
21 Bessel functions

EACH CYCLE OF A RECURSIVE PROCESS NOT ONLY GENERATES ITS OWN

ROUNDING ERRORS, BUT ALSO INHERITS THE ROUNDING ERRORS

COMMITTED IN ALL PREVIOUS CYCLES. IF CONDITIONS ARE UNFAVORABLE,
THE RESULTING PROPAGATION OF ERRORS MAY WELL BE DISASTROUS.

— WALTER GAUTSCHI

Computational Aspects of Three-Term Recurrence Relations (1967).

A large family of functions known as Bessel1 functions is treated in four chapters of the Handbook of Mathematical
Functions [AS64, Chapters 9–12], with more coverage than any other named functions in that famous compendium.
Although those functions were first discovered by Daniel Bernoulli (1700–1782), who in 1732 worked with the order-
zero function that is now known as J0(x), it was Friedrich Wilhelm Bessel who generalized them about 1824 and
brought them to mathematical prominence, and they bear his name, instead of that of Bernoulli. Leonhard Euler
(1707–1783) discussed their generalizations to arbitrary integer orders, Jn(x), in 1764. The definitive textbook treat-
ment in English, first published in 1922, is A Treatise on the Theory of Bessel Functions [Wat95], a revised reprint of the
1944 second edition.

The Bessel functions arise in several areas of astronomy, engineering, mathematics, and physics as solutions
of certain equations containing unknown functions and their derivatives. Such equations are known as differential
equations, a topic that is outside the scope of this book. The Bessel functions appear as analytic solutions of those
equations, particularly in problems with cylindrical and spherical geometries, and older literature commonly refers
to them as cylinder and sphere functions. Many textbooks on mathematical physics describe applications of Bessel
functions to topics such as diffraction of light, electromagnetic potentials, planetary motion, radiation from moving
charges, scattering of electromagnetic waves, and solutions of the Helmholtz equation, the Laplace equation and the
Poisson equation [AW05, AWH13, Jac75, MH80, MF53, PP05].

Computation of Bessel functions is treated in several books on special functions, including [GDT+05, Chapter 7],
[GST07, Chapters 7 and 12], [HCL+68, Section 6.8], [Luk69a], [Luk77, Chapters 17–19], [Mos89, Chapter 6], [Olv74,
Chapters 2 and 7], [Tho97, Chapters 14–15], and [ZJ96, Chapters 5–11]. Software algorithms for the Bessel function
family are also described in numerous research articles [ADW77a, ADW77b, Amo86, BS92, Cai11, Cam80, CMF77,
Cod80, Cod83, CS89, CS91, Cod93b, Gau64, GST02, GST04, HF09, Har09b, Hil77, Hil81, Jab94, JL12, Kod07, Kod08,
Kra14, Sko75, VC06, Wie99]. The journals Mathematics of Computation and SIAM Journal on Mathematical Analysis con-
tain dozens of articles on the computation of Bessel functions, and their derivatives, integrals, products, sums, and
zeros, although without software.2 A search of the journals Computer Physics Communications and Journal of Compu-
tational Physics finds almost 50 articles on the computation of Bessel functions, and many more on their applications.
The MathSciNet database has entries for about 3000 articles with Bessel in their titles, and the zbMATH database lists
more than 8000 such articles.

Some of the Bessel functions that we treat in this chapter are special cases of more general functions, the Coulomb
wave functions (see [AS64, Chapter 14] and [OLBC10, Chapter 33]), and some publications in the cited physics journals
take that approach. However, it seems unlikely to this author that a three-parameter function that is even more
difficult computationally can provide a satisfactory route to the two-parameter Bessel functions for the argument
ranges and accuracy required for the mathcw library.

Bessel functions are normally defined in terms of real orders, ν (sometimes restricted to nonnegative values),
and complex arguments, z, although complex orders are possible [Kod07]. However, this book deals mostly with
the computation of functions of real arguments. Among all the functions treated in this book, the Bessel functions

1Friedrich Wilhelm Bessel (1784–1846) was a German astronomer and mathematician. Bessel achieved fame in astronomy, cataloging the
positions of more than 50,000 stars, and was the first to use parallax to calculate the distance of stars from the Earth. He was appointed director
of the Königsberg Observatory at the age of 26 by the King of Prussia. A large crater on the Moon, and Asteroid 1552 Bessel, are named after him.

2Extensive bibliographies of the contents of those journals are available at links from http://www.math.utah.edu/pub/tex/bib/
index-table.html.
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694 Chapter 21. Bessel functions

are the most difficult to determine accurately, and their accurate computation for complex arguments is much harder
than for real arguments. In this chapter, we adopt the convention that mathematical formulas are usually given for
real ν and complex z, but when we discuss computation, we consider only integer orders n and real arguments x.
Nevertheless, keep in mind that many applications of Bessel functions, particularly in physics problems, require real
orders and complex arguments, and sometimes, the orders are large, and the magnitudes of the real and imaginary
parts differ dramatically. Our implementations of several of the Bessel functions do not address those needs. Indeed,
a completely satisfactory software treatment of those functions in freely available and highly portable software re-
mains elusive. The GNU Scientific Library [GDT+05] handles the case of real orders, but at the time of writing this, is
restricted to real arguments.

21.1 Cylindrical Bessel functions

There are about two dozen members of the Bessel function family, as shown in Table 21.1 on the next page. None of
them is mentioned in the ISO C Standards, but implementations of the C library on various flavors of UNIX since the
mid-1970s have included functions for computing J0(x), J1(x), and Jn(x), as well as Y0(x), Y1(x), and Yn(x), but only
for integer orders and real arguments. The Fortran 2008 Standard [FTN10] introduces them to that language with
names like bessel_j0(x). The POSIX Standards require those six functions, but confusingly, their software names
are spelled in lowercase, despite the fact that they compute the cylindrical, rather than the spherical, Bessel functions.
Their prototypes look like this:

double j0 (double x); double y0 (double x);
double j1 (double x); double y1 (double x);
double jn (int n, double x); double yn (int n, double x);

There are companions for other floating-point types with the usual type suffixes. Particularly in the physics literature,
the function of the second kind is commonly referred to as the Neumann function, Nν(z), but it is identical to Yν(z).
For real arguments, the functions of the first and second kinds have real values, but the functions of the third kind
have complex values.

For the mathcw library, and this book, we implement the six Bessel functions required by POSIX, in each sup-
ported floating-point precision. We also supply the modified cylindrical Bessel companions, and the spherical func-
tions that correspond to each of the supported cylindrical functions. To augment those scalar functions, we provide
a family that returns in an array argument the values of sequences of Bessel functions with a single argument x and
orders k = 0, 1, 2, . . . , n. Such sequences are needed in series expansions with terms involving Bessel functions. The
sequence values may be computable more economically than by separate invocations of the functions for specific
orders and arguments.

The mathematical functions and software routines for the ordinary Bessel functions are related as follows:

J0(x) ≡ j0(x) = jn(0,x), J1(x) ≡ j1(x) = jn(1,x),
Y0(x) ≡ y0(x) = yn(0,x), Y1(x) ≡ y1(x) = yn(1,x).

For mathematical reasons that are discussed later when we develop computer algorithms, implementations of order-
n Bessel functions are almost certain to invoke the functions of a single argument directly for n = 0 and n = 1, rather
than providing independent computational routes to those two particular functions.

Symbolic-algebra systems include many of the Bessel functions listed in Table 21.1 on the facing page. The
functions of interest in the first part of this chapter, Jν(z) and Yν(z), are called

� BesselJ(nu,z) and BesselY(nu,z) in Maple and REDUCE,

� BesselJ[nu,z] and BesselY[nu,z] in Mathematica,

� bessel_j(nu,z) and bessel_y(nu,z) in Maxima,

� besselJ(nu,z) and besselY(nu,z) in Axiom and MuPAD, and

� besselj(nu,z) and besseln(nu,z) in PARI/GP.

Those systems permit nu to be real, and z to be complex, rather than restricting them to integer and real values,
respectively.
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Table 21.1: The Bessel function family. The subscripts are called the order of the function, and except as noted, may
be positive or negative. The order ν is any real number, the order n is any integer, and the order k is any nonnegative
integer. The argument z is any complex number, and for the Kelvin functions, the argument x is any nonnegative
real number.
Some authors call the functions of the first kind the regular functions, and those of the second kind, irregular functions.

Function Description
Jν(z) ordinary Bessel function of the first kind

Yν(z) ordinary Bessel function of the second kind, sometimes called the Neumann function or Weber’s function
Hν(z) ordinary Bessel function of the third kind, also known as the Hankel function
Iν(z) modified (or hyperbolic) Bessel function of the first kind

Kν(z) modified (or hyperbolic) Bessel function of the second kind, also called the Basset function and the Macdonald function
Nν(z) Neumann function, identical to Yν(z)
Zν(z) arbitrary ordinary Bessel function of first, second, or third kinds,
jn(z) spherical Bessel function of the first kind, equal to

√
π/(2z)Jn+1/2(z)

yn(z) spherical Bessel function of the second kind, equal to
√

π/(2z)Yn+1/2(z)
hn(z) spherical Bessel function of the third kind
in(z) modified spherical Bessel function of the first kind, equal to

√
π/(2z)In+1/2(z)

kn(z) modified spherical Bessel function of the second kind, equal to
√

π/(2z)Kn+1/2(z)
nn(z) spherical Neumann function, identical to yn(z)
Sn(z) Riccati–Bessel function of the first kind, equal to zjn(z)
Cn(z) Riccati–Bessel function of the second kind, equal to −zyn(z)
ζn(z) Riccati–Bessel function of the third kind, equal to zhn(z)

berk(x) Kelvin (or Thomson) function of the first kind
beik(x) Kelvin (or Thomson) function of the first kind
kerk(x) Kelvin (or Thomson) function of the second kind
keik(x) Kelvin (or Thomson) function of the second kind

Ai(z) Airy function, equal to (
√

z/3)
(

I−1/3(ξ)− I+1/3(ξ)
)
, where ξ is the Greek letter xi, and also equal to (1/π)

√
z/3K+1/3(ξ), where

ξ = (2/3)z3/2

Bi(z) Airy function, equal to
√

z/3
(

I−1/3(ξ) + I+1/3(ξ)
)

Hν(z) ordinary Struve function
Lν(z) modified Struve function
Jν(z) Anger’s function
Eν(z) Weber’s function

21.2 Behavior of Jn(x) and Yn(x)

A few of the ordinary Bessel functions of the first and second kinds are graphed in Figure 21.1 on the next page.
From the plots, and selected numerical evaluations, we can make some important observations that are relevant to
their computation:

� The functions of the first kind, Jn(x), look like damped cosine (n = 0) and sine (n > 0) waves, but their zeros
are not equally spaced. Instead, the zeros appear to get closer together as x increases, and differ for each value
of n. That means that argument reductions like those that we found for the trigonometric functions are not
applicable.

� Values of Jn(x) lie in [−1,+1], so intermediate overflow is unlikely to be a problem in their computation.

� The x position of the first positive maximum of Jn(x) and Yn(x), and their first positive nonzero root, increase
as n gets larger.

� For n > 0, Jn(10−p) ≈ O(10−np), so J1(x) is representable for tiny x, although the higher-order functions
underflow to zero.

� The functions of the second kind, Yn(x), have single poles at x = 0 for all n, and their zeros appear to get closer
together as x increases.

� The approach to the single pole in Yn(x) slows as n increases.
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Figure 21.1: Ordinary Bessel functions of the first and second kinds, Jn(x) and Yn(x). The solid lines, and highest
positive maxima, correspond to n = 0.
The functions of the first kind can be extended to the negative axis through the relation Jn(−x) = (−1)n Jn(x), so
even orders are symmetric about the origin, and odd orders are antisymmetric.
The functions of the second kind have real values only for x ≥ 0; they have complex values when x is negative. For
integer orders, they all go to −∞ as x approaches zero.

� Values of Yn(x) lie in (−∞, 0.53], so overflow must be anticipated and handled for x ≈ 0. Numerical evaluation
with x set to the smallest representable floating-point number shows that Y0(x) is of modest size, but overflow
occurs in Yn(x) for all n > 0.

� Although both Jn(x) and Yn(x) decay as x increases, the attrition is not rapid. For example, we have J0(106) ≈
0.000 331, Y0(106) ≈ −0.000 726, J0(10600) ≈ 0.449 × 10−300, and Y0(10600) ≈ 0.659 × 10−300. Thus, in floating-
point arithmetic, the maxima of those functions cannot underflow for any representable x. Some deficient soft-
ware implementations of those functions, such as those in the GNU/LINUX run-time libraries, suffer prema-
ture underflow over most of the range of x, or produce spurious NaN results. Here is an example from that
operating system on an AMD64 platform when hoc is linked with the native math library:

hoc64> for (x = 1.0e7; x <= 1.0e18; x *= 10) \
hoc64> printf("%.2g % g\n", x, J0(x))
1e+07 -8.68373e-05
1e+08 3.20603e-05
1e+09 -qnan(0x31)
1e+10 -qnan(0x33)
1e+11 -qnan(0x35)
1e+12 -qnan(0x37)
1e+13 -qnan(0x39)
1e+14 -qnan(0x3b)
1e+15 -qnan(0x3d)
1e+16 -qnan(0x3f)
1e+17 0
1e+18 0
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Native library improvements on that system removed some of those irregularities as this book was nearing
completion. However, tests on more than a dozen flavors of UNIX found that only MAC OS X, OSF/1, and
SOLARIS IA-32 (but not SPARC) produced expected results over most of the entire floating-point range, and
even those lost all significant digits for large arguments. The conclusion is that implementations of the Bessel
functions in UNIX libraries may be neither reliable nor robust.

� The oscillatory nature of the Bessel functions suggests that recurrence formulas are likely to suffer subtraction
loss for certain ranges of x.

� When x is large, there is insufficient precision in a floating-point representation to resolve the waves of the
functions, because consecutive floating-point numbers eventually bracket multiple wave cycles. The best that
we can hope for then is to get the correct order of magnitude of the waves.

In the next few sections, we investigate those graphical observations further, and make them more precise.

21.3 Properties of Jn(z) and Yn(z)

The ordinary Bessel functions of the first and second kinds have these limiting values, where ν is any real number, z
is a complex number, and e = exp(1):

Jν(z) ≈ (z/2)ν/Γ(ν + 1), z → 0, ν �= −1,−2,−3, . . . ,

Y0(z) ≈ (2/π) log(z), z → 0,

Yν(z) ≈ −(1/π)Γ(ν)(2/z)ν z → 0, ν > 0,

Jν(x) →
√

2/(πx) cos(x − νπ/2 − π/4), x → +∞, x � ν, ν ≥ 0,

Yν(x) →
√

2/(πx) sin(x − νπ/2 − π/4), x → +∞, x � ν, ν ≥ 0,

Jν(x) → (1/
√

2πν)(ex/(2ν))ν, ν → +∞, ν � x,

Yν(x) → −(1/
√

2πν)(ex/(2ν))−ν, ν → +∞, ν � x,

J0(0) = 1, Y0(0) = −∞,
Jn(0) = 0, Yn(0) = −∞, n > 0,

Jn(∞) = 0, Yn(∞) = 0.

The large-argument limits of Jν(x) and Yν(x) answer the question about the spacing of the roots: they are ulti-
mately separated by π, rather than squeezing ever closer together, as might be suggested by the function graphs for
small x. Table 21.2 on the following page shows a few of the roots, easily found in Maple with calls to BesselJZe-
ros(nu,k) and BesselYZeros(nu,k). For k � ν, higher roots of Jν(rν,k) = 0 and Yν(sν,k) = 0 can be estimated to
about three correct figures by the formulas

rν,k ≈ (k + ν/2 − 1/4)π, sν,k ≈ (k + ν/2 − 3/4)π.

In particular, that relation shows that the roots of the Bessel functions of orders ν − 1, ν, ν + 1, . . . are well separated,
a fact that has significance later in their evaluation by recurrence relations.

The functions have these symmetry relations:

Jn(−x) = (−1)n Jn(x), J−n(x) = (−1)n Jn(x), Y−n(x) = (−1)nYn(x).

They allow the computation for real arguments to be done for n ≥ 0 and x ≥ 0, followed by a negation of the
computed result when n is negative and odd.

For |x| � |ν|, the two Bessel functions have asymptotic expansions as linear combinations of cosines and sines,
like this:

θ = x − (ν/2 + 1/4)π,

Jν(x) �
√

2/(πx) (P(ν, x) cos(θ)− Q(ν, x) sin(θ)),

Yν(x) �
√

2/(πx) (Q(ν, x) cos(θ) + P(ν, x) sin(θ)).
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Table 21.2: Approximate roots of ordinary Bessel functions, Jν(rν,k) = 0 and Yν(sν,k) = 0.

k
1 2 3 4 5 6 7 8 . . .

r0,k 2.405 5.520 8.654 11.792 14.931 18.071 21.212 24.352 . . .
r1/2,k 3.142 6.283 9.425 12.566 15.708 18.850 21.991 25.133 . . .
r1,k 3.832 7.016 10.173 13.324 16.471 19.616 22.760 25.904 . . .
r3/2,k 4.493 7.725 10.904 14.066 17.221 20.371 23.519 26.666 . . .
r2,k 5.136 8.417 11.620 14.796 17.960 21.117 24.270 27.421 . . .
r10,k 14.476 18.433 22.047 25.509 28.887 32.212 35.500 38.762 . . .
r100,k 108.836 115.739 121.575 126.871 131.824 136.536 141.066 145.453 . . .

s0,k 0.894 3.958 7.086 10.222 13.361 16.501 19.641 22.782 . . .
s1/2,k 1.571 4.712 7.854 10.996 14.137 17.279 20.420 23.562 . . .
s1,k 2.197 5.430 8.596 11.749 14.897 18.043 21.188 24.332 . . .
s3/2,k 2.798 6.121 9.318 12.486 15.644 18.796 21.946 25.093 . . .
s2,k 3.384 6.794 10.023 13.210 16.379 19.539 22.694 25.846 . . .
s10,k 12.129 16.522 20.266 23.792 27.207 30.555 33.860 37.134 . . .
s100,k 104.380 112.486 118.745 124.275 129.382 134.206 138.821 143.275 . . .

The right-hand sides of Jν(x) and Yν(x) are product-sum expressions of the form ab + cd that may be subject to
subtraction loss. Our PPROSUM() function family (see Section 13.24 on page 386) can evaluate them accurately.

P(ν, x) and Q(ν, x) are auxiliary functions defined by

μ = 4ν2,

P(ν, x) � 1 − (μ − 12)(μ − 32)

2! (8x)2 +
(μ − 12)(μ − 32)(μ − 52)(μ − 72)

4! (8x)4 − · · · ,

Q(ν, x) � μ − 12

8x
− (μ − 12)(μ − 32)(μ − 52)

3! (8x)3 +

(μ − 12)(μ − 32)(μ − 52)(μ − 72)(μ − 92)

5! (8x)5 − · · · .

Those series look complicated, but their terms can easily be generated by recurrence relations:

P(ν, x) � p0 + p1 + p2 + · · · ,
p0 = 1,

pk = − (μ − (4k − 3)2)(μ − (4k − 1)2)

2k(2k − 1)
× 1

(8x)2 × pk−1, k = 1, 2, 3, . . . ,

Q(ν, x) � q0 + q1 + q2 + · · · ,

q0 =
μ − 1

8x
,

qk = − (μ − (4k − 1)2)(μ − (4k + 1)2)

2k(2k + 1)
× 1

(8x)2 × qk−1, k = 1, 2, 3, . . . .

As we describe in Section 2.9 on page 19, asymptotic expansions are not convergent, but they can be summed as
long as term magnitudes decrease. The error in the computed function is then roughly the size of the omitted next
term in the sum, and that size then determines the available accuracy. For large order ν, the factor in the formulas
for the terms pk and qk is roughly ν4/(16k2x2), so as long as ν2 < x, convergence to arbitrary machine precision is
rapid, with each term contributing at least four additional bits to the precision of the sum.

