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Chapter 4
When Aspergillus fumigatus Meets the Man

Sarah Sze Wah Wong and Jean-Paul Latgé

Abstract Aspergillus fumigatus is one of the most ubiquitous opportunistic fungal 
pathogen, which can cause life-threatening invasive pulmonary infections in immu-
nocompromised populations. Upon the inhalation of the A. fumigatus conidia, the 
encounter between the fungus and the host presents a complex interplay. This chap-
ter will summarize the host innate immunity against A. fumigatus, and emphasize 
on the host immune evasion mechanisms of A. fumigatus.

4.1  Introduction

Aspergillus species are saprotrophic thermophilic fungi living in decaying material 
in the soil. When the fungus is starved, it produces millions of aerial conidia which 
are responsible for the propagation of the fungus (Fig. 4.1). Some of the Aspergillus 
species cause clinical manifestations ranging from chronic to invasive pulmonary 
infections, following the inhalation of the conidia (hundreds per day in normal envi-
ronments) [1, 2]. Aspergillus fumigatus is the most prevalent etiologic agent of 
aspergillosis, followed by Aspergillus flavus, A. niger, A. nidulans, A. terreus [3]. In 
immunocompetent individuals, the inhaled conidia rarely cause infections since the 
host innate immunity is efficient in the clearance of the fungal pathogen [4–9] 
(Fig. 4.2). In the populations with pre-existing pulmonary cavities who are other-
wise immunocompetent, colonization of Aspergillus species will only lead to 
chronic pulmonary aspergillosis (CPA) [10–12]. Unlike CPA, invasive pulmonary 
aspergillosis (IPA) predominantly affects immunocompromised individuals [13]. 
Individuals with primary or secondary immunodeficiency, such as chronic granulo-
matous disease, hematologic malignancy, hematopoietic stem cells transplantation, 
solid organ transplantation, and neutropenia consecutive to cancer chemotherapy or 
immunosuppressive treatment are typically at risk for IPA (Fig. 4.2) [2, 14]. The 
mortality rates of IPA vary among groups of host with different underlying risk fac-
tors, but it is generally high [2, 14]. A. fumigatus benefits from immune deficiencies, 
and it also possesses various well-established and specific strategies which helps the 
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fungus to evade from the host debilitated immune system and colonize the lung 
parenchyma [15–20].

This chapter will dissect both the host innate immunity and the pathogen anti- 
immune strategies on the early stages of the fungal infection. Since contact between 
membrane-bound and soluble pattern recognition receptors (PRRs) of the host and 
surface pathogen-associated molecular patterns of A. fumigatus is the first event 
leading to the reciprocal recognition of the host and the pathogen (Fig. 4.3). It will 
especially focus on the host and pathogen molecules favoring their respective rec-
ognition, as well as the role of the innate immune cells involved in the anti-A. fumig-
atus defense. A thorough understanding of this complex “tug of war” between the 
host and the pathogen is fundamental in providing new insights in developing pro-
phylactic strategies of IPA.

4.2  Molecules Responsible for the “Hide-and-Seek” 
Between Host and Aspergillus fumigatus

The fungal cell is surrounded by a cell wall with a specific composition which is 
very different from the phospholipid bilayer of the host cell plasma membrane. The 
A. fumigatus cell wall which surrounds the fungal cell is mainly composed of poly-
saccharides which are interlinked alkali insoluble β-1,3-glucans, chitin, and galac-
tomannan and, alkali soluble α-1,3-glucans [21, 22]. These fungal structural 
polysaccharides are absent in mammalian cells and are therefore pathogen- 
associated molecular patterns (PAMPs), which are recognized by various membrane- 
bound and soluble PRRs of the host as foreign objects [21, 23–26].

