Model-Connected Safety Cases

Athanasios Retouniotis(x), Yiannis Papadopoulos, Ioannis Sorokos, David Parker,
Nicholas Matragkas, and Septavera Sharvia

Department of Computer Science, University of Hull, Hull HU67RX, UK
A.Retouniotis@2014.hull.ac.uk, I.Sorokos@2012.hull.ac.uk,
{Y.I.Papadopoulos,D.J.Parker,N.Matragkas, S.Sharvia}@hull.ac.uk

Abstract. We propose the concept of a model-connected safety case that could
simplify certification of complex systems. System design models support the
synthesis of both the structure of the safety case and the evidence that supports
this structure. The resultant safety case argues that all hazards are adequately
addressed through meeting the system safety requirements. This overarching
claim is demonstrated via satisfaction of the integrity requirements that are
assigned to subsystems and components of the system through a sound process
of model-based allocation that respects the system design and follows industry
standards. The safety evidence that substantiates claims is supported by evidence
which is also auto-constructed from the system model. As the system model
evolves during design, the corresponding model-connected safety case can be
auto-updated. The approach is underpinned by a data model that connects safety
argumentation and safety analysis artefacts, and is facilitated by a software tool.

Keywords: Safety case - Automation - Safety assessment - ARP4754-A

1 Introduction

Regulatory authorities have established different means to certify safety critical systems.
Currently, the most common practice is a ‘safety case’, a document which aims to
provide clear, convincing and comprehensive arguments that a system will operate
acceptably safe in a given context supported by appropriate evidence [1]. The structure
of the arguments is as critical as the evidence, as it illustrates the relationship between
safety evidence and safety requirements as they have been set by regulators and devel-
opers [2]. To facilitate this effort, graphical notations have been developed to help
improve the representation of arguments and better express compliance claims. These
are the Goal Structuring Notation (GSN) [3] and the Claims-Arguments-Evidence
(CAE) [4] notation. Moreover, the concept of patterns is now well-established for
supporting best practice when constructing and reviewing safety cases [5].

Despite these advances, the production and maintenance of safety cases remains
mostly a manual process, and safety cases are unconnected to models of the system
which they represent. Additionally, the considerable size of the documents, the heavy
usage of cross-referencing and the complexity of evidence required to satisfy modern
standards represent a great challenge for safety case developers. As underlying systems
become complex, relevant safety cases grow larger and more convoluted. Further, the

© Springer International Publishing AG 2017
M. Bozzano and Y. Papadopoulos (Eds.): IMBSA 2017, LNCS 10437, pp. 50-63, 2017.
DOI: 10.1007/978-3-319-64119-5_4

Model-Connected Safety Cases 51

safety case should be considered a ‘living document’, requiring maintenance across a
system’s entire life span. Such maintenance requires significant effort and time reas-
sessing the system for safety as well as validating arguments. The combined challenges
mentioned above suggest automation as a potential solution. Prior research has focused
on automating only fragments of the safety case, such as safety analysis techniques that
provide the necessary evidence or the automatic generation of abstract arguments.
Moreover, lack of tool support renders evaluation of newly introduced methodologies
difficult.

This paper highlights our effort in supporting the safety case generation process via
live connection to system models and automation. This approach integrates the model-
based design paradigm with safety analysis methods and integrity levels allocation. The
generated model-based safety cases are connected to design models and can be auto-
matically updated in accordance with system changes as these happen during design
phase and beyond. The key contributions of the paper are:

e The novel concept of integrating model-based safety analysis with safety integrity
levels and user-defined safety argument patterns to automatically construct and main-
tain safety argument structures which are compliant with contemporary standards.

e The metamodel that underpins the operationalisation of the proposed method.

Alongside these concepts, a supporting software tool is being developed, to enable
evaluation of the method through case studies. The paper focuses on the civil aviation
industry, under the guidelines of ARP4754-A safety standard, though the approach is
generally applicable to other safety-critical industries that centralise safety around the
concept of safety integrity levels (SILs). To safeguard against hazards that arise from
the development of software and electronic hardware components, which are chal-
lenging to address with traditional methods, the ARP4754-A safety standard has intro-
duced the Development Assurance Process. This entails the notion of Development
Assurance Levels (DALs), which encapsulate the level of rigour of safety assurance
tasks across the system architecture. DALs are derived from the concept of SILs intro-
duced in earlier safety standards, but are specialized for the aerospace industry. A
method to optimally allocate DALs was proposed in [6], based on the decomposition
rules established by the standard and a cost estimation for implementing an element of
the system with a particular DAL. The method was developed as an extension to the
reliability analysis method Hierarchically Performed Hazard and Origins Propagation
Studies (HiP-HOPS) [7]. Earlier work illustrates how to generate preliminary safety
argument structures using GSN’s argument patterns [8].