Several published algorithms for Jν(x) and Yν(x) exploit the forms of the asymptotic expansions for P(ν, x) and
Q(ν, x) by using instead polynomial approximations in the variable t = 1/x2. To compute such approximations,
we first need closed forms for P(ν, x) and Q(ν, x). We can find P(ν, x) by multiplying the two equations involving
the Bessel functions by cos(θ) and sin(θ), respectively, adding the equations, and simplifying. The other function is
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Table 21.3: Trigonometric formulas needed for the asymptotic formulas for the ordinary Bessel functions Jn(x) and
Yn(x), with θ = x − (n/2 + 1/4)π, and n ≥ 0. See the text for accurate computation of the sums and differences in
these formulas.

n mod 4 cos(θ) sin(θ)

0 +
√

1
2 (cos(x) + sin(x)) −

√
1
2 (cos(x)− sin(x))

1 −
√

1
2 (cos(x)− sin(x)) −

√
1
2 (cos(x) + sin(x))

2 −
√

1
2 (cos(x) + sin(x)) +

√
1
2 (cos(x)− sin(x))

3 +
√

1
2 (cos(x)− sin(x)) +

√
1
2 (cos(x) + sin(x))

found by swapping the trigonometric multipliers, and subtracting. We then have these results:

P(ν, x) =
√

πx/2 (Jν(x) cos(θ) + Yν(x) sin(θ)),

Q(ν, x) =
√

πx/2 (Yν(x) cos(θ)− Jν(x) sin(θ)).

Once the replacements for the asymptotic series have been evaluated, along with the two trigonometric func-
tions, both Bessel functions can be produced with little additional cost, and some software packages do just that.
Subtraction loss in the cosines and sines of shifted arguments can be prevented by using the double-angle formula
for the cosine, and then solving for the problematic sums and differences:

cos(2θ) = (cos(θ))2 − (sin(θ))2

= (cos(θ)− sin(θ))× (cos(θ) + sin(θ)),
cos(θ)− sin(θ) = cos(2θ)/(cos(θ) + sin(θ)),
cos(θ) + sin(θ) = cos(2θ)/(cos(θ)− sin(θ)).

When ν = 0, we require these functions:

cos(θ) = cos(x − (1/4)π)

=
√

1
2 (cos(x) + sin(x))

=
√

1
2

cos(2x)
cos(x)− sin(x)

,

sin(θ) = sin(x − (1/4)π)

= −
√

1
2 (cos(x)− sin(x))

= −
√

1
2

cos(2x)
cos(x) + sin(x)

.

For each of them, we use whichever of the second or third formulas that does not involve a subtraction.
When ν = 1, we get a reduction to the two cases just treated:

cos(θ) = cos(x − (3/4)π)

= sin(x − (1/4)π),
sin(θ) = sin(x − (3/4)π)

= − cos(x − (1/4)π).

For the general case of nonnegative integer orders, there are just four possibilities, summarized in Table 21.3.
Although our formulas for trigonometric sums and differences may require cos(2x), we do not normally compute

it by invoking the cosine function directly, for these reasons:

� The argument 2x overflows when x is near the overflow limit.
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� The cosine computation is comparatively expensive when x is large.

� The argument 2x may be inexact for floating-point bases other than two, and if x is large, the computed cos(2x)
would then be wildly incorrect.

Instead, we use well-known trigonometric relations to compute it accurately from quantities that we already have:

cos(2x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2(cos(x))2 − 1, if | cos(x)| ≤ 1/2,
1 − 2(sin(x))2, if | sin(x)| ≤ 1/2,
(1 − tan(x)2)/(1 + tan(x)2), if tan(x)2 is outside ( 1

2 , 3
2 ),

−2 fma(sin(x), sin(x),− 1
2 ), if | sin(x)| ≤ | cos(x)|,

2 fma(cos(x), cos(x),− 1
2 ), otherwise.

The first two cases each cover about a third of the period of the cosine. The third case computes tan(x) =
sin(x)/ cos(x) instead of invoking the tangent function, and covers about a sixth of the period. Accuracy loss hap-
pens in the remaining sixth of the period, but it can be reduced by use of the fused multiply-add function call.
However, if 2x is finite and exact, as it is when β = 2, and sometimes is when β �= 2, then we call the cosine func-
tion in preference to the fused multiply-add function. There is a tradeoff between the last two alternatives, and in
practice, we also call the cosine function when 2x is not exact, but x is less than some cutoff, set at 200 in our code.

When the host arithmetic has wobbling precision, more care is needed in the application of the tangent formula.
We use it only when tan(x)2 < 1/2, and compute it as 1

2 (1 − tan(x)2)/( 1
2 +

1
2 tan(x)2), to avoid leading zero bits in

the numerator and denominator. The value of tan(x) lies in [
√

1
3 ,
√

1
2 ] ≈ [0.577, 0.707], so neither it, nor the sine and

cosine from which it is computed, has leading zero bits. Were we to use the tangent formula when tan(x)2 > 3/2,
numerical experiments show that leading zero bits occur about 10% of the time.

The code for the computation of cos(2x) is needed in a half-dozen Bessel-function files, so it is defined as a private
function in the header file cosdbl.h.

The functions of the second kind have complex values for negative arguments, and the POSIX specification per-
mits implementations to return either −∞, or the negative of the largest normal number if Infinity is not supported,
or else a NaN. The global value errno is then set to EDOM.

The derivatives of the Bessel functions are:

dJn(x)/dx = nJn(x)/x − Jn+1(x),
dYn(x)/dx = nYn(x)/x − Yn+1(x).

From the derivatives, we find these error-magnification factors (see Section 4.1 on page 61):

errmag(Jn(x)) = xJ′n(x)/Jn(x)
= n − xJn+1(x)/Jn(x),

errmag(Yn(x)) = n − xYn+1(x)/Yn(x).

The error magnifications are therefore large near the zeros of the Bessel functions, and also when n or x is large.
Three-term recurrence relations relate functions of consecutive orders with fixed argument z:

Jν+1(z) = (2ν/z)Jν(z)− Jν−1(z),
Yν+1(z) = (2ν/z)Yν(z)− Yν−1(z).

When z � ν, the first term on the right is negligible, and we have Jν+1(z) ≈ −Jν−1(z). A sequence of those functions
for ν = 0, 1, 2, . . . then looks like J0(x), J1(x), −J0(x), −J1(x), J0(x), J1(x), . . . . The same observation applies to
Yν+1(z) and sequences of the functions of the second kind.

Unfortunately, the recurrence relations are frequently unstable because of subtraction loss, especially for |x| < ν,
as illustrated in the graphs of the ratios of the terms on the right shown in Figure 21.2 on the next page. Whenever
those ratios are in [ 1

2 , 2], the terms have the same sign, and similar magnitudes, and the subtraction loses one or more
leading bits in binary arithmetic. That happens near the zeros of the functions on the left-hand side. Whether the
accuracy loss affects values of higher-order functions depends on the relative magnitudes of the terms on the right
in the next iteration. In addition, when the first terms on the right dominate, errors in the computed Jν(z) and Yν(z)
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Figure 21.2: Ratios of ordinary Bessel functions of the first and second kinds, (2n/x)Jn(x)/Jn−1(x) and
(2n/x)Yn(x)/Yn−1(x), for n = 1 and n = 2. As n increases, the graphs are qualitatively similar, but shifted to
the right.
The recurrence formulas suffer subtraction loss in the region between the horizontal dotted lines.

are magnified by 2ν/z, which is large for ν � |z|. Under those conditions, just a few iterations of the recurrence
relations can easily produce results with no significant digits whatever. We show numerical examples of that problem
in Section 21.4 on page 705.

There is a continued fraction (see Section 2.7 on page 12) for the ratio of two successive orders of the ordinary
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Bessel function of the first kind:

Jν(z)
Jν−1(z)

= 0 +
1

2ν/z −
1

2(ν + 1)/z −
1

2(ν + 2)/z −
1

2(ν + 3)/z − · · ·

= 0 +
(1/2)z/ν

1 −
(1/4)z2/ν(ν + 1)

1 −
(1/4)z2/((ν + 1)(ν + 2))

1 −
(1/4)z2/((ν + 2)(ν + 3))

1 −
(1/4)z2/((ν + 3)(ν + 4))

1 − · · · .

We show later in Section 21.6 on page 710 how that continued fraction can be used to find Jν(z).
The ordinary Bessel functions of the first and second kinds have these relations:

sin(νπ)Yν(z) = cos(νπ)Jν(z)− J−ν(z),

−2 sin(νπ) = (πz)
(

Jν+1(z)J−ν(z) + Jν(z)J−(ν+1)(z)
)
,

2 = (πz)
(

Jν+1(z)Yν(z)− Jν(z)Yν+1(z)
)
.

At least for small ν, those equations can be useful for testing software implementations of the functions, as long as ν
and z are chosen so that there is no subtraction loss on the right-hand sides.

The Bessel functions can also be expressed as integrals, although the oscillatory nature of the integrand for large
n and/or large z makes it difficult to evaluate them accurately by numerical quadrature:

J0(z) = (1/π)
∫ π

0
cos(z sin(t)) dt,

= (1/π)
∫ π

0
cos(z cos(t)) dt,

Jn(z) = (1/π)
∫ π

0
cos(z sin(t)− nt) dt,

Y0(z) = (4/π2)
∫ π/2

0
cos(z cos(t))

(
γ + log(2z(sin(t))2)

)
dt.

Here, γ ≈ 0.577 · · · is the Euler–Mascheroni constant.
For x in [0, π/2], the integrand for J0(x) is smooth and positive, so numerical quadrature could be attractive,

and accurate. For example, a 28-point Gauss–Chebyshev quadrature recovers J0(π/4) to within 2 ulps of the correct
value in 64-bit IEEE 754 arithmetic, a 32-point Gauss–Legendre quadrature is correct to 30 decimal digits, and a
24-point Simpson’s rule quadrature produces 34 correct decimal digits. That too could be useful for software checks.

The summation formula

Jν(z) = (z/2)ν
∞

∑
k=0

(−(z2/4))k

k! Γ(ν + k + 1)

converges rapidly for |z| < 1, and the terms fall off sufficiently fast that there is no loss of leading digits in the
subtractions of successive terms. Even with larger values of |z|, convergence is still reasonable, as shown in Table 21.4
on the next page. However, for |z| > 2 and small n, the first few terms grow, and are larger than Jn(z), so there is
necessarily loss of leading digits during the summation. Higher intermediate precision, when it is available, can
sometimes hide that loss.

When ν is an integer, the gamma function in the denominator reduces to a factorial, and we then have simpler
summations suitable for the Bessel functions of the first kind required by POSIX:

J0(z) = 1 − (z2/4)/(1!)2 + (z2/4)2/(2!)2 − (z2/4)3/(3!)2 + · · · ,

J1(z) = (z/2)(1 − (z2/4)/(1! 2!) + (z2/4)2/(2! 3!)− (z2/4)3/(3! 4!) + · · · ),

Jn(z) = (z/2)n
∞

∑
k=0

(−(z2/4))k

k! (k + n)!
.

It is convenient to introduce two intermediate variables to simplify the sum for Jn(z):

v = z/2, w = v2, Jn(z) = vn
∞

∑
k=0

(−w)k

k! (k + n)!
.
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Table 21.4: Series term counts needed to reach a given accuracy for Jn(x). The digit counts correspond to those of
extended IEEE 754 decimal floating-point arithmetic, and are close to those of extended IEEE 754 binary arithmetic.

x = 0.1 Decimal digits
n 7 16 34 70
0 3 5 9 17
1 2 5 9 16
5 2 4 8 16

10 2 4 8 15
100 2 4 7 13

1000 2 3 6 11

x = 1 Decimal digits
n 7 16 34 70
0 5 9 15 27
1 5 9 15 26
5 4 8 14 25

10 4 7 13 24
100 3 5 11 20

1000 2 4 8 16

x = 5 Decimal digits
n 7 16 34 70
0 11 17 27 43
1 10 16 26 42
5 9 15 24 40

10 7 13 23 38
100 4 9 16 30

1000 3 6 12 22

For example, for n = 0 or n = 1, and x in [0, 2], the number of terms required in the four extended IEEE 754 decimal
formats is 8, 14, 25, and 45. For fixed n and a chosen interval of x, the sum could also be replaced by a Chebyshev
polynomial economization.

We can factor the sum so that the terms tk can be computed with a simple recurrence relation:

Jn(z) =
zn

2nn!
(t0 + t1 + t2 + · · · ) = vn

n!
(t0 + t1 + t2 + · · · ),

t0 = 1, tk =
−w

k(k + n)
tk−1, for k = 1, 2, 3, . . . .

In the scale factor vn/n!, the numerator can overflow or underflow, and the denominator can overflow, even though
the scale factor may be representable if it were computed in exact arithmetic. In those cases, it must be computed
with a logarithm and an exponential.

For integer orders only, there is a corresponding, but complicated, sum for Yn(z):

Yn(z) = − 1
π

[
v−n

n−1

∑
k=0

(n − k − 1)!
k!

wk − 2 log(v)Jn(z)

+vn
∞

∑
k=0

(
ψ(k + 1) + ψ(k + n + 1)

) (−w)k

k! (k + n)!

]
.

That sum looks unsuitable for fast computation because of the presence of the psi functions (see Section 18.2 on
page 536). Fortunately, their arguments are integers, for which they have simple forms in terms of the partial sums,
hk, of the harmonic series of reciprocal integers, and γ, the Euler–Mascheroni constant:

h0 = 0, hk = 1 + 1/2 + 1/3 + · · ·+ 1/k, k > 0,

ψ(1) = −γ, ψ(k) = −γ +
k−1

∑
m=1

1
m

= hk−1 − γ, k > 1.

Substitute those values into the formula for Yn(z) to get

Yn(z) = − 1
π

[
v−n

n−1

∑
k=0

(n − k − 1)!
k!

wk − 2 log(v)Jn(z)

+vn
∞

∑
k=0

(hk + hk+n − 2γ)
(−w)k

k! (k + n)!

]
.

A computationally satisfactory formula for the ordinary Bessel function of the second kind results from substitution
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of the expansion of Jn(z) in that result:

Yn(z) = − 1
π

[
v−n

n−1

∑
k=0

(n − k − 1)!
k!

wk − 2(log(v) + γ)Jn(z)

+vn
∞

∑
k=0

(hk + hk+n)
(−w)k

k! (k + n)!

]
.

From the general case, we can now easily find these formulas for the functions of orders zero and one:

Y0(z) = − 2
π

[
−(log(v) + γ)J0(z) +

∞

∑
k=1

hk
(−w)k

(k!)2

]
,

Y1(z) = − 1
π

[
1
v
− 2(log(v) + γ)J1(z) + v

∞

∑
k=0

(hk + hk+1)
(−w)k

k! (k + 1)!

]
.

The series for Y0(z) requires about the same number of terms as that for J0(z). Convergence of the series for Y1(z) is
faster than that for Y0(z), because corresponding terms are smaller by a factor of 1/(k + 1).

The presence of the harmonic partial sums, hk, suggests three possible computational approaches:

� Use small precomputed tables of hk and k! to compute the series sums for small z.

� Precompute the complete coefficients of wk. Numerical experiments for x in [0, 2] show that 8, 12, 20, and 32
terms suffice for computing the infinite sum in Y1(z) in the four extended IEEE 754 decimal precisions.

� Replace the infinite sums by Chebyshev economizations; they need 6, 10, 16, and 27 terms for x in [0, 2] for
those four decimal precisions.

With another intermediate variable, and expansions of J0(z) and J1(z), we can further simplify the formulas for
Y0(z) and Y1(z) to obtain fast formulas suitable for tiny arguments:

s = log(v) + γ,

Y0(z) = − 2
π
(−s − (−s + 1)w − (1/8)(2s − 3)w2 − (1/216)(−6s + 11)w3 −
· · · ),

Y1(z) = − 1
πv

(1 + (−2s + 1)w + (s − 5/4)w2 + (1/18)(−3s + 5)w3 + · · · ).
In the term log(v) + γ, notice that when z < 2, the logarithm is negative, so there is a subtraction from γ that

can lose leading bits. There is complete loss near z = 2 exp(−γ) ≈ 1.123. The solution is to rewrite the problem
expression like this:

log(v) + γ = log(v) + log(exp(γ))
= log(v exp(γ))
= log(v × 1.781 072 417 990 197 985 236 504 103 107 179 · · · )
= log(z × 0.890 536 208 995 098 992 618 252 051 553 589 · · · ).

The last form is preferred, because in hexadecimal arithmetic, it preserves maximal accuracy in the constant.
Unfortunately, the series for Y0(z) has two other computational problems:

� When the argument of the logarithm is near one, which happens for z ≈ 1.123, the logarithm is small, and
loses accuracy. One solution is to replace it with the logarithm-plus-one function, log1p(), and compute the
argument accurately with the help of a fused multiply-add operation:

v exp(γ) = 1 + d,
d = v exp(γ)− 1
= fma(v, exp(γ),−1),

log(v exp(γ)) = log1p(d).
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We can improve the accuracy of the argument d by splitting the exponential constant into exact high and
approximate low parts:

exp(γ) = chi + clo,
d = fma(v, chi,−1) + vclo

= fma(v, clo, fma(v, chi,−1)).

� The summation contains terms of alternating signs, and numerical experiments show that the ratio of the sums
of positive and negative terms exceeds 1

2 when 2.406 ≤ x, implying loss of leading digits. For x = 5, two
decimal digits are lost, for x = 10, four are lost, and for x = 20, eight are lost.

Higher precision, when available, can hide the summation loss if x is not too big, but a better approach is to
replace the sum, or the entire expansion of Y0(x), with a polynomial fit. Several published algorithms for that
function do just that, and to limit the polynomial degrees, the range of x where the sum is used is split into several
regions, each with its own polynomial fit.

21.4 Experiments with recurrences for J0(x)

The epigraph that begins this chapter comes from an often-cited paper on three-term recurrence relations [Gau67],
and its author shows a numeric example of upward recurrence from accurate starting values of J0(1) and J1(1). Here
is that experiment done in 32-bit decimal arithmetic in hoc, using initial values correctly rounded to seven digits
from a high-precision computation in Maple, and augmented with comments showing correct results:

hocd32> x = 1
hocd32> J_km1 = 0.7651977
hocd32> J_k = 0.4400506
hocd32> printf("%2d %.6e\n", 0, J_km1)
hocd32> for (k = 1; k <= 20; ++k) \
hocd32> {
hocd32> J_kp1 = (2 * k / x) * J_k - J_km1
hocd32> printf("%2d %.6e\n", k, J_k)
hocd32> J_km1 = J_k
hocd32> J_k = J_kp1
hocd32> }
0 7.651977e-01 # expect 0 7.651977e-01
1 4.400506e-01 # expect 1 4.400506e-01
2 1.149035e-01 # expect 2 1.149035e-01
3 1.956340e-02 # expect 3 1.956335e-02
4 2.476900e-03 # expect 4 2.476639e-03
5 2.518000e-04 # expect 5 2.497577e-04
6 4.110000e-05 # expect 6 2.093834e-05
7 2.414000e-04 # expect 7 1.502326e-06
8 3.338500e-03 # expect 8 9.422344e-08
9 5.317460e-02 # expect 9 5.249250e-09

...
15 7.259898e+06 # expect 15 2.297532e-17
16 2.175373e+08 # expect 16 7.186397e-19
17 6.953934e+09 # expect 17 2.115376e-20
18 2.362163e+11 # expect 18 5.880345e-22
19 8.496833e+12 # expect 19 1.548478e-23
20 3.226435e+14 # expect 20 3.873503e-25

Almost half the digits are incorrect at k = 4, all are incorrect at k = 6, and instead of decreasing towards zero, the
values computed with seven-digit arithmetic begin to grow at k = 7.

Increasing precision helps only marginally. In 64-bit decimal arithmetic, with 16 digits of precision, half the digits
are wrong at k = 6, all are wrong at k = 9, and values increase at k = 11.
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In 128-bit decimal arithmetic, with 34 digits of precision, half the digits are in error at k = 11, all are erroneous at
k = 16, and the increase begins at k = 17.

Similar experiments with x = 1/10 show that the generated values are completely wrong at k = 4, and with
x = 1/1000, at k = 2. Clearly, forward recurrence for Jn(x) is extremely unstable when x � n.