In resting conidia, this polysaccharide core which is of similar composition both 
in the conidium and hyphal cell wall, is covered by a bilayered outer layer com-
posed of hydrophobins (the most external) and melanin. The external hydrophobin 
rodlet layer, which is responsible for the hydrophobicity of the conidia is exclu-
sively composed of the amyloid hydrophobic RodA proteins [27–29]. One way for 
A. fumigatus to become a pathogen is its capacity to “hide” from the host defensive 
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Fig. 4.1 Light microscopy (40×, scale bar = 10 μm) of the morphological change of A. fumigatus 
under incubation at 37 °C in Sabouraud medium
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Fig. 4.2 Immune system–Aspergillus fumigatus interplay. The fungal disease is only established 
in the immunodeficient host, where the fungus can resist and escape the immune surveillance and 
establish the infection

Fig. 4.3 Interaction between various membrane-bound and soluble PRRs which have been shown 
to bind to the PAMPs on the conidial surface. However, the corresponding PAMPs for each of the 
PRRs have not been elucidated (as indicated with question mark)
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response immediately after inhalation and to go undetected after entering the respi-
ratory tract [30–32]. This is due to the presence of the rodlet and melanin outer 
layers of the dormant conidia which hide the immunogenic cell wall polysaccha-
rides. By doing so, an immediate strong inflammatory response, which would be 
detrimental for the fungus, is avoided. Moreover, by delaying the immune response, 
the initial survival of the fungus is prolonged in the host.

The loss of the rodlet and melanin layer during germination leads to an entire 
modification of the surface layer, which leads to the apparition of immunogenic 
polysaccharides on the hyphal surface. These surface molecules are recognized by 
PRRs that are mostly lectin receptors (carbohydrate-recognizing) involved in the 
initiation of the antifungal response. Indeed, conidial germination can be considered 
by the fungus as a form suicide. However, instead of being covered by melanin and 
RodA protein, the cell wall of the mycelium is covered by a specific hyphal galac-
tosaminogalactan, which is immunosuppressive and favors the vegetative fungal 
growth. All these strategies for the host to seek for the fungal alien and for the fun-
gus to counteract the host immune response after the immediate contact will be 
discussed below.

4.2.1  Membrane-Bound Pattern Recognition Receptors

4.2.1.1  Toll-Like Receptors

Toll-like receptors (TLRs) are a family of membrane-bound and soluble receptors on 
sentinel cells involved in the recognition of specific PAMPs [33]. Although the role of 
TLR2 and TLR4 in the immune defense against fungal pathogens have been exten-
sively studied in the past decades [34]; so far, their precise functions have not yet been 
clearly elucidated. Various in vitro studies have demonstrated that TLR2 is involved 
in recognizing A. fumigatus [35, 36]. Blocking TLR2 led to a reduced phagocytic rate 
of A. fumigatus conidia, but not of control beads, suggesting that the phagocytic 
machinery is not impaired by TLR2 blocking [37]. Neutrophil-depleted TLR2-
deficient mice had however a lower survival and produced less TNF-α upon stimula-
tion with A. fumigatus [38]. The recruitment of neutrophils was severely attenuated in 
non-immunosuppressed mice deficient in both TLR2 and TLR4, when compared to 
that in mice with single deficiency [39]. Furthermore, the production of different 
cytokines in response to A. fumigatus is individually mediated by TLR2 and TLR4. 
For instance, the production of IL-12 and IL-6 from monocytes-derived dendritic 
cells are mediated by TLR2 and TLR4 respectively [40]. TLR4-mediated pro-inflam-
matory signals were lost during phenotypic switch from conidia to hyphae, contribut-
ing to the escape of the pathogens from the host immune defense [36, 41]. The 
presence of an optimal innate immune response required both TLR2 and TLR4. 
Although a direct binding has not been shown, polysaccharides of the cell wall seem 
to be recognized by TLR2 and TLR4. The IL-6 production via TLR2 and TLR4 
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stimulation in PBMCs (incubated with TLR2 and TLR4 ligands respectively) was 
attenuated by pre-incubation with α-glucan and galactomannan, while pre- incubation 
with β-glucan attenuated the IL-6 production via only TLR4 stimulation [42]. 
However, TLR2- and TLR4-knockout immunocompetent mice were not more sus-
ceptible to challenge of invasive aspergillosis, suggesting that these two receptors are 
not essential in preventing Aspergillus infection in an immunocompetent status [43].