The paper is organised as follows: Sect. 2 introduces the safety argument notations
and the safety assessment processes under the guidelines of the ARP4754-A standard.
This section also provides the essential background in safety analysis methods and
related work. In Sect. 3, we describe our method for automatically constructing safety
arguments with an example and provide our metamodel. In Sect. 4 we conclude and
discuss benefits and limitations.

52 A. Retouniotis et al.

2 Background

2.1 Safety Argument Notations

There is a substantial body of work that aims to provide a structured way of constructing
and representing safety arguments. The Goal Structuring Notation (GSN) originated
from the University of York in the early *90s [9]. GSN aims to provide a systematic
process for construction, maintenance and representation of GSN-structured arguments.
Another approach is the Claims Arguments Evidence (CAE) notation, which was devel-
oped in the late "90s by Adelard, an independent specialist consultancy in the UK [4].

To represent safety arguments, GSN uses goal, strategy and solution nodes amongst
other elements. CAE uses claims, arguments and evidence as its core elements. Goals
or claims represent requirements, objectives, or other properties the system is argued to
fulfil or intermediate inferential steps within the argument. Strategies or arguments
describe the rationale that links goals or sub-goals with the corresponding evidence.
Solutions or evidence are references to information usually deduced from analyses in
order to support claims. These elements are rendered in the form of standardized graph-
ical shapes (e.g. goals are represented as rectangles). The popularisation of software
design patterns, most notably through [10], were adapted for use within safety cases.
Specifically, GSN’s argument patterns were introduced by Tim Kelly in [3] as a means
to support the reuse of successful safety arguments between safety cases. Argument
patterns capture and promote best practice in safety case design by dissociating the
details of an argument from the context of a particular system.

2.2 Safety Assessment in Civil Aircraft

The foundation for safety assessment and the procedures for generating the appropriate
evidence are provided by one or more safety standards and differ from industry to
industry. Aerospace Recommended Practice (ARP) is a set of standards developed by
regulatory bodies and engineers to provide generic guidelines towards the development
of civil aircraft and corresponding systems. The ARP4754-A provides general guidance
for the development of aircraft functions and systems. ARP4754-A has adopted the
concept of Safety Integrity Levels (SILs), known as Development Assurance Levels
(DALSs) in the aerospace industry. DALSs describe the level of rigour necessary for the
safety assessment activities applied to corresponding parts of the aircraft architecture.
The standard defines 5 DALSs: from E (least stringent) to A (most stringent). Regulatory
authorities and the standard encourage applying safety assessment in a top-down
sequence to better synchronize with system development.

The standard focuses on two major architectural concepts; functions and items.
Functions describe an intended high-level behaviour, such as navigation or flight control.
Items define the hardware or software components that are responsible for performing
said functions. Aircraft functions are typically identified at the early stages of develop-
ment, during a process known as functional analysis. Failures or errors associated with
functions might relate to system hazards and can be identified via a classic analysis
technique known as Functional Hazard Analysis (FHA). The standard defines those

Model-Connected Safety Cases 53

associated hazards as Failure Conditions (FCs). Each FC is associated with a severity
classification, ranging from No Safety Effect to Catastrophic based on the FC’s effect
on the aircraft and its occupants. It is important to note that the FHA is revised as soon
as new functions or FCs emerge over the course of development. Following the FHA,
candidate system architectures supporting functions are evaluated via the Preliminary
System Safety Assessment (PSSA) and Common Cause Analysis (CCA) processes.
During PSSA, aircraft or system requirements are established and appropriate DALSs are
assigned based on the FC severity classification from the FHA. Additionally, prelimi-
nary evidence that these architectures can meet safety requirements is provided. In CCA,
physical and functional requirements are distributed across systems and validate that
these have been met. Once a preliminary architecture has been established, a structured
failure analysis, such as Fault Tree Analysis (FTA) [11], is conducted to determine if
and how failures that can trigger FCs propagate within the architecture. Through FTA,
the minimal cut sets are determined, which in the ARP4754-A are stated as Functional
Failure Sets (FFSs). The FFSs contain the minimal combinations of basic failure events
that are necessary and sufficient to cause a system failure (top event). In general, FFSs
highlight vulnerabilities in the system design, such as single points of failure [12]. They
are particularly useful for determining the appropriate DALSs for systems and items
during the PSSA [13]. DAL allocation is applied recursively, from higher to lower levels
of the system architecture, and iteratively, following architectural changes. The process
completes when the system design is determined and development proceeds with the
implementation of components [14].