We now repeat the experiment in seven-digit arithmetic using backward recurrence:

hocd32> x = 1
hocd32> J_kp1 = 9.227622e-27 # J(21,x)
hocd32> J_k = 3.873503e-25 # J(20,x)
hocd32> printf("%2d %.6e\n", 20, J_k); \
hocd32> for (k = 20; k > 0; --k) \
hocd32> {
hocd32> J_km1 = (2*k/x)*J_k - J_kp1
hocd32> printf("%2d %.6e\n", k - 1, J_km1)
hocd32> J_kp1 = J_k
hocd32> J_k = J_km1
hocd32> }
20 3.873503e-25 # expect 20 3.873503e-25
19 1.548478e-23 # expect 19 1.548478e-23
18 5.880342e-22 # expect 18 5.880345e-22
17 2.115375e-20 # expect 17 2.115376e-20
16 7.186395e-19 # expect 16 7.186397e-19
15 2.297531e-17 # expect 15 2.297532e-17
...
9 5.249246e-09 # expect 9 5.249250e-09
8 9.422337e-08 # expect 8 9.422344e-08
7 1.502325e-06 # expect 7 1.502326e-06
6 2.093833e-05 # expect 6 2.093834e-05
5 2.497577e-04 # expect 5 2.497577e-04
4 2.476639e-03 # expect 4 2.476639e-03
3 1.956335e-02 # expect 3 1.956335e-02
2 1.149035e-01 # expect 2 1.149035e-01
1 4.400506e-01 # expect 1 4.400506e-01
0 7.651977e-01 # expect 0 7.651977e-01

Although there are differences in final digits in two-thirds of the results, the largest relative error is just 0.83 ulps, at
k = 11. The final six results are correctly rounded representations of the exact values. Evidently, backward recurrence
is stable for that computation.

For |x| � n, the stability problem in the upward recurrence largely disappears. Even for x = 20 in our seven-
digit-arithmetic example, the computed values, not shown here, have a maximum absolute error of 4× 10−7. Because
the starting values for upward recurrence are simpler than for downward recurrence, we exploit that fact later in code
for sequences of Bessel functions of a fixed argument and increasing orders.

Interval arithmetic provides another way to illustrate the instability of upward recurrence for Jn(x) when x � n,
and the return of stability when x � n. Here is the output of an interval version of the recurrence implemented
in the 32-bit binary version of hoc, where the arguments of the test function are the maximum order and the inter-
val bounds for x. The starting values of J0(x) and J1(x) are determined from higher-precision computation, then
converted to interval form with a half-ulp halfwidth. Each line shows the order n, the lower and upper bounds on
the function value, the interval midpoint and its halfwidth, and the expected value determined by computing it in
higher precision, and then casting it to working precision:

hoc32> load("ijn") # code for interval version of UPWARD recurrence for Jn(n,x)
hoc32> test_Jn_up(20, 1, 1)
0 [ 7.651_976e-01, 7.651_978e-01] = 7.651_977e-01 +/- 5.960_464e-08 # expect 7.651_977e-01
1 [ 4.400_505e-01, 4.400_506e-01] = 4.400_506e-01 +/- 2.980_232e-08 # expect 4.400_506e-01
2 [ 1.149_033e-01, 1.149_036e-01] = 1.149_035e-01 +/- 1.192_093e-07 # expect 1.149_035e-01
3 [ 1.956_272e-02, 1.956_373e-02] = 1.956_323e-02 +/- 5.066_395e-07 # expect 1.956_335e-02
4 [ 2.472_758e-03, 2.479_076e-03] = 2.475_917e-03 +/- 3.159_046e-06 # expect 2.476_639e-03
5 [ 2.183_318e-04, 2.698_898e-04] = 2.441_108e-04 +/- 2.577_901e-05 # expect 2.497_577e-04
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6 [-2.957_582e-04, 2.261_400e-04] = -3.480_911e-05 +/- 2.609_491e-04 # expect 2.093_834e-05
...
15 [-1.202_778e+08, 8.013_022e+07] = -2.007_379e+07 +/- 1.002_040e+08 # expect 2.297_532e-17
16 [-3.611_190e+09, 2.408_198e+09] = -6.014_958e+08 +/- 3.009_694e+09 # expect 7.186_397e-19
17 [-1.156_382e+11, 7.718_263e+10] = -1.922_779e+10 +/- 9.641_042e+10 # expect 2.115_376e-20
18 [-3.934_108e+12, 2.627_821e+12] = -6.531_434e+11 +/- 3.280_964e+12 # expect 5.880_344e-22
19 [-1.417_051e+14, 9.471_720e+13] = -2.349_394e+13 +/- 1.182_111e+14 # expect 1.548_478e-23
20 [-5.387_421e+15, 3.603_188e+15] = -8.921_166e+14 +/- 4.495_304e+15 # expect 3.873_503e-25

Notice that already at n = 6, the interval includes zero, and the interval halfwidth is larger than its midpoint.
The rapidly growing interval width gives one little confidence in the function values estimated from the interval
midpoints.

We then repeat the experiment with x = 20, and see that, although the interval widths grow, they remain small
compared to the midpoints, and the midpoints are close to the expected values:

hoc32> test_Jn_up(20, 20, 20)
0 [ 1.670_246e-01, 1.670_247e-01] = 1.670_247e-01 +/- 1.490_116e-08 # expect 1.670_247e-01
1 [ 6.683_312e-02, 6.683_313e-02] = 6.683_312e-02 +/- 7.450_581e-09 # expect 6.683_312e-02
2 [-1.603_414e-01, -1.603_413e-01] = -1.603_414e-01 +/- 2.235_174e-08 # expect -1.603_414e-01
3 [-9.890_141e-02, -9.890_138e-02] = -9.890_139e-02 +/- 1.490_116e-08 # expect -9.890_139e-02
4 [ 1.306_709e-01, 1.306_710e-01] = 1.306_709e-01 +/- 3.725_290e-08 # expect 1.306_709e-01
5 [ 1.511_697e-01, 1.511_698e-01] = 1.511_697e-01 +/- 3.725_290e-08 # expect 1.511_698e-01
6 [-5.508_611e-02, -5.508_599e-02] = -5.508_605e-02 +/- 5.960_464e-08 # expect -5.508_605e-02

...
15 [-8.174_032e-04, -8.067_638e-04] = -8.120_835e-04 +/- 5.319_715e-06 # expect -8.120_690e-04
16 [ 1.451_691e-01, 1.451_905e-01] = 1.451_798e-01 +/- 1.072_884e-05 # expect 1.451_798e-01
17 [ 2.330_773e-01, 2.331_223e-01] = 2.330_998e-01 +/- 2.249_330e-05 # expect 2.330_998e-01
18 [ 2.510_408e-01, 2.511_387e-01] = 2.510_898e-01 +/- 4.899_502e-05 # expect 2.510_898e-01
19 [ 2.187_510e-01, 2.189_724e-01] = 2.188_617e-01 +/- 1.106_933e-04 # expect 2.188_619e-01
20 [ 1.644_882e-01, 1.650_068e-01] = 1.647_475e-01 +/- 2.593_249e-04 # expect 1.647_478e-01

21.5 Computing J0(x) and J1(x)

For tiny x, summing the first few terms of the Taylor series of Jn(x) provides a correctly rounded result. The mathcw
library code uses four-term series for the Bessel functions J0(x) and J1(x).

For x in [tiny, 2], the series can be summed to machine precision, or J0(x) and J1(x) can be represented by poly-
nomial approximations. The mathcw library code for those two functions implements both methods, and for each
function, uses a single Chebyshev polynomial table (see Section 3.9 on page 43) that is truncated at compile time to
the accuracy needed for the current working precision, avoiding the need for separate minimax polynomials for each
precision. For those functions, and the intervals treated in this section, minimax fits are only slightly more accurate
than Chebyshev fits of the same total degree.

The polynomial for J0(x) is chosen to fit the remainder of the Taylor series after the first two terms, and because
of the symmetry relation, we assume that x is nonnegative:

t = x2, t in [0, 4], x in [0, 2],

u = t/2 − 1, Chebyshev variable u in [−1,+1],

f (t) = (J0(
√

t)− (1 − t/4))/t2,

=
N

∑
k=0

ckTk(u), Chebyshev polynomial fit

J0(x) = 1 − t/4 + t2 f (t)
= 1 − x2/4 + t2 f (t)
= fma(−x/2, x/2, 1) + t2 f (t)
= (1 − x/2)(1 + x/2) + t2 f (t), use when β �= 16,



708 Chapter 21. Bessel functions

= 2((1 − x/2)(1/2 + x/4)) + t2 f (t), use when β = 16.

When t ≈ 4, the leading sum 1 − t/4 suffers serious loss of leading digits, unless it is computed with a fused
multiply-add operation. However, rewriting it in factored form moves the subtraction loss to the term 1 − x/2, and
for β = 2, that is computed almost exactly, with only a single rounding error. Using higher precision for intermediate
computations, but not for the Chebyshev sum, reduces the worst-case errors by about one ulp.

Two preprocessor symbols, USE_CHEBYSHEV and USE_SERIES, select the algorithm used in j0x.h when x is in
[tiny, 2]. Error plots show that both methods are equally accurate for small x, but errors are smaller for the Chebyshev
fit and higher intermediate precision, so that is the default if neither symbol is defined.

For J1(x) with x in [0, 2], t and u are as before, and we develop a polynomial fit for nonnegative x like this:

g(t) = (2J1(
√

t)/
√

t − (1 − t/8))/t2

=
N

∑
k=0

dkTk(u), Chebyshev polynomial fit,

J1(x) = (x/2)(1 − t/8 + t2g(t)).

Here, t/8 ≤ 1/2, so there is no subtraction loss in the first two terms, and the terms can be summed safely from right
to left. The major sources of error are the two rounding errors from the final subtraction and the final product with
x/2.

There are single roots J0(2.404 · · · ) = 0 and J1(3.831 · · · ) = 0 in the interval [2, 4]. Straightforward polynomial
approximations on that interval are possible, but near the roots, they must sum to a small number, and as a result,
have a large relative error. The Cephes library [Mos89, Chapter 6] removes that error by instead using a polynomial
approximation in which the roots in the interval are factored out. For our case, we call the respective roots r and s,
and we have:

J0(x) = (x2 − r2)p(x), p(x) =
N

∑
k=0

pkTk(u), Chebyshev polynomial fit,

J1(x) = x(x2 − s2)q(x), q(x) =
N

∑
k=0

qkTk(u), Chebyshev polynomial fit.

The critical computational issues are that we must avoid massive subtraction loss in the factors with the roots, and
we must account for the fact that the exact roots are not machine numbers. That is best done by representing each
root as a sum of exact high and approximate low parts, and then computing the factor like this:

x2 − r2 = (x − r)(x + r),
= ((x − rhi)− rlo)((x + rhi) + rlo).

When x is near a root, the difference x − rhi is computed exactly, because both terms have the same floating-point
exponent. Subtraction of rlo then provides an important correction to the difference, with only a single rounding
error. The second factor is computationally stable because it requires only additions.

We need a different split of each root for each machine precision, and a Maple function in the file split-base.map
generates the needed C code, with embedded preprocessor conditional statements to select an appropriate set for
the current precision. For example, one such pair with its compile-time selector in j0.h looks like this for the IEEE
754 and VAX 32-bit formats:

#elif (T >= 24) && (B != 16)

static const fp_t J0_R1_HI = FP(10086569.0) / FP(4194304.0);
static const fp_t J0_R1_LO = FP(1.08705905e-07);

The one drawback to our factored representation is that the final function value is no longer computed as the sum of
an exact value and a small correction. Instead, it has cumulative rounding errors from each of the factors and their
products. We therefore expect larger errors on the interval [2, 4] than on [0, 2], but we can nevertheless guarantee a
small relative error, instead of a small absolute error.
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Figure 21.3: Relative (top) and absolute (bottom) errors in j0(x) for two argument ranges. The largest relative errors
occur near the zeros of the function that lie in [4, ∞), and can grow arbitrarily large. However, the absolute errors
remain small.

For the interval [4, ∞), we use Chebyshev polynomial fits to the functions P(0, x), P(1, x), Q(0, x), and Q(1, x) (see
Section 21.3 on page 699), and then recover the Bessel functions from the formulas involving those functions and the
cosine and sine. There are now cumulative errors from the polynomial evaluations, the trigonometric functions, and
their final product sums. We therefore expect higher errors than on the interval [0, 4], and sadly, we can only provide
small absolute error near the roots after the first one.

For large x, P(ν, x) is O(1), and dominates Q(ν, x), which is O(1/x). Nevertheless, because the trigonometric
multipliers can be small, and of either sign, the two products may be of comparable size, and their sum subject to
subtraction loss. Also, for large x, the accuracy of the computed Bessel functions depends critically on that of the
trigonometric argument reduction, and it is precisely here that most historical implementations of Jn(x) and Yn(x)
may deliver results where every digit is in error, even if the magnitudes are correct. Thanks to the exact argument
reduction used in the mathcw library, that is not a problem for us, and as long as x is exactly representable, and
not near a Bessel function root, our j0(x) and j1(x) functions produce results that agree to within a few ulps of
high-precision values computed by symbolic-algebra systems, even when x is the largest number representable in
the floating-point system.

Figure 21.3 and Figure 21.4 on the following page show the relative and absolute errors for our implementations
in data type double of the J0(x) and J1(x) functions. Error plots for other binary and decimal precisions are similar,
and thus, not shown. The observed errors quantify the rough estimates that we made based on the numerical steps
of the computations.
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Figure 21.4: Relative (top) and absolute (bottom) errors in j1(x) for two argument ranges. The largest relative errors
occur near the zeros of the function that lie in [4, ∞), and can grow arbitrarily large. However, the absolute errors
remain small.

21.6 Computing Jn(x)

We now turn to the problem of computing Jn(x) for n > 1. As we observed earlier, when x is small, the series formula
converges rapidly, and is the best way to compute the function for arbitrary n.

For larger x values, although upward recurrence for computing Jn(x) is unsuitable, downward recurrence has
been found to be stable, but the problem is that we do not have a good way to compute the two starting Bessel func-
tions directly when both n and x are large. The continued fraction presented earlier on page 702 leads to an algorithm
for finding those two functions, but the procedure is not immediately obvious, and requires some explanation.

In the notation of Section 2.7 on page 12, the elements of the continued fraction for Jν(z)/Jν−1(z) are given by

a1 = +1, ak = −1, k > 1,

b0 = 0, bk = 2(ν + k − 1)/z, k > 0.

The numerically preferred backward evaluation of the continued fraction is complicated because we have two pa-
rameters that affect the starting value of the iteration. However, either of the Lentz or Steed algorithms allows
evaluation in the forward direction with early loop exit as soon as the value of the continued fraction has converged.
That gives us the ratio Jν(z)/Jν−1(z), but we still do not know Jν(z) itself. To find that value, rewrite the recurrence
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relation in the downward direction for decreasing integer orders, and divide each equation by Jn(z):

Jn−2(z)/Jn(z) = (2(n − 1)/z)Jn−1(z)/Jn(z)− 1,
Jn−3(z)/Jn(z) = (2(n − 2)/z)Jn−2(z)/Jn(z)− Jn−1(z)/Jn(z),
Jn−4(z)/Jn(z) = (2(n − 3)/z)Jn−3(z)/Jn(z)− Jn−2(z)/Jn(z),

. . . . . .
J2(z)/Jn(z) = (6/z)J3(z)/Jn(z)− J4(z)/Jn(z),
J1(z)/Jn(z) = (4/z)J2(z)/Jn(z)− J3(z)/Jn(z),
J0(z)/Jn(z) = (2/z)J1(z)/Jn(z)− J2(z)/Jn(z).

The right-hand side of the first equation contains known values, so we can easily compute its left-hand side. The
right-hand side of the second equation requires two ratios that we now have, so we can find its left-hand side. We
need to remember at most two consecutive ratios to repeat the process, and we finally obtain a value for J0(z)/Jn(z).
Calling that result fn(z), we now compute J0(z) independently by the methods of Section 21.5 on page 707, and then
recover the desired function value Jn(z) as J0(z)/ fn(z).

There is an important refinement to be made in that last step. If we are near a zero of J0(z), then the function value
is likely to have a high relative error that propagates into the computed Jn(z). It is then better to use the second-
last ratio, and compute Jn(z) from J1(z)/(J1(z)/Jn(z)). We use that alternative when the magnitude of the ratio
J1(z)/Jn(z) exceeds that of J0(z)/Jn(z). The root separation of the estimates in Section 21.3 on page 697 guarantees
that successive ratios cannot both be tiny.

Although that procedure may look complicated, the code that implements it is short. Here is a hoc function that
computes Jn(x), with checks for special cases of n and x omitted:

func Jncf(n,x) \
{ # return J(n,x) via the continued-fraction algorithm

rinv = cf(n,x) # J(n,x) / J(n-1,x)
rk = 1 / rinv # J(k,x) / J(n,x), for k == n - 1
rkp1 = 1
s = 1

for (k = n - 1; k > 0; --k) \
{

rkm1 = (2 * k / x) * rk - rkp1
rkp1 = rk
rk = rkm1

if (isinf(rkm1)) \
{

rk *= MINNORMAL
rkp1 *= MINNORMAL
s *= MINNORMAL
rkm1 = (2 * k / x) * rk - rkp1

}
}

if (abs(rkp1) > abs(rk)) \
return (s * J1(x) / rkp1) \

else \
return (s * J0(x) / rk)

}

The check for infinity in the downward loop is essential, because when n/x is large, the successive ratios grow
quickly toward the overflow limit. The computation cannot be allowed to proceed normally, because the next one or
two iterations require subtraction of infinities, producing NaN results. To prevent that, the code instead performs an
exact downward scaling that is undone in the return statement. Our choice of scale factor forces s, and thus, the final
result, to underflow if scaling is required more than once. For older floating-point designs where overflow is fatal,



712 Chapter 21. Bessel functions

Table 21.5: Iteration counts for evaluating the continued fraction of Jn(x)/Jn−1(x) in the IEEE 754 128-bit format
(approximately 34 decimal digits) using the forward Lentz algorithm. Counts for the Steed algorithm are almost
identical.

n
x 2 10 100 1000 10 000 100 000 1 000 000
1 16 15 10 7 5 7 4

10 37 30 14 9 7 5 5
100 156 148 58 15 9 7 5

1 000 1120 1112 1021 119 16 9 9
10 000 10 259 10 251 10 165 9255 251 15 9

100 000 >25 000 >25 000 >25 000 >25 000 >25 000 533 15
1 000 000 >25 000 >25 000 >25 000 >25 000 >25 000 >25 000 1122

a safe-arithmetic function like the is_fmul_safe() procedure that we introduced in our treatment of the incomplete
gamma function (see Section 18.4 on page 560) can check whether the expression assigned to rkm1 would overflow
without causing overflow, and exit the loop with rk set to the largest floating-point number.

The private function cf(n,x) evaluates the continued fraction, and an instrumented version of its code stores the
iteration count in a global variable that allows recovery of the data shown in Table 21.5. Evidently, the continued
fraction converges quickly when x/n is small, but it is impractical for x > 1000 if x > n.

Our simple prototype for computing Jn(x) can be improved in at least these ways, most of which are implemented
in the C code in the file jnx.h:

� For small x, use the general Taylor series (see Section 21.3 on page 702). It is particularly effective for large n
and tiny x.

� If s is zero, or if 1/rk or 1/rkp1 underflows, the calculation of J0(x) or J1(x) is unnecessary.

� Instead of allowing the ratios to grow toward the overflow limit, it is better to rescale earlier. A suitable cutoff
is roughly the square root of the largest representable number. With that choice, overflow elsewhere in the
loop is prevented, and there is no need to have separate code for older systems where overflow is fatal.

� If possible, use higher working precision in the continued fraction and downward recurrences, to improve
accuracy near zeros of Jn(x).

� For large |x|, and also whenever the continued fraction is found not to converge, switch to the asymptotic
expansion given in Section 21.3 on page 697. Terminate the summations for P(n, x) and Q(n, x) as soon as
either the partial sums have converged to machine precision, or else the terms are found to increase. Then take
particular care with the trigonometric argument reductions to avoid needless loss of accuracy.

� In the region where the asymptotic series is used, the quality of the underlying cosine and sine function im-
plementations, coupled with exact argument reduction, are of prime importance for the accuracy of Jn(x), as
well as for some of the spherical Bessel functions that we treat later in this chapter. The trigonometric code in
many existing libraries performs poorly for large arguments, and may cause complete loss of significance in
the Bessel functions.

The algorithm does not require storage of all of the right-hand side ratios, Jk(z)/Jn(z), but if we preserve them,
we can quickly recover a vector of values J0(z), J1(z), . . . , Jn−1(z) simply by multiplying each of the saved ratios by
Jn(z).

