
A Model-Based Extension to HiP-HOPS
for Dynamic Fault Propagation Studies

Sohag Kabir1(&), Yiannis Papadopoulos1, Martin Walker1,
David Parker1, Jose Ignacio Aizpurua2, Jörg Lampe3,

and Erich Rüde3

1 University of Hull, Kingston upon Hull, UK
{s.kabir,y.i.papadopoulos,martin.walker,

d.j.parker}@hull.ac.uk
2 University of Strathclyde, Glasgow, UK
jose.aizpurua@strath.ac.uk
3 DNV GL SE, Hamburg, Germany

{Joerg.Lampe,Erich.Ruede}@dnvgl.com

Abstract. HiP-HOPS is a model-based approach for assessing the depend-
ability of safety-critical systems. The method combines models, logic, proba-
bilities and nature-inspired algorithms to provide advanced capabilities for
design optimisation, requirement allocation and safety argument generation. To
deal with dynamic systems, HiP-HOPS has introduced temporal operators and a
temporal logic to represent and assess event sequences in component failure
modelling. Although this approach has been shown to work, it is not entirely
consistent with the way designers tend to express operational dynamics in
models which show mode and state sequences. To align HiP-HOPS better with
typical design techniques, in this paper, we extend the method with the ability to
explicitly consider different modes of operation. With this added capability
HiP-HOPS can create and analyse temporal fault trees from architectural models
of a system which are augmented with mode information.

Keywords: Model-based safety analysis � Fault tree analysis � HiP-HOPS �
Dynamic systems � Temporal fault trees

1 Introduction

To overcome the limitations of classical approaches to dependability analysis like Fault
Tree Analysis (FTA) and Failure Modes and Effects Analysis (FMEA) [1], in the last
two decades, research has focused on simplifying dependability analysis by looking at
how dependability artefacts can be automatically synthesized from system models. This
has led to the field of model-based safety analysis (MBSA) [2]. MBSA approaches
offer significant advantages over classical approaches as they utilise software
automation and integration with design models to simplify the analysis of complex
safety-critical systems. Over the years, several approaches, e.g., Failure Propagation
and Transformation Notation (FPTN) [3], Hierarchically Performed Hazard Origin and
Propagation Studies (HiP-HOPS) [4], AltaRica [5], FSAP-NuSMV [6], and AADL

© Springer International Publishing AG 2017
M. Bozzano and Y. Papadopoulos (Eds.): IMBSA 2017, LNCS 10437, pp. 163–178, 2017.
DOI: 10.1007/978-3-319-64119-5_11



with its error annex [7], have been developed to facilitate MBSA of complex systems.
An overview of these approaches is available in [8, 9]. These approaches usually
combine different classical safety analysis approaches to allow the analysts to perform
safety analyses automatically or semi-automatically. For example, HiP-HOPS, a
state-of-the-art MBSA approach, enhances an architectural model of a system with
logical failure annotations to allow safety studies such as FTA and FMEA. In this way
it shows how the failure of a single component or combinations of failures of multiple
components can lead to system failures.

Early versions of the HiP-HOPS method used the classical combinatorial model of
traditional FTA. In this model, systems failures are caused by logical combinations of
component failures as these combine and propagate through the system architecture.
However, in modern large-scale and complex systems, system behaviour is dynamic
over time. This could be due to their capability to operate in multiple modes, e.g., an
aircraft can operate in take-off, flight, and landing modes or it could be because the
system behaviour changes in response to different events. This dynamic system
behaviour leads to a variety of dynamic failure characteristics such as functionally
dependent events and priorities of failure events. It is not only combinations of events
that matter but sequences too. As systems are getting more complex and their beha-
viour becomes more dynamic, capturing this dynamic behaviour and the many possible
interactions between the components is necessary for accurate failure modelling.

There are different possibilities to model the dynamic behaviour of a system. On the
one hand, it is possible to directly specify the dynamic failure behaviour through
dynamic dependability formalisms [9, 10]. One example is Pandora TFTs [10], where
dynamic behaviours are modelled using temporal gates and temporal laws are used for
qualitative analysis. Pandora can be used in the context of HiP-HOPS for assessing
event sequencing in dynamic systems. A difficulty with this approach is that the
dynamic operation is not explicitly given in a system design model, but has to be
introduced later on in the failure modeling where event sequences are described. This
can make application of the method counterintuitive to designers who are used to
describing dynamics directly in system models using mode and state diagrams. The
difficulty can be overcome by modelling dynamic behaviour in state automata linked to
an architectural model of the system and by synthesizing fault trees by traversing the
combined model [11]. However, in this approach important information related to the
sequencing of events is eventually lost, as the resultant fault trees are combinatorial and
do not have temporal semantics. This, however, is not ideal since there are circum-
stances where the order of two or more events is significant and changes the effects of
failure and the capability to recover [10].

