
Building Models We Can Rely On: Requirements
Traceability for Model-Based

Verification Techniques

Marco Filax(B), Tim Gonschorek, and Frank Ortmeier

Chair of Software Engineering, Otto-von-Guericke University of Magdeburg,
Magdeburg, Germany

{marco.filax,tim.gonschorek,frank.ortmeier}@ovgu.de

Abstract. Proving the safety of a critical system is a complex and com-
plicated task. Model-based formal verification techniques can help to ver-
ify a System Requirement Specification (SRS) with respect to normative
and safety requirements. Due to an early application of these methods,
it is possible to reduce the risk of high costs caused by unexpected, late
system adjustments. Nevertheless, they are still rarely used. One reason
among others is the lack of an applicable integration method in an exist-
ing development process.

In this paper, we propose a process to integrate formal model-based
verification techniques into the development life-cycle of a safety critical
system. The core idea is to systematically refine informal specifications
by (1) categorization, (2) structural refinement, (3) expected behavioral
refinement, and finally, (4) operational semantics. To support modeling,
traceability is upheld through all refinement steps and a number of con-
sistency checks are introduced.

The proposed process has been jointly developed with the German
Railroad Authority (EBA) and an accredited safety assessor. We imple-
mented an Eclipse-based IDE with connections to requirement and sys-
tems engineering tools as well as various verification engines. The applica-
bility of our approach is demonstrated via an industrial-sized case study
in the context of the European Train Control System with ETCS Level 1
Full Supervision.

Keywords: Traceability · Verification · Practical experiences

1 Introduction

Developing safety critical systems is a complex and complicated task because
malfunction imposes high costs or even endangers human lives. Therefore,
safety critical systems are specified with an increasing amount of functional and
non-functional requirements, to reduce the risk of malfunction and hazardous
behavior.

Further, it has to be ensured that the system adheres to specific safety norms
and standards, e.g., EN 50128 for railway, DO-178C for avionics or ISO 26262
c© Springer International Publishing AG 2017
M. Bozzano and Y. Papadopoulos (Eds.): IMBSA 2017, LNCS 10437, pp. 3–18, 2017.
DOI: 10.1007/978-3-319-64119-5_1



4 M. Filax et al.

for automotive applications. Before the developed safety critical system can be
put into operation, it must be certified by a governmental authority according
to the relevant safety norm. It must be shown that all normative and safety
requirements have been met for the system.

The fulfillment of safety requirements covers the complete safety lifecycle of
the system. It is desirable to detect possible malfunction and hazardous behavior
as early as possible because unexpected, late system adjustments would impose
even higher costs. To detect hazardous behavior a complete, consistent and cor-
rect System Requirement Specification (SRS) that adheres to all normative and
safety requirements, is required. However, proving the fulfillment of all these
requirements is a challenging task.

Formal verification techniques can help proving normative and safety require-
ments. Thus, almost all norms recommend the use of formal verification tech-
niques to prove functional safety properties [9,15,16] depending on the required
safety integrity level (SIL). The application of formal methods during the require-
ment specification phase is recommended for systems with SIL 2 and higher and
highly recommended for systems with SIL 4 [15].

However, IEC 61508 acknowledges1 that using formal methods may be chal-
lenging [15]. In our point of view, one reason is that none of these norms suggest
an integration into the lifecycle. Additionally, they do not emphasize require-
ments traceability during the implementation of the formal model. As traceabil-
ity is an issue for traditional methods, it is an enormous problem for formal
verification techniques: formal models, which describe the complete behavior of
a safety critical system mathematically, might be challenging to understand by
others without a strong formal background. In our point of view, this increases
the hurdle for applying formal verification techniques during the requirement
specification phase. However, if every element of the formal model would be
linked to the requirements, this hurdle is negotiated.

We collaborated with the German Federal Railroad Authority (EBA) and
an accredited assessor to develop a structured workflow supporting safety engi-
neers in integrating formal model-based verification techniques into the safety
lifecycle of critical systems. The core idea is to systematically refine informal
specifications by (1) categorization, (2) structural refinement, (3) exemplary
behavioral refinement, and finally, (4) operational semantics. We rely on our
previous work [11] on transforming informal natural language requirement via
semi-formal UML models into a formal interpretation. Traceability is upheld
through all refinement phases with the explicit need for linking requirements
(e.g. the resulting formal model). We introduce some (semi-)automatic consis-
tency checks and provide adequate tool support for the proposed process. Devel-
oping the formal model with the proposed process, which supports the usage of
formal methods in a traceable, well-defined, reliable and understandable manner,
increases the acceptance of the formal verification results.