Alternatively, if we determine Jn−1(z) and Jn(z) with that algorithm, we can use downward recurrence to find
earlier members of the sequence. That algorithm requires O(4n) floating-point operations, in addition to the work
required for the continued fraction, so if n is large, computation of Jn(x) for large x is expensive.

Figure 21.5 on the next page shows the measured errors in our implementation of Jn(x) for a modest value of n.
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Figure 21.5: Errors in the binary (top) and decimal (bottom) jn(n,x) family for n = 25.

21.7 Computing Y0(x) and Y1(x)

As with our implementations of the ordinary Bessel functions of the first kind, for x in (4, ∞), we compute the
functions of the second kind, Y0(x) and Y1(x), from the trigonometric formulas with the factors P(ν, x) and Q(ν, x)
defined on Section 21.3 on page 698.

The major difficulties for arguments in [0, 4] are the approach to −∞ as x → 0, and the presence of two zeros
of Y0(x), and one of Y1(x). Unless the zeros are specifically accounted for, polynomial fits or series sums for the
functions have large relative errors near those zeros. Consequently, we prefer to use several different approximations
in that region. In the following, we assume that the special arguments of NaN, Infinity, and zero are already handled.

For Y0(x), we use these regions and Chebyshev polynomial approximations, fr(u), with u on [−1,+1]:

x in (0, tiny] : Sum the four-term Taylor series in order of increasing term magnitudes, with the cutoff chosen so
that the magnitude of the last term is below 1

2 ε/β, but may affect the rounding of the final result.

x in [3/4, 1] : Factor out the root in this region, with Y0(x) = (x2 − s2
0,1) f2(8x − 7). The difference of squares must be

factored and computed accurately from a two-part split of the root, as described in Section 21.5 on page 707.

x in (tiny, 2] : Sum the series for Y0(x) starting with the second term, exiting the loop as soon as the last-computed
term no longer affects the sum. Then add the first term. If x is in [− exp(−γ),−3 exp(−γ)] (roughly [0.56,
1.69]), the argument of the logarithm lies in [ 1

2 , 3
2 ], and is subject to accuracy loss, so add the term log1p(d)×

J0(x), where d is computed accurately with a fused multiply-add operation and a two-part split of the constant
exp(γ). Otherwise, add log(fma(v, chi, vclo))× J0(x). Y0(x) is then that sum times 2/π.
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Figure 21.6: Relative (top) and absolute (bottom) errors in y0(x) for two argument ranges. The largest relative errors
occur near the zeros of the function that lie in [4, ∞), and can grow arbitrarily large. However, the absolute errors
remain small.

x in (2, 3] : The function is positive and decreasing on this interval, so to get an approximation that is the sum of a
positive exact value and a positive correction, use Y0(x) = Y0(3) + x2 f4((2x2 − 13)/5). The constant Y0(3) is
represented as a two-part split, with the low part added first.

x in (3, 4] : Factor out the root in this region from the approximation, and compute Y0(x) = x2(x2 − s2
0,2) f5(2x − 7),

with the usual careful handling of the difference of squares.

x in (4, ∞) : Use the P–Q fit.

The final approximation form in each region is the result of experiments with several alternatives suggested by
prior work. The goal is to find auxiliary functions that are almost linear on the region, in order to minimize the
length of the Chebyshev expansions. Most published work on computing Bessel functions ignores the issue of the
function zeros, and thus, can only achieve small absolute, rather than relative, error. For our approximations, the
worst case for 16-digit accuracy is region (2, 3], where Chebyshev terms up to T25(u) are needed.

Cody and Waite generally recommend making the implementation of each elementary or special function inde-
pendent of related ones. However, for small arguments, eliminating the dependence of Y0(x) on J0(x) leads to exces-
sively long polynomial expansions. Further searches for alternate approximation forms are needed to see whether
that blemish can be removed without losing accuracy.

Figure 21.6 shows the measured errors in our implementation of Y0(x). Because the function magnitude grows
as its argument approaches zero, the absolute errors must also increase in that region.
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Figure 21.7: Relative (top) and absolute (bottom) errors in y1(x) for two argument ranges. The largest relative errors
occur near the zeros of the function that lie in [4, ∞), and can grow arbitrarily large. However, the absolute errors
remain small.

For Y1(x), we use these regions and different Chebyshev polynomial fits, fr(u):

x in (0, tiny] : Sum the four-term Taylor series, similar to our approach for tiny arguments in Y0(x).

x in (tiny, 2] : Use Y1(x) = (2/π)(log(x)× J1(x)− 1/x) + x f2(x2/2 − 1).

x in (2, 4] : Use Y1(x) = (x2 − s2
1,1) f3(x − 3).

x in (4, ∞) : Use the P–Q fit.

Here too, we have been unable to remove the dependence of Y1(x) on J1(x) for small arguments without unaccept-
ably long polynomial fits.

Figure 21.7 shows the measured errors in our implementation of Y1(x).

21.8 Computing Yn(x)

The Bessel function Yn(x) is complex-valued for negative x, so the code should return a quiet NaN for that case.
If NaN is not available in the host floating-point system, then a suitable replacement might be the negative of the
largest representable number.
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For negative n, use the symmetry relation Y−n(x) = (−1)nYn(x) so that only nonnegative n values need to be
considered further.

For n = 0 and n = 1, use the routines for Y0(x) and Y1(x).
For small arguments, Yn(x) is best computed by summing the general Taylor series (see Section 21.3 on page 703).
Overflow is possible for tiny x, but the complexity of the series is such that it is not practical to precompute

cutoffs for general n below which the code could return −∞, or if infinities are not available, the negative of the
largest representable number. Numerical experiments show that for a tiny fixed x and increasing n, the magnitude
of Yn(x) is larger than x−n, so if overflow is a fatal error, then it could be necessary to return an indication of a likely
overflow when x < exp(− log(largest representable number)/n), even though that is an expensive test to make.

The recurrence relation for Yn(x) is stable in the upward direction, so once Y0(x) and Y1(x) have been computed
by the methods of the preceding section, Y|n|(x) is produced in a loop of short code in |n| − 2 iterations. The final
result is then negated if n is negative and odd, to account for the symmetry relation.

The explicit formula for Yn(x) contains an n-term sum, a product of a logarithm and Jn(x), and sum of an infinite
number of terms. When x < 2, the first sum is larger than the product and the second sum, and the terms in both
sums fall off quickly. Upward recurrence requires Y0(x) and Y1(x), but they are easier to compute than Jn(x). It is
therefore unclear which algorithm should be chosen. Timing tests show that the series algorithm is about two to
four times faster than upward recurrence on some platforms, whereas on others, it is about twice as slow. On the
common IA-32 architecture, the two algorithms have nearly equal performance.

Although the code for the asymptotic series of Jn(x) can be adapted to compute Yn(x) with only a one-line change,
it is not essential, because upward recurrence from Y0(x) and Y1(x) works for arguments of any size. However, we
provide code for the asymptotic series for Yn(x), because there is a tradeoff in efficiency between a long recurrence,
and a short sum that also requires a complicated argument reduction inside the trigonometric functions. Timing tests
on two common platforms for Y25(x) and Y1000(x) with random arguments in the region where the asymptotic code
is used shows that code to be two to ten times faster than the code that uses downward recurrence. The asymptotic
series is therefore the default algorithm for large arguments.

We do not have a satisfactory algorithm to handle the case of n � x � 1 for either Jn(x) or Yn(x), because the
continued fraction then converges too slowly to be practical, three-term recurrences take too many steps, and the
asymptotic series cannot produce sufficient accuracy. Fortunately, for most applications where Bessel functions are
needed, such extreme arguments are rare.

Figure 21.8 on the next page shows the measured errors in our implementation of Yn(x) for modest n.

21.9 Improving Bessel code near zeros

After this chapter, and its software, were completed, John Harrison described a significant improvement in the
computation of the Bessel functions J0(x), J1(x), Y0(x), and Y1(x) that he implemented in the math library for the Intel
compiler family [Har09b]. His code uses separate polynomial fits around the zeros and extrema of those functions
for arguments x in [0, 45]. Above that region, the functions are represented with single trigonometric functions as

Jn(x) ≈ P(1/x) cos(x − ( 1
2 n + 1

4 )π −Q(1/x)),

Yn(x) ≈ P(1/x) sin(x − ( 1
2 n + 1

4 )π −Q(1/x)),

where P(1/x) and Q(1/x) are polynomials in inverse powers of x. His algorithm improves the relative accuracy of
the Bessel functions near their zeros, and ensures monotonocity near their extrema.

Harrison also carried out an exhaustive search to find arguments x < 290(≈ 1027) that are the worst cases for
determining correct rounding. For the IEEE 754 64-bit binary format, he found that at most six additional bits in the
Bessel-function values are required for correct rounding decisions. In particular, accurate computations in the 80-bit
format provide more than the required additional bits to guarantee correct rounding in the 64-bit format.

Because the mathcw library supports more floating-point formats, and decimal arithmetic, using Harrison’s ap-
proach would require a large number of polynomial tables. It therefore is reasonable to ask whether there is a simpler
way to improve relative accuracy near the zeros of the Bessel functions. We start by generating the Taylor series of
J0(x) near a point x = z + d, such that J0(z) = 0:

% maple
> alias(J = BesselJ):
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Figure 21.8: Errors in the binary (top) and decimal (bottom) yn(n,x) family for n = 25.

> taylor(J(0, z + d), d = 0, 5);
2

J(0, z) - J(1, z) d + (1/4 J(2, z) - 1/4 J(0, z)) d +
3

(-1/24 J(3, z) + 1/8 J(1, z)) d +
4 5

(1/192 J(4, z) - 1/48 J(2, z) + 1/64 J(0, z)) d + O(d )

The expansion coefficients require values of higher-order Bessel functions at z, so let us apply the three-term recur-
rence relation, and then display the numerator and denominator:

> t := convert(%, polynom):
> u := subs(J(4,z) = (6/z)*J(3,z) - J(2,z),

J(3,z) = (4/z)*J(2,z) - J(1,z),
J(2,z) = (2/z)*J(1,z) - J(0,z),
J(0,z) = 0, t):

> numer(u);
3 2 2 2 3 3 3 2

-J(1, z) d (12 z - 6 d z + 4 d z - 2 d z - 3 d + d z )
> denom(u);

3
12 z

Notice that the Taylor series reduces to a rational polynomial scaled by the constant J1(z). Next, introduce two
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intermediate variables and simplify:

> simplify(subs(v^2 = w, subs(z = 1/v, u)));
2 2 3 3

1/12 d J(1, 1/v) (-12 + 6 v d - 4 d w + 2 d + 3 d v w - d v)

We now have a simple polynomial in powers of d, scaled by J1(z).
A more complex Maple program in the file J0taylor.map finds the general form of the polynomial coefficients to

any desired order. In Horner form, they involve only whole numbers, and look like this:

c[0] = 0;
c[1] = -1;
c[2] = (v) / 2;
c[3] = (1 - 2 * w) / 6;
c[4] = ((-1 + 3 * w) * v) / 12;
c[5] = (-1 + (7 - 24 * w) * w) / 120;
c[6] = ((1 + (-11 + 40 * w) * w) * v) / 240;
c[7] = (1 + (-15 + (192 - 720 * w) * w) * w) / 5040;
c[8] = ((-1 + (24 + (-330 + 1260 * w) * w) * w) * v) / 10080;
c[9] = (-1 + (26 + (-729 + (10440 - 40320 * w) * w) * w) * w) / 362880;
...

The important point here is that the coefficients for the expansions near all of the zeros of J0(x) are represented with
symbolic expressions that can be evaluated at run time for any particular zero, z.

Because v and w are reciprocals, their higher powers decrease and prevent overflow in the coefficients ck. In
addition, the values of the numerators of the leading coefficients are often in [ 1

2 , 1], reducing accuracy loss when the
host arithmetic has wobbling precision.

Subtraction loss in the Taylor series is most severe in the sum c2d2 + c3d3, so we can use the series only when
|d| < 1

2 c2/c3 � 3/(2z). For the zeros of J0(x) that we treat, the upper limit on |d| is roughly 0.27.
If we tabulate just the zeros zk and the corresponding values J1(zk), then for any particular zero, z, we can compute

numerical values of the coefficients and obtain the Bessel function from its Taylor series as

J0(z + d) = J1(z)(c0 + c1d + c2d2 + c3d3 + · · · ),
where that sum is best evaluated in Horner form.

Given a value x, the Bessel-function zero estimates allow us to find z quickly without having to look at more than
three of the tabulated roots. To further enhance accuracy, we store the zk and J1(zk) values as two-part sums of high
and low parts, where the high part is exactly representable, correctly rounded, and accurate to working precision.

Similar investigations show that the Taylor series of J1(x) requires a scale factor of J0(z), the series for Y1(x) needs
Y0(z), and that for Y1(x) needs Y0(z). The coefficients ck are identical for J0(x) and Y0(x), and another set of ck values
handles both J1(x) and Y1(x).

By computing coefficients up to c17, we can use the series for J0(x) for |d| < 0.805 in the IEEE 754 64-bit formats,
and |d| < 0.060 in the 128-bit formats, subject to the additional limit required to avoid subtraction loss. Otherwise,
we fall back to the algorithms described in earlier sections of this chapter.

As long as x lies within the table, we can achieve high accuracy near the zeros. The table requirements are modest:
100 entries handle x < 311, and 320 entries suffice for x < 1000.

Revised versions of the files j0x.h, j1x.h, y0x.h, and y1x.h incorporate optional code that implements the gen-
eral Taylor-series expansions, and their corresponding header files contain the required data tables of zeros and
Bessel-function values at those zeros. The new code is selected by default, but can be disabled with a compile-time
preprocessor macro definition. The error reduction in J0(x) is evident in Figure 21.9 on the facing page. Plots for
other precisions, and the three other Bessel functions, show similar improvements, so they are omitted.

21.10 Properties of In(z) and Kn(z)

The modified Bessel functions of the first kind, In(z), and the second kind, Kn(z), have quite different behavior from
the ordinary Bessel functions, Jn(z) and Yn(z). Instead of taking the form of decaying waves, the modified functions
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Figure 21.9: Errors in the J0(x) Bessel function before and after adding code for Taylor-series expansions around the
roots indicated by the vertical dotted lines.

resemble rising and falling exponentials, as shown in Figure 21.10 on the next page. That property makes them
computationally easier than the ordinary Bessel functions, because there are no roots where high relative accuracy is
difficult to achieve.

The scaled companion functions defined by

Isν(z) = exp(−z)Iν(z), Ksν(z) = exp(+z)Kν(z)

are finite and representable for arguments over much of the floating-point range, whereas the unscaled ones soon
overflow or underflow.

Because the modified Bessel functions are not specified by POSIX or any ISO programming-language standards,
we get to choose names for their unscaled and scaled software implementations in the mathcw library. Only one
function in Standard C89, and four functions in C99, begin with the letter b, so we choose that letter to prefix our
function names, and identify them as members of the Bessel family:

double bi0 (double x); double bk0 (double x);
double bi1 (double x); double bk1 (double x);
double bin (int n, double x); double bkn (int n, double x);

double bis0 (double x); double bks0 (double x);
double bis1 (double x); double bks1 (double x);
double bisn (int n, double x); double bksn (int n, double x);

They have the usual suffixed companions for other floating-point types.
The modified functions satisfy these symmetry relations:

In(−z) = (−1)n In(z), for integer n,

I−n(z) = In(z), for integer n,

K−ν(z) = Kν(z), for real ν.

Like Yν(z), the Kν(z) functions are complex-valued for negative z. For such arguments, our software implementa-
tions therefore call QNAN("") to produce a quiet NaN as the return value, and set errno to EDOM.

Their limiting forms for small arguments, z → 0, are

Iν(z) → (z/2)ν/Γ(ν + 1), if ν �= −1,−2,−3, . . . ,

I0(0) = 1,
In(0) = 0, for n = ±1,±2,±3, . . . ,
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Figure 21.10: Modified Bessel functions, In(x) and Kn(x), and scaled modified Bessel functions, e−x In(x) and exKn(x).

K0(z) → − log(z),
Kν(z) → 1

2 Γ(ν)/(z/2)ν, if ν > 0.

For large arguments, z → ∞, the functions behave like this:

Iν(z) → exp(z)√
2πz

→ +∞,

In(−z) → (−1)n exp(z)√
2πz

→ (−1)n∞, for integer n,

Kν(z) → exp(−z)
√

π

2z
→ 0.

The functions satisfy these three-term recurrence relations:

Iν+1(z) = −(2ν/z)Iν(z) + Iν−1(z),
Kν+1(z) = +(2ν/z)Kν(z) + Kν−1(z).

They are stable in the downward direction for Iν(z), and in the upward direction for Kν(z). With those direction
choices, there is never subtraction loss, because for real arguments and integer orders, the recurrences require only
addition of positive terms.

Similar to what we observed on page 700 for Jν(x) and Yν(x), when |x| � ν, a sequence of Iν(x) values for
ν = 0, 1, 2, . . . looks like I0(x), I1(x), I0(x), I1(x), I0(x), I1(x), . . . , and similarly for sequences of Kν(x).
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Ratios of modified functions of the first kind satisfy a continued fraction similar to that for Jν(z)/Jν−1(z) (see
Section 21.3 on page 702), except that minus signs become plus signs:

Iν(z)
Iν−1(z)

= 0 +
1

2ν/z +
1

2(ν + 1)/z +
1

2(ν + 2)/z +
1

2(ν + 3)/z +
· · ·

= 0 +
(1/2)z/ν

1 +
(1/4)z2/ν(ν + 1)

1 +
(1/4)z2/((ν + 1)(ν + 2))

1 +
(1/4)z2/((ν + 2)(ν + 3))

1 +
(1/4)z2/((ν + 3)(ν + 4))

1 +
· · · .

The same computational technique that we described for the ordinary Bessel functions of integer orders allows us to
compute ratios down to In(z)/I0(z), and then recover In(z) by multiplying that ratio by a separately computed I0(z).
That solves the problem of the unstable upward recurrence for In(z). Furthermore, because the ratios are invariant
under uniform scaling, the continued fraction is also valid for ratios of scaled functions, Isν(z)/ Isν−1(z).

The derivatives of the modified Bessel functions

dIn(x)/dx = +In+1(x) + nIn(x)/x,
dKn(x)/dx = −Kn+1(x) + nKn(x)/x,

lead to these error-magnification factors (see Section 4.1 on page 61):

errmag(In(x)) = xI ′n(x)/In(x)
= n + xIn+1(x)/In(x),

errmag(Kn(x)) = n − xKn+1(x)/Kn(x).

The ratios of the Bessel functions are modest, so the general behavior of those factors is n ± rx, where r is the ratio.
Thus, errors in the computed functions are expected to grow almost linearly with x, and are large when either n or x
is large.

The error-magnification factors of the scaled functions look like this:

errmag(Isn(x)) = n − x + xIn+1(x)/In(x),
errmag(Ksn(x)) = n + x + xKn+1(x)/Kn(x).

Plots of those functions for fixed n and increasing x show that the first has decreasing magnitude, whereas the second
grows. However, for arguments of modest size, the scaled functions should be accurately computable.

These relations between the two functions

Iν(z)Kν+1(z) + Iν+1(z)Kν(z) = 1/z,
Isν(z)Ksν+1(z) + Isν+1(z)Ksν(z) = 1/z,

where the terms on the left are positive for positive orders and positive real arguments, are useful for checking
software implementations.

Checks can also be made with relations to integrals that can be evaluated accurately with numerical quadrature,
as long as their integrands are not too oscillatory:

I0(z) = (1/π)
∫ π

0
cosh(z cos t) dt,

In(z) = (1/π)
∫ π

0
exp(z cos t) cos(nt) dt,

K0(z) = −(1/π)
∫ π

0
exp(±z cos t)

(
γ + log(2z(sin(t))2)

)
dt,

=
∫ ∞

0
exp(−z cosh(t)) dt, �(z) > 0,

Kν(z) =
∫ ∞

0
exp(−z cosh(t)) cosh(νt) dt, �(z) > 0.
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There does not appear to be a similar integral for Kn(z) on [0, π].
The functions inside the infinite integrals fall off extremely rapidly. For n = 0, x = 1, and t = 10, the integrand is

O(10−4782), so quadrature over a small finite range can be used. For example, a 40-point Simpson’s rule quadrature
for t on [0, 5] produces 34 correct decimal digits for K0(1).