The main contribution of this paper is the proposal of a dynamic fault propagation
approach which extends the HiP-HOPS technique with explicit representation of sys-
tem modes and states. The approach generates Pandora temporal fault trees which
represent accurately the dynamic failure behaviour of the system without any loss of
the significance that the sequencing of events may have. The approach has been
illustrated on a model of a twin-engine aircraft fuel distribution system.

164 S. Kabir et al.



2 Background

2.1 An Overview of the HiP-HOPS Technique

Hierarchically Performed Hazard Origin & Propagation Studies or HiP-HOPS [4] is
one of the more advanced and well supported compositional model-based safety
analysis techniques. It can automatically generate fault trees and FMEA tables from
extended system models, as well as perform quantitative analysis on the fault trees. It
also has the ability to perform multi-objective optimisation of the system models [12].
It can semi-automatically allocate safety requirements to the system components in the
form of Safety Integrity Levels (SILs) which automates some of the processes for the
ASIL allocation specified in ISO 26262.

The approach consists of three main phases: (a) system modelling and failure
annotation (b) fault tree synthesis and (c) fault tree analysis and FMEA synthesis.

The system modelling and failure annotation phase allows analysts to provide
information to the HiP-HOPS tool on how the different system components are
interconnected and how they can fail. The architectural model of the system shows the
interconnections between the components of the system and the architecture can be
arranged hierarchically, i.e., the system consists of different subsystems and subsystems
have their own components. Modelling and annotation of the system with depend-
ability information can be done using popular modelling tools like Matlab Simulink or
SimulationX. The dependability related information includes component failure modes
and Boolean expressions for output deviations, which describe how a component can
fail and how it responds to failures that occur in other parts of the system. The
expression for the output deviations show how the deviations in the component outputs
can be caused either by the internal failure of that component or by corresponding
deviations in the component’s input. Such deviations can be user defined but typically
include omission (O) of output, unexpected commission (C) of output, incorrect output,
or too late or early arrival of output [13] (see Fig. 1). If available, quantitative data can
also be entered to facilitate quantitative analysis in a later phase through parametric
distribution functions (e.g. failure rate or scale and shape parameters of exponential and
Weibull distributions, respectively). Note that while annotating components,
HiP-HOPS considers that a component has a fixed set of nominal and failure behaviour,
and these behaviours do not change over time. For instance, consider the component
shown in Fig. 1, where the annotation of the output deviation of component A is shown
in Table 1.

Fig. 1. An example component

A Model-Based Extension to HiP-HOPS 165



Once the components in the system model are annotated with failure expressions,
the annotated model is used by HiP-HOPS to synthesize fault trees. This process starts
with a deviation of system output (top event) and traverses the system architecture
backwards, i.e., from the system level outputs to the component level failures, to
examine the propagation of failures through connections between components. In this
way the process traverses the whole architecture and combines the local fault trees from
the individual components until no connected components remain. The result is a single
fault tree (or set of fault trees) which represents all the possible combinations of
component failure that can lead to the system failure.

In the final phase, the synthesised fault trees are analysed both qualitatively and
quantitatively. Qualitative analysis results in minimal cut sets (MCSs), which represent
the smallest combinations of failure events that can cause the system failure. In addition
to that, FMEA tables are generated automatically showing the connections between
component failures and system failures. In quantitative analysis, probability of system
failure is estimated based on the failure rate/probability of the basic events.

Generally, temporal dependencies among the events are not considered in FTA.
However, HiP-HOPS is able to consider them using Pandora temporal fault trees (TFTs)
[10]. Pandora uses temporal gates such as Priority-AND (PAND) and Priority-OR
(POR) to represent temporal relations among events. The PAND gate represents a
sequence between events X and Y where event Xmust occur before event Y, but both the
events must occur. The POR gate also represents a sequence between the events, but it
specifies an ordered disjunction rather than an ordered conjunction, i.e., event X must
occur before event Y if event Y occurs at all. In this paper, the symbols ‘/’ and ‘|’ are
used to represent PAND and POR operation respectively in logical expressions.
Additionally, ‘+’ and ‘.’ are used to represent logical OR and AND operations.

