with introductory and summary sections written at a
more general level so that managers and others can skim over technical parts.

Hopefully, the advances described here will inspire continued research and
development of the DEVS framework that builds upon the concepts and tools we
present.


http://vle-project.org

In this chapter, we discuss basic DEVS and SES concepts and tools to support
working with these concepts in the context of an actual modeling and simulation
environment, the MS4 Modeling Environment. To address the different perspec-
tives that stakeholders bring to the modeling and simulation world, we provided
three different introductions aimed at three different types of users. For the general
M&S user, we provided a description of the concepts supported by MS4 Me™
through the immediate application of its most basic tools. For the M&S Developer,
we provided a more advanced introduction to MS4 Me™’s underlying DEVS
concepts and theory and the tools that support them. For the M&S Expert Pro-
fessional, we offered a glimpse into MS4 Me™’s features in more depth as well as
the theory that supports them. This book is divided into three parts. In the first part,
we discuss basic DEVS and SES concepts and tools to support working with these
concepts in the context of an actual modeling and simulation environment, called
MS4 Modeling Environment (MS4 Me™). Then in Part II, we discuss more
advanced concepts that such tools can support, and in Part III, we discuss some
actual applications that throw light on the kinds of System of Systems problems that
can be addressed with such concepts and tools.

2.1 The MS4 Me Is a Modeling and Simulation (M&S)
Environment

MS4 Me is a modeling and simulation (M&S) environment developed as the first in
a commercial line of DEVS products (ms4systems.com). MS4 Me is aimed at a
variety of users such as managers, modelers, developers, and programmers enabling
them to work at the level for which they are most comfortable and productive. With
this variety in mind, this chapter offers three different introductions aimed at three
different types of users. Let’s call these types of users Drivers, Designers, and
Racing Pros. Drivers want to know what basic things cars can do and how they can
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make cars do those things. Drivers are not interested in the car per se—only how
well it gets them to where they want to go. Designers want to know how to make
better cars—so they need to know what things are under the hood and how those
things work together to make a car do what it does. Racing Pros want to exploit the
car to its extreme. They want to get familiar with all its features and how to use
them to the fullest extent. So like a Driver, you might want to know what MS4 Me
does as a tool in your tool box. Let’s call you the M&S User in this case. Or like a
Designer, you might be an M&S Developer and want to open the hood so as to get
into MS4 Me’s underlying DEVS concepts and theory. Or like a Racing Pro, you
are an M&S Expert Professional and want to know MS4 Me’s features in depth as
well as the theory that supports them.

You can skip to the introduction that best characterizes your needs and roles.
However, since each introduction is written with a different perspective, you might
be better served if you skimmed each one looking for nuggets that might help you
understand your own focus and also how it interacts with others.

2.1.1 Introduction for the M&S User

For the modeling and simulation general user, the MS4 Me modeling environment
offers a restricted English language interface to generate models and then simulate
the behavior graphically in real time. With minimal training, an M&S user such as a
systems engineer or manager can take a need expressed in common English into a
restricted, but clearly stated, set of English statements that are checked and auto-
matically transformed into graphical models on the fly; then these individual
models can be coupled to other models and presented to the stakeholder to ensure
that the need is expressed as intended and that it fits a standardized process.

If the need expressed in the model is deficient or incorrect, the user and the
stakeholder can negotiate immediately where intent and model have diverged
iteratively arriving at a very precise statement that is formal and adheres to a
standard process and language.

MS4 Me is capable of expressing very simple processes, such as workflows, as
well as extremely complex, and precise timing and mathematical functions,
including complex functions required to coordinate activities of components.

Coordination Example: Jazz Band Leader Much of today’s work is done in
teams, and team coordination is becoming ever more required. Coordination can be
very scripted in the way a playwright determines the flow and actions of the actors.
Or it can be very loose as in a Jazz combo where individual players have a large
role in determining the outcome. And as we will see in many examples through the
book, coordination may have to be implemented at many levels of organization of
systems to enable loosely coupled or semi-autonomous components to work toward
common goals.

Let’s consider an example where coordination lies somewhere in between very
scripted and very loose in which a band leader coordinates the sections (rthythm,
woodwind, horns) of a jazz band. We will focus on how the leader starts the
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Fig. 2.1 Sequence diagram interface example for the Jazz Band

sections playing, changes the lead from one section to another, and brings the piece
to a close in which sections fade out in a sequence. Using the sequence diagram
interface of MS4 Me, you can easily lay out this kind of coordinated interaction.

As illustrated in Fig. 2.1, the BandLeader, Rhythm, Horn, and Reed sections are
actors in the diagram, each with its own lifeline descending down the page. Mes-
sage transmissions from a sender to a receiver are shown as labeled arrows and
presented in the order in which they occur as time advances down the page. For
example, the BandLeader starts the piece by telling the Rhythm section to provide
the beat. The Rhythm section responds by providing the beat to the BandLeader
(We could complicate the diagram by also drawing arrows labeled by PlayBeat to
the other sections, to indicate that they also hear the beat being played). From this
input, you can automatically generate a model where you can see the actors
interacting and events occurring as prescribed. This model can be viewed in the
Simulation Viewer as shown in Fig. 2.2.

Watching the flow in the Simulation Viewer, you can check whether the
structure and behavior are as you would like them to be, and if not, you can change
the input at two levels:

e You can go into the files generated and change some of the times in the actor
models, to change the times at which events occur—corresponding to what we
call a change in behavior.

e You can go back and change the sequence diagram to alter the flow of events.
This is a more radical change in the model—corresponding to what we call a
change in structure.
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Fig. 2.2 The Jazz Band Model generated from the sequence diagram

We will show how the model generated by the sequential diagram interface leads
to more advanced uses after presenting the remaining introductions.

2.1.2 Introduction for the M&S Developer

For the modeling and simulation developer, MS4 Me offers a powerful, adaptable
platform designed to develop DEVS models and simulations quickly. It includes
constrained natural language (NL) interface which greatly speeds the development
of models and their dynamic simulations to near real time. The graphical simulations
can be run immediately upon input of the model. The NL interface and animation
capability lend themselves well to capture requirements concisely, but rigorously.
The tool is easy to use with only limited training. It is this combination of linguistic
and dynamic graphical display of a need that will allow stakeholders and system
engineers to visualize and negotiate the capabilities and behaviors expressed.

The vision of a DEVS Modeling and Simulation Environment is to provide an
integrated development environment dedicated to the creation of DEVS models and
their simulation. Such an environment makes developers feel they are working with
a complete set of tools that are able to support all the functions needed to create
DEVS models and simulate them within, or externally to, the environment. Such a
vision has become feasible with the advent of the Eclipse open source community
(www.eclipse.org) and its support of extensible language development and other
programming frameworks. One such framework, Xtext, provides a set of
domain-specific languages and tools (parsers, type-safe abstract syntax tree, inter-
preter, etc.) to create a programming language and automatically generate its
implementation in the Java Virtual Environment.

MS4 Me employs Xtext, its Extended Bachus-Naur Form (EBNF) grammar
within the Eclipse Modeling Framework on the Rich Client Platform, and the



2.1 The MS4 Me Is a Modeling and Simulation (M&S) Environment 17

Fig. 2.3 Part of MS4 ME
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Graphical Modeling Project to provide a full blown IDE specifically tailored to a
DEVS development environment.

Figure 2.3 illustrates how the MS4 Modeling Environment user interface sets the
look and feel for access to tools dedicated to DEVS modeling and simulation. The
Design drop-down menu displays items that open files for the three main types of
object: (1) Finite Deterministic DEVS (FDDEVS) that creates atomic models,
(2) System Entity Structures that create families of hierarchical coupled models, and
(3) pruned entity structure scripts that make choices from the available alternatives
to specify a particular hierarchical coupled model. These objects represent and
extend basic system concepts—atomic models, coupled models, and hierarchical
(or nested) coupled models. The environment is concerned with providing tools to
construct such models, test them for correctness, modify them until satisfactory, and
simulate or animate them.

By using Eclipse’s Xtext EBNF grammar development facility, MS4 Me pro-
vides a constrained natural language to define FDDEVS models. As illustrated in
Fig. 2.4, there are seven basic sentence types with variable slots that together define
a FDDEVS model. These sentence types define such elements as input and output
ports, states (including initial state), time advances, internal transitions, external
transitions, and generated outputs. As the modeler writes the text, the editor parses
it and creates an outline shown on the right of the figure that displays the structure
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Fig. 2.5 Tagged blocks for extending FDDEVS models to full-fledged DEVS models

that has been defined. Besides providing instant visualization, and click-access to
source definitions, the captured information is available for model processing, as
discussed earlier.

As text is entered, the parser provides syntax checking and sentence completion
assistance. Such assistance is also content-based in that permissible entries are
shown on request—the example in Fig. 2.4 illustrates that the parser is expecting a
state and suggests states that have been entered earlier as candidates.