In the following section, we present an overview of the proposed process
and describe how to integrate it into a typical development process. We rely on

1 Acknowledged in IEC 61508-7 section B2.2.



Building Models We Can Rely On: Requirements Traceability 5

Fig. 1. Five phases of the safety lifecycle: the phases A, B, D, E represent state-of-
the-art actives. In this paper, we integrate phase C: Formal Requirements Verification
into the development process. Solid lines represent control flow whereas dashed lines
represent object flow.

state-of-the-art methods to determine a semi-formal UML model (cf. Sect. 3)
based on the SRS. We then summarize the different steps to derive the formal
model from the UML and the requirements in Sect. 4. Throughout the whole
paper, we demonstrate the feasibility of the approach on a case study. At the
end of this paper, we point out future directions.

2 Building Reliable Formal Models

The proposed approach to integrating formal verification techniques into the
safety lifecycle is summarized in Fig. 1. Given a SRS we distinguish five phases:
A: Clarify Requirements, B: Semi-Formal System, C: Formal Requirements Ver-
ification, D: System Development, and E: Assessment. The phases A, B, D, and
E summarize state-of-the-art activities to develop a safety critical system. In the
following we describe how to integrate phase C: Formal Requirement Verification
in this typical development process. We also summarize activities of the other
phases and specify extensions if necessary.

The different phases of the proposed process are implemented in the Verifi-
cation Environment for Critical Systems (VECS). VECS supports the efficient
development of formal models and gives the possibility to check the formal mod-
els in different model checking tools, without switching from one to another. The
results can be analyzed directly in VECS. Further, we developed a plugin for
a state-of-the-art UML modeling tool to enhance the integration in our formal
verification tool. VECS enables the modeler to trace generated elements directly
to the UML model what helps to validate that the generated formal elements
are corresponding to the UML model. Additionally, we implemented traceabil-
ity reports to analyze and document the coverage and linkage of requirements
in UML.

We evaluate the proposed approach by formalizing the SRS of the European
Train Control System (ETCS) Level 1 Full Supervision. For this, we modeled
all requirements necessary for the verification corresponding to a reference track
defined by the EBA2. This contains the communication via Eurobalises, locking
2 Available online: https://cse.cs.ovgu.de/vecs/index.php/product/achievements/

casestudies/etcs.

https://cse.cs.ovgu.de/vecs/index.php/product/achievements/casestudies/etcs
https://cse.cs.ovgu.de/vecs/index.php/product/achievements/casestudies/etcs


6 M. Filax et al.

and releasing of track sections via Movement Authorities, the observance of
partially overlaid speed restrictions as well as mode changes of the onboard unit.
We will use the case study as a running example for the proposed approach.

2.1 A: Clarify Requirements

Informal requirements often are neither complete nor organized in a way that
they can be processed in a structured manner. Hence, a system analyst must
clarify the requirements and therefore split them into atomic statements as illus-
trated in Fig. 1. These atomic statements can be sorted into different categories,
defined by a requirement pattern, to support following phases. There already
exists a variety of successfully applied requirement patterns [20]. However, the
final domain-specific needs of the system typically require an adoption of the
used pattern.

A requirement pattern decreases the complexity of following phases for two
reasons: On the one hand, the set of requirements becomes structured since
for certain phases only specific categories are required (e.g. for the functional
architecture we only need architectural requirements). On the other hand, the
set of requirements becomes reduced since particular requirements could occur
in several statements but can be combined into a single atomic statement.

As the system analyst splits requirements into atomic statements and catego-
rizes them afterward, changes need to be documented. Changes in the require-
ments might occur in later phases of the process, e.g., when an error in the
specification is detected and needs to be corrected. Such change requests may
occur at any process phase (cf. Requirement Change Request in Fig. 1).

Fig. 2. An excerpt of requirements from the functional specification of the ETCS. Note
that these requirements have been clarified: Requirement 2.6.5.2.3 was split into four
atomic statements. The requirements have been categorized and some are rejected as
they are not in the scope of the case study.