2.2 Dynamic Behaviour and Challenges in Dependability Analysis

In modern systems, big tasks are often divided into smaller tasks and are processed in
different stages of the operation. In this way, resources are utilised in a sequence of
different stages, and in each of those stages, a set of different functions are performed to
complete the overall task. For example, the operation of the Aircraft Fuelling Systems
(AFS) in modern aircraft can be divided into modes, whereby some of the operations
may take place before the flight and some may take place during the flight. Throughout
the process, at any particular point in time, some of the system components may act as
active components and some others may act as passive components. By active at a
point in time, we mean those components which are engaged in system operation at
that particular time. On the other hand, inactive components are those which are idle or
switched off, i.e., not involved in any operation at that point in time and waiting to be
reactivated by the system.

Table 1. Annotation of component with static behaviour in HiP-HOPS

Component name Output deviation Failure expression

A O-Out A.Fail + O-A.In

166 S. Kabir et al.



Sometimes a system may have to perform a set of variable functions and, to
facilitate this, a variable configuration of the system is obtained by deliberately acti-
vating and deactivating a selected number of components. A second scenario could be
that a system is performing a fixed set of functions, and in the presence of a failure, the
system may sacrifice some of its non-critical functions and go to a degraded operational
mode by only doing the critical functions with a limited number of components with a
different configuration. Additionally, to make the safety critical system tolerant to
faults, many systems have fault tolerance strategies built in. As part of such a fault
tolerant strategy, in the presence of faults, systems may reconfigure by using spare
(cold or hot) components to respond to the faults and continue the nominal behaviour.

If we want to analyse such a system with techniques like HiP-HOPS, we will soon
be faced with difficulties caused by the dynamic behaviour of the system. Temporal
fault trees capture temporal dependencies, but for multi-state systems, it is difficult to
precisely define the nominal behaviour of the system because it has different beha-
viours in different modes. Therefore, it is equally difficult to define the potential
deviations from the nominal behaviour. Another thing to note is that different selections
of components are activated and deactivated to obtain a desirable configuration;
therefore some of the components may be irrelevant in some of the modes, and thus so
are their failure modes. As a result, it is a challenge to take this mode dependent
behaviour into account and represent it in an understandable and manageable format to
facilitate dynamic failure propagation studies.

3 Dynamic Fault Propagation Studies Using HiP-HOPS

3.1 Representing Dynamic Behaviour Using Mode Charts

As already mentioned, we consider that in the presence of failure a system can behave
dynamically by reconfiguring itself to deliver a variable set of functions or a single set
of function with some alternative configurations. That means the configuration of the
system may be dependent on the mode in which the system is operating, i.e., a distinct
configuration/architecture can be associated with a distinct mode of operation. We
propose to use mode charts [14] to represent the functional, dynamic behaviour of the
systems, where each mode will represent a distinct configuration and the transition
conditions will be the events associated with the component failures. Please note that in
future work this concept will be applied in a more general sense, i.e., by also con-
sidering events that can transition the system state between operational modes; which is
out of the scope of this paper.

A mode chart M could be formally defined as:

M ¼ Q;R; d; q0ð Þ ð1Þ

where Q is the set of all possible modes, R is the set of all possible events, d is the
transition function d : Q� R ! Q, and q0 is the initial mode. The initial mode rep-
resents the fully functional architecture of the system where all the system components
are operative and all functionality of the system is provided. Each of the other modes

A Model-Based Extension to HiP-HOPS 167



represents a degraded architecture (a distinct configuration) which is formed due to the
presence of some failure, however, this architecture is still able to provide system
functionality. We make the distinction between these modes based on the criticality of
the configurations they represent:

• Critical mode: any further component failure will result in the system failure.
• Non-critical mode: the system failure cannot not be reached directly and further

configurations can be formed from the present configuration.

Figure 2 shows different modes, Mi, connected via transition events, Ti, which
cause mode changes. According to the criticality of the modes, they are classified as
non-critical modes = {M1, M2, M3} and critical modes = {M4, M5, M6}.

To describe the dynamic behaviour of a system using mode charts, we would have to
identify: (i) all possible functional modes, (ii) all possible conditions that can trigger
transitions between those functional modes, and (iii) the critical and the non-criticalmodes.