Unlike TLR2 and TLR4, TLR9 is located intracellularly in the endosome com-
partment of the immune system cells [44]. TLR9 was originally thought to be acti-
vated by unmethylated CpG sequences in DNA of bacterial and viral origins only 
[45]. It was later found that TLR9 can also be activated by unmethylated CpG 
sequences in fungal DNA [46]. The A. fumigatus DNA contains unmethylated CpG 
sequences, and is therefore capable of activating TLR9 and induce the production of 
pro-inflammatory cytokines [47]. Since TLR9 is an intracellular receptor, it was 
suggested that the activation would follow the release of DNA content after fungal 
lysis in the phagosome. TLR9 is recruited to the phagosomes that contain internal-
ized A. fumigatus conidia [48]. However, TLR9 is already recruited to the phago-
some merely 1h after phagocytosis of resting conidia [48]. At this stage, the 
internalized conidia should still be dormant and intact, and the fungal DNA is not 
exposed. This leaves the underlying recognition mechanism of the fungal DNA and 
the activation of TLR9 unresolved. Paradoxically, in vivo, TLR9-deficient mice, 
immunosuppressed by cyclophosphamide, had lower fungal burden than the wild- 
type mice upon intranasal challenge by A. fumigatus [49]. Consistently, in another 
in vivo study, the neutrophil-depleted TLR9-deficient mice was less susceptible to 
challenge of dormant or swollen A. fumigatus conidia by showing delayed mortality 
[50]. The expression of dectin-1 was also significantly lowered in the bone marrow- 
derived dendritic cells from TLR9-deficient mice 14 days post-infection following 
challenge of swollen conidia [50].

Taken together, the role of TLR2, 4 and 9 in host defense against A. fumigatus 
remains to be further explored.

4.2.1.2  C-Type Lectin Receptors

C-type (Ca2+-dependent) lectin receptors (CLRs), including dectin-1, dectin-2, 
mannose receptor, Mincle, and DC-SIGN, are important in recognizing the major 
carbohydrate moieties in the fungal cell wall [51].

Dectin-1 is a major transmembrane receptor for β-1,3-glucan which is found 
mainly on myeloid cells [52–54]. Since β-1,3-glucan is the major constituent of the 
fungal cell wall, it was expected that dectin-1 plays a crucial role in the control of 
fungal infection and especially favors recognition and phagocytosis of fungal par-
ticles [37, 55]. In the case of A. fumigatus, dectin-1 preferentially recognizes swol-
len and germinating conidia, as the β-1,3-glucan is exposed on the conidial surface 
[56–58]. Dectin-1 contains an extracellular lectin-like carbohydrate recognition 
domain and a cytoplasmic tail, which is phosphorylated at the tyrosine, upon  binding 
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with β-1,3-glucan. The phosphorylated cytoplasmic tail then can interact with 
spleen tyrosine kinase (SYK), which induces cellular responses, such as respiratory 
burst, phagocytosis and production of pro- and anti-inflammatory cytokines [54, 58, 
59]. Dectin-1 induces different cytokine responses independent or in conjunction 
with TLR: for example, dectin-1 alone induces the production of IL-10, but requires 
the adaptor MyD88 for the induction of IL-8 and IL-12 [54, 56, 60].

The ligands for the other membrane-bound CLRs remained to be fully deter-
mined. Another member of the dectin family, dectin-2, has been shown recently to 
recognize A. fumigatus galactomannan, but its role in the innate response has not 
been really evaluated [61–63]. Mannose receptor, Mincle and DC-SIGN recognize 
the N-linked mannan and N-acetylglucosamine (GlcNAc) in the fungal cell wall 
[51, 64]. Being a polymer of GlcNAc, chitin could also be recognized by mannose 
receptor [65]. However, it was recently found that chitin is mainly recognized by the 
Fcγ receptor [66]. Further studies should be warranted to better investigate the 
respective roles of these polysaccharides tested alone or in association, in the 
immune response.