Although FDDEVS models have the essential properties of DEVS models, they
form a subclass of all DEVS models (hence of all discrete-event systems). Figure 2.5
shows how the MS4 Me provides constructs to enable extending a FDDEVS model
to become a full-fledged DEVS model implemented in Java. The linguistic support
allows modelers to specify the types of DEVS messages accepted by input ports and
generated by output ports, interpretation of inputs and generation of outputs, state
variables and their types, new types as required, and especially operations on state
variables invoked by internal and external transitions. The grammar recognizes
tagged blocks for internal and external transitions in which Java code that executes
the desired transition can be placed. The modeler can inspect and test the generated
Java model, returning always to the FDDEVS file to make changes. Thus, consis-
tency is always maintained between the high level specification (FDDEVS) and the
implementation (Java). The approach realized by the tagged blocks also maintains
traceability back from the resulting Java code to its block source.

The natural language interface for constructing System Entity Structures (SES) is
illustrated in Fig. 2.6. The most fundamental statement here is the one in the
modeler provides a decomposition of a system in terms of components from a
certain perspective. The couplings associated with this perspective can then be
defined and linked with this perspective. Hierarchical construction is done by



2.1 The MS4 Me Is a Modeling and Simulation (M&S) Environment 19

ProcessorOfEntities.dnl *ProcessorOf Jobs.dnl ] X

From the top perspective, SimpleWorkFlow is made of GeneratorOfJobs,
ProcessorOfJobs, and Transducer'!

From the top perspective, GeneratorOfJobs sends Job to ProcessorOfJobs!

From the top perspective, GeneratorOfJobs sends outJob to Transducer as ariv!

From the top perspective, ProcessorOfJobs ls ouctJob to Transducer as solved!

From the top perspective, Transducer sends Stop to GeneratorOfJdobs !

Fig. 2.6 Constrained natural language for System Entity Structure specification

recursive decomposition of a component to the depth desired. Both external and
internal couplings are easily specified. The modeler may adopt any number of
perspectives for decomposing a system or component according to the modeling
objective and level of resolution needed.

The SES formalism supports a powerful extension of hierarchical system con-
cepts that we briefly touch on here (Wymore 1967). For an in-depth survey of
Wymore’s system theory and its relation to model-based system engineering
(Friedenthal et al. 2009), see Oren (1984), Oren and Zeigler (2012). Figure 2.7
illustrates an SES for an unmanned air vehicle testing environment, which illustrates
both decompositions (single line icons) and specializations (double line icons),
where a specialization offers a choice of alternatives to plug into a component slot.

For example, SensorPackage can be decomposed, from the experiment per-
spective, into various sensor components such as FeedBack Sensor, Observation
Sensor, MotionSensor, and WeaponSensor. In addition, TestAgent has a special-
ization, labeled by Scenario, into alternatives such as Baseline, Observational, or
Attack—selection of one will configure the TestAgent appropriately. MS4 Me
provides a user interface to support pruning of choices (i.e., pruning of decom-
positions and specializations) with the selections recorded in the files for pruned
entity structures. Automatic transformation of such structures into simulation
models affords a system design environment for investigating a family of possible
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Fig. 2.7 System Entity Structure tree showing decomposition and specialization icons
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architectural models through simulation. Reaccessing such files for subsequent
copying and modification as desired supports reuse and extensibility.

2.2 Introduction for the M&S Professional

Around the time of the emergence of DEVS as the computational basis for systems
simulation, another important trend took hold. Object orientation (OO) was first
introduced in simulation and later spread to programming in general. It is fair to say
that OO is at the heart of current information technology, so much so, that its presence
is often taken as a given. For simulation modeling, DEVS and OO formed an ideal
marriage. DEVS brought the formal and conceptual framework of dynamic systems
while OO provided a rapidly evolving wealth of implementation platforms for DEVS
models and simulations—first in languages such as Java and C++, and later in net-
work and Web infrastructures, and today continuing in the future toward Cloud
information technologies (Wainer and Mosterman 2009). The first implementation of
DEVS in object orientated form was described in Zeigler (1987), and there are cur-
rently numerous such implementations, some of which are listed in DEVS (2012). In
the next section, we discuss how Wymore’s concepts take computational form in
today’s information technology implementations of the DEVS formalism.

2.2.1 System Structure and Behavior

As illustrated in Fig. 2.8, MS4 Me employs the essential system concepts of
structure and behavior to generate simulation models. The modeler provides the
structural description, essentially the hierarchical coupled model, by writing the
System Entity Structure in natural language form. The modeler provides the
behavioral description by writing the lowest level component atomic models in
natural language form. After discussing the basics of these concepts and their
natural language descriptions, we will return to the sequence diagram input

Structural SES
Description
Contains the hierarchical Combine
structure information of structure and o Generate
System target system component Simulation
behavior
Behavior
Description FDDEVS
Contains the behavior (with tagged
information of system enhancement)
component

Fig. 2.8 MS4 Me’s approach to specifying structure and behavior
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interface (recall the Jazz Band example) that writes the natural language coupled
and atomic specifications for you.

2.2.2 Finite Deterministic DEVS (FDDEVS)

We begin with a brief introduction to the contained natural language and Finite
Deterministic DEVS (FDDEVS).

States A state can either be a “hold state” or a “passive state.” A hold state is one
that the model will stay in for a certain amount of time before automatically
changing to another state (via an internal transition). A passive state is one that the
model will remain in indefinitely (or until it receives a message that triggers an
external transition).

Passive States To define a passive state, use the following syntax:

passivate in STATE_NAME!
Hold States To define a hold state, use the following syntax:
hold in STATE_NAME for time 5.7!

Initial States One state in the model must be designated as the initial state. To do
this, the state description must start with “to start.” For example, if we wanted to
make the previous state the initial state, we would use this syntax:

to start passivate in STATE_NAME!
or

to start hold in STATE_NAME for time 5.7!

Internal Transitions Every hold state in the model must have one and only one
internal transition defined in order to specify the state to which the model should
transition after the specified amount of time. Internal transitions use the following
syntax:

from CURRENT_STATE go to NEXT_STATE!
<add extra line>

Output Any state that has an internal transition can also have one output message
that is generated before that internal transition occurs. The syntax for this is:

after STATE_NAME output OUTPUT_MESSAGE!
<add extra line>

External Transitions Any state can have one or more external transitions defined.
An external transition defines an input message that the model might receive when
in a given state and the state to which the model should transition in reaction to that
input message. The syntax is:

when in STATE_NAME and receive INPUT_MESSAGE go to NEXT_ STATE!
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2.2.3 System Entity Structure (SES)

Let’s continue with the second concept, the System Entity Structure (SES). One of
the powerful capabilities of the MS4 Me tool is the ability to couple multiple
models into a larger and more complete system. The SES language is used to
describe how a system is decomposed into subsystems when viewed from a certain
perspective, different specializations of a system that might occur, messages sent
from one system to another, and variables that a system might have. A SES is made
up of:

Aspects describing subsystems that make up a system when that system is
viewed a certain way.

Example: A car has an engine, a transmission, and a chassis when one considers
the structural components of the car, but it also has a manufacturer, model, and
license plate when one considers the physical description of the car.
Specializations that describe different subsystems that perform the duties of
some system.

Example: Continuing the car example from above, the engine might be an
electrical engine, a gasoline engine, or a natural gas engine.

Couplings that describe how systems interact with each other.

Example: The car’s engine can send rotation to the transmission, and the
transmission can send motion to the chassis (by actually turning the wheels).
Similarities that can be used to indicate that one system is similar to another in
some way.

Example: When considering the structural components of a truck, it’s easier to
say that a truck is like a car instead of describing the same components.
Variables that a system might have which affect its behavior.

Example: An engine might have a variable called “HoursRun” that keeps track
of the total number of hours that the engine has been operating, and this variable
might affect the performance or reliability of the engine.

The SES and FDDEVS are specified in logical and mathematical form (see
Mittal and Douglass 2011, for background on FDDEVS and Zeigler and Ham-
monds 2007 for in-depth discussion of the SES). A complete theory of DEVS is
given in Zeigler et al. (2000) with key formal properties of well definition, closure
under coupling, universality and uniqueness summarized in the Appendix. While
the details of the mathematics are transparent to users, it is important to point out
that the tool is based on a rigorous mathematical specification with more than thirty
years of scrutiny and application. It is this rigor which will provide confidence to
stakeholders and engineers that a need expressed in this format is syntactically and
formally correct. The formal properties summarized in the Appendix give DEVS
checks and balances that allow other models created in the specification to be
coupled together correctly. The tool actually prevents users from making logical
and syntactical mistakes that might otherwise propagate through to requirements.
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In the DEVS formalism, atomic DEVS captures the system behavior, while
coupled DEVS describes the structure of system. The MS4 ME natural language
interface automatically generates the mathematics demonstrated here, freeing the
system engineer to capture needs quickly yet rigorously. The specification forces
you to extract information from the stakeholder in a very efficient manner and
distills any need into its fundamental components. In practically, any behavior or
function the elements of the specification are required. A well defined need of any
kind will contain these atomic elements. In essence, to capture a DEVS model
forces you to ask the questions:

What are the inputs?