2.3 DAL Decomposition Rules

During the FHA process, DALs are assigned to top-level aircraft functions based on
their highest FC severity classification. The allocation of DALS to systems and items is
performed during the PSSA in a top-down approach across the aircraft architecture. The
main concern involves cases where a combination of failures of systems, sub-systems
or items leads to top-level failure conditions. Thus, to systematically assign DALSs to
the lower levels of architecture, the ARP4754-A supports the idea of utilizing the FFSs
for DAL allocation and is referred to as DAL ‘decomposition’. System safety assessment
techniques, such as FTA or Markov Analysis [15], are conducted to identify the FFSs
for each failure condition and the member of each FFS. Once the FFSs have been
identified the ARP4754-A provides the following two rules for allocating DALSs to the
sub-systems.

e One of the members of the FFS that contributes to the top-level FC is assigned the
same DAL with the parent system, whereas the rest of the members are assigned an
equal or up to two levels lower than the top system. If the FFS of the system has only
one member, then the first rule is obligatory.

e Two of the members of the FFS that contribute to the top-level FC are assigned one
lower level DAL, whereas the remaining members are assigned an equal or up to two
levels lower than the top system.

54 A. Retouniotis et al.

Even though only two options are provided for a single combination of members that
lead to a system failure, the overall number of alternatives is subject to combinatorial
explosion as FFS members increase and members participate across multiple FFSs.

2.4 Related Work on Automatic Construction of Safety Cases

Previous work towards automating the construction of safety cases in [16] focused on
generating safety cases for automatically generated code based on formal software safety
verification. The basic argument structure is generated via formal analysis of automat-
ically generated code and is adjusted based on the set of formal requirements and
assumptions. The contextual elements and other supportive information within the safety
argument are derived from other verification activities. In [17], the method presented
achieves safety argument construction from ‘safety contracts’. These contracts encap-
sulate arguments of safety properties for commercial off-the-shelf (COTS) software
components. The authors generate such contracts from the model of a given COTS
component following failure analysis via Fault Propagation and Transformation
Calculus (FPTC).

The method proposed in this paper shares some similarities with the methods above;
however, there are substantial differences. First, our approach can be applied from the
early stages of design and requires less rigorous annotation of the system model
compared to formal methods for software components. Second, our approach incorpo-
rates the widely-employed concept of SILs (DALSs in this case). Last, our approach is a
top-down method and our notion of reuse applies on the level of systems and components
instead of exclusively to COTS software components.

Another approach that shares similarities with our method is presented in [18].
Specifically, the author integrates compositional safety analysis, allocation of safety
integrity requirements, assurance case techniques and variability management into soft-
ware product line engineering (SPLE) processes. Software Product Line (SPL) is a
development method that enables a set of software-intensive systems, which share
similar characteristics and fulfil identical purposes, to be developed from a set of core
assets in a prescribed way [19]. The approach in [18] focused on providing a systematic
way to reuse safety analysis and assurance case safety artefacts for SPL, whereas our
method applies to a general range of products from hardware to avionics.

Earlier work in [20] has established a model, known as the ‘Weaving model’,
supporting model-based assurance case development. The Weaving model captures
dependencies and reference information across the assurance case and information
models, enabling automatic argument instantiations and supporting traceability. In our
approach, the model of the system is extended instead to contain all the appropriate
information in the form of containers and/or properties, which are exploited for the
argument structure generation.