4.2.1.3  Crosstalk Between TLRs and CLRs

Some PRRs collaborate to produce a synergetic induction of immune response [67]. 
For instance, dectin-1, which recognizes β-1,3-glucan, interact with TLR2, which 
recognizes zymosan, but not β-1,3-glucan [68]. Interestingly, crosstalk between 
PRRs does not always lead to enhanced immune response. The CLR Mincle sup-
presses the antifungal immune response mediated by dectin-1 and Mincle [69, 70]. 
This has also been suggested to be an evasion mechanism of fungal pathogen from 
the host immune defense [70]. However, this has not been studied in A. fumigatus.

4.2.2  Humoral Pattern Recognition Receptors

4.2.2.1  Complement Components

The complement system is often considered an irrelevant immunological weapon 
against A. fumigatus for the following reasons. First, owing to the presence of 
the thick fungal cell wall, the membrane attack complex (MAC) of the comple-
ment system is ineffective on A. fumigatus [71, 72]. Second, complement defi-
ciency in human was not found to increase the risk of aspergillosis. However, all 
three of the complement pathways, classical, alternative and the lectin pathway, 
are indeed involved in the host defense against A. fumigatus, through opsoniza-
tion and thus, facilitation of phagocytosis [73]. Complement component C3 can 
directly, or through other components, such as mannose-binding lectin or immu-
noglobulin, deposit on the surface of the conidia and mycelia [73–78]. The exact 
chemical nature of the ligand(s) of the complement components on the surface 
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of the conidia or mycelia remain unknown. Furthermore, A. fumigatus can evade 
from the complement attack by scavenging complement regulators, Factor H and 
C4b binding protein [79, 80], and secreting proteases that degrades complement 
proteins [81]. Alp1p, a major protease secreted by A. fumigatus, can degrade 
complement proteins C3, C4 and C5 [81].

4.2.2.2  Collectins and Ficolins

Collectins (Collagen + lectin) are a group of soluble pattern recognition receptors 
characterized by a collagen-domain and carbohydrate recognition domain (CRD), 
which is responsible in the binding to the carbohydrate moiety in a Ca2+-dependent 
manner. Collectins in the lung bind to A. fumigatus conidial surface as opsonins, 
and facilitate phagocytosis [51, 82, 83].

Surfactant Proteins

There are four surfactant proteins (SP) in human, SP-A, SP-B, SP-C, and SP-D, that 
are secreted by alveolar type II cells into the alveolar space [84–86]. Both SP-B and 
SP-C are small hydrophobic proteins that are mainly responsible in reducing sur-
face tension at the air–liquid interface in the lungs, and their role during Aspergillus 
infection have not been studied [87]. It was only recently found that SP-C binds to 
bacterial lipopolysaccharides [85, 88]. Apart from that, the immunomodulatory role 
of SP-C is still uncertain. Meanwhile, SP-A and SP-D, which are hydrophilic pro-
teins, are primarily responsible for the host defense against pulmonary pathogens by 
facilitating phagocytosis after opsonization [84, 86, 89–91]. SP-A and SP-D are not 
involved in the lectin complement pathway [92].

Human SP-A and SP-D bind directly to surface of dormant conidia, swelling 
conidia and hyphae of A. fumigatus [83, 93], and the responsible ligand(s) are under 
investigation by our group. When bound to microorganisms via its CRD region, 
SP-D binds to the calreticulin/CD91 complex on the surface of macrophages, via its 
collagenous region, which then mediates the uptake of SP-D opsonized microorgan-
isms by phagocytes and, stimulates inflammatory response by activating NF-κB 
[94, 95]. Although it was found that the mortality of SP-D-deficient mice was simi-
lar to that of the wild-type mice following intranasal challenge of A. fumigatus 
conidia, under immunosuppression of corticosteroids, shorter survival duration, 
higher hyphal density and more tissue damage were observed in the SP-D deficient 
mice in comparison to the wild-type [96, 97]. This observation suggested that SP-D 
plays a role in immune recognition and killing, which have been however insuffi-
ciently investigated.