We applied the requirement pattern presented in [8], adopted in our previous
work [10], because it had been applied to this domain successfully. Our pattern
contains eight categories: Method, Sequence, User, State and Safety requirements,



Building Models We Can Rely On: Requirements Traceability 7

Architecture and Glossary fragments and Annotations. Figure 2 depicts an exem-
plary application of the requirement pattern. The requirements are already clar-
ified and split into atomic statements. We examined the functional description of
the ETCS (SUBSET-26) with more than 33.000 requirements. We had to reduce
the number of requirements which had to be formalized to handle the case study
with the available manpower. We restricted us to ETCS Level 1, shown in Fig. 2
as the rejection of Euroloop and Radio Communication. From this, over 4.200
requirements had been identified as relevant for the case study.

2.2 B: Semi-Formal System Analysis

The Semi-Formal System Analysis represents typical system modeling tasks. It
aims at modeling architectural and behavioral requirements in UML [17]. These
modeling tasks are described in more detail in Sect. 3.

The overall idea is to determine a static functional architecture from the
SRS. This is based on the observation that the SRS typically covers a basic
structural definition of the system. Additionally, the SRS also typically covers a
description of the intended behavior. Sequence diagrams are extracted from the
behavioral requirements with the help of the functional architecture to represent
the intended behavior. We focus on sequence diagrams because the SRS does not
cover a complete behavioral definition. This is justified by the fact that a SRS
is written in natural language.

We apply state-of-the-art requirements traceability: we use requirement dia-
grams to clarify the lifeline of requirements. Every element, derived from a
requirement, shall be linked it. We use trace relations to link semi-formal ele-
ments and requirements. An example is depicted in Fig. 4b. Tool support is avail-
able in the form of Sparx Enterprise Architect with an IBM Rational DOORS
connector.

2.3 C: Formal Verification

The goal of this phase is to verify safety claims. These are typically part of the
SRS: we call them safety requirements. In order the verify these safety require-
ments with the help of model checking, we firstly need to build a formal model.
We propose to develop the formal model using the semi-formal model. To do
so, we reuse the semi-formal architecture: we automatically formalize the semi-
formal architecture, by translating architectural elements to the specific formal
language. The formal behavior has to be implemented manually. Further, we pro-
pose to use semi-formal sequences as an acceptance test for the formal model:
we use them to generate acceptor automata in order to demonstrate that the
behavior is implemented correctly in the formal model.

The formal model’s architecture is automatically generated from the previ-
ous defined semi-formal architecture using the methods described in [11]. The
basic idea is to translate every semi-formal architectural element into its formal
equivalent, such that the transformation is bijective. We automatically derive



8 M. Filax et al.

requirement links to formal elements in order to provide traceability. The auto-
matic transformation ensures the correctness of the mapping from the static
architecture to the formal model.

When the architecture of the formal model is generated, the formal behavior
has to be implemented as different automata. The modeler implements every
automaton of the formal model with the help of a subset of requirements. The
modeler has to preserve traceability manually by linking the requirements to the
automata elements.

Since the automata are modeled by hand, it is important to demonstrate
that they describe the intended system behavior. We use the previously defined
sequences to automatically generate acceptance tests in the form of observer
automata. By checking if the formal model fulfills the specified sequence we
demonstrate the correct implementation of the expected behavior. Traceability
is preserved by automatically linking the requirements linked to a sequence and
a sequence ID to the generated observer.

Finally, given safety requirements are manually translated into temporal logic
statements. We use these statements and formal model to verify the safety prop-
erties with the help of model checking [4]. The results are composed to a require-
ment verification report. We explain the complete phase in Sect. 4 in more detail.

2.4 D: System Development

Parallel to the phase C, “normal” system development activities are performed.
We summarize these activities as System Development (cf. Fig. 1). These activi-
ties contain, e.g., the refinement of the functional architecture, the definition of
the system design, the implementation of the system, and the verification and
validation of the resulting implementation.

Phase D is not in the scope of this paper, as the process is meant to be an
extension, at most to the specification phase of the safety lifecycle. However, we
see the formal model as a possibility to aid in the verification and validation
of the implementation. For example, different authors proposed approaches to
utilize a model checker as a test oracle for the resulting implementation [3].