Model-Connected Safety Cases 55

3 Model-Based Safety Argument Construction

The reason that we believe that model-based safety cases can be auto-constructed is that
modern standards seem to converge to acommon pattern for arguing safety. This pattern
can be found in one form or another in the automotive ISO26262, the aerospace APR
4754-A and the generic IEC61508 standard. In all these standards safety is defined as a
property that is controlled from the early stages of design and is not left to emerge at the
end. At the early stages of design, a process of risk analysis is recommended to establish
the system safety requirements by examining the system in its environment. Once an
architecture for the system is developed, then designers are asked to determine the
integrity requirements of system elements that will fulfill the safety requirements of a
system. The allocation should respect dependencies in the model which propagate fail-
ures and the overall procedure can be iterated as the system is refined from subsystem
to component levels. With a sound process in place, it is possible to argue that a system
is adequately safe because all hazards identified in the systematic risk analysis can be
shown to be addressed through meeting the appropriately allocated subsystem and
component integrity requirements. This means that conceptually the structure of a safety
case will always have the same logical form. This above is illustrated in Fig. 1.

System Model Safety Argument
Pattern
System Safety Requirements ~ System Meets
(derived via risk analysis) Safety Reqs
allocated/decomposed /
Subsystem Integrity Because
Requirements /
allocated/decomposed Because
Component Integrity
Requirements .
Evidence

Fig. 1. Diagrammatic overview of the approach

The process illustrated in Fig. 1 is the conceptual basis for the proposed approach.
The approach is operationalised by exploiting capabilities of the HiP-HOPS tool. For
the aerospace sector, we build on the DAL allocation approach presented in [6].

The results of a risk analysis performed at system level can be inserted as identified
hazards and safety requirements in the HiP-HOPS tool. Hazards are linked to logic that
connects functional failures at the outputs of a system and requirements for avoidance
are specified as DALs. A safety engineer then develops a model of the system architec-
ture in a modeling tool (e.g. MATLAB Simulink or equivalent) and annotates systems
and components with local failure behaviour information. The model is parsed by HiP-
HOPS, which automatically analyses the model, produces fault trees and then calculates
FFSs. This analysis helps to determine the contribution of components to system failures
and provides a basis for automatically and cost-optimally allocating DALs across the
system architecture. We extend this approach by automatically instantiating a safety

56 A. Retouniotis et al.

argument pattern that corresponds to the reasoning of the standard. This enables the
automatic construction of a safety argument structure.

To improve upon the benefits of HiP-HOPS methodology and its extensions, we are
developing an integrated development environment (IDE). Currently, to address model
changes, the user is required to introduce them and repeat file parsing across the toolchain
involved to obtain the revised safety argument. Considering the vast amount of changes
that can occur during a development lifecycle, significant time is spent repeating this
arduous task. Additionally, version control of the model and relevant information is
currently manual, exacerbating the aforementioned issues. The IDE currently being
developed aims to address these inefficiencies and integrates a graphical editor with HiP-
HOPS and its various extensions. For example, based on the corresponding FFSs
produced by the HiP-HOPS engine, the systems and components will be automatically
allocated with the appropriate DALs. With the information about the target system, the
engineer is able to manually develop a suitable argument pattern to define the desired
argument structure and proceed to the argument generation. As such, if a change to the
system occurs, the engineer will only have to update the system model and failure
behaviour, assuming the argument pattern remains suitable, the argument will be gener-
ated without further effort. On the other hand, if changes occur to the safety assurance
process (i.e. an assumption becomes invalidated due to testing) the engineer will have
to manually incorporate the changes in the argument pattern. That being said, the latter
can require significantly less effort compared to manually altering the argument structure
itself, given the potential for changes in the pattern to repeat across generated arguments.
This methodology extends the notion of classic safety cases, presently document-based,
to a model-based safety case, where system certification procedures are achieved auto-
matically within a software tool.

The metamodel we employ extends the HiP-HOPS metamodel, which combines the
system model with elements supporting FTA and failure behaviour annotation. Key
structural elements of the HiP-HOPS metamodel are; (a) the “model”, the top-level
element that is used to contain all other system-related elements, (b) the systems/sub-
systems, (c) the components and (d) (fault tree) events, including basic events and inter-
mediate nodes. Basic events are base sources of failure, e.g. component’s lack of output.
Intermediate nodes propagate combined failure from other basic events, usually via
Boolean logic gates. For simplicity, we present only a subset of the core elements. We
extend the metamodel to support automatic generation and maintenance of safety argu-
ments with elements similar to GSN and OMG’s ARM metamodels [21]. Our meta-
model is featured in Fig. 2, which illustrates inter-element relationships. On the right
side of the figure, we find the system model and related elements. Integrity requirement
support is found through the model, system and component elements on the right side
of the figure. The center of the figure is populated by elements related to safety assess-
ment artefacts that HiP-HOPS generates such as fault trees. On the left of the figure,
safety argumentation elements such as goals and solutions are included. Both FTA and
FMEA outputs are usable as safety artefacts, part of the evidence supporting the safety
argument in the form of GSN solutions.