If nothing external happens, what does the system do and when?
If there is an external input, what does the system do?

What are the outputs?

In addition, creating a DEVS’ atomic model forces you to ask questions like:

What are the possible states?

In the absence of input, how long does the system stay in each of its states?
When an input event occurs, how does the system change state?

After the system finishes its time in a state, what output does it produce and
what state does it go to?

Creating a DEVS’ coupled model forces you to ask questions like:

What are the components?

How are the components connected internally?
How are the components connected externally?
What are the sub-components?

What are the interfaces?

2.3 Jazz Band Continued

The model generated by the Jazz Band sequence diagram of Fig. 2.1 is a coupled
model that has as components the actors appearing in the diagram, namely, the
BandLeader, Rhythm, Horn, and Read sections. The SES that is generated is given
in natural language form:

From the music perspective, JazzBand is made of BandLeader,
RhythmSection, HornSection, and ReedSection!

From the music perspective, BandLeader sends PlayBeat to
RhythmSection!
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From the music perspective, RhythmSection sends Beat to
BandLeader!

From the music perspective, BandLeader sends PlayBrass to
HornSection!

From the music perspective, HornSection sends BrassSound to
BandLeader!

From the music perspective, BandLeader sends DontPlay to
HornSection!

From the music perspective, HornSection sends Quiet to BandLeader!

From the music perspective, BandLeader sends PlayReed to
ReedSection!

From the music perspective, ReedSection sends ReedSound to
BandLeader!

From the music perspective, BandLeader sends PlayTogether to
HornSection!

From the music perspective, BandLeader sends EndInSequence to
RhythmSection!

From the music perspective, BandLeader sends EndInSequence to
HornSection!

From the music perspective, BandLeader sends EndInSequence to
ReedSection!

From the music perspective, ReedSection sends FadeOut to
BandLeader'!

From the music perspective, HornSection sends FadeOut to
BandLeader!

From the music perspective, RhythmSection sends FadeOut to
BandLeader!

Note that the first sentence lists the components of the model while the
remaining sentences describe the message flow broken down into a set of coupling
specifications. Each such specification sets up the possibility for a message trans-
mission. For example, the second sentence sets up a coupling of the output port
outBeat of BandLeader to the input port inBeat of RhythmSection. There is no
intrinsic order to the coupling statements of an SES—any permutation will result in
the same set of couplings. These couplings are shown as grey lines in the simulation
view of Fig. 2.2. In contrast to the sequence of message transmissions specified by
the sequence diagram, they describe routing patterns. Indeed, this places the burden
on the component behaviors to enact a sequence of transmission events, accord-
ingly, each of the four components, BandLeader, RhythmSection, HornSection, and
ReedSection in the Jazz Band needs an atomic model to provide the behavior in the
manner shown in Fig. 2.2. The FDDEVS natural language forms for these atomic
models are automatically generated. That of the RhythmSection is shown here:
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to start,passivate in waitforPlayBeat!

when in waitforPlayBeat and receive PlayBeat go to sendBeat!
hold in sendBeat for time 0!

after sendBeat output Beat!

from sendBeat go to waitforEndInSequence!

passivate in waitforEndInSequence!

when in waitforEndInSequence and receive EndInSequence go to
sendFadeOut!

hold in sendFadeOut for time 0!

after sendFadeOut output FadeOut!

from sendFadeOut go to passive!

passivate in passive!

FDDEVS models expressed in natural language have an alternative description
in the form of state diagrams. The state diagram for RhythmSection is shown in
Fig. 2.9. In this graphical depiction, states are shown as rectangles, each state has a
time advance and may have external transitions (input arrows with “?”’) and internal
transitions with or without outputs (arrows with “!”’). The modeler can work in

either of the natural language and state diagram equivalent representations and
switch between them at will.

sendBeat
ta=0

? = \
waitforPlayBeat ”/ PlayBeat

~layt | Beat
ta = infinity \4 waitforEndIinSequence
ta = infinity

? EndInSequence

—

ndFadeOut
ta=0

passive
ta = infinity

Fig. 2.9 State Diagram view of RhythmSection
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The SES is automatically generated as a *.ses file and deposited in the Models.
ses folder while the FDDEVS models are generated as *.dnl files and deposited in
the Models.dnl folder. This makes them available to work with further as you wish
to continue to develop the model. For example, the standard hold time for the
sendFadeOut state is 0. But we can change the value in the RhythemSection.dnl file
to the duration that the component should hold for while fading out, as in:

hold in sendFadeOut for time 20!

2.4 Summary

In this chapter, we discussed basic DEVS and SES concepts and tools to support
working with these concepts in the context of an actual modeling and simulation
environment, the MS4 Modeling Environment (MS4 Me) (ms4systems.com). To
address the different perspectives that stakeholders bring to the modeling and
simulation world, we provided three different introductions aimed at three different
types of users. For the general M&S user, we provided a description of the concepts
supported by MS4 Me through the immediate application of its most basic tools.
For the M&S Developer, we provided a more advanced introduction to MS4 Me’s
underlying DEVS concepts and theory and the tools that support them. For the
M&S Expert Professional, we offered a glimpse into MS4 Me’s features in more
depth as well as the theory that supports them.

To summarize, there are two main pillars to the DEVS-based modeling and
simulation for Systems of Systems (SoS), the DEVS formalism itself and the SES
that enables composition of DEVS models as components. For the composition of
components required in the SoS context, the most relevant pillar to start with is the
SES. Thus, the next chapter will start the exposition of the SES and its features
mentioned above. We will then return to consider the FDDEVS formalism in its
natural language form and the enhancements that can be made to be incorporated
into Java models in Chap. 4.

Appendix: Key Formal Properties of DEVS

This appendix summarizes some key formal properties of DEVS as given in Zeigler
et al. (2000). These include well definition, closure under coupling, universality and
uniqueness. The fact that DEVS stands for Discrete-Event System Specification
becomes more apparent from examining Fig. 2.10.

Here, we see an apparent distinction between Atomic DEVS and Dynamic
Systems. The set of all Dynamic Systems is taken as a well-defined class in which
each system has a set of input time segments, states, state transitions, and output
time segments (Zeigler et al. 2000). Although the class of Dynamic Systems is well
defined, it is too encompassing and mathematical a concept to allow directly
constructing a particular member system. A DEVS atomic model contains the sets
(input, states, output) and functions (transition and output) that take the right form
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Fig. 2.10 DEVS Atomic Models as system specifications

to provide such a construction. The theory shows how the sets and functions should
be interpreted to specify a dynamic system and establishes the conditions under
which such a specification is well defined, i.e., where there is one, and only one,
dynamic system that can be constructed from an Atomic model. In Fig. 2.11, the set
of Atomic DEVS Dynamic Systems is the subset of Dynamic Systems that are
specified by the set of Atomic Models.

Indeed, the theory shows how DEVS provides a computational framework for
working with Dynamic Systems as computational models of real world Systems of
Systems. This is further clarified in Fig. 2.11 which shows that DEVS coupled
models also define a subclass of Dynamic Systems.

A DEVS Coupled Model constructs a Dynamic System by specifying its com-
ponents and couplings. The theory shows how the components and couplings
should be interpreted to specify a well-defined system. In Fig. 2.11, the set of
Coupled DEVS Dynamic Systems is the subset of Dynamic Systems that are
specified by the set of Coupled Models. Actually, the theory shows that the subset
of Coupled DEVS Systems is contained within the subset of Atomic DEVS Sys-
tems. This property is called closure under coupling and states that the dynamic
system specified by a coupled model can be represented as (more technically, is
behaviorally equivalent to) an Atomic DEVS System. Closure under coupling is
important for two reasons: (1) it provides the basis for the Abstract DEVS Simu-
lator, i.e., a simulator is the computational device that carries out the rules by which
the components carry out state transitions and send messages to each other through
the couplings. (2) It justifies hierarchical composition in which a coupled model
(treated as its behaviorally equivalent atomic model) can become components
themselves in larger coupled models.
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The properties of well definition and closure under coupling give you confidence
that the models that you construct using a DEVS Modeling Environment are backed
up by a solid mathematical and logical foundation. The properties of universality
and uniqueness, illustrated in Fig. 2.12, support the claim that any discrete-event
model you are likely to want to build, can be done in a DEVS Modeling Envi-
ronment. First, let’s define a Discrete-Event Dynamic System as a Dynamic System
with discrete-event input and output segments. The theory shows that DEVS is
universal in the sense that any such Discrete-Event Dynamic System is behaviorally
equivalent to a DEVS Dynamic System. Moreover, uniqueness says, that there is a
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DEVS equivalent system which has the smallest number of states and is essentially
contained within any other such equivalent. This means that you are not limited in
the range of discrete-event models that you build in a DEVS Modeling Environ-
ment. Indeed, you can build any discrete-event model you could build in some other
environment. Moreover, if you do not include extraneous and redundant features in
it, then it will be the most efficient representative of all the models that could give
the same behavior.
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In this chapter, you will see how the System Entity Structure (SES) can help you
construct models for Systems of Systems. In fact, we will use the SES to better
understand the process for constructing such models. Modeling and Simulation
(M&S) refers to a set of activities that are undertaken for a variety of reasons—to
enable better decisions by testing out alternative policies using simulation models,
to build simulators of complex technology systems for use in training, and to
provide environments to support virtual build and test of Systems of Systems, as
discussed in Chap. 1. It will be helpful to get a sense of the activities involved in
M&S from a bird’s eye perspective before we dive down into DEVS-based tools for
simulation model construction, the focus of this book.