3.2 Annotation of Mode Based Behaviour of Components

As mentioned earlier, for static fault propagation studies, the HiP-HOPS technique
considers the system architecture as static and annotates the systems components with a
fixed set of failure behaviours. These behaviours are considered the default behaviours
of the components. However, for dynamic fault propagation studies, we need to
annotate the components with mode-based behaviour. In this paper, the system com-
ponents are regarded as non-repairable and have defined failure behaviour for different
critical modes as the system failure could be reached directly from those modes. The
components are non-repairable to ensure that the mode chart will be loop free, i.e., a
directed acyclic graph.

Note that a component does not have to have a failure behaviour for all the critical
modes because it may be (i) inactive in a particular mode, (ii) failed prior to entering a
mode, or (iii) masked due to the failure of other components. In the first case the failure
behaviour of that component is irrelevant in this mode. In the second case, the com-
ponent has already failed before coming to the present mode; therefore, the failure

M1

M2

M3

M4

M5

M6
System 
Failure

T1

T2

T3

T4

T5

T6

Fig. 2. Concept of mode based behaviour modelling; dashed and solid rounded rectangles
represent the critical and non-critical modes respectively

168 S. Kabir et al.



behaviour of the component is already addressed in any of the prior modes. In the third
case, the component itself is not failed; however, its activity does not have any effect in
the system because of some other reason, e.g., failure of other components.

For example, let us consider that in a functional mode chart there are three critical
modes M1, M2, and M3 respectively; the component A is active in mode M1 and M3,
but not in mode M2. Therefore, we have to define the failure behaviour of component A
only for modes M1 and M3. The annotation can be represented in tabular format as
displayed in Table 2, where Ei denotes the i-th failure event of component A. If the
failure specification of a component is the same in all its modes, the mode-based
behavior reduces to their default behaviour as defined in the static analysis.

3.3 Synthesis and Analysis of Annotated System Models

Once the mode chart of the system behaviour and the mode based failure data have
been defined, the mode chart and the annotated architectures can then be synthesised
using the HiP-HOPS technique. This phase operates by examining how the failure of
components propagates through system architecture and through different modes in the
mode chart to cause system failure. Therefore, the first task of this phase is to identify
the parts of the system model that act as the system outputs, and then define system
failures (top events of the fault trees) for each of the critical modes in the mode chart.
The top event of a mode specific fault tree is represented in the following form:

where the mode_name inside the angle brackets defines the mode from which the
causes for output deviation defined by the Output_Deviation_Name are required
to be derived. Similarly, mode specific basic events can be named as:

The system operation modes denote non-overlapping system states. Accordingly,
the system failure condition is defined as the disjunction of the causes of output
deviation in all the critical modes. That is:

ð2Þ

where O_D_X denotes the output deviation X.
In the synthesis process, each top event is considered separately and fault trees are

generated using the HiP-HOPS technique by traversing both the mode chart and the
system architecture. This process differs from HiP-HOPS’ static fault propagation
studies in that now sets of fault trees are generated for all the critical modes whereas in

Table 2. Example of mode-based failure annotation of component

Component name Output deviation Failure expression
Mode M1 Mode M2 Mode M3

A O-Out E1 + E2 + E3 N/A E4.E5

A Model-Based Extension to HiP-HOPS 169



the static studies with a single operation mode only a single set of fault trees was
created to represent the failure behaviour of the whole system. The fault tree synthesis
process is now divided into two connected phases:

• Architecture traversal: represents the causes of system failure from that particular
critical mode (as it is done in static studies).

• Mode chart traversal: represents the causes of reaching a particular critical mode
from the initial mode.

A graphical overview of the fault tree synthesis process is shown in Fig. 3 where
IM denotes initial mode, NM denotes non-critical modes, and CM denotes critical
modes. We can see that all the CM lead directly to the system failure occurrence. Note
that the arrows showing the direction of mode-chart traversal are in opposite direction
of mode transitions.

The two traversal steps generate two interconnected fault trees. The architecture
traversal starts with the failure logic of the system output that is defined for this critical
mode. It then traverses the static architecture to examine the propagation of failure
through the components to the system output. After that, the mode based local fault

CM1

CM2

CMn-1

CMn

.

.

.
Top event 

of fault tree

.

.

.

.

.

.