The modified Bessel function of the first kind has a series that looks like that for Jν(z) (see Section 21.3 on
page 702), but without sign changes:

Iν(z) = (z/2)ν
∞

∑
k=0

(z2/4)k

k! Γ(ν + k + 1)
.

We can again simplify the formula with the help of two intermediate variables, and also exhibit special cases for
positive integer orders, and for ν = 0 and ν = 1:

v = z/2,
w = v2,

Iν(z) = vν
∞

∑
k=0

wk

k! Γ(ν + k + 1),

In(z) = vn
∞

∑
k=0

wk

k! (k + n)!,
for integer n = 0, 1, 2, 3, . . . ,

I0(z) =
∞

∑
k=0

wk

(k!)2,

I1(z) = v
∞

∑
k=0

wk

k! (k + 1)!.

The modified Bessel function of the second kind has a series for integer orders that looks like that for Yn(z) (see
Section 21.3 on page 703):

Kn(z) = 1
2 v−n

n−1

∑
k=0

(n − k − 1)!
k!

(−w)k − (−1)n log(v)In(z)

+ (−1)n 1
2 vn

∞

∑
k=0

(
ψ(k + 1) + ψ(k + n + 1)

) wk

k! (k + n)!
.

As with the ordinary Bessel functions, we can replace the psi functions of integer arguments by differences of the
partial sums of the harmonic series, hk (see Section 21.3 on page 703), and the Euler–Mascheroni constant, γ:

Kn(z) = 1
2 v−n

n−1

∑
k=0

(n − k − 1)!
k!

(−w)k − (−1)n log(v)In(z)

+ (−1)n 1
2 vn

∞

∑
k=0

(hk + hk+n − 2γ)
wk

k! (k + n)!
.

We can then recognize part of the infinite sum to be In(z), giving a further simplification:

Kn(z) = 1
2 v−n

n−1

∑
k=0

(n − k − 1)!
k!

(−w)k − (−1)n(log(v) + γ)In(z)

+ (−1)n 1
2 vn

∞

∑
k=0

(hk + hk+n)
wk

k! (k + n)!
.

The special cases for the first two orders are:

K0(z) = −(log(v) + γ)I0(z) +
∞

∑
k=0

hk
wk

(k!)2 ,

K1(z) =
1

2v
+ (log(v) + γ)I1(z)− v

2

∞

∑
k=0

(hk + hk+1)
wk

k! (k + 1)!
.
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The terms in the infinite sums are all positive, providing better numerical stability than we have for the sums in Yn(z),
where the terms have alternating signs. Unfortunately, there is subtraction loss when the infinite sums are added
to the remaining terms. The formula for K0(z) is only stable when z < 0.825, and that for K1(z), when z < 1.191,
provided that the logarithmic factor is handled properly.

The series for the modified Bessel functions of the first kind have these leading terms, suitable for use with small
arguments:

I0(z) = 1 + w + w2/4 + w3/36 + w4/576 + w5/14 400 + · · · ,

I1(z) = v(1 + w/2 + w2/12 + w3/144 + w4/2880 + w5/86 400 + · · · ).
All terms are positive, and convergence is rapid for small arguments. With the six terms shown, values of z = 1,
z = 1/10, and z = 1/1000 produce results correct to 7, 17, and 37 decimal digits, respectively.

On systems with hexadecimal floating-point arithmetic, the series coefficients should be halved, and the final
result doubled, so as to reduce accuracy loss from wobbling precision.

To simplify the series for the modified Bessel functions of the second kind, we again introduce the intermediate
variable

s = log(v) + γ.

To avoid loss of leading digits, s must be computed carefully as described in Section 21.3 on page 704. We then have
these formulas for fast computation for small arguments, without the need for values of other Bessel functions:

K0(z) = −s + (1 − s)w + (1/8)(−2s + 3)w2 + (1/216)(−6s + 11)w3 +

(1/6912)(−12s + 25)w4 + (1/864 000)(−60s + 137)w5 + · · · ,

K1(z) =
1

2v
(1 + (2s − 1)w + (1/4)(4s − 5)w2 + (1/18)(3s − 5)w3 +

(1/1728)(24s − 47)w4 + (1/86 400)(60s − 131)w5 + · · · ).
The terms in those series diminish rapidly for z < 2. For z = 1, the six terms shown produce results correct to nearly
six decimal digits. For z = 1/10, they give function values good to 16 decimal digits. For z = 1/1000, the results are
accurate to 36 digits.

There are asymptotic expansions of the modified Bessel functions for large arguments:

μ = 4ν2,

Iν(z) � exp(z)√
2πz

(
1 − μ − 12

8z
+

(μ − 12)(μ − 32)

2! (8z)2

− (μ − 12)(μ − 32)(μ − 52)

3! (8z)3 + · · ·
)

,

Kν(z) �
√

π

2z
exp(−z)

(
1 +

μ − 12

8z
+

(μ − 12)(μ − 32)

2! (8z)2

+
(μ − 12)(μ − 32)(μ − 52)

3! (8z)3 + · · ·
)

.

Asymptotic expansions usually limit the attainable accuracy (see Section 2.9 on page 19), but provided that |z| > ν2,
the sums can be computed to machine precision.

Although the asymptotic formulas look complex, the parenthesized sums are straightforward to compute, using
the term recurrences

t0 = 1, tk = (−1)p μ − (2k − 1)2

8kz
tk−1, k = 1, 2, 3, . . . ,

where p = 1 for Iν(z), and p = 0 for Kν(z). For fixed ν and large z, convergence is rapid. As usual, accuracy
is improved by omitting the first one or two terms, summing the remaining terms until the result has converged
to machine precision, and finally, adding the omitted terms. For a hexadecimal base, the series for Kν(z) has the
undesirable form r× (1+ δ): compute it as 2× (r× ( 1

2 +
1
2 δ)) to avoid unnecessary loss of leading bits from wobbling

precision.
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We use the asymptotic formulas directly for large arguments with ν = 0 and ν = 1. For smaller z values, we
use their forms as a guide, and for the parenthesized sums, compute polynomial expansions in the variable t = 1/z.
That way, the exponential behavior is handled entirely by the exponential functions, and the parenthesized sums are
O(1), far from the overflow and underflow limits.

21.11 Computing I0(x) and I1(x)

After much experimentation based on published algorithms for computing the modified Bessel functions of the first
kind, and examination of their error plots, this author concluded that many of those recipes are inadequate, and
more care is needed to achieve the accuracy expected of functions in the mathcw library.

The lack of an argument-reduction formula for the Bessel functions means that we need to handle arguments over
the entire floating-point range, and that requires more intervals, each with separate polynomial approximations.

Although Maple is able to compute Chebyshev fits to formulas involving the Bessel functions over a reason-
able range of arguments, high-precision minimax fits in some argument regions are infeasible. For example, Maple
reports failure like this:

% maple
> with(numapprox):
> alias (BI = BesselI):
> BIS := proc(n, x) return exp(-x) * BI(n, x) end proc:
> Digits := 800:
> minimax((BIS(1,x) - 13/128), x = 10 .. 25, [11, 11], 1, ’maxerror’):

Error, (in numapprox:-remez) error curve fails to oscillate
sufficiently; try different degrees

That error can often be made to disappear by increasing the value of Digits, but its value here of 800 is the result
of several earlier unsuccessful experiments with lower precisions, and the computation time at the point of failure is
excessive.

The two scaled functions decay smoothly, and slowly, for x > 2. That suggests using fits on intervals [a, b] to
functions such that

Isn(x) = d +

⎧⎪⎪⎨
⎪⎪⎩

f1(x),
f2(x)/x,
f3(x)/x2,
f4(

√
x)/x.

Here, the constant d is chosen to be roughly the function average on the interval, 1
2 (Isn(a) + Isn(b)), and the interval

[a, b] is selected to make the fitting function a small correction to d. That way, we can get results that are often correctly
rounded, remedying a deficiency of most published algorithms for those functions. Because the functions decay, the
correction is positive for x ≈ a, and negative for x ≈ b. We adjust d to a nearby value that is exactly representable in
both binary and decimal float formats, such as d = 25/128 = 0.195 312 50̇, and so that the magnitude of a negative
correction is smaller than d/2, preventing loss of leading bits in the subtraction.

In practice, there is little difference in the lengths of the Chebyshev expansions for f1(x), f2(x), f3(x), and f4(
√

x),
so we pick the simplest form, f (x) = f1(x) = Isn(x)− d. A short private function then makes it easy to compute the
scaled Bessel function on any of the required intervals:

static fp_t
evch (fp_t x, fp_t a, fp_t b, fp_t d, const int nc, const fp_t c[])
{ /* compute Is(n,x) = d + f(x), where f(x) is a Chebyshev fit */

fp_t sum, u;

u = (x + x - (b + a)) / (b - a);
sum = ECHEB(u, nc, c);
return (d + sum);

}

That function is used in a series of range tests, one of which looks like this:
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else if (x < FP(10.0))
result = evch(x, FP(1.0), FP(10.0), FP(25.0) / FP(128.0), NC1_10, C1_10);

/* I0(x) = 25/128 + f(x), for x in [1,10] */

The symmetry relations allow us to compute only for positive arguments. For Is1(x), if the input argument is
negative, we must reverse the sign of the result computed with |x| before returning.

After the usual checks for special arguments, the final algorithm adopted for the scaled functions bis0(x) and
bis1(x) looks like this:

x in (0, small] : Use a six-term loop-free Taylor series. That is a larger term count than we usually handle for small
arguments, but doing so allows a larger cutoff, and faster computation.

x in (small, 1] : Evaluate a Chebyshev fit to the series in powers of w (see Section 21.10 on page 722).

x in (1, 10] : Use Isn(x) = d + f (x), where d is chosen as described earlier, and f (x) is a Chebyshev fit.

x in (10, 25] : Similar to previous interval, with different constant and fitting function.

x in (25, 100] : Ditto.

x in (100, 1000] : Ditto.

x in (1000, 108] : Use Isn(x) =
√

x p(1/x), where p(1/x) is a Chebyshev fit.

x in (108, ∞) : Sum the parenthesized asymptotic series to machine precision, where at most nine terms suffice for
70 decimal digits of accuracy. The final result is the product of that sum and RSQRT((x + x) * PI), unless
the base is 16, in which case, we must avoid leading zero bits in the stored constant π, so we compute the

multiplier as
√

1/π × (
√

1
2 × RSQRT(x)), where the two leading square-root constants are precomputed.

The modified Bessel functions of the first kind, bi0(x) and bi1(x), without scaling, are computed like this:

x in (0, tiny] : Use a fast three-term Taylor series.

x in (tiny, 5] : Sum the series in powers of w (see Section 21.10 on page 722). At most 43 terms are needed for
70 decimal digits of accuracy.

x in (5, ∞) : The relations to the unscaled functions are

bi0(x) = exp(x)× bis0(x), bi1(x) = exp(x)× bis1(x).

Compute the exponential function and the scaled Bessel function, but if the exponential function overflows,
compute their product indirectly from a logarithm and another exponential. For example, the code for I0(x)
looks like this:

s = EXP(x);
t = BIS0(x);
result = (s < FP_T_MAX) ? (s * t) : EXP(x + LOG(t));

For large x, Is0(x) is smaller than one, so there is a small region near the overflow limit of exp(x) where exact
computation of s × t might produce a finite representable result, but s overflows. In such a case, we switch to
the indirect form to avoid that premature overflow.

A sensibly implemented exponential function returns the largest floating-point number to indicate overflow
when Infinity is not available in the floating-point design, so we compare s with that largest value, instead of
calling the usual ISINF() wrapper.

When x ≤ 5, no elementary or special functions are required, so the computational speed is largely determined by
the number of series terms summed. That argument-dependent count is reasonably close to the values in Table 21.4
on page 703, and is less than 20 for data type double on most systems.

Figure 21.11 on the following page through Figure 21.15 on page 730 show the measured errors in our imple-
mentations of the modified Bessel functions of the first kind.
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Figure 21.11: Errors in the binary (top) and decimal (bottom) bi0(x) family.

21.12 Computing K0(x) and K1(x)

For technical reasons of exponent-size limitations, and how the chebyshev() function accesses the user-provided
function to be fit to a Chebyshev expansion, Maple is unable to compute fits to the Bessel functions K0(x) and
K1(x) for expansions in 1/x when x > 108. Although it seems reasonable to ask for a fit to the function f (t) =

exp(−1/t)K0(1/t)
√

t, which is smooth and nearly linear for tiny t, Maple reports failure:

% maple
> with(numapprox):
> Digits := 30:
> chebyshev(exp(1/t) * BesselK(0, 1/t) * sqrt(t),

t = 0 .. 1/100,
1.0e-16);

Error, (in numapprox:-chebyshev) function does not evaluate to numeric

Attempts to incorporate a conditional test in the argument function to check for tiny t, and switch to the asymptotic
formula, fail with the same error report.

After dealing with the usual special arguments, the final algorithm adopted for the scaled functions bks0(x) and
bks1(x) follows these steps:

x in (0, a] : Here a = 3
4 for Ks0(x) and a = 1 for Ks1(x). Evaluate the infinite sums involving harmonic-number

coefficients using a Chebyshev expansion in the variable t = x2, which produces fewer terms than an expan-
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Figure 21.12: Errors in the binary (top) and decimal (bottom) bi1(x) family.

sion in the variable x. Add the remaining terms, computing the factor log(v) + γ carefully as described in
Section 21.3 on page 704. Multiply the final sum by exp(x).

x in (a, 5] : For Ks0(x), use a Chebyshev fit to (K 0(t2)− 3
4 )× t2 for t =

√
x in [ 27

32 , 5
4 ]. The result is the value of that

expansion divided by x, plus 3
4 .

The fit interval is slightly larger than (a, 5] to get a simple form with exact coefficients of the mapping to the
Chebyshev variable interval [−1,+1].

For Ks1(x), use a Chebyshev fit to (K 1(x)− 9
8 )× x. The result is the value of that expansion divided by x, plus

9
8 .

x in (5, 10] : Evaluate a Chebyshev fit to Ks0(x)− 5
32 or Ks1(x)− 1

2 on that interval.

x in (10, 25] : Similar to previous interval, with different shift constants and fitting function.

x in (25, 100] : Ditto.

x in (100, 1000] : Ditto.

x in (1000, 108] : Evaluate a Chebyshev fit with the variable t = 1/x.

x in (108, ∞) : Sum all but the first two terms of the asymptotic expansion to machine precision, then add those two
terms.
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Figure 21.13: Errors in the binary (top) and decimal (bottom) bin(n,x) family for n = 25.

Although we dislike the dependence in the first region on the exponential function, and in the first two regions on
the logarithm and on I0(x) or I1(x), no obvious simple functions accurately handle the approach to the singularity
at x = 0.

We compute the unscaled functions bk0(x) and bk1(x) in two regions:

x in (0, a] : Same as for the scaled functions, but omit the final multiplication by exp(x).

x in (a, ∞] : In this region, the danger is from underflow instead of overflow. Because the scaled functions are
smaller than one for large x, if exp(−x) underflows, the modified Bessel function of the second kind does as
well, and the computation of the scaled function can then be avoided entirely.

Here too, when x ≤ a, there is direct and hidden dependence on the logarithm, and on I0(x) or I1(x). In both regions,
there is also dependence on the scaled functions.

Figure 21.17 on page 732 through Figure 21.22 on page 737 show the measured errors in our implementations of
the modified Bessel functions of the second kind. An extended vertical scale is used for the tests with n > 1.

21.13 Computing In(x) and Kn(x)

For the modified Bessel function of the first kind for general integer order, In(x), and its scaled companion, Isn(x),
after the usual handling of special arguments, and accounting for any sign change mandated by symmetry relations,
we use two computational procedures in binx.h and bisnx.h:
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Figure 21.14: Errors in the binary (top) and decimal (bottom) bis0(x) family.

x in [0, 5] : Sum the series for In(x) (see Section 21.10 on page 722) to machine precision, adding the first two terms
last to improve accuracy for small arguments. For the scaled function, multiply the result by exp(−x).

x in (5, ∞) : Evaluate the continued fraction for the ratios In(x)/In−1(x) or Isn(x)/ Isn−1(x) (see Section 21.10 on
page 721) using the forward Lentz algorithm. Then use the downward recurrence for the ratios, as in Sec-
tion 21.6 on page 711, to find the ratio In(x)/I0(x) or Isn(x)/ Is0(x). The final result is the product of that ratio
and the separately computed I0(x) from bi0(x), or Is0(x) from bis0(x).

In both cases, computation time is proportional to the order n, so large orders are costly to compute.
Vector versions of the Bessel functions that we describe later in Section 21.18 on page 755 compute all orders

from 0 to n for fixed x using only the continued fraction algorithm, preserving the ratios in the argument vector for
the final scaling by the zeroth-order function.

For the modified Bessel function of the first kind for general integer order, we consider the scaled function Ksn(x)
as the computational kernel. Because upward recurrence is stable, we can use starting values of bks0(x) and bks1(x)
to obtain the final result needed in bksn(n,x).

For the unscaled function, bkn(x), there are argument regions where the factor exp(−x) underflows, and Ksn(x)
overflows, yet their product in exact arithmetic is finite and representable. For example, if n = 200 and x = 110,
then in single-precision IEEE 754 arithmetic, exp(−x) ≈ 10−48 underflows, and Ks200(110) ≈ 1066 overflows, but the
exact product is O(1018), so Kn(x) is representable. Similarly, both Is200(110) ≈ 10−68 and exp(+x) ≈ 1048 are out of
range, yet I200(110) ≈ 10−20 is representable.

We cannot handle the extremes satisfactorily without intermediate scale factors, or having a separate function to
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Figure 21.15: Errors in the binary (top) and decimal (bottom) bis1(x) family.

compute the logarithms of the scaled functions. The best that we can do is detect and report the problem through
the global variable errno, with code like this in bknx.h:

s = EXP(-x);
t = BKSN(n, x);

if (t >= FP_T_MAX) /* overflow in scaled function */
result = (s == ZERO) ? SET_ERANGE(QNAN("")) : SET_ERANGE(INFTY());

else
result = s * t;

The Bessel functions are good examples of the need for wider exponent ranges in floating-point designs. User code
that requires Bessel functions for large orders or arguments may find it necessary to invoke versions of the functions
in the highest available precision, if that format provides more exponent bits that might eliminate out-of-range
intermediate results.
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Figure 21.16: Errors in the binary (top) and decimal (bottom) bisn(n,x) family for n = 25.

21.14 Properties of spherical Bessel functions

The spherical Bessel functions are conventionally denoted by lowercase letters, and are related to the ordinary and
modified Bessel functions of half-integral order, like this:

jn(z) =
√

π/(2z)J
n+ 1

2
(z), ordinary spherical Bessel function (first kind),

yn(z) =
√

π/(2z)Y
n+ 1

2
(z), ordinary spherical Bessel function (second kind),

in(z) =
√

π/(2z)I
n+ 1

2
(z), modified spherical Bessel function (first kind),

kn(z) =
√

π/(2z)K
n+ 1

2
(z), modified spherical Bessel function (second kind).

Some books, including the Handbook of Mathematical Functions [AS64, §10.2], call kn(z) a function of the third kind,
even though they refer to its cylindrical companion Kn(z) as a function of the second kind. That is another instance
of the lack of standardization of Bessel-function terminology.

Unlike the cylindrical Bessel functions, the spherical Bessel functions have closed forms in terms of trigonometric,
hyperbolic, and exponential functions, and Table 21.6 on page 738 shows a few of them. However, the common factor√

π/(2z) used in most textbook presentations of those functions needs to be rewritten as
√

1
2 π/

√
z to agree with the

closed forms. The two factors are identical for both real and complex z, except for negative real z, where they differ in
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Figure 21.17: Errors in the binary (top) and decimal (bottom) bk0(x) family.

sign. The negative real axis here is the branch cut of the complex square-root function (see Section 17.3 on page 476).
Users of software for computation of spherical Bessel functions with negative arguments should be careful to check
the implementation’s sign conventions.

The spherical Bessel functions have these symmetry relations:

in(−z) = (−1)nin(z), jn(−z) = (−1)n jn(z), yn(−z) = (−1)n+1yn(z).

The values kn(±z) do not have a simple relation, although from the tabulated closed forms, we can see that for small
|z|, where the exponential term is nearly one and the function values are large, we have kn(−z) ≈ (−1)n+1kn(z).