A good starting point, although somewhat simplistic, is to visualize the activities
as a process or sequence of steps to accomplish a task in some ways similar to a
software development process. The kind of M&S task under discussion here is to
enable better decisions by testing out alternative choices using simulation models.
The process as often formulated has the following steps:

1. Clarify your objectives for this modeling and simulation task—there may be
many objectives motivating model development for decision making.

. Gather relevant data.

. Construct your model.

. Execute the model.

. Interpret the results of simulation.

N AW N

One thing to notice immediately is that, while constructing and simulating a
model are central to the process, other activities that lay the groundwork (Steps 1
and 2) and interpret the results (Step 5) can’t be ignored. Indeed your success as a
modeling and simulation developer may strongly depend on your understanding of
these peripheral activities and your ability to collaborate with others to assure their
success.
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3.1 Modeling and Simulation as a Simple Workflow

In its simplest form, the M&S process can be shown as a “waterfall” in the sense
that it proceeds from beginning to end without ever returning to early steps
(Fig. 3.1).

We’ll consider this formulation of M&S activities to introduce the System Entity
Structure and DEVS modeling supported by MS4 Me. Later in Chap. 13, we’ll
return to consider how MS4 Me supports a much more realistic and flexible M&S
process formulation.

M&S process portrayed in Fig. 3.1 will be formulated with the help of a System
Entity Structure (SES) using relevant tools of the MS4 Me environment. Figure 3.2
shows an outline of the M&S process portrayed in Fig. 3.1. We see that in this
representation the process is considered to be an entity, MSProcessSystem, which is
decomposed into the steps of Fig. 3.1, each represented as an entity with a corre-
sponding name.

Formulating the process in this way will introduce you to activities involved in
modeling and simulation, while at the same time probe the SES in its most basic
form. As an additional outcome, you can generate an animation of the process that
allows you to see the successive activation of the modules representing the process
steps together with the information flow among these modules.

Gather
relevant data

3

Construct

model 1

Execute the

model 1

Interpret simulation
results

Fig. 3.1 The M&S Process as waterfall sequence of steps
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3.2 Decomposition and Coupling

Two unique features of the SES are decomposition and coupling. Decomposition
tells how to decompose or breakdown an entity into entities. These entities later can
represent components in a model constructed for the original entity. Coupling tells
how information can flow among the components in the constructed model. Let’s
see how the MS4 Me environment helps you specify the SES under consideration.
The first step is to indicate the top entity of the SES and its subentities as follows:

From the process perspective, MSProcessSystem is made of
User, ClarifyObjectivesStep, DataGatherStep,
ConstructModelStep, ExecuteModelStep, and
InterpretResultsStep!

Note that the subentities are listed (the order doesn’t count) after the “is made of”
phrase. These are components in a particular decomposition labeled as “process” in
the “From the ... perspective” phrase. The constant parts of the statement are in
bold font—the parts that convey user information are in ordinary font. The “pro-
cess” label for the perspective serves to allow us to provide coupling information
for the components. For example, the sentence:

From the process perspective, User sends InitialObjectives to
ClarifyObjectivesStep!

states the User component is capable of sending a message called InitialObjectives
to the ClarifyObjectivesStep component. Whether or not a model actually outputs
InitialObjectives at any time depends on the model itself. Of course, entities
included in such a coupling statement must have been included in the “made of”
statement. The next statement:

from the process perspective, ClarifyObjectivesStep sends ClearObjectives
to DataGatherStep!
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states the ClarifyObjectivesStep component sends a message called ClearObjectives
to the DataGatherStep. From these two coupling statements, we can see that the
ClarifyObjectivesStep gets as input, InitialObjectives, and processes this input to
produce the ClearObjectives output. This agrees with the name given to the
component.

You should now be able to interpret the following coupling statements:

from the process perspective, DataGatherStep sends
ValidData to ConstructModelStep!

from the process perspective, ConstructModelStep sends
ValidModel to ExecuteModelStep!

from the process perspective, ExecuteModelStep sends
ExperimentSummaries to InterpretResultsStep!

from the process perspective, InterpretResultsStep sends

RankedAlternatives to user!

Couplings defined by the above statements appear in the outline of the SES: This
display of couplings may be easier to scan through than the original natural lan-

guage text.
The following statement is also a coupling statement but it relates the overall
process to one of the components:

From the process perspective, MSProcessSystem sends StartUp to User!

This states that the encompassing model, MSProcessSystem sends a StartUp
message to the User component.

The semantics of above statements are evident in the following display generated
by the MS4 Me simulation (Fig. 3.3).

MSProcessSystem
process
|e] User
|e] ClarifyObjectivesStep
|| DataGatherStep
(| ConstructModelStep
|e] ExecuteModelStep
|| InterpretResultsStep
Ed InterpretResultsStep.rankedalternatives - User
£l ClarifyObjectivesStep.ClearObjectives -=> DataGatherStep
£l ExecuteModelStep, ExperimentSummaries - InterpretResultsStep
£l User.InitislObjectives -» ClarifyObjectivesStep
Lk ConstructModelStep. ValidModel -> ExecuteModelStep
Edy MSProcessSystem, StartUp -= User
Ll DataGatherStep, ValidData - » ConstructModelStep

Fig. 3.3 Outline of the MSProcess SES showing coupling
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Exercise

Review the statements discussed above and check whether they agree with
Table 3.1 of inputs and outputs.

Input/output tables such as Table 3.1 play a role in the animation that is gen-
erated from an SES by MS4 Me. The analyzing program derives input/output
relations for each the entities in the way we have discussed just now and creates
models for each of the components that behave according to these tables. If it has a
single input and output, when a model receives the input, it responds by generating
the output. If the model has several inputs and outputs, unless modified, the model
will output all the outputs when receiving any input. This is because the SES
portrays couplings, or possible information flows, but cannot say exactly which
ones will occur. In other words, we can only infer the possible input/output relation
(that any identified input can produce any identified output) associated with an
entity not the actual one that a model for the entity would produce. This looseness
in behavior is unlikely to be what you intend so you have to eliminate undesired
pairings in the model’s input/output relation. For example, in the MSProcessSys-
tem SES, the User model has two inputs: StartUp and RankedAlternatives and one
output, InitialObjectives. Table 3.1 lists the output of the User component as “No
output” since we are not concerned with how the User handles the RankedAlter-
natives (whether to make a decision or return to revisit the M&S process). How-
ever, in the table generated from the SES both inputs produce the same output. So
we need to remove the pair (RankedAlternatives, InitialObjectives) to make the
model behave as we intend.

Let us say that a model is compatible with an entity if the model is capable of
receiving inputs and producing outputs inferred from the SES coupling involving that
entity. Since the SES analyzer only examines the couplings involving an entity, it can
resolve the selection of models for an entity to those compatible with it but no further.

Exercise

Provide a counterexample to the claim that it is always possible from an analysis of
the SES alone to infer which model a developer intends to replace as a component

Table 3.1 Input/output relation to components

Component Input Output

User StartUp InitialObjectives

User RankedAlternatives —No output—
ClarifyObjectivesPhase InitialObjectives ClearObjectives
DataGatherPhase ClearObjectives ValidData
ConstructModelPhase ValidData ValidModel
ExecuteModelPhase ValidModel ExperimentSummaries
InterpretResultsPhase ExperimentSummaries RankedAlternatives
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for the entity. Hint: write an SES containing an entity which receives two distinct
input messages and produces two distinct output messages. Suggest at least two
models that are compatible with the entity’s coupling but have different
input/output tables.

3.3 Hierarchical Construction

Let’s examine the M&S process in somewhat more detail. Consider breaking down
the steps of Figs. 3.1 and 3.2 along the following lines:

e Clarifying your objectives breaks down into clarifying requirements (specifying
the decisions that modeling should support), values (how to measure the model
outputs), and weights (how to weight the measures).

e Gathering relevant data involves finding the right data and validating it to make
sure it is representative of the system being modeled.

e Constructing a model first requires defining the model, then implementing it,
calibrating it with data gathered in the previous step, and validating the model
against unused data or newly gathered relevant data.

e FExecuting the model involves formulating alternative decisions and running
simulation experiments to get the model’s evaluation of these alternatives.

o [Interpreting the results of simulation involves evaluating alternatives and
ranking them for the user’s examination.