Compared to SP-D, the role of SP-A in the immune defense against A. fumigatus 
is less significant. Although human SP-A bind to conidial surface, the binding is 
reduced in the presence of extracellular alveolar lipids, while that of SP-D remained 
unchanged [93]. Immunosuppressed SP-A deficient mice are resistance to lethal 
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IPA challenge when compared to wild-type mice [97], which could be explained by 
the increased level of SP-D in SP-A-deficient mice [98].

At present, no evasion mechanism from the opsonization of collectins has yet 
been observed in A. fumigatus.

Mannose-Binding Lectin and Ficolins

Mannose-binding lectin (MBL) binds to the conidial surface of A. fumigatus [99]. 
Mannose-binding lectin by binding to the MBL-associated serine proteases 
(MASP1, MASP2, and MASP3), activate the lectin complement pathway [100]. 
Non-immunosuppressed MBL-knockout mice were less susceptible to systemic 
invasive aspergillosis [101]. It was suggested that the lack of MBL reduced the 
recruitment of neutrophils, which in turn leads to less tissue damage from inflam-
mation. In contrast, in human, a deficiency in MBL is associated with chronic and 
invasive aspergillosis [102, 103]. The role of MBL should be revisited.

Ficolins (fibrinogen + collagen + lectin) are a family of lectins that consist of 
a collagen-like domain and a fibrinogen-like domain described as recognizing 
specifically N-acetylglucosamine (GlcNAc) [104]. There are three types of fico-
lins in human, ficolin-1, 2, and 3, which are secreted into the human plasma and 
binding to ficolin activate the lectin complement pathway [104, 105]. Ficolin-2 
binds to A. fumigatus [74, 106, 107]. The in vitro binding of ficolin-2 to A. fumig-
atus is inhibited by the presence of GlcNAc and Curdlan (β-1,3-glucan) [107], 
suggesting that chitin and β-1,3-glucan are the responsible ligands. Previously, 
ficolin-1 and ficolin- 3 were not found to bind to A. fumigatus. However, recently, 
the role of ficolin-3  in lung immune defense was discovered. Ficolin-3 indeed 
binds to A. fumigatus resting or swollen conidia in a calcium-independent manner 
[74, 82], suggesting that the binding does not involve the carbohydrate recogni-
tion domain. Unlike ficolin-2, which is produced in the liver, ficolin-3 is produced 
by type II alveolar cells and secreted into the alveolar space. Moreover, ficolin-A 
(the orthologue of ficolin-2 in mouse) increases the release of IL-8 (a proinflam-
matory cytokine and chemokine for neutrophils) [74]. Upon binding to the carbo-
hydrate ligand on the pathogen surface, ficolins facilitate opsonization, 
phagocytosis and the activation of the lectin complement pathway. However, 
complement activation was not impaired in ficolin- knockout mice [74, 108]. This 
could be explained by the similar role of MBL and ficolins, that both trigger the 
lectin complement pathway.

Although many elements of the immune system in the anti-A. fumigatus response 
have been discovered or rediscovered in recent years, a comprehensive picture of 
their roles as well as the ranking of their importance in the immunocompetent, as 
well as immunocompromised host remains to be elucidated.
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4.3  The Cell Actors

4.3.1  Airway Epithelial Cells

Airway epithelial cells (AECs) are the first type of cells to enter in contact with the 
inhaled conidia [109, 110]. AECs, being nonprofessional phagocytes, are capable of 
internalizing and killing A. fumigatus conidia [111, 112]. Comparing with murine 
macrophage cell line (J774), the internalized conidia survive longer in the human 
airway epithelial cell line (A549) than in the alveolar macrophages [113]. 
Accordingly, a small portion of the internalized conidia are not killed by the AECs, 
which then germinate and break the epithelial barrier [113]. The inefficient killing 
of the internalized conidia by the AECs is probably due to inefficient respiratory 
burst. In addition, the adherence of A. fumigatus conidia to the A549 cell line inhib-
its the release of IL-6, IL-8, and TNF-α, which thus inhibits the recruitment of 
immune cells and apoptosis of the epithelial cells [114, 115].