The modified spherical Bessel functions in(z) grow exponentially, and the kn(z) functions fall exponentially, so
scaled companions are commonly used. For large arguments, the scaled functions isn(z) and ksn(z) are proportional
to z−(n+1), and is −n(z) to z−n, so they are representable in floating-point arithmetic over much of the argument range
when n is small. For large n and z, they soon underflow to zero.

Although the square root in their definitions in terms of the cylindrical functions might suggest a restriction
to z ≥ 0, the spherical Bessel functions have real, rather than complex, values for both positive and negative real
arguments. Figure 21.23 on page 739 shows plots of the low-order spherical functions.

The error-magnification formulas for the spherical Bessel functions of integer order look like this:

errmag(in(x)) = − 1
2 +

1
2 x(in−1(x) + in+1(x))/in(x),

errmag(jn(x)) = − 1
2 +

1
2 x(jn−1(x)− jn+1(x))/jn(x),

errmag(kn(x)) = − 1
2 − 1

2 x(kn−1(x) + kn+1(x))/kn(x),
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Figure 21.18: Errors in the binary (top) and decimal (bottom) bk1(x) family.

errmag(yn(x)) = − 1
2 +

1
2 x(yn−1(x)− yn+1(x))/yn(x).

Plots of those formulas for various n and modest ranges of x show that errors grow roughly linearly in x for in(x)
and kn(x). For the other two, the error factor lies in [−n, n], and away from the zeros of the function, but, of course,
grows without bound near those zeros.

The first spherical Bessel function, j0(z) = sin(z)/z, is identical to the sinc function, sinc(z), which has impor-
tant applications in approximation theory [LB92, Ste93, KSS95]. Considering its simple form, further mathematical
development of the theory of the sinc function is surprisingly complex, but its rewards are rich, leading to rapidly
convergent approximations that can produce results of arbitrarily high precision. However, we do not consider the
sinc-function approach further in this book.

Because the recurrence relations for the ordinary and modified Bessel functions are valid for arbitrary order ν,
the spherical Bessel functions of integer order have similar relations:

jn+1(z) = ((2n + 1)/z)jn(z)− jn−1(z),
yn+1(z) = ((2n + 1)/z)yn(z)− yn−1(z),
in+1(z) = (−(2n + 1)/z)in(z) + in−1(z),
kn+1(z) = ((2n + 1)/z)kn(z) + kn−1(z).

Those relations are numerically stable in the upward direction for yn+1(z) and kn+1(z), and in the downward direc-
tion for the other two.
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Figure 21.19: Errors in the binary (top) and decimal (bottom) bkn(n,x) family for n = 25.

As long as the implementations of the trigonometric functions employ exact argument reduction, as those in the
mathcw library do, j0(z) and y0(z) can be computed accurately from the formulas of Table 21.6 on page 738 for
any representable value z. However, the higher-order functions jn(z) and yn(z) suffer serious subtraction loss when
n > 0. For real arguments, the kn(x) functions are well-behaved for all n and x ≥ 0 because all terms are positive,
and the in(x) functions have a dominant term for large x, so they too are computationally reasonable. We investigate
the stability of the computation of kn(x) for negative arguments later when we develop computer algorithms for
those functions in Section 21.17.7 on page 754.

Three of the spherical Bessel functions of negative order are simply related to those of positive order:

j−n(z) = (−1)nyn−1(z), y−n(z) = (−1)n+1 jn−1(z), k−n(z) = kn−1(z).

The function i−n(z) does not have a simple relation to in−1(z), because the hyperbolic cosine and sine are exchanged
in the closed forms shown in Table 21.6 on page 738. However, is z is large, cosh(z) ≈ sinh(z), so we can conclude
that when z � 1, i−n(z) ≈ in−1(z). For example, i−4(10) and i3(10) agree to eight decimal digits.

The case of n < 0 for in(z) is most easily handled by the stable downward recurrence starting from i1(z) and
i0(z).

The spherical Bessel functions have the limiting behaviors summarized in Table 21.7 on page 740. The argument
of the sine function in the large-argument limit for jn(z) cannot be determined accurately when n is large unless high
precision is available, but the angle sum formula allows it to be replaced by sin(z) cos(nπ/2) − cos(z) sin(nπ/2),
and because n is an integer, that collapses to one of ± sin(z) or ± cos(z). Similar considerations allow accurate
reduction of the cosine in the large-argument limit for yn(z).
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Figure 21.20: Errors in the binary (top) and decimal (bottom) bks0(x) family.

21.15 Computing jn(x) and yn(x)

Because the spherical Bessel functions of the first and second kinds have simple relations to their cylindrical com-
panions, the same computational techniques can be used for both types. However, the closed forms j0(x) = sin(x)/x
and y0(x) = − cos(x)/x, together with our exact argument reduction inside the trigonometric functions, suggest the
use of those formulas, except for small arguments, where truncated Taylor series provide a faster route. The needed
series are trivially obtained from those of the trigonometric functions, so that we have

j0(x) ≈ 1 − x2/6 + x4/120 − x6/5040 + x8/362 880 − · · · ,

y0(x) ≈ − 1
x
(1 − x2/2 + x4/24 − x6/720 + x8/40 320 − · · · ).

The closed forms j1(x) = (−x cos(x) + sin(x))/x2 and y1(x) = −(cos(x) + x sin(x))/x2 look simple, but suffer
massive subtraction loss near the zeros of those functions. For small arguments, series expansions solve the accuracy-
loss problem:

j1(x) ≈ x
3
(1 − x2/10 + x4/280 − x6/15 120 + x8/1 330 560 − · · · ),

y1(x) ≈ − 1
x2 (1 + x2/2 − x4/8 + x6/144 − x8/5760 + · · · ).

In binary floating-point arithmetic, it is advisable to compute the series for j1(x) as x/4 + (x/12 − x3/30 + · · · ), so
that the first term is exact, and the second term is a small correction. For other bases, the error from the division by
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Figure 21.21: Errors in the binary (top) and decimal (bottom) bks1(x) family.

three can be reduced if higher precision is used.
By techniques discussed later in Section 21.17.5 on page 750, we can find the general form of the Taylor series for

arbitrary integer n ≥ 0:

jn(x) =
xn

(2n + 1)!!
(1 − 1

2(2n + 3)
x2 +

1
8(2n + 3)(2n + 5)

x4 −
1

48(2n + 3)(2n + 5)(2n + 7)
x6 +

1
384(2n + 3)(2n + 5)(2n + 7)(2n + 9)

x8 − · · · ),

yn(x) = − (2n − 1)!!
xn+1 (1 +

1
2(2n − 1)

x2 +
1

8(2n − 1)(2n − 3)
x4 +

1
48(2n − 1)(2n − 3)(2n − 5)

x6 +

1
384(2n − 1)(2n − 3)(2n − 5)(2n − 7)

x8 + · · · ).

The series for jn(x) is free of leading bit loss only for x <
√

2n + 3, so the minimal cutoff for using the series with
n ≥ 2 in a computer program is xTS =

√
7. Although it might not be immediately evident, the terms in the series for
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Figure 21.22: Errors in the binary (top) and decimal (bottom) bksn(n,x) family for n = 25.

yn(x) can also alternate in sign. For n = 2, the term containing x6 is negative, and subtraction loss is prevented by
using the series only for x <

√
3.

The series expansions of jn(x) and yn(x) lead to simple recurrence formulas for successive terms:

t0 = 1, tk = −
(

1
2k

)(
1

2n + 2k + 1

)
x2 tk−1, for k = 1, 2, 3, . . . .,

u0 = 1, uk =

(
1
2k

)(
1

2n + 1 − 2k

)
x2 uk−1, for k = 1, 2, 3, . . . ,

jn(x) =
xn

(2n + 1)!!
(t0 + t1 + t2 + · · · ),

yn(x) = − (2n − 1)!!
xn+1 (u0 + u1 + u2 + · · · ).

Certainly for |x| < 1, and also for n � x2, the terms fall off so rapidly that there is no subtraction loss when they
alternate in sign. Provided that the terms are accumulated in order of increasing magnitudes, the major source of
inaccuracy in all but j0(x) is from the outer multiplication and division. We can further reduce rounding error by
factoring out x2 in the sums after the first term so that, for example, we compute

y1(x) ≈ −
(

1
x2 + (1/2 − x2/8 + x4/144 − x6/5760 + · · · )

)
.

The widest interval where the closed form for j1(x) loses leading bits is [0, 1.166], and that for y1(x) is [2.458,

0

1

2

3

4

5

6

7

8

9

10

 0  50  100

u
lp

s

x

Errors in bksnf()

0

1

2

3

4

5

6

7

8

9

10

 0  200  400  600

u
lp

s

x

Errors in bksn()

0

1

2

3

4

5

6

7

8

9

10

 0  100  200

u
lp

s

x

Errors in bksndf()

0

1

2

3

4

5

6

7

8

9

10

 0  200  400  600  800

u
lp

s

x

Errors in bksnd()



738 Chapter 21. Bessel functions

Table 21.6: Explicit forms of low-order spherical Bessel functions, with their order-symmetry relations in bold.

j0(z) = sin(z)/z

j1(z) = (−z cos(z) + sin(z))/z2

j2(z) = (−3z cos(z)− (z2 − 3) sin(z))/z3

j3(z) = ((z3 − 15z) cos(z)− (6z2 − 15) sin(z))/z4

y0(z) = − cos(z)/z

y1(z) = (− cos(z)− z sin(z))/z2

y2(z) = ((z2 − 3) cos(z)− 3z sin(z))/z3

y3(z) = ((6z2 − 15) cos(z) + (z3 − 15z) sin(z))/z4

i0(z) = sinh(z)/z

i1(z) = (z cosh(z)− sinh(z))/z2

i2(z) = (−3z cosh(z) + (z2 + 3) sinh(z))/z3

i3(z) = ((z3 + 15z) cosh(z)− (6z2 + 15) sinh(z))/z4

k0(z) = (π/(2z)) exp(−z)

k1(z) = (π/(2z2))(z + 1) exp(−z)

k2(z) = (π/(2z3))(z2 + 3z + 3) exp(−z)

k3(z) = (π/(2z4))(z3 + 6z2 + 15z + 15) exp(−z)

j−1(z) = cos(z)/z

j−2(z) = (− cos(z)− z sin(z))/z2

j−3(z) = −((z2 − 3) cos(z)− 3z sin(z))/z3

j−4(z) = ((6z2 − 15) cos(z) + (z3 − 15z) sin(z))/z4

j−n(z) = (−1)nyn−1(z)

y−1(z) = sin(z)/z

y−2(z) = −(−z cos(z) + sin(z))/z2

y−3(z) = (−3z cos(z)− (z2 − 3) sin(z))/z3

y−4(z) = −((z3 − 15z) cos(z)− (6z2 − 15) sin(z))/z4

y−n(z) = (−1)n+1 jn−1(z)

i−1(z) = cosh(z)/z

i−2(z) = (− cosh(z) + z sinh(z))/z2

i−3(z) = ((z2 + 3) cosh(z)− 3z sinh(z))/z3

i−4(z) = ((−6z2 − 15) cosh(z) + (z3 + 15z) sinh(z))/z4

k−1(z) = (π/(2z)) exp(−z)

k−2(z) = (π/(2z2))(z + 1) exp(−z)

k−3(z) = (π/(2z3))(z2 + 3z + 3) exp(−z)

k−4(z) = (π/(2z4))(z3 + 6z2 + 15z + 15) exp(−z)

k−n(z) = kn−1(z)

2.975]. We could use polynomial approximations in those regions, but that provides only a partial solution to a
problem that occurs uncountably often for larger x values. The code in sbj1x.h uses a rational polynomial fit in the
first loss region.

For larger arguments, however, the approach in most existing implementations of j1(x) and y1(x) is to suffer
the subtraction loss from straightforward application of the closed formulas, which means accepting small absolute
error, rather than small relative error. That does not meet the accuracy goals of the mathcw library, and because no
obvious rearrangement of the closed forms for arguments |x| > 1 prevents the subtraction loss analytically, the only
recourse is then to use higher precision, when available. In practice, that means that the float functions can achieve
high accuracy, and on some systems, the double functions as well. However, the relative accuracy for longer data
types can be expected to be poor near the function zeros.

Because two trigonometric functions are usually needed for each of j1(x) and y1(x), some libraries compute both
spherical Bessel functions simultaneously. Ours does not, but we use the SINCOS() function family to get the sine and
the cosine with a single argument reduction, and little more than the cost of just one of the trigonometric functions.

For sufficiently large x, the terms containing the factor x in j1(x) and y1(x) dominate, and we can avoid one of
the trigonometric functions, computing j1(x) ≈ − cos(x)/x, and y1(x) ≈ − sin(x)/x. A suitable cutoff for j1(x) is
found by setting sin(x) ≈ 1 and cos(x) ≈ ε (the machine epsilon), for which we have j1(x) ≈ (−xε + 1)/x2, and 1 is
negligible in that sum if 1/(xε) < 1

2 ε/β. We solve that to find the cutoff xc = 2β/ε2 = 2β2t−1, where t is the number
of base-β digits in the significand. The same cutoff works for y1(x) too.

An alternate approach is to evaluate the continued fraction for the ratio j1(x)/j0(x) (see Section 21.6 on page 710),
and then determine j1(x) from the product of that ratio with an accurate value of j0(x). Numerical experiments with
that technique show that the errors are higher than with direct use of the trigonometric closed forms, even when
those forms cannot be computed in higher precision.

For orders n ≥ 2, jn(x) is computed using the same algorithm as for Jn(x): series summation for small arguments,
and downward recurrence with the continued fraction to find the ratio jn(x)/j0(x), from which jn(x) can be easily
found.

Unfortunately, the continued fraction for the Bessel function ratios converges poorly for large arguments: the
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Figure 21.23: Spherical Bessel functions, jn(x) and yn(x), modified spherical Bessel functions, in(x) and kn(x), and
scaled modified spherical Bessel functions, e−|x|in(x) and exkn(x).

number of iterations required is roughly x� (see Section 6.7 on page 136). It is then better to switch to the formulas
suggested by the asymptotic relations involving the functions P(ν, x) and Q(ν, x) that we introduced in Section 21.3
on page 698.

For n ≥ 2, yn(x) can be computed stably by upward recurrence, or when (n + 1
2 )

2 < |x|, by the asymptotic
expansion. However, if x lies near a zero of y1(x), namely, the values for which x sin(x) = cos(x), or x = cot(x), then
as we noted, y1(x) may be inaccurate. Its error may then contaminate all higher yn(x) values computed with the
upward recurrence. The only simple solution to that problem is to use higher-precision arithmetic for the recurrence,
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Table 21.7: Limiting values of spherical Bessel functions.

j0(0) = 1,

jn(0) = 0, n > 0,

jn(z) → (1/z) sin(z − nπ/2), |z| → ∞,

jn(z) → zn/(2n + 1)!!, |z| → 0,

yn(0) = −∞, for all integer n ≥ 0,

yn(z) → −(2n − 1)!!/zn+1, |z| → 0,

yn(z) → −(1/z) cos(z − nπ/2), |z| → ∞,

i0(0) = 1,

in(0) = 0, for all integer n > 0,

in(z) → zn/(2n + 1)!!, |z| → 0,

i−n(z) → (−1)n+1(2n − 3)!!/zn, |z| → 0,

in(z) → exp(z)/(2z), |z| → ∞,

kn(0) = +∞,

kn(z) → ( 1
2 π)(2n − 1)!!/zn+1, |z| → 0,

kn(z) → ( 1
2 π/z) exp(−z), |z| → ∞.

but that is not possible at the highest-available precision.
Figure 21.24 through Figure 21.29 on page 746 show the measured errors in our implementations of the ordinary

spherical Bessel functions.

21.16 Improving j1(x) and y1(x)

In Section 21.9 on page 716, we showed how to use a symbolic-algebra system to find the general form of the
Taylor-series expansions near the zeros of low-order ordinary cylindrical Bessel functions. We can do the same for
the spherical Bessel functions, but we can omit the order-zero functions because their closed forms can be evaluated
accurately near all of their zeros, as long as exact trigonometric argument reduction is available, as it is in the mathcw
library.

The Maple files sbj1taylor.map and sby1taylor.map generate the expansions around a particular zero, z:

j1(z + d) = a0 + a1d + a2d2 + a3d3 + a4d4 + · · · ,

y1(z + d) = b0 + b1d + b2d2 + b3d3 + b4d4 + · · · .

Four intermediate variables

v = 1/z, w = v2, c = cos(z), s = sin(z),

simplify the coefficients, the first few of which look like this:

a0 = 0,
a1 = (((1 − 2w)s + 2cv)v)/1,
a2 = (−((3 − 6w)vs + (−1 + 6w)c)v)/2,
a3 = (((−1 + (12 − 24w)w)s + (−4 + 24w)vc)v)/6,
a4 = (−((−5 + (60 − 120w)w)vs + (1 + (−20 + 120w)w)c)v)/24,
b0 = 0,
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Figure 21.24: Errors in the binary (top) and decimal (bottom) sbj0(x) family.

b1 = ((2sv + (−1 + 2w)c)v)/1,
b2 = (−((−1 + 6w)s + (−3 + 6w)vc)v)/2,
b3 = (((−4 + 24w)vs + (1 + (−12 + 24w)w)c)v)/6,
b4 = (−((1 + (−20 + 120w)w)s + (5 + (−60 + 120w)w)vc)v)/24.

Our improved code for sbj1(x) and sby1(x) computes the coefficients up to k = 17, and then evaluates the polyno-
mials in Horner form using the QFMA() wrapper.

Sign alternations in the Taylor-series expansions may lead to loss of leading digits when the series are summed,
and digit loss is also possible in the computation of the individual coefficients ak and bk. The maximum size of |d|
for which the expansions can be used without digit loss depends on z, and is best determined by high-precision
numerical experiment. The two Maple programs do just that, and their output shows that loss is almost always most
severe in the sums a2d2 + a3d3 and b2d2 + b3d3. Tables of the first 318 zeros handle x < 1000, for which a cutoff of
|d| < 0.003 suffices for both functions. In practice, a somewhat larger cutoff, such as |d| < 0.05, could probably be
used, because the terms for k = 1 dominate the sums.

As in the improved code for the cylindrical functions, we tabulate the zeros as pair sums of exact high and
accurate low parts so that d can be determined to machine precision from (x − zhi)− zlo. We could also tabulate the
values of the sine and cosine at the zeros, but instead conserve storage at the expense of somewhat longer compute
times when |d| is small enough for the series to be used. In addition, we suppress the use of the Taylor expansions
entirely when the number of digits in the hp_t data type is at least twice that in the fp_t data type, because our
normal algorithm then has sufficient precision to provide low relative error near the zeros.
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Figure 21.25: Errors in the binary (top) and decimal (bottom) sbj1(x) family.

The error plots in Figure 21.25 for sbj1(x), and in Figure 21.28 on page 745 for sby1(x), exhibit low relative error
because of our use of higher intermediate precision, so we do not show plots from the improvements of this section.
Instead, we do a short numerical experiment at the adjacent zeros bracketing the table end, using high-precision
values from a symbolic-algebra system for comparison:

% hocd128 -lmcw
hocd128> x318 = 1_000.596_260_764_587_333_582_227_925_178_11

hocd128> x319 = 1_003.737_856_546_205_566_637_222_858_984_913

hocd128> sbj1(x318); 0.670873169872646828693521368291249352922e-34
6.708_731_698_726_468_286_935_213_682_912_493e-35
6.708_731_698_726_468_286_935_213_682_912_494e-35

hocd128> sbj1(x319); -0.371136263838085458455232524434396532682e-33
-3.711_362_459_535_284_444_620_381_903_540_337e-34
-3.711_362_638_380_854_584_552_325_244_343_965e-34

hocd128> x319a = 1_003.737_856_546_206

hocd128> sbj1(x319a); -0.431748747189598548200146130945033677271e-15
-4.317_487_471_895_985_482_001_461_299_690_095e-16
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Figure 21.26: Errors in the binary (top) and decimal (bottom) sbjn(n,x) family for n = 25.

-4.317_487_471_895_985_482_001_461_309_450_337e-16

In the region covered by the tabulated zeros, we find relative errors of about one ulp or less, but closest to the first
zero outside that region, all but seven of the computed digits are wrong. The last experiment shows the improvement
when we have a 16-digit approximation to the zero.