This more detailed description of the M&S Process can be expressed in the SES
so that it has more than one level and generates hierarchical models. In contrast to
the “flat” model in Fig. 3.4, a hierarchical model contains at least one component
that itself is composed of subcomponents. To show how the SES can make this

User
Miniizobjecti CIaleObﬁcti\:es_StEp QuiCarObjgctive
fiCkaObjectines —_DataGathersiep out¥alidData
aid Const.ructMOdei'Ste?_ - kY sictode
fvah ExecuteModelstep  °“'* II 2 '_' f-'l'.".: =

wtrankedalternativés

M penmentSumma s outra
BETE InterpretResultsSte

Fig. 3.4 Simulation Viewer showing the DEVS coupled model generated from the SES
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Fig. 3.5 The outline of the SES as extended by the decomposing DataGatherPhase

happen, we’ll start with the description of data gathering. Let’s consider that the
DataGather Phase contains two components, getData and validateData. Notice that
we use the term “Phase” instead of “Step” to avoid a conflict where the two types of
models, atomic and coupled, resulting from transformation will have the same
name. As with the MSProcessSystem, we express this composition as follows:

From the dataGather perspective, DataGatherPhase is made of getData and

validateData!

The effect of this statement is to add entities below the DataGatherPhase entity.
Consider the following coupling statements (and compare with Fig. 3.5).

From the dataGather perspective, DataGatherPhase sends ClearObjectives to
getDatal!

From the dataGather perspective, validateData sends ValidData to
DataGatherPhase!

From the dataGather perspective, getData sends Data to validateData!

The first two statements mention DataGatherPhase while the third mentions only
its subentities. The first is an example of external input coupling, it says that the
DataGatherPhase is capable of sending an input ClearObjectives to its subcom-
ponent, getData. The second is an example of external output coupling, which says
that the subcomponent, validateData is capable of sending validData to its parent
entity, DataGatherPhase. The third is an example of internal coupling that describes
a coupling involving subentities, getData and validateData.
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Fig. 3.6 The DataGatherPhase model as an expanded component of MSProcessSystem
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Fig. 3.7 The hierarchical model for MSProcessSystem (showing the component coupled models
in black box form)

The resulting hierarchical coupled model for MSProcessSystem is shown in
Fig. 3.6. It shows the new coupled model for the generated substructure under
DataGatherPhase. Note that the couplings involving DataGatherPhase when it is a
subcomponent (of the MSProcessSystem) and those (just discussed) that relate
DataGatherPhase to its subcomponents, agree on names of messages. This allows a
ClearObjectives message sent to DataGatherPhase to be relayed downward to its
getData subcomponent. Similarly, the component validateData sends validData
upward to its parent, DataGatherPhase.

This discussion leads to an important coupling rule for decomposition: When we
decompose an entity we have to remember to make the external input and external
output couplings consistent with the internal couplings of the parent entity.

The hierarchical model for MSProcessSystem is shown in Fig. 3.7.
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Exercise

Extend the SES for MSProcessSystem to include the decomposition of its
remaining components. Add the following segments to the original SES, prune, and
generate the Simulation Viewer and animation. Compare your Simulation Viewer
display for each component with the Simulation Viewer displays below. Also
compare the Simulation Viewer display for the top level model with the one given
at the end of the section. In each case, follow the message flow given by the
animation and try to explain how the couplings make this happen. Give reasons
why the couplings have been specified the way they have and experiment with
alternatives to see how the information flow is affected.

Decomposing Clarify Objectives

From the clarifyObjectives perspective,
ClarifyObjectivesPhase is made of clarifyRequirements,
clarifyValues, and clarifyWeights!

From the clarifyObjectives
perspective,ClarifyObjectivesPhase sends InitialObjectives
to clarifyRequirements!

From the clarifyObjectives
perspective,ClarifyObjectivesPhase sends InitialObjectives
to clarifyValues!

From the clarifyObjectives
perspective,ClarifyObjectivesPhase sends InitialObjectives
to clarifyWeights!

From the clarifyObjectives perspective,clarifyRequirements
sends ClearObjectives to ClarifyObjectivesPhase!

From the clarifyObjectives perspective,clarifyValues sends
ClearObjectives to ClarifyObjectivesPhase!

From the clarifyObjectives perspective,clarifyWeights sends
ClearObjectives to ClarifyObjectivesPhase!

This gives rise to the view in Fig. 3.8.

Decomposing Model Construction

From the constructModel perspective, ConstructModelPhase 1is
made of defineModel, implementModel,calibrateModel, and
validateModel!

From the constructModel perspective, ConstructModelPhase
sends ValidData to defineModel!

From the constructModel ©perspective, defineModel sends
ModelDefinition to implementModel!

From the constructModel perspective, implementModel sends
ImplementedModel to calibrateModel!

From the constructModel perspective, calibrateModel sends
CalibratedModel to validateModel!

From the constructModel perspective, validateModel sends
ValidModel to ConstructModelPhase!
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Fig. 3.9 Decomposition of ConstructModels

This gives rise to the view in Fig. 3.9.

From the executeModel ©perspective, ExecuteModelPhase 1is
made of generateAlternatives and runExperiments!

From the executeModel perspective, ExecuteModelPhase sends
ValidModel to generateAlternatives!

From the executeModel perspective, generateAlternatives
sends Alternatives to runExperiments!

From the executeModel ©perspective, runExperiments sends
ExperimentSummaries to ExecuteModelPhase!

This gives rise to the view in Fig. 3.10.
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v ExecuteModelPhase

q{n.uhdlicdtl generateAlternatives  outAl

inValidModel e joutExperimentSummaries

fiiternatives runExperiments  outExperimentSummaries

Fig. 3.10 Decomposition of ExecuteModelPhase

Decomposing Results Interpretation

From the interpretResults perspective,
InterpretResultsPhase is made of evaluateAlternatives and
rankAlternatives!

From the interpretResults perspective,
InterpretResultsPhase sends ExperimentSummaries to
evaluateAlternatives!

From the interpretResults perspective, evaluateAlternatives
sends EvaluatedAlternatives to rankAlternatives!

From the interpretResults perspective, rankAlternatives
sends rankedAlternatives to InterpretResultsPhase!

This gives rise to the view in Fig. 3.11.

Components in a process often require more than one input from other com-
ponent to work properly. For example in the M&S process, a correct model con-
struction phase needs to receive both the gathered data and the clarified objectives
of the earlier stages. This idea is explored in the following:

¥ InterpretResultsPhase

*inExpenmentSummaries  evaluateAlternatives outk

TEvaluatedAlternatives rankAlternatives

Fig. 3.11 Decomposition of InterpretResults Phase



42 3 System Entity Structure Basics

Exercise

Add a coupling to the SES for MSProcessSystem to represent the transfer of
clarified objectives from the ClarifyObjectivesPhase to the ModelConstruc-
tionPhase. Generate the animation for the amended SES and observe the effect of
the new coupling on the information flow. (You will notice that ClarifiedObjectives
arrives at ModelConstructionPhase first it triggers model construction to complete
too early.) Correct the problem by amending the input/output table for
ModelConstructionPhase so that it allows only the ValidData input to trigger its
output. Should the user’s objectives also inform other stages in the process? If so,
add appropriate couplings and take care of any premature outputs in the animation.

Exercise

Many activities in the real world can be organized into processes similar to the
modeling and simulation process discussed in this chapter. For example, wine
making can be decomposed into growing grapes, harvesting, crushing, destemming,
and fermentation.

(a) Using MS4 Me, develop an SES for the wine-making process including top
level components and couplings. Check that the message flow is as you expect
by using the automation capability.

(b) Extend your SES to capture next level decompositions. For example, for wine
making, the fermentation sub-process can be broken down into separation,
holding in a barrel, and blending.

3.4 Summary

We formulated some of the basic activities in modeling and simulation as a process
or sequence of steps that can be represented with a System Entity Structure. Besides
conveying some familiarity with M&S activities, we used the example to discuss
two unique features of the SES, decomposition, and coupling. Decomposition tells
how to breakdown an entity into subentities that can represent model components.
Coupling tells how information can flow among the components in the constructed
model. Hierarchical construction occurs when one or more entities are further
decomposed into subentities. We saw that the coupling between the parent and its
child entities (called external input, and external output, coupling) must be con-
sistent with the coupling involving the parent with its siblings at the next level. We
also saw that while an SES defines the inputs and outputs of any model that will
represent an entity, the SES cannot specify which of the possible input/output pairs
is actually used by the model. In the next chapter, we will examine the decom-
positions and other features of the SES in more depth.



At this point, you have a basic understanding of how the System Entity Structure
contains entities that can direct the retrieval of components drawn from a reposi-
tory. The SES also contains coupling information that enables components to
exchange messages and execute their state transitions. In MS4 Me, the default
repository used by the SES is a folder of Java class files for atomic models.
Although the SES is agnostic as to how these models came to populate this folder,
the environment provides a primary means of creating such models through
transformation of Finite Deterministic DEVS (FDDEVS) specifications. This
chapter aims to provide an understanding first, of the FDDEVS models in *.dnl
files, and second that how these files get transformed into DEVS atomic models
expressed in Java. However, such models are limited in capability since the
FDDEVS representation is limited in its expression of messages that can be pro-
cessed and states that can be established. So the second goal of this chapter is to
show how you can enhance dnl files to enable them to automatically generate
DEVS atomic models in Java that have full capability to express messages and
states. We also show how hierarchical models can be created using the Sequence
Designer and then be enhanced using the FDDEVS elaboration process.