2.5 E: Assessment

Finally, the Assessment is performed - the overall functional safety is evaluated
according to the relevant safety norm. Typical assessment documents like the
validation report or safety cases are issued. Additionally, we issued a require-
ment verification report in phase C (cf. Sect. 2.3). It contains results, calculated
by a model checker, which prove the safety requirements with mathematical
rigor. The proves are used by an assessor to evaluate the functional safety of the
system. However, the results generated from the model checker rely on the cor-
rect implementation of the formal model. If the formal model is faulty one has to
question the result’s value for the assessment. This, in our opinion, demonstrates
the importance of the proposed process: we have to ensure the correct imple-
mentation of the formal model. We introduced a set of semi-automatic checks to



Building Models We Can Rely On: Requirements Traceability 9

verify that the formal model implements the expected behavior (cf. Sect. 2.2).
We also introduced a set of manually traceability reports, to validate that the
automata rely on specific requirements (cf. Sect. 4). Further, if additional verifi-
cation needs are identified in this phase, we could easily expand the verification
report in an iteration.

Beside the pure verification of the safety requirements, the formal model
can be used for a variety of other methods to aid in the assessment, e.g., Fail-
ure Analysis [12], Fault Tree Analysis [7,18] or Deductive Cause Consequence
Analysis [13].

3 B: Semi-formal System Analysis

During this phase, the functional system architecture and representative system
behavior descriptions are created from a subset of categorized requirements. The
activities of this phase are depicted in Fig. 3.

Fig. 3. The Semi-Formal System Analysis consists of five different phases. The goal of
this phase is to derive a functional architecture and examples of the expected behavior
of the system from the requirements.

3.1 B1: Determine System Context

In this phase, we determine the border of the system. We define the system-to-
be-developed, other external systems, and their roles that directly or indirectly
interact with the system-to-be-developed. This determines the context of the
specified system. Several external systems may be classified as the same role
while other components directly represent their role. The goal is to achieve a
consent with the involved stakeholders about the difference and similarities of
external systems. This reassembles a typical engineering task - thus, we do not
describe it in further detail. The context definition is used by the system architect
to model the functional architecture of the system.

In the case study, we identified the border of the system as follows: The
system-to-be-developed is the European Vital Computer. We identified different
surrounding systems and roles, e. g., trackside subsystem, balise transmission
unit, train interface unit, train components, and the driver.



10 M. Filax et al.

3.2 B2: Determine Functional Architecture

In this phase, we design the functional architecture by modeling system modules
and their relations and interfaces. We will use the architecture to design a formal
model and to implement the system in later phases.

Fig. 4. An excerpt of the functional architecture. Figure 4a depicts an excerpt of the
architecture of our case study. Figure 4b depicts a requirement diagram, demonstrat-
ing the traceability approach for a single interface. Figure 4c depicts the requirement
validation view implemented as a plugin in Enterprise Architect.

We identify components, ports, and interfaces from the SRS, in specific from
the subset of architecture, method and glossary requirements. We use the require-
ments according to their categorization: Glossary fragments, architecture and
method requirements represent architectural statements in the requirement pat-
tern [10] used in this paper. Components are derived from Glossary fragments.
Relations of components (e. g., ports or assemblies) are identified via architecture



Building Models We Can Rely On: Requirements Traceability 11

requirements, whereas method requirements are used to derive method defini-
tions for interfaces. A more detailed look on this is given in our previous work
in [11].

The functional architecture of the ETCS model has been derived from 363
Requirements and consists of 31 components with 135 Ports as well as 23 inter-
faces with 161 methods and 136 corresponding call parameters. An excerpt is
shown in Fig. 4a. We directly linked (via «trace» relations) the requirements and
the semi-formal elements during this phase. This ensures traceability. Further,
we set ourselves the following goal: Every semi-formal element shall be linked to
at least one requirement.

During this phase, it is vital to monitor the traceability. Thus, we designed
traceability reports: a straight forward report to identify the elements linked to
requirements and those who are not. However, due to the usage of a requirement
pattern, other reports are of more value: We design a report to identify the
architectural elements, which have been linked to requirements. Further, we can
identify the requirements, that should have been linked to some architectural
element - but are not. We also designed these reports for other requirement
categories, e. g., behavioral requirements.