Model-Connected Safety Cases 57

5 GSN_Pattern [1..1] model
Iu Abstracllonioperators]i N E Model]
] name : Strin

[0..] abstr_operators
[1.] gsn_pattern_element
B GSN_Argument
| [1..1] gsn_pattern_el [1.%] system

[1.%] gsn_element { 5 GSN_pattern_Element 1111 s.artefact
H GSN_Element
|

H Safety s ment_Artefact r

B Minimal_Cut_Sets 11-*] component

H Goal } [H Strategy 1 [B Solution]

[1.] component

[5 FMEA]*,[B F1A
C J C

[1.1] fta

| 10.2] minimal_cut sets

Fig. 2. Prototype of tool’s metamodel

Finally, the abstraction operators suggest GSN’s structural abstractions of multi-
plicity and optionality. The former enable sub-graphs of the argument to be applied
iteratively across sets of contextual elements, whereas the latter enables the inclu-
sion of optional strands of argumentation. Our metamodel aims to support refer-
encing of reusable safety artefacts generated automatically by HiP-HOPS in safety
cases. Towards this aim, argument patterns are linked to the system model and refer
abstractly to model and safety assessment elements.

3.1 Automatic DAL Decomposition

The choice of DAL dictates the safety arguments associated with particular func-
tions, systems or items. A brief example is provided to demonstrate how DALSs are
assigned onto an abstract system. In Fig. 3, the architectural model of an abstract
system is presented. The system has a single output and comprises two sub-systems,
which in turn include two elements each; A, B, C and D. The element in dotted lines
(component E) will be added later when design changes emerge to showcase the
maintainability of our approach. Logical gates define how the failure of the elements
may lead to the system’s functional failure. Assuming the system function has been
assigned DAL A from the PSSA, following the ARP4754-A guidelines the following
options for the components are available in Table 1. In this example, two FFSs
occur; in FFS 1 the system function will fail if components A, C and D fail. In FFS
2, the system will fail if components B, C and D fail. The corresponding options are
identical across the two FFSs. The total range of options for allocation can be formed
by combining the possibilities from each FFS.

58 A. Retouniotis et al.

l

Component A

| OR System 1
b 11
Component B System

[Function

!

Component C

— "
i
Component D | |
L

|

=

= — = = — = = = = ——

—
1
| g
5
I| 2
=
I &
ILT!
|
|
|
|
|
|
|
|
-

Fig. 3. Example model of an abstract System

Table 1. DAL decomposition options for components.

FFS FFS 1

Components Component A | Component C | Component D
Option 1 A C C

Option 2 C A C

Option 3 C C A

Option 4 B B C

Option 5 B C B

Option 6 C B B

Furthermore, ARP4754-A explicitly states that regardless of the number of func-
tional decompositions, it is important to apply the options that correspond to the DAL
allocation of the given top-level FC (i.e. DAL A).

At this stage, we can determine the most cost-effective option by evaluating the cost
of implementing each element of the architecture with the given DAL. Table 2 provides
cost values for each DAL for illustrative purposes.

Table 2. Cost of DALSs for the abstract system.

DAL |A B |[C |D |E
Cost 100 |80 |40 |20 |0

Adding the costs of the component DALSs, we identified three groups of allocations
with identical costs. For example, allocating DALs C, C, A, C to components A, B, C,
D yields one optimal solution of cost 220. The simplicity of this example translates into
a rather trivial solution. If we examine a system with twice as many components, then
the solution would not be so apparent. The more complex a system is, the more extensive
the design space of available options becomes. This renders the exhaustive search for

Model-Connected Safety Cases 59

optimal solutions into an intractable problem for systems of non-trivial scale or
complexity.