4.1 FDDEVS Model for Generating Jobs in a Time
Sequence

We begin by illustrating how a model that generates instances of a class of jobs can
be developed from a simple FDDEVS model as a starting point. The natural lan-
guage specification has the following form:
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to start hold in generate for time 10!

after generate output Job!

from generate go to generate!

when in generate and receive Stop then go to passive!
passivate in passive!

When saved as a GeneratorOfJobs.dnl file in MS4 Me an outline appears as in
the top portion of Fig. 4.1.

The outline shows that there is an input port, Stop and an output port, Job. There
are two states, generate and passive where generate transitions back to itself as an
internal transition (after 10 units of time), outputting a Job just before completing
the transition. Therefore, an output is generated periodically with period 10.
A second view of the same model is the state diagram at the bottom of Fig. 4.1. It
shows the same information with graphical elements. Note the use of exclamation
points for outputs and question marks for inputs. The state diagram is generated
from the dnl file. Conversely, there is an interface for entering data into the state
diagram and reflecting it back into the file.

When you save this dnl file you automatically generate a Java atomic model
class file, and an extract of this file is shown here:

Fig. 4.1 Outline and state

i , % Input Ports
diagram of generator of jobs

+ Stop
# Output Ports
# Job
=IO States
= 3'3 generate
B= Start in this state
() Hold for 10.0
L Output Job
<~ Goto generate
£ Stop -> passive
=l (g passive
B Hold forever

I Job

generate passive
ta=10 ta = infinity
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// Declare state variables

String phase = "generate";

Double sigma = 10.0;

// End state variables

// Input ports

public final Port<Serializable> inStop =
addInputPort ("inStop", Serializable.class);
// Output ports

public final Port<WorkToDo> outJob =
addOutputPort ("outJob", WorkToDo.class);
// End output ports

//Constructor

public GeneratorOfJobs () {

this ("GeneratorOfJobs") ;

}

public void initialize() {

holdIn ("generate", 10.0);

}

public void internalTransition() {

if (phasels("generate")) {
holdIn ("generate", 10.0);
return;

}

passivate();

bi

public void externalTransition (double timeElapsed,
MessageBag input) {

sigma -= timeElapsed;
// Fire state transition functions
if (phasels("generate")) {

if (input.hasMessages (Stop)) {

passivatelIn ("passive");

return;

}

}

}i

public Double getTimeAdvance () {
return sigma;

}i

public MessageBag getOutput () {
MessageBag output = new MessageBagImpl () ;
if (phaselIs ("generate")) {
output.add(outJob, null);

}

return output;

}

When you select the Run in Simulation Viewer menu item, an instance of this
class is displayed in the Simulation Viewer as in Fig. 4.2. By pressing the step
button, you can verify that generated model displays the behavior you expect.
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¥ GeneratorQfJobs

instop out Jody

Sinstop ?geen:;;toé)()fbbs outlob””

GeneratorOf Jobs
Phase: generate
rount: 0
numberOfobs: S0
pwed: null

Fig. 4.2 GeneratorOfJobs in Simulation Viewer

4.2 FDDEVS Model for Processing Jobs

We continue with a model that processes instances of a class of jobs that is
developed from a simple FDDEVS model. The natural language specification
differs somewhat from that of the Generator and has the following form:

to start, passivate in waitForJob!

when in waitForJob and receive Job then go to sendJob!
hold in sendJob for time 50!

after sendJob output Job!

from sendJob go to waitForJob!

When saved as a ProcessorOfJobs.dnl file in MS4 Me the outline is shown in
Fig. 4.3.
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- Input Ports
4 Job

[

# 10b
() States

1]

& Job

waitForJob
ta=infinity [l ?Job

= # Output Ports

=] & waitForJob
B= start in this state
Hold farever

-» sendJob

=] Cz sendJob
() Hold for 50.0
E& Output Job
< Go to waitForJob

sendJob
ta=50

I Job

Fig. 4.3 Outline and state diagram of ProcessorOfJobs

¥ ProcessorOfJobs

ProcessorOf Jobs
o
reb— inJob {waltForob) outJob —outidly

ProcessorOf Jobs
Phase: waitForJob
count: 0

storedJob: WorkToDo
id: 0
startTime: 0.0

processingTime: 0.0

Fig. 4.4 ProcessorOfJobs in Simulation Viewer
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inStop  GeneratorOfJobs outJob #inJob ProcessorOfJobs  outlob
outJob

Fig. 4.5 Simple workflow model in the Simulation Viewer

The outline shows that there are both input and output ports for Job—when
mapped to Java, these ports become inJob and outJob, respectively. There are two
states, waitForJob and sendJob, where if the model receives a Job while waiting in
waitForJob it transitions to state sendJob. After holding in sendJob for 50 units of
time, the model outputs a Job just before transitioning back to waitForJob. When
you select the Run in Simulation Viewer menu, you automatically generate a Java
atomic models class and an instance of it is displayed in the Simulation Viewer as in
Fig. 4.4. By injecting a Job from the input menu of inJoh, and pressing the step
button, you can verify that the generated model displays the behavior you expect.

4.3 A Simple Workflow Coupled Model

By coupling the output of the generator model to the input port of the processor
model, we can create a coupled model representing a simple workflow. You can
accomplish this with a simple SES:

From the top perspective, SimpleWorkFlow is made of
GeneratorOfJobs and ProcessorOfJobs!

From the top perspective, GeneratorOfJobs sends Job to
ProcessorOfJobs!

After passing this SES to the pruning and transformation process, a coupled
model results can be executed in the Simulation Viewer as in Fig. 4.5.

The figure also shows a Job placed on the output port outJob by the generator
flowing to the input port inJob of the processor. The job is contained in a message
traveling along the coupling from outJob to inJob.
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Exercise

Add external output coupling to the SimpleWorkFlow SES so that jobs coming out
of the processor can flow externally. Similarly, add external input coupling to the
SES so that when pruned and transformed the model can be stopped externally.

4.4 Elaborating FDDEVS into Fully Capable Models in Java

Before proceeding, we will review some concepts of DEVS messages that will be
needed to understand and employ the enhancement facility of MS4 Me. Figure 4.6
illustrates the roles of input and output ports in DEVS Models. Each port has an
associated type (class) which governs the values that can appear on that port.

In more detail, we have the following concepts:

e Port—an instance of a class that implements the Port interface. Ports are typed.
For example, to add an output port outJob with associated class WorkToDo, use

addOutputPort ("outJob", WorkToDo.class);

e Data (or value)—an instance of a Java class that implements Serializable and is
associated with a Port, for example, WorkToDo wtd = new WorkToDo();

e Message—a pairing of a Port and a value that is an instance of the class
associated with the Port.

Class Class
» of DEVS Model of >
inputPort Port Port outputPort

Fig. 4.6 Illustrating input and output ports in DEVS models
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e MessageBag—a collection that allows multiple occurrences of the message
instances (such a collection is called a bag). An empty MessageBag is made
with a constructor:

MessageBag output = new MessageBagImpl () ;

Then message instances are added as in

output.add (outJob, wtd);

The mapping of FDDEVS into Java treats message bags as containing at most
one message. For example, in the statement

when in waitForJob and receive Job go to Processing!

The input message that the model is looking for is on port inJob with the value
on the port being an instance of the associated class, WorkToDo. The messages
arriving on an input port are available by processing a variable called messageList,
specifically for that port. Then to get the first value on that port, we get the first
message and its data. For example,

WorkToDo job = messagelist.get (0).getData() ;

Likewise, in the statement,
after Processing output Job!

The message generated is added to the output
output.add (Job, wtd);

MS4 Me supports the ability to elaborate the generated source code by adding
additional definitions and java source code to FDDEVS natural language files. For
an example, let’s consider the elaboration of GeneratorOfJobs.dnl file in such a way
that we actually specify the type of jobs being generated.

Figure 4.7 shows a state diagram view of the DEVS model with the addition of
callouts that suggest how to define the code fragments that are embedded in the
FDDEVS source to implement the required Job generation.

To elaborate the GeneratorOfJobs model, we can define code for some or all of
the tagged code blocks, which will then be copied and inserted into the Genera-
torOfJobs class source file. There are also additional statements that support ele-
ments in such code. The following text shows the augmented GeneratorOfJobs.dnl
file with captions that are keyed to the callouts in Fig. 4.7.
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1) Define an instance
variable, wtd with
type WorkToDo

I Job
L~
generate 1

ta=10

? Stop

2)) Upon

intitialization: wtd =
new WorkToDo() =
4) Upon transition:
wid = new
WorkToDo()

o

3) Define output
port outJob, and
Output wtd on
port outJob

passive
ta = infinity

Additional code is not
needed here for this
example

Fig. 4.7 State diagram depiction of the GeneratorOfJobs

0) Define Class WorkToDo

A WorkToDo has id, processingTime,
the range of WorkToDo’s id is int!

and startTime!

the range of WorkToDo’s processingTime is double!
the range of WorkToDo’s startTime is double!