These reports have been proven their value during the development: They
enable us to detect which requirements still have to be processed and to eval-
uate the progress of the current phase. They also enable us to identify miss-
categorized requirements or identify incorrect and inconsistent requirements due
to the elements introduced during the modeling and then start a requirement
change request (See Fig. 1). They further help to increase the acceptance of the
model of others, who are not directly involved in the development, e. g., assessors,
since the reports enable others to judge the requirement linkage.

3.3 B3: Find Use Cases

Besides the definition of the semi-formal architecture, we require a definition of
behavior. Based on the context definition, the system analyst needs to define use
cases. These use cases enable us to derive a top-level behavioral description of
the SRS. Further, we require the analyst to link the use cases and requirements.
After this phase, we refine the behavioral descriptions with the help of sequence
diagrams.

Based on the previously established context definition, the use cases and
the traceability reports for a subset of behavioral requirements (in specific user
requirements) we can enhance the quality of our semi-formal model. If we identify
use cases that are not traced to a requirement, we either identified creativity
in the semi-formal model or identified an inconsistency in the requirements.
Further, if we identify behavioral requirements that are not used to derive a use
case, we identified a blind spot of the semi-formal model.

These use cases and our traceability reports help us to enforce a consistent,
complete and correct semi-formal behavioral description. However, these use
cases describe an overview of the behavior - we refine these descriptions with the
help sequence diagrams in phase B4.



12 M. Filax et al.

3.4 B4: Specify Expected Behavior

Use cases describe the basic behavior of the system. However, they are to
imprecise to derive internal system behavior. Further, the behavioral descrip-
tion within the SRS is often incomplete: The SRS typically specifies the expected
behavior. However, it does not describe the (mathematically) complete behav-
ior. Hence, we use sequence diagrams to model the system’s behavior: A set
of sequence diagrams is modeled by domain experts from the set of behav-
ioral requirements until the necessary behavior is described. The set of modeled
sequences is used in later phases to demonstrate that the formal model contains
the expected behavior of the semi-formal system model (cf. Sect. 4). We chose
sequence diagrams instead of activity charts because they allow each to model
one exemplary behavior trace of the system, whereas an activity diagram would
imply that it defines the only paths the system model is allowed to represent.
Every sequence diagram must be linked to a requirement. An example is depicted
in Fig. 5. The traceability reports in combination with the requirement pattern
enable us to detect incomplete elements and missing requirements.

Fig. 5. Exemplary sequence diagram taken from the case study. Every sequence has to
be traced to at least a single requirement as shown in Fig. 5b.

4 C: Formal Requirements Verification

This phase, the Formal Requirements Verification, covers the implementation of
the formal model and the verification of the SRS with the help of model checking.
It consists of five different phases (cf. Fig. 6).

4.1 C1: Design Formal Model

From the functional architecture, the formal model’s architecture is generated:
semi-formal elements are automatically translated into their formal represen-
tation. The basic idea is that every UML element translates into some formal
element, such that the translated formal element maps to a specific semi-formal



Building Models We Can Rely On: Requirements Traceability 13

Fig. 6. The Formal Requirements Verification consists of five phases. The goal is to
derive a formal model and verify safety requirements.

element. For example, the semi-formal architecture (e. g., a set of hierarchical
components) is translated into a set of formal, hierarchical components. We
refer the reader for further details on the transformation to our work in [11].

Given the formal representation, we can automatically preserve traceability:
Every formal element is annotated with the unique ID of the semi-formal element
which it represents. Further, we automatically translate the requirements linked
to the specific semi-formal element. An example of the formal model is depicted
in Fig. 7.

The task of the modeler is to implement the formal behavior according to the
requirements. To do so, he has to formalize the behavior specified in the SRS. He
has to rely on the architecture while implementing the automata. Further, he has
to add a requirement link manually to the formal model, to preserve traceability.

Fig. 7. A screenshot of the VECS debugger with the ETCS case study model. Here,
the fulfilling of a sequence has been analyzed. As a result, a representative model path
is given that can be used to check the validity of the sequence and for documenting
the validity of the formal model for the assessment.



14 M. Filax et al.

Based on these links, it is possible to generate requirement traceability reports
to enhance the overall quality as described in Sect. 3.2.

For the ETCS case study, we implemented 53 state variables with 444 state
transition rules so far (resulting in a state space of 2 × 1025 possible states3)
from 1.511 requirements. In average, we modeled about 300 requirements per
working day. Although the formal model is implemented to best of the modelers’
knowledge, it might contain faults. The following phases aim at validating the
formal implementation.