21.17 Modified spherical Bessel functions

The unscaled and scaled modified spherical Bessel functions of the first and second kinds are provided by functions
with these prototypes:

double sbi0 (double); double sbk0 (double);
double sbi1 (double); double sbk1 (double);
double sbin (int, double); double sbkn (int, double);
double sbis0 (double); double sbks0 (double);
double sbis1 (double); double sbks1 (double);
double sbisn (int, double); double sbksn (int, double);

They have companions with the usual type suffixes for other precisions and bases.
As the function names suggest, the cases n = 0 and n = 1 receive special treatment. Code for arbitrary n can then

use those functions internally.
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Figure 21.27: Errors in the binary (top) and decimal (bottom) sby0(x) family.

21.17.1 Computing i0(x)

To compute the modified function of the first kind of order zero, sbi0(x), a one-time initialization block first de-
termines two cutoffs for Taylor series expansions, and the arguments above which sinh(x) and i0(x) overflow. The
symmetry relation i0(−x) = i0(x) allows us to work only with nonnegative x.

For small arguments, the Taylor-series expansion and its term recurrence looks like this:

i0(x) = 1 + (1/6)x2 + (1/120)x4 + (1/5040)x6 + (1/362 880)x8 +

(1/39 916 800)x10 + · · · ,
= t0 + t1 + t2 + · · · ,

t0 = 1, tk =

(
1

2k(2k + 1)

)
x2tk−1, for k = 1, 2, 3, . . . .

That series enjoys rapid convergence, and all terms are positive, so there is never subtraction loss. The series is usable
for x values larger than one. If x = 4, then 24 terms recover 34 decimal digits, and 39 terms produce 70 decimal digits.

The Taylor-series cutoffs are straightforward expressions that determine the value of x for which the k-th series

term is smaller than half the rounding error: ckxk
TS < 1

2 ε/β. Thus, we have xTS < k
√

1
2 ε/(βck), and we can choose k

so that the k-th root needs only square roots or cube roots.
Unlike the implementations of functions described in most other chapters of this book, for the spherical Bessel

functions, we use Taylor series over a wider range. For i0(x), in the four extended IEEE 754 decimal formats, the
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Figure 21.28: Errors in the binary (top) and decimal (bottom) sby1(x) family.

cutoffs for a nine-term series are about 2.84, 0.777, 0.0582, and 0.000 328. For i1(x), the cutoffs are larger, and impor-
tantly, for the lowest precision, cover the range where subtraction loss in the closed form of the function is a problem.
Having both a short and a long series allows tiny arguments to be handled at lower cost.

For large x, sinh(x) ≈ exp(x)/2, so overflow happens for x > log(2) + log(FP_T_MAX), where the argument of
the last logarithm is the largest representable value. However, experiments on various systems show that implemen-
tations of the hyperbolic sine in some vendor libraries suffer from premature overflow, so we reduce the cutoff by
1/16.

For large x, i0(x) = sinh(x)/x ≈ exp(x)/(2x), but that does not give a simple way to determine x when the
left-hand side is set to FP_T_MAX. We can find x by using Newton–Raphson iteration to solve for a root of f (x) =
log(i0(x)) − log(FP_T_MAX) ≈ x − log(2x) − log(FP_T_MAX). Starting with x set to log(FP_T_MAX), convergence is
rapid, and five iterations produce a solution correct to more than 80 digits.

With the initialization complete, we first handle the special cases of NaN, zero, and |x| above the second overflow
cutoff. For small x, we sum three-term or nine-term Taylor series expansions in nested Horner form in order of
increasing term magnitudes. For x below the first overflow cutoff, we use the hyperbolic sine formula. For x between
the two overflow cutoffs, we can replace sinh(x) by exp(x)/2, but we need to proceed carefully to avoid premature
overflow from the exponential. Preprocessor conditionals select base-specific code for β = 2, 8, 10, and 16. For
example, for decimal arithmetic, we compute exp(x)/(2x) = exp(x/10)10/(2x) like this:

volatile fp_t t;
fp_t u, u2, u4;
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Figure 21.29: Errors in the binary (top) and decimal (bottom) sbyn(n,x) family for n = 25.

u = EXP(x * FP(0.1)); /* exact argument scaling */
u2 = u * u;
u4 = u2 * u2;
t = HALF * u2 / x;
STORE(&t);
result = t * u4 * u4;

Because of the error magnification of the exponential, it is imperative to scale its argument exactly. The volatile
keyword and the STORE() macro force intermediate expression evaluation to prevent an optimizing compiler from
delaying the division by x until the products have been computed, and overflowed. Avoidance of premature over-
flow therefore costs at least seven rounding errors in a decimal base (or four when β = 2), but that happens only near
the overflow limit.

Figure 21.30 on the facing page shows the measured accuracy in two of the functions for computing i0(x). Plots
for their companions are similar, and thus, not shown.

21.17.2 Computing is0(x)

The scaled modified spherical Bessel function of order zero is defined by

is0(x) = exp(−|x|)i0(x)
= exp(−|x|) sinh(x)/x
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Figure 21.30: Errors in the binary (left) and decimal (right) sbi0(x) family.

= (1 − exp(−2|x|))/(2|x|).

For |x| in [0,− 1
2 log( 1

2 )] ≈ [0, 0.347], there is subtraction loss in the numerator. We could handle that by using a
polynomial approximation in that region, but we have already done so elsewhere in the library, because we can
rewrite the function as is0(|x|) = − expm1(−2|x|)/(2|x|).

For small arguments, the Taylor series is useful:

is0(x) = 1 − x + (2/3)x2 − (1/3)x3 + (2/15)x4 − (2/45)x5 + (4/315)x6 −
(1/315)x7 + (2/2835)x8 − (2/14 175)x9 + · · · .

There is no loss of leading bits if we use it only for |x| < 1/2.
The series terms can be computed with this recurrence:

t0 = 1, tk = −
(

2
k + 1

)
xtk−1, for k = 1, 2, 3, . . . ,

is0(x) = t0 + t1 + t2 + · · · .

For sufficiently large |x|, the exponential function is negligible, and the function reduces to 1/(2|x|). That happens
for |x| in [− 1

2 log( 1
2 ε/β), ∞). In IEEE 754 arithmetic, the lower limit is about 8.664 in the 32-bit format, and 39.510 in

the 128-bit format. Thus, over most of the floating-point range, we do not even need to call an exponential function.
The code in sbis0x.h has a one-time initialization block that computes two Taylor-series cutoffs, the subtraction-

loss cutoff, and the upper cutoff where the exponential function can be omitted. It then handles the case of NaN and
zero arguments. Otherwise, it records whether x is negative, and forces it positive, and then splits the computation
into five regions: a four-term Taylor series, a nine-term Taylor series, the subtraction loss region, the nonneglible
exponential region, and the final region for large x where the result is just 1/(2x). The final result is then negated if
x was negative on entry to the function.

There are subtle dependencies on the base in the handling of the denominator 2x. In the loss region, for β �= 2,
compute the result as − 1

2 expm1(−(x + x))/x to avoid introducing an unnecessary rounding error in the denomina-
tor. In the exponential region, the result is 1

2 ((1 − exp(−(x + x)))/x) when β �= 2. In the overflow region, the result
is 1

2 x.
Figure 21.31 on the next page shows the measured accuracy in two of the functions for computing is0(x).

21.17.3 Computing i1(x)

The code for the spherical Bessel function i1(x) = (cosh(x) − sinh(x)/x)/x begins with a one-time initialization
block that computes two Taylor series cutoffs, and two overflow cutoffs where the hyperbolic functions overflow,
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Figure 21.31: Errors in the binary (left) and decimal (right) sbis0(x) family.

and where i1(x) itself overflows. As in the code for i0(x), Newton–Raphson iteration is needed to find the second
cutoff.

The code is easy for arguments that are NaN, zero, or have magnitudes beyond the second overflow cutoff.
Otherwise, if x is negative, the symmetry relation i1(−x) = −i1(x) allows x to be forced positive, as long as we
remember to negate the final result. For small x, we sum three-term or nine-term Taylor series in Horner form.

For x between the second Taylor series cutoff and the first overflow limit, we could evaluate the hyperbolic
functions that define i1(x). However, there is subtraction loss in the numerator for x in [0, 1.915], and all digits can
be lost when x is small. There does not appear to be a simple alternative expression for i1(x) that avoids the loss, and
requires only functions that we already have. We therefore have two choices: sum the general Taylor series until it
converges, or use a polynomial approximation.

The Taylor-series expansion and its term recurrence looks like this:

i1(x) = (1/3)x + (1/30)x3 + (1/840)x5 + (1/45 360)x7 + · · ·
=

∞

∑
k=1

2k
(2k + 1)!

x2k−1,

= (x/3)(t1 + t2 + t3 ++ · · · )
t1 = 1, tk+1 =

(
1

2k(2k + 3)

)
x2tk, k = 1, 2, 3, . . . .

All terms have the same sign, so no subtraction loss is possible. It is best to start with k = 2 and sum the series until
it has converged, and then add the first term. Convergence is slowest for the largest x, and numerical experiments
show that we need at most 7, 12, 13, 19, and 32 terms for the five binary extended IEEE 754 formats. Accumulation
of each term costs two adds, two multiplies, and one divide. However, if we store a precomputed table of values of
1/(2k(2k + 3)), the sum costs only one add and two multiplies per term.

In most cases, only the last two rounding errors affect the computed function value. In binary arithmetic, one of
those errors can be removed by rewriting x/3 as x/4 + x/12, and then moving the term x/12 into the sum of the
remaining terms. That sum is then added to the exact value x/4.

For the polynomial-fit alternative, we can compute the Bessel function as

i1(x) ≈ x/3 + x3R(x2)

≈ x/4 + (x/12 + x3R(x2)),

R(x) = (i1(
√

x)−√
x/3)/

√
x3, fit to rational polynomial.

For x on [0, 1], the term ratio x3R(x2)/(x/3) lies on [0, 0.103], so the polynomial adds at least one decimal digit of
precision. For x on [1, 1.915], that ratio reaches 0.418.
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Figure 21.32: Errors in the binary (left) and decimal (right) sbi1(x) family.

Numerical experiments in Maple show that rational polynomial fits of orders 〈2/1〉, 〈4/3〉, 〈4/4〉, 〈7/6〉, and
〈12/12〉 are needed for the five binary extended IEEE 754 formats. Those fits require less than a quarter of the
operation counts of Taylor-series sums for the same accuracy. Consequently, rational polynomials are the default
evaluation method in sbi1(x), although the others can be selected at compile time by defining preprocessor sym-
bols.

Above the interval [0, 1.915], we can safely use the hyperbolic functions, until we reach the region between the
two overflow cutoffs, where we have i1(x) ≈ exp(x)(1 − 1/x)/(2x) = (exp(x)/(2x2))(x − 1). Having a single
function that computes both sinh(x) and cosh(x) simultaneously is clearly useful here, and our library supplies
sinhcosh(x,psh,pch) for that purpose. As we did for i0(x), to avoid premature overflow in the exponential, expand
it as exp(x/β)β, and include the factor 1/(2x) early in the product of the factors. For example, for a hexadecimal
base, the code looks like this:

volatile fp_t t;
fp_t u, u2, u4, v;

u = EXP(x * FP(0.0625)); /* exact argument scaling */
u2 = u * u;
u4 = u2 * u2;
t = HALF * u4 / (x * x);
STORE(&t);
v = t * u4 * u4 * u4;
result = v * (x - ONE);

Avoidance of premature overflow costs ten rounding errors (or six when β = 2), but only near the overflow limit.
Figure 21.32 shows the measured accuracy in two of the functions for computing i1(x).

21.17.4 Computing is1(x)

The scaled modified spherical Bessel function of order one has the symmetry relation is1(−x) = − is1(x), so we
henceforth assume that x is nonnegative, and we set a flag to negate the final result if the argument is negative. The
function is then defined by

is1(x) = exp(−x)i1(x), for x ≥ 0,

= exp(−x)(cosh(x)− sinh(x)/x)/x
= exp(−x)((exp(x) + exp(−x))− (exp(x)− exp(−x))/x)/(2x)
= (1 + exp(−2x)− (1 − exp(−2x))/x)/(2x)
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Figure 21.33: Errors in the binary (left) and decimal (right) sbis1(x) family.

= ((1 − 1/x) + (1 + 1/x) exp(−2x))/(2x).

As we observed in Section 21.17.3 on page 747, there is subtraction loss in the hyperbolic form of the numerator for
x in [0, 1.915], and that region is best handled by summing a Taylor series, or with a polynomial approximation.

The Taylor series for is1(x), and its term recurrence relation, look like this:

is1(x) = (x/3)(1 − x + (3/5)x2 − (4/15)x3 + (2/21)x4 − (1/35)x5 +

(1/135)x6 − (8/4725)x7 + (2/5775)x8 − (2/31 185)x9 + · · · ),
= (x/3)(t0 + t1 + t2 + · · · ),
= (x/4)(t0 + t1 + t2 + · · · ) + (x/12)(t0 + t1 + t2 + · · · ), when β = 2,

t0 = 1, tk = −
(

2(k + 1)
k(k + 3)

)
xtk−1, k = 1, 2, 3, . . . .

Unfortunately, that series converges slowly, so its use is limited to |x| � 1. In the 32-bit IEEE 754 formats, the nine-
term series can be used only for |x| < 0.31. Higher precisions reduce that cutoff. Just as we did for i1(x) in a binary
base, replacing the inexact x/3 factor by x/4 + x/12 reduces the outer rounding error.

In the exponential form, the second term is almost negligible for x above the value for which exp(−2x) is smaller
than the rounding error 1

2 ε/β. That cutoff is then − 1
2 log( 1

2 ε/β). However, that is a slight underestimate, and a better
choice that works in all IEEE 754 formats is larger by 1/8. We could, of course, use Newton–Raphson iteration to
find the precise cutoff value, but a simple increment by 1/8 is easier, and of little significance for later computation.

The code in sbis1x.h first handles NaN and zero arguments. Otherwise, it enforces the symmetry relation by
forcing x to be positive with a negation flag set for later use, and then splits the computation into five regions: three-
term or nine-term Taylor series for small x, a polynomial approximation in the loss region, the exponential form
below the upper cutoff, and above that cutoff, simply ( 1

2 − ( 1
2 )/x)/x. In the last region, to reduce rounding error,

multiplication by the reciprocal of x should be avoided.
Figure 21.33 shows the measured accuracy in two of the functions for computing is1(x).

21.17.5 Computing in(x)

To find the unscaled modified spherical Bessel functions of arbitrary order, sbin(n,x), we often need to use the
recurrence relation when n > 1. As we observed in Section 21.13 on page 728, stable computation of the in(x) Bessel
functions requires using the continued-fraction form to find the ratio in(x)/in−1(x), and then downward recurrence
to find in(x)/i0(x), from which the function value can be found by multiplying the ratio by the result returned by
sbi0(x).

For small arguments, it is desirable for speed and accuracy to sum a series, but Maple is unable to find one for
arbitrary n. However, Mathematica is successful:
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% math
In[1]:= sbin = Function[{n, x}, BesselI[n + 1/2,x] * Sqrt[Pi/(2*x)]];

In[2]:= Simplify[Series[sbin[n,x], {x, 0, 6}]]

-1 - n -2 - n 2
n 2 Sqrt[Pi] 2 Sqrt[Pi] x

Out[2]= x (---------------- + ---------------------- +
3 3

Gamma[- + n] (3 + 2 n) Gamma[- + n]
2 2

-4 - n 4
2 Sqrt[Pi] x

> ------------------------------- +
2 3

(15 + 16 n + 4 n ) Gamma[- + n]
2

-5 - n 6
2 Sqrt[Pi] x 7

> ------------------------------------------- + O[x] )
2 3 3

3 (105 + 142 n + 60 n + 8 n ) Gamma[- + n]
2

That expansion looks horrid, but we recognize some common factors on the right-hand side, and try again with
those factors moved to the left-hand side:

In[3]:= Simplify[Series[sbin[n,x] * 2^(n+1) * Gamma[n + 3/2] /
Sqrt[Pi], {x, 0, 6}]]

2 4
n x x

Out[3]= x (1 + ------- + ------------------- +
6 + 4 n 2

120 + 128 n + 32 n

6
x 7

> ------------------------------- + O[x] )
2 3

48 (105 + 142 n + 60 n + 8 n )

The series coefficients are reciprocals of polynomials in n with integer coefficients. For n > x2, the leading term is
the largest, and the left-hand side grows like xn.

The factor in the left-hand side looks ominous, until we remember that half-integral values of the gamma function
have simple values that are integer multiples of

√
π. We recall some results from Section 18.1 on page 522 to find

the form of the factor:

Γ( 1
2 ) =

√
π,

Γ(n + 1
2 ) = (2n − 1)!! Γ( 1

2 )/2n, if n ≥ 0,

= (2n − 1)!!
√

π/2n,
Γ(n + 3

2 ) = (2(n + 1)− 1)!!
√

π/2n+1

= (2n + 1)!!
√

π/2n+1,
(2n + 1)!! = 2n+1Γ(n + 3

2)/
√

π, left-hand side factor.
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With a larger limit in the series expansion in Mathematica, and application of its polynomial-factorization function,
Factor[], we therefore find the first few terms of the Taylor series as

in(x) =
xn

(2n + 1)!!
(1 +

1
2(3 + 2n)

x2 +
1

8(3 + 2n)(5 + 2n)
x4 +

1
48(3 + 2n)(5 + 2n)(7 + 2n)

x6 +

1
384(3 + 2n)(5 + 2n)(7 + 2n)(9 + 2n)

x8 +

1
3840(3 + 2n)(5 + 2n)(7 + 2n)(9 + 2n)(11 + 2n)

x10 +

1
46 080(3 + 2n)(5 + 2n)(7 + 2n)(9 + 2n)(11 + 2n)(13 + 2n)

x12 +

· · · ).
Notice the additional structure that coefficient factorization exposes, and that all terms are positive. Taking ratios of
adjacent coefficients shows that the terms of the Taylor series have a delightfully simple recurrence:

t0 = 1, tk =

(
1

2k(2k + 2n + 1)

)
x2tk−1, for k = 1, 2, 3, . . . ,

in(x) =
xn

(2n + 1)!!
(t0 + t1 + t2 + t3 + · · · ).

The general Taylor-series term and its coefficient can be written explicitly like this:

tk = ckx2k, for k = 0, 1, 2, . . . ,

c0 = 1,

ck = 1/
k

∏
j=1

(2j(2n + 1 + 2j)), for k = 1, 2, 3, . . . ,

= 1/
(
2k k!

k

∏
j=1

(2n + 1 + 2j)
)

= 1/
(
22k k!

k

∏
j=1

(n + 1
2 + j)

)
= 1/

(
22k k! (n + 3

2 )k
)
, see text for this notation.

In the last equation, the notation (a)k stands for the product a × (a + 1) × (a + 2) × · · · × (a + k − 1) = Γ(a +
k)/Γ(a). It is called the rising factorial function, or sometimes, the Pochhammer symbol. Maple provides it as the
function pochhammer(a,k), and Mathematica as the function Pochhammer[a,k].

Normally, we apply the Taylor series only for small x, so that only a few terms are needed to reach a given ac-
curacy. However, here we can see that the series also needs only a few terms if n > x2, because the denominator of
the k-th term is larger than 22kk!, effectively providing more than 2k additional bits to the sum. That is an important
observation, because our other computational route to in(x) involves a recurrence whose execution time is propor-
tional to n, plus the separate computation of i0(x). To illustrate how well the series converges, Table 21.8 on the
next page shows the accuracy obtainable with modest numbers of terms for various choices of n and x. The limited
exponent range of most floating-point systems means that we usually cannot compute in(x) for n values as large as
those shown in that table before the function overflows.