The combinatorial nature of the problem rendered exhaustive techniques in [22]
inadequate for large scale systems. The authors focused instead on metaheuristic tech-
niques. Metaheuristic techniques do not guarantee optimal results, but are known to
reliably achieve nearly optimal solutions. Specifically, in [6, 22] the metaheuristic
method Tabu Search was adopted for its superior performance when allocating ASILs
and DALs respectively. The method initiates with a random, yet feasible, solution of
allocated DALs across the system architecture. Then, it iterates through the neigh-
bouring solutions for lower cost allocations. The approach features a memory structure
known as a “Tabu Tenure’. This memory structure registers the recent allocations inves-
tigated. The recently registered states are avoided and search moves towards different
areas in the design space that might hold better solutions. Finally, the use of an Aspiration
Criterion allows the search to select candidate solutions that are better than Tenure’s
current best solution, ignoring the Tabu Tenure.

3.2 Argument Pattern Instantiation

Figure 4 features a part of the model (i.e. in Fig. 3 Sub-system 1 and its components)
and the part of the argument pattern that corresponds to the derived argument structure
for these elements in XML (i.e. Fig. 5 G5 and its children nodes). We instantiate the
argument pattern from the bottom part of Fig. 4 using the model information from the
top part of Fig. 4. The pattern is able to retrieve the information through the use of the
text elements in brackets. For instance, in {S} a system is referenced defined earlier in
the pattern. Properties of {S} are accessed via the “dot” operator; for instance, the

——— MODEL

Systeml </name>
/DAL

©> ComponentA </name>
/DAL

©> ComponentB </name>
</DAL

ontainer

C+)-—| Argument Pattern

<goal>
{S} contribution to {H} mitigated via DAL {S.DAL}
<solution> Evidence of DAL {S.DAL} satisfaction </solution>
<strategy>

Argument over Contributors of {S} to (H}

<for var="c" in="S.components_container">

<goal>
{c} contribution to {H)} mitigated via DAL {c.DAL}
</goal>
/strategy
</goal>

Safety
Argument

Fig. 4. Model and pattern in XML

60 A. Retouniotis et al.

system’s DAL can be accessed this way. The “for” element pattern enables iteration
over the contained elements of the system (i.e. the components). Each component is
referenced through the “var” declaration in the pattern. The system’s components
container acts as the source of each component variable. The approach shown here can
be repeated throughout the entire pattern to synthesize argument structures, which can
span the entire system architecture.

G1

ARP4754-A .
@—{ System is Safe }—D@stem Mod%
C

C

/Argument over
Omission Hazard of
System

ystem Function
Omission Hazard is
acceptably

mitigated G2

Argument over
Contributors to

63 Omission Hazard,

System 1 System 2
contribution to contribution to

Component E
contribution to
Omission Hazard

Omission Hazard

mitigated mitigated
Argument via DAL
DAL Allocation DAL Allocation Allocation
G12
ystem ystem Component E

contribution to
Omission Hazard
mitigated via DAL C

contribution to contribution to
Hazard mitigated Hazard mitigated
via DALA via DAL C

I
1
I
L}
1
I
}
}
1
Argument via Argument via I
I
}
I
1
}
1
}
}
1

g
Argument over Argument over
Contributors Of System 1 Contributors Of System 2
To Omission Hazard To Omission Hazard

Component A Component B

Component C
contribution to contribution to i

ion to
Omission Hazard
mitigated via DALA

Component D
ibution to
Omission Hazard

mitigated via DAL C

Oomi Hazard Omission Hazard
mitigated via DAL C mitigated via DAL C

G10

Fig. 5. Abstract safety argument from example

3.3 Argument Structure Generation and Maintenance

Figure 5 shows the safety argument structure produced from the example in Fig. 3 (based
on the most cost-optimal option in Sect. 3.1). The argument is constructed with a
simplified version of GSN for demonstration purposes. The rectangles represent claims
(G1-G10), the parallelograms represent arguments, the circular objects represent
evidence and lastly the ovals represent context (C). The directed lines connect and indi-
cate the supported elements. The part of the argument within dotted lines will be added
after design change. The argument claims system safety (G1) if all the hazards have
been mitigated. This is achieved via DAL assignment to all the elements and/or systems
that contribute to the hazard. In this example, further claims and evidence that support

Model-Connected Safety Cases 61

how the components satisfy the assigned DAL are left ‘undeveloped’ for simplicity and
a triangle is placed to indicate that purpose.

Following system evaluation, the engineers may decide to change the design and
add the component within the dotted lines to the system. Subsequently, a new safety
argument can be constructed to claim system safety. The introduction of the new
component changes the results in Table 1 by providing new allocation options.