1) Declare State (instance) Variables

use count with type int and default "0"!

use wtd with type WorkToDo!

2) Instantiate the instance variables

Initialize variables
<%

count =0;

wtd = new WorkToDo () ;
wtd.setId (count);
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wtd.setprocessingTime (20+count);
E> 1!

3) Define output port outJob

generates output on Job with type WorkToDo!
Generate output in the internal transition of generate

output event for generate
<%

output.add (outJdob, wtd),
g>!

4) On the transition for generate, create a new job to
output

Internal event for generate

<%

count ++;

wtd = new WorkToDo () ;
wtd.setId(count);
wtd.setprocessingTime (20+count) ;
%>

Java source files for the WorkToDo and GeneratorOfJobs classes are automat-
ically generated when you save the dnl file. Snippets of these files are shown below
with comments that indicate where the code fragments are inserted into the source
code. Then you can verify that the model is as you desire by running it in the
Simulation Viewer.

public class WorkToDo implements Serializable {
//the class 1s public so is available for use beyond this
file
int id;
double startTime;
double processingTime;
public WorkToDo (int id, double startTime, double
processingTime) {
this.id = id;
this.startTime = startTime;
this.processingTime = processingTime;
}
//setters and getters are generated for each instance
variable

public void setId(int id) {
this.id = id;

}

public int getId() {

return this.id;

}
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}
public class GeneratorOfJobs extends AtomicModelImpl ({
// Declare state variables
protected int count = 0;
protected int numberOfJobs = 5;
protected WorkToDo wtd;
String phase = "generate";
Double sigma = 1.0;
// End state variables

// Input ports
public final Port<Serializable> inStop =
addInputPort ("inStop",
Serializable.class);
// End input ports

// Output ports

public final Port<WorkToDo> outJob =
addOutputPort ("outJob", WorkToDo.class);

// End output ports

public GeneratorOfJobs () {
this ("GeneratorOfJobs") ;
}

public void initialize() {
super.initialize();

// Default state variable initialization
count = 0;
numberOfJobs = 5;

holdIn ("generate", 10.0);
// Initialize Variables

wtd = new WorkToDo () ;

wtd.setId (count);
wtd.setProcessingTime (20 + count);
// End initialize variables

}

public void internalTransition() {
if (phaselIs("generate")) {

holdIn ("generate", 1.0);

//ENDID

// Internal event code

count++;
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if (count >= numberOfJobs)
passivateln ("passive");

else {

wtd = new WorkToDo () ;

wtd.setId (count) ;
wtd.setProcessingTime (20 + count) ;
}

// End internal event code

return;

}
passivate () ;
i

public void externalTransition (double timeElapsed,
MessageBag input) {

Subtract time remaining until next internal transition (no
effect if sigma == Infinity)

sigma -= timeElapsed;

// Fire state transition functions

if (phasels("generate")) {

if (input.hasMessages (Stop)) {

ArrayList<Message<Serializable>> messagelist = Stop
.getMessages (input) ;

passivatelIn ("passive");

return;

}

}

i

public MessageBag getOutput () {

MessageBag output = new MessageBagImpl () ;

if (phasels("generate")) {

// Output event code

output.add (outdob, wtd);
// End output event code
}

return output;

}

Note that the instance variables and methods in such a file are directly related to
the sets and functions defined in the DEVS formalism (see the Appendix to
Chap. 12 for this correspondence).

Exercise

Use the MS4 Me enhancement process to enable the GeneratorOfJobs to generate
jobs at random times.
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Hint: Build upon the following

use rand with type Random and default "new Random()"!
use period with type double and default "10"!
internal event for generate
<%
period = 10 * rand.nextDouble();
&>
add Library
<%
import java.util.*;
%> !

Exercise

Continue elaborating the GeneratorOfJobs to create Jobs with random processing
times.

4.5 Elaborating ProcessorOflJobs into a Java Model

We now have a generator of jobs which are instances of class WorkToDo. We can
now extend the ProcessorOfJobs to be able to accept such instances.

The corresponding state transition diagram with callouts for the transitions to
extend the ProcessorOfJobs is shown in Fig. 4.8.

2) When receive Job, set

0) Declare ports storedJob to this Job and
and types hold for its processing
time.

sendJob
? Job ta=150

wailForJob
ta = infinity

~

1)Upon creation 3) Output storedJob
declare storedJob of
type WorkToDo;
initialize storeJob to an
instance of WorkToDo

Fig. 4.8 State diagram for ProcessorOfJobs
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As with GeneratorOfJobs, we augment the ProcessorOfJobs.dnl files with the
following text, keyed to Fig. 4.8.

0) Declare ports and types;

accepts input on Job with type WorkToDo!
generates output on Job with type WorkToDo!

1) Declare an instance variable with type WorkToDo

use storedJob with type WorkToDo and default "new
WorkToDo () "!

2) In the initialize method of the model, instantiate the
instance variable

//this will be automatically done by setting the default as
shown in 1)
// storedJob = new WorkToDo () ;

3) When receive Job, decode it and store it
external event for waitForJob with Job

<%

storedJob = messagelList.get (0) .getDatal();

System.out.println ("Received WorkToDo with id "+
storedJdob.getId())

holdIn ("sendJob",storedJob.getProcessingTime ()) ;
&> 1!

4) Output stored job
output event for sendJob

<%
output.add (outdJob, storedJob) ;
g>!

The class file, ProcessorOfJobs.java, is automatically generated when you save
the corresponding.dnl file.

Exercise

Using the code fragments just given, follow the approach given for GeneratorOfJobs
to complete the definition of the extended java source for ProcessorOfJobs. Test your
model using Simulation Viewer.

4.6 Transducer: Model to Measure Job Completion Time
and Throughput

A transducer keeps track of jobs and computes turnaround (completion) time and
throughput. Transducer.dnl has the following content:
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use jobsArrived with type HashSet!
use jobsSolved with type HashSet!

use observationTime with type double!
use totalTa with type double!

use clock with type double!

accepts input on Ariv with type WorkToDo!
accepts input on Solved with type WorkToDo!
generates output on Stop!

to start hold in observe for time 100!
after observe output Stop!
from observe go to done!

when in observe and receive Ariv then go to observe
eventually!

when 1in observe and receive Solved then go to observe
eventually!

passivate in done!

The code elaboration for Transducer is given in the Appendix. The Transducer
can be coupled into the SimpleWorkFlow model to provide turnaround time and
throughput measurements. The SES below provides such a coupling:

From the top perspective, SimpleWorkFlow is made of
GeneratorOfJobs, ProcessorOfJobs, and Transducer!

From the top perspective, GeneratorOfJobs sends Job to
ProcessorOfJobs!

From the top perspective, GeneratorOfJobs sends outJob to
Transducer as inAriv!

From the top perspective, ProcessorOfJobs sends outJob to
Transducer as inSolved!

From the top perspective, Transducer sends Stop to
GeneratorOfJobs!

After pruning and transformation, the extended SimpleWorkFlow model appears

in the Simulation Viewer. When you press Step or View you can see messages with
their content flow among components as in Fig. 4.9.

— ———inJob ProcessorOflobs  outlob

- ProcessorOfJobs

Phase: sendlob

count: 0

ktoredJob: WorkToDo
id: 0
startTime: 10.0

- rocessingTime: 20.0
outstopr prackeana

Fig. 4.9 Extended SimpleWorkFlow model in Simulation Viewer
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By hovering your mouse over a model icon you can bring up a view of the
current phase and values of other state variables of the model, as shown for
ProcessorOfJobs.

Exercise

Using MS4 Me, complete the development of the Transducer and implement the
extended SimpleWorkFlow. Perform simulations for combinations of Period and
processingTime (see Chap. 5).

Exercise

Use MS4 Me to model the life cycle of a book as it is loaned from a library as
shown below (Fig. 4.10). Start with FDDEVS and note that the accumulated fine
uses the elapsed time in OverDue until returned. This requires you to elaborate the
model using a tagged expression for the external transition of OverDue with return.

Exercise

An SES for a simple representation of the reaction of Hydrogen and Oxygen to
form water is shown below (Fig. 4.11) along with FDDEVS models of the reaction
process and the reactants (O and H) and product (Water). The ReactProcess
requests that Hydrogen and Oxygen release two and one molecules, respectively,
each time step. When they do so, the process requests that water accepts one

LoanPeriod OverDue
ta=230 ta = Infinity

LY
I|
? Borrow ¢ FRetumn

=J

Return
Y
hY

\

Y

v
passive [ Retumned
ta = infinity | Fine { ta=0

Fig. 4.10 Life cycle of a book
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molecule. This iteration in time continues until one or both of the reactants have no
molecules left. Using MS4 Me enhance the given FDDEVS models to work with
the SES and pruning to produce coupled models with the described behavior.
Hint: use a state variable to keep track of the number of molecules in each of the
components. Arrange it so the initial number of molecules is set by the choice of
High or Low in the SES. Have the reactants decrease their molecule count each
time they do a release and emit a negative number when the level falls below zero.