Mode chart traversal Architecture traversal

Causes of entering 
a critical mode 
from the initial 

mode

Causes of top event 
occurrence from a 

critical mode

Combine using 
Priority-AND gate

non-critical modes critical modes

NM1

NM2

NMn-1

NMn

.

.

.
IM

initial mode
.
.
.

Fig. 3. A graphical overview of the fault tree synthesis process

170 S. Kabir et al.



trees of all involved components are created and this process continues until no con-
nected components remain. Once all the mode based local fault trees are created, they
are combined together to obtain a single set of fault trees.

The second set of fault trees is generated by traversing the mode chart. We can
consider this as a single source single destination graph traversal problem, where the
source is the critical mode under consideration and the destination is the initial mode.
This mode-traversal process will be backward from an internal mode towards the initial
mode. In every iteration, the process replaces the current mode by its immediately
preceding mode(s) and transition conditions from the preceding mode(s) to the current
mode. This process will continue until the initial mode is reached. As a result of this
process, we obtain all the possible combinations of events (component failures) that
cause the system to go to the mode in question from the initial mode. If the initial mode
is the critical mode then there is no need to traverse the mode chart.

In order to obtain the complete failure behaviour we need to combine these two sets
of fault trees. The system can only fail if it reaches the critical mode of operation first
and then from the critical mode to the system failure. Hence, when combining fault tree
models generated from mode and architecture traversals, we need to maintain the
sequence between them. We can use a PAND gate to combine these two sets of fault
trees and define the system failure caused by the mode i denoted top-event, TEi:

TEi ¼ FTAi / FTAarchitecture ð3Þ

where FTAi denotes the fault tree obtained from the mode-chart traversal for the mode
i and FTAarchitecture denotes the fault tree obtained from the architectural traversal.

When fault trees for all the critical modes are obtained, they can be linked with the
OR logic to obtain the complete failure behaviour of the system. Let us assume that the
system has N critical modes, then the system failure, TE, is defined as:

TE ¼ TE1 þ . . .þ TEi þ . . .þ TEN ð4Þ

where TEi is defined in Eq. (3).
Qualitative analysis could be performed on the Eq. (4) so as to remove redundant

events and minimise the expression into a set of minimal cut sequences (MCSQs).
MCSQs are the smallest sequence of events that are necessary and sufficient to cause
the top event. In this paper, Pandora temporal fault trees are used to illustrate the idea
and the methodologies proposed by Walker [10] to obtain MCSQs are applied. After
minimization, the quantitative analysis of MCSQs can be performed using the
approaches described in [15, 16], however, it is out of scope of this paper.

4 Case Study

To illustrate the idea of dynamic fault propagation studies, we use the case study of a
hypothetical twin engine aircraft fuel distribution system, shown in Fig. 4.

The system has two fuel tanks TL (Tank Left) and TR (Tank Right); three valves
VL (Valve Left), VR (Valve Right), and VC (Valve Centre); two pumps PL (Pump

A Model-Based Extension to HiP-HOPS 171



Left) and PR (Pump Right). Under normal operating conditions, pump PL provides fuel
to the Left Engine from tank TL through valve VL and pump PR provides fuel to the
Right Engine from tank TR through valve VR. We can denote this as M_TLTR mode
of system operation and in this mode, the valve VC is kept closed. Now, if we
hypothesise a failure such that VR is stuck closed, then fuel flow to the Right Engine
from TR is stopped. In this condition, the system can reconfigure itself by opening
valve VC, hence continue fuel flow to the Right Engine from TL. We denote this as
M_TL mode. Similarly, the system can operate in M_TR mode by providing fuel to
Left Engine from TR in the condition that VL is stuck closed.

In the first stage of dynamic fault propagation studies, we need to annotate the
components in the system architecture with mode based behaviour. After that, we have
to identify the system output. Provision of fuel to each engine could be considered as
the system output, and thus failure to provide fuel to any of the engines could be
considered as a hazardous condition. Thus, failures of the engines are not considered
here. As the fuel to the Left Engine and the Right Engine is provided in a similar
fashion with the opposite set of components, for brevity, we concentrate on the failure
of the system to provide fuel to the Left Engine alone.