4.2 C2: Generate Acceptor Automaton per Example and C3:
Demonstrate Fulfillment of Requirements

The goal of these phases is to show that the intended behavior is implemented
in the formal model. We make use of sequence diagrams (cf. Sect. 3.4) to demon-
strate the complete behavior implementation.

The formal model is an automaton. Thus its semantic is the set of all indepen-
dent traces which are generated by executing it. A sequence diagram represents
a single execution trace [17]. We say that the formal model covers a sequence
if we can show that it is a sub-trace of at least one trace within the semantics
of the formal model. To verify this, the sequence is translated into an accep-
tor automaton relying on the same architecture as the UML model, such that
it moves to the next state every time a message occurred as described in the
sequence.

We verify that the last state is reachable with the help of model checking [4].
To verify the reachability retractable, we provoke a witness. A witness is an
example path demonstrating the reachability of the acceptor automaton’s last
state. Instead of checking whether the acceptor automaton’s last state is reach-
able, we verify whether the last state of the acceptor automaton is not reachable.
If it is not reachable, the model checker returns true, and we can check, e.g., if the
previous state is reachable. But, if the last state is reachable, the model checker
returns false and generates a path to the desired state as a counterexample. This
example path can be checked by an external expert and supports the reliance
on the formal model as it retraceable shows the existence of the sequence in the
semantic of the formal model.

Up to now, the demonstration of the fulfillment of requirements for our case
study is not 100% completed, because we have not demonstrated that every
sequence is present in the formal model. However, we were able to demonstrate
that some sequences are present. Based on the first results, we detected faults and
inconsistencies in the formal model. Further, we were able to increase the reliance
of others on our model: especially others without a strong formal background
gained trust in the formal model.

3 Worst case approximation by multiplying all possible state variable values.



Building Models We Can Rely On: Requirements Traceability 15

4.3 C4: Temporal Logic Statements of Safety Requirements
and C5: Verification of Safety Requirements

The safety requirements can be verified as soon as they are implemented. To
do so, the formal modeler translates the natural language safety requirements
into the used formal language (cf. Fig. 6). The formal language corresponds to
preferred verification engine, i.e., the model checker. In most cases, this is either
Computation Tree Logic or Linear-time Temporal Logic [4].

The output the model checker generated during the verification contains the
result (cf. Fig. 6 Verification of Safety Requirements). These results demonstrate
whether the specification fulfills the safety requirements. If the formal model
fulfills the safety requirements, the system requirement specification covers the
desired safety specifications. This holds if we applied the proposed process and
demonstrated completeness and consistency.

5 Related Work

Hallerstede et al. [14] transformed requirements directly into a formal model.
They offer tool support through Rodin and ProR to trace requirements. However,
the direct transformation, in contrast to our approach, seems much more difficult
to perform as it requires extensive expert knowledge in the domain of the system
and the used formal verification technique.

Aceituna and Do propose an approach to find errors in specifications [1]. Our
goals differ slightly, as the authors try to expose possible, unintended, off-nominal
behavior. In contrast to that, our approach has a broader scope: verifying safety
specifications, whereas off-nominal behavior can be detected as a side product
during the verification if it opposes the safety goals. Aceituna et al. translate nat-
ural language requirements into causal components [1,2]. The authors propose
to expand the transition rules of the system by modeling explicit rules for the
entire state space. Although the authors display the feasibility of the proposed
approach, their case studies are rather small. For large system requirement spec-
ifications, this approach seems to unfeasible, because of the need to expand the
transition rules. In a previous work [2], the authors demonstrated how causal
components can directly be mapped into SMV. However, the approach lacks
some behavior validation mechanism to ensure wanted behavior to be present in
the model.

An approach enforcing a correct behavior translation through automatic val-
idation as been proposed by Soliman et al. [19]. A test case generator is used
to perform the automatic validation of the transformation process based on
scenarios. The generated test cases are integrated into the safety application
timed-automata network and simulated automatically with UPPAAL. Finally,
the output variables have to be compared. The authors did not specify if the
comparison can be done automatically and did not ensure traceability.