AECs produce antimicrobial peptides such as human β-defensins, human lacto-
ferrin (hLF), and histatin 5, which possess some antifungal activity against A. 
fumigatus [4, 6, 109, 110, 116, 117]. The gene expression of human β-defensins 
hBD2 and hBD9 were found to be induced in A549 cells that are exposed to swollen 
conidia [116]. hBD2 displayed direct, but low antifungal activity in vitro against A. 
fumigatus [118] and does not enhance the antifungal killing activity of neutrophils 
[118]. However, hBD could act as chemoattractant for immune cells and activation 
of professional antigen-presenting cells [119].

4.3.2  Alveolar Macrophages

The resident alveolar macrophages (AMs), which are responsible of the recognition 
and phagocytosis of the A. fumigatus conidia, serve as the major immune cells in the 
defense of A. fumigatus. Upon internalization of A. fumigatus conidia, phagolyso-
somes were not acidified [18]. Dihydroxynaphthalene-melanin (DHN-melanin) on 
the outer layer of dormant A. fumigatus conidia was shown to inhibit the acidification 
of phagolysosome, and thus, prevent intracellular killing [120–122]. The mutant of 
polyketide synthase (ΔpksP), the enzyme responsible for the initial step in DHN-
melanin formation is devoid of DHN-melanin and avirulent [123]. Interestingly, the 
melanin of A. niger, which is different from the melanin in A. fumigatus [124, 125], 
does not inhibit phagolysosome acidification [18]. The intracellular killing of A. 
fumigatus conidia in AMs is triggered by the swelling of conidia. The phagolysosome 
acidification and the increase in the production of reactive oxygen species (ROS) fol-
lowing phagocytosis is essential for conidial killing [126, 127]. Upon swelling, the 
outer layer of hydrophobins and melanin is shed. In the absence of inhibition by mela-
nin, the phagolysosome acidifies. On the other hand, the absence of the outer layer of 
rodlet and melanin unmasks the PAMPs in the inner layer. The exposure of PAMPs 
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recruits PRRs to the phagosome, which triggers production of ROS, cytokines and 
chemokines and the recruitment of autophagy proteins, LC3 II, Atg5 and Atg7 to the 
phagolysosome [57, 128, 129]. Pyomelanin, another type of melanin that A. fumiga-
tus produces, can also protects the fungus from ROS attack [13, 120, 130]. However, 
pyomelanin-minus mutant are as pathogenic as their parental strain. In addition, 
DHN-melanin inhibits LC3- associated phagocytosis (LAP) [123, 131, 132]. Taken 
together, pyomelanin and DHN-melanin permits the fungus to escape host immune 
defense by inhibiting phagolysome acidification, quenching ROS and inhibiting LC3-
associated phagocytosis.

4.3.3  Neutrophils

Neutrophils act as a strong second line of innate immune defense against A. fumiga-
tus [133]. Upon recruitment to the alveolar space, neutrophils constitute the major-
ity of phagocytes to eliminate the conidia [4, 134]. Even though AMs by themselves 
are able to eradicate resting conidia in a mouse deprived of neutrophils, neutrophils 
are more important than AMs in the pathogen clearance [127, 135]. Indeed, low 
number of neutrophils in the host (neutropenia) renders patients at great risk of IPA 
[2]. Moreover, molecules of A. fumigatus which impairs the neutrophil action are 
true virulence factors. Galactosaminogalactan is one of them. This polysaccharide, 
which is secreted by A. fumigatus hyphae, suppresses the recruitment of neutro-
phils, which then favors the fungal survival in the host [136, 137]. In addition, it 
induces anti-inflammatory response by the induction of interleukin-1 receptor 
antagonist (IL-1Ra) and reduces neutrophil recruitment [136, 138].