As mentioned earlier, the system can operate in M_TLTR, M_TL, and M_TR
modes. From the architecture in Fig. 4, we can see that the failure of pump PL will
cause no fuel flow to the left engine in any mode, hence failure of pump PL can be
considered as a single point of failure. For this reason, all the modes are considered as
critical modes as described in Sect. 3.1. The mode-based annotations of the system
components are shown in Table 3. In this table, the value N/A means that the behaviour
of the component is not applicable (relevant) in this mode because it has no activity in
this mode. We also need to define the mode chart. M_TLTR is the initial mode where
all the system components are available. M_TL and M_TR are two degraded modes
where the system can provide functionality, in this case, provision of fuel to the left
engine, with reduced number of components. A transition from M_TLTR mode to
M_TL mode will happen when fuel flow through VR will stop (i.e., O-VR.Out) and the
system will enter to M_TR mode from M_TLTR mode when fuel flow through VL
stops (i.e., O-VL.Out) (see Fig. 5).

In Table 3, ‘O-’ stands for Omission. It can also be seen that failure expressions of
some components are the same in different modes. For example, failure expressions for
VL is VL.Fail + O-TL.Out for both M_TLTR and M_TL modes. However, we

Fig. 4. Architecture of twin engine aircraft fuel system

172 S. Kabir et al.



treat them differently under the assumption that the probability of failure of a com-
ponent can be different in different modes due to the change in workloads in different
modes, e.g. see [17]. Consider, for instance, each of the engines of the system in Fig. 4
consumes X litres of fuel per hour. Therefore, while the system operates in M_TLTR
mode X litres of fuel flow through both VL and VR. Now, if for some reason VR gets
stuck closed then the system will switch to M_TL mode, meaning that the left tank will
provide fuel to both engines. This results in double fuel flow from left tank through the
VL, which means the workload on valve VL and tank TL get doubled, and this in turn
affects the failure probability of these components. As a result, although having the
same failure expression in different modes, the behaviour is still treated differently due
to the change in failure probability.

For fault tree synthesis from the annotated system architecture and mode chart, we
defined the output deviation of the system as a disjunction of output deviations in all
critical modes as follow:

In the above expression, O-Left_Engine.Out represents the output deviation
of the system, i.e., omission of fuel flow to the left engine.

O-Left_Engine.Out<M_TLTR>, O-Left_Engine.Out<M_TL>, and O-
Left_Engine.Out<M_TR> represent the output deviation in modes M_TLTR,

Table 3. Mode-based annotations of the components of system in Fig. 4

Component Output deviations Failure expression
M_TLTR M_TL M_TR

Left engine O-Out O-PL.Out O-PL.Out O-PL.Out
PL O-Out PL.Fail PL.Fail + O-VL.Out PL.Fail + O-VC.Out
PR O-Out PR.Fail PR.Fail + O-VC.Out PR.Fail + O-VR.Out
VL O-Out VL.Fail + O-TL.Out VL.Fail + O-TL.Out N/A
VR O-Out VR.Fail + O-TR.Out N/A VR.Fail + O-TR.Out
VC O-Out N/A VC.Fail + O-VL.Out VC.Fail + O-VR.Out
TL O-Out TL.Empty + TL.Block TL.

Empty + TL.Block
N/A

TR O-Out TR.Empty + TR.Block N/A TR.Empty + TR.Block

LE, PL, PR, VL, 
VR, TL, TR

LE, PL, PR, 
VL, VC, TL

LE, PL, PR, 
VR, VC, TR

O-VR.Out

O-VL.Out

M_TLTR 

M_TL 

M_TR 

Fig. 5. Mode chart with active components listed in the modes

A Model-Based Extension to HiP-HOPS 173



M_TL, and M_TR respectively, which are essentially the top events of fault trees for
the respective modes. Fault trees for each of the modes can be synthesised following
the process described in Sect. 3.3.

Firstly, for the initial mode, M_TLTR, as mentioned in Sect. 3.3, we need to
traverse the system architecture only based on the failure annotations (see Table 3).

For modes M_TL and M_TR, as they are critical but not initial modes, we need to
obtain two fault trees. Consider the M_TL mode: to obtain the cause of system failure,
we can start with the following expression (cf. Eq. (3)).

On the right hand side of the above expression, ‘/’ represents a logical PAND
operation. The left operand {M_TL} of the PAND operator represents the causes of
entering the mode M_TL from the initial mode. On the other hand, the right operand
(O-Left_Engine.Out<M_TL>) represents the causes of system failure from mode
M_TL. Each of these operands represents a top event for two different fault trees and
the fault tree can be obtained using the mode chart and architecture traversal process as
follows. Data from Table 3 is used in the traversal process.