The argument is updated based on the new most cost-effective option and claims that
in addition to the sub-systems, the new component E also contributes to the mitigation
of the hazard via its DAL. This option is similar to the allocation governed the argument
structure initially, but now has also assigned a DAL C to the new component. Similar
to the previous argument, further claims for component E (in this case, undeveloped)
would normally follow. In our example, the generated argument structures are only
partial and in practice would require appropriate evidence. The type of evidence is
defined by the corresponding standards and aims to show that any component require-
ments, assumptions as well as component independence, fault propagation and fault
mitigation have been met in practice. Part of the evidence comprises failure analysis,
such as FTA and Failure Mode and Effects Analysis (FMEA), which are susceptible to
system changes and frequent reapplication is required. Performing those analyses
manually for every design change of the system during the development cycle is a time-
consuming and error-prone task. However, model-based techniques such as HiP-HOPS
can alleviate this burden by automating the safety assessment.

4 Conclusion

We have demonstrated construction of a safety argument structure from a system model
by addressing the decomposition of integrity requirements under the ARP4754-A guide-
lines. The method connects the safety cases to the design model. Hence safety argument
maintenance is more efficient following design changes, as demonstrated in Sect. 3. The
progressive use of SILs/DALs throughout the various safety-critical domains means that
our approach can be adopted and with little effort expand in those domains. To the best
of our knowledge, there is not a similar approach on safety argument generation via the
automatic allocations of SILs that applies on a generic array of systems and not only in
software-intensive systems as presented in [18].

Currently, the tool is still under refinement while larger case studies are being devel-
oped. It is clear that the proposed method cannot create a complete safety case. The latter
requires the inclusion of all the supplementary documents such as the DO-178C for
software components, DO-254 for hardware components and DO-297 for integrated
avionics. Additionally, it requires the incorporation of process-based arguments that
provide support for justifying the confidence of the processes utilized to generate the
evidence. However, our method does capture and realise a general syllogism of how to
argue safety, which is compatible with many contemporary standards. The produced
structure argues that the system examined is adequately safe because all hazards iden-
tified in a systematic risk analysis are addressed through meeting the appropriately
determined safety requirements. This overarching claim is then demonstrated via

62 A. Retouniotis et al.

satisfaction of the integrity requirements that are assigned to subsystems and compo-
nents of the system through a sound process of model-based allocation that respects
system design, dependencies, and follows industry standards. The argument patterns are
one of the key elements in the model-connected safety cases that can be produced by
this method. While the user-defined argument pattern stays the same, its instantiation
changes every time a new system is considered or the model of the system under exami-
nation changes. The benefit of the approach is that changes in the structure of the safety
case or the evidence supporting it can be effected in a largely automatic fashion by
exploiting the connection of the safety case to the design model.

The evaluation of the method relies on case studies and well-defined criteria. Scal-
ability is one of our main concerns which is implicitly supported by the use of argument
modules, the algorithm responsible for the automatic instantiation of the argument
pattern and other elements that will enable iteration and recursion. Naturally, the eval-
uation is being supported by quantitative results, obtained by examining larger case
studies with our tool.

Given that the proposed approach can only generate part of the structure and evidence
one can expect to find in a typical safety case, it is envisioned that the method will be
part of a safety case approach in which some parts of the safety case are manually defined
while other parts are connected to design models and are auto-updated as these models
evolve.

Acknowledgments. This work was partly funded by the DEIS H2020 project (Grant Agreement
732242).

References

1. Kelly, T.P.: A Systematic Approach to Safety Case Management. SAE International (2003)

2. Kelly, T.P., Weaver, R.: The goal structuring notation — a safety argument notation. In:
Proceedings of Dependable Systems and Networks, Workshop on Assurance Cases (2004)

3. Kelly, T.P.: Arguing safety — a systematic approach to managing safety cases. Thesis,
University of York (1998

4. Bishop, P., Bloomfield, R.: A methodology for safety case development. In: Proceedings of
the Sixth Safety-Critical Systems Symposium on Industrial Perspectives of Safety-Critical
Systems, Birmingham, UK (1998)

5. Hawkins, R., Clegg, K., Alexander, R., Kelly, T.: Using a software safety argument pattern
catalogue: two case studies. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP
2011. LNCS, vol. 6894, pp. 185-198. Springer, Heidelberg (2011). doi:
10.1007/978-3-642-24270-0_14