With care, we can use the Taylor series for larger values of x than permitted by the condition n > x2. If we are
prepared to sum up to k terms, and if x2 > n, then the first few terms grow, but eventually they get smaller because
of the rapid growth of the denominator. If term k is smaller than the rounding error compared to the first term, then
the sum has surely converged to machine precision, so we have the requirements that

tk = ckx2k < ε/(2β), x2 < k
√

ε/(2βck), x2/n < k
√

22kk!ε/(2β).
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Table 21.8: Convergence of the Taylor series of in(x), showing the relative error in a sum of N terms.

n relerr n relerr n relerr
x = 1

N = 10 N = 20 N = 30
10 2.82e-25 10 3.02e-57 10 7.47e-93

100 1.47e-33 100 4.76e-72 100 4.14e-113
1000 2.48e-43 1000 3.00e-91 1000 2.03e-141

10 000 2.61e-53 10 000 3.66e-111 10 000 3.12e-171
x = 10

N = 10 N = 20 N = 30
10 2.82e-05 10 3.02e-17 10 7.47e-33

100 1.47e-13 100 4.76e-32 100 4.14e-53
1000 2.48e-23 1000 3.00e-51 1000 2.03e-81

10 000 2.61e-33 10 000 3.66e-71 10 000 3.12e-111
x = 100

N = 10 N = 20 N = 30
1000 0.00248 1000 3.00e-11 1000 2.03e-21

10 000 2.61e-13 10 000 3.66e-31 10 000 3.12e-51
100 000 2.63e-23 100 000 3.73e-51 100 000 3.25e-81

1 000 000 2.63e-33 1 000 000 3.74e-71 1 000 000 3.27e-111

The last inequality follows from the replacement in ck of (n + 3
2 )k by the smaller value nk. For a large fixed k, compu-

tation of the right-hand requires rewriting it in terms of logarithms and an exponential to avoid premature overflow.
However, it gives us a scale factor, s, that needs to be computed only once for the chosen limit on k, and that can then
be used to determine how large n can be compared to x2 to use the series.

When x2 > n, some term after the first is the largest, and because each term suffers four rounding errors, those
errors can have a large affect on the computed sum. One solution would be to accumulate the sum in higher preci-
sion. Alternatively, we can just reduce the scale factor to force a switch to an alternative algorithm for smaller values
of x, and that is what we do in the code in sbinx.h.

After a one-time initialization block to compute a Taylor-series cutoff and the limit on x2/n, the code in sbinx.h
for computing in(x) has several blocks. First, there are checks for x is a NaN, Infinity, or zero, then checks for n = 0 or
n = 1. Otherwise, we record a negation flag that tells us whether x is negative and n is even, and then we force x to be
positive. The computation is then split into four regions, the first where n < 0 and the downward recurrence is stable,
the second where the four-term Taylor series can be summed, the third where the general Taylor series is effective
because x2/n < s, and the last where the Lentz algorithm evaluates the continued-fraction ratio in(x)/in−1(x), then
downward recurrence is used to find in(x)/i0(x), and the magnitude of the final result is obtained by multiplying
that ratio by sbi0(x). If the negation flag is set, the last result must be negated.

Figure 21.34 on the following page shows the measured accuracy in two of the functions for computing i25(x).
The extended vertical range is needed to show how numerical errors increase in the recurrence.

21.17.6 Computing isn(x)

The scaled modified spherical Bessel functions of arbitrary order, implemented in the function sbisn(n,x), are de-
fined as isn(x) = exp(−|x|)in(x), and satisfy the argument symmetry relation isn(−x) = (−1)n isn(x). The expo-
nential scaling damps the growth of in(x), making isn(x) representable over more of the floating-point range. For
example, i10(1000) ≈ 10431, but is10(1000) ≈ 10−4.

As happens with the other spherical Bessel functions of order n, Maple is unable to find a Taylor series expansion
of the scaled functions for arbitrary n, but Mathematica can do so, and we can display its results like this:

isn(x) =
xn

(2n + 1)!!
(1 − x +

2 + n
3 + 2n

x2 − 1
3

3 + n
3 + 2n

x3 +
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Figure 21.34: Errors in the binary (left) and decimal (right) sbin(n,x) family for n = 25.

1
6

(3 + n)(4 + n)
(3 + 2n)(5 + 2n)

x4 − 1
30

(4 + n)(5 + n)
(3 + 2n)(5 + 2n)

x5 +

1
90

(4 + n)(5 + n)(6 + n)
(3 + 2n)(5 + 2n)(7 + 2n)

x6 −
1

630
(5 + n)(6 + n)(7 + n)

(3 + 2n)(5 + 2n)(7 + 2n)
x7 +

· · · )
=

xn

(2n + 1)!!
(t0 + t1 + t2 + · · · ).

Successive terms can be produced with this recurrence:

t0 = 1, tk = −2
k

(
k + n

k + 1 + 2n

)
xtk−1, k = 1, 2, 3, . . . .

Convergence is slower than that of the series for in(x), and because the signs alternate, subtraction loss is a problem
unless |x| < 1

2 . Nevertheless, for x = 1
2 and n = 1, only 10, 17, 20, 31, and 53 terms are required for the five binary

extended IEEE 754 formats, and convergence is faster for smaller |x| or larger n.
The computational approach in sbisnx.h is similar to that in sbinx.h: a one-time initialization block to compute

a Taylor series cutoff, special handling when x is NaN, zero, or Infinity, or n = 0 or n = 1, downward recurrence if
n < 0, a four-term Taylor series for small x, a general Taylor series for |x| < 1

2 , and otherwise, the Lentz algorithm
for the continued fraction, downward recurrence, and then normalization by sbis0(x).

Figure 21.35 on the next page shows the measured accuracy in two of the functions for computing is25(x).

21.17.7 Computing kn(x) and ksn(x)

Because the modified spherical Bessel function of the second kind for order n, kn(x), is the product of
(π/(2xn+1)) exp(−x) and a polynomial of order n in x with positive integer coefficients, its upward recurrence
relation is certainly stable for positive arguments. There is subtraction loss for negative arguments, but the error is
always small compared to the dominant constant term in the polynomial factor, so in practice, the computation is
also stable for negative arguments.

The two lowest-order unscaled functions have these Taylor-series expansions:

k0(x) = (π/(2x))(1 − x + (1/2)x2 − (1/6)x3 + (1/24)x4 −
(1/120)x5 + (1/720)x6 − (1/5040)x7 + · · · ),
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Figure 21.35: Errors in the binary (left) and decimal (right) sbisn(n,x) family for n = 25.

k1(x) = (π/(2x2))(1 − (1/2)x + (1/3)x2 − (1/8)x3 + (1/30)x4 −
(1/144)x5 + (1/840)x6 − (1/5760)x7 + · · · ).

Leading bit loss in their sums is avoided if we choose the cutoffs xTS = 1
2 for k0(x) and xTS = 3

4 for k1(x).
The series for the scaled functions are just the polynomials given in Table 21.6 on page 738.
For large x, the value of kn(x) approaches (π/(2x)) exp(−x), so the only significant concern in its computation is

the optimization of avoiding a call to the exponential when x is large enough that kn(x) underflows to zero. Because
that value of x is independent of n, it is a cutoff that we can compute in a one-time initialization block. The scaled
companion, ksn(x) = exp(x)kn(x), needs no exponential, and thus, no cutoff test.

Code for the cases n = 0 and n = 1 is implemented in the files sbk0x.h, sbks0x.h, sbk1x.h, and sbks1x.h. The
functions contain a one-time initialization block to compute overflow and underflow cutoffs. They then check for the
special cases of x is negative, a NaN, or small enough to cause overflow. The unscaled functions also check whether
x is above the underflow cutoff. Otherwise, the functions are simply computed from their definitions, but taking
care to represent π/2 as 2(π/4) in any base with wobbling precision.

The files sbknx.h and sbksnx.h contain the code for arbitrary n, and differ only in their references to the unscaled
or scaled functions of orders 0 and 1. Once n and x have been determined to be other than one of the special cases,
upward recurrence starting from function values for n = 0 and n = 1 finds the result in at most n steps. The loop test
at the start of iteration k includes the expected test k < n, and a second test that the function value is still nonzero, so
that early loop exit is possible once the underflow region has been reached.

Figure 21.36 on the next page through Figure 21.41 on page 757 show the measured accuracy in two of the
functions for computing the modified spherical Bessel functions of the second kind.

21.18 Software for Bessel-function sequences

Some applications of Bessel functions require their values for a fixed argument x, and a consecutive sequence of
integer orders. The existence of three-term recurrence relations suggests that, at least for some argument ranges, it
should be possible to generate members of a Bessel function sequence for little more than the cost of computing two
adjacent elements. Many of the software implementations published in the physics literature cited in the introduction
to this chapter produce such sequences, but the POSIX specification of the Bessel functions provides only for single
function values of Jn(x) and Yn(x).

For the mathcw library, we implement several families of functions that return a vector of n + 1 Bessel function
values for a fixed argument x, starting from order zero:

void vbi (int n, double result[], double x); /* I(0..n,x) */
void vbis (int n, double result[], double x); /* I(0..n,x)*exp(-|x|) */
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Figure 21.36: Errors in the binary (left) and decimal (right) sbk0(x) family.

Figure 21.37: Errors in the binary (left) and decimal (right) sbk1(x) family.

Figure 21.38: Errors in the binary (left) and decimal (right) sbkn(n,x) family for n = 25.
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Figure 21.39: Errors in the binary (left) and decimal (right) sbks0(x) family.

Figure 21.40: Errors in the binary (left) and decimal (right) sbks1(x) family.

Figure 21.41: Errors in the binary (left) and decimal (right) sbksn(n,x) family for n = 25.
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void vbj (int n, double result[], double x); /* J(0..n,x) */
void vbk (int n, double result[], double x); /* K(0..n,x) */
void vbks (int n, double result[], double x); /* K(0..n,x) * exp(x) */
void vby (int n, double result[], double x); /* Y(0..n,x) */

void vsbi (int n, double result[], double x); /* i(0..n,x) */
void vsbis(int n, double result[], double x); /* i(0..n,x)*exp(-|x|) */
void vsbj (int n, double result[], double x); /* j(0..n,x) */
void vsbk (int n, double result[], double x); /* k(0..n,x) */
void vsbks(int n, double result[], double x); /* k(0..n,x) * exp(x) */
void vsby (int n, double result[], double x); /* y(0..n,x) */

Each of those functions has companions with the usual precision suffices. For example, after a call to the deci-
mal_double function vsbyd(n,result,x), the array result[] contains the ordinary spherical Bessel function values
y0(x), y1(x), . . . , yn(x).

The vector functions follow a common design:

� Check for the condition n < 0, indicating an empty output array, in which case, set errno to ERANGE, and return
without referencing the array. There is no provision for arrays of negative orders, even though such orders are
well defined for all of the functions.

� Check for the special cases of x is a NaN, Infinity, and zero and handle them quickly, taking care to preserve
symmetry properties for negative arguments, and handle signed zeros properly. Within a single case, the
elements of the returned arrays have identical magnitudes, but may differ in sign.

� For functions that have complex values on the negative axis, if x < 0, set the array elements to the quiet NaN
returned by QNAN(""), and set the global variable errno to EDOM.

� Handle the special cases of n = 0 and n = 1 by calling the corresponding scalar Bessel functions. We can then
later assume that n > 1, and avoid bounds checks on storage into the output array.

� For small arguments, when the general Taylor series is known and has simple term recurrences, use it to
compute all array entries. That is easily done by an outer loop over orders m = 0, 1, 2, . . . , n, and an inner loop
that sums series terms after the first to machine precision, after which the first term, and any outer scale factor,
are incorporated. The last step may require special handling for systems that have wobbling precision.

If there is an outer scale factor, such as xm/(2n + 1)!!, update it. If that factor overflows or underflows, the
remaining array elements can be quickly supplied, and the outer loop exited early.

To illustrate that description, here is the code block for the Taylor region for In(x) in the file vbix.h:

else if (QABS(x) < FIVE) /* x in (0,5): use Taylor series */
{

fp_t f_m, scale, v, w;
int m;

v = x * HALF;
w = v * v;
scale = ONE; /* k = 0: scale = v**m / m! */

for (m = 0, f_m = ZERO; m <= n; ++m, ++f_m)
{

fp_t f_k, sum, t_k, u;
int k;
static const int MAX_TERMS = 43; /* enough for 70D */

sum = ZERO;
t_k = ONE;

for (k = 1, f_k = ONE; k <= MAX_TERMS; ++k, ++f_k)
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{ /* form sum = t_1 + t_2 + ... */
fp_t new_sum;

t_k *= w / (f_k * (f_k + f_m));
new_sum = sum + t_k;

if (new_sum == sum)
break; /* converged: early loop exit */

sum = new_sum;
}

#if defined(HAVE_WOBBLING_PRECISION)
u = HALF * scale;
u = u + u * sum; /* u = (1/2)*scale*(t_0 + ...) */
result[m] = u + u; /* scale * (t_0 + t_1 + ...) */

#else
u = scale * sum; /* scale * (t_1 + t_2 + ...) */
result[m] = scale + u; /* scale * (t_0 + t_1 + ...) */

#endif /* defined(HAVE_WOBBLING_PRECISION) */

scale *= v / (f_m + ONE);

if (scale == ZERO) /* remaining elements underflow */
{

if (n > m)
VSET(n - m, &result[m + 1], ZERO);

break; /* early loop exit on underflow */
}

}
}

Our algorithm leads to fast code, but for large n values, the use of repeated multiplication for the computation
of an outer scale factor that involves a power and a factorial is less accurate than we could produce by calling
our IPOW() function and using a stored table of correctly rounded factorials.

Separate handling of small arguments with Taylor series is essential for those Bessel functions, such as Jn(x),
that decay with increasing n and require downward recurrence. Otherwise, we could start the recurrence with
zero values for Jn(x) and Jn−1(x), and all lower elements would then also be set to zero, producing unnecessary
premature underflow in the algorithm.

� If upward recurrence is always stable, or x is sufficiently large compared to n that upward recurrence is safe,
call the scalar functions for n = 0 and n = 1 and save their values in the output array, and then quickly fill the
remainder of the array using the recurrence relation. The code block for In(x) in the file vbix.h looks like this:

else if (HALF * QABS(x) > (fp_t)n)
{ /* n > 1: use stable UPWARD recurrence */

fp_t f_k, two_over_x;

two_over_x = TWO / x;
result[0] = BI0(x);
result[1] = BI1(x);

if (ISINF(result[0]) || ISINF(result[1]))
{

fp_t inf_val;
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inf_val = INFTY();

for (k = 2; k <= n; ++k)
result[k] = ( (x < ZERO) && IS_ODD(k) ) ? -inf_val

: inf_val;
}
else
{

for (k = 1, f_k = ONE; k < n; ++k, ++f_k)
result[k + 1] = QFMA(-f_k * two_over_x, result[k],

result[k - 1]);
}

}

If x is large, then the reciprocal could underflow to subnormal or zero in IEEE 754 arithmetic. We could prevent
that by replacing (2k)/x by (2ks)/(xs), with the scale factor s set to a suitable power of the base, such as ε2.
However, In(x) grows quickly to the overflow limit, so we are unlikely to use x values large enough to require
scaling, but infinite function values need special handling to avoid generating NaNs in later subtractions.
The major source of accuracy loss in the recurrence is from subtractions near Bessel-function roots, and fused
multiply-add operations can reduce that loss.

� Otherwise, use downward recurrence. Generate the first two array values by calls to the scalar functions of
orders zero and one. Even though they could be also found from the recurrence, the scalar functions are likely
to be more accurate, and because the initial terms are larger for some of the Bessel functions, that may be
beneficial in the later use of the results. Call the general scalar functions for orders n and n − 1 to get the last
two array elements, and finally, use the downward recurrence relation to compute the intervening elements.

Care is needed to prevent unnecessary generation of Infinity, and subsequent NaN values from subtractions of
Infinity, or multiplications of Infinity by zero. To see how that is done, here is the code block for In(x) in the
file vbix.h:

else /* n > 1: use stable DOWNWARD recurrence */
{

fp_t two_k, one_over_x;

one_over_x = ONE / x;

if (ISINF(one_over_x)) /* prevent NaNs from Infinity * 0 */
one_over_x = COPYSIGN(FP_T_MAX, x);

result[0] = BI0(x);
result[1] = BI1(x);
result[n] = BIN(n, x);

if (n > 2)
result[n - 1] = BIN(n - 1, x);

for (k = n - 1, two_k = (fp_t)(k + k); k > 2;
--k, two_k -= TWO)

{
volatile fp_t b_k_over_x;

b_k_over_x = one_over_x * result[k];
STORE(&b_k_over_x);
result[k - 1] = QFMA(two_k, b_k_over_x, result[k + 1]);

}
}
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For speed, division by x is replaced by multiplication by its reciprocal, introducing another rounding error.

If 1/x overflows, as it can when x is near the underflow limit on important historical architectures such as the
DEC PDP-10, PDP-11, and VAX, and the IBM System/360, and in IEEE 754 arithmetic if x is subnormal, replace
it by the largest representable number of the correct sign to prevent later subtractions of Infinity that produce
NaN values. Overflow cannot happen if we have already handled small arguments with Taylor series.

We avoid calling BIN(n - 1, x) if we already have its value.

Because the calls BIN(n, x) and BIN(n - 1, x) each generate sequences of Bessel function ratios that could
be used to recover the complete function sequence, the work is repeated three times, and an improved imple-
mentation of the vector functions would copy that code from the scalar functions, or make it available from
them via a separate private function.

We terminate the downward loop once result[2] has been generated.

In the loop, we use the volatile qualifier and the STORE() macro to prevent compilers from reordering the
computation (2k)((1/x)Ik(x)) to (1/x)((2k)Ik(x)), possibly producing premature overflow because Ik(x) can
be large.

If either, or both, of In−1(x) and In(x) overflow to Infinity, then that overflow propagates down to I2(x), even
though some of those elements could be finite. A more careful implementation would check for infinite ele-
ments generated by the downward recurrence, and then recompute them individually. In practice, applica-
tions that need that Bessel function for arguments large enough to cause overflow are better rewritten to use
the scaled functions BISN(n,x) or VBIS(n,result,x).

� Although the recurrences involve expressions like 2k/x, throughout the code, we are careful to avoid, or mini-
mize, integer-to-floating-point conversions. Although machines with hardware binary arithmetic can do such
conversions quickly, conversions for decimal arithmetic are slower, especially if the arithmetic is done in soft-
ware.

Comparison of results from the vector Bessel functions with those from the scalar Bessel functions shows two
main problems: accuracy loss near Bessel-function zeros, and accuracy loss for large n from the use of repeated mul-
tiplication for powers and factorials. When those issues matter, it is better to stick with the slower scalar functions,
possibly from the next higher precision, or else to call a vector function of higher precision, and then cast the results
back to working precision.

21.19 Retrospective on Bessel functions

The large number of books and research articles on the computation of Bessel functions that we reported at the
beginning of this chapter reflects the interest in, and importance of, those functions, as well as the difficulty in
computing them accurately.

Many of the recurrence relations and summation formulas presented in this chapter are subject to loss of leading
digits in subtractions, particularly for the ordinary Bessel functions, Jν(z) and Yν(z), and their spherical counterparts,
jν(z) and yν(z), when the argument is near one of their uncountably many roots.

Fortunately, for the Bessel functions that we treat, when upward recurrence is unstable, downward recurrence
is stable, and vice versa. The continued fraction for the ratio of Bessel functions is an essential starting point for
downward recurrence, but we saw in Table 21.5 on page 712 that convergence of the continued fraction may be
unacceptably slow for large values of the argument z.

The modified functions Iν(z) and Kν(z) have no finite nonzero roots, but they quickly reach the overflow and
underflow limits of conventional floating-point number representations. Subtraction loss often lurks elsewhere, as
we saw when the finite and infinite sums for Kν(z) are added, and when the term log(v) + γ is computed for Yν(z)
and Kν(z).

The exponentially scaled functions, Isν(z) and Ksν(z), delay the onset of overflow and underflow, but do not
prevent it entirely. In addition, the unscaled modified Bessel functions have argument ranges where the function
values are representable, yet either, or both, of the exponential factor or the scaled function are out of range, making
the unscaled function uncomputable without access to arithmetic of wider range, or messy intermediate scaling, or
independent implementations of logarithms of the scaled modified Bessel functions.
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The presence of two parameters, the order ν and the argument z, often requires separate consideration of the
cases |ν| � z and |ν| � z, and the computation time may be proportional to either ν or z.

The spherical Bessel functions of integer order have closed forms that require only trigonometric or hyperbolic
functions, and as long as the underlying trigonometric functions provide exact argument reduction, as ours do, can
be computed accurately for some argument intervals over the entire floating-point range. Unfortunately, for n > 0,
subtraction loss is a common problem, and no obvious rewriting, as we did in Section 21.3 on page 699 for the sines
and cosines of shifted arguments, seems to provide a simple and stable computational route that guarantees low
relative error, instead of low absolute error, for arguments near the function zeros. Higher working precision is then
essential.

With complex arguments, and real or complex orders, all of those difficulties are compounded, and we have
therefore excluded those cases from the mathcw library and this book.
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