ReactProcess

to start passivate in waitForInput!

when in waitForInput and receive StartUp go to sendRelease!
when in waitForInput and receive Release go to sendRelease!
hold in sendRelease for time 1!

from sendRelease go to waitForInput!

after sendRelease output Release!

Hydrogen

to start passivate in waitForInput!

when in waitForInput and receive ReleaseTwoMolecules go to
sendRelease!

hold in sendRelease for time 1!

from sendRelease go to waitForInput!

after sendRelease output MoleculesOfHydrogen!

Oxygen

to start passivate in waitForInput!

when in waitForInput and receive ReleaseOneMolecule go to
sendRelease!

hold in sendRelease for time 1!

from sendRelease go to waitForInput!

after sendRelease output MoleculesOfOxygen!

Water

to start passivate in waitForInput!

when in waitForInput and receive AcceptOneMolecule go to
sendRelease!

hold in sendRelease for time 1!

from sendRelease go to waitForInput!

after sendRelease output MoleculesOfWater!

Exercise

Boyle’s Law states that Pressure * Volume is a constant. Incrementally, this states
that ChangeInVolume = ChangelnPressure * Volume/Pressure. Write an enhanced
FDDEVS whose inputs change in pressure and outputs change in volume. Hint: use
Pressure, Volume, deltaP, and deltaV as state variables of type double with
ChangelnPressure and ChangeInVolume of type DoubleEnt, where
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= [= ChemicalReactions
= 8] ChemicalReaction
= reaction
[e] ReactProcess
=[] Hydrogen
= HydroConcentration
[e] LowH
|e] HighH
- [e] Oxvgen
OxyConcentration
(€] LowO
[€] HighO
[e] water
Cas ReactProcess.ReleaseTwoMalecules - Hydrogen
C3 ReactProcess.ReleaseOneMoaleculs - > Oxygen
Egs Oxygen.MoleculesOfOxygen -> ChemicalReaction
Cae Water.MoleculesOfwater -> ChemicalReaction
C& Hydrogen.Release - » ReactProcess
L ChemicalReaction.StartUp ->» ReactProcess
E3 Hydrogen.MoleculesOfHydrogen -> ChemicalReaction
Ci Oxygen.Release - ReactProcess
Cas ReactProcess, AcceptOneMolecule -> Water

Fig. 4.11 Outline of reaction process SES

DoubleEnt has a value!
the range of DoubleEnt’s value is double with default "0.1"

(This allows you to inject pressure changes of .1 in Simulation Viewer testing.)

4.7 Using Elaboration to Handle Non-deterministic State
Transitions

FDDEVS, Finite Deterministic DEVS, is indeed deterministic. This means that
there is at most one internally caused transition to another state from any state.
There is no transition for a passive state. In mapping to Java, however, the
FDDEVS state becomes the phase instance variable and other instance variables
can be added to increase the state vector of the model. You can use the enhance-
ment facility to take advantage of this enhanced state to specify internal transitions
to states other than the one that FDDEVS specifies. Indeed, the next state and its
duration become the default that you can override by writing a tagged code block
for the associated transition.
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For example as it stands, the only way to stop the GeneratorOfJobs is to inject an
external Stop input into the inStop port. The enhancement process allows you to
specify the conditions under which generation should stop under control of the
model’s own autonomous decision making. In the code of Sect. 4.1, we already
keep a count of jobs generated so far. Let’s add an instance variable as a parameter
to limit the number of jobs:

use numberOfJobs with type int and default "5"!

Now we can compare the current count with the maximum allowed and halt
generation when that number is reached. This is done in the tagged block for the
transition from generate:

Internal event for generate

<%

count ++;

if (count>=numberOfJobs)
passivateln ("passive");

elsef

wtd = new WorkToDo () ;

wtd.setId (count) ;
wtd.setProcessingTime (20+count) ;

}

s>

As you see below, this code is inserted after the transition statement generated by
the hold in specified in the natural language. The passivateln (“passive”) statement
which is executed only after the iteration limit has been reached sets the phase to
“passive” rather than to “generate” and so overrides the FDDEVS generated default.

holdIn ("generate", 1.0);

count++;

if (count >= numberOfJobs)
passivateln ("passive");

else {

wtd = new WorkToDo () ;

wtd.setId (count);
wtd.setProcessingTime (20 + count) ;

}

Exercise

Suppose that half way through generating its allocated number of jobs, the gen-
erator pauses and waits for an input to resume generation of the rest. Extend the
FDDEVS natural language specification to include an external Resume input,
which causes resumption of generation when the phase is Paused. Augment the
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tagged block for the internal event for generate so that the transition to Paused
occurs mid-way through the assigned number of jobs.

Tagged blocks for external transitions are also placed after the hold in statement
associated with an FDDEVS “when receive..” statement. This allows you to
override the default transition for external events just as with internal events.

Exercise

The current ProcessorOfJobs ignores a Job arriving while it is in sendJob. Extend
the FDDEVS natural language specification to specify a transition back to sendJob
when a Job is received while in sendJob. Add a tagged code block for this transition
that stores the new Job in a queue unless this queue is full, in which case it
transitions to a phase QueueOverflow.

4.8 Using Elaboration to Handle Multiple
Simultaneous Inputs

FDDEVS is defined so as to accept a single input through an external event. Often
however, multiple inputs arrive at the same time to a model component. For example,
in typical models derived from differential equations, all components are updated at
the same clock time each time step. This means that at each time step, a component
may receive inputs from multiple components. In particular, the reaction example of
an earlier exercise, the ReactProcess receives simultaneous inputs on port inRelease
from Oxygen and Hydrogen. Even in models in which transitions are not synchro-
nized, simultaneous events may occur to produce multiple inputs to a component.
Also it is often convenient to combine multiple outputs in the same output message
(see below) and send it to another component. In Java, an incoming message rep-
resenting multiple inputs contains multiple content elements (port-value pairs). The
FDDEVS natural language translation to Java looks at only the first content element
of an incoming message even when more than one such content are present.

To preclude errors that could arise in such circumstances, you can elaborate
external event tagged blocks to examine each content element in an incoming
message. Java provides several alternatives to do so. One standard way is to iterate
through the message using the pattern illustrated for job arrival in the Processor
OfJobs, as in:

external event for waitForJob with Job

<%

HashSet<WorkToDo> Jobs = new HashSet<WorkToDo> () ;
for (int j = 0;j < messagelist.size(); J++){
WorkToDo wtd = messagelList.get(j) .getDatal();

Jobs.add (wtd) ;
}

%>
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4.9 Using Elaboration to Generate Multiple
Simultaneous Outputs

As suggested above, an atomic model can generate a message with multiple content
elements to another component. An example arises naturally in the ProcessorOfJobs
just discussed when it finishes more than one job from the jobs it has stored in the
external event just discussed. Here is how to generate multiple content elements for
the same output message:

output event for sendJob

<%

for (WorkToDo job:Jobs) {
output.add (outJob, job)

’

}

>

The examples for ProcessorOfJobs illustrate multiple inputs and outputs all on
the same port. You also can handle multiple inputs and outputs with different ports.
For example, you could extend the model to allow jobs to arrive simultaneously on
two ports, “inHighPriorityJob” and “inLowPriorityJob” and to emerge on two ports,
“outHighPriorityJob” and “outLowPriorityJob.”

The way to do this is get accessed to the messages on the ports of interest in the
external event for any one of these ports, e.g.,

external event for waitForJob with Job

<%

if (input.hasMessages (inJob)) {
ArrayList<Message<WorkToDo>>
RegularJobMessageList = inJob.getMessages (input) ;
// then get data from this list e.qg.
RegularJobMessageList.qget (0) .getData () ;

}

if (input.hasMessages (inHighPriorityJob)) {
ArrayList<Message<WorkToDo>>
HighPriorityMessageList =
inHighPriorityJob.getMessages (input) ;

// then get data from this list e.qg.
HighPriorityMessagelList.get (0).getData() ;

}

if (input.hasMessages (inLowPriorityJob)) {
ArrayList<Message<WorkToDo>>
LowPriorityMessageList =
inLowPriorityJob.getMessages (input) ;
// then get data from this list e.qg.
LowPriorityMessageList.get (0) .getData() ;
}

%>
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To generate messages on different output ports in the same message bag is
easier. It just involves using the add method to add ports and associated values to
the output message. For example,

output event for sendJob

<%

for (WorkToDo job:Jobs) {
output.add (outJob, job) ;

}

for (WorkToDo job:HighPriorityJobs) {
output.add (outHighPriorityJob, job) ;

}

>

Note: Remember to declare any ports being used using the “accepts” or “gen-
erates” statement as appropriate.

4.10 Model Development Accelerated by the Sequence
Diagram

The Sequence Designer (SD) serves as a model development tool accelerates 