6. Sorokos, 1., Papadopoulos, Y., Azevedo, L., Parker, D., Walker, M.: Automating allocation
of development assurance levels an extension to HiP-HOPS. In: Lopez-Mellado, E., Ramirez-
Trevino, A., Lefebvre, D., Ortmeier, F. (eds.) 5th IFAC International Workshop on
Dependable Control of Discrete Systems — DCDS (2015). IFAC-PapersOnLine 48(7), 9-14

7. Papadopoulos, Y., Walker, M., Parker, D., Rude, E., Rainer, H., Uhlig, A., Lien, R.:
Engineering failure analysis and design optimisation with HiP-HOPS. In: Gagg, C., Clegg,
R. (eds.) The Fourth International Conference on Engineering Failure Analysis, Part 1 (2011).
Eng. Fail. Anal. 18(2), 590-608

http://dx.doi.org/10.1007/978-3-642-24270-0_14

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Model-Connected Safety Cases 63

. Sorokos, 1., Papadopoulos, Y., Bottaci, L.: Maintaining safety arguments via automatic

allocation of safety requirements. In: Emmanouilidis, C., [ung, B., Macchi, M., Peres, F. (eds.)
3rd IFAC Workshop on Advanced Maintenance Engineering, Services and Technology,
AMEST, Biarritz, France (2016). IFAC-PapersOnLine 49(28), 25-30

. Origin Consulting (York) Limited: GSN Community Standard Version 1 (2011)
. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley Professional, Boston (1994)

Vesely, W., Goldberg, F., Roberts, N.: Fault Tree Handbook. Nuclear Regulatory Commision,
Washington, DC (1981)

Vesely, W., Dugan, J., Fragola, J., Minarick, J., Railsback, J., Stamatelatos, M.: Fault Tree
Handbook with Aerospace Applications. NASA Office of Safety and Mission Assurance,
Washington, DC (2002)

ARP4754-A: Guidelines for Development of Civil Aircraft and Systems. SAE Aerospace
(2010)

Joshi, A., Heimdahl, M., Miller, S., Whalen, M.: Model-Based Safety Analysis. NASA
Langley Research Center, Hampton (2006)

Fuqua, N.: The applicability of markov analysis methods to reliability, maintainability, and
safety. In: Start, vol 10, no. 2 (2003)

Basir, N., Denney, E., Fischer, B.: Building heterogeneous safety cases for automatically
generated code. In: AIAA Infotech@ Aerospace Conference (2011)

Sljivo, 1., Gallina, B., Carlson, J., Hansson, H., Puri, S.: A method to generate reusable safety
case fragments from compositional safety analysis. In: Schaefer, 1., Stamelos, I. (eds.) ICSR
2015. LNCS, vol. 8919, pp. 253-268. Springer, Cham (2014). doi:
10.1007/978-3-319-14130-5_18

Oliveira, A.: A model-based approach to support the systematic reuse and generation of safety
artefacts in safety-critical software product line engineering. Thesis, Instituto de Ciencias
Matematicas e de Computacao (2016)

Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley,
Boston (2001)

Hawkins, R., Habli, L., Kolovos, D., Paige, R., Kelly, T.: Weaving an assurance case from
design: a model-based approach. In: 16th IEEE International Symposium on High Assurance
Systems Engineering, pp. 110-117 (2015)

Object Management Group (OMG): Structured Assurance Case Metamodel (SACM), Version
2.0 (2016)

Azevedo, L., Parker, D., Walker, M., Esteves, A.: Assisted Assignment of Automotive Safety
Requirements. IEEE Softw. 31(1), 62—-68 (2014)

http://dx.doi.org/10.1007/978-3-319-14130-5_18

	Model-Connected Safety Cases
	Abstract
	1 Introduction
	2 Background
	2.1 Safety Argument Notations
	2.2 Safety Assessment in Civil Aircraft
	2.3 DAL Decomposition Rules
	2.4 Related Work on Automatic Construction of Safety Cases

	3 Model-Based Safety Argument Construction
	3.1 Automatic DAL Decomposition
	3.2 Argument Pattern Instantiation
	3.3 Argument Structure Generation and Maintenance

	4 Conclusion
	Acknowledgments
	References