An important function unique to neutrophils is its capacity of attacking A. fumig-
atus hyphae, which are too large to be phagocytosed by immune cells. Neutrophils 
attack the fungal hyphae extracellularly by the secretion of enzymes, which degrade 
and permeabilize the cell wall and makes the fungus more sensitive to the neutrophil 
granular toxic molecules. Recently, neutrophil extracellular traps (NETs) which are 
mainly composed of nuclear DNA and antimicrobial proteins, have been mentioned 
as playing a major role against microbial pathogens [139]. Although the production 
of NETs is stimulated by Aspergillus hyphae [140], the hyphae are reported to be 
only slightly susceptible to the killing by NETs [141]. It is suggested that NETs 
only has a fungistatic effect on the hyphae and prevent further spreading of the dis-
ease [141]. This finding is in contrast to the one regarding Candida albicans, which 
is completely susceptible to the killing by NETs [142]. The fungistatic activity of 
NETs towards A. fumigatus hyphae is attributed by calprotectin, a Zn2+ chelator, 
[143]. Interestingly, it was shown recently that A. fumigatus hyphae generate hyphal 
branching upon interaction with neutrophils, which allows lower host immune 
interference and increases invasive growth [144].

Moreover, A. fumigatus seems to have other mechanisms to evade the neutrophil 
antagonistic action since A. fumigatus is less sensitive than A. niger for which the 
germination and hyphal length are more significantly reduced by neutrophils [18]. 
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For example, fumagillin, secreted by the A. fumigatus hyphae, inhibits the antifun-
gal function of neutrophils by inhibiting the formation of NADPH oxidase and 
reduces the degranulation [145]. Neutrophils exposed to fumagillin in vitro also 
demonstrated reduced rate of phagocytosis of A. fumigatus conidia [145]. An analy-
sis of the differences between A. fumigatus and other non- or poorly pathogenic 
Aspergillus species, such as melanin structure and cell wall composition, should 
definitely reveal more information of the success of A. fumigatus as pathogen.

4.4  Perspectives

The current arsenal of antifungal agents available for the treatment of IA is mainly 
limited to azoles, echinocandins, and polyenes [146]. However, there are major 
drawbacks regarding the drug resistance, efficiency, and toxicity of these current 
agents [147, 148]. Furthermore, the pipeline of antifungal development has not 
been introducing any new classes of antifungal agents, especially since there is not 
a market for drugs for rare diseases such as aspergillosis. Can immunotherapy lead 
to the development of specific drugs or antibodies that are able to block virulence 
factors that allow the evasion of A. fumigatus from the host immune system? The 
past decade has witnessed a shift in paradigm of antifungal development, in which 
the virulence factors are targeted for drug candidates instead of essential genes 
[149–151]. Analysis of the transcriptomic and proteomic changes occurring after 
internalization of the pathogen and especially in the phagolysosome, where the 
fungus is inhibited in the immunocompetent host but not in the immunocompro-
mised host, may lead to the identification of essential virulence factors in vivo. 
Such approach focused on the inhibition of virulence factors would exert less 
selective pressure on the pathogens, and thus, the chance of resistance develop-
ment is lower [152]. However, such immunotherapeutic approach has not been yet 
undertaken with A. fumigatus but the situation may be difficult in the case of pul-
monary aspergillosis, which occurs mainly among immunocompromised patients. 
The identification of monoclonal antibodies able to block hyphal emergence could 
be also possible. Such strategy has been proposed a few years ago [153, 154], how-
ever it has not been pursued yet. Although a lot of progresses have been obtained 
in recent years, the overall picture to fully understand the innate immune defense 
against A. fumigatus is missing. For example, the respective role of the different 
PRRs and the lack of definition of all the ligands binding to complement proteins, 
collectins and other PRRs are essential gaps to fill. The reasons for the ineffective-
ness of NETs to kill A. fumigatus hyphae should also be investigated. Comparative 
characterization of major Aspergillus species may also provide valuable under-
standing of how A. fumigatus took the “throne” and became the most predominant 
and successful pathogen among the Aspergillus species. Finally, it has been 
reported that many cytokines and chemokines plays a major role in the defense 
reactions (not discussed here but see for review [155, 156]. However, the inter-
weaving network between all these chemokines, cytokines and the defense against 
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A. fumigatus remains obscure. In conclusion, the early events “when A. fumigatus 
meets the man” remain enigmatic and this chapter paves the way for the direction 
of future exploration.
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