The COMPASS toolset [6] is quite similar to our approach: A formal model
is used for a variety of model-based verifications. However, the toolset requires a
formal model; it does not address its derivation from a SRS. Recently, the toolset



16 M. Filax et al.

was extended with a specific requirement pattern, originated in the aerospace
domain, to structure the derivation [5]. However, the approach lacks a semi-
formal phase which increases the understandability of the resulting formal model.

6 Conclusions and Future Work

In this paper, we presented our approach for integrating formal verification tech-
niques into the safety lifecycle of critical systems. This includes a well-defined and
structured process which supports the creation of a formal model from a given
set of system requirements. For increasing the acceptance, in particular, during
the assessment, of the verification artifacts and the applicability of the process,
we integrated structural UML models in a semi-formal step. This supports the
comprehension of the model and reliability of all involved in the correctness of
the formal model.

Together with our project partners, we demonstrated the applicability of our
approach on an industrial-size case study of the European Train Control System.
In this context, we processed about 4.200 requirements from functional descrip-
tion (SUBSET-026) of the ETCS, containing more than 33.000 requirements
in total.

From this, we built a verifiable formal model, which were also accepted by
the project partner as a reliable representation of the system specification. In
particular, this resulted from the rigorous implementation of the traceability and
the use of UML sequence charts as a measure of the model’s validity. Further, this
was supported by the implementation of the semi-formal UML phase introducing
the representation of the formal model’s structure in a widely accepted and
known representation.

Also, another important step towards the integration of the process is its
implementation within our formal modeling and verification tool chain VECS,
offering an interface to the widely used requirement tool Rational Doors and the
UML modeling tool Enterprise Architect. Whereby, the traceability and, more-
over, the comprehensibility of the modeling and verification results got improved.

Raising the quality of the specification on a trustworthy level should always
be one central demand. However, if the formal model has been build once it
should also be used for further safety measurements. Therefore, we plan to inte-
grate several further model-based analysis methods, e.g., Fault Tree Analysis
in the next step. Besides this, we are also working on the enabling correlation
and trace refinement measures between the formal model and the implemented
program code, to open the process integration not only for new developments
but also for extensions of already existing systems.

Acknowledgments. The work presented in this paper is funded by the German
Ministry of Education and Science (BMBF) in the VIP-MoBaSA project (project-
Nr. 16V0360).



Building Models We Can Rely On: Requirements Traceability 17

References

1. Aceituna, D., Do, H.: Exposing the susceptibility of off-nominal behaviors in
reactive system requirements. In: RE, pp. 136–145 (2015). doi:10.1109/RE.2015.
7320416

2. Aceituna, D., Do, H., Srinivasan, S.: A systematic approach to transforming system
requirements into model checking specifications. In: ICSE, pp. 165–174 (2014).
doi:10.1145/2591062.2591183

3. Ammann, P.E., Black, P.E., Majurski, W.: Using model checking to generate tests
from specifications. In: Proceedings of the Second International Conference on For-
mal Engineering Methods, pp. 46–54. IEEE (1998). doi:10.1007/3-540-48166-4_10

4. Baier, C., Katoen, J.P., Larsen, K.G.: Principles of Model Checking. MIT Press,
Cambridge (2008). ISBN: 9780262026499

5. Bos, V., Bruintjes, H., Tonetta, S.: Catalogue of system and software properties.
In: Skavhaug, A., Guiochet, J., Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol.
9922, pp. 88–101. Springer, Cham (2016). doi:10.1007/978-3-319-45477-1_8

6. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: The
COMPASS approach: correctness, modelling and performability of aerospace sys-
tems. In: Buth, B., Rabe, G., Seyfarth, T. (eds.) SAFECOMP 2009. LNCS, vol.
5775, pp. 173–186. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04468-7_15

7. Bozzano, M., Cimatti, A., Tapparo, F.: Symbolic fault tree analysis for reactive
systems. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA
2007. LNCS, vol. 4762, pp. 162–176. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-75596-8_13

8. Cimatti, A., Roveri, M., Susi, A., Tonetta, S.: From informal requirements to
property-driven formal validation. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 166–181. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03240-0_15

9. EN 50128: Railway applications-communication, signaling and processing systems-
software for railway control and protection systems (2011)

10. Filax, M., Gonschorek, T., Lipaczewski, M., Ortmeier, F.: On traceability of infor-
mal specifications for model-based verification. In: IMBSA: Short & Tutorial Pro-
ceedings, pp. 11–18. OvGU Magdeburg (2014)