Mode Chart Traversal

Architecture Traversal

174 S. Kabir et al.



Combining the results obtained from above two steps the failure behaviour of the
system outputs from the M_TL mode is written as:

Similarly, the causes of system failure from mode M_TR can be obtained as:

Now, the complete failure behaviour of the system can be obtained by taking
logical OR of the individual failure behaviour in different modes (cf. Eq. (4)).

From a closer look at the architecture of Fig. 4, we can see that the work pattern or
workload on pump PL and PR remains the same in all the modes. For this reason,
failure behaviour of these components can be considered to be mode independent, i.e.,
PL.Fail<M_TLTR> , PL.Fail<M_TL> , PL.Fail<M_TR> , PL.Fail.
Therefore, the above expression can be written as:

This fault tree expression now shows the causes of omission of fuel to the left
engine form all the relevant modes. Using a prototype version of the HiP-HOPS tool,
the minimal cut sequences to cause the system failure are calculated, and shown in
Table 4. In this table, basic events are replaced by their IDs as:

A Model-Based Extension to HiP-HOPS 175



5 Conclusion

In this paper, we pointed out that the dynamic behaviour of systems makes it difficult to
precisely define the nominal and failure behaviour of systems, thus complicating
dependability analysis processes. As a potential remedy to the above problem, we
propose the use of mode charts to define dynamic behaviour of systems, and subse-
quently annotate the components in the system architecture with their mode based
behaviour. The proposed approach extends the state-of-the-art model-based depend-
ability analysis approach, HiP-HOPS, by extending the existing phases of the approach
for dynamic fault propagation studies.

The annotation phase has been extended by annotating system components with
mode-based dynamic behaviour. The synthesis phase has been extended by providing
ways to generate temporal fault trees by examining the system model and how the
failure of components propagates through the system architecture and the different
modes in the mode chart to cause system failure. Finally, in the analysis phase, minimal
cut sequences are generated by analysing the temporal fault trees. As a whole, this
extension to HiP-HOPS combines the advantages of the existing HiP-HOPS approach
— semi-automatic generation of system-wide failure propagation information from an
annotated system model — with the benefits of forms of representation better suited to
dynamic systems, such as mode charts. This combination allows designers to model
more complex dynamic scenarios in a more intuitive way than simply using temporal
expressions and logic. It also allows them to perform compositional dynamic

Table 4. Minimal cut sequences that can cause the system failure in Fig. 4.

MCSQs MCSQs

X1 X2j X6: X2 / X5: X2 X13: X2j j X14

X4 / X3: X4 X9: X4j j X10 X2 X6: X2j j X5: X2 / X13: X2j X14

X4j X3: X4 / X9: X4j X10 X2 X6: X2j j X5: X2j X13: X2 / X14

X4 X3: X4j j X9: X4 / X10 X7 / X6: X7 X5: X7j j X13: X7j X14

X11 / X3: X11 X9: X11j j X10 X7j X6: X7 / X5: X7 X13: X7j j X14

X11j X3: X11 / X9: X11j X10 X7 X6: X7j j X5: X7 / X13: X7j X14

X11 X3: X11j j X9: X11 / X10 X7 X6: X7j j X5: X7j X13: X7 / X14

X12 / X3: X12 X9: X12j j X10 X8 / X6: X8 X5: X8j j X13: X8j X14

X12j X3: X12 / X9: X12j X10 X8j X6: X8 / X5: X8 X13: X8j j X14

X12 X3: X12j j X9: X12 / X10 X8 X6: X8j j X5: X8 / X13: X8j X14

X2 / X6: X2 X5: X2j j X13: X2j X14 X8 X6: X8j jX5: X8j X13: X8 / X14

176 S. Kabir et al.



dependability analysis of complex systems by generating temporal fault trees. This
work enriches the semantics of HiP-HOPS and has the potential to be combined with
the other advanced features of HiP-HOPS, such as architecture optimisation, mainte-
nance, safety requirement allocation, and safety case generation for dynamic systems.
However, the scalability of this approach for analysis of large-scale systems is yet to be
verified. Some of our current work is focused on continuing development of the
techniques as part of HiP-HOPS tool.

Acknowledgments. This work was partly funded by the DEIS H2020 project (Grant Agreement
732242).