11. Filax, M., Gonschorek, T., Ortmeier, F.: Correct formalization of requirement
specifications: a v-model for building formal models. In: Lecomte, T., Pinger, R.,
Romanovsky, A. (eds.) RSSR 2016. LNCS, vol. 9707, pp. 106–122. Springer, Cham
(2016). doi:10.1007/978-3-319-33951-1_8

12. Ge, X., Paige, R.F., McDermid, J.A.: Analysing system failure behaviours with
PRISM. In: SSIRI-C, pp. 130–136 (2010). doi:10.1109/SSIRI-C.2010.32

13. Güdemann, M., Ortmeier, F., Reif, W.: Using deductive cause-consequence
analysis (DCCA) with SCADE. In: Saglietti, F., Oster, N. (eds.) SAFECOMP
2007. LNCS, vol. 4680, pp. 465–478. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-75101-4_44

14. Hallerstede, S., Jastram, M., Ladenberger, L.: A method and tool for tracing
requirements into specifications. Sci. Comput. Program. 82, 2–21 (2014). doi:10.
1016/j.scico.2013.03.008

15. IEC 61508: Functional safety of electrical/electronic/programmable electronic
safety-related systems (2005)

16. ISO 26262: Road Vehicles-Functional Safety (2009)
17. OMG UML: Unified modeling language, superstructure (2011)

http://dx.doi.org/10.1109/RE.2015.7320416
http://dx.doi.org/10.1109/RE.2015.7320416
http://dx.doi.org/10.1145/2591062.2591183
http://dx.doi.org/10.1007/3-540-48166-4_10
http://dx.doi.org/10.1007/978-3-319-45477-1_8
http://dx.doi.org/10.1007/978-3-642-04468-7_15
http://dx.doi.org/10.1007/978-3-540-75596-8_13
http://dx.doi.org/10.1007/978-3-540-75596-8_13
http://dx.doi.org/10.1007/978-3-642-03240-0_15
http://dx.doi.org/10.1007/978-3-642-03240-0_15
http://dx.doi.org/10.1007/978-3-319-33951-1_8
http://dx.doi.org/10.1109/SSIRI-C.2010.32
http://dx.doi.org/10.1007/978-3-540-75101-4_44
http://dx.doi.org/10.1007/978-3-540-75101-4_44
http://dx.doi.org/10.1016/j.scico.2013.03.008
http://dx.doi.org/10.1016/j.scico.2013.03.008


18 M. Filax et al.

18. Ortmeier, F., Schellhorn, G.: Formal fault tree analysis-practical experiences. Elec-
tron. Not. Theoret. Comput. Sci. 185, 139–151 (2007). doi:10.1016/j.entcs.2007.
05.034

19. Soliman, D., Frey, G., Thramboulidis, K.: On formal verification of function block
applications in safety-related software development. IFAC 46(22), 109–114 (2013).
doi:10.3182/20130904-3-UK-4041.00015

20. Withall, S.: Software Requirement Patterns (Developer Best Practices). Microsoft
Press (2007). ISBN: 9780735623989

http://dx.doi.org/10.1016/j.entcs.2007.05.034
http://dx.doi.org/10.1016/j.entcs.2007.05.034
http://dx.doi.org/10.3182/20130904-3-UK-4041.00015

	Building Models We Can Rely On: Requirements Traceability for Model-Based Verification Techniques
	1 Introduction
	2 Building Reliable Formal Models
	2.1 A: Clarify Requirements
	2.2 B: Semi-Formal System Analysis
	2.3 C: Formal Verification
	2.4 D: System Development
	2.5 E: Assessment

	3 B: Semi-formal System Analysis
	3.1 B1: Determine System Context
	3.2 B2: Determine Functional Architecture
	3.3 B3: Find Use Cases
	3.4 B4: Specify Expected Behavior

	4 C: Formal Requirements Verification
	4.1 C1: Design Formal Model
	4.2 C2: Generate Acceptor Automaton per Example and C3: Demonstrate Fulfillment of Requirements
	4.3 C4: Temporal Logic Statements of Safety Requirements and C5: Verification of Safety Requirements

	5 Related Work
	6 Conclusions and Future Work
	References