References

1. Vesely, W.E., Stamatelatos, M., Dugan, J., Fragola, J., Minarick, J., Railsback, J.: Fault Tree
Handbook with Aerospace Applications. NASA office of safety and mission assurance,
Washington D.C. (2002)

2. Joshi, A., Heimdahl, M.P.E., Miller, S.P., Whalen, M.W.: Model-based safety analysis.
NASA Technical report, Hampton, VA, USA (2006)

3. Fenelon, P., McDermid, J.A.: An integrated toolset for software safety analysis. J. Syst.
Softw. 21, 279–290 (1993)

4. Papadopoulos, Y., McDermid, J.A.: Hierarchically performed hazard origin and propagation
studies. In: Felici, M., Kanoun, K. (eds.) SAFECOMP 1999. LNCS, vol. 1698, pp. 139–152.
Springer, Heidelberg (1999). doi:10.1007/3-540-48249-0_13

5. Arnold, A., Point, G., Griffault, A., Rauzy, A.: The AltaRica formalism for describing
concurrent systems. Fundam. Inform. 40, 109–124 (2000)

6. Bozzano, M., Villafiorita, A.: The FSAP/NuSMV-SA safety analysis platform. Int. J. Softw.
Tools Technol. Transf. Spec. Sect. Adv. Autom. Verif. Crit. Syst. 9, 5–24 (2007)

7. Feiler, P., Rugina, A.: Dependability modeling with the architecture analysis & design
language (AADL). Technical report, Carnegie Mellon University (2007)

8. Aizpurua, J.I., Muxika, E.: Model-based design of dependable systems: limitations and
evolution of analysis and verification approaches. Int. J. Adv. Secur. 6, 12–31 (2013)

9. Sharvia, S., Kabir, S., Walker, M., Papadopoulos, Y.: Model-based dependability analysis:
state-of-the-art, challenges, and future outlook. In: Software Quality Assurance: In Large
Scale and Complex Software-Intensive Systems, pp. 251–278 (2015)

10. Walker, M.: Pandora: a logic for the qualitative analysis of temporal fault trees. Ph.D. thesis,
University of Hull (2009)

11. Rauzy, A.: Mode automata and their compilation into fault trees. Reliab. Eng. Syst. Saf. 78,
1–12 (2002)

12. Papadopoulos, Y., Walker, M., Parker, D., Sharvia, S., Bottaci, L., Kabir, S., Azevedo, L.,
Sorokos, I.: A synthesis of logic and bio-inspired techniques in the design of dependable
systems. Ann. Rev. Control 41, 170–182 (2016)

13. Papadopoulos, Y., Mcdermid, J., Sasse, R., Heiner, G.: Analysis and synthesis of the
behaviour of complex programmable electronic systems in conditions of failure. RESS 71,
229–247 (2001)

14. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.: Failure
diagnosis using discrete-event models. IEEE Trans. Control Syst. Technol. 4, 105–124
(1996)

A Model-Based Extension to HiP-HOPS 177

http://dx.doi.org/10.1007/3-540-48249-0_13


15. Kabir, S., Walker, M., Papadopoulos, Y.: Quantitative evaluation of pandora temporal fault
trees via petri nets. IFAC-PapersOnLine 48, 458–463 (2015)

16. Kabir, S., Walker, M., Papadopoulos, Y.: Reliability analysis of dynamic systems by
translating temporal fault trees into Bayesian networks. In: Ortmeier, F., Rauzy, A. (eds.)
IMBSA 2014. LNCS, vol. 8822, pp. 96–109. Springer, Cham (2014). doi:10.1007/978-3-
319-12214-4_8

17. Labeau, P.E., Smidts, C., Swaminathan, S.: Dynamic reliability: towards an integrated
platform for probabilistic risk assessment. Reliab. Eng. Syst. Saf. 68, 219–254 (2000)

178 S. Kabir et al.

http://dx.doi.org/10.1007/978-3-319-12214-4_8
http://dx.doi.org/10.1007/978-3-319-12214-4_8

	A Model-Based Extension to HiP-HOPS for Dynamic Fault Propagation Studies
	Abstract
	1 Introduction
	2 Background
	2.1 An Overview of the HiP-HOPS Technique
	2.2 Dynamic Behaviour and Challenges in Dependability Analysis

	3 Dynamic Fault Propagation Studies Using HiP-HOPS
	3.1 Representing Dynamic Behaviour Using Mode Charts
	3.2 Annotation of Mode Based Behaviour of Components
	3.3 Synthesis and Analysis of Annotated System Models

	4 Case Study
	5 Conclusion
	Acknowledgments
	References




